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Summary 
In the Netherlands, several cast iron lighthouses were built between the years 1856-1899. Their 

structural state has been deteriorating and cracks have formed in the cast iron plates of the inner and 

outer columns, and strengthening the structures is required. Current assessment methods of such 

large cast iron plate structures require a very detailed finite element model. Large detailed models 

are very time consuming to create and analyse, which makes it a costly assessment method. In this 

thesis, the use of an orthotropic continuum damage model, the Engineering Masonry Model (EMM) 

in this case, for the structural analysis of cast iron plate structures is explored. The EMM was 

developed for the analysis of unreinforced brick masonry structures. In these lighthouse structures, 

the cast iron plates are placed in a similar pattern as bricks in masonry structures. In addition, cast 

iron has brittle tensile behaviour, which is also the case for bricks in masonry structures. Due to the 

similarities of the structures, a model is developed in this thesis which allows the use of an 

orthotropic continuum damage model for a cast iron plate structure. The thesis focuses on a specific 

case, which is the case of the lighthouse the ‘Lange Jaap’, located in Den Helder, the Netherlands.  

In order to find a good strengthening solution for the structure of lighthouse the Lange Jaap, finite 

element analyses can be used. By analysing the impact of the relevant forces on a model of the 

lighthouse and applying a possible strengthening solution, the effectiveness of different 

strengthening solutions can be determined. As mentioned, creating and analysing detailed finite 

element models of large structure is very time consuming, so the possibilities of simplifying the 

model were considered. In an orthotropic continuum damage model, the material properties of the 

cast iron plates and the connections can be combined and one material will be used for the entire 

structure. By using such a material model, it is no longer required to create every single plate and 

connection separately, which simplifies the model significantly. Therefore, the research question of 

this thesis is: How can an orthotropic continuum damage model be used to reduce the complexity of 

the structural analysis of a detailed finite element model for a cast iron plate structure? 

To obtain the input parameters that are required for an orthotropic continuum damage model, 

detailed models of small plate structures were created. Different loading conditions were applied and 

the resulting force-displacement curves were analysed do derive constitutive laws for the structural 

analysis. After performing a sensitivity study of the size effect of the structure, the failure modes 

changed for some of the loading types. This resulted in quite a difference in strength and ultimate 

strain between the small and large structures. If this method is used to simplify the complexity of a 

detailed finite element model, it is important to find a unit structure size for every relevant load case. 

This unit structure size should have the failure mode which is expected in the model of the entire 

structure. The unit structure size does not have to be the same for each load case. 

After the input parameters for the orthotropic continuum damage model were obtained from the 

results of the finite element analyses of the detailed unit structure sized models, equivalent models 

of the exact same structure size were created in which the input parameters were applied. From the 

results of the equivalent models, it became apparent which parameters needed to be calibrated to 

increase the similarity of the results of the equivalent models, compared to results of the detailed 

models. In this case, the tension and compression models resulted in calibration of several 

parameters, as there were multiple values for the Ey and Gf,tension. As only one value could be used, the 

average value was used and the other relevant parameters were calibrated. As the equivalent models 

are very easy to make and the running time of the analyses is very small, the calibration of the 

parameters did not take very long, but the accuracy of the finite element model was increased 

significantly. 
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In this project, the final, calibrated input parameters were used in an orthotropic continuum damage 

model for the cast iron plate structure of lighthouse the Lange Jaap and it was concluded that very 

similar results were obtained as from the detailed model, when all strains were in the linear-elastic 

regime. As the values of the bed- and head-joint tensile strengths that were obtained were quite low, 

tensile stresses which are larger than the tensile strength of the material appeared quite quickly in 

the model of the lighthouse. Once plastic deformations occurred, cracks started to form and the 

analysis of the thesis model quickly became unstable, which meant the results were no longer 

accurate. This shows that, after the calibration of the parameters, the linear-elastic behaviour of the 

structure is accurately captured in the model, while the plastic behaviour is not. 

However, for research questions in which deformations remain in the linear-elastic regime, a finite 

element model in which an orthotropic continuum damage model is used can provide very accurate 

results. The company PT Structural Design & Analysis created a detailed finite element models of the 

lighthouse, and of their goals was to determine the maximum wind velocity at which (almost) no 

vertical tensile stresses would occur in the lighthouse. For their model, this maximum wind velocity 

was equal to 18.3 m/s. The same analysis was performed on the thesis model, and it was determined 

that the value of the maximum wind velocity is equal to 18.4 m/s in the thesis model. As the values 

are almost exactly the same, this confirms that the results of a finite element model in which an 

orthotropic continuum damage model is used for a large cast iron plate structure,  very similar to the 

results of a detailed finite element model. 

Additionally, to analyse the structural behaviour of the lighthouse in compression, an increased value 

was of the gravitational acceleration was applied in a separate model. This caused the self-weight 

load to be multiplied by a load factor of 20. The results of the analysis were mostly as expected, as 

the compressive stresses increased almost linearly with the load factor. Since the plates are placed 

under an angle in the lighthouse, the self-weight load caused out of plane displacements in the 

structure. As a result, tensile stresses were introduced and cracks started to form. After a load 

application factor of 18.7, the model became unstable and divergence was reached. It is concluded 

that the low values of the head- and bed-joint strength cause quite some problems in the analyses of 

the structure, as this allows cracks to form quite quickly, even when the tensile stresses are still 

relatively small.  

The answer to the main research question was obtained and it was concluded that the complexity 

was reduced due to the following points:  

- When using an orthotropic continuum damage model (such as the EMM) only small detailed 

models of the unit structure size that include the most realistic failure modes have to be 

analysed, instead of a detailed model of the entire structure. It can be concluded that this can 

significantly reduce the total modelling time 

- The geometry of the cast iron plate structures was simplified, as the flanges and stiffeners 

were no longer included in the models. As a result, it was possible to use regular curved shell 

elements instead of structural solids. This makes it very easy to create models of very large 

structures 

- As regular curved shell elements were used, due to the simplification of the geometry, a 

much larger element size can be chosen which results in a much lower amount of elements 

and nodes compared to a detailed model. Fewer elements and nodes means the analysis 

time of the model becomes shorter. It can be concluded that using an orthotropic continuum 

damage model, such as the EMM, can significantly reduce the total running time of the 

analysis of large cast iron plate structures, as shell elements can be used 
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Using an orthotropic continuum damage model might become a profitable method of modelling large 

plate structures. The total working time that is spent on creating and analysing the models, and 

accuracy of the final finite element models are key aspects when one considers using this method to 

model a certain plate structure. Especially the number of plate sizes that is considered when 

obtaining the input parameters, heavily impacts the total working time and the accuracy of the final 

model. The amount of plates that is considered should be based on which of the two aspects is of 

higher importance. Considering less plate sizes is faster, but reduces the accuracy of the final model. 

Due to the limitations of the method, it is not applicable for all types of research. However, research 

types for which the method is very suitable are studies in which many finite element analyses have to 

be made for a structure, where small changes are made in every analysis. For the lighthouse 

structure, a study of the effectiveness of different strengthening solutions for the columns is a very 

good example. By using an orthotropic continuum damage model, the running time of the finite 

element model is reduced and making many different analyses of the finite element model can be 

achieved in a much shorter time period.  
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1 Introduction 

1.1 Background problem 
Cast iron became a popular building material in the 19th century and was used for different kinds of 

structures in the Netherlands. The first use of cast iron was in factories, where wooden columns were 

replaced by cast iron columns. Due to the high compressive strength of cast iron, the columns had a 

much smaller surface area and more space became available for machinery. However, it quickly 

became clear that the tensile strength of cast iron is much lower and the material is also very brittle 

in tension. When structures consisted only of cast iron, it had to be ensured that the elements were 

only loaded in compression. The material became widely used in lighthouse structures in the 

Netherlands and more than 10 cast iron lighthouses were built between the years 1856-1899 

(Lintsen, et al., 1993). 

All of those lighthouses were built more than 100 years ago and their structural state has been 

deteriorating. Cracks are forming in the cast iron floors and the plates of the inner and outer columns 

(Rijkswaterstaat, 2020). Some of the structures were demolished due to their irreparable damage. 

However, the government aims to maintain the remaining lighthouses, as they have become national 

monuments. Therefore, instead of demolishing and replacing the structures, they are looking for 

strengthening solutions with which the original state of the building can be maintained as much as 

possible. In order to find a good solution for the problem, finite element analyses can be used. By 

analysing the impact of the relevant forces on a model of a lighthouse and applying a possible 

strengthening solution, the effectiveness of the strengthening solution can be determined. However, 

creating detailed finite element models of large structures takes a long time. As the models will 

contain a large amount of nodes and elements, the running time of the analysis will be very long. If 

several strengthening solutions have to be analysed, this will become a very time consuming process. 

By simplifying certain parts of the model, the total amount of time to create and analyse different 

models could be reduced significantly. This would mean a conclusion can be found much faster for 

studies where many different models of large structures have to be analysed. 

1.2 Scope and research questions 
For lighthouse structures, it might be possible to simplify the model for the inner and outer columns. 

The columns consist of cast iron plates, which are placed in a half-brick pattern. Besides that, cast iron 

has brittle tensile behaviour, and is much stronger in compression. These characteristics are similar to 

those of masonry walls. For masonry walls, orthotropic continuum damage models, such as the 

Engineering Masonry Model (EMM), are used in finite element analyses. This reduces the model 

complexity, as it is not required to make every single brick separately in the model. If an orthotropic 

continuum damage model could be used for the inner and outer columns of the lighthouse, it would 

not be required to create every single plate separately, which simplifies the model significantly. 

Besides that, the flanges and stiffeners that are part of the plates can be left out of the models, which 

also results in a simplified model. Therefore, the research question of this thesis is: 

How can an orthotropic continuum damage model be used to reduce the complexity of the structural 

analysis of a detailed finite element model for a cast iron plate structure? 
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To obtain a good answer, the research question is divided into the following sub-questions: 

- How can the required input parameters be obtained for different nonlinear failure modes of 

the components of a cast iron plate structure, to enable using an orthotropic continuum 

damage model in a structural analysis? 

- How will those parameters be affected by increasing the size of the structure to an assembly 

of multiple plates and connections? 

- How do the results of a detailed finite element model compare to the results of an orthotropic 

continuum damage model, when being used in a structural analysis of lighthouse the Lange 

Jaap? 

The first two sub-questions refer to the base of the problem, as this will show how the EMM can be 

used to obtain accurate results for the analysis of cast iron plate structures. The final sub-question 

will show a comparison between the results of a structural analysis of a detailed model and a model 

where the EMM is used. The case of the lighthouse the Lange Jaap, located in Den Helder, the 

Netherlands, is analysed in this sub-question (chapter 2 provides a description of the case study). 

From the comparison between the models, it will be clear whether the results will be similar, and 

what the main advantages and disadvantages are of using an orthotropic continuum damage model 

instead of a detailed model for the structural analysis of a large cast iron plate structure. 

1.3 Methodology 
Several steps have to be taken to find the answers to the research questions of this thesis. The main 

steps that will be taken during this study are presented in the flowchart below.  

 

Figure 1.1: Flowchart with the main steps of the thesis 
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There are three different columns in the flowchart and each column will provide the answer to one of 

the sub-questions. Steps that have been placed on the same row are steps that are similar to each 

other. As the process of each column is quite similar, some steps repeat themselves during this thesis. 

The main content of each column is as follows: 

- Analyse detailed models of a structure 

- Analyse equivalent EMM models of the same structure 

- Compare results to find similarities and/or differences 

After the answers to all sub-questions have been obtained, the main research question can be 

answered as well. From all findings that were discovered during the study, conclusions can be made 

about the methods that were used. 

1.4 Thesis outline  
The structure of the report is as follows: Chapter 2 will provide a description of the case that will be 

studied in this thesis: lighthouse the Lange Jaap. In chapter 3, the definition of detailed models and 

equivalent EMM models will be clarified, and the numerical approach of both model types will be 

presented. Chapters 4, 5 and 6 will all provide an answer to one of the sub-questions. These chapters 

contain all the results of the steps that were presented in the flowchart in section 1.3. In chapter 4, 

the detailed models of the small structures are analysed under different load cases. From the results 

of those models, input parameters that can be used in the EMM are obtained. Next, these 

parameters will be used in equivalent EMM models and the results will be compared to the results of 

the detailed models. In chapter 5, the structure size will be increased and detailed models of larger 

structures are analysed. Again, equivalent EMM models will be analysed, where the input parameters 

that are used are the parameters that were obtained from the detailed models of the small 

structures. By comparing the results, it will be clear if these parameters provide similar results when 

used in equivalent EMM models of larger structures. New parameters will be obtained from the 

results of the detailed models of the larger structures, which are then adjusted to increase the 

similarity between the results of the detailed models and the equivalent EMM models. In chapter 6, 

the final EMM parameters are used in an equivalent EMM model of lighthouse the Lange Jaap, after 

which several analyses are performed. The results will be compared to the results of a detailed model 

of the lighthouse and all similarities and differences will be listed. Finally, chapters 7 and 8 will 

contain the conclusions and recommendations that will result from all previous chapters. 
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2 Case study: lighthouse the Lange Jaap 

2.1 Description of the case study 
The Lange Jaap is a cast iron lighthouse located in Den Helder, the Netherlands. The lighthouse was 

constructed in 1877, and was first used in 1878. The building has received a monumental status in 

1988. With a total height of 63.45 meters, it is the highest functioning lighthouse in the Netherlands 

and the highest cast iron lighthouse in Europe (Vuurtoren Lange Jaap, 2025). The lighthouse consists 

of an outer column and an inner column, both made out of cast iron plates. The plates are placed in a 

half-brick pattern and have flanges on the edges, which allows a bolted connection between the 

plates. Besides that, a mixture called iron cement is used to close all openings between the edges. 

This method is used in older structures, to ensure a good bonding between iron elements (Oostingh, 

2012). The floor plates consist of cast iron as well, which are connected to the columns via bolts. The 

lighthouse is placed on a foundation which consists of 249 timber piles. 

The designer of the lighthouse, Quirinus Harder, chose cast iron as construction material for the 

Lange Jaap instead of masonry, for three main reasons (Suchtelen, 1978): 

1) Faster construction time: the total construction time was approximately one year, 

whereas a masonry lighthouse would have taken around three years to construct. As the 

shipping industry was growing very fast, the lighthouse had to be constructed as fast as 

possible. 

2) Lower costs: the total costs of a cast iron lighthouse were approximately three times 

lower than the costs of a masonry lighthouse. 

3) Lower foundation requirements: the self-weight is significantly lower for a cast iron 

lighthouse compared to a masonry lighthouse. For this reason, the requirements for the 

foundation are lower for a cast iron lighthouse, which causes a reduction in construction 

complexity and costs. 

Furthermore, it was chosen to use cast iron instead of sheet iron. Rolled sheet iron was only limitedly 

available at that time and, moreover, cast iron is a lot more resistant to the corrosive marine 

atmosphere, which means the structure would require less maintenance. 

The structural strength of the Lange Jaap is decreasing due to the damage. To get a complete 

overview of the current strength and stability of the lighthouse, a structural analysis should be 

performed. The company PT Structural Design & Analysis bv has published a report that describes the 

results of their structural analysis (PT Structural Design & Analysis bv, 2022). First, the structure 

without any damage was analysed. From this analysis, it became clear that the maximum 

fundamental value of the basic wind velocity (vb,0) on the lighthouse is 18.3 m/s, as this wind load 

results in zero (to very little) tensile stress at the bottom of the outer column of the lighthouse. When 

the wind loads are increased, tensile stresses will start to occur in the plates of the outer column, 

which is not desired for cast iron elements. Secondly, they performed a structural analysis including 

cracks between the floors and the columns, which are increasing in size. This represents the current 

state of the lighthouse, so it can be seen what the influences are on the strength and stability, 

compared to the model of the lighthouse in the original state. As a result of the cracks in the floor, 

the force distribution becomes different in the outer column of the lighthouse, which has a negative 

effect on the connections between the plates. Therefore, they advise to gradually remove and replace 

the current floor panels. In addition, the report contains a Phased Array analysis of the bolts made by 

INFRATECHNIEK. They found that at least 1000 bolts have to be replaced, as they are damaged or 

broken. Tests have been performed on site, but replacing the bolts has been proven to be very 

challenging, so it is still unclear if it is feasible to replace all the bolts. However, in the conclusion of 
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the report, it is stated that even if all bolts are replaced, the cracks that are beginning to form in the 

outer column are still a large problem. These cracks will grow when tensile stresses occur in the 

plates, which will happen if the lighthouse is loaded by wind speeds larger than 18.3 m/s, as they 

found in the first analysis.  

When determining the maximum wind load in the design verifications of new buildings, the value of 

vb,0 is based on the wind region (CEN, 2005). There are three different regions in the Netherlands, all 

corresponding to a different value for vb,0. As Den Helder is located in wind region I, this means that 

the value of vb,0 should be equal to 29.5 m/s in the design verifications. This is significantly higher 

than the maximum allowable value of 18.3 m/s, calculated by PT Structural Design & Analysis bv. It 

can be concluded that the structure, in its current condition, does not meet the strength 

requirements of the Eurocode. It has become clear that the floors should be replaced, because of the 

large amount of cracks they contain. After this step, a solution should be found to control the damage 

in the outer column of the lighthouse. As there are already cracks in the areas where tensile stresses 

have occurred, they will continue to grow when tensile stresses keep occurring. If there are no tensile 

stresses in the outer column of the lighthouse, the cracks will not form a big problem in terms of 

structural strength. PT Structural Design & Analysis bv determined that the maximum allowable wind 

speed is 18.3 m/s, as there are no (to very little) tensile vertical stresses in the outer column of the 

lighthouse for this wind speed (PT Structural Design & Analysis bv, 2022). No clear limit has been 

mentioned in the report for the acceptable tensile stresses, but from the curves that they present, it 

can be assumed that the maximum allowable tensile stresses are 0.01 MPa. When the wind loads are 

increased, tensile stresses will occur in the outer column of the lighthouse, which means the cracks 

will grow and failure of the outer column will occur at some point. As wind speeds higher than 18.3 

m/s are common at the location of the Lange Jaap, a strengthening solution has to be found in order 

to ensure the safety of the lighthouse for higher wind loading conditions.  

The government is currently trying to find an optimal solution for the strengthening of the lighthouse. 

They do not want to replace the building completely, as it is a national monument. The best option 

they found is to wrap the entire structure in a composite cocoon (Beukers, 2022). The total costs of 

this solution are estimated to be somewhere between 1.1 and 2.2 million euros. This solution causes 

a reduction of the loads on the outer column by 40 to 50%, which means the structure can endure 

much larger wind loads without experiencing any tension. However, the government aims to maintain 

the original state of the monument as much as possible, so wrapping the entire lighthouse with 

composite is not the most desirable solution. A solution which meets all requirements has not been 

found yet. As mentioned, finite element analyses can be used to determine the effectiveness of 

certain strengthening solutions. When a solution is applied to a finite element model of the 

lighthouse, it will be clear if the solution provides the desired results. For large structures such as the 

Lange Jaap, many different solutions are considered, which means many different finite element 

models would have to be analysed. As creating and analysing detailed finite element models of large 

structures is very time consuming, a faster analysis method is desired. By simplifying certain parts of 

the model, the total amount of time to create and analyse different models could be reduced 

significantly. However, it should first be determined what the effect of this simplification of the 

structure has on the results of the model. Therefore, in this study, the results of the detailed model 

that was created and analysed by the company PT Structural Design & Analysis bv, will be compared 

to the results of the equivalent EMM model of the lighthouse that will be analysed in this thesis.  
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2.2 Dividing the columns into different sections 
The structure of the lighthouse contains an outer and an inner column. A cross section of the bottom 

of the lighthouse is given in the figure below.  

 

Figure 2.1: Cross section outer column of the lighthouse (Harder, 1875) 

The outer column of the lighthouse consists of 68 layers of plates, divided over 17 floors, so 4 layers 

per floor. The plates are placed in a hexadecagon, which is a sixteen-sided shape. A document from 

1875 describes the radius of the hexadecagon and plate thickness at the top and bottom of the 

column. The values in between can be obtained by linear interpolation. The document also provides 

the height of the plates on every layer. Finally, the width and thickness of the flanges are also stated 

here, which are 60 and 20 mm, respectively. From this information, it is possible to create an 

overview of the dimensions of the plates at the different layers: 

Table 2.1: Overview plate dimensions per layer of outer column 

Layer(s) Number of 
layers 

hplate [m] tplate [m] htop [m] rcolumn [m] bplate [m] 

1-4 4 0.95 0.035 3.8 5.024 1.960 

5-10 6 0.9 0.034 9.2 4.703 1.835 

11-16 6 0.875 0.033 14.45 4.391 1.713 

17-24 8 0.85 0.0317 21.25 3.986 1.555 

25-34 10 0.825 0.0299 29.5 3.496 1.364 

35-44 10 0.8 0.0281 37.5 3.020 1.178 

45-54 10 0.775 0.0262 45.25 2.559 0.999 

55-67 13 0.75 0.0241 55 1.980 0.772 

68 1 0.5 0.023 55.5 1.950 0.761 
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By calculating htop for each set of layers, the radius of the hexadecagon can be determined at the top 

of the set of layers. From this radius, the following formula can be used to determine the width of the 

plate: 

𝑏𝑝𝑙𝑎𝑡𝑒 = 2 ∗ 𝑟𝑐𝑜𝑙𝑢𝑚𝑛 ∗ sin⁡(11.25
𝑜) 

The angle of 11.25o
 is calculated by 360o/16/2. Analysing all different plate sizes individually, would 

make the research very accurate, but also extremely lengthy. For this reason, the outer column of the 

lighthouse will be divided into three different sections instead. The sections will be chosen such that 

the differences between the plate dimensions within the section are not too large. The average 

thickness and height of the plates in the section are used. The height of the middle of the section, 

with respect to the total height of the column, is determined next, such that the radius of the column 

at this height can be calculated. By using this radius in the formula mentioned above, the width of the 

plates at the middle of the section can be determined, which gives the average width of the plates in 

that section. Names are introduced for the different plates, which refer to their respective column 

and section. For example, OS1 refers to a plate of the outer column, located in section 1. The 

dimensions of the plates of the different sections are provided in the table below.  

Table 2.2: Overview plate dimensions per outer column section 

Section hsection [m] hmiddle [m] rmiddle [m] hplate [mm] tplate [mm] bplate [mm] 

OS1 21.25 10.625 4.618 885 33.2 1802 

OS2 16.25 29.375 3.503 812.5 29 1368 

OS3 18 46.5 2.485 750 24.9 970 

 

Based on these dimensions, the amount of stiffeners and bolts for the connections are determined, 

as well as the distances between them: 

Table 2.3: Overview stiffeners and bolts per outer column section 

Section nstiffeners dstiffeners [mm] nbolts,bed dbolts,bed [mm] nbolts,head dbolts,head [mm] 

OS1 5 352.4 10 176.2 5 169 

OS2 4 332 8 166 5 154.5 

OS3 3 310 6 155 4 177.5 

 

For the inner column, there are 2 layers of plates per floor. Its height reaches until the 15th floor, so 

there are 30 layers of plates in total. The column is a shaped as a cylinder, so not a hexadecagon like 

the outer column. The radius and thickness of the top and bottom of the column can be found in the 

same document as mentioned in the calculation of the outer column dimensions. By interpolating 

between these values, the dimensions of the plates for each layer can be determined. By calculating 

htop for each set of layers, the radius of the column can be determined at the top of the set of layers. 

There are 8 plates at each layer, which means the width of the plate can be determined by dividing 

the circumference by 8. This width is therefore the arclength of 1/8 of a circle with the related radius. 

The dimensions of the inner column plates are given in the table below. 
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Table 2.4: Overview plate dimensions per layer of inner column 

Layer(s) Number of 
layers 

hplate [m] tplate [m] htop [m] rcolumn [m] bplate [m] 

1-2 2 1.9 0.025 3.8 1.443 1.133 

3-5 3 1.8 0.0246 9.2 1.361 1.069 

6-8 3 1.75 0.0243 14.45 1.282 1.007 

9-12 4 1.7 0.0239 21.25 1.180 0.926 

13-17 5 1.65 0.025 29.5 1.055 0.829 

18-22 5 1.6 0.0218 37.5 0.935 0.734 

23-27 5 1.55 0.021 45.25 0.818 0.642 

28-30 3 1.5 0.02 49.75 0.750 0.589 

 

Again, the column will be divided into three sections. First, the height and thickness will be calculated 

by determining the average of the plates in the section. Using the same method as for the outer 

column, the average width of the plate will be based on the plates which are located at the middle of 

the section. Similar as for the plates of the outer column, names are introduced for the inner column 

plates as well. An example here: IS2 refers to a plate of the inner column, located in section 2. The 

dimensions of the inner column plates are given in the table below 

Table 2.5: Overview plate dimensions per inner column section 

Section hsection [m] hmiddle [m] rmiddle [m] hplate [mm] tplate [mm] bplate [mm] 

IS1 21.25 10.625 1.338 1770 24.4 1051 

IS2 16.25 29.375 1.057 1624 23.4 830 

IS3 12.25 43.625 0.843 1532 20.6 662 

 

Based on these dimensions, the amount of stiffeners and bolts for the connections are determined, 

as well as the distances between them: 

Table 2.6: Overview stiffeners and bolts per inner column section 

Section nstiffeners dstiffeners [mm] nbolts,bed dbolts,bed [mm] nbolts,head dbolts,head [mm] 

IS1 3 337 6 168.5 10 173 

IS2 2 395 4 197.5 9 176 

IS3 2 311 4 155.5 8 186.5 

 

It can be concluded that there are a few differences between the plates of the inner and outer 

columns, besides the shape. Due to the smaller radius of the inner column, the inner column plates 

are much smaller than the plates of the outer column. However, the inner column only has 2 layers of 

plates per floor, which means the inner column plates have a much larger height. Logically, the 

difference in height and width causes the difference in the amount of bolts used in the head and bed 

joints. 

