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A Switching Control Perspective on the Offshore
Construction Scenario of Heavy-Lift Vessels

Jun Ye, Spandan Roy, Milinko Godjevac and Simone Baldi

Abstract—Position control for heavy-lift construction vessels is
crucial for safe operation during offshore construction. During
the various phases of a typical offshore construction assignment
considerable changes in the dynamics of the crane-vessel system
occur. Operational hazard was reported if such interchanging
dynamics are not properly handled. However, to date and to the
best of the authors’ knowledge, no systematic control solution is
reported considering multi-phase offshore construction scenarios.
This paper proposes a switched dynamical framework to model
the interchanging phases and to formulate a comprehensive
position control solution for heavy-lift vessels. Stability and
robustness against modelling imperfections and environmental
disturbances are analytically assessed. The effectiveness of the
solution is verified on a realistic heavy-lift vessel simulation
platform: it is shown that the proposed switched framework
sensibly improves accuracy and reduces hazard as compared
to a non-switched solution designed for only one phase of the
construction scenario.

Index Terms—Dynamic positioning system, Heavy-lift con-
struction vessel, Switched systems, Observer-based control.

I. INTRODUCTION

With the development of the offshore energy industry,
construction works such as installation and removal of offshore
structures in deep ocean have been increasing [1]. During
such construction works, a heavy-lift construction vessel must
operate close to some offshore platform: the position of the
vessel should be controlled via Dynamic Positioning (DP)
acting on the propulsion system [2], [3], in such a way to
avoid any operational hazard, i.e. to avoid the vessel to come
too close to the platform or hit it. A few reports have appeared
showing that DP systems for heavy-lift vessels can go unstable
in certain phases of the offshore construction due to the time-
varying vessel-load dynamics and the large uncertainties in the
system [4]-[7]. Although details are often confidential and
DP design are rarely disclosed, it is known that special DP
functions (heavy lift mode, external force compensation mode)
are devised by DP providers to handle such critical scenarios
[8], [9]. A motivating example is illustrated below.

This work is financially supported by the China Scholarship Council (CSC)
project No. 20167720003, by the Fundamental Research Funds for the Central
Universities grant no. 4007019109, and by the special guiding funds double
first-class grant no. 4007019201 (corresponding author: S. Baldi)

J. Ye is with Dep. of Maritime and Transport Technology, Delft Univ. of
Technology (TU Delft), Delft 2628 CD, Netherlands e-mail: j.ye-1@tudelft.nl

S. Roy is with Robotics Research Centre, International Institute of Infor-
mation Technology Hyderabad, India, and with Delft Center for Systems &
Control, TU Delft, Delft 2628 CD, Netherlands e-mail: spandan.roy @iiit.ac.in

M. Godjevac is with Allseas Group S.A., Poortweg 12, 2612PA, The
Netherlands e-mail: MGj@allseas.com.

S. Baldi is with School of Mathematics, Southeast University, Nanjing
210096, China, and guest with Delft Center for Systems & Control, TU Delft,
Delft 2628 CD, Netherlands e-mail: s.baldi @tudelft.nl

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/

Phase 2
Mooring

Phase 3
Free-hanging

Phase 1
No Load

Figure 1: Schematics of various phases during a typical

offshore removal assignment (in installation assignment
Phases 3 and 1 occur in opposite order).

A. Motivational Example: Construction Assignment

Typical offshore construction assignments include offshore
installation and removal [5], [6]. If we consider the offshore
removal as an example, it consists of three phases, sketched
in Fig. 1: (i) in the first phase, the vessel sails to the desired
position without load (free-floating); (ii) in the second phase,
the vessel lifts a load from a platform, where it encounters
the so-called ‘mooring force’ (external stiffness on the crane
wires); (iii) the third phase is the ‘free-hanging’ condition,
where the load is hanging from the crane. Clearly, the overall
mass of the vessel changes during the interchange of these
phases. Moreover, the mooring force is only active during
Phase 2. Currently, no DP solution can tackle the interchanging
dynamics during a complete offshore construction assignment
[4]-[7]. Let us discuss research attempts in this direction,
together with the contribution brought by this research.

