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Abstract

In this work, the added value of machine learning (ML) molecular force fields (FF) for the community of

molecular simulations is showcased by successfully calculating transport properties of aqueous potas-

sium hydroxide (KOH (aq)). Classical FFs use relatively simple interatomic potentials to simulate the

nano scale. These simulations can predict macroscopic properties, such as density, heat of evaporation,

viscosity, and self-diffusivity of the modeled materials. However, these FFs struggle to model materials

in which more complicated interactions are relevant for the macroscopic behavior. Examples of such

interactions are three-body interactions and chemical reactions. Quantum scale simulation methods are

able to compute properties of materials in which these challenging interactions occur, although these

methods are limited in length and time scales that can be modeled with realistic computational costs.

Transport properties, such as viscosity, self-diffusivity and electric conductivity need these larger length

and time scales to be determined accurately. ML can be used for a multi scale approach, bridging the

gap between the quantum and the nano scale by training coefficients of general interatomic potentials.

This provides the possibility of reaching the time and length scales of traditional molecular simulations

with the accuracy of quantum mechanic models. KOH (aq) is selected to highlight the prospects of

these multi scale techniques, as the self-diffusion of OH
–
in this electrolyte is dominated by proton

transfer reactions, which has not been modeled successfully with classical FFs.

Results of structure properties produced with ab initio molecular dynamics (AIMD, at quantum scale)

simulations are compared with machine learning molecular dynamics (MLMD, at multi scale) simulations.

There are no significant differences in the calculated shortest typical atomic distances and coordination

numbers for both KOH (aq) and pure water systems. The determined transport properties are in the

same order of magnitude as experimental results, although the calculated viscosity is overestimated

and the self-diffusion of H2O and K
+
are underestimated. This is because the system is simulated at a

higher than experimental density and hydrogen bonding is overestimated with the selected quantum

mechanics model. The proton transfer reactions are captured in the MLMD simulations, calculating

the enhanced self-diffusion of OH
–
to be (6± 2)× 10−9m2 s−1, which matches experimental results at

infinite dilution.

ii



Contents

Acknowledgments i

Abstract ii

List of Figures iii

List of Tables iv

Nomenclature vi

1 Introduction 1

2 Methods 8

2.1 Quantum Mechanical Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Functional Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Medium and Long Range Dispersion Interactions . . . . . . . . . . . . . . . . . . 9

2.1.3 Minimizing Computational Effort in Solving DFT Calculations . . . . . . . . . . . 9

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Comparing the AIMD and MLMD Algorithms . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Machine Learning Settings for this Work . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Molecular Dynamics Simulations with VASP . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Computing System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Calculating Energies and Structure Properties . . . . . . . . . . . . . . . . . . . 14

2.4.2 Reaction Rates and Transport Properties . . . . . . . . . . . . . . . . . . . . . . 15

3 Results and Discussion 19

3.1 Validating the Pure Water System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Retrieving the Correct Density of KOH (aq) . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Machine Learning Efficiency and Error Estimation . . . . . . . . . . . . . . . . . . . . . 22

3.4 Structure and Energies of KOH (aq) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Transport Properties of KOH (aq) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Conclusions and Outlook 27

References 29

A Results at Experimental Density 40

B MLMD 100 ps: properties over time 41

B.1 System State Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B.2 Tracking the Atomic Index of the Hydroxide . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.3 MSDs of Potassium, Hydroxide and Water . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iii



List of Figures

1.1 Overview of ML algorithms for FFs from quantum scale . . . . . . . . . . . . . . . . . . 6

2.1 Minimizing computational efforts for RPBE-D3 and rVV10 r2SCAN DFs: accuracy . . . 10

2.2 Minimizing computational efforts for RPBE-D3 and rVV10 r2SCAN DFs: computation time 10

2.3 Algorithms for AIMD and DFT self-consistency calculations . . . . . . . . . . . . . . . . 11

2.4 The radial and angular descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 The MLMD algorithm in VASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Proton transfer and atom ID change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Algorithm to track the OH
–
molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 RDFs of pure water with RPBE-D3 and rVV10 r2SCAN: oxygen-oxygen . . . . . . . . . 20

3.2 RDFs of pure water with RPBE-D3 and rVV10 r2SCAN: hydrogen-hydrogen . . . . . . . 20

3.3 RDFs of pure water with RPBE-D3 and rVV10 r2SCAN: hydrogen-oxygen . . . . . . . . 21

3.4 Pressures of RPBE-D3 KOH at different densities . . . . . . . . . . . . . . . . . . . . . 22

3.5 On-the-fly error estimation of atomic forces and the system stress tensor . . . . . . . . 23

3.6 RDFs of water with KOH (aq): ions-water . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 RDFs of water with KOH (aq): water-water . . . . . . . . . . . . . . . . . . . . . . . . . 25

B.1 Total and potential energy of 100 ps MLMD production runs . . . . . . . . . . . . . . . . 41

B.2 Kinetic energy and temperature of 100 ps MLMD production runs . . . . . . . . . . . . . 42

B.3 Pressure of 100 ps MLMD production runs . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B.4 Estimated error of forces and stress tensor components of 100 ps MLMD production runs 43

B.5 Index of oxygen in OH
–
of 100 ps MLMD production runs . . . . . . . . . . . . . . . . . 43

B.6 MSDs of the K
+
and OH

–
ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B.7 MSDs of H2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



List of Tables

1.1 Summary of relevant electrolyte FFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Overview of simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 The produced structure properties of pure water . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Computation time reduction by implementing MLFFs . . . . . . . . . . . . . . . . . . . . 22

3.3 The structure properties of the simulated KOH (aq) system . . . . . . . . . . . . . . . . 23

3.4 Energies and pressures of the simulated KOH (aq) system . . . . . . . . . . . . . . . . 24

3.5 The transport properties of the simulated KOH (aq) system . . . . . . . . . . . . . . . . 26

A.1 The structure properties of the simulated KOH (aq) at experimental density . . . . . . . 40

A.2 The transport properties of the simulated KOH (aq) system at experimental density . . . 40

v



Nomenclature

Abbreviations

Abbreviation Definition

AIMD Ab initio molecular dynamics

(aq) Species are dissolved in water

Brick-CFCMC Brick Continuous Fractional Component MC software

D3 VdW correction for RPBE

DeePMD Deep Potential Molecular Dynamics kit

DF Density functional

DFT Density functional theorem

EoS Equation of State

FF Force field

FP First principles

GGA Generalized gradient approximation functionals family

GROMACS GROningen MAchine for Chemical Simulation MD software

HB Hydrogen bonding

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator MD software

LJ Lennard Jones potential

MC Monte Carlo

MD Molecular Dynamics

ML Machine Learning

MLFF Machine Learning Force Field

MLIP Machine-Learning Interatomic Potentials package

MLMD Machine Learning Molecular Dynamics

MSD Mean Squared Displacement

NPT Ensemble with fixed number of particles, pressure and, temperature

NV T Ensemble with fixed number of particles, volume and, temperature

RDF Radial Distribution Function

RPBE Revised Perdew-Burke-Ernzerhof exchange correlation functional

rVV10 VdW correction for r2SCAN

r2SCAN The second order version of the Strongly Constrained and Appropriately Normed

semilocal density functional

VASP Vienna Ab-Initio Simulation Package

VdW Van der Waals

vi



List of Tables vii

Symbols

Symbol Definition Unit

Ds Self-diffusion coefficient m2 s−1

Ekin Kinetic energy eV

Epot Potential energy eV

Etot Total energy eV

g(r) The radial distribution function -

h Enthalpy Jmol−1

kB Boltzmann constant m2 kg s−2 K−1

L Simulation box length m

n Coordination number -

q Charge C

r Radius m

T Temperature K

t Time s

S Solubility mol kg−1

V Volume m3

γ Activity coefficient -

∆eh Enthalpy of evaporation Jmol−1

∆Ghyd Hydration free energy Jmol−1

ε Dielectric constant -

Θ Angle °

κT Isothermal compressibility Pa−1

ν Viscosity Pa s

ρ Density kgm−3

σe Electric conductivity Sm−1

σNE Electric conductivity from Nernst Einstein relation Sm−1

σs Surface tension coefficient Jm−2



1
Introduction

Understanding the behavior of electrolytes is critical for human society. Electrolytes are compounds

conducting electricity through ion migration instead of electron transfer.1 Generally, electrolytes consist

of salts or acids dissolved in a liquid solvent such as water. Seawater is an electrolyte by this definition,2

and is of great importance for the understanding of the inner workings of life.3 From a human health

studies perspectives, electrolytes are used in production of medicine and influence the human body,

for example, by formation of kidney stones.4 Unfortunately, fresh water is not available everywhere

on earth. Over 300 million people worldwide depend on desalination processes for their fresh water

production.5 Desalinating seawater is highly energy intensive.6,7 Improving desalination methods can

lead to increased accessibility of clean water for people, as prices go down. Similarly to clean water,

food production also depends on electrolytes, which is demonstrated through their use in the production

methods of fertilizers. Attempts are made to improve these processes and prepare it for a sustainable,

circular economy by using electrochemistry and aqueous potassium hydroxide (KOH (aq)).8 Electrolytes

are used in industrial separation techniques as well, for example, KOH (aq) is used to recover vanadium

from spent catalysts9 or to remove heavy metal pollutants from surface water.10 To achieve the Paris

climate agreement goals,11 energy storage solutions have to be improved further. Most battery designs

use electrolytes, from traditional lead-acid12 and nickel batteries13 to newly emerging technologies like

aqueous batteries14–16 and redox flow batteries.17,18 Besides batteries, another possible energy storage

medium is hydrogen (H2). Alkaline electrolysers used for H2 production typically depend on KOH (aq)

for electric conductivity.19,20 To reduce the losses during electrolysis, the electric conductivity of the

electrolyte should be maximised. This can be reached when the behavior of KOH (aq) in bulk and

confined systems21,22 is better understood.

The macroscopic properties of electrolytes play a pivotal role as key indicators, guiding the evaluation

and comparison of various potential engineering designs within the aforementioned applications. Of

great interests are thermodynamic properties, such as density (ρ),23 enthalpy (h),24 solubility (S),25

surface tension (σs),
26 activity (γ)27 and transport properties, such as viscosity (ν),28 self-diffusivity

(Ds),
29 and electric conductivity (σe).

30 Traditionally, the acquisition of these properties requires various

experimental techniques, an expensive process, especially when considering the exhaustive array of

species, concentrations, pressures, and temperatures. Analytical and numerical methodologies offer a

pragmatic avenue to curtail these costs, through preliminary screening of promising candidates31 or by

accurately predicting all aforementioned properties.

Equation of state (EoS) modeling is such an approach, where the behavior of the material is expressed

in analytical equations. These equations can be tested, improved and fitted by using less extensive

experimental databases, examples include the Soave-Redlich-Kwong (SRK),32 Peng-Robinson (PR),33

cubic-plus-association (CPA)34 and the statistical associating fluid theory (SAFT).35 Employing these

existing models presents an advantage due to their ease of use, rendering them highly compatible

with engineering applications. Despite considerable research invested in these models, they encounter

challenges when it comes to accurately predicting electrolyte behavior. This complication arises from

the non-ideal nature of these mixtures. In EoS modeling, deviation from ideality can be expressed using

1
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activity coefficients, where deviations from 1 express non-ideality. The activity coefficient of sodium

chloride dissolved in water (NaCl (aq)) at a molality of 1mol kg−1 at standard condition is 0.667.36 On a

molecular level, water has a structure which greatly depends on the dipole moments of the individual

molecules. Dissolving ions into water adds strong coulombic interactions, disrupting this structure.

Comparing the molecular structure of pure water with that of NaCl (aq) shows large changes in the

surroundings of individually dissolved ions.37,38 Well-performing models should therefore be able to

predict changes in macroscopic properties based on insights in changes in the nano scale. A fundamen-

tal breakthrough in electrolyte modeling is the Debye-Hückel theory, which provided a tool to describe

electrolytes at low ionic concentrations.39 This tool can be extended into higher concentrations by

adding Born’s ion solvation term.40 Modern EoS for electrolytes are specifically adjusted versions of the

above introduced basic EoS which have additional terms, typically inspired by Born, Debye, and Hückel.