2.3 The material properties of cast iron 
The first step is to establish what kind of cast iron is used in the lighthouse. The company IECRT 

researched the composition of the cast iron and was able to determine that EN-GJL-150 is being used 

(IECRT, 2010). Table A.1 and A.2 of NEN-EN 1561 provide some of the material properties that are 

required as input for the detailed models.  
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Table 2.7: Table A.1 of NEN-EN 1561 (CEN, 2023) 

 

Table 2.8: Mass density cast iron, obtained from table A.2 of NEN-EN 1561 (CEN, 2023) 

 

However, from the PT Structural report, it can be seen that the values they used for the strength, 

stiffness and mass density are slightly different. A mass density of 0.8541888E-05 kg/mm3 is used. 

The values they use for the other parameters are given in the tables below. The top table shows the 

ranges they found from a document of the company ‘Bouwen met Staal’, the bottom table shows 

which values they chose to use in their model.  

Table 2.9: Bouwen met staal ranges for cast iron strength (PT Structural Design & Analysis bv, 2022) 

Property Value 

Tensile strength 105-180          [N/mm2] 

Compressive strength 340-760          [N/mm2] 

E-modulus 85-130 * 103  [N/mm2] 
 
Table 2.10: Strength values used by PT Structural Design & Analysis (PT Structural Design & Analysis bv, 2022) 

Property Value 

Tensile strength 105                  [N/mm2] 

Compressive strength 340                  [N/mm2] 

E-modulus 107,5 * 103     [N/mm2] 

 



17 
 

3 Numerical approach for detailed and equivalent EMM models 
The first step in the process is to define the small detailed models that will be used to determine the 

required input parameters for the Engineering Masonry Model (EMM). This includes defining the 

models, the material properties of the cast iron and defining how to model the connections between 

the plates. The connections in the models should capture the shear and tensile behaviour accurately, 

such that the structural behaviour of the detailed models is a good approximation of reality. By 

processing the results of the detailed models, the EMM input parameters will be defined. When these 

parameters are used in equivalent EMM models, they should simulate similar tensile, compressive 

and shear failure. 

3.1 Detailed models  
The detailed models consist of two different parts: the cast iron plates and the bolted connections. 

For the cast iron plates, structural solids will be used as the element type. The material model that is 

used is the total strain based crack model. The bolted connection is modelled as an interface 

connection. Interface elements are used as the element type and the material model of combined 

cracking-shearing-crushing is used. Both material models were chosen due to the fact that their input 

values relate to the different load cases that the models will be loaded with. The figure below shows 

an example of what is described in this thesis as a detailed model. 

 

Figure 3.1: Example of what a detailed model is, as described in the thesis 
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3.1.1 Mesh size and elements 
DIANA FEA will be used for the finite element analyses in this study. For the detailed models, 

structural solids will be used for the plates, and interface elements are used for the connections. 

Finally, the size of the elements should be chosen. The thickness of the plates varies from 20.6 to 33.2 

mm. The flanges and stiffeners both have a thickness of 20 mm. Therefore, the element size in the 

detailed models will be chosen as 20x20 mm, approximately. The mesh will not be consisting of 

perfect squares only, as DIANA will automatically adjust the mesh to fit the geometry of the structure. 

This means there will also be different shaped elements. Element codes are used to describe the 

different elements, and each element has different properties. The different types of elements that 

are used for the detailed models in this study are given in the table below. All the relevant element 

properties are also provided for every element. Most properties were obtained from the DIANA FEA 

manual (DIANA FEA bv, 2017). 

Table 3.1: Overview of the element types and their relevant properties of elements used the detailed models  

Element code HX24L PY15L TE12L TP18L Q24IF 

Element type Structural 
solids,  
brick shape 

Structural 
solids, 
pyramid 
shape 

Structural 
solids, 
tetrahedron 
shape 

Structural 
solids, wedge 
shape 

Interface 
elements, 
quadrilateral 
shape 

Degrees of 
freedom 

24: 
8 nodes, 3 
translations 
per node 

15:  
5 nodes, 3 
translations 
per node 

12: 
4 nodes, 3 
translations 
per node 

18: 
6 nodes, 3 
translations 
per node 

24: 
2*4 = 8 nodes, 
3 translations 
per node 

Interpolation 
scheme 

Linear Linear Linear Linear Linear 

Integration 
scheme 

2×2×2 Gauss 5-point Gauss 1-point Gauss 1-point Gauss 2×2 Newton-
Cotes 

Shape 
dimension 

3D 3D 3D 3D 3D 

Topological 
dimension 

3D 3D 3D 3D 3D 

Stress 
components 

σxx, σyy, σzz, 
σxy, σyz, σzx 

σxx, σyy, σzz, 
σxy, σyz, σzx 

σxx, σyy, σzz, 
σxy, σyz, σzx 

σxx, σyy, σzz, 
σxy, σyz, σzx 

tsx, tsy, tnz 

 

3.1.2 Constitutive law for cast iron  
As the results of the finite element analysis performed in this study will be compared to the results of 

the detailed model that PT Structural found, the input here should match their input. Therefore, the 

same values for the E-modulus, compression and tensile strengths will be used here. For the other 

required input parameters, the values from the Eurocode will be altered slightly such that they match 

the values that PT Structural used. The shear strength and the 0.1% tensile and compressive proof 

strength will be determined by multiplying the values from the table A.1 of NEN-EN 1561 by a factor 

of 105/150 = 0.7, which is the ratio of the used tensile strength over the minimal tensile strength 

provided in the table. Furthermore, the shear modulus is calculated by the following formula:   

𝐺 =
𝐸

2(1 + 𝑣)
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This results in the following properties: 

Table 3.2: Mechanical properties for cast iron used in this study 

Material property Value Unit 

E-modulus 107500 MPa 

Tensile strength 105 MPa 

0.1% tensile proof strength 68.6 MPa 

Compression strength 340 MPa 

0.1% compression proof 
strength 

185.7 MPa 

Poisson ratio 0.26 - 

Shear Modulus 42658.7 MPa 

 

With these values, it is possible to create stress-strain diagrams in tension and compression.  

 

Figure 3.2: Stress-strain diagram tension 

 

Figure 3.3: Stress-strain diagram compression 
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Figure 3.4: Comparison of stress-strain curves tension & compression 

The figures capture the material behaviour when loaded in tension or compression. From the figures, 

it is clear that the material has brittle behaviour in tension and is much stronger in compression. This 

is due to the fact that there is softening in tension, and hardening in compression.  

3.1.3 Constitutive law for connections 
In order to analyse a detailed model of the cast iron plates, the strength and stiffness properties can 

be applied to a material in DIANA FEA, so the cast iron plates can be modelled as structural solids. For 

the connection between the plates, an interface connection should be defined. The combined 

cracking-shearing-crushing interface type of DIANA will be used. The properties will be based on the 

properties of the bolts and the iron cement. The stiffness in the normal direction can be calculated by 

relating the following formulas: 𝐹 = 𝑘 ∗ 𝑢 and 𝜎 = 𝐸 ∗ 𝜀. The second formula can be rewritten as: 

𝐹 = 𝐸𝐴/𝐿 ∗ 𝑢. This means the stiffness k equals EA/L in the normal direction. The total length is 

equal to the bolt length between the edges of the flanges, which is equal to the iron cement 

thickness plus 2 times the full flange thickness. The iron cement has a thickness of 10 mm, while the 

flange thickness is 20 mm, which means L = 50 mm. The formulas for the shear stiffness are derived 

from the figure below.  

 

Figure 3.5: Forget-me-not situations relevant for the shear stiffness of the bolts (TU Delft, 2021) 
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This represents the bolts, where the supports are located in the centre of the flanges for shear, which 

means the length L is equal to the thickness of the iron cement plus 2 times half the thickness of the 

flange, so L = 30 mm. It is assumed that the top of bolt is supported by a fixed support. The bottom 

can be assumed to be supported by a pinned support, or by a fixed support as well. For the two 

options, the shear stiffness will either be 3𝐸𝐼 𝐿3⁄  or 12𝐸𝐼 𝐿3⁄ , respectively. As the shear stiffness will 

be lower for the first option, this value will be used to be on the conservative side. The calculation of 

the linear stiffness in the normal direction and in shear are given below. For the area, the area of the 

bolt should be used (As). This is dependent on the bolt diameter, which is equal to 16.61 mm, 

according to the PT Structural report. The moment of inertia is calculated as: 𝐼 = 𝜋 ∗ 𝐷4 64⁄ . 

𝑘𝑏𝑜𝑙𝑡,𝑛𝑜𝑟𝑚𝑎𝑙 =
𝐸𝐴

𝐿
 

𝑘𝑏𝑜𝑙𝑡,𝑛𝑜𝑟𝑚𝑎𝑙 =
107500 ∗ 216.69

50
= 465883.5⁡𝑁/𝑚𝑚 

𝑘𝑏𝑜𝑙𝑡,𝑠ℎ𝑒𝑎𝑟 =
3𝐸𝐼

𝐿3
 

𝑘𝑏𝑜𝑙𝑡,𝑠ℎ𝑒𝑎𝑟 =
3 ∗ 107500 ∗ 3727.37

303
= 44521.3⁡𝑁/𝑚𝑚 

The total stiffness of the joint is determined by the stiffness of a bolt, the number of bolts in the joint, 

and the total area of the connection. Which means the following formula is used: 

𝑘𝑡𝑜𝑡 =
𝑘𝑏𝑜𝑙𝑡 ∗ 𝑛𝑏𝑜𝑙𝑡𝑠

𝑏 ∗ ℎ
 

The table below provides the results of calculating the linear normal and shear stiffness for the head 

and bed joints of the different sections: 

Table 3.3: Resulting linear normal and shear stiffness per joint 

Joint nbolts kbolt,normal 

[N/mm] 
kbolt,shear 

[N/mm] 
bconnection 

[mm] 
hconnection 

[mm] 
ktot,normal 

[N/mm3] 
ktot,shear 

[N/mm3] 

OS1 head 5 465883.5 44521.3 93.2 885 28.24 2.70 

OS1 bed 10 465883.5 44521.3 93.2 1802 27.74 2.65 

OS2 head 5 465883.5 44521.3 89 812.5 32.21 3.08 

OS2 bed 8 465883.5 44521.3 89 1368 30.61 2.93 

OS3 head 4 465883.5 44521.3 84.9 750 29.27 2.80 

OS3 bed 6 465883.5 44521.3 84.9 970 33.94 3.24 

IS1 head 10 465883.5 44521.3 84.4 1770 31.19 2.98 

IS1 bed 6 465883.5 44521.3 84.4 1051 31.51 3.01 

IS2 head 9 465883.5 44521.3 83.4 1624 30.96 2.96 

IS2 bed 4 465883.5 44521.3 83.4 830 26.92 2.57 

IS3 head 8 465883.5 44521.3 80.6 1532 30.18 2.88 

IS3 bed 4 465883.5 44521.3 80.6 662 34.93 3.34 

 

The nonlinear properties should be determined next, starting with the cracking parameters. It is 

assumed that the iron cement does not contribute in tension, so the forces will be completely carried 

by the bolts. As the characteristic strength is used in the finite element models, the bolts have a 

tensile strength of 105 MPa. By multiplying this stress with the area of the bolt (As,bolt = 216.69 mm2), 

the bolt failure force can be calculated, which is equal to 22.75 kN. The tensile strength of the 
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interface connection is determined by the tensile strength of the bolts, the number of bolts and the 

total area of the connection: 

𝜎𝑡,𝑖𝑛𝑡 =
𝜎𝑡,𝑏𝑜𝑙𝑡 ∗ 𝐴𝑠,𝑏𝑜𝑙𝑡 ∗ 𝑛𝑏𝑜𝑙𝑡𝑠

𝑏 ∗ ℎ
 

Then, the fracture energy of the connection is derived from the tensile stress-strain diagram. This is 

equal to the area under the curve after the tensile stress is reached, which means linear tension 

softening is applied here due to the shape of the curve. This value is then multiplied with the length 

of the bolts to find the fracture energy in N/mm: 

𝐺𝑓 = 0.5 ∗ 𝜎𝑡,𝑖𝑛𝑡 ∗ (𝜀𝑢𝑙𝑡 − 𝜀𝑡) ∗ 𝐿𝑏𝑜𝑙𝑡 

The cracking properties of the head and bed joints for the different sections are given in the table 

below. 

Table 3.4: Cracking properties for each joint 

Joint nbolts Fmax [N] σt [N/mm2] εult εt Gf [N/mm] 

OS1 head 5 113.76 1.379 0.0010438 0.0009767 0.00231 

OS1 bed 10 227.52 1.355 0.0010438 0.0009767 0.00227 

OS2 head 5 113.76 1.573 0.0010438 0.0009767 0.00264 

OS2 bed 8 182.02 1.495 0.0010438 0.0009767 0.00251 

OS3 head 4 91.01 1.429 0.0010438 0.0009767 0.00240 

OS3 bed 6 136.51 1.658 0.0010438 0.0009767 0.00278 

IS1 head 10 227.52 1.523 0.0010438 0.0009767 0.00255 

IS1 bed 6 136.51 1.539 0.0010438 0.0009767 0.00258 

IS2 head 9 204.77 1.512 0.0010438 0.0009767 0.00254 

IS2 bed 4 91.01 1.315 0.0010438 0.0009767 0.00220 

IS3 head 8 182.02 1.474 0.0010438 0.0009767 0.00247 

IS3 bed 4 91.01 1.706 0.0010438 0.0009767 0.00286 

 

The next step is determining the parameters related to shearing. Again, it is assumed that the force 

will be carried by the bolts, not the iron cement. The cohesion of the interface will therefore be based 

on the strength of the bolts. The strength of the bolts in shear is determined, after which the 

cohesion of the interface can be determined: 

𝐹𝑣,𝑏𝑜𝑙𝑡 =
𝛼𝑣 ∗ 𝐴𝑠,𝑏𝑜𝑙𝑡 ∗ 𝑓𝑢,𝑏𝑜𝑙𝑡

𝛾𝑀2
= 9.1⁡𝑘𝑁 

𝑐𝑖𝑛𝑡 =
𝐹𝑣,𝑏𝑜𝑙𝑡 ∗ 𝑛𝑏𝑜𝑙𝑡𝑠

𝑏 ∗ ℎ
 

However, after the bolts brake there will be a residual shear force the structure can still withstand. 

The magnitude of this force is dependent on the friction of the interface. The friction coefficient will 

be based on the iron cement, as this will contribute the most to the friction. Another thing to 

consider is that the tensile strength is limited by the cohesion and friction angle in the following way: 

𝑓𝑡 =
𝑐

𝑡𝑎𝑛⁡𝜑
 

As the ratio between the cohesion and the tensile strength is the same for all joints, the maximum 

friction angle can be determined by using the values of c and ft of a joint. The maximum friction angle 
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is 0.3805 rad. Some samples of the iron cement in the lighthouse were tested (Movares, 2023) and it 

was determined that the compressive strength of the mortar is similar to that of C12/15 concrete. As 

the compressive properties match those of concrete, the frictional properties of concrete could also 

be used to estimate the frictional properties of the iron cement. As the cement is bonded to the cast 

iron, the interface is somewhat similar to that of a concrete-rebar interface. However, as rebar has 

quite a rough profile and the cast iron flanges will be much smoother, it is not exactly the same. A 

report has been found in which the bond between steel rebar and concrete is analysed (Chiriatti, 

Mercado-Mendoza, Apedo, Fond, & Feugeas, 2019). They found that the average value of the friction 

coefficient µ is equal to 0.39. As µ = tan φ, the value of φ is equal to 0.372, so this is quite close to the 

maximum friction angle that can be used. It is chosen to use a value of 0.38 for the friction angle in 

this study. Also, the parameters a and b of the mode II fracture energy should be determined. It is not 

exactly clear how to determine these parameters for the joints here, so for now, it is assumed that a = 

0 and b = 10 * Gf, tension. As a result, the shearing parameters for the different sections are as follows: 

Table 3.5: Shearing parameters per joint 

Joint nbolts Fmax [N] c [N/mm2] φ [rad] a [mm] b [N/mm] 

OS1 head 5 45.50 0.552 0.38 0 0.231 

OS1 bed 10 91.01 0.542 0.38 0 0.227 

OS2 head 5 45.50 0.629 0.38 0 0.264 

OS2 bed 8 72.81 0.598 0.38 0 0.251 

OS3 head 4 36.40 0.572 0.38 0 0.240 

OS3 bed 6 54.61 0.663 0.38 0 0.278 

IS1 head 10 91.01 0.609 0.38 0 0.255 

IS1 bed 6 54.61 0.616 0.38 0 0.258 

IS2 head 9 81.91 0.605 0.38 0 0.254 

IS2 bed 4 36.40 0.526 0.38 0 0.220 

IS3 head 8 72.81 0.590 0.38 0 0.247 

IS3 bed 4 36.40 0.682 0.38 0 0.286 

 

Finally, the parameters related to crushing have to be determined. The bolts will not have any 

influence on the compressive failure resistance of the structure. It is assumed that when the structure 

is loaded in compression, there will be contact between the plates, while the bolts ensure that the 

plates will be held together. As a result, it can be assumed that the compressive strength of the joint 

is equal to the compressive strength of the plates. The other factors related to compression are Cs, 

Gf,compression and the equivalent plastic relative displacement. As the structure is expected to fail in 

compression due to buckling, this will happen before the compressive strength has been reached. As 

the structure will fail before the compressive strength of the joint has been reached, the other 

parameters will not have much influence on the compressive failure. Therefore, assumptions are 

made for all parameters, such that their influence on the failure is very minimal. For Cs, a value of 

0.01 is chosen. The value of Gf,c is assumed to be much higher than the fracture energies in tension 

and shear, so 65 N/mm (around 25 times the value of Gf,shear). The equivalent plastic relevant 

displacement (EPRD) is set to 2 mm. The table below provides an overview of the joint parameters 

related to compression. This means all required parameters for the joints have been determined.  

Table 3.6: Crushing parameters per joint 

Joint σt [N/mm2] Cs Gf,c [N/mm] EPRD [mm]  

All 340 0.01 65 2 
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The calculated values of the fracture energy in tension and shear were used in the detailed models of 

the small structures. However, it was discovered that it was not possible to obtain fully converging 

results with these fracture energy values, as the model diverged very quickly. After some research, it 

became clear that there is a minimum value that has to be used for Gf,tension, such that the model will 

not diverge. The higher the value, the larger the ultimate displacement that will be reached. 

Therefore, each model has been analysed many times where the value of Gf,tension and the parameter 

b was lowered gradually until divergence occurred in the model. For each section, the new input 

values for the joints are given in the table below. The new values are around 40 times higher than the 

old values and they will be used for both the head- and bed-joints. 

Table 3.7: New values for Gf,tension, and the parameter b, required to prevent divergence 

Section Gf,tension new [N/mm] b new [N/mm] 

OS1 0.08 30 

OS2 0.08 20 

OS3 0.09 20 

IS1 0.08 70 

IS2 0.16 30 

IS3 0.24 70 

 

3.2 Equivalent EMM models  
The equivalent EMM models consist of one polygon sheet, which represents the geometry and 

properties of both the cast iron plates and the bolted connection. The geometry of the flanges and 

stiffeners are not modelled, but their effect on the structural behaviour is part of the input 

parameters that are used. The thickness of the polygon sheet is taken as the plate thickness of the 

column section where it is located. Regular curved shells are used as the element type and the 

Engineering Masonry Model (EMM) is used as the material model. Finally, 7 integration points in 

thickness are used. An example of what is described in this thesis as an equivalent EMM model is 

presented in the figure below. 

 

Figure 3.6: Example of what an equivalent EMM model is, as described in the thesis 
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3.2.1 Mesh size and elements 
In the equivalent EMM models, regular curves shell elements will be used. In the model of the 

complete lighthouse, the element size will be chosen as approximately 200x200 mm. As the different 

column sections have different plate dimensions, each section will have a slightly different element 

size, as they will be limited by the width of the column sides. This means the element width depends 

on the plate width. A table is presented below where the element size of each section is specified. 

The crack bandwidth that is paired with the element size is also given. 

Table 3.8: Element size and corresponding crack bandwidth per section, used in the equivalent EMM models 

Section Plate height Plate width Element height Element width Crack bandwidth (h) 

OS1 885 1802 221.25 225.25 315.71 

OS2 812.5 1368 203.125 195.43 281.77 

OS3 750 970 187.5 194 269.72 

IS1 1770 1051 221.25 210.2 304.98 

IS2 1624 830 203 207.5 290.25 

IS3 1532 662 191.5 220.67 290.72 

 

Again, the shape of the elements will vary due to the geometry of the structure that is analysed. The 

different types of elements that are used for the equivalent EMM models in this study are given in 

the table below, as well as their most relevant properties. Again, most properties were obtained from 

the DIANA FEA manual (DIANA FEA bv, 2017). 

Table 3.9: Overview of the element types and their relevant properties of elements used the equivalent EMM models  

Element code Q20SH T15SH 

Element type Regular curved shells, 
quadrilateral shape 

Regular curved shells, triangular 
shape 

Degrees of freedom 20: 
4 nodes, 3 translations and 2 
rotations per node 

15: 
3 nodes, 3 translations and 2 
rotations per node 

Interpolation scheme Linear Linear 

Integration scheme 3-point Simpson in thickness 
 
2×2 Gauss over element area 

3-point Simpson in thickness 
 
3-point Gauss over element area 

Shape dimension 3D 3D 

Topological dimension 2D  2D 

Stress components σxx, σyy, σxy, σyz, σzx σxx, σyy, σxy, σyz, σzx 

 

3.2.2 Engineering masonry model (EMM) for cast iron plate structure  
In order to use the Engineering Masonry Model (EMM), the correct input parameters are required. 

The plates and connections will not be modelled separately, but as a homogeneous material. This 

means that the material should capture the behaviour of a combination of the plates and the 

connections. Therefore, small detailed models will be loaded and analysed, such that the required 

parameters for the EMM can be extracted. The detailed models will consist of one or two plates, 

depending on the load case. A tensile, compressive or shear load will be introduced on one of the 

plates, which will result in certain forces and displacements in the model. From these models, the 

stiffness, strength and toughness of the plates and connection(s) can be determined. The table below 
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provides an overview of the required input parameters for the EMM and their respective category. It 

is also described in the table how the values will be obtained. 

Table 3.10: Required input parameters EMM and how they will be obtained 

Parameter Category Obtained by 

E-modulus  Elasticity The E-modulus is equal to the stiffness of the force-displacement 
curve of the tensile and/or compression models. Based on the 
values, it will be determined which value should be used: Etension, 
Ecompression or a combination of these two. As the plates are 
rectangular, the ratio of connections per unit length is different in x 
and y, which means the E-modulus will most likely be different for 
each direction 

Shear modulus Elasticity The G-modulus is equal to the stiffness of the force-displacement 
curve of the shear models 

Mass density Elasticity This property is only dependent on the material, thus can be 
determined without analysing detailed models. It should match the 
value used in the analysis of PT Structural to enable a better 
comparison in the final stage of the project 

Bed-joint 
tensile strength 

Cracking From the force-displacement curves of the tensile models, where 
the force acts in the normal direction of the bed joint, the maximum 
tensile force can be determined. From the maximum force follows 
the maximum tensile stress 

Head-joint 
tensile strength 

Cracking From the force-displacement curves of the tensile models, where 
the force acts in the normal direction of the head joint, the 
maximum tensile force can be determined. From the maximum force 
follows the maximum tensile stress 

Fracture energy 
in tension 

Cracking This follows from the force-displacement curves of the tensile 
models. The area under this curve defines the fracture energy. As 
failure of the bed joints is more likely when the lighthouse is loaded 
by wind and self-weight, the curve that follows from the model 
where bed joint failure occurs will be used to determine the fracture 
energy 

Residual tensile 
strength 

Cracking Once the connection has fully failed, there will be no tensile strength 
left, so this equals 0 MPa 

Angle between 
cracks 

Cracking The angle is dependent on the shape of the plate. The diagonal of 
the rectangle creates a triangle from which the angles can be 
determined 

Compressive 
strength 

Crushing This will be related to the buckling strength of the plates. A hand 
calculation will be made first, which should then be verified with an 
analysis of a model containing one plate in compression 

Fracture energy 
in compression 

Crushing This follows from the force-displacement curve of the compression 
models. The area under this curve defines the fracture energy 

Factor to strain 
at compressive 
strength 

Crushing This factor is calculated by the following formula: 

𝑛 =
𝐸 ∗ 𝜀𝑝𝑒𝑎𝑘

𝜎𝑐
 

Where E is the linear stiffness and εpeak the strain at the compressive 
strength σc. The values for these parameters will follow from the 
force-displacement curves of the compression models 

Unloading 
factor 

Crushing Not relevant as there is no cyclic loading, but it is assumed as linear 
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Friction angle Shear 
failure 

This can be obtained from the force-displacement curves that follow 
from the detailed models loaded in shear (and compression). Three 
models will be checked, with different values for the compressive 
stress: 0.5, 1 and 2 MPa. A relation between the values for the peak 
shear stress and the compressive stress can be obtained, from which 
the cohesion and friction angle can be determined 

Cohesion Shear 
failure 

This can be obtained from the force-displacement curves that follow 
from the detailed models loaded in shear (and compression). Three 
models will be checked, with different values for the compressive 
stress: 0.5, 1 and 2 MPa. A relation between the values for the peak 
shear stress and the compressive stress can be obtained, from which 
the cohesion and friction angle can be determined 

Fracture energy 
in shear 

Shear 
failure 

This follows from the force-displacement curve of the shear models. 
The area under this curve defines the fracture energy 
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4 Definition of EMM parameters based on results of detailed models 
Now that the detailed models have been defined, different load cases will be applied to models 

consisting of 1 or 2 plates. The load cases that are considered are tension, compression and shear. 

