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Dit proefschrift is goedgekeurd door de promotoren:
Prof.dr.ir. J. Hellendoorn
Prof.dr.ir. B. De Schutter

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof.dr.ir. J. Hellendoorn Technische Universiteit Delft, promotor
Prof.dr.ir. B. De Schutter Technische Universiteit Delft,promotor
Prof.dr. E.F. Camacho Technische School Seville
Prof.dr.ir. M.P.C. Weijnen Technische Universiteit Delft
Prof.dr.ir. M.B.M. de Koster Erasmus Universiteit Rotterdam
Prof.dr.ir. G. Lodewijks Technische Universiteit Delft
Ir. P. Jansz VERBpeter (ex Siemens)

This thesis has been completed in partial fulfillment of the requirements of the Dutch In-
stitute for Systems and Control (DISC) for graduate studies. The research described in this
thesis was supported by the VIDI project “Multi-Agent Control of Large-Scale Hybrid Sys-
tems” (DWV.6188) of the Dutch Technology Foundation STW, Applied Science division of
NWO and the Technology Programme of the Dutch Ministry of Economic Affairs.

TRAIL Thesis Series T2010/1, the Netherlands TRAIL Research School
P.O. Box 5017
2600 GA Delft
The Netherlands
T: +31 (0) 15 278 6046
E: info@rstrail.nl

Published and distributed by: A.N. Tarău
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Chapter 1

Introduction

In this chapter we first present the motivation for the research addressed in this thesis. Next,
we introduce the framework that we focus on together with thescope of this research. Fi-
nally, we give a short overview of the applications considered in this thesis and the main
contributions.

1.1 Motivation

Transportation systems such as conveyor systems [55], traffic systems [15, 44], distribution
systems [9, 49, 59], and others have always had and will continue to have a major impact
on both our personal lives and society as a whole. From the earliest times we have relied
on transportation systems to carry bulk resources, to get usto school or work, or to travel
around the world. We have gone from horse-drawn carts and simple bicycles to high speed
trains and space shuttles. What used to be considered a luxury (e.g., owning a car) is now
a necessity. Also, there is an increasing need in developingsafe, efficient, and reliable
automated systems for transporting and sorting any kind of materials (see, e.g., [64] for
systems that transport and sort fruits and vegetables).

We live in a time of continually increasing dependency on modern transportation sys-
tems. Also, due to the increasing need to transport and move faster, farther, and cheaper, we
have become major users of transportation systems. Hence, the combination of the contin-
uously increasing need for reduction of cost of the transport industry and rise of low-cost
carriers requires a cost effective operation of these automated systems.

Let us now consider the applications that we focus on in this thesis, namely the postal
automation in mail sorting centers and baggage handling in airports. One can notice during
the last decades a considerable increase in the volume of magazines, catalogs, and plastic
wrapped mail items that have to be handled by mail sorting centers. In the earliest times
the process of sorting the mail involved a series of operations with human hands at work
every step of the way. This manual process consumes a lot of time and human energy.
Therefore, nowadays, state-of-the-art mail sorting centers are equipped with dedicated mail
sorting machines in order to be able to handle the large volumes of mail. A similar need for
automatization occurred also in airports where the continuing growth of the airport traffic
made the manual operations of handling the baggage too expensive. Moreover, even the
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2 1 Introduction

conventional sorters based on conveyor belts [10] are becoming too slow in large and busy
airports. Note that for large and busy airports, the baggagehandling system is one of the
most important factors that determines the airport’s efficiency and reliability. Therefore,
high speed transportation is required. To this aim, state-of-the-art baggage handling systems
handle the baggage in an automated way using fast individualvehicles. These vehicles
transport the bags at high speeds on a network of tracks [91].

We conclude the motivation for this research with the following remark. When the
transportation demand continues to grow and the operation of transportation systems gets
closer to its limits, one can invest in additional infrastructure, carriers, or sorting systems.
As an alternative to solve this problem, in this research we investigate, develop, and design
a more efficient operation of the considered transportationsystems by employing state-of-
the-art control methods [8] and optimization techniques [61] that also use domain specific
knowledge.

1.2 Framework and scope of the thesis

In this thesis we focus on a specific class of transportation systems, characterized by materi-
als1 being processed while they are transported by conveyor systems or other transportation
means2 such as sorting machines, baggage handling, and distribution systems. These trans-
portation systems have a common modeling framework since they are dynamic systems that
exhibit both continuous and discrete dynamics. Hence, thisclass of transportation systems
can be modeled as hybrid systems [58, 90]. Let us take as example the parts of these sys-
tems that consist of conveyor belts. Then the transport of materials on the conveyors can be
modeled as a continuous process, characterized by, e.g., the speed of the conveyor, which
can in principle be adjusted continuously. Actions like feeding an item on the belt, removing
the item, rerouting it, etc. provide discrete actions on thesystem.

Next we present the scope of this study. Due to increasing demands, the focus of indus-
try is shifting from ensuring safe and automated operation to ensuring quality, reliability,
and performance maximization. But, typically, the performance of automated transportation
systems is limited by mechanical capabilities (such as maximum speed of the transportation
means), by the performance of the process devices (address reading devices, bar code read-
ing devices, scanners, etc.), and also by the sorting and routing schemes. In this research
we consider the mechanical capabilities and the performance of the process devices to be
given.

Typical control problems of the specific class of transportation systems that we consider
in this thesis — transportation systems handling materials— are the following: coordination
and synchronization of the processing units, prevention ofjams and deadlocks, prevention
of buffer overflow, avoiding damage of the goods, maximization of performance, and cost
minimization.

In this thesis we investigate methods that can be used to efficiently control the consid-
ered class of transportation systems so that their overall performance is maximized when
taking into account the issues we have just enumerated — recall that the mechanical capa-

1We will not consider transportation systems for people, butonly for materials.
2E.g. in large airports baggage is transported not only usingconveyor systems, but also using fast individual

vehicles.



1.3 Research overview 3

bilities and the performance of the process devices are considered to be given; moreover,
in this thesis we do not consider the problem of minimizing the costs. Currently, most
higher-level control methods for these systems are based oncentralized control and/or on
ad-hoc techniques. But centralized control of large-scalesystems is often not feasible in
practice due to computational complexity, communication overhead, and lack of scalability,
while using ad-hoc techniques, typically, does not yield the best possible performance of
the system.