Examples of these are e-PR,41 e-CPA42 and ePC-SAFT.43 Continued research efforts are dedicated to

refining these methods,44,45 often by adding more terms to these models. As these models heavily rely

on adjustable parameters, they are dependent on accurate experimental results. It also raises the ques-

tion if certain models perform well based on understanding of physics or just regression of many variables.

A third method describing thermodynamic interactions is molecular simulations. As explained above,

changes in the nano scale domain are the cause of the macroscopic properties. Therefore, a method that

investigates this nano scale behavior and translate that to macroscopic properties is sequacious. This

nano scale analysis not only makes it possible to compute macroscopic properties, but also provides

the possibility to understand the underlying physics. In electrolyte systems, well-described molecular

simulations make it possible to evaluate the structures of atoms directly. Hydrogen bonding (HB) can

be recognized, as well as the hydration of dissolved species and, depending on the technique used, the

motion of individual species. This nano scale perspective makes molecular simulations not just an alter-

native to EoS modeling, it provides EoS researchers with insights on how to implement physics better

in their models46,47 or how to fit their thermodynamic relation parameters.48 Another major difference

between EoS modeling and molecular simulations is in their availability. EoS are generally oriented

at industry applications and therefore come with licensing fees, whereas fast and highly parallelized

molecular simulation packages such as LAMMPS,49–51 GROMACS,52 and Brick-CFCMC53,54 are aimed

at research applications and, therefore, open-source for anyone willing to spend the time learning how

to use these tools.

Two main methods of molecular simulations exist, Monte Carlo (MC) and Molecular Dynamic (MD)

methods. MC simulations use energy potentials to accept or decline proposed changes to the system.

This method is typically used for vapor liquid equilibria (VLE) and other time-independent properties. MD

simulations use the gradient of the same energy potentials to compute intermolecular forces, which are

then integrated in time. These energy potentials are typically referred to as force fields (FF), because of

the relation between forces and interaction energies. Unlike MC, MD is suitable for time-dependent

phenomena, such as transport properties and crystal growth rates. Most mixtures can be described

using three classical interaction types; the (i) strong short-range repulsive Pauli potential guarantees

that atoms will not overlap in space, a (ii) weaker mid-range attractive Van der Waals (VdW) potential,

and the (iii) long-range coulombic interaction that model charged species and dipole moments.55 The

Pauli and VdW interactions are typically combined into the Lennard-Jones potential (LJ).56

Many molecular simulation FFs for aqueous electrolytes have been developed. These are generally

created by adding specific ion interactions to well-known models for pure water. An often used FF is the

three-site extended simple point charge (SPC/E)57 water model combined with Joung-Cheatham (JC)58

or Kirkwood-Buff (KB)59 ions. JC uses a rigid water molecule with positive charges on the hydrogen

atoms and a negative charge on the oxygen atom. The properties of this and further mentioned water

models are summarized in table 1.1. FFs are generally obtained by fitting their parameters to predict

specific properties, of which experimental results are available. SPC/E is parameterized to reproduce

experimental density and the potential energy while the JC ion FF is fitted using hydration free energy,

lattice energies and constants, whereas the KB FF is fitted using the Kirkwood-Buff integrals. These

models use full-charge representation ions, for example Na
+
has a charge of 1 e and SO 2–

4 is modeled

using a charge of −2 e. The transferable intermolecular potential 4P (TIP4P/2005)60 is a four-site model.

It is rigid with charges on the hydrogen atoms, similar to the SPC/E model. However, the charge of the
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oxygen atom is modeled at its own location (the fourth site) in plane with the oxygen and hydrogen

atoms and on the bisector of the H-O-H angle. TIP4P/2005 is parameterized using temperature of

maximum density, isothermal compressibility, diffusivity of water and other properties. TIP4P/2005 can

be combined with Madrid-2019,61,62 Madrid-Transport63 as well as the DFF/OH
–
FF for OH

–
ions.29

The Madrid-2019 FF used solution densities, radial distribution functions (RDF) as well as hydration

numbers of the ions for fitting. The Madrid-Transport and DFF/OH
–
FFs differs from Madrid-2019 as

charges are scaled from 0.85 to 0.75 and transport properties, such as diffusion and viscosity are more

rigorously included in the parameterization.

The aforementioned FFs do not describe all relevant characteristics of water well. This is because two

important physics principles are not included in these models, of which the first is the polarizability of

water.64 It has been shown that non-polarizable FFs for water struggle to model the vapor pressure,

dielectric constants, virial coefficients, and the critical properties of water accurately.65 At the expense of

more degrees of freedom, and therefore with 3 to 10 times higher computational cost,66 polarizable FFs

for water have been developed. They allow at least the charge at the oxygen atom in the water molecule

to change its location compared to its own molecule, although more complex models implement more

degrees of freedom. A well-known polarizable FF is the Simple four-site Water model with Drude Polar-

izability (SWM4-DP).67 This water FF has a TIP4P-like structure, but an additional negatively charged

Drude particle is added, connected with a spring to the now opposite charged oxygen atom. This FF is

fitted to enthalpy of evaporation, density and self-diffusion coefficients under ambient conditions. An

alternative is the Baranyai-Kiss 3 FF (BK3),68 which models all charges as harmonic spring oscillators

connected to their basic sites. Another noticeable difference is that BK3 uses Gaussian charge dis-

tributions instead of standard point charges. Baranyai and Kiss attempted to parameterize their FF

using many properties in a systematic approach. They included density-temperature relations, dielectric

constants in liquid and hexagonal ice phases, as well as viscosity and self-diffusion coefficients in liquid

phase. Force fields for alkali and halite (AH) ions have been developed for both water models, the

AH/SWM4-DP69 and the AH/BK3.70 Although both models differ, both of them are parameterized using

the hydration free energy of the ions within different hydrate structures. Comparing the performance of

AH/BK3 and AH/SWM4-DP shows that AH/SWM4-DP has unsatisfactory performance for higher salt

concentrations, at which crystallization occurs.71 In the same communication, it is shown that theAH/BK3

FF predicts the activity coefficients, mean molar chemical potential and osmotic pressure of NaCl(aq)

well for a wide range of concentrations. In other research, it is found that AH/BK3 predicts transport

properties better than unscaled charge models, such as SPC/E with JC or KB, and similar or marginally

better compared to scaled charge models, like TIP4P/2005 with Madrid-2019 or Madrid-Transport.72

Models such as AH/SWM4-DP and AH/BK3 have many variables that are fitted, making them more

dependent on the properties and conditions for which they are fitted. This can be demonstrated, as the

AH/BK3 FF predictions for ∆eh and ν deviate over 10% for higher temperatures.66,73,74

The second relevant physics principle that is not included in classical FFs is that of three-body interac-

tions. Literature shows that three-body interactions are important in liquid phase water.75–77 Around 80%

of the total interaction energy is from two-body interactions and 20% of the total energy is from three-

body interactions. Higher order, many-body interactions contribute up to only 1% and can generally be

neglected.76,77 Therefore, explicit three-body interactions are needed for detailed descriptions of water

behaviour and its structures.78,79 As the local structure of water undergoes a significant change when

ions are added, especially the HB structure, it can be hypothesized that these three-body interactions

should be included when simulating aqueous electrolytes. There are non-polarizable FFs, such as the

explicit three-body potentials (E3B1, E3B2, E3B3) proposed by Skinners group80–82 and polarizable

FFs, such as the hydrogen-bonding polarizable (HBP)66 water model with explicit three-body terms.

Although a specific E3B2/MP-S ion FF exists,83 and it is proposed that the initial Madrid FF, created

for TIP4P/2005, should work with the E3B3 water FF due to the similarities in the water models,84

little progress has been made in modeling electrolytes with three-body potentials using the traditional

parameterization approach. Similar to EoS modeling, more complex FFs for water have to fit many

parameters, making it difficult to distinguish between improved performance due to accurate descriptions

of atomic interactions or more freedom in regression. The traditional parameterization approach of

fitting FFs to macroscopic properties is also somewhat contradicting, as the strong suit of molecular

simulations is the insights they provide in nano scale behavior.
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Table 1.1: Properties of FFs for pure water and the ion models they can be combined with. Insights in to which properties are

used to parameterize the FFs are provided, as well as which salt model is compatible with the indicated water models. HB

indicates if the FF has specific three-body hydrogen bonding terms. For reference, the indicated properties are the; lattice

constant (LC), lattice energy (LE), hydration number (n), potential energy (Epot), self-diffusion coefficient (Ds), radial distribution

function (g(r)), enthalpy of evaporation (∆eh), hydration free energy (∆Ghyd), dielectric constant (ε), isothermal compressibility
(κT ), viscosity (ν) and density (ρ).

Water

FF
Sites

Polar-

izible
Charge HB Fitted to Ion FF Salts

Charge

scale
Fitted to

SPC/E [57] 3 no point no Epot, ρ JC [58] Li, Na, K, Rb, Cs,

F, Cl, Br, I
1 LC, LE,∆Ghyd

KB [59] Na,

Cl
1 KB-integrals

TIP4P/2005 [60] 4 no point no ε, κT , ρ
Madrid-

2019

[61,

62]

Li, Na, K, Rb, Cs,

Mg, Ca,

F, Cl, Br, I,

SO4

0.85 n, g(r), ρ

Madrid-

T
[63] Na, K,

Cl
0.75 g(r), ν, ρ

DFF/OH– [29] Na, K,

Cl
0.75 g(r), ν, ρ

SWM4-

DP
[67] 4 yes point no

Ds, ∆eh,
ρ

AH [69] Li, Na, K, Rb, Cs,

F, Cl, Br, I
1 ∆Ghyd, ε

BK3 [68] 4 yes
Gauss-

ian
no

Ds, ε, ν,
ρ

AH [70] Li, Na, K, Rb, Cs,

F, Cl, Br, I
1 ∆Ghyd, ρ

E3B
[80–

82]
4 no point yes

Ds, g(r),
ρ

MP-S [83] Li, Na, K, Rb, Cs,

F, Cl, Br, I
0.75 ε

HBP [66] 4 yes
Gauss-

ian
yes g(r), ε, ρ -

Instead of seeking information for nano scale interactions from macro scale properties, it is possible to

retrieve information from the lower quantum scale. It is generally accepted that the true description of

atomic interaction is in quantum mechanics, -since it has full atomic information- which are often referred

to as first principle (FP) calculations. Simulation techniques for quantum mechanic interactions are the

steady state density functional theorem (DFT),85 and its transient extension ab initio molecular dynamics

(AIMD).86 Alternatives to density functionals in AIMD exist, but aim to provide the same length scale

information to compute the particle trajectories.87 These methods solve the electronic structure of the

entire system directly. This consequently contains all dipole moments and full many-body interactions.