B. Related Works and Contribution

The research on control solutions for DP systems can be
broadly classified into three categories: (i) approaches that
consider environmental disturbances (wind/waves) as the only
source of uncertainty, but ignore modelling uncertainty [2],
[10], [11]; (ii) approaches that tackle modelling uncertainty
via robust [12]-[17] or adaptive [18]-[22] control theory, but
ignore that high-frequency environmental disturbances and
measurement noises hit the limits of marine thrusters (such
thrusters are slow due to the large size of the ship and
cannot deliver high-frequency commands) and (iii) approaches
that filter high-frequency disturbance via observers but ignore
modelling uncertainty [23], [24].

Based on the above discussion, a novel switching control
perspective is proposed in this work which overcomes the
stability, robustness and filtering limitations of the state of the
art. The main contributions are:

o A switched dynamics is formulated which suitably cap-

ture the interchanging dynamics during various opera-
tional phases of an offshore vessel in a compact manner.
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o Based on the switched dynamics, an observer-based
switched control solution is proposed which can effec-
tively tackle the interchanging dynamics even in the pres-
ence of model imperfections and high-frequency distur-
bances. Stability and robustness are analytically assessed.

e The effectiveness of the framework is verified via a
heavy-lift vessel simulation platform which, to the best
of our knowledge, is the first one capable of simulating
the interchanging dynamics in six degrees of freedom.

The paper is organized as follows: in Section II, the
switched dynamics and DP control problem are formulated;
Section III presents the proposed control scheme along with
its stability analysis; Section IV presents the simulations and
Section V concludes the work.

Following notations are used: A, () and ||e|| represent the
minimum eigenvalue and Euclidean norm of (e) respectively;
I denotes identity matrix with appropriate dimension; = > 0
denotes a positive definite matrix E; diag{-, - ,-} denote a
diagonal matrix with diagonal elements {-,--- ,-}. Let us also
denote the integration variable with the symbol .

II. SYSTEM DYNAMICS AND PROBLEM FORMULATION

Usually, a DP system can only control the movement of
vessels in surge, sway and yaw. Therefore, DP literature com-
monly adopts the following three degrees-of-freedom (DoFs)
crane-vessel model [25], [26]:

n(t) = J@(@)v(h), (1)
Mu(t) = —Du(t) + T.(t) + 7(t) + 7(t) +d(t), (2)

)
—sin(y(t)) 0
0

cos(¥(t))
where J(¢(¢)) = [sin((t))  cos(w(t)) ,
0 0 1
the state 7 = [z,y,%]T comprises of north position, east
position and heading angle of the ship in earth-fixed co-
ordinate system, respectively; v = [u,v,7]T is the vessel

velocity/angular velocity in body-fixed coordinate system;
M € R3*3 is the mass/inertia matrix; D € R3*3 denotes
the damping matrix; d € R3 denotes bounded environmental
disturbances representing the effects of wind, wave and current
forces; T € R? is the generalized control input to be designed;
7. € R3 denotes the force from the crane winch controlling
the crane wires; 7; € R® denotes bounded force from the
hanging of the load.

Table I: The Three Phases in Offshore Heavy-Lift Operation

Phase 1: No Load
Phase 2: Mooring

T:(t) =0, T1(t) = 0.
T:(t) = =Fn(t), 7(t) =0.
Tc(t) =0, Tl(t) #0

Phase 3: Free-hanging

Based on the construction work scenario depicted in Fig. 1,
the crane-vessel system (1)-(2) undergoes at least three main
structural changes summarized in Table I and denoted with the
terms Phase 1 "No load", Phase 2 "Mooring mode" and Phase
3 "Free-hanging mode". During Phase 2 the crane wires are
attached to the load, resulting in a spring-type force (mooring
force). During Phase 3 the load acts as an external disturbance.
The load will also affect the mass matrix in Phases 2 and 3.