Each load case will be applied to every column section. From the results of the analyses, the required 

EMM parameters should be obtained.  

4.1 Tension loading 
The parameters that are related to cracking, are obtained from the detailed models loaded in tension. 

A tensile load will be placed on a small model with a head or bed joint, in order to determine the 

force-displacement curves from these analyses. However, an analytical calculation will be made first 

to predict the force at failure. For this prediction, the different failure modes of a ring flange 

connection will be used, as this is similar to the bolted connection in the lighthouse. The segment 

that will be looked at and the different ring flange failure modes are given in the figures below. 

 

Figure 4.1: Visualisation of segment for ring flange failure (Veljkovic, 2021) 

 

Figure 4.2: Ring flange failure modes and their corresponding formulas to calculate the force at failure (Veljkovic, 2021) 
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The calculation should be made for the bed and head joints of the different sections. Usually in the 

ring flange failure mode calculations, the section width c is the distance between the bolts. However, 

in this case the bolt distance for all joints is larger than 150 mm, which is not a realistic section to look 

at, as failure modes b and c will have a much higher resistance to failure with such a large amount of 

material. Therefore, an effective width will be used instead. The value for c will be assumed to be 2 

times the bolt diameter. This means c will have a value of 33.22 mm for all sections. The results of the 

calculations are given in the table below:  

Table 4.1: Force at failure for different failure modes of ring flange failure 

Joint Failure mode A [kN] Failure mode B [kN] Failure mode C [kN] 

OS1 16.38 10.91 10.64 

OS2 16.38 11.22 11.14 

OS3 16.38 11.53 11.67 

IS1 16.38 11.57 11.73 

IS2 16.38 11.65 11.87 

IS3 16.38 11.88 12.27 

 

As the dominant failure modes are known for each section, the predicted tensile force at failure are 

calculated for both joint types, and given in the table below. This has been done by multiplying the 

force related to the dominant ring flange failure mode with the number of bolts in the joint. The 

failure forces that will be obtained from the finite element models should be compared to these 

predicted failure forces.  

Table 4.2: Predicted failure force, based on most dominant ring flange failure mode 

Joint   Dominant failure 
mode force [kN] 

nbolts Predicted force at 
failure [kN] 

OS1 head 10.64 5 53.20 

OS1 bed 10.64 10 106.40 

OS2 head 11.14 5 55.70 

OS2 bed 11.14 8 89.12 

OS3 head 11.53 4 46.12 

OS3 bed 11.53 6 69.18 

IS1 head 11.57 10 115.70 

IS1 bed 11.57 6 69.42 

IS2 head 11.65 9 104.85 

IS2 bed 11.65 4 46.60 

IS3 head 11.88 8 95.04 

IS3 bed 11.88 4 47.52 

 

For the head joint, a model of two half plates will be analysed, as the outer column is shaped like a 

hexadecagon, and each side has the width of exactly one plate. This means there will be head joints 

in the corners between the edges and also above every full plate in the centre, as the plates are 

placed in a half brick pattern. The head joints in the middle of the side will have the lower strength, as 

the corner joints will be much stiffer. Therefore, the model that will be analysed here consists of two 

half plates, connected by one head joint. The inner column has a circular shape, but using this shape 

in the detailed models makes it quite difficult to obtain accurate input parameters of the EMM. The 

shape of the structure has a big influence on the failure mode. Therefore, the failure mode of the 

straight plated structure should be used to determine the input parameters.  
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A displacement load is placed on one side of the structure, in normal direction to the head joint. The 

left side is supported in x and y, and the bottom is supported in z. The support in x at the right side is 

required for the prescribed deformation load, which is in the positive x direction. The deformation in 

x-direction causes a reaction force in x. The force can be displayed against the displacement in a 

graph for all load steps. From this force-displacement curve, it is possible to determine the input 

parameters for the EMM related to cracking. 

The names of the models are based on the column section, the type of model, the loading condition 

and the size of the structure. For the models here, an example would be: section OS3, a detailed 

model, loaded in tension on the head-joint, and a small structure. This results in the name 

OS3_det_ten_head_small. Table A.1, provided in appendix A, presents all the models that have been 

analysed in this thesis and the names they have been given. For the remainder of the thesis, this 

table will be referred to when names of certain models are mentioned. 

The results of OS3_det_ten_head_small and IS1_det_ten_head_small are given in the figures below. 

In the presentation of the results the following information is included: the structure, the finite 

element mesh, the displacements or strains at 4 important load steps in the analysis (A-D) which are 

most suitable to show the failure mode of the structure, the force-displacement curve that results 

from the analysis (where points A-D are highlighted as well), an overview of the elements and nodes 

and an overview of the iterative scheme used in the analysis. For all possible loading conditions 

(tension, compression and shear), only the models and analysis results of sections OS3 and IS1 will be 

presented. This will show the difference between results of the plates of the inner and outer 

columns. For the results of the other sections, see appendix B. 
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a)  c)  d)  

b)  e)  f)   

g)  

 Average element size [mm] 20x20 

 Number of elements HX24L 2310 

 PY15L 414 

 TE12L 244 

 TP18L 80 

 Q24IF 152 

h) Total number of nodes 5124 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure 4.3: Results of finite element analysis OS3_det_ten_head_small. a-i: structure (a), finite element mesh (b), 
displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-
displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  c)  d)  

b)  e)  f)   

g)  

 Average element size [mm] 20x20 

 Number of elements HX24L 5430 

 PY15L 490 

 TE12L 374 

 TP18L 87 

 Q24IF 356 

h) Total number of nodes 11734 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure 4.4: Results of finite element analysis IS1_det_ten_head_small. a-i: structure (a), finite element mesh (b), 
displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-
displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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As the structures of IS1 and OS3 have different sizes, the stress-strain curves will be given below as 

well. The stress in this case is equal to the average stress in the plate, not including the flanges. It is 

determined by dividing the force by the surface area of the plates. The strain is equal to the 

deformation in the loading direction divided by the plate length/width in the loading direction. 

Presenting the stress-strain curves of both models makes it easier to compare the results of the 

models. In the stress-strain curves, the points A, B, C and D have been highlighted again.  

 

Figure 4.5: Stress-strain curves from tension head-joint models OS3_det_ten_head_small & IS1_det_ten_head_small 

The points A-D have been highlighted in the curves for both models. The locations of the points show 

interesting steps of the analysis. In this case, point A is the step where the highest force occurs, point 

D is the step where the ultimate displacement occurs, and points B and C are points where there is a 

sudden drop in the force. From the curves, it is clear that the behaviour of OS3 and IS1 is very similar. 

There is linear-elastic behaviour until the peak force is reached (point A). At this point, the connection 

will start to open up, which weakens the force resistance of the structure. Then, a second peak 

appears in the curve, which can be slightly higher or slightly lower than the first peak (this varies for 

all column sections). After the second peak, the strength starts to reduce and plastic deformations 

will occur. As parts of the interface keep disconnecting, the strength is slowly lowered until the force 

becomes 0 kN. At this point, the interfaces are fully disconnected and the ultimate displacement is 

reached. The differences between the results of sections OS3 and IS1 can be seen in the stress-strain 

curves. The peak stress is slightly higher for the model of OS3, while the ultimate strain is a bit larger 

for the model of IS1. In addition, the stiffnesses are very similar for the models of OS3 and IS1.  

For the bed joint, the model consists of one plate, which has two half plates on top, as the plates are 

placed in this way at each side of the hexadecagon (outer column). The same approach is used for the 

model of the inner column. A tensile displacement can be applied in the normal direction to the bed 

joint, which will introduce forces in this direction. The left side is supported in x and the bottom is 

supported in y and z. The support in z at the top is required for the prescribed deformation load, 

which is in the positive z direction. Again, the results of OS3 and IS1 are given below for clarification, 

which are models OS3_det_ten_head_small and IS1_det_ten_head_small (see appendix A for the 

explanation of the model names). Additionally, a figure will be presented which includes the stress-

strain curves of these two models. For the results of the other sections, see appendix B.  
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a)  c)  d)  

b)  e)  f)  

g)  

 Average element size [mm] 20x20 

 Number of elements HX24L 4505 

 PY15L 1145 

 TE12L 856 

 TP18L 242 

 Q24IF 344 

h) Total number of nodes 10402 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure 4.6: Results of finite element analysis OS3_det_ten_bed_small. a-i: structure (a), finite element mesh (b), 
displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-
displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 10982 

 PY15L 520 

 TE12L 384 

 TP18L 140 

 Q24IF 564 

d) Total number of nodes 23182 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
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f)  g)  

h)  i)  
Figure 4.7: Results of finite element analysis IS1_det_ten_bed_small. a-i: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at point A (f), 
displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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Figure 4.8: Stress-strain curves from tension bed-joint models OS3_det_ten_bed_small & IS1_det_ten_bed_small 

Again, the points A-D have been highlighted in the curves for both models. The locations of the 

interesting points are the same as in the head-joint tension models: point A is the step where the 

highest force occurs, point D is the step where the ultimate displacement occurs, and points B and C 

are points where there is a sudden drop in the force. The F-D curves are very similar compared to the 

curves of the head-joint failure that were presented above. This is expected, as the connections are 

of the exact same type. Once the interfaces of the plates are fully disconnected, the structure is no 

longer able to withstand any forces, which is the point D in the curves. From the stress-strain curves it 

is clear that the structure of section OS3 has a larger strength, and a larger ultimate strain is reached 

as well. Additionally, it is clear that there is a difference in the stiffness between the models, which 

was not the case for the head-joint tension models. The amount of bolts and the plate dimensions 

heavily impact the stiffness, strength and ultimate displacement values. For this reason, it was chosen 

to divide the columns into different sections and not use one plate size for an entire column. 

The E-modulus in tension can be obtained from the curves by determining the stiffness of the linear 

elastic parts. Ex follows from the head-joint models, Ey from the bed-joint models. The values of the E-

moduli for each section are presented in the table below. 

Table 4.3: E-modulus values based on results of tension models 

Section Ex tension [MPa] Ey tension [MPa] 

OS1 47916.2 44497.7 

OS2 46164.9 47201.8 

OS3 37234.6 50954.4 

IS1 37385.0 72713.1 

IS2 32389.3 68488.1 

IS3 28253.3 79002.7 

 

Due to the large difference in plate dimensions, there are quite some differences in the values. The 

widest plates result in the largest Ex values, while the highest plates result in the largest Ey values. 

Also, the thickness of the plates has a large impact on the resulting parameters. The maximum forces 

of all head- and bed-joint models loaded in tension have been determined as well. They are given in 

the table below, where they can be compared to the predicted maximum forces that followed from 

the analytical calculation, which was presented at the beginning of this section. 
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Table 4.4: Comparison predicted failure force vs. failure force in detailed model, tension 

Joint Predicted force at 
failure [kN] 

Failure force detailed 
model [kN] 

Ratio Fpredicted/Fdetailed 

OS1 head 53.20 50.13 1.06 

OS1 bed 106.40 95.06 1.12 

OS2 head 55.70 48.99 1.14 

OS2 bed 89.12 72.52 1.23 

OS3 head 46.12 41.20 1.12 

OS3 bed 69.18 53.67 1.29 

IS1 head 115.70 87.59 1.32 

IS1 bed 69.42 49.31 1.41 

IS2 head 104.85 92.19 1.14 

IS2 bed 46.60 41.58 1.12 

IS3 head 95.04 85.65 1.11 

IS3 bed 47.52 42.28 1.12 

 

The predicted forces are quite close to the forces from the detailed models. It is clear that the outer

column sections can be predicted slightly better with the ring flange failure modes, as the average

ratio Fpredicted/Fdetailed is closer to 1 for these sections. The ratio of the sections of the inner column are

a bit higher, so it appears that the accuracy of the predicted forces is slightly lower for these sections.

This is most likely due to the ratio of plate width/plate height, which is quite small for the inner

column sections.

The cracking parameters, which are required for the input of the EMM, can all be calculated from the

F-D curves of the models. The stiffness was already determined above, while the tensile strength is

determined by dividing the maximum force by the surface area of the plate (not including the

flanges), as the structure where the EMM will be used will have this area as well. The fracture energy

is obtained by calculating the area under the force-displacement curve. This value is then divided by

the area of the plate, divided by the total height and finally multiplied with the crack bandwidth (h).

This is how the DIANA manual describes the value of the fracture energy (DIANA FEA bv, 2017). The

value of h is dependent on the area of the elements and the crack bandwidth specification. As it was

chosen to use the Rots method, h can be calculated as:

ℎ = √2𝐴

The element sizes that will be used for the different sections are given in section 3.2.1. The average 
size is 200x200 mm, but due to the plate dimensions, it will not be exactly 200x200 mm. This means 
the crack bandwidth varies per section. Finally, the angle between the cracks is based on the height 
and width of the plates:

𝛼 = arctan (
ℎ

𝑏
) 

To determine the angle between the cracks for the curved plates, the distance between the edges has 

been used for the width, instead of the length of the curved plate side (see the figure below).  

 
Figure 4.9: Difference between length of curved plate side and distance between plate edges 
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An overview of the parameters and their respective models is given below. 

Table 4.5: Cracking parameters obtained from results of tension models 

Joint Bed-joint tensile 
strength [MPa] 

Head-joint 
tensile strength 
[MPa] 

Fracture energy 
in tension 
[N/mm] 

Angle between 
cracks 
[rad] 

OS1 head - 1.706 0.0404 0.241 

OS1 bed 1.832 - 0.0442 0.241 

OS2 head - 2.079 0.0526 0.289 

OS2 bed 2.059 - 0.0494 0.289 

OS3 head - 2.206 0.0866 0.369 

OS3 bed 2.447 - 0.0627 0.369 

IS1 head - 2.028 0.0835 0.700 

IS1 bed 1.749 - 0.0302 0.700 

IS2 head - 2.426 0.2034 0.774 

IS2 bed 2.031 - 0.0581 0.774 

IS3 head - 2.714 0.4130 0.858 

IS3 bed 2.812 - 0.1007 0.858 

 

4.2 Compression loading 
The parameters that are related to crushing, will be obtained from the detailed models loaded in 

compression. It is be assumed that the crushing parameters are related to the buckling of a plate. The 

compression models in DIANA will therefore consist of a single plate loaded in compression. However, 

an analytical calculation is made first to predict the force at which buckling will occur. Section 4.4 of 

NEN-EN 1993-1-5 is used for this calculation. The chapter describes how to calculate buckling for steel 

plate elements without longitudinal stiffeners. The calculation will not be exactly correct, as the 

plates are made of cast iron, not steel. In addition, the effect of the stiffeners on the buckling strength 

will be neglected here. However, as the stiffeners have a small height compared to the total height of 

the plate, their influence will most likely not be very big anyway.  

According to chapter 4.4 of NEN-EN 1993-1-5, an effective area should be used to determine the 

buckling strength of the plate: 

𝐴𝑐,𝑒𝑓𝑓 = 𝜌 ∗ 𝐴𝑐 

In this formula, ρ is a reduction factor, which can be determined as follows (for internal compression 

elements): 

 

This means in order to determine ρ, the stress ratio ψ and the plate slenderness λp̄ are required. The 

stress will have the same value over the width of the plate, so this is equal to 1, according to table 4.1 

of EN 1993-1-5. The plate slenderness can be calculated with the following formula: 
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In this formula, b̄ and t are the width and thickness of the plate, respectively. The factor kσ is a 

buckling factor, which corresponds to the stress ratio ψ and the boundary conditions. Just like the 

stress ratio, this factor follows from table 4.1 of EN 1993-1-5, and is equal to 4 for this case. The 

parameter ε is determined as follows, where fy is the compressive strength of the cast iron: 

𝜀 = √
235

𝑓𝑦
 

𝜀 = √
235

340
= 0.831 

 

After finding Ac,eff, the effective width beff can be determined by dividing Ac,eff by the thickness. All 

parameters are given in the table below. 

Table 4.6: Parameters required for buckling calculation 

 

With the effective width, the effective plate slenderness can be calculated by using the same formula 

as before, but now using beff instead of the total width of the plate. Chapter 6.3 of EN 1993-1-1 

describes the buckling resistance of members. By using the formulas provided there, the buckling 

stress can be determined by using the following formulas: 

𝜎𝑏,𝑅𝑑 = Χ ∗ 𝑓𝑦 

Χ =
1

Φ + √Φ2 + 𝜆𝑝,𝑒𝑓𝑓
2

 

Φ = 0.5 ∗ [1 + 𝛼 ∗ (𝜆𝑝,𝑒𝑓𝑓 − 0.2) + 𝜆𝑝,𝑒𝑓𝑓
2 ] 

The final parameter to determine is the imperfection factor α, which is related to the buckling curve 

that corresponds to the shape of the cross-section. As the flanges and stiffeners are not considered in 

the calculation, it can be regarded as a solid section, which means buckling curve c should be used, so 

α = 0.49 here. Now the buckling stress can be calculated for each plate. The results of the calculations 

are given below. The buckling stresses that will be obtained from the detailed models should be 

compared to these values. 

Section t [m] b [m] Ac [m2] λp̄ [-] ρ [-] Ac,eff [m2] beff [m] 

OS1 0.0332 1.802 0.0598 1.149 0.703 0.0421 1.268 

OS2 0.0290 1.368 0.0397 0.999 0.781 0.0310 1.068 

OS3 0.0249 0.970 0.0242 0.825 0.889 0.0215 0.862 

IS1 0.0244 1.051 0.0256 0.912 0.832 0.0213 0.874 

IS2 0.0234 0.830 0.0194 0.751 0.941 0.0183 0.781 

IS3 0.0206 0.662 0.0136 0.681 0.994 0.0136 0.658 
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Table 4.7: Calculated buckling stress values per section 

 

As mentioned before, the compression model will consist of one plate, loaded by a prescribed 

deformation that causes a compressive stress in the plate. The bottom of the plate is supported in x, y 

and z, while the top face will be support in y. In addition, the top will be supported in z, which is 

required for the prescribed deformation load. The load is causing the top face of the plate to be 

displaced in the negative z direction. The total force on top of the plate, caused by the deformation, 

can be determined from the results of the analysis. By relating the force to the displacement in every 

load step, the force-displacement curve can be created. The results of the models 

OS3_det_comp_small and IS1_det_comp_small (see appendix A for the explanation of the model 

names) are presented below, after which a figure will be presented that includes the stress-strain 

curves of the two models. For the results of the other sections, see appendix B. 

 

  

Section λp̄,eff [-] Φ [-] Χ [-] σb,Rd [MPa] 

OS1 0.809 0.976 0.657 223.30 

OS2 0.780 0.946 0.675 229.45 

OS3 0.733 0.900 0.704 239.35 

IS1 0.759 0.925 0.688 233.92 

IS2 0.707 0.874 0.720 244.90 

IS3 0.677 0.846 0.739 251.27 
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a)  c)  d)  

b)  e)  f)  

g)  

 Average element size [mm] 20x20 

 Number of elements HX24L 2265 

 PY15L 515 

 TE12L 362 

 TP18L 122 

h) Total number of nodes 5143 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.005(200) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure 4.10: Results of finite element analysis OS3_det_comp_small. a-i: structure (a), finite element mesh (b), displacement 
at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-displacement curve 
(g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  c)  d)  

b)  e)  f)  

g)  

 Average element size [mm] 20x20 

 Number of elements HX24L 5596 

 PY15L 24 

 TE12L 8 

 TP18L 33 

h) Total number of nodes 11514 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.005(200) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure 4.11: Results of finite element analysis IS1_det_comp_small. a-i: structure (a), finite element mesh (b), displacement 
at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-displacement curve 
(g), overview elements and nodes (h), overview iterative scheme (i) 
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Similar as for the models loaded in tension, the stress here is equal to the average stress in the plate, 

not including the flanges. It is calculated as the force divided by the surface area of the plate. The 

strain is equal to the deformation divided by the plate length/width in the loading direction. 

 

Figure 4.12: Stress-strain curves from compression models OS3_det_comp_small & IS1_det_comp_small 

Again, four interesting points from the analysis have been highlighted in the curves. For the models 

here, the points have been chosen as follows: point A is the maximum force in the linear-elastic 

region, point D is where the ultimate displacement occurs and point C shows the peak force. Finally, 

point B is chosen such that its displacement is exactly the average of the displacements of the points 

A and C. For both plates, it is clear from the results that buckling occurs. It was chosen to show the 

contour plots of the out of plane displacement, so that the buckling patterns can be observed. After 

the linear-elastic part, the plastic deformation starts to occur. The deformation keeps increasing 

quickly, but the stress increases very slowly in the plastic region. Once buckling occurs in the plate, 

the model suddenly becomes unstable and the strength instantly reduces to zero. The value of the 

buckling stress can be determined from the maximum force that occurs. These stresses can be 

compared to the buckling stresses that were obtained with the analytical calculation, see the table 

below. 

Table 4.8: Comparison calculated buckling stresses vs. buckling stresses resulting from detailed models 

Section Calculated σb,Rd [MPa] Detailed model σb,Rd [MPa]  σpredicted/σdetailed 

OS1 223.30 236.12 0.95 

OS2 229.45 251.32 0.91 

OS3 239.35 274.43 0.87 

IS1 233.92 272.04 0.86 

IS2 244.90 283.74 0.86 

IS3 251.27 311.12 0.81 

 

From the ratio σpredicted/σdetailed it is clear that the analytical buckling stress is lower than the values 

that have been reached in the detailed models. In the analytical calculation, some assumptions were 

made to simplify the plates. This also included that the impact of the flanges and stiffeners were not 

taken into account, thus the obtained results are as expected. It is also observed that the ratio is 

closer to 1 for the wider plates. As the flanges are further away from the location of buckling, the 

assumed situation in the analytical calculation is more accurate for those plates.  
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In addition to the buckling stress, the fracture energy in compression, the factor to strain at 

compressive strength (n) and the E-modulus in compression have to be determined from the force-

displacement curves. The values are given in the table below. 

Table 4.9: Crushing parameters obtained from results of detailed models 

Section Fracture energy in 
compression [N/mm] 

Factor to strain at 
compressive strength (n) 

E compression [MPa] 

OS1  345.02 1.683 58086.47 

OS2  383.82 1.845 59132.48 

OS3 477.62 2.047 61280.43 

IS1 551.36 2.059 59550.62 

IS2 578.36 2.141 61459.34 

IS3 710.90 2.283 64347.61 

 

It is observed that the factor to strain values are quite high. Again, as the slope becomes very flat

after the linear-elastic part, the displacements increase very quickly, while the stresses only increase

slightly. This causes the value of n to become quite large, especially for the sections of the inner

column.

4.3 Shear loading
The shear failure parameters are obtained from the detailed models loaded in shear. The Coulomb 

shear failure criterion, based on stresses normal to the bed joint, describe the shear failure in the 

EMM. This means that only the shear failure of the bed-joint has to be analysed. The required param-

eters that describe the Coulomb friction are the cohesion, friction angle and fracture energy. In order 

to find these, several models should be created where different values of compressive loads are ap-

plied, in addition to the shear load. This will provide different combinations of shear stresses and 

compressive stresses. Therefore, three different models have been analysed for each section, with 

compressive stresses of 0.5 MPa, 1 MPa and 2 MPa.

The compressive load is placed on the top face (orange load), pointing in the negative z direction. The

bottom is supported in x and z, while the back of the plates are supported in y, which prevents any

out of plane deformations. The support in x at the top is required for the prescribed deformation

load. This is the green load, which can be seen at the top left of the structure. This load causes the

top face of the structure to be displaced in the positive x-direction. In addition, tyings were added to

the top face of the structure for the translation in z. In the figures below, it can be seen which node

was selected as master node for the tyings. This ensures that the top face will remain straight

throughout the analysis.

 

Figure 4.13: Position of master node used for the tyings at the top face 

The results of OS3_det_shear_small and IS1_det_shear_small (see appendix A for the explanation of 

the model names) are given below. For the results of the other sections, see appendix B. The force 

displacement curve shows the results of the three different models for each section. As mentioned, 

the only difference between the models is the magnitude of the compression load. A figure including 

the stress-strain curves of both models is also presented, where the compressive load (σ) is 0.5 MPa.  
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a)  c)  d)  

b)  e)  f)  

g)  

 Average element size [mm] 20x20 

 Number of elements HX24L 4505 

 PY15L 1145 

 TE12L 856 

 TP18L 242 

 Q24IF 344 

h) Total number of nodes 10402 

 

 Load Compression Translation 

 Iteration method Newton-Raphson Newton-Raphson 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.01(100) 

 Maximum number of iterations per step 100 100 

i) All norms satisfied No No 
Figure 4.14: Results of finite element analysis OS3_det_shear_small_σ0.5, σ1 & σ2. a-i: structure (a), finite element mesh (b), 
displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-
displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 10982 

 PY15L 520 

 TE12L 384 

 TP18L 140 

 Q24IF 564 

d) Total number of nodes 23182 

 

 Load Compression Translation 

 Iteration method Newton-Raphson Newton-Raphson 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.01(100) 

 Maximum number of iterations per step 100 100 

e) All norms satisfied No No 
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f)  g)  

h)  i)  
Figure 4.15: Results of finite element analysis IS1_det_shear_small_σ0.5, σ1 & σ2. a-i: structure (a), finite element mesh (b), 
force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at point A (f), 
displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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The shear stress here is equal to the average shear stress in the plate, not including the flanges. It is 

calculated as the horizontal force divided by the surface area of the plates. The shear strain is equal 

to the deformation in the loading direction, divided by the height of the structure. 