DFT, AIMD and related methods are also used to compute reaction characteristics, such as activation

energy barriers on catalysts88 or absorption properties of 2D materials.89 Ideally, these methods should

solve all interactions fully, however, they depend on the quality of selected density functionals (DF). An

example of this is how the popular generalized gradient approximation (GGA) Perdew-Burke-Ernzerhof

functional (PBE)90 greatly underestimates the dispersive VdW interactions.91 Specific (non-)local VdW

DFs are proposed to improve on these issues92,93 and some modern metaGGA DFs like the Strongly

Constrained and Appropriately Normed semilocal density functional (SCAN)94 intrinsically include short

and medium range VdW interactions and have additional long range VdW extensions.95 When describing

aqueous water, AIMD has shown to accurately predict the structure of pure water.96–98 Self-diffusion

coefficients of pure water are typically underestimated,99,100 even if they are corrected for finite size

effects. This is caused by DFs that overestimate hydrogen bonding, making the system over-structured,

as well as lack of statistics, due to system sizes and time scales. AIMD is able to calculate structure

properties of electrolytes, successfully showing ion-water interactions and hydration structures around

ions.101,102 As AIMD has shown its capability in computing chemical reactions, it is also used to simulate

proton transfer.103,104 In aqueous electrolytes containing OH
–
, like NaOH (aq) and KOH (aq), OH

–

molecules will react with H2O, greatly increasing the effective self-diffusion coefficient of OH
–
.29,103,104
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Although AIMD seems the ideal tool to compute electrolyte properties, it has its limitations. As AIMD is

designed to solve quantum scale behavior, it is computationally expensive, limiting its system sizes up

to hundreds of atoms and the simulation time scale to tens of ps. Transport properties of electrolytes

need hundreds of ps simulation time scales and thousands of atoms, which is a typical time scale and

system size of MD simulations. This creates a multi scale problem, where DFT and AIMD hold a better

description of the interactions between atoms, but MD is the only method to resolve the appropriate time

and length scales. Machine learning (ML) is a promising technique to solve multi scale problems,105,106

since it can be used as a regression tool to transfer the information from the smaller scale to the larger

scale. Example cases in other fields show how ML can provide nanofluidics simulations with MD derived

material properties107 or how finite elements modeling can use microscopic information for non-linear

material behavior.108 Currently, attempts are made to create computationally cheap classical FFs based

on AIMD. For example, by training the parameters in a neural network (NN).109,110 This makes it possible

to train the FF parameters directly on the atomic interactions compared to fitting the FFs to experimental

macroscopic data. Besides fitting coefficients for traditional FFs, more complicated interactions can be

added as well. The ReaxFF water FF fits coefficients for other empirically determined interaction types

as well, including energy terms for hydrogen bonds, over- and undercoordination, and lone pairs.111–114

This model is able to capture reactive events in water, such as the aforementioned proton transfer, and

produced self-diffusion coefficients of OH
–
close to experimental values.111,112 Using empirical atomic

interactions can introduce errors, as the real interaction might not be expressed correctly. Alternatively,

ML can be used on general two- and three-body interaction functions that then directly accelerate AIMD

simulations into the time and length scales of molecular dynamics.74,115–118

Some software tools have ready-to-use ML implementations for such general two- and three-body

potential. For this work, three of such software tools are of importance; the Vienna Ab-Initio Simulation

Package (VASP),119–124 the Machine-Learning Interatomic Potentials package (MLIP),125 and the Deep

Potential Molecular Dynamics kit (DeePMD).126 VASP is a proprietary tool that performs DFT simulations,

as well as AIMD. From version 6.3.0, VASP has implemented an ML algorithm, visualized in figure 1.1,

which speeds up AIMD on-the-fly by using a Gaussian or polynomial kernel function approach. During

the simulation, VASP estimates the error of the already trained FF. If the error in a certain configuration

exceeds a set limit, it will perform a traditional DFT calculation and adjust the MLFF directly. The

kernel function method selected can be adjusted with relatively little computational expense, unlike an

NN, enabling an adaptable approach. The VASP ML has shown great potential by predicting phase

transitions of hybrid perovskites,124 computing the melting temperatures of Al, Si, Ge, Sn and MgO,123

and chemical potentials of dissolved Li, Si and F ions in water.127 This last study is especially relevant,

as it shows the ability of computing properties of electrolytes which are outside of reach for traditional

AIMD scales. Although the produced structures match that of FP calculations, it must be noted that

these differed significantly from experimental results as they used a revised PBE density functional

instead of a more accurate metaGGA or hybrid density functional.

MLIP uses a different machine learning approach,125 with support for both linear and concurrent ML

approaches, which are illustrated in figure 1.1. For the concurrent method, it uses DFT output of

preselected configurations to train an MLFF based on moment tensor potentials (MTPs). This MLFF

is then exported to perform MD simulations in LAMMPS. The LAMMPS implementation of MLIP also

estimates how far away a configuration is from the DFT data every time step. If it estimates that the

configuration is within the data, interpolation, or slightly outside the data, minor extrapolation, it will

continue the simulation normally. If a little more extrapolation is estimated, it will store the specific

configuration separately and continue. Even more extrapolation results in canceling the LAMMPS

simulation. The separately stored configurations are then inserted in VASP for DFT calculations and

used to expand the dataset on which the MLFF is trained. The LAMMPS simulation is then restarted

from scratch. This process repeats itself until the simulation in LAMMPS is completed. This approach

assures that the MLFF does not undergo any change during the MD simulation, unlike the on-the-fly

ML in VASP. MLIP has been used to investigate solids, such as 2D nanoporous carbon nitrides128 and

BC2N monolayers,129 in time and length scales not achievable with traditional AIMD methods.
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The third software tool, DeePMD,126,130 uses a deep neural network to train its FF. Like MLIP,125 DeePMD

supports linear and concurrent training. Both the VASP and Quantum ESPRESSO131 simulation

packages are used to provide DFT data for DeePMD. DeePMD allows for training using multiple system

sizes, atom species and concentrations, and needs a separate set of testing data. This can be used

to evaluate the created FF after training. Afterwards, the FF can be used for MD in both LAMMPS

and GROMACS. The DeePMD-kit has seen a rise in popularity, besides modeling solid or melting

systems132–136 such as VASP en MLIP, it has also been used to model water.137,138 DeePMD also

simulated more challenging systems, reactions such as the decomposition of urea in water139 or alkali

carbonate-hydroxide electrolytes.140 Furthermore, the influence of ions on the structure of water is

further investigated, showing that locally, the solvation of ions does not have the same effect as applying

pressure,141 although this was assumed to be the case.142,143 Of special significance are attempts to

introduce long-range electrostatic interactions into DeePMD as well.144 Additionally, Malosso et al. 145

illustrated how viscosity can be derived using DeePMD for MLFFs.

DFT on current

structure

Dababase of

structures

DFT on

structures

Train MLFF

Starting

structure

Dababase of

structures

DFT on

structures

Train MLFF

Starting

structure

Starting

structure

Estimate MLFF

error: ε

Calculate new

structure from MLFF

Yes

No

Add structure

to database

Train MLFF

ε < εlim

Estimate MLFF

error: ε

Calculate new

structure from MLFF

Yes

ε < εlim
No

ε < εterminate

Add structure

to database

Yes

No

Calculate new

structure from MLFF

(a) (b) (c)

No

Figure 1.1: Three common algorithms for MLFF. (a) indicates the most simple linear method, (b) a concurrent algorithm, and (c)

the on-the-fly algorithm. DeePMD126,130 and MLIP125 are both introduced using linear algorithms. However, they are improved to

also support the concurrent algorithm (b). ML in VASP123,124 uses the on-the-fly algorithm (c), and is selected for this study. The

calculation steps in blue are executed in quantum mechanics software packages and the green steps are executed in traditional

molecular simulation software. εlim and εterminate are error thresholds, while ε is the estimated error of the MLFF on the current

structure. The molecular trajectory calculations start from the starting structure and will be completed after the intended number

of new structures are calculated.

It has been shown how current molecular simulation techniques of electrolytes are limited by their FFs.

This is most apparent when complicated molecular interactions are modeled. Examples of these are

three-body interactions and chemical reactions. Quantum scale simulation techniques, such as AIMD,

can model these type of interactions accurately. However, these simulations are limited in time and

length scales. To accurately compute transport properties, the time and length scales of traditional

MD is needed. ML is an emerging technique123,125,126 to automate the production of FFs. It provides

a multi scale approach by transferring quantum scale properties to the nano scale. In this work, we

showcase this multi scale approach by successfully calculating the transport properties of KOH (aq)
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using the on-the-fly ML implemented in VASP.119–124 To our knowledge, this has not been achieved

with classical FFs. KOH (aq) is an excellent electrolyte to showcase the effectiveness of MLFFs, as

both hydrogen bonding and proton transfer reactions influence the transport properties. The applied

methods are explained in chapter 2. There the applied quantum scale modeling, ML approach and

nano scale methods are all discussed. Both the validation and main results are discussed in chapter 3.

Chapter 4 concludes this work and provides an outlook for future research opportunities and relevant

improvements needed to get most out of ML for molecular simulations.



2
Methods

In this chapter, the theoretical background, as well as the simulation settings are explained. Separate

considerations have been taken for all involved length scales, which are described in this chapter in order

of scale. On the quantum scale, the inter-atomic forces are computed by using AIMD, as described in

section 2.1. Machine Learning, elaborated on in section 2.2, is then used to connect the quantum scale

to the nano scale. The methods used in the nano scale are shown in section 2.3. How the macroscopic

system properties are extracted out of the performed simulations is described in section 2.4. An overview

of the three system and simulation settings is shown in table 2.1. The simulations are executed in

VASP 6.4.1,119–124 using gamma-point only calculations, and post-processed using Python 3 code. The

simulations are performed using the Delft-Blue146 and Snellius super-computers.

2.1. QuantumMechanical Calculations
The smallest length scale investigated in this work is the quantum scale. Atomic interactions are modeled

by solving the electron distribution. In this work, the Kohn-Sham density functional theory (KS-DFT)85,147

is used. This method for solving quantum mechanics uses density functionals (DF) to describe the

(self)interactions of atomic species. In a way, DFs serve an equivalent purpose in KS-DFT as FFs in

molecular simulations. Similarly, an appropriate DF has to be selected for the specific case. This section

also explains how medium and long range dispersion interactions are added to the selected DF, as well

as how the computational effort is minimized and grid independence is ensured.

2.1.1. Functional Selection
DFs range from purely local descriptions to more modern fully non-local descriptions. The Jacob’s lad-

der148 classifies five generations of DFs. The first step of this ladder is the Local Density Approximation

(LDA), followed by the general gradient approximation (GGA), which is improved to the meta-generalized

gradient approximation (metaGGA) method. The highest two steps are the hybrid and fully non-local

DFs. The more complex DF generations trade higher accuracy with increased computational effort.

Specific DFs are fitted to meet (semi)empirical limits, such as the local Lieb-Oxford bound.149 Meet-

ing all of these is impossible, as there are more limits than LDA and (meta)GGAmethods can satisfy

analytically. Therefore, the creators of DFs for thesemethods choose which limits to satisfy and which not.

In this work, the revised Perdew-Burke-Emzerhof (RPBE)90,150 GGA and the second order version of the

strongly constrained and appropriately normed (r2SCAN)94,151 metaGGA DFs are selected. RPBE is a

well-used functional. Thus, it is used to compare basic properties with existing research data. Compared

to RPBE, r2SCAN is a recently proposed DF. The SCAN functional uses fourth order differentials to

assess non-local properties based on local data.94 This makes SCAN computationally expensive, even

for metaGGAs. This is reduced to second order differentials in r2SCAN, reducing the computational

cost significantly with none to little loss in accuracy.151 Using both DFs add the possibility to assess the

accuracy differences between the traditional GGA and modern metaGGA DFs besides the machine

learning of FFs, which represents thirty years of scientific progress.

8
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2.1.2. Medium and Long Range Dispersion Interactions
Although (meta)GGA DFs provide accurate descriptions of short range, as well as long range coulombic

interactions, they typically underestimate medium and long range dispersion forces.91,152–155 For these

so-called Van der Waals (VdW) bonds, there are specific corrections available for most DFs. For the

GGA DFs, the solution is mostly sought in a molecular simulation FF way, where VdW interaction

energies are mostly expressed as EVdW v r−6, r being the distance between two particles. Grimme
and coworkers developed a purely empirical energy term, with the same scaling, which is added to

the DF energy.156 Most challenging for this is the medium range overlap regime, as most DFs show

some VdW interactions, however, too little and only for shorter ranges. This can lead to double-counted

medium-ranged interactions. A damping function is used to reduce added energies for shorter ranges

and needs to be adjusted for the specific DF. Multiple generations of this DFT-D approach exist; the

DFT-D1156 method, DFT-D2,157 with only refitted parameters, DFT-D3,158,159 where fundamental im-

provements are proposed, and DFT-D4.160,161 For this work, the RPBE DF with DFT-D3 (RPBE-D3) is

selected, as this was the most modern correction which is implemented in VASP 6.4.1.119–123

Instead of using an empirical scaling based on atomic positions, VdW interactions can also be calculated

directly from electronic effects and replace parts of the traditional DFs. These non-local VdW DFs have

increased computational costs, but naturally include medium and even long-range VdW interaction

energies. The VV10162 and rVV10163–165 VdW DFs are designed flexibly, so that they can be combined

with other (meta)GGA DFs to model all relevant (covalent, ionic, metallic and VdW) bonds. These

adjustments are also made for SCAN95 and r2SCAN.166 It was shown that rVV10 (r2)SCAN greatly

improves the bonding between molecules,167,168 and that rVV10 SCAN suffers from double counting

errors, therefore significantly overestimates water density.166 The rVV10 r2SCAN functional, as is used

in this study, has been reported as a more sensible VdW-corrected DF.168

2.1.3. Minimizing Computational Effort in Solving DFT Calculations
Modeling in this scale is computationally expensive, so there needs to be a between calculating these

interactions accurately and being efficient with the computational resources. This balance depends on

the species and the DFs implemented, a convergence study is done to find the minimal values for the

number of k-points, the energy cutoff for the plane wave basis set, and the Gaussian smearing width.