A. Switching-based Modelling

The structural changes of (1)-(2) summarized in Table I can
be compactly captured by a switched dynamical framework

n(t) = I(@)v(t), 3)
M, (t) = =D (t) — Fon(t)
+ o () +d(t) + Tip() (1)
= V() = —A;;n(t) — Agory(t)
+ M;(lt)rg(t) (t) 4+ dy ) (1), 4)
where o(-) is a piece-wise constant switching signal taking

values in {1,2,3} = €, i.e. selecting which phase is active.
In particular, F; = F3 =0, 711 = 72 = 0 (cf. Table I), and

Ao = M Foq, (5)
Aso(r) = M;(lt)D’ (6)
do(1) (1) £ M;(1t)<d(t) + Tiow (1)) )

To describe the duration of the different phases following one
another, the following class of switching signals is considered:

Definition 1. (Average Dwell Time (ADT) [27]): For a switch-
ing signal o(-) and each to > t1 > 0, let N,(t1,t2) denote
the number of discontinuities in the interval [t1,t2). Then o(-)
has an average dwell time 9 if for a given scalar Ny > 0

No(t1,t2) < No+ (t2 —t1)/9, Vta >t >0, (8)

where Ny is termed as chatter bound, indicating the number
of switching instants over intervals shorter than 9.

Remark 1 (The rationale for ADT). The ADT concept is well
known in switching control literature [27]-[30]. In offshore
DP setting, this concept can be used to define the average
duration of the different phases, which might depend on
application requirements. Consider, for example: Phase 1 =
10 min, Phase 2 = 20 min, Phase 3 = 5 min [1], [6]. This can
be described by (8) with ¥ = 12 min and Ny = 2, indicating
that on average there is one phase change every 12 min and
at most 2 phase changes over intervals shorter than 12 min.

B. Uncertainty description

The external disturbance is upper bounded as ||d,(t)|] <
[|Ad,|| Vt where ||Ad,|| is available for control design. For
each phase, the mass matrix M, is assumed to be known
for control design, under the standard assumption that added
mass terms are negligible during DP operation'. However, F,
and D cannot be assumed to be known, as in practice they
might even be time-varying: this leads to the matrices A, and
A, (positive definite for heavy-lift vessels [25]) being time-
varying and uncertain. The following assumption highlights
the nature of uncertainties considered in this work.

Assumption 1 (Uncertainty). Let A;,’s be decomposable
into two positive definite matrices Ay (known nominal part)
and A, (unknown perturbation) such that A (t) = A, +
Aw(t). Let AA;, be the maximum possible perturbation

! As offshore heavy-lift vessels are quite large in size including the payload,
variation in mass and inertia parameters are usually negligible [25]



ranges such that |Ais(t)]] < ||AAi|| Vt. The knowledge
of A;x and AA,;, is available for control design.

Control Objective: Without loss of generality we consider
the desired position to be zero, i.e. the DP should keep n
close to 0. The objective is to develop a switched control
T, for the switched heavy-lift vessel dynamics (4) that can
handle the complete offshore construction scenario of Fig. 1
while coping with the uncertainty outlined in Assumption 1.

III. CONTROLLER DESIGN AND ANALYSIS

Observer-based control is very common in DP as a way to
filter high-frequency environmental disturbances and measure-
ment noises [24], [31]. Motivated by this common practice, an
observer-based switched robust controller® is designed as

n=Jv—-Kon+ K, )
U=—A1,fn— Ago + M 1, + Kooiy,  (10)
o= MJ{(Alo — Ko — PZ;JTPBJ)":I

+ (Agy = (po + p10))P}, (1)

where J(¢) is written as J for compactness 7 and ¥ are the
observations of 7 and v respectively, and n = n—n, v = v—v
are the corresponding observer errors. The various dynamics
parameters and variables are given in Table II.

The observer dynamics (9)-(10) are constructed based on
(3)-(4) with available system knowledge from Assumption 1.
The observer and control gains H,, K,,Ki,, Kos, p1s, po
and P;, in (9)-(11) are used for system stability and robustness
against uncertainties, and are designed as

Arrlin(PlaKla) > H(1/2ﬂ)(AAla - KQU)TP20H;1P20
X (AAlo - K2U)Ha (12)

)\min(PL’mKG) > H(]-/2ﬁ)(AAla + KQO')TPQO'H;:LPQG‘
X (AAla + K20)Ha (13)
)\min(P4o)pa > |‘(1/25)AA§UP20H;1P20AA20\|
+[|Ad, |, (14
t
1o = a/o |(K1o + Ko)[[|9(w@)]][|9()]|dw, (15)
Koo (t) = —A1, +37(8), (16)
)\min(P2JA2J) > ||(35/2)H0|| (17)

where o > 1 and 3 > 0 are design scalars.