Note that in this thesis we consider only two applications ofthe class of transportation
systems that handle materials, namely sorting machines in mail sorting centres and baggage
handling in airports. However, the control approaches thatwe develop in this thesis are
not restricted to the considered applications only, but they can similarly be applied to other
transportation systems, e.g., power distribution systemsand water management, automated
guided vehicles in warehouses, or traffic systems.

1.3 Research overview

This section gives an overview of this research, emphasing the applications that we focus
on.

Postal automation

First we discuss the postal automation application. There are two types of mail sorting
machines, the first designed to process postcards and small letters, the second designed to
handle large mail items such as newspapers, catalogs, and large letters. In this thesis we
focus on the latter. These large mail items are shortly called “flats”. Briefly, a state-of-the-
art flat sorting machine, operates as follows. First, the flats are fed into the machine via a
feeding device. Then conveyor systems transport the flats with a constant speed towards the
sorting part of the machine. Meanwhile, the stamp used for postage is voided, the address
and the postal code are located, and the necessary information is extracted and printed on the
flat in form of a bar code. This ensures a transport delay line of several seconds allowing the
system to achieve sorting information on-line before the mail item reaches the code printing
phase. Next, the flats (which have been previously identifiedvia bar codes) are inserted
into transport boxes by inserting devices; the boxes carry the pieces with constant speed
and sort them into their destination bins, see, e.g., Figure1.1 and Figure 1.2, according to
the selected sorting scheme. Figure 1.1 illustrates the sorting part of a state-of-the-art flat
sorting machine developed by Siemens. This flat sorting system consists of transport boxes
at the top, one level of intermediate pockets that can hold several flats in order to sort the
items into delivery sequence, and destination bins (the plastic bins of Figure 1.2).

The throughput of a basic system sketched above can be augmented by designing a
system where the bottom part consisting of destination binscan move bidirectional with
variable speed.

Then for the new system (where the bottom part can move) we will use simulation to
determine a fast event-driven model. This model of the flat sorting system will then be used
for model-based control. The goal of the model-based controllers is to compute the speed
profile of the bin system that maximizes the throughput of thesorting machine.
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Figure 1.1: Sorting part of a flat sorting machine. Picture source: Siemens AG, Infrastruc-
ture Logistics, 2009.

Figure 1.2: Dropping a flat into a bin. Picture source: Siemens AG, Infrastructure Logistics,
2009.
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Problem statement One can state the control problem that we want to solve as follows.
Given a buffer of flats known in advance due to the delay line ofthe flats’ preparation phase,
the optimal speed profile of the bin system has to be computed so that the throughput of the
sorting machine is maximized.

Control approaches In order to compute the optimal speed profile of the bin system, we
will implement and compare different variants of optimal control with various degrees of
complexity, namely: (1) optimal control with a piecewise constant speed on time intervals
of variable length, (2) optimal control with a piecewise constant speed on time intervals of
constant length, (3) optimal control with a constant speed,and (4) model-based predictive
control with a piecewise constant speed on time intervals ofconstant length. The considered
control methods will be compared for several scenarios.

Influence of the structural changes In this thesis we will also discuss the influence of
the structural changes on the throughput. In particular, wewill consider structural changes
such as increasing the number of feeding devices, changing their corresponding inserting
point around the transport boxes, and increasing the velocity of the transport boxes.

Baggage handling

Regarding the baggage handling process in large and busy airports, we consider the most
challenging part of the automation, namely the part of the baggage handling system where
the bags are transported at high speeds by destination codedvehicles (DCVs) running on
a network of tracks, see e.g. Figure 1.3. As illustrated in Figure 1.3, a DCV is a metal
cart with a plastic tub on top, being propelled by linear induction motors similar to roller
coasters.

Currently, the track networks on which the DCVs transport the baggage have a sim-
ple structure, the DCVs being routed through the system using routing schemes based on
preferred routes. These routing schemes adapt to respond onthe occurrence of predefined
events as follows. Each junction has a logic controller and alookup table storing preferred
routes from that junction to all unloading stations. Hence,if the currently preferred route
is blocked due to e.g. jams or buffer overflows, then the next to-be-preferred-route of the
lookup table is chosen and the switch out of that junction is toggled accordingly. However,
the load patterns of the system are highly variable, depending on, e.g., the season, time of
the day, type of aircraft at each gate, or the number of passengers for each flight [17]. So,
predefined routes are far from optimal. Therefore, in this thesis we will not consider prede-
fined preferred routes, but instead we will develop and compare efficient control methods to
determine the optimal routing in case of dynamic demand.

Problem statement One can state the route choice control problem as follows. Given a
demand of bags (identified by their unique code) entering theDCV-based baggage handling
system, and the network of tracks, the route of each DCV (froma given loading station to
the corresponding unloading station) has to be computed subject to operational and safety
constraints, such that all the bags to be handled arrive at their end points within given time
windows.
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Figure 1.3: DCVs running on a network of tracks. Photo courtesy of Vanderlande Indus-
tries.

Control approaches and control frameworks In order to efficiently determine the route
choice of each DCV, we will first consider predictive and heuristic control approaches.
These control methods will be implemented in a centralized,decentralized, and distributed
manner. Furthermore, we will also propose a hierarchical control framework that consists
of a 2-level control structure with local switch controllers at the lowest level and one higher-
level supervisory network controller. In this control framework, switch controllers provide
position instructions for each switch in the network. The collection of switch controllers is
then supervised by a network controller that mainly takes care of the flow instructions for
the switch controllers.

Computing the optimal route choice yields a nonlinear, nonconvex, mixed integer opti-
mization problem. The computational efforts required to determine the optimal route choice
are high, and therefore, solving this optimization problemmay become intractable in prac-
tice. Consequently, we will also present an alternative approach for reducing the complexity
of the computations by writing the nonlinear optimization problem as a mixed integer lin-
ear programming (MILP) problem. The advantage is that for MILP optimization problems
solvers are available that allow us to efficiently compute the global optimal solution. The
solution of the MILP problem can then be used directly or as aninitial starting point for
the original optimization problem. To assess the performance of the proposed control ap-
proaches and control frameworks, we will consider a benchmark case study, for which the
methods will be compared over several scenarios.



1.4 Main contributions 7

1.4 Main contributions

The main contributions of this research with respect to postal automation and baggage han-
dling are the following:

Postal automation

• We will propose an event-driven model for the continuous-time flat sorting system
which has been designed such that the destination bins can move bidirectionally with
variable speed.

• We will develop and compare efficient model-based control methods to compute the
speed profile of the destination bins that maximizes the throughput of the flat sorting
machine. In particular, we will consider variants of optimal control with gradually
decreasing complexity and model predictive control.