To check for convergence, an initial configuration of 64 H2O molecules at 1000 kgm−3 is created first

using PACKMOL 20.3.1.169 An AIMD simulation of 5 ps at a temperature of 325K is performed with

1 k-point, a Gaussian smearing width of 0.1 eV and an energy cutoff of 1000 eV. The output of this

simulation represents a typical configuration. For this configuration, the electron distribution is solved

using different numbers of k-points, energy cutoffs and smearing widths. The deviation in energy

between certain settings and a very strictly-set reference solution is expressed in meV per atom. As

this work intents to show the chemical reactions in KOH (aq) and how MLFFs can accelerate AIMD into

MD time scales, there is no need in having overly strict criteria for these settings, making a deviation

of 15meV per atom in the system acceptable. It was found that the smearing width did not influence

computation time and accuracy much, and it is set to 0.3 eV. Figures 2.1 and 2.2 indicate the results of

investigating the behavior as a function of the number of k-points and the energy cutoff. The deviation

from the reference simulation clearly reduces when the energy cutoff is increased, as shown in figure 2.1.

Figure 2.2 visualizes clearly how this is traded for larger calculation time per time step. Additionally,

it is clear that increasing the number of k-points does not improve the deviations much, while greatly

increasing computation time. These figures illustrate that a mesh with 1 k-point and an energy cutoff of

550 eV will lead to a deviation just under 15meV per atom.

2.2. Machine Learning
The goal of this work is twofold, investigating the effects that proton transfer has on self-diffusion and

electric conductivity, as well as to illustrate how machine learning (ML) can accelerate AIMD calculations

into time scales in which transport properties can be computed. Simulations with AIMD and MLMD with

otherwise identical settings have been performed. Gaussian kernel functions for ML are implemented in

VASP123,124 which, on-the-fly, create a two and three-body FF. The background theory and how it differs

from AIMD is explained, followed by the specific setup and settings selected for this work.
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Figure 2.1: Minimizing the computational efforts for RPBE(-D3)150,158,159 and (rVV10) r2SCAN151,163,164,166 DFs are shown in (a)

and (b), respectively. The absolute deviation of the computed total system energy from a reference calculation is shown for both

DFs with and without their VdW correction. The system consist of 64 H2O molecules at 1000 kgm−3 in a, with AIMD prepared,

configuration. Different energy cutoff values and number of k-points are set with a smearing width of 0.3 eV. The reference is

simulated using an energy cutoff of 1800 eV, 729 k-points, and a smearing width of 0.01 eV. The set maximum deviation of

15meV is indicated as a horizontal, dashed green line. The final, optimized settings are indicated separately in both figures.
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Figure 2.2: The effects of the number of k-points and the energy cutoff on the computation time per self-consistency iteration of

RPBE(-D3)150,158,159 and (rVV10) r2SCAN151,163,164,166 DFs are shown in (a) and (b), respectively. The system consist of 64

H2O molecules at 1000 kgm−3 in a, with AIMD prepared, configuration. The RPBE-D3 DF is clearly cheaper to compute than the

rVV10 r2SCAN DF. As the rVV10 r2SCAN DF typically needs more self-consistency iterations to finalize the DFT calculation,

computation time differences are even larger than shown. The final, optimized settings are indicated separately in both figures.

2.2.1. Comparing the AIMD and MLMD Algorithms
Some explanation on how AIMD works is needed before going into the details of MLMD. In AIMD, a

DFT self-consistency loop is executed every timestep. The algorithms of AIMD and DFT are shown in

figure 2.3a and figure 2.3b, respectively. The self-consistency loop returns the system energies and the

electron density, which is used to compute the forces on all atoms. Executing this DFT self-consistency

loop is computationally expensive. Time integration with a Verlet integration scheme170 is used to

compute the new atom positions, after which this process is repeated.
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Figure 2.3: (a) Algorithms for AIMD and (b) DFT self-consistency calculations. Algorithm (b) is nested inside the algorithm (a) as

a subroutine in the ’Solve DFT step’. In this subroutine, the solution of the last iteration is used as improved starting point. The

AIMD loop (a) is to take Ntot time steps, ∆E and Ebreak in (b) refer to the energy difference between the current and last iteration

and the convergence limit, respectively.

The ML algorithm in VASP aims to replace the expensive DFT self-consistency loop with a molecular

FF.123,124,127,171 For this, three things are needed: (i) a general framework for MLFFs with free parame-

ters which can be tweaked. It is important that this general FF can (ii) predict the inter atomic forces,

system energies and stresses (pressure), as this needs to be reported even when DFT calculations

are skipped. The FF has to be trainable, by tweaking these parameters based on a structure database.

This is done by performing DFT calculations instead of using the FF when an estimated error of the

MLFF exceeds a certain limit. Therefore, the method requires an (iii) error estimation technique as well.

The overall algorithm is best explained in detail by Jinnouchi et al. 123.

VASP identifies four different separate definitions which are of importance: a (i) structure database,

consisting of many solved DFT (ii) structures. A structure is purely described by all atomic positions in the

system. The database holds the total energy, inter atomic forces, the system stresses, and the Bravais

lattice of all the solved DFT structures as well. The structure which is not solved with DFT is henceforth

referred to as the current structure. Each structure, whether it is in the database or the current state, is

described in (iii) local configurations, which are expressed in linear combinations of the (iv) descriptors.

The general framework describes a local configuration by using radial and angular descriptor functions

indicated with X(2) and X(3), respectively. A visual representation of these descriptors is shown in

figure 2.4. The descriptors consist of a set of orthogonal basis functions of which a linear combination

can express the radial and angular atomic distribution functions ρ(2)(r) and ρ(3)(r, s, θ). The distribution
functions have a smoothed cutoff and the particle locations of the neighbors are not represented as

hard Dirac delta functions, but are damped with a Gaussian distribution, the so-called smooth overlap of

atomic positions (SOAP) approach.123,171,172
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Figure 2.4: The (a) radial (X
(2)
i ) and (b) angular descriptors (X

(3)
i ) of a specific atom i used for MLFFs in VASP.123 These

descriptors are vectors containing the weights of an orthogonal set of basis functions. This basis set consist of Legendre

polynomials. Together, these describe the local configuration around atom i.

The MLFF aims to create a potential energy surface depending on the distribution functions expressed in

terms of the descriptors. To assess the total potential energy (U ) of a current structure with NA atoms by

using an already trained MLFF with a reference structure consisting of NB configurations, the following

equation has to be solved:

U =

NA∑
i=1

Ui =

NA∑
i=1

F [ρ
(2)
i (r), ρ

(3)
i (r)] (2.1)

=

NA∑
i=1

NB∑
iB=1

wiB

[
β
(
X

(2)
i ·X(2)

iB

)
+ (1− β)

(
X̂

(3)
i · X̂(3)

iB

)ζ(3)]
. (2.2)

Here, the energy contribution of a local configuration around atom i is expressed in terms of local

two- and three-body configurations. The NB local reference configurations are expressed in terms

of the descriptors X
(2)
iB

and X
(3)
iB
, with the three-body descriptors normalized to X̂

(3)
iB
. The variable

β is a weighting factor between the two- and thee-body interaction and ζ(3) controls sharpness. The
potential energy belonging to the reference configurations iB is wiB . The part inside the square brackets

calculates the similarity of the configuration i and the specific reference iB by using the dot product

between a local configuration of the current structure Xi and a reference XiB . Retrieving the energy

of any current structure as shown in equation (2.2) only depends on having the correct values for all

wiB , collected together in vector w ∈ RNB . Per structure of NA atoms, m = 1 + 3NA + 6 values have
to be retrieved for the total potential energy, the inter-atomic forces per atom, and system stresses,

respectively. As by their definition, inter-atomic forces and system-stresses depend on the potential

energy surface. Therefore, a linear combination can be devised which expresses all these properties in

w. To retrieve these properties, the following vector equation is derived:

y = φw, (2.3)

where y ∈ Rm and φ ∈ Rm×NB are the structures output properties and the design matrix which

describes the linear combination, respectively. Now, there is both a general framework for MLFFs

which is tweakable by changing the NB reference configurations and the energy weights in w, as well

as a method for retrieving the pressure and inter-atomic forces. What is left is a method of retrieving

the values in w as function of a structure database and a method for estimating the errors, which is

needed for the algorithm in figure 2.5. Suppose there are Nα structures in the database with each

NA atoms. Instead of equation (2.3), which is an expression for the properties of a single structure,

a supervector-matrix equation can be derived with similar goals which expresses a total database of

structures:

Y = Φw, (2.4)
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where Y and Φ are a supervector and supermatrix in RNα×m and RNα×m×NB , respectively, and w is

still in RNB . Y is the structure database and consist of Nα solved DFT structures and their computed

properties in the format of y. Φ is a known standard matrix derived from the fundamental relations

between the potential energy and inter-atomic forces and the system stresses. Solving equation (2.4)

for w retrieves the free parameters of the MLFF. No direct solution for this exists, as the problem is

overconstrained and small errors are expected in Y as the DFT self-consistency calculations are only

solved up to certain accuracy. These errors are assumed to be Gaussian noise. Retrieving an error

estimate of the MLFF is done by using these errors and the overconstrained property of the problem,

resulting in a mean w̄ and an estimated error Σ. This w̄ and Σ are used to assess a current structure

and calculate the values (as in equation (2.3)) and errors for the energy, forces and system stresses. A

total error value is calculated εconfig, which is used for the decision-making, shown in figure 2.5. The
value for εlimit can be either fixed or adapt depending on the settings. Much older configurations can be
intentionally forgotten or retained before retraining with a new configuration. For a more accurate and

stable algorithm, the method calculates two different parameters in the error estimating scheme, which

are optimized using the generalized maximum likelihood method123,173 and the system is sparsified to

avoid overcompleteness by using a similarity kernel and removing overly similar local configurations.

2.2.2. Machine Learning Settings for this Work
VASP provides the user with the option to tweak the ML method. The training algorithm is set quite strict.

As for this work, the aim is not only to show how ML can train a simple FF, but also to show that MLFFs

can capture more complicated interactions, such asmodel reaction events. This means that there can

be some oversampling of the result, and some unneeded DFT self-consistency calculations. However,

this increases the likelihood that the reaction events are also shown in the ML setting. For this, the

strict ML_ICRITERIA = 2 setting is used,174 which adjusts the εlimit based on the past Bayesian errors with
a moving average. This criterion is reduced during the simulation, which assures that long MLMD runs

keep performing DFT self-consistency loops during special occasions, such as reactions. After every

DFT self-consistency calculation, εlimit is relaxed temporarily, as not to include too similar structures into
the structure database. The reduction speed of this criterion is a VASP setting as well. The appropriate

setting for this has been found to be ML_CX = 0.1. This is determined by comparing RDFs of the pure
water and KOH validation AIMD and MLMD simulations, of which the set properties are indicated in

table 2.1. These results are shown in section 3.1 and section 3.4, respectively. The radial descriptor is

set to use 12 basis functions and has a cutoff of half the box size. The angular descriptor has 8 basis

functions using the same cutoff. The full input files with additional comments for both the AIMD and the

MLMD runs are available on GitHub.a

2.3. Molecular Dynamics Simulations with VASP
In VASP, the standard time integration is done using the Verlet algorithm.170 This algorithm is energy

conserving and is used to model systems of a constant number of particles, volume, and energy (NV E).
In practice, performing simulations with a constant number of particles, pressure and temperature

(NPT ) or a constant number of particles, volume, and temperature (NV T ) are used to retrieve the
correct density or simulate the properties at a given temperature, respectively. Setting up the NPT
simulations to run stable with the Langevin thermostat55,175 has proven to be difficult. Alternatively,

NV T pre-production runs at varying densities are performed, indicated as KOH density in table 2.1.