Remark 2 (Selection of gains). According to Assumption
1, Agﬂ is the nominal knowledge of As,. Therefore, (17)
provides a selection criterion for 8,H, and Ps,, which in
turn guide the section of P15, P34, P4y, Kis, Ky, pr and p1,
via (12), (13), (14) and (15).

Let us define

P(T édiag{P107P20aP3ﬂaP4U}7 (18)
A L i .
oM = I;leaf}z( )\max(PU)7 Om = {Tnelg >\mm(Po’)7 (19)
A 3 3 . .
r=2min. min | (Anin(Qio))/enr, (20)

2From now on, the time index ¢ will be omitted whenever unambiguous.

Table II: System Parameters and Variables

Variables

n=[z,y, Y] Vessel position and yaw angle

n Filtered observation of 1

n Observation error 11 — 7

J(@) Rotation matrix from vessel’s body to NED frame

v=[u,v,7]T Vessel velocity and angular velocity

17 Filtered observation of v

1 Observation error v —

o e€{1,2,3} Construction phase (i.e. mode)

Te Force from crane winch (during mooring mode)
T Force from load (during free-hanging mode)
T Control input

d Bounded environmental disturbances

F, Mooring stiffness in mode o

Tio Force from hanging of the load in mode o
Parameters

M Mass matrix of the vessel in 3 DoFs

D Damping matrix of the vessel in 3 DoFs
M, Mass matrix of the vessel in mode o

Aig Nominal part of A;,

ANA, Maximum possible perturbation ranges

Perturbations terms (unknown to designer)
A, Bounded unknown part of A,

where Q. are positive definite matrices defined as

Qla £ {PlaKlo' - (1/25)(AA10 - KQU)TPQUH;1P2GX

X (AAla - K20’)}7
Q2a’ é {PQUAQJ - ((3ﬂ/2)HU)}7
Q3o £ {P3, K, — (1/28)(AA 1, + Kop ) Py, HS 1Py, x

X (AA].O’ + KQO')},
Q4U £ {pJP4J - (1/25)AA£7P20H;1P2UAA20}~

Following Definition 1, let us consider the switching signal
o(-) with an average dwell time ¥ satisfying

9 > 9*

=Inp/C, @1

where (1 2 op7/0m and 0 < ¢ < K.

Remark 3 (Continuity of the states). At switching instants, the
control/observer gains H,, K, , Ki,,Kos, p1o, po and P,
are designed to switch accordingly, i.e. to change discontin-
uously to handle the new phase: however, it must be noticed
that the states ), v in (3)-(4) and their observed values 1), U in
(9)-(10) remain continuous despite switching. Therefore, issues
of chattering as in state-dependent switching (sliding mode)
will be absent in ADT time-driven switching [27].

Remark 4 (Co-design of switching and control law). In
switching control literature it is well known that stability
cannot be achieved for arbitrarily switching signals [28], [30],
[32]. This implies that one should not only design a stabilizing
control law, but also a stabilizing family of switching laws.
In the proposed DP setting, the switched controller is (9)-
(11), whereas the switching signal is given by (21) in the ADT
framework of Definition 1. The parameter in (21) should be
properly tuned so that 9% represents the typical duration of
the different construction phases (cf. Remark 1).



The closed-loop system stability is analyzed using the
following Lyapunov function:

V(E) VA(@9) + Vali2) = 1€TPoE (22)
where ¢ 2 77 o7 /7 7]T and
Vi £ (TP + T Pa,D),
Va %( 1 Paohy) + 0 Pui).

The following theorem states the closed-loop system stability:

Theorem 1. Under Assumption 1, the switched system (3)-(4)
employing the switched control input law (9)-(11) and satisfy-
ing the gain selection criteria (12)-(17) is Globally Uniformly
Ultimately Bounded (GUUB) for any ADT switching signal
satisfying (21). This implies

V(t) < max{bV (to),buB}, Vt>ti. (23)
2[|Ad.||?  om
where b = exp (NoInp), B2 max (g,l(n!)w ga) )
Proof. See Appendix. O

Overall Control Structure: Summarizing, the proposed
control law and switching law comprise of the design steps
as enumerated in Algorithm 1.