 

Figure 4.16: Stress-strain curves from shear models OS3_det_shear_small_σ0.5 & IS1_det_shear_small_σ0.5 

The highlighted points A-D are determined as follows: point B shows the peak force and point D is 

where the displacement load has been fully applied. The displacement in point A is equal to half the 

displacement in point B, while the displacement in point C is equal to half the displacement in point 

D. From the force-displacement curve, it is clear that when the different compressive stresses are 

increased, the peak force becomes higher. From the contour plots, it is clear that the interfaces are 

disconnected, but the interface will still have some residual strength. This is caused by the friction in 

the interface. It can be observed that this residual force remains quite high after the peak force has 

been reached. As mentioned, the input fracture energy had to be quite high to ensure convergence in 

the analysis. This is the reason the residual force remains so high. From the stress-strain curves, it can 

be observed that the shapes of the curve is the same for both the models of OS3 and IS1. The 

stiffness and strength are higher for section OS3, which is caused by the difference in plate size and 

the number of bolts per connection. For the models of the outer column, a displacement load of 3 

mm was applied, while a displacement of 9 mm was applied for the inner column models. This is why 

the total shear strain is larger for the model of IS1 compared to the model of OS3.  

The peak stress can be determined from the curves to find the relation to the compressive stress. The 

peak stress is the maximum average stress that occurs in the analysis of the structure, which is 

highlighted as point B in the stress-strain curves presented above. From the relation between the 

peak stress (τ) and the compressive stress (σ), the cohesion (c) and friction angle (φ) can be 

determined. The formula that describes this relation is: 

𝜏 = 𝑐 + 𝜎 ∗ tan⁡(𝜑) 

A small diagram can be made to show the different values for the peak stress and residual stress 

related to the values for the compressive stress. A linear relation can be found for these points to 

predict the shear stress for different values of σ. From the relation of the peak stress to the 

compressive stress, it is possible to determine the cohesion and friction angle. The graphs for OS3 

and IS1 are presented below. In the graphs, the formula that describes the relation between the peak 

stress and the compressive stress is also given.  
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Figure 4.17: Diagram of peak shear stress vs. compressive stress, OS3_det_shear_small 

 

Figure 4.18: Diagram of peak shear stress vs. compressive stress, IS1_det_shear_small 

As the formula is in the form 𝑦 = 𝑎𝑥 + 𝑏, the friction angle can be found from tan-1 (a), while the 

cohesion is simply equal to b. The fracture energy in shear usually follows from the area of the curve, 

but it can be seen that the residual force remains very high. This is the result of requiring a minimum 

value for the parameter in the analysis. As the input fracture energy is very high, the output fracture 

energy is also very high and cannot be determined accurately for the shear models without greatly 

increasing the total shear displacement load. As a result, it is chosen to use the same value as for the 

fracture energy in compression. The fracture energy values from the compression models are quite 

high, and will ensure high residual forces in the equivalent EMM shear models. Finally, the shear 

modulus (G) can be determined from the force-displacement curves, as it is the stiffness of the linear-

elastic part. The values for all different sections are given below.  
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Table 4.10: Shear failure parameters obtained from results of detailed models 

Section Friction angle 
[rad] 

Cohesion [MPa] Fracture energy 
shear [N/mm] 

G-modulus 
[MPa] 

OS1 0.378 1.518 304.66 6915.2 

OS2 0.376 1.832 345.11 6829.0 

OS3 0.376 2.244 437.38 6534.4 

IS1 0.338 2.047 612.30 3899.2 

IS2 0.356 1.861 611.42 3093.2 

IS3 0.313 2.556 791.86 2633.1 

 

There are a few things of importance to notice here. It is observed that the output values of the 

friction angle are quite close to the input value of 0.38 rad. Also, for the G-modulus, the values are 

much lower for the inner column sections. This is caused by the ratio of height/width of the structure, 

which is much higher for these sections compared to the outer column sections. 
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5 Verification and calibration of EMM parameters  
All the required input parameters for the EMM have been determined from the detailed models of the 

small plate structures. The obtained parameters will now be used in equivalent EMM models, where 

the EMM is used as the material model of the structure. The analysis that was performed on the 

detailed models of the small structures will now be performed on equivalent EMM models of these 

structures. The results of the detailed and equivalent models can be compared, in order to find the 

differences and similarities in the structural behaviour. First, the goal is to verify that the equivalent 

models where the calculated EMM parameters are used, provide similar results as the detailed 

models. Next, from the differences that are discovered between the results, it is attempted to 

calibrate the EMM input parameters to increase the similarity of the results. 

5.1 Bed-joint tension and compression loading 
In this section, the input parameters for compression and tension related to the bed-joint models will 

be verified. By comparing the results, it becomes clear whether using the calculated input parameters 

in a model where the EMM is used, provide the same results as the detailed models. There is a 

reason why compression and bed-joint tension are part of the same section here. For almost all input 

parameters, there is one value that can be used, but there are a few exceptions. The most important 

is the E-modulus in y-direction. Two values were determined: one from the bed-joint tension model 

(Ey,tension) and one from the compression model (Ey,compression). It can be chosen to use one of the values, 

or to take the average of the two. The result of using Ey,tension is examined first.  

The first step is to analyse the bed-joint models in tension. As the EMM is now used, the models 

simply consist of a polygon sheet of the same dimensions as used in the detailed model. The 

thickness of the plate is used and the geometry of the flanges and stiffeners is no longer part of the 

structure. However, their effect on the structural behaviour is part of the input parameters that were 

determined from the detailed models. The exact same analysis is performed as on the detailed 

model. This means the boundary conditions and loads are the same as the detailed model where the 

bed-joint is loaded in tension. For the boundary conditions, this means the left side is supported in x 

and the bottom is supported in y and z. The support in z at the top only acts as a reference for the 

prescribed deformation load, which is in the positive z direction. The results of 

OS3_eqEMM_ten_bed_small_Ey,tension_Gft,bed (see appendix A for the explanation of the model names) 

are given below. In addition, the stress-strain curve of the equivalent EMM model is compared to the 

curve of the detailed model.  
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a)  c)  d)  

b)  e)  f)  

g)  

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 40 

h) Total number of nodes 54 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure 5.1: Results of finite element analysis OS3_eqEMM_ten_bed_small_Ey,tension_Gft,bed. a-i: structure (a), finite element 
mesh (b), displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), 
force-displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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Figure 5.2: Stress-strain curves from tension bed-joint models OS3_eqEMM_ten_bed_small_Ey,tension_Gft,bed & 
OS3_det_ten_bed_small 

The points A-D of the equivalent EMM model were determined as follows: point A is where the peak 

force occurs and point D shows the displacement where the force becomes 0 kN. The points B and C 

were chosen such that the displacement is equal to the displacement of points B and C in the results 

of OS3_det_ten_bed_small. By choosing these four points, it is clear to see the differences between 

the structural behaviour. It is clear that the linear elastic parts of the curves are an exact match, which 

is expected as Ey,tension was used as input. As the peak forces are the same, the bed-joint strength has 

been verified. In the Engineering Masonry Model, the force will linearly go to 0 after the peak force 

has been reached. This is the reason that the curves are not an exact match after reaching the peak 

force. The forces in points B and C are therefore not the same for the two models. The contour plots 

of the displacements at the point of failure (D) are given in the figure below. 

  

Figure 5.3: Vertical displacements at point of failure (D), tension bed-joint detailed (left) and equivalent EMM model (right), 
section OS3 

It is clear to see that the failure mode is different than for the detailed models in tension. In the 

detailed models, the failure occurs at the joints and the deformations in the plates remain small. In 

the equivalent EMM model, the displacements are uniformly distributed. 

The same comparison can be made for the compression models, where Ey,tension will be used for Ey. 

The results of OS3_eqEMM_comp_small_Ey,tension are given below, after which a comparison between 

the stress-strain curves of the detailed and equivalent EMM models is presented. 
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a)  c)  d)  

b)  e)  f)  

g)   

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 20 

h) Total number of nodes 30 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure 5.4: Results of finite element analysis OS3_eqEMM_comp_small_Ey,tension. a-i: structure (a), finite element mesh (b), 
displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-
displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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Figure 5.5: Stress-strain curves from compression models OS3_eqEMM_comp_small_Ey,tension & OS3_det_comp_small 

The points A-D were chosen as follows: points A and B of the equivalent EMM models have the same 

displacement as points A and B of the detailed model. Point C is where the peak force occurs and 

point D is where the force reaches the residual value. In the detailed compression model, the contour 

plots of the out of plane displacements were presented, as they showed the buckling pattern of the 

structure. The out of plane displacements are given here as well, but it is clear that the displacement 

values are almost 0 mm, even in points C and D. This shows that the failure mode of the equivalent 

EMM model is not the same as in the detailed models. It can also be observed that the residual force 

of the equivalent EMM model is equal to 0 N. In the Engineering Masonry Model, the resultant force 

will be equal to 10% of the peak force, while in reality the resultant force should be equal to 0 N. This 

is part of the settings of the EMM, so it cannot be changed. This is an important difference to keep in 

mind when the EMM will be used in a model of the lighthouse. The contour plots of the out of plane 

displacements are given in the figure below for the point where the peak force occurs. 

  

Figure 5.6: Out of plane displacements at point of peak force (C), compression detailed (left) and equivalent EMM model 
(right), section OS3 

Similar as for the tension models, it is clear that the failure modes of the detailed and equivalent 

EMM models are quite different. There is an out of plane displacement of 4 mm in the detailed 

model, while the out of plane displacements in the equivalent EMM model are negligible. It shows 

that the plate buckling that is observed in the detailed model does not occur in the equivalent EMM 

model. 
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The stress-strain diagram shows that there is quite a difference in the ultimate strain of the two 

models. As Ey,tension is lower than the actual E-modulus that was obtained from the detailed model in 

compression, the curve of the equivalent EMM model has a much lower path to the maximum 

compressive force. As value of the factor to strain, n (which is based on Ey,compression), is also quite large, 

the ultimate displacement is larger for the equivalent EMM model. It can be concluded that the 

impact of using Ey,tension in the compression model results different stress-strain curves. As the input 

stiffness for the EMM model is lower than the stiffness found in the detailed compression model, the 

displacement at failure is much higher for the EMM models. Using Ey,tension for Ey will give very good 

results for the bed-joint model loaded in tension, but not for the model loaded in compression. If 

Ey,compression is used instead, the curves of the compression model will give an (almost) exact match, 

while the bed-joint tension models will not match well. The best solution is to use the average value 

of the two: 

𝐸𝑦 = (𝐸𝑦,𝑡𝑒𝑛𝑠𝑖𝑜𝑛 + 𝐸𝑦,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)/2 

When using this as the input value for Ey, the other parameters should be adjusted slightly as well, 

otherwise the curves will still be too different from those of the detailed models. For the bed-joint 

tension models of the outer column plates, the E now becomes higher. This means that, in order to 

get the peak force at the same displacement, the bed-joint strength should be increased. This result 

can be obtained by multiplying the initially found value of the bed-joint strength with a factor 

𝐸𝑦/𝐸𝑦,𝑡𝑒𝑛𝑠𝑖𝑜𝑛. To ensure that the ultimate displacement will be the same as in the EMM model 

where Ey,tension was used, the fracture energy in tension should also be multiplied with this factor. The 

same procedure should be followed for the compression models. Here, the input value for Ey is lower 

for than the stiffness in the detailed model. The factor to strain (n) and the fracture energy in 

compression will therefore be multiplied by 𝐸𝑦/𝐸𝑦,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛. This will cause the values to become 

lower, such that failure will occur at the same displacement again. For the plates of the inner column, 

the new Ey is higher than Ey,compression and lower than Ey,tension. This means multiplying the tensile 

properties with 𝐸𝑦/𝐸𝑦,𝑡𝑒𝑛𝑠𝑖𝑜𝑛 results in lower values for the bed-joint strength and fracture energy in 

tension. The factor to strain (n) and the fracture energy in compression will be multiplied by 

𝐸𝑦/𝐸𝑦,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, which means their value increases.  

By applying the adjusted input parameters to the models, a new analysis can be performed to 

observe the differences again. This has been done for both sections OS3 and IS1. The results of 

OS3_eqEMM_ten_bed_small_Ey,average_Gft,bed, IS1_eqEMM_ten_bed_small_Ey,average_Gft,bed, 

OS3_eqEMM_comp_small_Ey,average and IS1_eqEMM_comp_small_Ey,average are presented in the 

figures below. After that, figures are presented which include the stress-strain curves of the 

equivalent EMM model and their corresponding detailed model. The points A-D are chosen in the 

same way as the equivalent bed-joint tension and compression models that were presented above. 

As the failure in compression is not the same in the equivalent EMM models compared to the 

detailed models, showing the out of plane deformations does not provide any information on the 

failure mode. It is therefore chosen to show the contour plots of the vertical displacements instead, 

which are the displacements in y-direction for these models.  
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a)  c)  d)  

b)  e)  f)  

g)  

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 40 

h) Total number of nodes 54 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure 5.7: Results of finite element analysis OS3_eqEMM_ten_bed_small_Ey,average_Gft,bed. a-i: structure (a), finite element 
mesh (b), strain at point A (c), strain at point B (d), strain at point C (e), strain at point D (f), force-displacement curve (g), 
overview elements and nodes (h), overview iterative scheme (i) 
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a)  b)  

c)  

 Average element size [mm] 210.2x221.25 

 Number of elements Q20SH 80 

h) Total number of nodes 102 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
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f)  g)  

h)  i)  
Figure 5.8: Results of finite element analysis IS1_eqEMM_ten_bed_small_Ey,average_Gft,bed. a-i: structure (a), finite element 
mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), strain at point A (f), 
strain at point B (g), strain at point C (h), strain at point D (i) 
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a)  c)  d)   

b)  e)  f)  

g)   

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 20 

h) Total number of nodes 30 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure 5.9: Results of finite element analysis OS3_eqEMM_comp_small_Ey,average. a-i: structure (a), finite element mesh (b), 
displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-
displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  c)  d)  

b)  e)  f)  

g)   

 Average element size [mm] 210.2x221.25 

 Number of elements Q20SH 40 

h) Total number of nodes 54 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure 5.10: Results of finite element analysis IS1_eqEMM_comp_small_Ey,average. a-i: structure (a), finite element mesh (b), 
strain at point A (c), strain at point B (d), strain at point C (e), strain at point D (f), force-displacement curve (g), overview 
elements and nodes (h), overview iterative scheme (i) 
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In figures 5.7 and 5.8, the results of the models loaded in tension are presented. It was chosen to 

show the vertical strains in the contour plots for the tension models this time. It can be observed that 

the strains are equal throughout the entire plate, for all load steps in the analysis. Now it is even 

more clear how the tensile load results in uniformly distributed failure in the structure. 

 

Figure 5.11: Stress-strain curves from tension bed-joint models OS3_eqEMM_ten_bed_small_Ey,average_Gft,bed & 
OS3_det_ten_bed_small 

 

Figure 5.12: Stress-strain curves from tension bed-joint models IS1_eqEMM_ten_bed_small_Ey,average_Gft,bed & 
IS1_det_ten_bed_small 

When the stress-strain curves of the updated equivalent EMM models, loaded with bed-joint tension, 

are compared to the curves of the detailed models, it is clear there are now some small differences 

between the curves. The peak stresses are slightly different, as a result of using Ey,average instead of 

Ey,tension. Furthermore, it is also clear that there is quite a difference in the ultimate displacement 

between the models of section IS1. This will be explored more in the following section.  
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Previously, the out of plane displacements were shown in the contour plots of the equivalent EMM 

model loaded in compression. As they were negligible, it was chosen to show the vertical 

displacements in figure 5.9. Similar as in for the models loaded in tension, the displacements are 

uniformly distributed in the structure. Figure 5.10 shows the vertical strains in the contour plots, 

which again show very similar results as for the models loaded in tension. The strains are equal 

throughout the entire structure in every load step of the analysis. The failure modes of tension and 

compression in the equivalent EMM models is very similar. However, both loading conditions result in 

different failure modes in the equivalent EMM models when they are compared to the failure modes 

of the detailed models. 

 

Figure 5.13: Stress-strain curves from compression models OS3_eqEMM_comp_small_Ey,average & OS3_det_comp_small 

 

Figure 5.14: Stress-strain curves from compression models IS1_eqEMM_comp_small_Ey,average & IS1_det_comp_small 

For the models in compression, it can be observed that the peak stresses are now occurring at almost 

the exact same displacement. After that, the curve of the equivalent model will gradually reach the 

residual force value, instead of instantly dropping to 0 N. This means the ultimate displacement is still 

larger for the equivalent EMM models. However, it is clear that the curves of the compression models 

are now a much better match. It is clear that using the average value for Ey and adjusting the other 

parameters provides better results, as now the bed-joint tension and compression models give very 

close matching force-displacement curves. 
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5.2 Head-joint tension loading 
The head-joint models loaded in tension will be verified next. This verification is much easier, as 

compression failure in this direction is not considered. The loads that will be included in the model of 

the lighthouse are self-weight and wind, so failure in normal direction of the head-joints is very 

unlikely, which is the reason only tensile failure is considered for the head joints. This means Ex in the 

EMM models will simply be equal to Ex,tension. However, there is still one issue, which is the fracture 

energy in tension. The values of the bed-joint and head-joint are different, but only one value can be 

used. In the previous section, Gft,bed was used for the fracture energy in tension. This value will also be 

used for the models here. Again, the equivalent EMM models consist of a polygon sheet of the same 

dimensions as used in the detailed model. The same boundary conditions are used as in the detailed 

models, so the left side is supported in x & y and the bottom is supported in z. The support in x at the 

right side acts as a reference for the prescribed deformation load, which is in the positive x direction.  

The results of OS3_eqEMM_ten_head_small_Gft,bed and IS1_eqEMM_ten_head_small_Gft,bed are 

presented in appendix C (see appendix A for the explanation of the model names). The figures in the 

appendix show the force-displacement curve and the contour plots of points A-D. Figures are 

presented below which include the stress-strain curves of the equivalent EMM model and their 

corresponding detailed model. 

 

Figure 5.15: Stress-strain curves from tension head-joint models OS3_eqEMM_ten_head_small_Gft,bed & 
OS3_det_ten_head_small 
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Figure 5.16: Stress-strain curves from tension head-joint models IS1_eqEMM_ten_head_small_Gft,bed & 
IS1_det_ten_head_small 

The points A-D of the equivalent EMM models were determined as follows: point A is where the peak 

force occurs and point D shows the displacement where the force becomes 0 kN. The points B and C 

were chosen such that the displacement is equal to the displacement of points B and C in the results 

of the corresponding detailed model. As the input for Ex is equal to Ex,tension, the stiffness of the EMM 

models is exactly the same as the stiffness of the detailed models. As a result of having the same 

linear elastic behaviour, the peak force occurs at the same displacement value for both the EMM and 

the detailed models. This also means that the correct value for the head-joint strength is being used.  

However, after the peak force has been reached, the curves do not match that well anymore. As the 

fracture energy Gft,bed was used in the models, the ultimate displacement is quite different in the 

equivalent EMM models. As a result, the point D occurs much sooner in the equivalent EMM models 

compared to the detailed models. As the points B and C are based on displacement values that were 

observed in the detailed models, the point D even occurs before B and/or C here. This shows that the 

used input parameters do not provide very good results here. 

If the fracture energy of the head-joint tension models would have been used instead, the ultimate 

displacement of the EMM model would have matched much better. Similar to the E-modulus in y, an 

average value should be used of the 2 cases. Therefore, the fracture energy in tension will be based 

on the fracture energy obtained from the head-joint model, and the fracture energy obtained from 

the compression and bed-joint model (as calculated in the previous section). The new input value will 

be used in both the head-joint tension and the bed-joint tension models, as this will impact both of 

these load cases. The results of OS3_eqEMM_ten_head_small_Gft,average, IS1_eqEMM_ten_head_ 

small_Gft,average, OS3_eqEMM_ten_bed_small_Ey,average_Gft,average and IS1_eqEMM_ten_bed_small_ 

Ey,average_Gft,average are presented in appendix C (see appendix A for the explanation of the model 

names). Figures are presented below which include the stress-strain curves of the updated equivalent 

EMM model and their corresponding detailed model.  

  

A

B CD

A

B

C

D0

0.5

1

1.5

2

2.5

0 0.00005 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035

St
re

ss
 [

M
P

a]

Strain [-]

Stress-strain, detailed vs. equivalent EMM, tension head-joint 
small structure IS1

IS1_eqEMM_ten_head_small_Gft
,bed

IS1_det_ten_head_small



67 
 

 

 

Figure 5.17: Stress-strain curves from tension head-joint models OS3_eqEMM_ten_head_small_Gft,average & 
OS3_det_ten_head_small 

 

Figure 5.18: Stress-strain curves from tension head-joint models IS1_eqEMM_ten_head_small_Gft,average & 
IS1_det_ten_head_small 

As a result of changing the fracture energy to the average value, the curves of the head-joint tension 

models give a much better match now. The ultimate displacement values are still lower for the 

equivalent EMM models, but the difference is much smaller now. The forces in the points B and C in 

the equivalent models are also much closer to the forces in those points in the detailed models.  
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Figure 5.19: Stress-strain curves from tension bed-joint models OS3_eqEMM_ten_bed_small_Ey,average_Gft,average & 
OS3_det_ten_bed_small 

 

Figure 5.20: Stress-strain curves from tension bed-joint models IS1_eqEMM_ten_bed_small_Ey,average_Gft,average & 
IS1_det_ten_bed_small 

As the fracture energy was also changed in the bed-joint models, the curves of the bed-joint tension 

equivalent EMM models have become slightly less similar as the curves of the detailed models. This 

mostly shows in the ultimate displacement of the equivalent EMM models, which has become larger. 

In the previous section, when Gft,bed was used for the fracture energy, it was observed for the models 

of section IS1 that the ultimate displacement of the equivalent EMM model was much lower than 

that of the detailed model. Now the average value was used, the ultimate displacement of the 

equivalent EMM model is now even larger than that of the detailed model. This shows that the value 

of the fracture energy has quite a large impact on the ultimate displacement. 
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5.3 Shear loading 
Finally, the shear failure parameter should be verified. Equivalent EMM models will be created again, 

in which the boundary conditions are the same as in the detailed models. First, to ensure that the 

structure is loaded in pure shear, a mesh which consists of only 1 element is used in the equivalent 

EMM model. This means that the element size is equal to 2 times the plate size. Only the case where 

the compressive stress equals 0.5 MPa is considered for the verification of the parameters. The 

results of IS1_eqEMM_shear_small_σ0.5_one_el and IS1_eqEMM_shear_small_σ0.5_one_el are 

presented below (see appendix A for the explanation of the model names). After that, figures are 

presented which contain the stress-strain curves of the equivalent EMM model and their 

corresponding detailed model. The contour plots that are given in the presentation of the results of 

the models show the displacements in horizontal direction (x), which was also the case for the 

detailed models. 

The points A-D have been determined as follows: point B is where the peak force occurs and point D 

is where the displacement load is fully applied. Points A and C are chosen such that the displacement 

in the equivalent EMM model is equal to the displacement in the corresponding detailed model.  
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a)  c)  d)  

b)  e)  f)  

g)  

 Average element size [mm] 970x1500 

 Number of elements Q20SH 1 

h) Total number of nodes 4 

 

 Load Compression Translation 

 Iteration method Secant (Quasi-Newton) Secant (Quasi-Newton) 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.01(100) 

 Maximum number of iterations per step 100 100 

i) All norms satisfied No No 
Figure 5.21: Results of finite element analysis OS3_eqEMM_shear_small_σ0.5_one_el. a-i: structure (a), finite element mesh 
(b), displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-
displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  b)  

c)  

 Average element size [mm] 1051x3540 

 Number of elements Q20SH 1 

h) Total number of nodes 4 

 

 Load Compression Translation 

 Iteration method Secant (Quasi-Newton) Secant (Quasi-Newton) 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.01(100) 

 Maximum number of iterations per step 100 100 

i) All norms satisfied No No 
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f)  g)  

h)  i)  
Figure 5.22: Results of finite element analysis IS1_eqEMM_shear_small_σ0.5_one_el. a-i: structure (a), finite element mesh 
(b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at point A 
(f), displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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Figure 5.23: Stress-strain curves from shear models OS3_eqEMM_shear_small_σ0.5_one_el & OS3_det_shear_small_σ0.5 

 

Figure 5.24: Stress-strain curves from shear models IS1_eqEMM_shear_small_σ0.5_one_el & IS1_det_shear_small_σ0.5 

As mentioned, by using only one element for the structure, it is loaded in pure shear. It can be seen 

that the displacement at the peak is not exactly the same for the models, but it is still very close. 