To not use too much computation time, these simulations are ran using MLMD. The production runs,

in which the results are produced, are performed using NV T with the Nosé-Hoover thermostat.176–178

Unlike the Langevin thermostat, the heat bath of a certain mass is included in the system.55,175–178 The

Nosé-Hoover system is deterministic, whereas the Langevin thermostat is stochastic. Nosé-Hoover also

provides more natural temperature fluctuations. There is no Nosé-Hoover NPT ensemble implemented

in VASP, although this does exist in other MD software, such as LAMMPS49–51 or GROMACS.52 The

time integrator used for both thermostats in VASP is an adjusted Verlet algorithm.175 The appropriate

mass of the Nosé-Hoover heat bath is SMASS = 5, which is determined by comparing RDFs of pure water
and RPBE-D3 at 1000 kgm−3 with those produced by Forster-Tonigold and Groß 179. The results of this

are presented in section 3.1.

aThe hyperlink to the post-processing code on GitHub: https://github.com/JelleLagerweij/Quantum_to_Transport

https://github.com/JelleLagerweij/Quantum_to_Transport


2.4. Computing System Properties 14

Initial structure

Completed:

is Ntot reached?
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Verlet algorithm

Final structure

Yes

No

Estimate error of MLFF
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Retrain MLFF

No

Compute energy, forces,

and stresses from MLFF

Compute forces and stresses from

electron density and energy

Skip DFT calculation:

is εconfig < εlimit?

Yes

Figure 2.5: The MLMD algorithm integrated in VASP.119–124 How the energy, forces, and stresses are calculated for a certain

configuration is expressed in equations (2.2) and (2.3). The subroutine ’Solve DFT step’ is shown in figure 2.3b, the algorithm

aims to avoid this path if possible, as these DFT self-consistency calculations are computationally expensive. The MLMD loop is

to take Ntot time steps, εconfig and εlimit refer to the estimated error of the MLFF for the current structure and set tolerance for this

error, respectively. If the error estimation exceeds the set tolerance, it will perform the DFT self-consistency calculation and

retrain the MLFF.

2.4. Computing System Properties
Multiple system properties are computed from the trajectories, which are categorized into two groups.

The first category of properties, presented in section 2.4.1, is used to verify the settings of both the

AIMD and MLMD simulations. The second category are results which provide new insights. These can

now be retrieved using recent gains in computing power and efficiency with MLFFs.

2.4.1. Calculating Energies and Structure Properties
To check the selectedAIMD andMLMD settings in VASP, energies and structure properties are calculated.

This is done using shorter simulations, henceforth referred to as KOH validation simulations, of which

relevant properties are listed in table 2.1. The radial distribution function (RDF), the system energies

(Etot, Ekin, and Epot), pressure (P ), temperature (T ), and density are investigated. For the MLMD runs,

estimated errors in inter atomic forces and the stress tensor components are added as well. Most of

these results are retrieved directly from the VASP output files. VASP returns the following energy tags
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with their values in eV; E, F , E0, EK, SP , and SK.120,180 Here, E is the total energy, including the

kinetic, SK, and potential, SP , energy of the Nosé-Hoover heat bath. The kinetic energy of the atomic
system is EK.180 The total energy without the heat bath, Etot, the kinetic energy Ekin and potential

energy, Epot of the atomic system can be derived from the VASP outputs with the following equations:180

Etot = E − SP − SK (2.5)

Ekin = EK (2.6)

Epot = Etot − Ekin = E − SP − SK − EK. (2.7)

As the properties A that are sampled every time step, (P , T , Etot, Ekin, and Epot) are auto-correlated,

the estimated error of the mean value εA per simulation run is determined using;

εA =

√
2Ncor

Nsamp

(〈A2〉 − 〈A〉2), (2.8)

where Nsamp is the total number of samples and Ncor is the correlation time, found from fitting the

auto-correlation function to e−t/Ncor . The error propagation of properties calculated from these variables

are addressed using the uncertainties python package,181 version 3.1.7.

The RDFs need to be computed separately, as VASP cannot make a distinction between the oxygen

atoms in OH
–
or H2O molecules. The RDFs are computed from the post-processing script that tracks

the OH
–
particles, of which the algorithm is presented in figure 2.7. The first shell coordination number

of species i to the oxygen atoms of the water molecules around it (niO) is computed from the RDFs

using:

niO =
4πNO

V

∫ rshell

r=0

r2giO(r)dr, (2.9)

where giO(r) is the radial distribution function of species i to the oxygen in the water molecules, NO

is the number of oxygen atoms in water, and V the volume of the simulation box. The value of rshell
depends on the species i and represents the radius of the first solvation shell.

2.4.2. Reaction Rates and Transport Properties
Properties that rely on longer simulation times, such as shear viscosity, self-diffusion, electric conductivity,

and to a lesser extent reaction rates, are derived using long MLMD simulations. The system properties of

these KOH production runs are listed in table 2.1. The shear viscosity, ν, is calculated using Green-Kubo
relations.55,175 This depends on the stress tensor which can be directly retrieved from VASP. To improve

statistics, five instead of three shear viscosity values are calculated per simulation,73,182,183 with Pαβ

being the off-diagonal stress tensor components, Pxy, Pxz, and Pyz, as well as the rotational invariant

combinations of the diagonal terms, (Pxx + Pyy)/2 and (Pyy + Pzz)/2. All five individual ναβ , calculated
as:

ναβ =
V

kBT

∫ t

0

〈Pαβ(t0)Pαβ(t0 + t)〉 dt, (2.10)

are combined to compute a mean and standard deviation per simulation, where the the autocorrelations

are calculated using a timeshift t and a time origin t0. A cubic spline is used to interpolate the autocor-

relation function. This is needed because the viscosity is very sensitive to the details of the first peak.

The temperature T is the average simulation temperature and V is the system volume. The Boltzmann

constant is indicated with kB.

The reaction rates, self-diffusion coefficients, and the electrical conductivity cannot be retrieved directly

from the VASP outputs. This is because VASP makes no distinction between oxygen atoms in H2O and

oxygen atoms in OH
–
molecules. As VASP can track single particles by their particle ID, it is possible

to track an oxygen of a known OH
–
molecule until it reacts. After this, the particle ID of this oxygen
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will refer to the oxygen in a H2O molecule. A visualization of such reactions is illustrated in figure 2.6.

A post-processing script is constructed and this is available as open source.b This reads the particle

trajectories from VASP AIMD or MLMD runs and computes which particle ID belongs to the oxygen

atoms of the OH
–
molecules. It computes the number of hydrogen atoms which are bonded with oxygen

atoms to differentiate the oxygen atoms in OH
–
from those in H2O. The algorithm is shown in figure 2.7.

1

2

3

4

5rOH

t 1

2

3

4

5

t+∆t 1

2

3

4

5

t+ 2∆t

Figure 2.6: The reaction event changes which atoms are in the OH– molecule. The time propagation of the reaction is shown

from left to right (t till t+ 2∆t). To determine the trajectory of the OH– molecule, a post-processing code identifies the particle ID

of the oxygen in the OH– . The algorithm for this is presented in figure 2.7. It computes the number of hydrogen atoms within rOH
from the oxygen in the known OH– , in this case atom ID 2 in (a). When it encounters 2 hydrogen atoms within this range, as

indicated in (c), it searches for the new atom ID of the oxygen in the OH– molecule, finding atom ID 1.

The post-processing code tracks the atom IDs and the unwrapped positions of oxygen atoms in OH
–

molecules. The reaction rate and the self-diffusion coefficient of the OH
–
can be calculated with these.

The self-diffusion coefficient of species i is calculated using the Einstein-Helfand55,175,184 relations, by
tracking the mean square displacement (MSD) of the particle positions. The molecular self-diffusion

coefficients, DMD
i are corrected for finite-size effects:185–187

DMD
i = lim

t→∞

1

6Nit

〈
Ni∑
j=1

(rj,i(t0 + t)− rj,i(t0))
2

〉
(2.11)

D∞
i = DMD

i +Dcorr
i = DMD +

kBTξ

6πνL
. (2.12)

where D∞
i is the self-diffusion coefficient at the thermodynamic limit, Ni the number of particles, and

rj,i indicates the atomic position of atom j. The finite-size correction uses the mean shear viscosity ν,
derived in equation (2.10), which does not show finite-size effects.185,186,188,189 The box size is indicated

as L and the dimensionless constant for cubic lattices ξ = 2.837 298.185–189 The finite-size correction is

the same for all species in the mixture, as it only depends on the system properties.

The electric conductivity, σNE, is computed using the Nernst-Einstein relation.
190,191 The self-diffusion

coefficients in the thermodynamic limit of the ions and their charge q are combined into:

σNE =
Nionsq

2

V kBT

(
D∞

+ +D∞
−
)
, (2.13)

whereNions is the number of ion pairs. The Nernst-Einstein relation is derived for infinite dilute electrolyte

mixtures, as ion-ion correlations are neglected. Direct methods for retrieving electrical conductivity

with Green-Kubo192 or Einstein-Helfand193,194 are more accurate, as they include these correlations.194

Simulations with larger systems and time scales of hundreds of ns are needed for this, which is not

achievable for these systems at this point.

bThe hyperlink to the post-processing code on GitHub: https://github.com/JelleLagerweij/Quantum_to_Transport

https://github.com/JelleLagerweij/Quantum_to_Transport


2.4. Computing System Properties 17

Load full trajectories

in database

Retrieve structure at timestep

from database

Calculate number of H in neighbor list

within rOH from all known OOH–

No change?

Nwithin = 1 for

all OH–

Calculate all distances from

all O to all H

Identify number of O with

Nwithin = 1

Number of OH– as

expected?

No

Store locations of OOH–

in unwrapped coordinates

Completed:

is Ntot reached?

No

Yes

Temporary adjust rOH

Postprocess trajectory to get

MSD with Freud195

Update Hneighbor lists

Yes

No

Yes

Figure 2.7: The algorithm to track the OH– molecule locations. The algorithm is initiated by providing the atom IDs of the oxygen

atoms of the OH– (OOH− ) molecules and their neighbor lists with the NHneighbor
closest hydrogen atoms and a VASP trajectory file.

Implementing neighbor lists with 10 hydrogen atoms per OH– speeds up the post-processing by 2, with a system of 1 KOH and

55 water molecules. This difference is increased for larger systems sizes. The post-processing script consists of Python 3 code

and uses the HDF5196 database output of VASP to efficiently handle the trajectory file and Freud195 to calculate multiple

windowed mean square displacements from the selected OH– trajectories. The algorithm identifies the OOH− by counting the

number of hydrogen atoms within set distance rOH, which is shown in figure 2.6. This is set slightly above the typical bond length
of water. This distance adjusts automatically if the expected number of OOH− is not found, as AIMD and the MLMD have flexible

bond lengths.
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Table 2.1: An overview of the four different systems that are simulated. The pure water and the KOH validation simulations are

used to validate the settings and the KOH production simulations to retrieve the reaction rates and the transport properties.

Validation simulations on pure water systems, section 3.1, show a better structure for RPBE-D3, with less computational costs.