Algorithm 1 Design steps of the proposed switched controller

Step 1 (preliminary gains): design suitable matrices H,,, P5,,
such that (17) is satisfied for user-defined positive scalar [3;
Step 2 (observer and control gains): based on the results
from Step 1, design P1,, P3,, P4, K1, K, , p, and p1, via
(12), (13), (14) and (15);

Step 3 (ADT gains): compute the gains ojs, 0,,, and « as in
(18)-(20);

Step 4 (observer based robust law): the observer is as in
(9)-(10) with control input 7, according to (11);

Step 5 (switching law): the system can change dynamics
according to any ADT switching law satisfying (21) resulting
from Step 4.

Key Performance Indicators: From (23), upper bounds on
the position error 17 and control input 7 can be computed.
These bounds can serve the purpose of key performance
indicators (KPIs).

Utilizing the relations V' > (0,,,/2)[|€]1> > (0m/2)||71]]?
and V > (0n/2)|[€][2 > (0n/2)||71]1%. the upper bound on 7
can be computed as follows:

Inll = {7+ 9l < 2v/2V/em

< 21/(2/0pm) max {bV (to), buB} £ 2B.

(24)
Similarly, an upper bound on 7, can be derived from (11) as
176l = Mo {(A1, — Koo — Py, T P, )
+ (Azo = (po + 1)) 0}
< B|IM, |[{[|(A1s — Koo — P T Py, )|

+[[(Aze — (po + p10))]|}- (25)

Remark 5 (Phase-dependent tuning). The control bounds in
(25) are different for each phase, i.e. one can tune the gains in
(12)-(17) independently for each phase. On the other hand, a
single non-switched controller tuned only for one of the three
phases might result in a too shallow/too aggressive control in
the other phases (cf. simulations in the following section).

IV. SIMULATION RESULTS AND ANALYSIS

Though DP controllers are conventionally designed for three
DoFs dynamics, their performance should be properly verified
on realistic six DoFs dynamics [24], [26]. Therefore, in this
section we verify the proposed controller on a six DoFs
simulation platform, based on the S-175 model from MSS
toolbox [33] with vessel dynamics generated by WAMIT.

A. Simulation Model

Extending the approach in [25] to a switched framework,
the six DoFs heavy-lift vessel’s dynamics can be expressed as

n=1J(¢,0,9)7, (26)
M,v+Dv + C(D)v(t) + G(R) + &,
= Tth + Te + Tco + Tloy (27)

where U = [u,v,w,p,q,r]T is the vessel’s velocity in body-
fixed coordinates; 17 = [x, ¥, 2, ¢, 0, ] is the vessel position
in North-East-Down (NED) coordinates; J(¢,0,1) € R6*6
is the transformation matrix from body-fixed to NED coor-
dinates; 7, € RS comprises forces and moments by the
propulsion system; 7. € R® denotes forces and moments
induced by currents, wind and waves; M, € R6*S is the
mass matrix of the vessel; D € R6%6 is the damping matrix;
C € R%%6 s the Coriolis matrix; g, = [0,0, —M,,g,0,0,0]”
is the gravity vector on the vessel, M,,, being the vessel mass
and g the gravity acceleration; G () represents the hydrostatic
force on the vessel. We assume that the force in the crane
wires is controlled by a crane winch during the mooring
mode, and the initial length of the elastic crane wires is fixed
when the load is fully lifted (i.e. when the system is in free-
hanging mode), then the crane force can be expressed as a
combination of 7., and T;,, where 7., = [F.y, Teo]? and
Tio = [Fio, TZU}T contain forces and moments from the crane
and load.

Similarly to the 3 DoF case, the 6 DoF dynamics are
modelled in a switched framework (cf. Fig. 2 and Table III):

Phase 1: No Load Load and crane do not act on the vessel;
the environmental forces/moments are the only external action.

Phase 2: Mooring Mode The load does not contribute any
force/moment, but the lifting (or dropping) of the crane causes
a force and a moment by hydraulic winch modelled as:

Fca = Fh||61||7 Tca =T X Fca’
l

o
where F}, is the tension in the crane wires; 6; = P —
JT(#,0,1)n,, with p.; being the time-independent position
of the crane-tip, J3 the rotation matrix from body-fixed frame
to NED in 3 DoFs, and 7, the load position in NED (constant
during mooring); r.; € R? is the vector from vessel’s Center
of Rotation to the crane tip.