Baggage handling

• We will propose an event-driven model for the continuous-time DCV-based baggage
handling system that will be used for model-based control.

• We will develop and compare efficient model-based control methods to compute the
optimal routing of DCVs transporting bags from a given origin to a given destination
such that the performance of a DCV-based baggage handling system is maximized.
In particular, we consider centralized, decentralized, and distributed model predic-
tive control, and heuristic approaches. We will also propose a hierarchical control
framework for determining the route choice control of a DCV-based baggage han-
dling system.

1.5 Thesis outline

The objective of this thesis is to develop efficient control methods that can be used in order to
increase the efficiency of the considered transportation systems (sorting machines for large
mail items in post sorting centers, and baggage handling in airports). Figure 1.4 presents a
graphical road map depicting the organization of this thesis.

According to this graphical road map, the persons interested in the postal applications
only should read the thesis using the following order: Chapter 1, Section 2.1 and 2.2.1
of Chapter 2, Chapter 3, and Chapter 5. The persons interested in baggage handling only
should read the thesis using the following order: Chapter 1,Chapter 2, Chapter 4, and
Chapter 5.

The thesis is structured as follows. In Chapter 2 we briefly introduce the concepts of op-
timal control and centralized, decentralized, distributed, and hierarchical model predictive
control that will be later on used in this thesis in order to optimally transport (sort or route)
the to be handled items (flats or bags respectively). For these control methods we present
the theoretical framework, the algorithms that can be used in order to solve the optimization
problems, together with their advantages and issues.
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Baggage handling

Introduction
Chapter 1.

Optimal and model

Chapter 4.Chapter 3.

Chapter 2.

predictive control

Conclusions and
Chapter 5.

Postal automation

future research directions

Figure 1.4: A road map of the thesis.

Next, in Chapter 3, we present the postal automation application. First, we describe
the automated sorting process and the current issues of a class of flat sorting machines in
general. Then, we propose a new design for a flat sorting system. Furthermore, we elaborate
the simplifying assumptions made in order to obtain a fast simulation model, the continuous-
time event-driven model to be used, the operational constraints, and the control objective
that has to be achieved. Next, we propose several control approaches for determining the
velocity of the system transporting the bins, and compare the proposed control methods
based on simulations. Finally, we also discuss the influenceof the structural changes on the
throughput.

In Chapter 4 we present the baggage handling application. First, we describe the au-
tomated baggage handling process and the current control problems of a baggage handling
system. Afterwards, we present the simplifying assumptions made in order to obtain a fast
simulation model, the nonlinear event-driven model of the DCV-based baggage handling
system, the operational constraints, and the desired control objective. Furthermore, we
propose several control approaches for determining the optimal routing of bags through the
baggage handling system and then we compared them (based on simulations) on benchmark
case studies, over a set of scenarios.

Finally, in Chapter 5 we present the conclusions of this thesis and possible directions
for future research.



Chapter 2

Optimal and model predictive
control

In this chapter we briefly introduce the concepts of optimal control and model predictive
control that will be later on used in this thesis. The chapteris structured as follows. In
Section 2.1 we present the theoretical framework, the available numerical optimization al-
gorithms, the advantages, and the issues of optimal control. As it will be noted in Section
2.1, the optimal control method becomes intractable in practice for any systems with large
control horizon as the ones that we consider in this thesis. Therefore, in Section 2.2 we
also introduce the concept of model predictive control where smaller optimization prob-
lems have to be solved. However, since centralized model predictive control may still re-
quire high computational efforts, in Section 2.2 we also describe the working principle of
decentralized and distributed predictive control approaches. Finally, we will also introduce
the concept of hierarchical control which will be then combined with the concept of model
predictive control.

2.1 Optimal control

Several methods for solving dynamic optimization problemshave been developed. In this
section we present the general concept of optimal control, the algorithms that could be
used to solve the resulting complex optimization problems,and also the advantages and the
disadvantages of this approach.

2.1.1 Theoretical framework

Optimal control is a standard method for solving dynamic optimization problems, when
those problems are expressed in continuous time. The optimal control problem consists of
finding the time-varying control lawu(·) for a given system such that an objective function
J is optimized while satisfying the operational constraintsimposed by the model, see, e.g.,
[37, 46, 53]. Hence, this is an open-loop approach (the control inputs of the system are
computed using only the current state of the system and the model of the system). So, the

9



10 2 Optimal and model predictive control

open-loop approach does not use any feedback to determine whether the desired goal has
been achieved.

constraints
objective, model

optimization

optimal controller

actions
control

control inputs
real system

measurements
initial

Figure 2.1: Optimal control — working principle. The control actions that the optimal con-
troller obtains as result of solving the optimization problem over the entire simu-
lation period, become control inputs for the real system (nofeedback involved).

As illustrated in Figure 2.1, the formulation of an optimal control problem requires the
following information:

• a model of the system to be controlled,

• an objective function to be optimized,

• boundary conditions and other operational constraints on the states, the inputs, and
the outputs of the system, and consequently of its model (theinputs and the outputs
of the system correspond to the control actions and the measurements of the optimal
controller, respectively).

Then the standard formulation of an optimal control problemcan be written as follows:

min
u

J(x(t0),u)

subject to
Φ(x(t0),u) = 0
Ψ(x(t0),u) ≤ 0

where

• x(t0) is the state1 of the system at time instantt0 with t0 the initial simulation time,

• u represents the continuous control actions for all the decision variables1 over the
simulation period[t0,t0 + τsim) with τsim the length of the simulation period,

• Φ(x(t0),u) = 0 is the system of equality constraints,

• Ψ(x(t0),u) ≤ 0 is the system of inequality constraints.

The system of equality and inequality constraints of the standard formulation above de-
scribes the continuous-time model of the real system and itsoperational constraints.

Note that for some problems the exact model of the systems canbe written analytically,
and then optimal control methods can give the global optimalsolution only if the problem is

1Consider a traffic light controlled intersection with 4 armsand 4 traffic signals. Then the state of the system
at a given time instant consists of the length of queues of thevehicles in front of each traffic light at that time
instant. Then the decision variables can be for example the time instants when the color changes for each traffic
light.
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convex or if the solution can be computed analytically, see,e.g., [23, 29, 62]. However, for
systems with models that cannot be written analytically, e.g., continuous-time event-driven
systems as those we refer to in this thesis, one can use numerical optimization algorithms
to compute the optimal solution, see Section 2.1.2. However, in this case the continuous
adjustment of the control signal so as to optimize the objective functionJ is not possible
using digital control. Hence, in practice one has to discretize the model and to compute a
piecewise constant control tupleU = (u(0),u(1), . . . ,u(ksim)) whereksimτs represents the
length of the simulation period withτs the sampling time,ksimτs = τsim, and where, for
k = 0, . . . ,ksim, u(k) is the vector of control inputs to be used for the time period[tk,tk+1)
with tk given bytk = t0 + kτs.