Another difference between the curves is that the residual force of the detailed models is slightly 

lower than in the equivalent models. As the input value of the fracture energy in shear is quite high, 

the residual force is also quite high. In this case, even higher as the residual force of the detailed 

models. The points A and C of the curves almost coincide exactly as well. It is clear that the obtained 

input parameters provide good results when one element is used for the structure. Using one 

element allows the verification of the shear failure parameters, but using smaller elements will 

provide more realistic results, as this causes the model to be no longer loaded in pure shear, but also 

bending. The results of OS3_eqEMM_shear_small_σ0.5_mult_el and IS1_eqEMM_shear_small_ 

σ0.5_mult_el are presented below. After that, figures are presented which contain the stress-strain 

curves of the equivalent EMM model and their corresponding detailed model. For the models of 

multiple elements, it was chosen to show the vertical strains in the contour plots.  
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a)  c)  d)  

b)  e)  f)  

g)  

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 40 

h) Total number of nodes 54 

 

 Load Compression Translation 

 Iteration method Secant (Quasi-Newton) Secant (Quasi-Newton) 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.01(100) 

 Maximum number of iterations per step 100 100 

i) All norms satisfied No No 
Figure 5.25: Results of finite element analysis OS3_eqEMM_shear_small_σ0.5_mult_el. a-i: structure (a), finite element 
mesh (b), strain at point A (c), strain at point B (d), strain at point C (e), strain at point D (f), force-displacement curve (g), 
overview elements and nodes (h), overview iterative scheme (i) 
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a)  b)  

c)  

 Average element size [mm] 210.2x221.25 

 Number of elements Q20SH 80 

h) Total number of nodes 102 

 

 Load Compression Translation 

 Iteration method Secant (Quasi-Newton) Secant (Quasi-Newton) 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.01(100) 

 Maximum number of iterations per step 100 100 

i) All norms satisfied No No 
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f)  g)  

h)  i)  
Figure 5.26: Results of finite element analysis IS1_eqEMM_shear_small_σ0.5_mult_el. a-i: structure (a), finite element mesh 
(b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), strain at point A (f), strain 
at point B (g), strain at point C (h), strain at point D (i) 
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Figure 5.27: Stress-strain curves from shear models OS3_eqEMM_shear_small_σ0.5_mult_el & OS3_det_shear_small_σ0.5 

 

Figure 5.28: Stress-strain curves from shear models IS1_eqEMM_shear_small_σ0.5_mult_el & IS1_det_shear_small_σ0.5 

Due to bending of the plates, tensile stresses in y-direction will develop as rotation of the plate is 

prevented. As the tensile strength of the material is quite low, the stresses will exceed the strength 

quite easily. As the tensile stresses exceed the tensile strength of the material, cracks will start to 

appear, which is clearly visible in the contour plots where the vertical strain is shown. This already 

happens for small shear displacements, which is why the peak force (point B) is much lower and 

occurs much sooner than in the detailed models. As point A is based on a displacement value of the 

detailed models, point B will occur before point A in the equivalent EMM models. From the results of 

the equivalent EMM model with one element, it can be concluded that the input parameters are 

correct. However, when a smaller mesh is used, it is clear that the behaviour of the equivalent EMM 

model does not match the behaviour of the detailed model when loaded in shear. It is important to 

keep this in mind when the EMM will be used in a model of the lighthouse. In the figure below, the 

failure modes of the different models loaded in shear are presented for section OS3. 
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Figure 5.29: Failure mode at point D in shear for detailed model (left), equivalent EMM model with 1 element (middle) and 
equivalent EMM model with multiple elements (right), section OS3 

From the contour plots that are given, it is clear to see the differences between the failure modes. 

The detailed models shows shear failure, but the failure is focused at the bed-joint. The equivalent 

EMM model with 1 element is loaded in pure shear, which results in uniformly distributed horizontal 

displacements in the structure. The model with multiple elements also experiences bending, which 

results in tensile stresses in the structure. As they exceed the strength of the material, cracks start to 

form. 

5.4 Overview parameters for all sections 
All required EMM parameters have been obtained by analysing detailed models of small structures. 

After using them in equivalent EMM models and comparing the results, it was determined which 

parameters were correct, and which parameters had to be calibrated. The calibrated parameters are: 

the E-modulus in y-direction, bed-joint tensile strength, angle between cracks, compressive strength 

and the factor to strain at compressive strength. The resultant values of the parameters are given in 

the tables below, where each table provides the parameters of a specific category. 

Table 5.1: Elasticity parameters 

Section E-modulus in  
x-direction [MPa] 

E-modulus in  
y-direction [MPa] 

G-modulus [MPa] 

OS1 47916.2 51292.1 6915.2 

OS2 46164.9 53167.1 6829.0 

OS3 37234.6 56117.4 6534.4 

IS1 37385.0 66131.9 3899.2 

IS2 32389.3 64973.7 3093.2 

IS3 28253.3 71675.2 2633.1 
 
Table 5.2: Cracking parameters 

Section Bed-joint tensile 

strength [MPa] 

Head-joint 
tensile strength 
[MPa] 

Fracture energy 
in tension 
[N/mm] 

Angle between 
cracks 
[rad] 

OS1  1.832 1.706 0.0457 0.241 

OS2  2.059 2.079 0.0541 0.289 

OS3  2.447 2.206 0.0778 0.369 

IS1  1.749 2.028 0.0555 0.700 

IS2  2.031 2.426 0.1292 0.774 

IS3  2.812 2.714 0.2522 0.858 
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Table 5.3: Crushing parameters 

Section Compressive 

strength [MPa] 

Fracture energy 

in compression 

[N/mm] 

Factor to strain 

at compressive 

strength 

Unloading factor 

OS1  236.12 345.02 1.486 0 

OS2  251.32 383.82 1.659 0 

OS3  274.43 477.62 1.875 0 

IS1  272.04 551.36 2.287 0 

IS2  283.74 578.36 2.263 0 

IS3  311.12 710.90 2.543 0 
 
Table 5.4: Shear failure parameters 

Section Friction angle [rad] Cohesion [MPa] Fracture energy shear [N/mm] 

OS1  0.378 1.518 345.02 

OS2  0.376 1.832 383.82 

OS3  0.376 2.244 477.62 

IS1  0.338 2.047 551.36 

IS2  0.356 1.861 578.36 

IS3  0.313 2.556 710.90 
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6 Analysing the size effect  
In the previous chapter, it was verified that by using the (adjusted) obtained EMM parameters in 

equivalent models, similar results are obtained as from the analyses of the detailed models. However, 

this verification only states that the parameters provide the correct output for those specific 

structures. The structure of the lighthouse consists of many more plates, so it should be checked if and 

how the obtained parameters will be affected by increasing the size of the structure that is analysed 

with an equivalent EMM, while using the input EMM parameters that are obtained from detailed 

models of small structures. Slightly larger models will be created, consisting of an assembly of 

multiple plates and connections. The force-displacement curves of those models will show how the 

parameters might be influenced by this size effect. The results of this section will provide an answer to 

the second sub-question. 

6.1 Tension loading 
Now that all the obtained EMM parameters have been verified for those specific models, the next 

step is to increase the size of the structure and see if the obtained EMM parameters still provide 

similar results. The size of the structure will be increased such that it consists of an assembly of 

multiple plates and the structure will therefore also include multiple joints. The final step of this study 

is to analyse a model in which the complete lighthouse structure is present. Therefore, the size of the 

structures that will be analysed is determined by using the lighthouse as a reference.  

In width, the sections will still be equal to the size of 1 plate. As discussed earlier in the report, the 

outer column has the shape of a hexadecagon, where each side is has the width of 1 plate. It is 

therefore the most logical size to use for the section width. For the height, the floor height shall be 

used. The floors will provide stability and strength to the structure, so failure is most likely to happen 

within the floor height. The section height is therefore equal to 4 times the plate height for the 

sections of the outer column and 2 times the plate height for the inner column sections.  

For the tensile models, this means only a few structures have to be increased in size and analysed 

again. The head-joint models already had the width of one plate. As the section width is not 

increased, these results are still valid for the determination of the tension parameters for loads in this 

direction. For the bed-joint models, only the models of the outer sections have to be increased. The 

models of the inner sections were 2 plates in height, which is already equal to the floor height. The 

bed-joint models of the outer sections will be increased from 2 to 4 plates in height. Again, a tensile 

displacement will be applied on the top face in the normal direction to the bed-joint, which will 

introduce forces in this direction. The left side is supported in x and the bottom is supported in y and 

z. The support in z at the top is required for the prescribed deformation load, which is in the positive 

z direction. The results of OS3_det_ten_bed_large (see appendix A for the explanation of the model 

names) are presented below. For the results of the other sections, see appendix C. Additionally, a 

figure is presented which contains the stress-strain curves of the large detailed model and the small 

detailed model of section OS3.  

 

  



81 
 

a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 9136 

 PY15L 1715 

 TE12L 1204 

 TP18L 410 

 Q24IF 880 

d) Total number of nodes 20609 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
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f)  g)  

h)  i)  
Figure 6.1: Results of finite element analysis OS3_det_ten_bed_large. a-i: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at point A (f), 
displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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Figure 6.2: Stress-strain curves from tension bed-joint models OS3_det_ten_bed_large & OS3_det_ten_bed_small 

The points A-D are chosen in the same way as for the small detailed model: point A is where the peak 

force occurs, point D where the ultimate displacement occurs and at points B and C there is a sudden 

drops in the force. It can be observed here that the models are actually very similar. The peak stress is 

almost exactly the same, but there are some small differences in the stiffness and the ultimate strain. 

This is what was expected, as the joints are exactly the same in both models, so both have the exact 

same tensile strength. From the contour plots, it is also clear that the failure mode is the same as 

what was observed in the small detailed model OS3_det_ten_bed_small, which was analysed in 

section 4.1. The figure below shows the vertical displacements in point D for both structures. 

Figure 6.3: Vertical displacements at point D, tension bed-joint models small structure (left) and large structure (right),
section OS3

Now, an equivalent EMM model of the large structure can be analysed where all boundaries and

loads are the same as in the detailed model. The parameters of section 5.4 will be used, which are

based on the results of the small models. This will show if the obtained parameters will still provide

good results when the structure size is increased. The results of OS3_eqEMM_ten_bed_large_

sq1_parameters are presented in the figure below (see appendix A for the explanation of the model

names). Additionally, a figure is presented that contains the stress-strain curves of the equivalent

EMM model and the detailed model.
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a)  b)  

c)  

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 80 

d) Total number of nodes 102 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
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f)  g)  

h)  i)  
Figure 6.4: Results of finite element analysis OS3_eqEMM_ten_bed_large_sq1_parameters. a-i: structure (a), finite element 
mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at 
point A (f), displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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From the contour plots that are presented, it is clear that the failure modes of the equivalent EMM 

models loaded in tension are the same for the small and large structures when the EMM is used.  

 

Figure 6.5: Stress-strain curves from tension bed-joint models OS3_eqEMM_ten_bed_large_sq1_parameters &
OS3_det_ten_bed_large

The points A-D of the equivalent EMM model were determined in the same way as for the equivalent

EMM model of the small structures: point A is where the peak force occurs and point D shows the

displacement where the force becomes 0 kN. The points B and C were chosen such that the

displacement is equal to the displacement of points B and C in the results of OS3_det_ten_bed_large.

From the figure of the stress-strain curves, it is clear that the results of the models match quite well,

but there are some small differences. The stiffness of the detailed model is slightly lower than that

was used in the equivalent EMM model. The maximum tensile stress is slightly lower as well, but as

explained in the previous chapter, the bed-joint strength was adjusted, as the average of Ey,tension and

Ey,compression was used for Ey. For the case of section OS3, it meant that the bed-joint strength was

increased, thus the maximum tensile force is expected to be slightly higher. As Gft,average was used for

the fracture energy, this also results in a slightly larger ultimate displacement in the equivalent EMM

model. It is clear that the EMM parameters that are related to the bed-joint tension failure of the

outer sections should be adjusted slightly. The new parameters will provide more accurate results for

the EMM models of the larger structure and are also expected to provide better results when used in

the final model of the lighthouse. An overview of the final EMM parameters will be provided in

section 6.4 of this chapter.

6.2 Compression loading
For compression, only a single plate was analysed for all sections in the previous chapter. In this

chapter, the structure size will be increased such that the height of the structure matches the floor

height. The structures of the outer section will consist of 4 plates in height, while the structures of

the inner sections will have a height of 2 plates. The bottom of the structure is supported in x, y and

z, while the top is supported in y. The top face will also be supported in z to function as a reference

for the prescribed deformation load, which displaces the top face in the negative z-direction. The

results of OS3_det_comp_large and IS1_det_comp_large are presented in the figures below (see

appendix A for the explanation of the model names). In the results, the contour plots of the out of

plane displacements will be given, as they clarify how the structure will fail. For the results of the

other sections, see appendix C. Additionally, figures will be presented which contain the stress-strain

curves that result from the detailed models of the large and small structure of that section.
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 9165 

 PY15L 1624 

 TE12L 1125 

 TP18L 395 

 Q24IF 880 

d) Total number of nodes 20590 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.00625(160) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
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f)  g)  

h)  i)  
Figure 6.6: Results of finite element analysis OS3_det_comp_large. a-i: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at point A (f), 
displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 11010 

 PY15L 449 

 TE12L 272 

 TP18L 125 

 Q24IF 564 

d) Total number of nodes 23163 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.00625(160) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
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f)  g)  

h)  i)  
Figure 6.7: Results of finite element analysis IS1_det_comp_large. a-i: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at point A (f), 
displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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Figure 6.8: Stress-strain curves from compression models OS3_det_comp_large & OS3_det_comp_small 

 

Figure 6.9: Stress-strain curves from compression models IS1_det_comp_large & IS1_det_comp_small 

The points A-D of the large detailed models are chosen as follows: point C is where the peak force 

occurs and point D is where the force becomes 0 kN. Points A and B are located at 1/3 and 2/3 of the 

ultimate displacement. From the stress-strain curves, it is clear that the peak stress is much lower for 

the larger structures. As the large structures are much less stable than a single plate, this structure is 

expected to fail at a lower compressive force, as buckling occurs faster. In reality, the structure will be 

less prone to buckling as there will be plates on both sides. This means the buckling stresses will 

actually slightly higher. However, the supports on the sides are not considered here, which results in a 

more conservative value for the compressive strength. It can also be seen that the curve is still in 

linear-elastic region when failure occurs. As a result, the fracture energy is much lower and the value 

of n will be very close to 1. The contour plots of the out of plane displacements at point C of the 

detailed models (small and large structure) of section OS3 are presented in the figure below. 
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Figure 6.10: Out of plane displacements at point C, detailed model small structure (left) and large structure (right), section 
OS3 

It is clear that for both models, the failure is related to the large out of plane displacements. However, 

the large structure is much more unstable due to the larger height. As a result, failure occurs at a 

much lower value of the average plate stress. 

Similar as for the tensile models, the EMM parameters from chapter 5.4 can now be used in an 

equivalent EMM model of the large structure. A comparison can then be made to see if the results 

are still similar when the size of the structure is increased. The results of OS3_eqEMM_comp_large_ 

sq1_parameters and IS1_eqEMM_comp_large_ sq1_parameters are presented below (see appendix 

A for the explanation of the model names). Additionally, figures are presented that contain the stress-

strain curves of the equivalent EMM model of the large structure and their corresponding detailed 

model. 
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a)  b)  

c)  

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 80 

d) Total number of nodes 102 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
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f)  g)  

h)  i)  
Figure 6.11: Results of finite element analysis OS3_eqEMM_comp_large_ sq1_parameters. a-i: structure (a), finite element 
mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at 
point A (f), displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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a)  b)  

c)  

 Average element size [mm] 210.2x221.25 

 Number of elements Q20SH 80 

h) Total number of nodes 102 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
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f)  g)  

h)  i)  
Figure 6.12: Results of finite element analysis IS1_eqEMM_comp_large_sq1_parameters. a-i: structure (a), finite element 
mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at 
point A (f), displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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The same conclusion can be made as for the tension models: from the contour plots that are 

presented, it is clear that the failure modes of the equivalent EMM models loaded in compression are 

the same for the small and large structures when the EMM is used.  

 

Figure 6.13: Stress-strain curves from compression models OS3_eqEMM_comp_large_sq1_parameters & 
OS3_det_comp_large 

 

Figure 6.14: Stress-strain curves from compression models IS1_eqEMM_comp_large_sq1_parameters & 
IS1_det_comp_large 

The points A-D are chosen in almost the exact same way as for the detailed models of the large 

structure: point C is where the peak force occurs and point D is where the force becomes 0 kN. Points 

A and B are located at 1/3 and 2/3 of the displacement in point C. It is clear that the stress-strain 

curves of the detailed and equivalent EMM models of the large structures are very different, but this 

is what can be expected, as the input parameters are based on the results of the small detailed 

models. Since the results of the large detailed models are not very similar to the results of the small 

detailed models, the results are expected to be different here as well. As the failure of the large 

detailed model occurs much sooner, the ultimate displacement is much lower as in the equivalent 

EMM model. It is clear that the cracking parameters need to be adjusted for all sections when they 

are used in large structures. An overview of the final EMM parameters will be provided in section 6.4 

of this chapter. 
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6.3 Shear loading 
For shear, the situation is slightly different than for the other loading types. Shear failure is often 

paired with bending failure, which was also the case for the structures that were analysed in the 

previous chapters. In order to reduce the amount of bending, the ratio of width/height minimally 

needs to be increased. If the structure has a very small width, rotating of the plates cannot be 

prevented in the structure. However, when a larger width is used, the rotation is prevented by the 

plates besides them. To obtain a larger width/height ratio, the section width has to be increased here. 

It is chosen to use 3 plates in width for the outer column sections, while 6 plates shall be used for the 

inner column sections, such that the ratio of width/height is larger than 1 for all structures. When 

only 3 plates in width are used for the inner column sections, the ratio is still lower than 1. The ratios 

of all sections, based on the plate width and height, are given in the table below. 

Table 6.1: Ratio width/height for assembly structures used in shear models 

Section Ratio width/height 

OS1 3.05 

OS2 2.53 

OS3 1.94 

IS1 1.78 

IS2 1.53 

IS3 1.30 

 

The shear models are still two plates in height, but the width has been increased. The bottom of the 

structure is supported in x and z, while the back of the plates are supported in y. The support in x at 

the top is required for the prescribed deformation load, which is the green load. This load causes the 

top face of the entire structure to be displaced in the positive x-direction. Again, tyings were added to 

the top face of the structure for the translation in z, to ensure that this face remains straight. 

Similar as before, three different models will be analysed per section. The compressive stresses that 

are applied to the models are 0.5, 1 and 2 MPa. The results of OS3_det_shear_large and 

IS1_det_shear_large are presented in the figures below (see appendix A for the explanation of the 

model names). For the results of the other sections, see appendix C. Additionally, figures are 

presented which contain the stress-strain curves that result from the detailed models of the large and 

small structure of both sections. In the results of IS1_det_shear_large, it can be observed that the 

contour plots are slightly different than for the other models. As the mesh is very small and the 

structure quite large, the mesh lines have been turned off in the plots. When the lines were visible, it 

was not possible to see the colours in the contour plots.  
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a)  

b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 13395 

 PY15L 3438 

 TE12L 2581 

 TP18L 908 

 Q24IF 1336 

d) Total number of nodes 30951 

 

 Load Compression Translation 

 Iteration method Newton-Raphson Newton-Raphson 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.008(125) 

 Maximum number of iterations per step 100 100 

e) All norms satisfied No No 
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f)  g)  

h)  i)  
Figure 6.15: Results of finite element analysis OS3_det_shear_large_σ0.5, σ1 & σ2. a-i: structure (a), finite element mesh (b), 
force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at point A (f), 
displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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a)  

b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 66523 

 PY15L 770 

 TE12L 437 

 TP18L 664 

 Q24IF 5164 

d) Total number of nodes 137658 

 

 Load Compression Translation 

 Iteration method Newton-Raphson Newton-Raphson 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.008(125) 

 Maximum number of iterations per step 100 100 

e) All norms satisfied No No 
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f)  g)  

h)  i)  
Figure 6.16: Results of finite element analysis IS1_det_shear_large_σ0.5, σ1 & σ2. a-i: structure (a), finite element mesh (b), 
force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at point A (f), 
displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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Figure 6.17: Stress-strain curves from shear models OS3_det_shear_large_σ0.5 & OS3_det_shear_small_σ0.5 

 

Figure 6.18: Stress-strain curves from shear models IS1_det_shear_large_σ0.5 & IS1_det_shear_small_σ0.5 

The points A-D of the large structures were chosen as follows: point B is where the peak force occurs 

and point D is where the displacement load is fully applied. Points A and C are chosen such that the 

strain matches the strain in points A and C of the small detailed models. From the curves, it is clear 

that the results of OS3 are very similar, besides a small difference in stiffness. As the width/height 

ratio of the small structure was already quite high, there was only a small amount of bending in the 

failure mode. By increasing the ratio, the failure is more related to shear, which results in a slightly 

higher shear modulus. For section IS1, the difference in shear modulus is more significant. Also, it is 

observed that the maximum shear stress is quite a bit higher for the large structure. Both are the 

result of increasing the width/height ratio, as this eliminates bending from the failure mode. The 

figure below shows the horizontal displacements in point D for the small and large detailed models of 

section OS3.  
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Figure 6.19: Horizontal displacements in point D, detailed models small structure (left) and large structure (right), section
OS3

From the figures of the contour plots, it is clear that the behaviour of the structures is still very

similar. However, from the stress-strain diagrams it is clear that the bending is mostly eliminated from

the failure mode of the large structure, which results in a slightly higher stiffness.

Now, equivalent EMM models of the large structure will be analysed, in which the EMM parameters

of chapter 5.4 are applied. First, only 1 element is used in the equivalent EMM model to ensure pure

shear failure. The results of IS1_eqEMM_shear_large_σ0.5_one_el and IS1_eqEMM_shear_large_

σ0.5_one_el are presented below (see appendix A for the explanation of the model names.

Additionally, figures are presented which contain the stress-strain curves that result from the

equivalent EMM models and their corresponding detailed model.
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a)  

b)  

c)  

 Average element size [mm] 2910x1500 

 Number of elements Q20SH 1 

h) Total number of nodes 4 

 

 Load Compression Translation 

 Iteration method Secant (Quasi-Newton) Secant (Quasi-Newton) 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.1(10) 0.01(100) 

 Maximum number of iterations per step 100 100 

i) All norms satisfied No No 
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f)  g)  

h)  i)  
Figure 6.20: Results of finite element analysis OS3_eqEMM_shear_large_σ0.5_one_el_sq1_parameters. a-i: structure (a), 
finite element mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), 
displacement at point A (f), displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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a)  

b)  

c)  

 Average element size [mm] 6306x3540 

 Number of elements Q20SH 1 

h) Total number of nodes 4 

 

 Load Compression Translation 

 Iteration method Secant (Quasi-Newton) Secant (Quasi-Newton) 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.1(10) 0.01(100) 

 Maximum number of iterations per step 100 100 

i) All norms satisfied No No 
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f)  g)  

h)  i)  
Figure 6.21: Results of finite element analysis IS1_eqEMM_shear_large_σ0.5_one_el_sq1_parameters. a-i: structure (a), 
finite element mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), 
displacement at point A (f), displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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Figure 6.22: Stress-strain curves from shear models OS3_eqEMM_shear_large_σ0.5_one_el_sq1_parameters & 
OS3_det_shear_large_σ0.5 

 

Figure 6.23: Stress-strain curves from shear models IS1_eqEMM_shear_large_σ0.5_one_el_sq1_parameters & 
IS1_det_shear_large_σ0.5 

The points A-D for the equivalent models have been chosen as follows: point B is where the peak 

force occurs and point D where the displacement load has been fully applied. Points A and C are 

located at the same displacements as points A and C of the large detailed model. In the previous 

chapter, it became clear from the curves that the used parameters provide quite good results when 

compared to the results of the small detailed models. As the detailed models of the large structure 

are slightly different, it is expected that the results of the equivalent EMM models are slightly 

different for the large structures as well. Again, the curves of section IS1 are quite different, as the 

EMM parameters are based on the failure mode of the small structure, which included quite some 

bending. Even though there are some small differences, the equivalent EMM models which consist of 

one element are still quite similar to the detailed models. However, as mentioned before, more 

elements should be used to get a more realistic structural behaviour. The results of the models 

OS3_eqEMM_shear_large_σ0.5_mult_el_sq1_parameters and OS3_eqEMM_shear_large_σ0.5_ 

mult_el_sq1_parameters are presented below (see appendix A for the explanation of the model 

names). Additionally, figures are presented which contain the stress-strain curves that result from the 

equivalent EMM models and their corresponding detailed model. 
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a)  

b)  

c)  

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 120 

h) Total number of nodes 144 

 

 Load Compression Translation 

 Iteration method Secant (Quasi-Newton) Secant (Quasi-Newton) 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.1(10) 0.01(100) 

 Maximum number of iterations per step 100 100 

i) All norms satisfied No No 
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f)  g)  

h)  i)  
Figure 6.24: Results of finite element analysis OS3_eqEMM_shear_large_σ0.5_mult_el_sq1_parameters. a-i: structure (a), 
finite element mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), strain 
at point A (f), strain at point B (g), strain at point C (h), strain at point D (i) 
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a)  

b)  

c)  

 Average element size [mm] 210.2x221.25 

 Number of elements Q20SH 510 

h) Total number of nodes 558 

 

 Load Compression Translation 

 Iteration method Secant (Quasi-Newton) Secant (Quasi-Newton) 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.1(10) 0.01(100) 

 Maximum number of iterations per step 100 100 

i) All norms satisfied No No 
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f)  g)  

h)  i)  
Figure 6.25: Results of finite element analysis IS1_eqEMM_shear_large_σ0.5_mult_el_sq1_parameters. a-i: structure (a), 
finite element mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), strain 
at point A (f), strain at point B (g), strain at point C (h), strain at point D (i) 
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The failure modes of the equivalent EMM models loaded in shear are the same for the large 

structures as for the small structures. Again, the model of 1 element shows uniform failure, while the 

model with multiple elements shows cracking due to tension. 