The simulations regarding KOH (aq) are therefore performed only using the RPBE-D3 DF. The pure water and KOH validation

simulations of 10 ps are performed with AIMD and MLMD, while using otherwise identical settings. The KOH density and KOH

production simulations are performed using MLMD only.

unit pure water KOH density KOH validation KOH production

H2O 64 55 55 55

K+ 0 1 1 1

OH– 0 1 1 1

Molality KOH mol kg−1 0 1 1 1

Density kgm−3 1000 1100 - 1500 1335 1335

energy cutoff eV 550 550 550 550

Smearing width eV 0.3 0.3 0.3 0.3

k-points 1 1 1 1

Temperature K 325 325 325 325

Thermostat Nosé-Hoover Nosé-Hoover Nosé-Hoover Nosé-Hoover

Heat bath mass 5 5 5 5

Time step size fs 1 1 1 1

Time ps 5 20 10 100



3
Results and Discussion

The pure water system is used to validate the DFT self-consistency calculations, as well as the ML.

The results of this are presented in section 3.1. To adequately model the aqueous KOH with MLMD,

the equilibrium density is determined, which is shown in section 3.2. The final simulations are 10

and 100ps MLMD calculations, which are compared to 10 ps AIMD simulations. The computational

efficiency gains by using MLFF for these systems are presented in section 3.3, after which the produced

structure and energy properties are shown in section 3.4. This section also discusses the effect of ML

on these properties. Section 3.5 shows the transport properties that are derived from the 100ps MLMD

calculations, where the effective diffusion coefficient of the proton transfer OH
–
is presented.

3.1. Validating the Pure Water System
The structure of the simulated pure water system is used to investigate both the settings for the DFT

self-consistency calculations and those of the ML. The structures calculated with AIMD are compared to

experimental197 and AIMD reference calculations.179 Additionally, the performance of the new rVV10

r2SCAN DF is compared with the traditional RPBE-D3 DF. Structure properties are summarized in

table 3.1 and visualized in figures 3.1 to 3.3. In the oxygen-oxygen RDFs (figure 3.1), a small shift

in the first peak position is visible between RPBE-D3 and its reference structure179 and comparing

rVV10 r2SCAN with experimental work.197 The reference179 structure of the hydrogen-hydrogen RDFs

(figure 3.2), shows a higher first peak than is calculated in this work, as well as what is found ex-

perimentally.197 This peak represents the distance between the two hydrogen atoms within a water

molecule, suggesting that the bond angle in the water molecule is stiffer in the RPBE-D3 reference than

predicted experimentally. The RPBE-D3 results in this work matches the experimental work better. The

hydrogen-oxygen RDFs (figure 3.3) show good agreement with both the RPBE-D3 reference179 and

experimental197 results. The bond length of the water molecule (rOH), shown in table 3.1, is significantly
shorter than determined experimentally198 and in RPBE-D3 reference work.199

Table 3.1: The produced structural properties of pure water. All relevant simulation settings are shown in table 2.1. The bond

length (rOH) and angle (θHOH) of the water molecule are derived from the first peaks of the gHH(r) and gHO(r) functions. The
coordination number nOO is calculated with equation (2.9), using gOO(r). The rshell is set to 3.4Å. The shown confidence
intervals are the calculated error of the mean with a 1σ width.

rOH/[Å] θHOH/[°] nOO

RPBE-D3 AIMD 0.936± 0.002 104.8± 0.6 4.78± 0.08

MLMD 0.936± 0.001 102.9± 0.4 4.92± 0.04

Reference 0.985± 0.001199 105± 2199 4.76179

rVV10 r2SCAN AIMD 0.935± 0.006 105.7± 0.5 4.57± 0.06

MLMD 0.934± 0.002 105.2± 0.5 4.6± 0.1

Experimental 0.9572± 0.0003198 104.52± 0.05198 4.6± 0.1197,200

19
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Differences between the RPBE-D3 and rVV10 r2SCAN structures show how rVV10 r2SCAN typically

produces higher, more accentuated peaks than found experimentally197 or with RPBE-D3. This can best

be seen in the second peak in figure 3.2, the first and third peak in figure 3.3. rOH is similar for RPBE-D3
and rVV10 r2SCAN, while the angle in the water molecule (θHOH) seems to be slightly overestimated
with rVV10 r2SCAN. The coordination number of water (nOO) of rVV10 r2SCAN matches experimental

results197,200 better than RPBE-D3. Overall, the structure properties of RPBE-D3 are preferred over

those calculated with rVV10 r2SCAN.
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Figure 3.1: The oxygen-oxygen RDFs of pure water obtained with the (a) RPBE-D3 and (b) rVV10 r2SCAN DFs. The RDFs of

AIMD and MLMD are shown together with their standard deviations. Cubic splines are used to refine the raw data. All relevant

simulation settings are shown in table 2.1. The experimental work by Soper 197 and the reference structure of RPBE-D3 by

Forster-Tonigold and Groß 179 are shown as well.
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Figure 3.2: The hydrogen-hydrogen RDFs of pure water obtained with the (a) RPBE-D3 and (b) rVV10 r2SCAN DFs. The RDFs

of AIMD and MLMD are shown together with their standard deviations. Cubic splines are used to refine the raw data. All relevant

simulation settings are shown in table 2.1. The experimental work by Soper 197 and the reference structure of RPBE-D3 by

Forster-Tonigold and Groß 179 are shown as well.

The performance of MLFFs in the pure water system is assessed by comparing the structures of the

AIMD calculation with those of the MLMD simulation. MLMD is expected to perform well, as there is only

one molecule type (H2O) with only two atomic species. Therefore, the system should be quite efficient

in collecting enough structures and local configurations to skip many DFT self-consistency calculations.
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Figure 3.3: The hydrogen-oxygen RDFs of pure water obtained with the (a) RPBE-D3 and (b) rVV10 r2SCAN DFs. The RDFs of

AIMD and MLMD are shown together with their standard deviations. Cubic splines are used to refine the raw data. All relevant

simulation settings are shown in table 2.1. The experimental work by Soper 197 and the reference structure of RPBE-D3 by

Forster-Tonigold and Groß 179 are shown as well.

Upon visual inspection, all the AIMD and MLMD RDFs match well for both RPBE-D3 and rVV10 r2SCAN.

The largest differences can be seen in the first hydration shell of the water molecules with the RPBE-D3

method. This is in the gOO(r) and in nOO. Additionally, there is some difference in θHOH of RPBE-D3,

indicated in table 3.1. The rVV10 r2SCAN DF shows the best result with ML. Figure 3.1 shows that

there is more variance between the individual MLMD simulations with the rVV10 r2SCAN DF for larger

distances (r) compared to the AIMD simulations with the same DF. This is indicated with the orange hue

around lines. Note that the mean results still match closely.

3.2. Retrieving the Correct Density of KOH (aq)
Determining the equilibrium density of KOH (aq) at 325K and 1bar is done by performing 20 ps MLMD

simulations and selecting the density which is above 0bar. It has been shown that DFs without VdW

corrections underestimate201,202 and those with VdW corrections typically overestimate the density of

water.99,201,202 The experimental density of KOH (aq) at a molality of 1 mol of salt per kg of water is

1048 kgm−3.203 The calculated pressures and the estimated error of the mean are shown in figure 3.4.

In this work, it is computed that the equilibrium-density is between 1330 kgm−3 and 1335 kgm−3. This

is a larger overestimation than expected, which could be caused by overestimating hydrogen-bonding.

The simulations are performed with gamma-point only calculations and a single k-point. The energy

cutoff for the plane wave basis set and the number of k-points is investigated using a convergence

study on the system energy, as explained in section 2.1.3. The pressure might be more sensitive for the

number of k-points than the energy, overestimating long range attraction between atoms. Retrieving

correct densities with AIMD is challenging, as small systems have large pressure fluctuations. Because

of this, many studies simulate systems of fixed, experimental densities. Works by Tuckerman,100,103,104

Parrinello154 and others100,179,199,204,205 are performed at fixed densities and do not report any pressure

results. In other works, negative pressures are reported.99,206 There are studies performed using NPT
or other methods ensuring positive pressures. These are mostly works which presents density or

density effects as their main results.201,202 Negative pressures might be suitable for short AIMD studies,

however, the aim of this work is to compute transport properties, using long MLMD simulations. These

negative pressures can lead to phase separation and energy drifts. Therefore, 1335 kgm−3 is selected

as density for the KOH validation and KOH production simulations, see table 2.1. Additional simulations

at experimental density203 (1048 kgm−3) are performed as well. These are available in appendix A.



3.3. Machine Learning Efficiency and Error Estimation 22

(a)

1100 1150 1200 1250 1300 1350 1400 1450 1500
ρ/[kgm−3]

−10000

−5000

0

5000

10000

15000

P
/[
b
a
r]

(b)

1300 1310 1320 1330 1340 1350
ρ/[kgm−3]

−1000

−750

−500

−250

0

250

500

750

1000

P
/[
b
a
r]

Figure 3.4: The average system pressure (P ) and its standard deviation of KOH modeled with RPBE-D3 as function of its

density (ρ). The entire investigated density range (a) and a zoomed in section around P = 0 bar (b) are shown. The dashed

green line represents 0 bar, the minimal acceptable average system pressure.

3.3. Machine Learning Efficiency and Error Estimation
The efficiency gains of MLFFs are significant. Table 3.2 shows an overview of the gains in computation

time. The time needed for MLMD calculations is around 3.6 to 11 times less than that of comparable

AIMD calculations. In the pure water systems, the gains are the largest when using the rVV10 r2SCAN

DF. This is because only the DFT self-consistency calculations are more expensive with the rVV10

r2SCAN DF, while training and using the MLFF costs the same computation time for both DFs. MLFFs

with the KOH systems showed significantly less gain in efficiency than the pure water system. This

has three causes: (i) the KOH system has an additional atom type for which a FF needs to be trained,

(ii) the cutoff distance of the MLFF is set higher than that of the pure water system for both the radial

and angular descriptors, and (iii) the radial and angular descriptors are expanded to use more basis

functions. This makes training the MLFF more expensive. Additionally, more time is spent calculating the

atomic forces from an already trained FF. Using these strict settings is done, because the main purpose

of this work is to show that MLFFs can simulate reactions such as the proton transfer as well. Some

gain in efficiency is needed to expand the time scales of AIMD to be able to predict transport properties

accurately. However, these time scales are reached and this work does not focus on optimizing the

computational efficiency with MLMD in VASP.

Table 3.2: The efficiency gains of MLMD compared to AIMD runs. This table indicates the number of DFT self-consistency

calculations (NDFT) in absolute number of steps and the percentage compared to AIMD calculations, as well as the total

computational time used (tcomp) and the relative gain. All indicated simulations are preceded by a 5 ps initiation simulation. This
initiation period is also used to pre-train the MLFF, needing around 160 NDFT. The number of DFT calculations and the time spent

on those are not included in the data of this table. The calculations are performed on full 48 core nodes of two intel XEON

E5-6248R processors.146 The computation time can only be used as indication, as it depends on the hardware.

method NDFT/[-] % tcomp/[h]
times

faster

Water RPBE-D3 AIMD 5ps 5000 15

MLMD 5ps 240 5 2.5 7.3

Water rVV10 r2SCAN AIMD 5ps 5000 70

MLMD 5ps 246 5 6.4 11

KOH RPBE-D3 AIMD 10ps 1000 20

MLMD 10ps 287 2.9 4.6 4.3

MLMD 100ps 1879 1.9 55 3.6
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The output of VASP 6.4119–123 provides the user with the estimated errors used for the on-the-fly learning

of the FF. As explained in section 2.2.2, the error threshold in the decision scheme, shown as (εlimit) in
figure 2.5, is set to decrease during the running of the simulations. It is increased again temporarily after

every DFT self-consistency calculation, as not to include similar structures in the structure database.