Then the standard formulation of a discrete-time optimal control problem becomes:

min
U

Jd(x(t0),U )

subject to
Φd(x(t0),U ) = 0
Ψd(x(t0),U )≤ 0

where the system of equality and inequality constraints above describes the discrete-time
model of the real system and its operational constraints. Examples of such formulation can
be found in Chapter 3 and Chapter 4.

2.1.2 Numerical optimization algorithms

The solutions to most optimal control problems cannot be found by analytical means. As
a result, it is necessary to employ numerical methods to solve optimal control problems.
Over the years, many numerical procedures have been developed to solve optimal control
problems as will be detailed next.

In order to solve nonlinear, nonsmooth optimization problems, one may use specialized
search algorithms [31] such assequential quadratic programmingalgorithms [28], orpat-
tern search[4], genetic algorithms[67], andsimulated annealing[18]. Furthermore, if the
optimization problem is also a mixed integer problem, then one can solve it using the pre-
vious algorithms adapted to compute control inputs that arerestricted to integer values, or
other specializedmixed-integer nonlinear programmingalgorithms [35, 54], ortabu search
[32].

Note that all these algorithms perform alocal search starting from initial search points
which are either fixed, given by the user, or randomly chosen by the optimization algo-
rithms. As a consequence, they findlocal optimal solutions. Hence, these algorithms do not
guarantee the global optimal solution. Therefore, for algorithms that start the search from
fixed or random points given by the user one should use multiple initial points while for
algorithms that start the search from random initial feasible solutions (randomly chosen by
the optimization algorithm), one has to start the optimization several times, and hence, use
multi-runoptimization.

2.1.3 Advantages and issues

One advantage of optimal control is its ability to control systems with multiple inputs and
multiple outputs, and also its explicit way of handling constraints on control actions, states,
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and outputs. Another advantage is that optimal control methods can give the optimal so-
lution when the exact model of the real system can be written analytically. However, in
practice many of the systems to be controlled are highly nonlinear, and their exact and ac-
curate model cannot be written analytically.

In theory this control method gives the global optimal solution, and consequently the
best performance of the real system if the model expresses the real system accurately. More-
over, in practice determining an accurate model of a real system is not always possible. And
since the optimal control method is open-loop, the model mismatch typically yields loss in
the system’s performance. Furthermore, in order to use the algorithms above one may have
to first discretize the system. Then, depending on the dynamics of the system one may need
a small sampling time, and consequently, one has to compute alarge sequence of control
signals since we determine the optimal control sequence forthe entire simulation period.
This will result in a large computation time when solving theoptimization problem. Also,
for systems where the optimal control method has to compute the solution of a nonlinear,
nonconvex, nonsmooth, (mixed integer) optimization problem, this control method requires
very large computational effort to determine the optimal solution. This occurs since the
state-of-the-art numerical optimization algorithms designed to solve these complex prob-
lems can only determine local solutions (see, e.g., Section2.1.2). In order to get closer
to the global solution, one has to use multiple initial points. Therefore, for those systems,
optimal control, usually, becomes intractable in practice. Another issue of optimal control
is its robustness [53, chapter 9], since due to eventual disturbances, when applying the opti-
mal control actions to the real system, the states of the system may not satisfy the imposed
bounds.

2.2 Model predictive control

Since using optimal control yields high computational requirements to determine the opti-
mal control inputs for event-driven systems as the ones we will consider in the next chapters,
in this section we introduce the concept of model predictivecontrol (MPC).

2.2.1 Centralized MPC

MPC is an on-line control design method for discrete time models that uses the receding
horizon principle, see, e.g., [11, 57, 65]. Therefore, thiscontrol method is also referred
to as receding horizon control or moving horizon control. Since its development in 1980
[14, 68], MPC has become the preferred control strategy for alarge number of industrial
processes. Currently, MPC is viewed as one of the most promissing control methods that
can deal with nonlinear systems that are subject to operational constraints.

MPC is a control strategy that is typically used in a discrete-time context. Next we
present the working principle of basic MPC. As sketched in Figure 2.2, at some time in-
stant, the MPC controller measures or estimates the currentstate of the real system. Let this
time instant be denoted bytk = t0 + kτs with t0 the time instant when we start the simula-
tion, τs the sampling time, andk≥ 0 an integer. Then, given a prediction model of the real
system, the MPC controller computes control actions by solving an optimization problem
subject to the prediction model’s dynamics and its operational constraints as follows. Given
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Figure 2.2: Basic MPC — working principle.

a prediction horizonNp and a control horizonNc with Nc ≤ Np, at time stepk (correspond-
ing to time instanttk), the future control vectorsu(k), . . . ,u(k + Nc − 1) — whereu(k) the
vector of decision variables during the time period[tk,tk+1) — are computed (see Figure
2.3) by solving a discrete-time optimization problem over agiven period[tk,tk + Npτs), so
that the cost criterionJ is optimized subject to the operational constraints. The input signal
is typically assumed to become constant beyond the control horizon, i.e.,

u(k+ j) = u(k+ Nc − 1) for j = Nc, . . . ,Np − 1. (2.1)

After computing the optimal control vectors, only the first control vector (corresponding to
the time period[tk,tk+1)) is implemented on the real system, and subsequently the horizon
is shifted. Next, the new state of the system is measured or estimated, and a new optimiza-
tion problem at stepk+ 1 is solved using this new information. In this way, a feedback
mechanism is introduced. Recurrently, we apply this procedure untilk = ksim.

The standard formulation of an MPC optimization problem canthen be written as fol-
lows:

min
U (k)

Jk,Nc,Np(x(tk),U (k))

subject to
Φ(x(tk),U (k)) = 0
Ψ(x(tk),U (k)) ≤ 0

where

• x(tk) is the vector of state variables at time instanttk,

• U (k) is theNc-tuple that consists of all the decision variables to be applied over the
prediction horizon and is defined as followsU (k) = (u(k), . . . ,u(k+ Nc − 1)),

• Φ(x(tk),U (k)) = 0 is the system of equality2 constraints,

• Ψ(x(tk),U (k)) ≤ 0 is the system of inequality2 constraints.