 

Figure 6.26: Stress-strain curves from shear models OS3_eqEMM_shear_large_σ0.5_mult_el_sq1_parameters & 
OS3_det_shear_large_σ0.5 

 

Figure 6.27: Stress-strain curves from shear models IS1_eqEMM_shear_large_σ0.5_mult_el_sq1_parameters & 
IS1_det_shear_large_σ0.5 

In chapter 5, it was clear that using multiple elements resulted in having different F-D curves for the 

equivalent EMM model. However, by increasing the ratio of width/height and eliminating the bending 

aspect from the failure mode, the tensile stresses in the structure are much lower than before. This 

means that for small displacements, the equivalent EMM model now provides more accurate results. 

It is clear that the shear stiffness is still slightly lower, as well as the maximum shear stress, However, 

for small displacements, the curves are not too different. After the peak shear stress has been 

reached, the curve becomes a bit unstable due to some cracks that start to appear. However, all 

analysis results were still fully converging. It can be concluded that using multiple elements in the 

equivalent EMM model of the large structure gives reasonably accurate results, as long as the 

displacements remain within the linear-elastic regime. It is expected that the shear displacements in 

the final model will remain linear-elastic, which suggests the results that will be obtained in chapter 7 

will include a good approximation of the shear behaviour. The EMM parameters will be calibrated to 

match the failure modes slightly better. The final parameters will be provided in section 6.4.  
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6.4 Overview final EMM parameters for all sections 
All parameters have now been determined for the section size that corresponds to the floor height 

and the width of 1 plate. The same calibration has been performed here as in the previous chapter, as 

average values of the E-modulus in y-direction and the fracture energy in tension provide a better 

balance between the results of different loading types. The tables below contain all the relevant 

parameters that are required to use as input for the EMM. These are the parameters that will be used 

in the final model, which contains the entire structure of the lighthouse. 

Table 6.2: Final elasticity parameters 

Section E-modulus in  
x-direction [MPa] 

E-modulus in  
y-direction [MPa] 

G-modulus [MPa] 

OS1 47916.2 30038.0 7509.6 

OS2 46164.9 31763.0 7823.9 

OS3 37234.6 37114.1 7856.1 

IS1 37385.0 58703.2 8485.2 

IS2 32389.3 56001.4 7259.9 

IS3 28253.3 63804.9 7234.8 

 

As the stiffness of the larger structures was lower than in the small structures, especially in 

compression, the values for Ey have been lowered. Also, the shear modulus values are now more 

similar for all sections, as a result of increasing the width/height ratio of the structure. This ensured 

that the failure of the structure was caused by shear, not by a combination of bending and shear.  

Table 6.3: Final cracking parameters 

Section Bed-joint tensile 

strength [MPa] 

Head-joint 
tensile strength 
[MPa] 

Fracture energy 
in tension 
[N/mm] 

Angle between 
cracks 
[rad] 

OS1  1.416 1.706 0.0320 0.241 

OS2  1.573 2.079 0.0392 0.289 

OS3  2.132 2.206 0.0609 0.369 

IS1  1.552 2.028 0.0539 0.700 

IS2  1.751 2.426 0.1254 0.774 

IS3  2.504 2.714 0.2472 0.858 

 

Due to the calibration of the E-modulus in y-direction and the fracture energy in tension, the bed-

joint strength has also been calibrated.   

Table 6.4: Final crushing parameters 

Section Compressive 

strength [MPa] 

Fracture energy 

in compression 

[N/mm] 

Factor to strain 

at compressive 

strength 

Unloading factor 

OS1  101.98 76.178 1.181 0 

OS2  72.65 32.774 1.186 0 

OS3  117.77 59.115 1.084 0 

IS1  137.21 85.968 1.325 0 

IS2  107.01 50.106 1.299 0 

IS3  94.53 35.565 1.321 0 
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The compressive strength values are now significantly lower than before. By increasing the size of the 

structure, the stability greatly decreased, which caused failure of the structures at a much lower 

compressive force. This also results in much lower values for the fracture energy. In addition, as the F-

D curves are now only in the linear-elastic part, the values of n are much closer to 1 than before. 

Table 6.5: Final shear failure parameters 

Section Friction angle [rad] Cohesion [MPa] Fracture energy shear 
[N/mm] 

OS1  0.378 1.519 76.178 

OS2  0.378 1.831 32.774 

OS3  0.376 2.247 59.115 

IS1  0.329 2.130 85.968 

IS2  0.375 1.870 50.106 

IS3  0.373 2.658 35.565 

 

As mentioned before, by increasing the width/height ratio of the structure, the failure due to shear 

was enforced instead of having failure due to a combination of bending and shear. This results in 

output friction angles which are almost equal to the input friction angle of 0.38 rad. The values of 

cohesion are almost the same as before for the outer column sections. As the small structures 

already had quite a large width/height ratio, the failure in those models was already very close to 

pure shear. As this was not the case for the small structures of the inner column sections, the 

cohesion values that were obtained from the results of the large structures are slightly higher than 

the values obtained from the smaller models. By reducing the amount of bending of the plates, the 

maximum allowable shear force has been increased.  

6.5 Final comparison detailed & equivalent EMM models 
All required EMM parameters have been obtained and the necessary calibrations have been applied. 

Before using the values as input in such a large structure as the lighthouse, it is important to know 

what differences can be expected between the results of the equivalent EMM models and detailed 

models. For sections OS3 and IS1, a final comparison between the detailed and equivalent EMM 

models will be given. The models that were presented in this chapter, which are the assemblies of 

plates (large structures), will be analysed for this comparison. For all load cases, the results of the 

equivalent EMM models for sections OS3 and IS1 will be presented in appendix E. The figures that are 

presented here contain the stress-strain curves that result from the equivalent EMM models and 

their corresponding detailed model. First, the bed-joint tension load case is analysed. The models 

that are analysed are OS3_eqEMM_ten_bed_large_ final_parameters andIS1_eqEMM_ten_bed_ 

small_ final_parameters (see appendix A for the explanation of the model names).  

  



117 
 

 

Figure 6.28: Stress-strain curves from tension bed-joint models OS3_eqEMM_ten_bed_large_final_parameters & 
OS3_det_ten_bed_large 

 

Figure 6.29: Stress-strain curves from tension bed-joint models IS1_eqEMM_ten_bed_large_final_parameters & 
IS1_det_ten_bed_large 

From the comparison between the final equivalent EMM models and the detailed models, it is clear 

that the linear-elastic behaviour of the models is very similar. The stiffness of the models is almost the 

same, but the peak stresses are slightly different. In addition, after the peak stress, the curves are a 

quite different. As mentioned before, the curve linearly goes to 0 kN in the EMM, which is not the 

case in the detailed models, where the curves goes to 0 kN with some sudden drops due to 

disconnecting of the interface. For some column sections, the ultimate displacements of the models 

are quite similar, but the stress-strain figure of section IS1 shows that there is quite a large difference 

between the equivalent EMM and the detailed model. Therefore, it is expected that when the 

obtained EMM parameters are used in a model of the lighthouse, the structural behaviour can be 

accurately modelled for the linear-elastic region. Once the stresses exceed the strength, the model 

will likely become less accurate. Next, the tension head-joint models OS3_eqEMM_ten_head_small_ 

final_parameters and IS1_eqEMM_ten_head_small_final_parameters are analysed (see appendix A 

for the explanation of the model names). 
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Figure 6.30: Stress-strain curves from tension head-joint models OS3_eqEMM_ten_head_small_final_parameters & 
OS3_det_ten_head_small 

 

Figure 6.31: Stress-strain curves from tension head-joint models IS1_eqEMM_ten_head_small_final_parameters & 
IS1_det_ten_head_small 

From the final comparison of the head-joint models, it is clear that the same conclusion can be made 

as for the bed-joint tension models. It is clear that the linear-elastic behaviour of the models is very 

similar, but when the stresses exceed the strength, there is quite a difference between the stress-

strain curves. The linear-elastic parts of the curves seem even more accurate for the head-joint 

tension models, as it is observed that the stiffnesses of the models are exactly the same and the peak 

stresses are also very close. However, there is quite a difference between the ultimate displacement 

that can be reached. Therefore, the same conclusion as for the bed-joint tension loading can be 

made: it is expected that when the obtained EMM parameters are used in a model of the lighthouse, 

the structural behaviour can be accurately modelled for the linear-elastic region. However, when the 

stresses exceed the strength, the model will likely become less accurate. Next, the compression 

models OS3_eqEMM_comp_large_final_parameters and IS1_eqEMM_comp_large_final_parameters 

are analysed (see appendix A for the explanation of the model names). 
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Figure 6.32: Stress-strain curves from compression models OS3_eqEMM_comp_large_final_parameters & 
OS3_det_comp_large 

 

Figure 6.33: Stress-strain curves from compression models IS1_eqEMM_comp_large_final_parameters & 
IS1_det_comp_large 

From the comparison of the stress-strain curves, it is clear that the results of the equivalent EMM 

model are quite accurate. As the factor to strain is not equal to 1, the curve of the equivalent EMM 

model is not fully linear. This results in slightly higher stresses compared to the detailed models. 

Another difference between the models, which has already been discussed, is that there will be a 

residual strength in compression in the EMM, which means the stresses will not reduce to 0 MPa. 

Therefore, for the compressive behaviour of the lighthouse, it can be expected that the differences 

between an equivalent EMM model and a detailed model will be very similar. Only after the peak 

stress has been reached, the equivalent EMM model will still have a residual strength, which will 

allow the displacements to become very large very quickly. This will likely cause the model to become 

unstable very quickly as well. Finally, the shear models OS3_eqEMM_shear_large_σ0.5_mult_el_ 

final_parameters and IS1_eqEMM_shear_large_σ0.5_mult_el_final_parameters are analysed (see 

appendix A for the explanation of the model names).  
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Figure 6.34: Stress-strain curves from shear models OS3_eqEMM_shear_large_σ0.5_mult_el_final_parameters & 
OS3_det_shear_large_σ0.5 

 

Figure 6.35: Stress-strain curves from shear models IS1_eqEMM_shear_large_σ0.5_mult_el_final_parameters & 
IS1_det_shear_large_σ0.5 

From the final comparison of the shear models, it can be seen that for small displacements, the 

results of the equivalent EMM model are quite similar to the results of the detailed model. After the 

final adjustments, the stiffness of the model is now much more accurate as well. After the peak shear 

stress has been reached, it seems that some cracks that start to appear. This shows in the fact that 

the peak shear stress is much lower in the equivalent EMM models. Additionally, the residual stresses 

are also much lower in the equivalent EMM models. Therefore, it can be expected that when the final 

parameters are used in an equivalent EMM model of the lighthouse, the shear behaviour will be quite 

similar to that of a detailed lighthouse model, when the shear displacements remain small. Once the 

shear displacements start to increase, the results will likely become less accurate.  
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7 Analysis of equivalent EMM lighthouse model  
Now, the equivalent EMM model of the lighthouse will be defined and analysed. The input parameters 

for the EMM have been determined in the previous chapter, where the size effect has been taken into 

account. An analysis is performed which shows the structural behaviour of the lighthouse when 

loaded by self-weight and wind. By comparing the results of the analyses to the results of the analysis 

of the detailed model of PT Structural, an answer to the final sub-question is obtained. In addition, an 

analysis is made to show the compressive structural behaviour of the lighthouse, by increasing the 

gravitational acceleration, causing the self-weight load to be multiplied by a load factor of 20. 

7.1 Model definitions 
First, the geometry of the lighthouse in the model has to be defined. The outer column has a 

diameter of 10.5 meters at the bottom and 3.9 meters at the top. The inner column starts at a 

diameter of 3 meters, and ends at 1.5 meters at the top. The top and bottom are connected linearly, 

which means the diameter decreases linearly as the height increases. In reality, the thickness of the 

plates will also decrease linearly with the height of the lighthouse. However, as discussed before, 

both columns were divided into three sections, where each section has its own thickness. Each 

section also has its own set of input parameters, as presented in section 6.4. The next thing to 

consider is that there are 17 floors in the lighthouse. The floors connect the two columns and have a 

major influence on the structural stability of the lighthouse. The behaviour of the floors is not 

something that will be studied here, so only the effect of the floors on the columns is implemented in 

the model. This can be achieved by adding tyings to the columns at the height of every floor level. 

The tyings ensure that the columns will have equal translations in the x- and z-directions (horizontal) 

at the floor level, which is the global effect of the presence of the floors. This allows to leave the floor 

structures out of the model, which means no unnecessary extra elements, so the running time of the 

analysis is reduced a bit more. However, by modelling the floors in this way, the local effect of the 

floors is not implemented in the model. The table below provides an overview of the heights at which 

a floor is present. Additionally, the radius of the inner and outer columns at every floor level is given. 

Table 7.1: Overview of floor heights and the corresponding inner and outer column radius 

Floor  Height [m] router [m] rinner [m] 

1 3.80 5.02 1.44 

2 7.40 4.81 1.39 

3 10.95 4.60 1.33 

4 14.45 4.39 1.28 

5 17.85 4.19 1.23 

6 21.25 3.99 1.18 

7 24.55 3.79 1.13 

8 27.85 3.59 1.08 

9 31.10 3.40 1.03 

10 34.30 3.21 0.98 

11 37.50 3.02 0.93 

12 40.60 2.84 0.89 

13 43.70 2.65 0.84 

14 46.75 2.47 0.80 

15 49.75 2.29 0.75 

16 52.75 2.11 - 

17 55.50 1.95 - 
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As the inner column only has a height of 49.75 m and floors number 16 and are placed at larger 

height, there is no inner column radius provided for these floors. In addition, the height of the 

structure in the model is only 55.5 meters, while the actual height of the lighthouse is 63.45 meters. 

This is due to the fact there is a chamber at the top, which is where the light is located. Similar to the 

floors, the chamber will not be present in the model, as the main focus of the analysis is on the inner 

and outer columns of the lighthouse. However, the presence of the chamber will be taken into 

account when determining the magnitude of the relevant forces, self-weight and wind. Regarding the 

boundary conditions of the structure, the bottom of both columns are supported in x, y and z. An 

overview of the elements and nodes of the model is given in the table below.  

Table 7.2: Overview of elements and nodes of thesis model 

Average element size [mm] 200x200 

Number of elements Q20SH 36882 

T15SH 161 

Total number of nodes 37100 

 

The total number of nodes for the model of the entire lighthouse is equal to 37100. In chapter 6.3,

the model of IS1_det_shear_large was analysed. This model consisted of 12 plates and contained a

total of 137658 nodes. In the EMM model, regular curved shell elements are used, which allows a

much larger element size to be used, the total amount of elements and nodes is decreased

significantly, which results in a much shorter running time for the finite element analysis. The model

of the lighthouse and the finite element mesh are presented in the figure below.

  

Figure 7.1: Finite element structure of thesis model (left) and finite element mesh of thesis model (right) 
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7.2 Calculation of the forces 
There are two forces that will be applied to the lighthouse: self-weight and wind load. The 

combination of these forces is considered in the report of PT Structural Design & Analysis. In addition, 

part of their study was to determine the maximum wind velocity at which there are no vertical tensile 

stresses in the outer column of the lighthouse. In order to compare the static analysis of both models, 

the same load combination of self-weight and wind will be applied here. The calculations of those 

forces are provided in this section. 

The self-weight will be applied by giving the each column section a mass density. The report ‘De 

bouwwijze van de gietijzeren vuuroten te Kijkduin’ states the following about the self-weight of the 

different parts of the lighthouse: The outer column plates weighed a total of 352.500 kg, the inner 

column plates 66700 kg, and the floors 73500 kg. The spiral staircase weighed 11100 kg, and 

including all other components such as the entrance door, windows, balustrade, etc., the entire 

delivery involved 506100 kg of cast iron. This means the other components (door, windows, 

balustrade, etc.) had a total weight of 2300 kg (Suchtelen, 1978).  

Note that the weight of the top chamber is also included in the numbers above. The actual weight of 

the chamber itself was not found in any literature, so the total weight will not be applied as a force 

on top, but will be equally divided over each section. The calculation of the weight per section will be 

based on the volume of the section. The volume of a full plate can be determined by adding the 

volumes of the flanges, stiffeners and the plate itself. The stiffeners are triangular and each have a 

volume of 0.5 ∗ 140 ∗ 60 ∗ 20 = 84000 mm3. The flanges have a thickness of 20 mm and a width of 

60 mm and are present over the entire edge of the plate. The volume of one plate is then multiplied 

by the number of plates in the section. The number of plates per section can easily be determined 

when looking at the number of floors per section. For the outer column sections, there are 4 layers of 

plates per floor, and 16 plates per layer. The inner column sections only have 2 layers of plates per 

floor and 8 plates per layer. This means there are 64 plates per floor for the outer column sections 

and 16 plates per floor for the inner column sections. The relevant dimensions of the plates and the 

total volume of each section is given in the tables below. 

Table 7.3: Plate dimensions and volumes 

Section h [m] t [m] b [m] nstiffeners Vplate [m3] nfloors Vsection [m3] 

OS1 0.885 0.0332 1.802 5 0.36 6 23.09 

OS2 0.8125 0.0290 1.368 4 0.19 5 12.17 

OS3 0.750 0.0249 0.970 3 0.14 6 8.70 

IS1 1.770 0.0244 1.051 3 0.32 6 5.05 

IS2 1.624 0.0234 0.830 2 0.19 5 3.01 

IS3 1.532 0.0206 0.662 2 0.11 4 1.69 

 

The total volume of the outer column is equal to 43.96 m3, while the inner column has a volume of 

9.75 m3. By using the ratio Vsection/Vcolumn
 and multiplying this with the weight of the column, the total 

weight of the plates per section is determined. Next, it will be determined how the weight of the 

floors, stairs and other components must be divided over the column sections. This will be 

determined by calculating the area of each floor and looking at which section each floor is placed. 

The area of the floors can be calculated by using the radii of the columns, which are provided in the 

previous section. The area of the floor is equal to 𝜋 ∗ (𝑟𝑜𝑢𝑡𝑒𝑟
2 − 𝑟𝑖𝑛𝑛𝑒𝑟

2 ). For every floor that is 

connected to both columns, it is assumed that the weight will be equally carried by the outer and 

inner columns. The floor area per section can now be determined. If this is divided by the total floor 
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area, a ratio is obtained which can be multiplied by the total floor weight to obtain the floor weight 

per section. The same ratio is then multiplied with the weight of the stairs and the other components 

to obtain the weight of those parts per section. By dividing the total weight of the section by its 

volume, the mass density can finally be obtained. All relevant values are given in the table below. 

Table 7.4: Resultant mass density values per section 

Section Weight of 
plates [kg] 

Weight of 
floors [kg] 

Weight of 
stairs + 
other [kg] 

Total 
weight [kg] 

Mass 
density 
[kg/m3] 

Mass 
density 
[T/mm3] 

OS1 185157.26 20891.91 3808.87 209858.04 9087.34 9.087E-09 

OS2 97605.31 9882.37 1801.68 109289.37 8977.52 8.978E-09 

OS3 69737.43 7519.61 1370.92 78627.96 9039.89 9.040E-09 

IS1 34524.94 20891.91 3808.87 59225.72 11735.71 1.174E-08 

IS2 20617.14 9882.37 1801.68 32301.20 10718.21 1.072E-08 

IS3 11557.92 4431.82 807.98 16797.71 9942.66 9.943E-09 

 

The second load to be calculated is the wind load. The same calculation method will be applied as in 

the report of PT Structural Design & Analysis. The followed the rules that are described in the code 

NEN-EN 1991-1-4 + A1 + C2:2011/NB:2019. Many different factors are involved in determining the 

wind load, but since the same values will be used as the company PT Structural Design & Analysis 

used, the relevant factors to calculate the force can be taken from their report. As mentioned, part of 

their study was to find the maximum wind velocity at which there are no vertical tensile stresses in 

the outer column of the lighthouse. From their research, a value of 18.3 m/s was found. In the 

Eurocode, a velocity of 29.5 m/s is used to determine the maximum wind load. In the analysis here, 

the maximum wind load (based on v = 29.5 m/s) will be applied in very small steps. By analysing the 

results for every step, it is possible to find both the maximum wind velocity at which there are no 

vertical tensile stresses in the outer column and the maximum wind velocity at which the structure 

will fail. 

Essentially, only 2 parameters have to be used from their report, which are the peak velocity pressure 

qp(z), which depends on the height z, and the factor cp0,h, which is the pressure coefficient at height z. 

PT Structural Design & Analysis determined these values at every meter, and applied a force at every 

meter as well. In this study, a simplified approach will be used where the forces will only be applied at 

every floor level. Through linear interpolation, the values for qp(z) can be determined for every floor 

level. As the lighthouse is actually 63.45 meters high, there will also be forces acting on the structure 

above the columns. Therefore, qp(z) will also be determined for a height of 64 meters, and the 

resulting force will be applied at the top of the lighthouse. As the force is translated to a lower point, 

the difference in the resulting bending moment from the force should also be taken into account.  

Next, the values of cp0,h can simply be obtained from the report of PT Structural Design & Analysis, as 

only three different values are used by them. The final required parameter is the area over which the 

peak velocity pressure acts, which will be equal to the area between two floors. In addition, the 

resulting bending moment at the bottom of the structure due to the forces can be determined. The 

values are given in the table below for all relevant heights. The value of b represents the width of the 

column at the height z. 
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Table 7.5: Wind loads at different heights 

z [m] b [m] qp(z) [m] cp0,h [-] A [m2] Fwind [kN] Mwind [kNm] 

64.00 3.900 2.214 0.71 33.150 52.11 3335.03 

55.50 3.900 2.163 0.71 11.175 17.16 952.45 

52.75 4.227 2.142 0.72 13.216 20.38 1075.18 

49.75 4.584 2.119 0.72 14.286 21.79 1084.13 

46.75 4.941 2.101 0.72 15.622 23.63 1104.50 

43.70 5.303 2.077 0.72 17.011 25.44 1111.71 

40.60 5.672 2.046 0.72 18.154 26.74 1085.78 

37.50 6.041 2.020 0.72 19.939 29.00 1087.45 

34.30 6.421 1.992 0.72 21.156 30.34 1040.56 

31.10 6.802 1.953 0.72 22.733 31.97 994.27 

27.85 7.188 1.914 0.73 24.368 34.05 948.33 

24.55 7.581 1.873 0.73 25.663 35.09 861.35 

21.25 7.973 1.820 0.73 27.795 36.93 784.74 

17.85 8.377 1.761 0.73 29.170 37.51 669.47 

14.45 8.782 1.696 0.73 31.464 38.95 562.80 

10.95 9.198 1.486 0.73 33.402 36.23 396.76 

7.40 9.620 1.579 0.73 35.403 40.79 301.88 

3.80 10.048 1.284 0.73 39.041 36.59 139.06 

 

The force at every floor level can now be determined. In the model, the wind load will be applied by 

putting two forces on the edges of one side of the outer column. This causes the load to act 

perpendicularly to this side. The values of the forces that will be applied at every floor level, and the 

resulting bending moments per force, are given in the table below. 

Table 7.6: Final wind load values applied at the floor height z 

Wind force z [m] F/2 [kN] M/2 [kNm] 

w01 55.50 34.64 1922.27 

w02 52.75 10.19 537.59 

w03 49.75 10.90 542.06 

w04 46.75 11.81 552.25 

w05 43.70 12.72 555.86 

w06 40.60 13.37 542.89 

w07 37.50 14.50 543.73 

w08 34.30 15.17 520.28 

w09 31.10 15.98 497.13 

w10 27.85 17.03 474.17 

w11 24.55 17.54 430.67 

w12 21.25 18.46 392.37 

w13 17.85 18.75 334.74 

w14 14.45 19.47 281.40 

w15 10.95 18.12 198.38 

w16 7.40 20.40 150.94 

w17 3.80 18.30 69.53 
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The total wind force that is applied to the structure is equal to the sum of all F/2 values multiplied by 

2, which is equal to 575 kN. The resulting bending moment at the bottom of the lighthouse due to 

the wind forces is 17093 kNm. The values of the forces that PT Structural Design & Analysis applied 

resulted in a total force of 560 kN and a bending moment of 16207 kNm. It is clear that the forces are 

quite similar, but the total force that is applied here is slightly higher. Also, since the total bending 

moment is already higher than in the PT report, it is not necessary to add an additional bending 

moment to compensate for the transfer of the load at 64 meters to 55.5 meters. Also, it was observed 

that the company PT Structural Design & Analysis has applied the load in the form of a pressure 

profile, see the figure below. This means at every side of the column, a positive or negative pressure 

is applied. In this study, the load application will consist of just two point loads at every floor, as can 

also be seen in the figure below. This means the local effects of the pressure differences caused by 

the wind will not really be visible here. However, the global effect of the wind load will be accurately 

modelled with the load application that was used here. 

 

Figure 7.2: Pressure profile used to apply wind load in PT model (left) (PT Structural Design & Analysis bv, 2022) vs. wind load 
application in thesis model (right) 

7.3 Results comparison thesis model and PT model 

7.3.1 Dynamic analysis 
In order to simplify the analysis of the differences and similarities between the models, the models 

will be referred to as follows: the detailed model of the company PT Structural Design & Analysis will 

be referred to as ‘PT model’, while the model which was created in this thesis, where the EMM is 

used, will be referred to as ‘thesis model’. The first analysis will be of the eigenfrequencies of the 

structure, which are the frequencies at which the structure will naturally start to vibrate. The values 

are heavily dependent on the mass and stiffness of the structure. The first three eigenfrequencies 

have been determined by DIANA. Eigenfrequencies 1, 2 and 3 can be observed in the figures below. 