Figure 3.5 shows how the estimated error of the force interacts with the threshold that is set. Note

that when the estimated force error spikes, a DFT self-consistency calculation is run to retrain the FF,

after which the threshold is increased as well. This threshold is then lowered again gradually until the

estimated maximum error in the force (max(εForce)) exceeds the threshold.
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Figure 3.5: The estimated maximum and mean Bayesian error of (a) the forces and (b) system stress tensor are indicated as

function of time (t). These results are derived from 10ps MLMD simulations of aqueous KOH. The error threshold (εlim) is
illustrated in (a). All relevant simulation settings are shown in table 2.1 and the simulations are performed using the RPBE-D3 DF.

3.4. Structure and Energies of KOH (aq)
The structure and energies of the KOH systems are simulated using AIMD and MLMD. The AIMD calcu-

lations are limited by calculation time. For an accurate comparison, 10 ps AIMD and MLMD simulations

are set up with further identical settings. Additionally, 100 ps MLMD simulations are performed, which

are compared to the shorter AIMD and MLMD simulations. The 100ps simulations are also used to

calculate the transport properties, which are further discussed in section 3.5. The structure properties of

the investigated systems are summarized in table 3.3 and the energies are reported in table 3.4. The

RDFs, indicating the hydration of the water and ions, are shown in figures 3.6 and 3.7. The structure

around the K
+
is as expected. The first peak distance (dK+O/[Å]) in table 3.3 matches experimental

work. This is also visible in the RDFs shown in figure 3.6a. Other works report that the structure around

dissolved K
+
cation does not depend significantly on the anion species,207 and that this distance should

be close to 2.8Å for a large concentration range. The coordination number (nK+O) is slightly higher than
determined in other works.207 This could be caused by overestimation of the equilibrium density and the

hydrogen bonding between the surrounding water molecules.

Table 3.3: The produced structural results of the KOH simulations, comparing AIMD with the 10 ps and 100ps MLMD simulations.

diO indicates the shortest typical distance to water molecules from the center of molecule type i. The oxygen atoms are used as
the center of H2O and OH– molecules. The coordination numbers are calculated using equation (2.9) with an rshell of 4, 3.5, and
3.3 Å for nOO, nK+O and nOH–O, respectively. All relevant simulation settings are shown in table 2.1 and the simulations are

performed using the RPBE-D3 DF.

dOO/[Å] nOO dK+O/[Å] nK+O dOH–O/[Å] nOH–O

AIMD 2.784± 0.003 13.379± 0.007 2.827± 0.005 8.9± 0.2 2.572± 0.004 6.5± 0.1

MLMD 10ps 2.758± 0.006 13.332± 0.006 2.82± 0.02 8.84± 0.09 2.59± 0.01 6.36± 0.04

MLMD 100ps 2.758± 0.004 13.386± 0.007 2.818± 0.004 8.73± 0.03 2.601± 0.006 6.33± 0.06

Experimental 2.8208 - 2.79± 0.08207 6-8207 2.67± 0.07209 3-5209
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Table 3.4: The produced average energies (Etot, Ekin, Epot), pressure (P ), temperature (T ), and average time between reactions
per dissolved OH– molecule (treact) of 10 ps AIMD and MLMD, and 100ps MLMD simulation. All relevant simulation settings are

shown in table 2.1 and are performed with the RPBE-D3 DF.

Etot/[eV] Ekin/[eV] Epot/[eV] T/[K] P/[bar] treact/[ps]

AIMD −813.42± 0.04 6.82± 0.01 −820.25± 0.09 316.0± 0.6 531± 36 0.7± 0.1

MLMD 10ps −813.50± 0.04 6.82± 0.02 −820.32± 0.04 315.9± 0.8 1700± 40 0.32± 0.05

MLMD 100ps −813.47± 0.01 6.810± 0.004 −820.28± 0.01 315.49± 0.06 760± 60 0.39± 0.02

The structures around the OH
–
and the H2Omolecules (determined from their respective oxygen atoms)

is very different from those of pure water, as well as those of salts without OH
–
. The main cause of this is

the proton transfer reactions. After a reaction, the new OH
–
molecule is in a local environment of that of

an H2O molecule. After this, two events can happen: (i) after a few time steps, the reaction occurs again

and the molecules go back to their old environment. This often occurs, as the configuration between

the molecules just after reacting is most suitable for the reaction to take place. Or, (ii) the molecules

move away from each other and start to recreate their most preferable local structure. These reactions

typically occur every ps, leading to a constant restructuring of the hydration shells. As the RDFs are

sampled using long time averaging, they might not show the preferred local environment of OH
–
and

H2O, but they could show this effect of being placed in a preferred configuration and the restructuring

that occurs afterwards. Experimental work on highly concentrated hydroxide solutions210–212 shows

similar behavior. Some of their work, which is indicated in figure 3.7, shows a more drastic change in

the gOO(r). These works are performed at higher concentrations than those in this work. However, they
indicate a similar trend. The first peak is lowered and widened and the second peak of the RDF (typically

found at 4.5Å) is entirely merged into the first hydration shell. This could indicate that the tetrahedral

short-range coordination in water is absent in this system. Note that the experimental work does not

differentiate between the oxygen atoms in the H2O and those in OH
–
, as their neutron diffraction method

can only track atomic species, and the H2O and OH
–
both consist of oxygen and hydrogen.
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Figure 3.6: The RDFs of the (a) K+ cation and (b) OH– anion to their surrounding water molecules. The oxygen atoms of OH–

and H2O molecules are used as the center of the molecule. Cubic splines are used to refine the raw data. All relevant simulation

settings are shown in table 2.1. The large indicated uncertainty interval of the AIMD results in both subfigures is due to short

simulation times. The AIMD RDFs are sampled over just 10 ps and the system only has a single K+ and OH– . The MLMD 10ps

RDFs are not shown as they behave similarly to the MLMD 100ps RDFs with larger uncertainties. The Classical MD results29

shown in (a) cannot be found in the original publication and are based on raw data that the author provided on request.
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Figure 3.7: The RDFs of the water molecules to their surrounding water molecules. (a) compares the produced RDFs with

classical FFs, whereas (b) compares the results with experimental work of dissolved hydroxides. The oxygen atoms of the H2O

molecules are used as the center. Cubic splines are used to refine the raw data. All relevant simulation settings are shown in

table 2.1. The MLMD 10ps RDFs are not shown as they behave similarly to the MLMD 100ps RDFs. The Classical MD results29

shown in (a) cannot be found in the original publication and are based on raw data that the author provided on request. The

experimental reference work by Imberti et al. 210 (indicated as Exp. NaOH (aq)) and Bruni et al. 211 shown in (b) are at 4.5 and

10.5 mol kg−1 water, respectively. The simulations in this work are performed using 1 mol kg−1 water. Both experimental works

used neutron diffraction methods, and Imberti et al. 210 used empirical potential structure refinement to retrieve RDFs from this.

Comparing AIMD and MLMD shows no relevant differences in the produced structures. This is indicated

in table 3.3 and figures 3.6 and 3.7. Between the 10 ps and 100ps MLMD simulations, mostly an

improvement in error estimation can be seen. Comparing the energies and other state properties in

table 3.4 shows well-matching energy and temperature results between all three simulation settings.

No energy drifts occurred during the simulations, of which a visualization is available in appendix B.

Significant differences are seen in both the average pressure and reaction rate. The calculated pressures

are sensitive to slight changes in the potential energy, which might introduce some errors with MLMD.

Comparing the reaction time treact shows that the AIMD simulations predict a longer time between

reactions than MLMD. This suggests that MLMD overestimates the reaction rate. This is noteworthy,

as other works on DeePMD report that structures in the middle of reactions had to be specifically

added into the training data set. Otherwise, reactions would not be captured.139,140 The on-the-fly ML

algorithm implemented in VASP is more suitable to train these reactive systems, as it will perform DFT

self-consistency calculations, if the error threshold is exceeded during simulations. Besides that, the

reaction happens once or twice every ps, therefore, the 10 ps AIMD and MLMD simulation only find few

reactions and lack statistical significance.

A rough estimate of the influence of the proton transfer to the self-diffusion of OH
–
(Dreact) can be made

by treating the reaction rate as a random walk in 3D:

Dreact v
∆r2

6∆t
, (3.1)

where ∆r is the step size of the random walk. In this reaction, this is the distance between the OH
–
and

H2O just before the reaction. ∆r is estimated to be just over twice the bond length of water, 2Å. ∆t is
the time between the steps of the random walk. This method overestimates the influence of the proton

transfer on self-diffusion if ∆t is taken as the calculated reaction time (treact). The walk is biased to go
back to where it came from, which is explained as event type (i) earlier in this section. ∆t is chosen
to be 2treact, which corrects for this bias if it is assumed that half of the reactions follow event type (i).

The estimated increase in self-diffusion due to proton transfer is in the range of (4 - 10) × 10-9 m2 s−1.

Although this is a rough estimate, it is in the same order of magnitude as experimental methods have

calculated for OH
–
.213
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3.5. Transport Properties of KOH (aq)
The transport properties are calculated using the 100ps MLMD. The final results are summarized in

table 3.5. The shear viscosity is calculated using the last 75 ps of the KOH production simulations,

as the estimated error in the stress is high in at least the first 10 ps, which is visualized in figure 3.5.

The calculated shear viscosity is significantly higher than expected from experimental results.203 AIMD

simulations of pure water and MLFFs based on those indicate higher viscosity as well.145 This is ex-

plained by the overestimated hydrogen bonding and a melting temperature shift caused by that.145 Other

work with a simplified AIMD scheme using the RPBE-D3 DF, found a viscosity close to experimental

results.204 They used experimental densities when simulating the system and did not report the system

pressures and energies. This difference can be explained by the deviating density, as higher viscosities

are expected at higher densities. For this work, transport properties are also calculated at experimental

density. These are available in appendix A. Although these match experimentally found values better

than the results at 1335 kgm−3 and no energy drifts are observed, the average system pressure is

(−12.95± 0.07)× 103 bar, which is why these results are not presented as the main results of this work.

Muñoz-Santiburcio 204 also calculated self-diffusion of H2O and OH
–
at infinite dilution. They report a self-

diffusion coefficient of H2O (D∞
H
2
O), which is close to the experimental result of 2.45× 10−9m2 s−1.204,214

In this work, the calculated self-diffusion of H2O is lower than found experimentally, which follows

logically from the overestimation of the viscosity. The calculated D∞
K+ is similarly lower, however, D∞

OH−

is dominated by the proton-transfer events. The calculated self-diffusion of the anion is (6± 2)× 10−9

m2 s−1, much closer to experimental work and matching the 4.7× 10−9m2 s−1 determined by Muñoz-

Santiburcio 204. This indicates that although the system is less mobile than it should be, the proton

transfer is modeled successfully. The self-diffusion coefficients are derived from the MSDs of the specific

species. It must be noted that although the MSD of H2O and OH
–
are above L2 (where L is the

simulation box size), the MSD of K
+
was below this. Determining the self-diffusion from MSDs smaller

than L2 can introduce additional errors. The MSDs of the species are visualized in appendix B.3.

Table 3.5: The produced transport properties calculated using the 100 ps MLMD simulation, showing the viscosity (ν) and
self-diffusivity of H2O, K

+, and OH– (D∞
H2O

, D∞
K+
, and D∞

OH– ) in the thermodynamic limit. The electric conductivity σ is calculated

using the Nernst-Einstein shown in equation (2.13). All relevant simulation settings are shown in table 2.1 and are performed with

the RPBE-D3 DF.

ν/[mPas] Dcorr/[ × 10-9 m2 s−1] D∞
H2O

/[ × 10-9 m2 s−1]

MLMD 100ps 8.64± 0.07 0.0695± 0.0005 1.16± 0.08

Experimental 1.005203 - 2.45214

D∞
K+

/[ × 10-9 m2 s−1] D∞
OH– /[ × 10-9 m2 s−1] σNE/[Sm

−1]

MLMD 100ps 0.6± 0.1 6± 2 29± 7

Experimental 1.96215 5.27215 26213



4
Conclusions and Outlook

Aqueous hydroxide salts are studied extensively, as understanding their behavior is relevant for industrial

applications9,10 and energy storage solutions, such as batteries and electrolyzers.20–22 These studies

range from experimental works210–213 to computational models.29,100,103,104 Accurately describing the

behavior of KOH with computer models is challenging, as the OH
–
and H2O exchange hydrogen atoms.