The main advantage of MPC over the optimal control method is that we now solve
smaller optimization problems. However, this comes at the cost of loosing performance

2The system of equality and inequality constraints of the MPCstandard formulation, describes the prediction
model of the real system over the given prediction horizon and its operational constraints.
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Figure 2.3: Conventional MPC when we deal with one decision variable during a sample
period. At time step k the future control sequence u(k), . . . ,u(k+ Nc − 1) is opti-
mized such that the objective function J is minimized subject to the dynamics of
the system and their operational constraints.

whenNc andNp are small relative toksim. Note that in order to solve the MPC optimization
problems one can use the numerical optimization algorithmspresented in Section 2.1.2.

Furthermore, one may notice that depending on the control and prediction horizons,
computing the solution of the optimization problem over theentire simulation period may
still require high computational effort. In order to reducethe computational complexity, one
can use variants of MPC that involve:

larger horizon shifting: Instead of applying to the real system only one control sample out
of the computed control sequence, one can apply more samplesand shift
the horizon accordingly. This means that if at stepk we have computed the
control tupleU (k) = (u(k),u(k+1), . . . ,u(k+Nc −1)) with u(k+ j) = u(k+
Nc − 1) for j = Nc, . . . ,Np − 1, then one can applym≤ Np control samples
u(k), . . . ,u(k + m− 1) to the real system. Accordingly, we next compute
the future control tuple at stepk + m. In this way the total computation
time required to compute the control over the period[t0,tksim) is reduced by
100
(

m−1
m

)

%.

blocking: Instead of considering the control horizon constraint onlyexpressed by
(2.1), one can force the input to remain constant during somepredefined
intervals. So, one can definenblock intervals of lengthδblock

1 , . . . , δblock
nblock

so that∑nblock

i=1 δblock
i = τsNp with δblock

i an integer multiple ofτs for i =
1,2, . . . ,nblock, see, e.g., Figure 2.4. Then we compute the future control
inputsv(k),v(k+1), . . . ,v(k+nblock−1) that optimize the objective function
J subject to the dynamics of the system and their operational constraints,
wherev(k+ i) for i = 1,2, . . . ,nblock is the control input corresponding to
the time interval[t0 + ∑i−1

l=1δblock
l ,t0 + ∑i

l=1δblock
l ) with ∑0

i=1δblock
i = 0 by

definition.
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Figure 2.4: MPC with blocking (we consider one decision variable only during a sample
period). For this example, at time step k, we compute the optimal future control
variables v(k), . . . ,v(k + nblock− 1)). The control variables u(k), . . . ,u(k+ Np −
1)) are then computed according to (2.2).

Then, as illustrated in Figure 2.4, the control inputsu(k), . . . ,u(k+ Np − 1)
can be derived as follows:

u(k+ j) = v(i) for i = 1,2, . . . ,nblock and for all j ∈ N satisfying:

∑i−1
l=1δblock

l

τs
≤ j <

∑i
l=1δblock

l

τs
. (2.2)

Another advantage of MPC is that it can handle structural changes — such as sensor and
actuator failure changes in system parameters and system structure — by regularly updating
or adapting the prediction model in combination with its feedback mechanism.

2.2.2 Decentralized MPC

When dealing with large-scale systems, centralized MPC is no longer tractable. Therefore,
for such applications one can divide the system into subsystems, which are then indepen-
dently controlled by local controllers [43, 94]. Then we deal with a decentralized control
architecture, see, e.g., Figure 2.5, where given the local prediction models, each local con-
troller solves a local optimization problem based on local information over the state of the
real system. This results in sequences of local control actions that can be applied to the real
system. For different applications of decentralized MPC werefer to [1, 19, 69].

So, the advantage of decentralized MPC over the centralizedapproach is that we now
independently solve simpler and smaller optimization problems resulting in lower compu-
tational requirements and faster control. However, this advantage will be typically at the
price of decreased overall performance.
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Figure 2.5: Decentralized MPC —working principle.

2.2.3 Distributed MPC

In order to increase the performance of decentralized MPC, the concept of distributed MPC
has been introduced. Distributed MPC is an extension of decentralized MPC, where the
local MPC controllers also exchange information regardingtheir future control actions
while solving local optimization problems, see e.g., Figure 2.6. Typically, the objective
of this communication is to achieve some degree of coordination among the local con-
trollers without solving a centralized MPC problem. This topic has been addressed in
[12, 13, 20, 60, 66, 93] where, e.g., serial versus parallel and synchronous versus asyn-
chronous coordination schemes are tackled. In serial computation schemes, only one local
controller at a time performs computations, while in parallel schemes, multiple local con-
trollers perform computations simultaneously. When the computations are performed in
parallel, the local controllers have to wait or not for one another when it comes to send-
ing and receiving information and determining which actions to take; also they can send
and receive information and determine their actions at any time or at specific time instants.
The asynchronous coordination schemes have a big advantageover the synchronous co-
ordination schemes, namely that the local controllers do not have to wait for other agents
to perform their computations — they just have to include thenewly received information
from neighboring local controllers at any time while solving their optimization problems.

In this work we will not focus on developing new coordinationschemes for distributed
MPC, but we will analyze the trade-off between performance and computation time needed
for solving nonlinear, nonconvex, mixed integer optimization problems with multiple lo-
cal minima, when applying efficient centralized, decentralized, and distributed MPC ap-
proaches.
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2.2.4 Hierarchical MPC

In a hierarchical control set-up, see, e.g., [26, 72], the control tasks are distributed over
time and space. Such a set-up consists of several levels of control, where controllers of
supervisory and strategic functionality reside at higher levels, while at lower levels the local
controllers must guarantee specific operational objectives. At any level, the local controllers
must communicate their outcomes and requirements to the lower levels (sometimes these
controllers even negotiate their outcomes and requirements with the lower and higher lev-
els).

Using MPC in a hierarchical framework involves multiple control levels with author-
ity relationships between the local MPC controllers on the different levels as illustrated in
Figure 2.7.

This framework can be characterized as follows:

• It consists of multiple control levels with authority relationships between the local
controllers on the different levels (local controllers at higher levels — also called
supervisory controllers — have authority over the controllers at lower levels, whereas
the local controllers within a control level have equal authority relationships).

• In general, the local controllers on different levels have different objectives.

• At higher levels typically less detailed models are considered, whereas at lower levels
more detailed models will be used.

• The different levels of control deal with different time scales. Typically the lower
levels in this hierarchy update their actions with a faster frequency than the higher
levels.
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Figure 2.7: Hierarchical MPC with 3 levels of control. The local controllers on each level
communicate their outcomes and requirements to the lower level, and negotiate
their requirements with the higher levels.