The first three eigenfrequencies that PT Structural have determined for their model are also given, as 

well as a table which provides an overview of the eigenfrequency values.  
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 `   

      

    
Figure 7.3: Eigenfrequencies 1 (top), 2 (middle) and 3 (bottom) of the thesis model (left) and the PT model (right) 
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Table 7.7: Eigenfrequencies 1, 2 and 3 of both models 

Model Eigenfrequency 1 [Hz] Eigenfrequency 2 [Hz] Eigenfrequency 3 [Hz] 

Thesis model 1.470 1.471 4.768 

PT model 1.946 1.946 6.595 

 

The second eigenfrequency is (almost) exactly the same as the first value, as this results in the same 

structure shape, only displaced in a different direction. Furthermore, it is clear that the 

eigenfrequencies of the thesis model are a bit lower than those of the PT model. As mentioned, the 

eigenfrequencies of a structure are dependent on its mass and stiffness. The mass of the structure in 

the PT model was based on the same report as in this study, so the total mass of the structures 

should be quite similar. The main difference between the structures is in the way that they were 

modelled. In the thesis model, the structure has a height of only 55.5 meters, whereas the structure I 

the PT model has a total height of 63.45 meters. Higher structures are generally more flexible, which 

would decrease the eigenfrequency value. However, the way that the stiffness is applied to the 

structure is quite different for the thesis model. As an orthotropic continuum damage model is used, 

one stiffness value is used for the material of the structure, which combines the stiffness values of 

the cast iron and the connections. Additionally, the floors, flanges and stiffeners are not present in 

the thesis model. Even though their effect on the structure is incorporated in the input parameters 

that were used for the EMM, it seems that the total stiffness of the structure is lower here due to 

modelling choices that were made. Nevertheless, the values are still reasonably close and from the 

shape of the structures in the figures above, it is clear that the dynamic behaviour is quite similar. 

7.3.2 Static analysis 
The second part of the comparison between the PT model and the thesis model, explores the static 

analysis of the structures. The resultant stresses, strains and displacements that occur when the load 

combination of self-weight and wind is applied to the lighthouse will be analysed. As mentioned, PT 

analysed their structure after applying the load combination of self-weight and wind. After that, the 

wind velocity was lowered until a value was reached at which there were no vertical tensile stresses 

in the outer column of the lighthouse. A similar analysis will be performed on the thesis model.  

At first, the self-weight load is applied to the structure, as this load is always present. After that, the 

maximum wind load will gradually be applied. This will be done in very small increments to enable 

acquiring accurate values of the wind loads and the associated wind velocities at some key points in 

the analysis. Figure 7.1 shows the geometry of the model and the mesh that is used. In this figure, 

the orange point loads represent the wind load that is applied to the structure. The self-weight load is 

applied in 25 steps, while 250 steps are used to apply the wind load. This results in a total of 275 load 

steps in the analysis. The iterative scheme of the loads is given in the table below.  

Table 7.8: Iterative scheme of loads in thesis model 

Load Self-weight Wind 

Iteration method Secant (Quasi-Newton) Secant (Quasi-Newton) 

Convergence norms Force Displacement Force Displacement 

Convergence tolerances 0.01 0.01 0.01 0.01 

Step size 0.04(25) 0.004(250) 

Maximum number of iterations per step 100 100 

All norms satisfied No No 
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The figure below shows the vertical stresses (σyy) that occur at the bottom of the outer column, 

resulting from the self-weight load that is applied. The load application factor is used on the x-axis, 

which ranges from 0 to 1. At a load application factor of 0, no load is applied and at a load application 

factor of 1, the load is fully applied. This point is marked with the letter A. 

 

Figure 7.4: Vertical stress σyy vs. Self-weight load application factor, measured at a node at the bottom of the outer column, 
on the side at which the wind load is applied 

The figure below shows the bottom of the lighthouse. In this figure, the orange arrows are the point 

loads of the wind load. The red dot, marked with a red circle as well, is the node where the vertical 

stresses were measured, which were shown in the previous figure. It can be seen that the node is on 

the side of where the wind load is applied. It was chosen to show the stresses in a node on this side, 

as the tensile stresses are the highest on this side due to the wind load. 

 

Figure 7.5: Node at the bottom of the lighthouse where the vertical stress σyy was measured 
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Now that the self-weight has been fully applied, the next step is to apply the wind load to the 

lighthouse. The figure below shows the vertical stresses (σyy) that occur at the bottom of the outer 

column, resulting from the wind load. The point starts from point A, as this is the point where the 

self-weight load is fully applied (as mentioned above). 

 

Figure 7.6: Vertical stress σyy vs. Wind load application factor, measured at a node at the bottom of the outer column, on the 
side at which the wind load is applied 

Six points are highlighted in the figure, named A-G. Every point describes a key moment in the 

analysis. For example, point A is the point at which the self-weight load was fully applied (as 

mentioned above). For each point, an explanation will be provided with what is happening at this 

point and what makes this an important moment in the analysis. In addition, four contour plots of the 

lighthouse will be given for each point. This will include two plots of the vertical stresses (σyy), one 

plot of the vertical strains (εyy) and a plot of the displacements in z, as the wind load is applied in the 

negative z-direction. In the second plot, the tensile vertical stresses are marked with red. 

Point A (load step 25): At this point, the self-weight load has been fully applied. No wind load is acting 

on the structure yet, so all stresses in the tower are due to its own mass. As a result, the vertical 

stresses in the column are evenly distributed, meaning they are equal at all sides for every value of y. 

The horizontal displacements are very minimal, as the self-weight only acts vertically.  

Point B (load step 121): As mentioned, the wind load is slowly being applied in 250 load steps. In this 

specific load step, the wind load is applied with a load factor of 0.384, which means only 38.4% of the 

maximum wind load is applied yet. It can be determined that this corresponds to a total force of 221 

kN. By adjusting the value of the wind velocity in the wind load calculation, the corresponding values 

of qp(z) can be obtained for all possible values of vwind. Using the new values of qp(z), the total wind 

load at every wind velocity can be obtained. According to this calculation, a wind load of 221 kN 

occurs at a wind velocity of 18.3 m/s. PT Structural Analysis & Design determined that this is the 

maximum wind velocity at which there are (almost) no vertical tensile stresses in the outer column of 

the lighthouse. As mentioned, no clear limit was specified in the PT report for the acceptable tensile 

stresses, but from the curves that they present, it can be assumed that the maximum allowable 
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tensile stresses are 0.01 MPa. By looking at the contour plots that correspond to this load step, it is 

observed that all stresses are below 0.01 MPa in the outer column, so it can be concluded that a wind 

velocity of 18.3 m/s also results in (almost) no vertical tensile stresses in the outer column of the 

thesis model. 

Point C (load step 122): After only one more load step, a total wind load of 223 kN is applied (load 

factor 0.388). From the contour plots below, it is clear that all vertical tensile stresses are still below 

0.01 MPa. However, if the load is increased any further, tensile stresses that are larger than 0.01 MPa 

will start to appear. Therefore, it can be concluded that the load that is applied at point C is actually 

the maximum wind load at which there are (almost) no vertical tensile stresses in the outer column of 

the lighthouse, according to the thesis model. The wind load of 223 kN corresponds to a wind velocity 

of 18.4 m/s. This is only slightly higher than the maximum wind velocity that was determined by the 

company PT Structural Design & Analysis. 

Point D (load step 215): The wind load on the structure keeps increasing, which means the tensile 

stresses also keep increasing. At point D, the tensile stresses in the outer column reach the tensile 

strength of the material. This means that the wind load that is applied here corresponds to the 

maximum allowable wind velocity the structure can withstand. As the wind load at this point equals 

437 kN (load factor = 0.760), the maximum wind velocity the lighthouse is able to withstand is 25.7 

m/s. 

Point E (load step 216): In the previous point, the vertical stresses reached the tensile strength of the 

material. This happened at load step 215. Point E corresponds to the next load step, which is load 

step 216. In this step, the load is increased, but the stresses are not able to exceed the strength. For 

this reason, at the locations where the stresses are high, cracks will start to appear. The locations of 

the cracks can be seen in the contour plots of the vertical strains. Cracks will not visibly appear in 

DIANA, but the local displacements become very large. As a result, the local strains become very large 

as well. By looking at the maximum displacements in z, it can be seen that the top of the column has 

a displacement of 49.38 mm. In the previous load step, this was only 37.07 mm. This means the 

displacement has increased with more than 12 mm in 1 load step, which is clearly a result of the 

cracks in the column. 

Point F (load step 234): In the next load steps, the stresses remain relatively constant. As the load 

keeps increasing, the existing cracks continue to grow and new cracks start to appear. As a result of 

the cracks, the horizontal displacements in z also increase rapidly. At some point, the program can no 

longer find converging results in the analysis as the cracks have grown too large. Point F is the point 

just before non-convergence, so the final converging load step is load step 234. At this point, the total 

wind load equals 480 kN, which corresponds to a wind velocity of 27 m/s. 

Point G (load step 275): Even though the results are no longer converging, the wind load keeps 

increasing. Point G corresponds to the moment where the wind load has been fully applied. From the 

contour plots, it is clear why the program was not able to find converging results. The cracking has 

increased even more and as a result, the shape of the lighthouse has changed drastically. The 

displacement in z at the top of the column has increased to 5647 mm, which is more than 5.6 meters.  
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a)   b)  

c)  d)  
Figure 7.7: Contour plots of vertical stresses σyy (a and b), vertical strains εyy (c) and displacements in z (d), point A in analysis  
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a)   b)  

c)  d)  
Figure 7.8: Contour plots of vertical stresses σyy (a and b), vertical strains εyy (c) and displacements in z (d), point B in analysis  
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a)   b)  

c)  d)  
Figure 7.9: Contour plots of vertical stresses σyy (a and b), vertical strains εyy (c) and displacements in z (d), point C in analysis  
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a)  b)  

c)  d)  
Figure 7.10: Contour plots of vertical stresses σyy (a and b), vertical strains εyy (c) and displacements in z (d), point D in 
analysis  
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a)   b)  

c)  d)  
Figure 7.11: Contour plots of vertical stresses σyy (a and b), vertical strains εyy (c) and displacements in z (d), point E in 
analysis  
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a)  b)  

c)  d)  
Figure 7.12: Contour plots of vertical stresses σyy (a and b), vertical strains εyy (c) and displacements in z (d), point F in 
analysis  
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a)  b)  

c)   d)  
Figure 7.13: Contour plots of vertical stresses σyy (a and b), vertical strains εyy (c) and displacements in z (d), point G in 
analysis 
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 A summary of the key points and the relevant factors is provided in the table below. 
Table 7.9: Summary of key points in thesis model analysis 

Point Load-step Load factors Fwind [kN] vwind [m/s] Description 

A 25 Self-weight: 1 
Wind: 0 

- - Self-weight fully applied 

B 121 Self-weight: 1 
Wind: 0.384 

221 18.3 Maximum wind velocity without 
vertical tensile stresses according 
to PT model 

C 122 Self-weight: 1 
Wind: 0.388 

223 18.4 Maximum wind velocity without 
vertical tensile stresses according 
to the thesis model 

D 215 Self-weight: 1 
Wind: 0.760 

437 25.7 Maximum vertical tensile stresses 
reached 

E 216 Self-weight: 1 
Wind: 0.764 

439 25.8 First cracks start to appear 

F 234 Self-weight: 1 
Wind: 0.836 

480 27.0 Last converging load step 

G 275 Self-weight: 1 
Wind: 1 

575 29.5 Wind load fully applied (non-
converging results) 

 

From the analysis of the thesis model, a few things can be concluded. First of all, the behaviour of the 

thesis model matches the PT model quite well, as a very similar value was determined for the 

maximum wind velocity at which (almost) no vertical tensile stresses appear in the outer column. This 

was 18.4 m/s for the thesis model and 18.3 m/s for the PT model. This shows that when there are 

only linear-elastic deformations, using the EMM for this structure provides similar results as when a 

detailed model is used. However, when the stresses exceed the tensile strength, plastic deformations 

will appear and cracks will start to form in the structure. As a result, structural failure occurs at a wind 

velocity of 25.8 m/s. The PT model showed that structural failure will not occur, even at the maximum 

wind velocity of 29.5 m/s. In the equivalent EMM models loaded in pure tension, that were analysed 

in chapters 5 and 6, it is clear that similar results will be obtained as for detailed models loaded in 

pure tension. However, as the values of the bed- and head-joint tensile strengths that were obtained 

are quite low, tensile stresses which are larger than the tensile strength of the material can occur 

quite quickly, even when the structure is not loaded in pure tension. As only one material is used to 

model the plates and the connections, the stiffness and strength of the material is the same at every 

location. This is not the case in the detailed models, which has a large impact on the force 

distribution within the structure. It can be concluded that using an orthotropic continuum damage 

model, such as the EMM, will provide similar results as a detailed model, when there are only linear-

elastic deformations in the structure. Once plastic deformations occur, the analysis of the thesis 

model quickly becomes unstable and the results are no longer accurate.  

7.4 Analysis structural behaviour under large compressive force 
Another analysis will be performed on the thesis model, where the gravitational acceleration will be 

increased by a factor of 20. Only the self-weight load will be applied, so the structure will be fully 

loaded in compression. By increasing the gravitational acceleration, the compressive stresses become 

very high which will shows what the structural behaviour of the model looks like when loaded with 

high compressive forces. The iterative scheme of the self-weight load that is applied in the model is 

presented in the table below.  
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Table 7.10: Iterative scheme of self-weight load in high gravity thesis model 

Iteration method Secant (Quasi-Newton) 

Convergence norms Displacement Force 

Convergence tolerances 0.01 0.01 

Step size 0.005(200) 

Maximum number of iterations per step 100 

All norms satisfied No 

 

The figure below shows the geometry of the analysed structure and the mesh that is used. The green 

arrows are shown to give a visualisation of how the self-weight load is applied to the structure. The 

mesh is exactly the same as for the model that was analysed in the previous section. An overview of 

the elements and nodes was presented in table 7.2.  

  

Figure 7.14: Geometry of analysed model (left) and the finite element mesh that was used (right) 

The figure below shows the principal compressive stresses σ3 compared to the load factor. The 

stresses σ3 present the highest compressive stresses that will occur in the structure. The stresses 

were measured in a node of section OS2. As this section has a much lower compressive strength 

compared to the other column section, it is likely that the compressive stresses will exceed the 

compressive strength in this section before this can happen in different column sections. The node in 

which the stresses were measured was chosen as the node in which the largest peak compressive 

stress occurred. The load factor is related to the factor with which the gravitational acceleration is 

multiplied. This means a load factor of 1 shows the results of the self-weight application were g = 

9.81 m/s2.  
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Figure 7.15: Principal stress σ3 vs. load factor, node of section OS2 with the largest compressive stress 

The figure below shows the bottom of the lighthouse. The red dot, marked with a red circle as well, is 

the node where the vertical stresses were measured, which were shown in the previous figure. This 

node is from section OS2 of the lighthouse. This node was chosen for showing the stresses, as the 

compressive stresses are closest to the compressive strength at this location. 

 

Figure 7.16: Node in section OS2 of the lighthouse where the principal stress σ3 was measured 

It can be observed that the compressive stresses will increase almost linearly when the load factor is 

increased. Three points are highlighted in the figure, named A-C. In these points, interesting load 

factors are applied. In point A, the load factor is equal to 1, which means the self-weight with the 

normal earth gravity. In point B, the load factor is equal to 10 and in the final point C, the load factor 

is equal to 18.6. It can be observed that point C is the final point of the curve, and no stresses are 

shown for higher load factors. When the load factor was increased to 18.7, the model became 

unstable and the results of the analysis diverged. For all three points, four contour plots of the 

lighthouse will be given: the principal stresses in vertical direction σ3, the displacements in y 

(vertical), the displacements in x and the principal stresses σ1.   

A

B

C

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20

P
ri

n
ci

p
al

 s
tr

es
s 

σ
3

[M
P

a]

Load factor [-]

Principal compressive stress σ3 vs. load factor, node of section 
OS2 with the largest compressive stress



142 
 

a)   b)  

c)   d)  
Figure 7.17: Contour plots of principal stresses in vertical direction σ3 (a), principal stresses σ1 (b), displacements in y (c) and 
displacements in x (d), point A in analysis 
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a)   b)  

c)   d)  
Figure 7.18: Contour plots of principal stresses in vertical direction σ3 (a), principal stresses σ1 (b), displacements in y (c) and 
displacements in x (d), point B in analysis 
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a)   b)  

c)   d)  
Figure 7.19: Contour plots of principal stresses in vertical direction σ3 (a), principal stresses σ1 (b), displacements in y (c) and 
displacements in x (d), point C in analysis  
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From the contour plots of the principal stresses in vertical direction σ3, it can be observed how the

compressive stresses keep increasing as the load is increased. The stresses are the highest at the

bottom of the lighthouse, as those plates have to carry the weight of the entire structure. The

displacements in y-direction are also gradually increasing during the analysis. In the final load step,

the top of the lighthouse has a total vertical displacement of 46 mm. It is interesting to see that the

out of plane displacements are also quite significant. As the load and the structure are both

symmetrical, the displacements in x-direction are out of plane displacements for plates that are

parallel to the xy-plane. In load step 186, the displacements in x are even 8 mm at some points. In the

equivalent EMM models that were analysed in chapters 5 and 6, the models loaded in compression

showed that the out of plane displacements were very close to 0 mm. The shape of lighthouse is

most likely the reason for these large displacements. The columns linearly decrease in diameter,

which means all plates are placed under an angle. As the self-weight load is applied in the y-direction,

this will result in forces on the plates in local y- and z-directions. As a result of the out of plane

displacements, tensile stresses will occur in the principal directions, σ1 and σ2. In the contour plots of

the principal stresses σ1, it was chosen to show where tensile stresses larger than 2.5 MPa appear, as

the lowest input value of the joint strengths of the outer column is 2.206 MPa. This allows a clear

overview of where the stresses exceed the tensile strength of the material. As a result, cracks start to

appear in the model, and at some point the analysis becomes unstable. This happened when a load

factor of 18.7 was applied to the model. As the failure mode of the model is not pure compression,

the compressive stresses did not reach the compressive strength of the material.

It can be concluded that the behaviour of the structure loaded in compression is mostly as expected,

as the compressive stresses will increase almost linearly. However, due to the fact that the plates are

placed under an angle, the self-weight load results in forces in the local y- and z-directions of the

plates. Out of plane displacements appear in the model, which results in tensile stresses. As the

tensile strength of the material is quite low, the stresses will exceed the strength at a certain point.

When this happens, cracks start to appear in the model and the force resistance of the structure will

decrease quickly. As a result, a load factor of 18.7 caused the model to diverge in this case.  



146 
 

8 Conclusion 
The research question of this project was: 

How can an orthotropic continuum damage model be used to reduce the complexity of the structural 

analysis of a detailed finite element model for a cast iron plate structure? 

By dividing the research question into three sub-questions, an answer to the question has been 

obtained. The following things can be concluded from the project: 

- It is possible to obtain the input parameters that are required for an orthotropic continuum 

damage model, by creating detailed models of small plate structures, applying different 

displacement loads and analysing the force-displacement curves that result from the 

different load cases. In this project, the Engineering Masonry Model (EMM) was used, which 

covers tensile, shear and compressive failure modes. Therefore, the load cases that had to be 

considered for the detailed models of the small plate structures were tension, shear and 

compression  

- By applying the obtained parameters in equivalent EMM models of the small plate structures 

and performing the exact same analyses on these models, the results of the detailed models 

can be compared to the results of the equivalent EMM models. From this comparison, it was 

concluded that the models mostly provided similar results, but some of the parameters had 

to be calibrated to increase the similarity of the equivalent EMM models 

- When the size of the structure was increased, the failure modes became different for 

compression and shear, which resulted in quite a difference in strength and ultimate strain 

between the small and large structures. For the tension models, the failure mode remained 

the same but the stiffness of the structure was lower for the larger structures, which is 

caused by the difference in the ratio of plates/connections of the structure 

- When the input parameters, that were obtained from the analyses of detailed models of 

small plate structures, were used in equivalent EMM models of the larger structures, it was 

observed that there were quite some differences in the analysis results. As the failure modes 

of the small structures were considered when obtaining the input parameters, and the failure 

modes of the large structures were not exactly the same for the load cases of compression 

and shear, the results of the equivalent EMM models were not very similar to the results of 

the detailed models for these load cases 

- After calibrating the input parameters to match the failure modes of the large structures and 

using these new values in equivalent EMM models of the large structures, the comparison of 

the results showed that the results were mostly similar again. It can be concluded that the 

structure size is very important for the accuracy of the equivalent EMM models, as the failure 

mode might change when the structure size is increased 

- After using the input parameters that were obtained from the results of the large detailed 

models in equivalent EMM models of the large structures, there were still some parameters 

that had to be calibrated to increase the similarity of the results. It can be concluded that, if 

this method is used to simplify the complexity of a detailed finite element model, one should 

use the obtained input parameters in equivalent models, as the comparison between the 

detailed models and equivalent models shows which parameters need to be calibrated and in 

what magnitude. From the results of this study, it is clear that parameters will have to be 

calibrated when different loading directions provide different values for certain input 

parameters. In this case, the tension and compression models resulted in calibration of 

several parameters, as there were multiple values for the Ey and Gf,tension. As only one value 

could be used, the average value was used and the other relevant parameters were calibrated 
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- When the final input parameters were used in an orthotropic continuum damage model for 

the structure of lighthouse the ‘Lange Jaap’, it was concluded that very similar results were 

obtained as from the detailed model, as long as the stress values were low, such that only 

linear-elastic deformations occurred 

- The maximum wind velocity at which (almost) no vertical tensile stresses occur in the 

lighthouse is equal to 18.4 m/s in the thesis model and 18.3 m/s in the PT model, which is 

almost exactly the same 

- However, due to the low tensile strength of the material in the thesis model, the stresses 

exceeded the strength before the wind load was fully applied, which caused plastic 

deformations to occur. It can be concluded that once plastic deformations occur, the analysis 

of the thesis model quickly becomes unstable and the results are no longer accurate 

- From the analysis of the high gravity thesis model, the behaviour of the structure loaded in 

compression was mostly as expected, as the compressive stresses increases almost linearly 

with the load factor. However, due to the fact that the plates are placed under an angle, the 

self-weight load results in out of plane displacements, which cause tensile stresses in the 

structure. It can be concluded that the low tensile strength of the orthotropic continuum 

damage model causes quite some problems in the analyses of the structure, as this allows 

cracks to form quite quickly, even when the tensile stresses are still relatively small 

The answer to the main research question is as follows: 

- When using an orthotropic continuum damage model, such as the EMM, only small detailed 

models of the unit structure size that include the most realistic failure modes have to be 

analysed, instead of a detailed model of the entire structure. It can be concluded that this can 

significantly reduce the total modelling time 

- The geometry of the cast iron plate structure was simplified, as the flanges and stiffeners 

were not included in the model. As a result, it is possible to use regular curved shell elements 

instead of structural solids. This makes it very easy to create models of very large structures 

- As regular curved shell elements were used, due to the simplification of the geometry, a 

much larger element size can be chosen which results in a much lower amount of elements 

and nodes compared to a detailed model. Fewer elements and nodes means the analysis 

time of the model becomes shorter. It can be concluded that using an orthotropic continuum 

damage model, such as the EMM, can significantly reduce the total running time of the 

analysis of large cast iron plate structures, as shell elements can be used 

Finally, as the running time of the finite element model is reduced significantly when an orthotropic 

continuum damage model is used, it becomes very valuable to create such a model when many 

different analyses have to be performed, even though finding correct input parameters for the model 

might take some time. This aligns perfectly to the case study of the lighthouse structure, where the 

effectiveness of different kinds of strengthening solutions need to be studied. As mentioned, there is 

quite some damage to the structure and the strength of the structure no longer meets the 

requirements of the Eurocode. Many different analyses should be made of the lighthouse, where 

each model has a different strengthening solution applied. By using an orthotropic continuum 

damage model, the running time of the finite element model is reduced and making many different 

analyses of the finite element model can be achieved in a much shorter time period.  
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9 Recommendations 
It is possible to use an orthotropic continuum damage model and it could eventually become a 

profitable method of modelling large plate structures. However, from the conclusion of this project, it 

is clear that there are still some limitations to modelling with this method, which have to be taken 

into account. The results of the thesis model show that when there are only linear-elastic 

deformations, the results of a finite element model in which an orthotropic continuum damage 

model is used for the cast iron plate structure, are very similar to the results of a detailed finite 

element model of the same structure.  

As the maximum wind-load where there were almost no tensile stresses in the structure had to be 

found from the thesis model, all stresses were quite low, which resulted in linear-elastic deformations 

only. For these types of research questions, using an orthotropic continuum damage model can 

provide answers to the questions quickly due to the fast running time of the analysis. However, it also 

takes quite some time to convert all material properties of detailed models into input parameters of 

an orthotropic continuum damage model, as small detailed models still have to be analysed. The 

results of this project can be used to develop a method which speeds up this process. The total 

working time is equal to the time spent on obtaining the correct input parameters, creating the 

model, running time of the model and analysing the results. Only when the total working time 

becomes lower for the method in which an orthotropic continuum damage model is used compared 

to the regular method where a detailed model is used for the finite element model of the structure, it 

becomes profitable to use this method in the structural analysis.  