(28)
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Figure 2: Heavy-lift vessel during construction. In Phase 1
there is no crane/load force; in Phase 2 the crane force is
determined by the hydraulic winch; in Phase 3 the load force
is modeled as a spring/damper system.

Phase 3: Free-hanging Mode No external contribution
from the crane occurs, while the force and moment induced
by the load can be expressed as:

NG 5 [ e 57 .
Fla_ _ (K’w6 + Dw6 ) H‘slH’ lfé > 07 , Tlo' = I'Ct X Flaa
0, if 8’ < 0.

(29)

where & (t) is the elastic elongation of the crane wires and d;
is similar to Phase 2, but the load position 77, is not constant,
but with its own 3DoF dynamics

Myiy, + Dy + g1+ Fy =Fc. — J3(0,0,9)Fi,,  (30)

where M; € R3%3 is the mass matrix of the load, D; € R3*3
is the damping matrix of the load, F is the buoyancy force,
F. is the environmental force on the load.

Details of other subsystems on board of the heavy-lift
vessel, i.e. thrust allocator, and propulsion systems are not
reported for lack of space, but can be found in [26].

B. Design Parameters

The following design parameters have been used:

) [2.7-107° 0 0 ]
Ay = 0 21-107°  —4.2-1077|,

. 0 —4.2-107%  1.1-107% |

) [1.6-107° 0 0 ]
A= 0 1.2-107% —25-1077],

. 0 —-2.5-1077  6.3-1077 |

X [2.7-107* 0 0 ]
Az = 0 2.1-107% —4.2-1078],

0 —4.2-107%  1.1-1077 |

AAH = O.4A11, AAlg = 0.9A12, AA13 = Alg

Table III: Forces and Moments during the Three
Construction Phases

Phase 1 (0 = 1) Tio =0, Tco =0,

[
Phase 2 (0 = 2) Tie =0, FCU:FhﬂTﬁH’ Teo =rct X Feo

N} S8 e 51 .
Fld{(Kw6 + Dwd) gy, 10" > 05

Phase 3 (0 = 3) 0, if 5 <0,

Tio =rct XFi5, Tco =0

Table IV: Parameters for Environmental Forces/Moments

Current Wind Significant Mean Wind
Velocity Velocity | Wave Height | and Wave Angle
[uc, ve] o
—[0.5,0.3/m/s 2.5m/s | 0.5m 210
A21 = A22 = A23 =
1.8-1072 0 0
0 1.2-1071 —6.3-1072],
0 2.7-107° 1.4-107!

AAg = AAgy = AAys = 0.2A4,

P =1, P11y = P31 = Py = 10Py;,

Py =21, P13 = P33z = P4y = 10P,,

Py3 = 1.51, P13 = P33 = Py3 = 10Psg,

H, =1.1-10°,Hy, =2.2- 10 °,H; = 1.7- 10°I,
K; =457, Ky = 4.571, K3 = 4.571,

K = 4.57L Ky» = 4.61L, K3 = 4.581,

p1 =1.53,po =1.55,p3 =154, a=2,=1.

where the nominal value of A, and A5, have been chosen
based on the nominal knowledge of load, vessel’s mass and
damping matrix. The above gains and ( = 0.9k yields the
ADT ¢* = 9.24s according to (21).

C. Simulation Results

Simulations are carried out under the ‘smooth-to-slight’ sea-
state with environmental conditions shown in Table IV. The
following simulation scenario is considered:

Phase 1 (o0 = 1) : 0s — 150s;

Phase 2 (o = 2) : 150s — 750s;

Phase 3 (o = 3) : 750s — 900s.