The use of MPC in a hierarchical framework [42, 70, 71] has already proven its useful-
ness in controlling transportation systems, see e.g., [6, 21, 24].

2.3 Summary

In this chapter we have introduced the concepts of optimal control and model predictive con-
trol which will be later on used in this thesis for solving nonlinear, nonconvex, mixed integer
optimization problems with multiple local minima. For event-driven systems (as the ones
that we will deal with in the next chapters) where we have to determine the optimal solution
of nonlinear and nonconvex optimization problems, optimalcontrol becomes intractable in
practice for large horizon due to the high computational effort required. For these systems
model predictive control (MPC) offers a reduction in the overall computation time by solv-
ing smaller optimization problems (over a relatively smallprediction horizon only, instread
of computing the optimal solution over the entire simulation period). However, central-
ized MPC may still become intractable in practice for large-scale systems. Therefore, one
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can decompose the large-scale systems into subsystems, andaccordingly solve local MPC
optimization problems. The advantage of decentralized MPCis a lower computation time
since we now independently solve local optimization problems that are smaller and simpler.
However, this comes at the cost of suboptimality. But, by including communication and
coordination between local controllers, one obtains distributed MPC which can improve
the efficiency of the system. Finally, we have also presenteda hierarchical control frame-
work consisting of multiple control levels with authority relationships between the local
controllers on the different levels. This control framework will then later on be used in
combination with the MPC concept.





Chapter 3

Postal automation

In this chapter we consider state-of-the-art flat sorting machines. The chapter is structured
as follows. In Section 3.1 we describe the automated sortingprocess and the current issues
of a flat sorting machine. Afterwards, in Section 3.2, we propose a new design for the flat
sorting machine. The simplifying assumptions and the continuous-time event-driven model
to be used are presented in Section 3.3. Furthermore, in Section 3.4 we detail the operational
constraints together with the control objective. In Section 3.5, we propose several control
approaches for determining the velocity of the system transporting the bins. The analysis of
the simulation results and the comparison of the proposed control methods are elaborated
in Section 3.6. In Section 3.6 we also discuss the influence ofthe structural changes on the
throughput. Finally, in Section 3.7, we draw the conclusions of this chapter and we present
possible directions for future research.

Parts of this chapter have been published in [75], [79], and [84].

3.1 State-of-the-art solutions

In this section we briefly describe the process performed by astate-of-the-art flat sorting
machine and its current issues.

3.1.1 Process description

The procedure performed by a flat sorting machine consists oftwo processes: preparing the
flats and sorting them. During the preparation phase, the stamp used for postage is voided.
Next, the address and the postal code are located and the necessary information is extracted
and printed on the flat in the form of a bar code. Conveyor systems transport the flats during
the preparation phase with a constant speed. This ensures a transport delay line of several
seconds allowing the system to collect sorting informationon-line before the mail item
reaches the code printing phase. The performance of the reading device, the length of these
conveyor belts, and their speed determine the maximal amount of time available to prepare
the mail for sorting. If the delivery information is not machine-readable, an image of the
flat will be transmitted automatically to the video coding system. An operator views the
address image on a monitor, reads the delivery information,and enters it via a keyboard. If

21
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Figure 3.1: Sorting part of a flat sorting machine. A full bin is immediately replaced with
an empty one.

the delivery information is not obtained during the preparation phase, then an identification
code is assigned to the item and the flat is inserted into a transport box. This flat will be
then dropped into a special bin where the non machine-readable are collected. However, if
the delivery information is acquired when the flat is alreadyin the transport box, then this
mail item will be reassigned to the correct destination bin.When the mail item leaves the
preparation phase, it is inserted into a transport box of thesorting process by the inserting
device, as sketched in Figure 3.1. The transport boxes are sustained at the top part of a
flat sorting machine and move counterclockwise (top view) with a constant speed. At the
bottom part of this machine destination bins are aligned. Note that this bottom part does not
move in any direction (this part is static). Then the transport box carries the flat and deposits
it by dropping it into a destination bin according to the destination or postal code of the flat.
This is how currently most of the flat sorting machines are working.

Note that for the sake of simplicity of explanation, in the remainder of the paper we will
also use the termsboxandbin when referring to atransport boxand adestination binof a
flat sorting machine.

3.1.2 Current issues

The low-level control problems of this system consist of determining the feeding rate of the
sorting machine [56], positioning of the transport box wheninserting the flat, and synchro-
nizing transport boxes and bins when dropping a flat in its corresponding destination bin.
At a higher level of control important problems are how to allocate the destinations to the
bins and how to sort the mail items in delivery sequence order.

Other issues related to the state-of-the-art mail sorting systems in general, and applicable
also to the considered flat sorting machine are: locating thedestination address and extract-
ing the necessary information, and also designing optical character recognition machines.
These topics have been treated to a very large extent in, e.g., [40], [52], [97]. However, to
the author’s best knowledge there is no public work analyzing how the efficiency of this
system can be increased.



3.2 New design 23

−0.5 0 0.5
5

10

15

20

velocity of the bottom system (m/s)

th
ro

ug
hp

ut
 (

fla
ts

/s
)

 

 

1 feeder
2 feeders
3 feeders
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3.2 New design

In this section we investigate approaches to increase the throughput of the flat sorting ma-
chine. This can be achieved first by making design changes such as augmenting the system
with additional feeders and also by moving the bin system to the left or to the right with a
given speed.

Motivation

The sorting system sketched in Figure 3.1 can be augmented byadding feeders. However, by
increasing the number of feeders only, which can increase the throughput of the machine,
one does not necessarily obtain the maximal possible throughput. As example we have
illustrated in Figure 3.2 the throughput versus the velocity of the bin system for a typical
scenario of 10000 flats. These results have been derived using the event-driven model that
will be presented in Section 3.3 and which has been implemented in Matlab. However, since
the purpose of these plots is only to motivate the need for more indepth analysis of means
to increase the throughput of a flats sorting machine, we willnot detail here how we derived
these results (the details are presented in Section 3.3).