This is a proton transfer reaction and cannot be captured well with current MD methods. Simulations

using first principle methods, such as AIMD, can capture these reactions. However, these methods have

higher computational expenses, which results in limited length and time scales that can be modeled.

Longer length and time scales are needed to determine transport properties, such as self-diffusion of

the OH
–
. This work shows that MLFFs can significantly reduce the computational costs of quantum

mechanics simulations. Additionally, it proves that on-the-fly MLMD, implemented in VASP 6.4,119–124

can produce similar structures and energies as ab initio molecular dynamics. The results show that not

only simple molecular interactions such as pure water can be described this way, but also complicated

mechanisms such as proton transfer reactions are captured. This work also shows that MLMD predicts

that these reactions influence the structure the same as in AIMD. This has been found experimen-

tally210–212 and with the complex ReaxFF molecular FF,111–114 but cannot be captured with traditional

force fields.29 Additionally, the self-diffusion coefficient of OH
–
is computed to be (6± 2)× 10−9m2 s−1, at

a molality of 1 mol of KOH per kg of water. This is close to the experimental result of 5.27× 10−9m2 s−1,

at infinite dilution. The reported gains in computation time are modest, since simulations are completed

between 3.6 and 11 times faster. This is caused by the ML settings selected, which is set to ensure the

capture of the proton transfer events. The radial and angular descriptors consist of more basis functions

and a longer cutoff distance than is set by default. Additionally, the error threshold implemented is

set to reduce over time, and is only temporarily relaxed after new AIMD calculations are performed.

RPBE-D3, the selected DF, is relatively cheap to converge. Most gains in computation efficiency can be

reached by using modern, computationally more expensive DFs. This is because the computational

costs of calculating the forces on atoms by using a trained MLFF does not depend on the DF. The DFT

self-consistency calculations will be more expensive. However, these are only a small percentage of

the time steps.

Other results here show some limitations to MLMD calculations of aqueous KOH. The most noteworthy

example of this is the calculated equilibrium density, which is calculated to be 1335 kgm−3, significantly

higher than the experimental value 1048 kgm−3.203 This difference is especially noteworthy as the

system is in the liquid state. This has multiple causes. The RPBE-D3 DF overestimates hydrogen

bonding, which results in an overestimated freezing point145 and density for water systems. Besides that,

only NV T simulations at different densities are executed and the lowest density with a pressure above

0 bar has been selected. Alternatively, NPT calculations could have been performed. However, for

small simulation box sizes, the pressure fluctuates significantly. This increases the difficulty in setting up

NPT calculations correctly. This higher density, and overestimation of hydrogen bonding also explains

the deviation in viscosity, which is overestimated (7.4± 0.1 instead of 1.005mPas). This is because

the system is over-bonded and less mobile than it should be. The underestimation of the self-diffusion

of K
+
and H2O also logically follows from this. The self-diffusion of the OH

–
ions is dominated by the

27
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proton transfer and suffers less from this effect. Improvements to this can be made by setting up NPT
calculations with larger box-sizes and by selecting more accurate DFs.

Future work into the local environment of when the proton transfer reactions occur might provide new

insights. In 1995, Tuckerman et al. 103 found a local configuration to be stable when the OH
–
was

hydrated in a (H9O5)
–
group and a less stable if it was hydrated in (H7O4)

–
. This (H7O4)

–
configuration

often results in multiple proton transfer event back and forth. MLMD with modern, more accurate, DFs

might provide better insights in which local structures lead to these reactions. Combining this with

energy barriers which can be calculated with nudged elastic band simulations might provide enough

information to create an accurate MD-MC scheme. Trajectories could then be calculated with a classical

FF and when a local configuration is found to be appropriate, something equivalent to an MC step using

the energy barrier could be executed to simulate the reaction. Although MLMD is significantly faster

than AIMD, classical FFs cost orders of magnitude less computational effort. With such a FF, it would be

possible to predict the electric conductivity of aqueous hydroxide salts including ion-ion correlations.194

This needs to be in the order of 100 ns, which is not yet achievable with current MLMD techniques with

enough detail to capture reactions.

MLFFs provides new opportunities to the community of molecular simulations. MLFFs are able to

explicitly describe all two- and three-body interactions and implicitly express many-body interactions,

as it provides an additional tool to molecular simulation researchers. Optimizing the coefficients of

all separate bond-types needed to describe molecular systems takes time and skill. MLFFs provide

methods which can automate this process, based on quantum mechanics. This also introduces new

challenges, as DFs are traditionally created for solid-state physics or catalysis research communities.

There, the interaction distances are small, thus the DFs are typically suitable to describe metallic

systems and chemical reactions. New DFs that are more suitable for liquids and gasses should be

further developed. Additionally, molecular simulations with an engineering aim are often parameterized

to experimental data which can be relevant for their specific use case. Basing the entire description

of atomic interactions on quantum mechanics might be correct from a physics point of view, however,

this is not always practical. Creating a combined approach, using macroscopic experimental results to-

gether with quantummechanics simulations when creating MLFFs, would expand the use case of MLFFs.

Some improvements to the current ML implementation in VASP123,124 are needed as well. For example,

VASP is not created for traditional molecular simulation use. This can be recognized in three issues.

The (i) parallelization of VASP is optimized for DFT self-consistency calculations and not for computing

MD time steps from a MLFF. This is a small issue as MLMD is still significantly faster than AIMD and the

system sizes are typically still small. For most computational gains, it is logical to use the on-the-fly ML

on a relatively small system, after which a pure MD simulation on a larger system is executed using this

pre-trained FF. However, (ii) changing the size of the box has significant consequences, as VASP cuts

of all interactions at the cutoff distance. Adding long-range Coulombic interactions is not possible. The

(iii) available post-processing codes for molecular simulation properties are also not readily available

for VASP. All three issues can be solved together by adding a tool to export a pre-trained MLFF to

established molecular simulation software, such as LAMMPS49–51 or GROMACS.52 These software are

optimized for MD calculations and post-processing codes are available as well. This export tool could

then add electrostatics as a classical interaction with support for Particle–Particle–Particle–Mesh or

Ewald summation to r1educe computational effort. A method to remove the short range electrostatics

from the MLFF should also be developed, to not double count these interactions.
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A
Results at Experimental Density

The results at experimental density (MLMD 100ps ρExp) are compared with the results at the calculated
density (MLMD 100ps). The experimental density is 1048 kgm−3 and the calculated equilibrium density

is 1335 kgm−3. Although the structural and transport properties at experimental density perform better

compared to experimental results, the average pressure during the simulations is (−12.95± 0.07)× 103

bar.

Table A.1: The produced structural results of the KOH simulations at experimental density (MLMD 100ps ρExp) compared to the
results at the calculated equilibrium density (MLMD 100ps). diO indicates the shortest typical distance to a water molecule from

the center of molecule type i. The oxygen atoms are used as the center of H2O and OH– molecules. The coordination numbers

are calculated using equation (2.9) with an rshell of 4, 3.5, and 3.3 Å for nOO, nK+O and nOH–O, respectively. Except for the

density, all other relevant simulation settings are shown in table 2.1 and the simulations are performed using the RPBE-D3 DF.

dOO/[Å] nOO dK+O/[Å] nK+O dOH–O/[Å] nOH–O

MLMD 100ps 2.758± 0.004 13.386± 0.007 2.818± 0.004 8.73± 0.03 2.601± 0.006 6.33± 0.06

MLMD 100ps ρExp 2.776± 0.002 10.12± 0.02 2.843± 0.003 6.80± 0.08 2.59± 0.01 4.80± 0.09

Experimental 2.8208 - 2.79± 0.08207 6-8207 2.67± 0.07209 3-5209

Table A.2: The produced transport properties of the KOH simulations at experimental density (MLMD 100ps ρExp) compared to

the results at the calculated equilibrium density (MLMD 100ps), showing the viscosity (ν) and self-diffusivity of H2O, K
+, and

OH– (D∞
H2O

, D∞
K+
, and D∞

OH– ) in the thermodynamic limit. The electric conductivity σ is calculated using the Nernst-Einstein

relation shown in equation (2.13). Except for the density, all other relevant simulation settings are shown in table 2.1 and the

simulations are performed using the RPBE-D3 DF.

ν/[mPas] Dcorr/[ × 10-9 m2 s−1] D∞
H2O

/[ × 10-9 m2 s−1]

MLMD 100ps 8.64± 0.07 0.0695± 0.0005 1.16± 0.08

MLMD 100ps ρExp 6.8± 0.2 0.081± 0.003 2.43± 0.03

Experimental 1.005203 - 2.45214

D∞
K+

/[ × 10-9 m2 s−1] D∞
OH– /[ × 10-9 m2 s−1] σNE/[Sm

−1]

MLMD 100ps 0.6± 0.1 6± 2 29± 7

MLMD 100ps ρExp 1.79± 0.03 6± 2 29± 6

Experimental 1.96215 5.27215 26213
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B
MLMD 100 ps: properties over time

Some properties of the 100 ps MLMD production runs that are sampled over time are presented in this

appendix. The system state (energies, temperature and pressure) are illustrated together in appendix B.1.

The atom index of the oxygen atom in the OH
–
molecule is shown in appendix B.2. From this, the

reaction rate, as well as the two different options after reactions can be seen. Appendix B.3 visualizes

the MSDs, used to determine the self-diffusion coefficients.

B.1. System State Over Time
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Figure B.1: The (a) total (Etot) and (b) potential (Epot) energies of the 100 ps MLMD production runs as a function of time (t). A
Gaussian moving average filter with a width of 2.5 ps is used to smoothen the fluctuations and visualize possible energy drifts. All

simulations show an energy drift in the first 5 ps, after which natural fluctuations occur.
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Figure B.2: The (a) kinetic energy (Ekin) and (b) temperature (T ) of the 100 ps MLMD production runs as a function of time (t). A
Gaussian moving average filter with a width of 2.5 ps is used to smoothen the fluctuations and visualize possible drifts. The

kinetic energy shows no drift and is equivalent to the temperature.
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Figure B.3: The pressure (P ) of the 100 ps MLMD production runs as a function of time (t). A Gaussian moving average filter

with a width of 2.5 ps is used to smoothen the fluctuations and visualize possible drifts.
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Figure B.4: The Bayesian error estimate of (a) the atomic forces (εforce) and (b) the stress tensor components (εstress) as a
function of time (t). Both figures show the maximum and average value.

B.2. Tracking the Atomic Index of the Hydroxide
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Figure B.5: The atomic index of the oxygen atom in the OH– molecule as a function of time (t). (a) visualizes the extracted atom
index of all runs and (b) shows the last 10 ps of the third run. Note that (b) shows long periods of inactivity followed by a burst of

reactions. These two distinctive phases are described by Tuckerman et al. 104, and also found in this work.
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B.3. MSDs of Potassium, Hydroxide and Water
In this section, the MSDs of the tracked particles are visualized. The self-diffusion coefficients are

derived using these MSDs. To ensure that the results are calculated in the diffusion regime (and not

the ballistic regime), lines with a slope of 1 in log-log space are fitted through this data, with the same

approach as is used with the OCTP216 post-processing code, which is developed for Blazquez et al. 194.

Note that the MSD of OH
–
does not show the characteristic slope of the ballistic regime. This is caused

by the proton transfer events, which occur within a few time steps. The simulation box size (L) is
10.9202Å. Therefore, the ideal lower limit of the MSDs which the self-diffusion is fitted to is 120Å2 (L2).

Note that the MSDs of OH
–
barely reaches this limit and the MSDs of K

+
clearly stays below this. This

might introduce errors in the calculated self-diffusion coefficients. The MSDs of H2O exceed this limit.
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Figure B.6: The MSDs of (a) OH– and (b) K+. A windowed algorithm using the Freud195 python package is used to retrieve

these from the atomic positions.
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Figure B.7: The MSDs of H2O. A windowed algorithm using the Freud195 python package is used to retrieve these from the

atomic positions.
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