When someone would like to use this method to analyse a similar structure as the cast iron plate 

structure of lighthouse that was analysed here, the following things are recommended:  

- Only make detailed models of a unit structure size. The unit structure size should have the 

failure mode which is expected in the model of the entire structure. When comparing the 

structure size of the large detailed shear models and the head-joint tension models, it is clear 

that this unit structure size does not need to be the same for all load cases 

- From the results of the equivalent EMM models, it is clear that adjustments are always 

necessary to some of the obtained parameters. To ensure a more accurate structural 

behaviour, it is recommended to make equivalent models of the unit structure size, before 

using the obtained input parameters in a finite element models of the entire structure. By 

testing the obtained input parameters for the orthotropic continuum damage model in 

equivalent EMM models, it becomes clear which parameters should be adjusted. As the 

equivalent EMM models are very easy to make and the running time of the analyses is very 

small, this can increase the accuracy of your model quite quickly 

- In this study, the columns were divided into three sections, so a total of six different plate 

sizes had to be used in the detailed finite element models. The number of plate sizes that is 

considered when obtaining the input parameters, heavily impacts the total working time and 

the accuracy of the final model. When the working time is of higher importance, use only one 

or maybe just a few different plate sizes. When accuracy is of higher importance, use a larger 

amount of different plate sizes 

It is also possible to obtain input parameters for the model in a different way. When the plates are 

very small, it might be possible to create real small structures and apply the different load cases in 

actual test set-ups. As the input parameters would then be based on the actual, real life behaviour of 

the structure, the input parameters that are obtained from these results will most likely result in even 

more accurate results when used in a finite element model.  
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Due to the simplification of the geometry, it was possible to use shell elements instead of structural 

solids, which resulted in much larger elements. This means two simplifications were made in the 

process of creating equivalent models of the cast iron plate structures, in the geometry and in the 

element type. A study can be performed to see what the effectiveness would be of just simplifying 

the geometry, by still using structural solids in the models. This would also show what the effect is of 

using shell elements instead of structural solids. 

Additionally, in the equivalent EMM model of the lighthouse (thesis model), some more 

simplifications were made. The floors were modelled by using tyings between the columns, so only 

the global effect of the floors on the structure were included in the model. Also, the company PT 

Structural Analysis & Design used a pressure profile to apply the wind load, while point loads were 

used in the thesis model. For both simplifications, it could be studied how the results would change if 

the more complex situation was applied instead. This would mean the local effects are also included 

in the finite element model, which might have influence of the results of the analyses. 

Finally, based on the finite element analysis results of the equivalent EMM lighthouse model, it is 

clear that tension is a large problem for the cast iron plates. Due to their low tensile strength and 

brittle behaviour in tension, cracks will start to form in the plates when tensile stresses appear and 

the structure quickly becomes unstable. As cracks have already started to form in the plates of 

lighthouse the Lange Jaap, it is recommended that the strengthening solution focuses on ensuring 

that tension will no longer appear in the plates. One way of doing this could be by introducing 

additional compressive stresses into the plates, by applying prestressing tendons to the structure. 

Prestressing is most commonly used in concrete structures, as concrete has a very low tensile 

strength. By applying compressive stress in advance, the amount of tensile stresses in the structure 

are reduced. However, it is also possible to apply similar stresses to existing structures by using 

prestressing tendons. From the equivalent EMM model of the lighthouse where the gravity was 

increased, it became apparent that these stresses should be in the local vertical direction of the 

plates, not the global vertical direction, otherwise tensile stresses still occur due to out of plane 

displacements. Therefore, it has to be ensured that the tendons are placed in the same line as the 

cast iron plates. 
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A. List of names of all analysed models 
In this report, results will be presented of many different finite element models. A table is presented 

below in order to have a clear overview of all models. The table provides a description of each model 

and how the model will be named. The names of the models are based on the column section, the 

type of model, the loading condition, the size of the structure and for some cases important input 

parameters are included in the name as well. The terms in the names were chosen such that they are 

relatively short, but it should also still be possible to deduce the most important properties of the 

model from the name. The different column sections are: IS1, IS2, IS3, OS1, OS2 and OS3. In the table 

below, OS3 is used as an example for the model names.  

Table A.1: Overview of different model names and their description 

Model description Model name 

Detailed model, loaded in tension on 
the head-joint, small structure 

OS3_det_ten_head_small 

Detailed model, loaded in tension on 
the bed-joint, small structure 

OS3_det_ten_bed_small 

Detailed model, loaded in 
compression, small structure 

OS3_det_comp_small 

Detailed model, loaded in shear, small 
structure, compressive stress in plate 
σ = 0.5 MPa 

OS3_det_shear_small_σ0.5 

Equivalent EMM model, loaded in 
tension on the bed-joint, small 
structure, where Ey,tension and Gft,bed are 
used 

OS3_eqEMM_ten_bed_small_Ey,tension_Gft,bed 

Equivalent EMM model, loaded in 
compression, small structure, where 
Ey,tension is used 

OS3_eqEMM_comp_small_Ey,tension 

Equivalent EMM model, loaded in 
tension on the bed-joint, small 
structure, where Ey,average and Gft,bed are 
used 

OS3_eqEMM_ten_bed_small_Ey,average_Gft,bed 

Equivalent EMM model, loaded in 
compression, small structure, where 
Ey,average is used 

OS3_eqEMM_comp_small_Ey,average 

Equivalent EMM model, loaded in 
tension on the head-joint, small 
structure, where Gft,bed is used 

OS3_eqEMM_ten_head_small_Gft,bed 

Equivalent EMM model, loaded in 
tension on the head-joint, small 
structure, where Gft,average is used 

OS3_eqEMM_ten_head_small_Gft,average 

Equivalent EMM model, loaded in 
tension on the bed-joint, small 
structure, where Ey,average and Gft,average 
are used 

OS3_eqEMM_ten_bed_small_ Ey,average _Gft,average 

Equivalent EMM model, loaded in 
shear, small structure, compressive 
stress in plate σ = 0.5 MPa, where the 
mesh consists of one element 

OS3_eqEMM_shear_small_σ0.5_one_el 
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Equivalent EMM model, loaded in 
shear, small structure, compressive 
stress in plate σ = 0.5 MPa, where the 
mesh consists of multiple elements 

OS3_eqEMM_shear_small_σ0.5_mult_el 

Detailed model, loaded in tension on 
the bed-joint, large structure 

OS3_det_ten_bed_large 

Equivalent EMM model, loaded in 
tension on the bed-joint, large 
structure, where EMM parameters of 
sub-question 1 (sq1) are used 

OS3_eqEMM_ten_bed_large_ sq1_parameters 

Detailed model, loaded in 
compression, large structure 

OS3_det_comp_large 

Equivalent EMM model, loaded in 
compression, large structure, where 
EMM parameters of sub-question 1 
(sq1) are used 

OS3_eqEMM_comp_large_ sq1_parameters 

Detailed model, loaded in shear, large 
structure, compressive stress in plate 
σ = 0.5 MPa 

OS3_det_shear_large_σ0.5 

Equivalent EMM model, loaded in 
shear, large structure, compressive 
stress in plate σ = 0.5 MPa, where the 
mesh consists of 1 element and the 
EMM parameters of sub-question 1 
(sq1) are used 

OS3_eqEMM_shear_large_σ0.5_one_el_sq1_parameters 

Equivalent EMM model, loaded in 
shear, large structure, compressive 
stress in plate σ = 0.5 MPa, where the 
mesh consists of multiple elements 
and the EMM parameters of sub-
question 1 (sq1) are used 

OS3_eqEMM_shear_large_σ0.5_mult_el_sq1_parameters 

Equivalent EMM model, loaded in 
tension on the bed-joint, large 
structure, where the final EMM 
parameters are used 

OS3_eqEMM_ten_bed_large_ final_parameters 

Equivalent EMM model, loaded in 
tension on the head-joint, small 
structure (only one structure size will 
be analysed for head-joint tension 
models), where the final EMM 
parameters are used 

OS3_eqEMM_ten_head_small_ final_parameters 

Equivalent EMM model, loaded in 
compression, large structure, where 
the final EMM parameters are used 

OS3_eqEMM_comp _large_ final_parameters 

Equivalent EMM model, loaded in 
shear, large structure, compressive 
stress in plate σ = 0.5 MPa, where the 
mesh consists of multiple elements 
and the final EMM parameters are 
used 

OS3_eqEMM_shear_large_σ0.5_ final_parameters 
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Detailed model of the full lighthouse, 
made by the company PT Structural 
Analysis & Design 

PT model 

Equivalent EMM model of the full 
lighthouse, created for this thesis, 
where the final EMM parameters are 
used, and the load combination of 
self-weight and wind is applied 

Thesis model 

Equivalent EMM model of the full 
lighthouse, created for this thesis, 
where the final EMM parameters are 
used, only the self-weight load is 
applied, and the gravitational 
acceleration is multiplied with a factor 
of 20 in the model to observe the 
behaviour after the compressive 
stresses exceed the compressive 
strength 

High gravity thesis model 
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B. Results remaining detailed finite element models chapter 4 
In this appendix, there are no contour plots in the results presentation, as the failure modes of these 

structures are identical to those of the structures of sections OS3 & IS1. 

a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 3131 

 PY15L 40 

 TE12L 16 

 TP18L 46 

 Q24IF 276 

d) Total number of nodes 6689 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.008(125) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure B.1: Results of finite element analysis IS2_det_ten_head_small. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)   
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 3028 

 TP18L 12 

 Q24IF 296 

d) Total number of nodes 6432 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.008(125) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure B.2: Results of finite element analysis IS3_det_ten_head_small. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)  
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a)   

b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 8637 

 PY15L 1407 

 TE12L 1129 

 TP18L 430 

 Q24IF 220 

d) Total number of nodes 14962 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure B.3: Results of finite element analysis OS1_det_ten_head_small. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)  
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a)   

b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 4757 

 PY15L 132 

 TE12L 88 

 TP18L 192 

 Q24IF 164 

d) Total number of nodes 8805 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.005(200) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure B.4: Results of finite element analysis OS2_det_ten_head_small. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e) 
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 7108 

 PY15L 3908 

 TE12L 3159 

 TP18L 844 

 Q24IF 420 

d) Total number of nodes 16219 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.008(125) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure B.5: Results of finite element analysis IS2_det_ten_bed_small. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)  
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 6303 

 PY15L 4769 

 TE12L 3389 

 TP18L 637 

 Q24IF 424 

d) Total number of nodes 15359 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.005(200) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure B.6: Results of finite element analysis IS3_det_ten_bed_small. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)  
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 9094 

 PY15L 1032 

 TE12L 769 

 TP18L 454 

 Q24IF 436 

d) Total number of nodes 17423 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure B.7: Results of finite element analysis OS1_det_ten_bed_small. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)  
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 9094 

 PY15L 1032 

 TE12L 769 

 TP18L 454 

 Q24IF 436 

d) Total number of nodes 17423 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure B.8: Results of finite element analysis OS2_det_ten_bed_small. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)  
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 2952 

 PY15L 6433 

 TE12L 5514 

 TP18L 901 

d) Total number of nodes 9752 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.005(200) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure B.9: Results of finite element analysis IS2_det_comp_small. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)   
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 3880 

 PY15L 2862 

 TE12L 2003 

 TP18L 568 

d) Total number of nodes 8657 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.005(200) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure B.10: Results of finite element analysis IS3_det_comp_small. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)  
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a)   

b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 8553 

 PY15L 898 

 TE12L 597 

 TP18L 240 

d) Total number of nodes 14351 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.005(200) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure B.11: Results of finite element analysis OS1_det_comp_small. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)  
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a)   

b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 4560 

 PY15L 392 

 TE12L 326 

 TP18L 250 

d) Total number of nodes 8609 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.005(200) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure B.12: Results of finite element analysis OS2_det_comp_small. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)  
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 7108 

 PY15L 3908 

 TE12L 3159 

 TP18L 844 

 Q24IF 420 

d) Total number of nodes 16219 

 

 Load Compression Translation 

 Iteration method Newton-Raphson Newton-Raphson 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.008(125) 

 Maximum number of iterations per step 100  

e) All norms satisfied No  
Figure B.13: Results of finite element analysis IS2_det_shear_small_σ0.5, σ1 & σ2. a-e: structure (a), finite element mesh (b), 
force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)   
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 6303 

 PY15L 4769 

 TE12L 3389 

 TP18L 637 

 Q24IF 424 

d) Total number of nodes 15359 

 

 Load Compression Translation 

 Iteration method Newton-Raphson Newton-Raphson 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.008(125) 

 Maximum number of iterations per step 100  

e) All norms satisfied No  
Figure B.14: Results of finite element analysis IS3_det_shear_small_σ0.5, σ1 & σ2. a-e: structure (a), finite element mesh (b), 
force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)  
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 17182 

 PY15L 2366 

 TE12L 1772 

 TP18L 649 

 Q24IF 670 

d) Total number of nodes 29317 

 

 Load Compression Translation 

 Iteration method Newton-Raphson Newton-Raphson 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.008(125) 

 Maximum number of iterations per step 100  

e) All norms satisfied No  
Figure B.15: Results of finite element analysis OS1_det_shear_small_σ0.5, σ1 & σ2. a-e: structure (a), finite element mesh 
(b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)  
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 9094 

 PY15L 1032 

 TE12L 769 

 TP18L 454 

 Q24IF 436 

d) Total number of nodes 17423 

 

 Load Compression Translation 

 Iteration method Newton-Raphson Newton-Raphson 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.008(125) 

 Maximum number of iterations per step 100  

e) All norms satisfied No  
Figure B.16: Results of finite element analysis OS2_det_shear_small_σ0.5, σ1 & σ2. a-e: structure (a), finite element mesh 
(b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e)  
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C. Results equivalent EMM models of chapter 5 

a)  c)  d)  

b)  e)  f)  

g)   

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 20 

h) Total number of nodes 30 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure C.1: Results of finite element analysis OS3_eqEMM_ten_head_small_Gft,bed. a-i: structure (a), finite element mesh (b), 
displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-
displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  c)  d)  

b)  e)  f)  

g)   

 Average element size [mm] 210.2x221.25 

 Number of elements Q20SH 40 

h) Total number of nodes 54 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure C.2: Results of finite element analysis IS1_eqEMM_ten_head_small_Gft,bed. a-i: structure (a), finite element mesh (b), 
displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-
displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  c)  d)  

b)  e)  f)  

g)   

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 20 

h) Total number of nodes 30 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure C.3: Results of finite element analysis OS3_eqEMM_ten_head_small_Gft,average. a-i: structure (a), finite element mesh 
(b), displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-
displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  c)  d)  

b)  e)  f)  

g)   

 Average element size [mm] 210.2x221.25 

 Number of elements Q20SH 40 

h) Total number of nodes 54 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure C.4: Results of finite element analysis IS1_eqEMM_ten_head_small_Gft,average. a-i: structure (a), finite element mesh 
(b), displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), force-
displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  c)  d)  

b)  e)  f)  

g)  

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 40 

h) Total number of nodes 54 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure C.5: Results of finite element analysis OS3_eqEMM_ten_bed_small_Ey,average_Gft,average. a-i: structure (a), finite element 
mesh (b), displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), 
force-displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  b)  

c)  

 Average element size [mm] 210.2x221.25 

 Number of elements Q20SH 80 

h) Total number of nodes 102 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
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f)  g)  

h)  i)  
Figure C.6: Results of finite element analysis IS1_eqEMM_ten_bed_small_Ey,average_Gft,average. a-i: structure (a), finite element 
mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at 
point A (f), displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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D. Results remaining detailed finite element models chapter 6  
In this appendix, there are no contour plots in the results presentation, as the failure modes of these 

structures are identical to those of the structures of sections OS3 & IS1. 

a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 34314 

 PY15L 4765 

 TE12L 3483 

 TP18L 1211 

 Q24IF 1790 

d) Total number of nodes 58543 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.008(125) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure D.1: Results of finite element analysis OS1_det_ten_bed_large. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e) 
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 18184 

 PY15L 2040 

 TE12L 1487 

 TP18L 918 

 Q24IF 1144 

d) Total number of nodes 34833 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.008(125) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure D.2: Results of finite element analysis OS2_det_ten_bed_large. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e) 
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 7240 

 PY15L 3768 

 TE12L 2833 

 TP18L 766 

 Q24IF 420 

d) Total number of nodes 16204 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.00625(160) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure D.3: Results of finite element analysis IS2_det_comp_large. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e) 
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 6854 

 PY15L 3009 

 TE12L 2181 

 TP18L 551 

 Q24IF 424 

d) Total number of nodes 15093 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.00625(160) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure D.4: Results of finite element analysis IS3_det_comp_large. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e) 
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a)  b)   

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 34335 

 PY15L 4709 

 TE12L 3443 

 TP18L 1197 

 Q24IF 1790 

d) Total number of nodes 58537 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.00625(160) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure D.5: Results of finite element analysis OS1_det_comp_large. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e) 
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a)  b)   

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 18382 

 PY15L 1693 

 TE12L 1164 

 TP18L 931 

 Q24IF 1144 

d) Total number of nodes 34869 

 

 Iteration method Newton-Raphson 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.00625(160) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
Figure D.6: Results of finite element analysis OS2_det_comp_large. a-e: structure (a), finite element mesh (b), force-
displacement curve (c), overview elements and nodes (d), overview iterative scheme (e) 
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 46358 

 PY15L 46362 

 TE12L 36070 

 TP18L 8042 

 Q24IF 3900 

d) Total number of nodes 112105 

 

 Load Compression Translation 

 Iteration method Newton-Raphson Newton-Raphson 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.008(125) 

 Maximum number of iterations per step 100  

e) All norms satisfied No  
Figure D.7: Results of finite element analysis IS2_det_shear_large_σ0.5, σ1 & σ2. a-e: structure (a), finite element mesh (b), 
force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e) 
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a)  b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 43842 

 PY15L 39949 

 TE12L 26954 

 TP18L 6223 

 Q24IF 4024 

d) Total number of nodes 103305 

 

 Load Compression Translation 

 Iteration method Newton-Raphson Newton-Raphson 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.008(125) 

 Maximum number of iterations per step 100  

e) All norms satisfied No  
Figure D.8: Results of finite element analysis IS3_det_shear_large_σ0.5, σ1 & σ2. a-e: structure (a), finite element mesh (b), 
force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e) 
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a)   

b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 51430 

 PY15L 5929 

 TE12L 4012 

 TP18L 1547 

 Q24IF 2450 

d) Total number of nodes 86686 

 

 Load Compression Translation 

 Iteration method Newton-Raphson Newton-Raphson 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.008(125) 

 Maximum number of iterations per step 100  

e) All norms satisfied No  
Figure D.9: Results of finite element analysis OS1_det_shear_large_σ0.5, σ1 & σ2. a-e: structure (a), finite element mesh (b), 
force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e) 

  

0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2 2.5 3

Fo
rc

e 
[k

N
]

Displacement [mm]

Shear force-displacement, large structure OS1

OS1_det_shear_large_σ0.5

OS1_det_shear_large_σ1

OS1_det_shear_large_σ2



186 
 

a)   

b)  

c)  

 Average element size [mm] 20x20 

 Number of elements HX24L 26233 

 PY15L 3413 

 TE12L 2289 

 TP18L 1445 

 Q24IF 1636 

d) Total number of nodes 51037 

 

 Load Compression Translation 

 Iteration method Newton-Raphson Newton-Raphson 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.2(5) 0.008(125) 

 Maximum number of iterations per step 100  

e) All norms satisfied No  
Figure D.10: Results of finite element analysis OS2_det_shear_large_σ0.5, σ1 & σ2. a-e: structure (a), finite element mesh 
(b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e) 
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E. Results equivalent EMM models with final parameters, section 6.5 

a)  b)  

c)  

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 80 

d) Total number of nodes 102 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
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f)  g)  

h)  i)  
Figure E.1: Results of finite element analysis OS3_eqEMM_ten_bed_large_ final_parameters. a-i: structure (a), finite element 
mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at 
point A (f), displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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a)  b)  

c  

 Average element size [mm] 210.2x221.25 

 Number of elements Q20SH 80 

h) Total number of nodes 102 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
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f)  g)  

h)  i)  
Figure E.2: Results of finite element analysis IS1_eqEMM_ten_bed_large_final_parameters. a-i: structure (a), finite element 
mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at 
point A (f), displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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a)  c)  d)  

b)  e)  f)  

g)   

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 20 

h) Total number of nodes 30 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure E.3: Results of finite element analysis OS3_eqEMM_ten_head_small_final_parameters. a-i: structure (a), finite 
element mesh (b), displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point 
D (f), force-displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  c)  d)  

b)  e)  f)  

g)   

 Average element size [mm] 210.2x221.25 

 Number of elements Q20SH 40 

h) Total number of nodes 54 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
Figure E.4: Results of finite element analysis IS1_eqEMM_ten_head_small_final_parameters. a-i: structure (a), finite element 
mesh (b), displacement at point A (c), displacement at point B (d), displacement at point C (e), displacement at point D (f), 
force-displacement curve (g), overview elements and nodes (h), overview iterative scheme (i) 
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a)  b)  

c)  

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 80 

d) Total number of nodes 102 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

e) All norms satisfied No 
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f)  g)  

h)  i)  
Figure E.5: Results of finite element analysis OS3_eqEMM_comp_large_ final_parameters. a-i: structure (a), finite element 
mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at 
point A (f), displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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a)  b)  

c)  

 Average element size [mm] 210.2x221.25 

 Number of elements Q20SH 80 

h) Total number of nodes 102 

 

 Iteration method Secant (Quasi-Newton) 

 Convergence norms Displacement Force 

 Convergence tolerances 0.01 0.01 

 Step size 0.01(100) 

 Maximum number of iterations per step 100 

i) All norms satisfied No 
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f)  g)  

h)  i)  
Figure E.6: Results of finite element analysis IS1_eqEMM_comp_large_final_parameters. a-i: structure (a), finite element 
mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), displacement at 
point A (f), displacement at point B (g), displacement at point C (h), displacement at point D (i) 
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a)  

b)  

c)  

 Average element size [mm] 194x187.5 

 Number of elements Q20SH 120 

h) Total number of nodes 144 

 

 Load Compression Translation 

 Iteration method Secant (Quasi-Newton) Secant (Quasi-Newton) 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.1(10) 0.01(100) 

 Maximum number of iterations per step 100 100 

i) All norms satisfied No No 
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f)  g)  

h)  i)  
Figure E.7: Results of finite element analysis OS3_eqEMM_shear_large_σ0.5_mult_el_final_parameters. a-i: structure (a), 
finite element mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), strain 
at point A (f), strain at point B (g), strain at point C (h), strain at point D (i) 
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a)  

b)  

c)  

 Average element size [mm] 210.2x221.25 

 Number of elements Q20SH 510 

h) Total number of nodes 558 

 

 Load Compression Translation 

 Iteration method Secant (Quasi-Newton) Secant (Quasi-Newton) 

 Convergence norms Force Displacement Force Displacement 

 Convergence tolerances 0.01 0.01 0.01 0.01 

 Step size 0.1(10) 0.01(100) 

 Maximum number of iterations per step 100 100 

i) All norms satisfied No No 
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f)  g)  

h)  i)  
Figure E.8: Results of finite element analysis IS1_eqEMM_shear_large_σ0.5_mult_el_final_parameters. a-i: structure (a), 
finite element mesh (b), force-displacement curve (c), overview elements and nodes (d), overview iterative scheme (e), strain 
at point A (f), strain at point B (g), strain at point C (h), strain at point D (i) 

 


	Preface
	Summary
	1 Introduction
	1.1 Background problem
	1.2 Scope and research questions
	1.3 Methodology
	1.4 Thesis outline

	2 Case study: lighthouse the Lange Jaap
	2.1 Description of the case study
	2.2 Dividing the columns into different sections
	2.3 The material properties of cast iron

	3 Numerical approach for detailed and equivalent EMM models
	3.1 Detailed models
	3.1.1 Mesh size and elements
	3.1.2 Constitutive law for cast iron
	3.1.3 Constitutive law for connections

	3.2 Equivalent EMM models
	3.2.1 Mesh size and elements
	3.2.2 Engineering masonry model (EMM) for cast iron plate structure


	4 Definition of EMM parameters based on results of detailed models
	4.1 Tension loading
	4.2 Compression loading
	4.3 Shear loading

	5 Verification and calibration of EMM parameters
	5.1 Bed-joint tension and compression loading
	5.2 Head-joint tension loading
	5.3 Shear loading
	5.4 Overview parameters for all sections

	6 Analysing the size effect
	6.1 Tension loading
	6.2 Compression loading
	6.3 Shear loading
	6.4 Overview final EMM parameters for all sections
	6.5 Final comparison detailed & equivalent EMM models

	7 Analysis of equivalent EMM lighthouse model
	7.1 Model definitions
	7.2 Calculation of the forces
	7.3 Results comparison thesis model and PT model
	7.3.1 Dynamic analysis
	7.3.2 Static analysis

	7.4 Analysis structural behaviour under large compressive force

	8 Conclusion
	9 Recommendations
	References
	A. List of names of all analysed models
	B. Results remaining detailed finite element models chapter 4
	C. Results equivalent EMM models of chapter 5
	D. Results remaining detailed finite element models chapter 6
	E. Results equivalent EMM models with final parameters, section 6.5