The general trend of the throughput of a flat sorting machine with 1, 2, or 3 feeders is to
decrease when the bottom part of the machine moves in the samedirection as the top part
and when using a constant speed in the range 0 m/s to 0.5 m/s. Moreover, the throughput of
such a machine can decrease to 0 flats/s when the bottom part of the machine moves in the
same direction as the top part and with the same speed (1 m/s). This happens since in this
case we can drop only the flats that are inserted in boxes positioned on top of the destination
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bin with the same identification code as the flat. Furtherore,Figure 3.2 shows that when
the sorting machine has one feeder only, and the bottom part of the machine moves with a
constant speed, but in opposite direction than the top part,the throughput is about 10 flats/s.
This happens since the inserting rate is 10 flats/s (in the considered scenario the width of a
box is 0.1 m and the velocity of the top part is 1 m/s, and as a consequence 10 empty1 boxes
pass under the inserting device within 1 second). The very small differences in throughput
in this case are only influenced by the time instant when the last inserted flat is dropped. So,
the larger the stream of flats to be sorted, the larger the total sorting time, and consequently,
the smaller the differences in throughput for this case. Theresults illustrated in Figure
3.2 also indicate that augmenting the flat sorting machine with more feeders increases the
throughput, and that typically increasing the relative speed between the top and the bottom
system also increases the throughput. However, the evolution of the throughput versus the
velocity of the bottom part of the sorting machine is nonlinear and nonsmooth. However,
the peaks that appear cannot be predicted, but are dependenton the stream of codes and on
the velocity used for the bottom system.

According to the results illustrated in Figure 3.2 (see e.g., the throughput of a flat sorting
machine with 2 or 3 feeders) one concludes that the throughput obtained with a static bin
system is not always optimal.

Therefore, in the new set-up, the bottom system transporting the bins is also able to move
clockwise or counterclockwise (top view) with varying speed. Moving the bottom part of
the flat sorting machine, but with a constant speed, is currently already being implemented
and operational.

Description

In order to increase the throughput of the flat sorting machine, we propose the new set-
up illustrated in Figure 3.3. The preparation of the flats is identical to the one described
in Section 3.1.1. But now we want to simplify the previous sketch. Therefore, instead
of the feeding device and the preparation phase, we now consider a buffer of flats with
known identification codes. Note that in this work we consider that the delivery information
is always acquired on-line. The top system transporting theboxes moves as usual, with
a constant speed. The bottom system transporting the bins can now move clockwise or
counterclockwise with varying speed. The reason for this isto increase the number of
empty transport boxes and, hence, increase their availability.

New control problems

With this new set up, a new control problem arises: how to adjust the speed of the bottom
system, so that the throughput is maximized. In order to ensure the optimal movements we
will implement advanced model-based control methods, namely optimal control and model
predictive control (MPC). A detailed presentation of thesemethods can be found in Section
3.5.

1The boxes that pass under the inserting device of a flat sorting machine with 1 feeder are always empty when
the bottom part moves in opposite direction than the top partsince the flat in a box will always be dropped before
that box passes again under the inserting device.
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3.3 Event-based model

Later on we will use the model of a flat sorting system for model-based control. There-
fore, in order to have a trade-off between a detailed model that requires large computation
time and a fast simulation, in this section we present the simplifying assumptions and the
continuous-time event-driven model to be used to determinethe optimal speed of the desti-
nation bins.

3.3.1 Assumptions

Consider the simplified process depicted in Figure 3.3 of a flat sorting system withF feed-
ers. Accordingly, we considerF FIFO (First In First Out) buffers of flats. Note that the
sequences and the streams defined throughout this chapter will be represented by (column)
vectors.

Let NboxesandNbins be respectively the number of boxes and the number of destination
bins of the sorting machine. The width of a box will be denotedby wbox and the width of a
bin will be denoted bywbin.

To model the flat sorting system we make the following assumptions:

A1: The width of the gaps between the boxes is assumed to be negligible. We assume the
following relation satisfied:wboxNboxes= wbinNbins= l total with l total the total length of
the sorting part of the flat sorting machine.

A2: The top system moves with a constant speedvtop.

A3: The speed of the bottom system is piecewise constant.

A4: The flat sorting machine hasF inserting devices that are positioned equidistantly.
These inserting devices correspond to theF feeders and are denoted by I1, . . . , IF .
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A5: Each inserting device has a finite buffer of flats, with codes that are known in advance.

A6: When using a sorting machine withF feeders, the stream of codess= [s1 s2 . . . sNflats]⊤

— whereNflats is the number of flats to be sorted during a sorting round —, is split into
F new streamss1 = [s1 s2 . . . sf ]

⊤, s2 = [sf +1 . . . s2 f ]
⊤,. . . , sF = [s(F−1) f +1 . . . sNflats]⊤

with f =
⌊

Nflats

F

⌋

, where⌊x⌋ denotes the largest integer less than or equal tox.

A7: The correct dropping (and consequently the correct stacking) of a flat into a bin is
controlled by a low-level controller. In the model that we determine, a flat can be
dropped when the box carrying it is positioned on top of its destination bin, see e.g.,
Figure 3.4. Moreover, the dropping of a flat into a bin is assumed to be performed in a
negligible time span.

wbox

wbin

vtop
wbox

wbin

vtop

Figure 3.4: Positioning when the box transports the flat to bedropped in the bin below
and the dropping is still allowed.

A8: A full bin is replaced with a new one in a negligible time span.

Next we will discuss each of the assumptions above, stating why the assumption is
required and whether or not it is (very) restrictive:

A1: This assumption has been made without loss of generality. Its purpose is to simplify
the explanation of the event-based model.

A2: This assumption corresponds to state-of-the-art flat sorting machines.

A3: Recall from Chapter 2 that the continuous adjustment of the velocity of the bottom
system so as to maximize the throughputJ of a flat sorting machine is not possible using
digital control. Hence, the assumption thatvbottom is piecewise constant is necessary.
Note thatA3 is not a very restrictive assumption since one can always approximate an
arbitrary speed profile arbitrarily well by a piecewise constant speed profile.

A4: The assumption that theF inserting devices are positioned equidistantly is not restric-
tive, in the sense that other positions for the inserting devices are also allowed. How-
ever, this positioning will influence the throughput of the sorting system. In practice
flat sorting machines withF = 2 orF = 4 already exist and are commercially available.

A5: This assumption corresponds to state-of-the-art flat sorting machines due to the follow-
ing reason. During the preparation phase, after extractingfrom each flat its destination
address and postal code, an identification code will be assigned to it. Hence, at any
time instant there will be a buffer of flats transported by conveyor systems, the codes
of which are known.
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A6: This assumption is necessary in order to later on understandsome of the simulation
results. The assumption is not very restrictive in the sensethat other ways of splitting
the initial stream of codes can also be allowed, but then the optimal speed profile would
be different.