The performance of the proposed controller is shown in
Figs. 3 and 4. To further demonstrate the effectiveness and
importance of the proposed switched design, we formulate a
non-switched controller by applying the control gains in (9)-
(11) for 0 = 2 to all three phases. Performance of this non-
switched design is shown in Figs. 5 and 6, and are collected
in Table V in terms of root-mean-squared error (RMSE) and
maximum offset of the vessel from the desired set-point. It
is crucial to notice that the non-switched controller causes
significant position offset and large oscillations (especially
in the surge direction), which could cause collision between
the platform and the vessel. Such oscillations confirm some
reported real-life hazardous scenarios (cf. Fig. 1.2 in [6]), and
the necessity for switching control.
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Figure 3: Vessel position under switched control
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Figure 4: Crane force under switched control

Table V: Performance Comparison of the Proposed
Switched Controller and Non-switched Controller

Proposed Non-switched
Switched Controller | Controller
Phase 1 2 3 1 2 3
RMSE North | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.65
(m] East 0.1 0.08 | 0.08 | 0.08 | 0.08 | 0.20
Yaw 0.02 | 003 | 0.03 | 0.02 | 0.03 | 0.60
Maximum | North | 0.08 | 0.08 | 0.09 | 0.08 | 0.08 | 2.32
Offset East 0.17 [ 0.1T | 0.IT | 023 | 0.IT | 0.85
[m] Yaw 0.07 | 0.09 | 0.07 | 0.06 | 0.08 | 2.21

V. CONCLUSIONS AND FUTURE WORK

In this work, a switched controller was proposed for the
first time to tackle the interchanging dynamics arising during a
complete construction operation of a heavy-lift offshore vessel.
The proposed control framework was studied analytically and
its effectiveness was verified in simulation via a realistic model
of heavy-lift vessel. The simulations show that the proposed
solution can effectively avert an otherwise operational hazard.

In this work the switching time is determined using human
input. Further work could focus on autonomously switching
the controller by identifying the different construction phases
from real-time measurements.
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Figure 5: Vessel position under non-switched control
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Figure 6: Crane force under non-switched control

APPENDIX

In view of the disturbances, the stability notion used in thus
work is the so-called Globally Uniformly Ultimately Bounded
(GUUB) stability, as formalized by the following definition:

Definition 2 (GUUB [34]). System (3)-(4) is GUUB if there
exists a convex and compact set Y such that for every initial
condition (1(0),v(0)), there exists a finite T'(n(0),v(0)) such
that (n(t),v(t)) € Y for all t > T'(n(0),v(0)).

Proof of Theorem 1: Using (3), (4), (9) and (10), the
observer error dynamics can be formulated as

n=mn-n=I0+K.H— K, 31)
U=0—-v=—A,0— A, (7 +7) - Ko7
— Ayl — Aoy (P +D)+d,. (32

The Lyapunov function V() is continuous in between switch-
ing instants but, due to switching to different P, it might
be discontinuous at switching instants. The behaviour of the
Lyapunov function is studied at ¢;,1, [ € NT. Let the active
subsystem be o(t,,,) when t € [t; t;11) and o(t;41) when
t € [ti41 ti+2). We have before and after switching

V(tipn) = (1/2)€" (t1)P - )E(t)
V(tipr) = (1/2)€" (t41)Po(e )€ (tig),



respectively. Thanks to the continuity of 7, & in (9)-(10) and of
7, in (31)-(32) (cf. Remark 3) we have 7)(t;, ;) = 0(ti+1),
U(tn) = vltiga), nty,) = ntip) and D(t,) =
U(ti41). This leads to &(¢;, ;) = &(t141). Further, owing to the
facts €7 (1)Pon€(t) < omr€” (1)E(t) and € ()Pyp(t) >
om€T (1)E(t), one has

_ 1
V(tiy) = V() = ifT(tH»l)(Pa(tl_H) — Pg(t;+1))€(tl+1)

OM — Om OM — Om —
< B Om Ty P, ) < 20y ()

a 2 Om m

= V1) < wV(t5,), (33)

with & = opr/0m > 1. At this point, the behaviour of V(-)
between two consecutive switching instants, i.e., when ¢ €
[t; ti+1) can be studied.

Utilizing (31)-(32), the following can be achieved

Vi =0 P 1, (K17 + Ko7 + Ji)
— 0Py (Asy + Ago )0 — 0 Py (A, + Aty)f
— TPy (Ary 4+ Koo )iy — DT Py Ay + 07 Py,d,
< — 7" P1oKiof — P ParAse ¥ + 7 P, Koi)
+ 7 Pyed, — ' Poy (Al + Koo )iy

— 0" Poy(Ary — Kag)i) — 0 Pag Ag, . (34)
Further, using (9)-(11), the following can be deduced
Vo =0 Pyo (—Kof) + Kiof) + ID) (35)

+ 0 Py (—(po + pro)0 — PLLITP3,7)
= — 7" P3,Ko7) — (po + p10)0" Pag + T K1, P3yi).

Given any scalar 8 > 0 and a positive definite matrix H,,, the
following holds for any two non-zero vectors z and z,

+2272, < Bz"H,z + (1/8)zI H, 'z;. (36)

Applying (36) to the last three terms of (34) and utilizing
the maximum perturbations from Assumption 1 results in

V< -0 {P1,Ki, — (1/28)(AA 1, — Koy) TPy, H, ' Py, x

X (AA1, — Koo )} — 07 {Pye Agy — (38/2)H, }0
— 0" {P3, Ky — (1/26)(AA1, + Koo) " PoH, ' Poy x
X (AA1s +Kao) I
— " {poPay — (1/20)AAS P, H, ' Poy AAs, 1
= ProAmin(Pao) [[2]]* + 7" (Ko + Kio)7t + 27 Ad,. (37)
Observe that ||€|| > ||P|| and ||€|| > ||P||. Moreover,

a/o |16 +Ko)l[l[0()][[[7(w)]|de >

af (Ko + Ko )[l[[a@)[[[n@)]] vt = to

where a > 1 by design. Using the design conditions (12)-(14),
the fact P4, > 0 and the definitions of Q;, in (20), we have

V < Anin Qo) |77 = Anin (Qao)[[7]] = Amin (Qso) |17
= Amin (Quo) |21 + || (Ko + Ko |[[[71]17]]
+Z/lds | = prol@]?
< —rgin(Amin<Qia))l\€|l2 + [[Ad,|[[[€]]

— 1Ko + Ko [l (el [2]* — 1). (38)

The form of V in (22) gives 0,,/2||€||? <V < oar/2||€]]2.
Then, for a scalar ¢ such that 0 < { < &, (38) becomes

V<~V — (k= QV +[|Ad,||v/2V/0m
— 1(Kq + Ko lllImlll Al (a|2|* - 1).

Further, utilizing the fact ||€||] > |[|©|| one has V >
(om/2)|1€]1?> > (0m/2)||P||?. Then, noting B from (23), one
can verify that V< —(V is guaranteed when V' > B.

In light of this, further analysis is needed to observe the
behaviour of V(¢) between the two consecutive switching
instants, i.e., t € [t; t;41), for two possible scenarios:

(i) when V(t) > B, we have V(t) < —CV(t) implying
exponential decrease of the Lyapunov function;
(@ii) when V() < B, no exponential decrease can be derived.

(39)

Behaviour of V (¢) is discussed individually for the two cases.

Case (i): There exists a time, call it 77, when V (¢) enters
into the bound B and N,(t) denotes the number of all
switching intervals for ¢t € [ty t9 + T1), where ¢ denotes
initial time. Accordingly, for ¢ € [tg to+ T1), using (33) and
Ny (to,t) from Definition 1 we have

V(t) < pexp (—C(t - tNa(t)*l)) V(t;fa(t)—l)
S [ exp (—C(t — tNﬁ(t)—l))
- b exXp (—C(tN,,(f,)—l - tNa(t)—2)) V(t;fa(t)*Q)

< pexp (—C(t —ta, 1)-1)) pexp (—Cltn, (1)—1 — tN, (1)—2))
- pexp (—C(t1 —to)) V(to)

= N0 exp (=((t — t0)) V (to)

= b(exp (—C + (Inp/V)) (t = to)) V(to),

where b £ exp (N In 1) is a constant. Substituting the ADT
condition ¥ > Inp/¢ in (40) yields V(¢t) < bV(ty) for
t € [to to+ T1). Moreover, as V(to + T1) < B, one has
V(tn,t)+1) < pB from (33) at the next switching instant
tn, (+)+1 after to + T1. This implies that V() may be larger
than B from the instant ¢y, (;)41: however, using a recursive
argument as in [28], we can come to the conclusion that
V(t) <buBfort e [tg+T1 o0).

Case (ii): It can be easily verified that the same argument
below (40) also holds for Scenario (ii).

Thus, observing the stability arguments of the Case (i) and
(>i1), the GUUB result (23) can be concluded, which further
implies 1,0, 7,0 € Loo = 1,V € L.

(40)
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