A7: Taking into account the purpose of this work (i.e. to developand compare control
approaches for increasing the throughput of the sorting machine), the correct dropping
of a flat into a bin is considered to be performed by a low-levelcontroller already
present in the system.

A8: In practice, a full bin cannot be replaced with a new one in a negligible time span. But,
one can design an intermediary pocket on top of each bin whichcan store a limited
number of items when that specific bin is full. This yields then a small delay in drop-
ping, and then the full bin can be replaced with an empty one. Note that automated bin
replacement has already been developed and is currently operational.

3.3.2 Model

There are three types of events that can occur:

• inserting a new flat into the sorting section of the system,

• dropping the flats that meet the corresponding bin,

• updating the speed of the bottom system.

We model the flat sorting system as an event-driven model consisting of a continuous
part, viz. the movement of the transport boxes and bins, and of the discrete events listed
above. The following situation has been assumed: given a velocity sequencevbottom =
[vbottom

0 vbottom
1 . . .vbottom

N ]⊤ and a sequence of time interval lengthsτττ = [τ0 τ1 . . . τN]⊤, on
each time interval[tk,tk+1), k = 0,1, . . . ,N, with tk+1 = tk + τk andt0 the time instant when
we start sorting, the velocity of the bottom system equalsvbottom

k as illustrated in Figure 3.5.
The model of the flat sorting system is captured byAlgorithm 1 whereτsort,max≥ 0

is the maximum time period that we allow for sorting. Moreover, according to the model,
for each flati, for i = 1,2, . . . ,Nflats that has to be sorted, the time instant when the flati is
inserted into a box (t insert

i ) and the time instant when the flati is dropped (tdrop
i ) are computed.

Consequently, the model of the flat sorting machine is denoted by t = M (x(t0),vbottom,τττ ),

vbottom

vbottom
0

vbottom
1 vbottom

2 vbottom
N

t
t0 t1 t2 t3 tN tN+1

τ0 τ1 τ2 τN

Figure 3.5: Speed evolution of the bin system.
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wbin

wbin

wbin

pbin
d−1 = l total− wbin

pbin
d = 0

pbin
d+1 = wbin

l total− 2wbin

l total− wbin

0

wbin

2wbin

pinserter
1 = 0

bin d − 1

bin d

bin d + 1

reference

modular ruler destination bins

center of the

flat sorting machine

vtop

Figure 3.6: Position of bins relative to the position of the first inserting device.

where t = [t insert
1 . . . t insert

Nflats tdrop
1 . . . tdrop

Nflats]
⊤ and x(t0) is the initial state of the flat sorting

system. Note that if during the time period[t0,t0 + τsort,max) not all the flats have been
sorted, thent consists of the time instants when we insert and drop each of the flats up to
the time instantt0 + τsort,max.

For the sake of simplicity and without loss of generality, assume that the destination bins
have assigned the following identification codes: 1,2, . . . ,Nbins. Note that from now on we
refer to the bin with identification coded with d ∈ {1, . . . ,Nbins} as bind. Then we assign
the identification codes as follows: the bin positioned at the left-hand side of bind with
d≥ 2 is bind+1 and the bin positioned at the right-hand side of bind is bind−1 — the bin
positioned at the right-hand side of bin 1 is binNbins. Then in order to identify the position
of a bin or of a box we only refer to its right-hand side relative to the right-hand side of the
first inserting device2. The position of the first inserting device is denoted bypinserter

1 . Let
us setpinserter

1 = 0 as reference. As an example, Figure 3.6 illustrates the position of bin d
with d ∈ {1, . . . ,Nbins} and the positions of the bins in front and after bind. Then we denote
the position of the bin with identification coded by pbin

d . Similarly, we denote the position
of box m with m∈ {1, . . . ,Nboxes} by pbox

m . Note that the positions of boxes and bins are
determined using modular arithmetic since these positionsare expressed as variables that
are larger than or equal to 0 and smaller thanl total with l total the total length of the sorting
part of the flat sorting machine (l total = wboxNboxes= wbinNbins according to assumptionA1).

Thestateof the sorting system consists of the positions of all the boxes and bins, the
state of the box (loaded or empty), the time instant when we had the last dropping event
for each box, the number of flats dropped till now for each destination, and the streams of

2The inserting devices have fixed positions with respect to the frame of the machine.
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codess1,s2,. . . , sF that still have to be inserted into the machine. Note that thepositions of
the transport boxes and bins are determined relative to fixedpoints (e.g. position of the first
inserting device). Furthermore, theinput of the system consists of the streams of codes to be
sorteds1,. . . , sF , the piecewise constant velocity profile for the destination binsvbottomwith
vbottom= [vbottom

0 vbottom
1 . . .vbottom

N ]⊤, and the time interval lengthsτττ on which the velocity of
the destination bins is constant withτττ = [τ0 τ1 . . . τN]⊤. Thecontrol variable is the velocity
of the bottom part of the flat sorting machine and is part of theinput. Finally, theoutput t
consists of the time instants when we insert and drop each of the flats to be handled.

The variableτ insert
j with j ∈ {1, . . . ,F} of Algorithm 1 presented below is the time that

will pass until the first empty transport box will be positioned under the inserting device Ij .

The variableτdrop
m with m∈ {1, . . . ,Nboxes} is the time that will pass until the next mail item

will be dropped from the boxm into its destination bin.

Algorithm 1. Model of the flat sorting system
Input: streams of codes to be sorteds1,. . . , sF , piecewise constant velocity profile for the

destination binsvbottom, time interval lengthsτττ , and the initial state of the system
1: k← 0
2: tcrt← t0
3: while tcrt < t0 + τsort,max do
4: for j = 1 toF do
5: τ insert

j ← time that will pass until the next flat inserting event at Ij

6: end for
7: for m= 1 toNboxesdo
8: τ

drop
m ← time that will pass until the next dropping event for the boxm

9: end for
10: τmin←min

(

min
j=1,...,F

τ insert
j , min

m=1,...,Nboxes
τdrop

m , τk

)

11: tcrt← tcrt + τmin

12: for m= 1 toNboxesdo
13: pbox

m ←
(

pbox
m − vtopτmin

)

mod l total

14: end for{update the position of the box system}
15: for i = 1 toNbins do
16: pbin

i ←
(

pbin
i − vbottom

k τmin
)

mod l total

17: end for{update the position of the bin system}
18: Γ← set of flats to be inserted in the boxes next
19: ∆← set of flats to be dropped next
20: update the streamssj for j = 1,2, . . . ,F{remove from each stream the codes that have

been inserted in transport boxes}
21: for all j ∈ Γ do
22: t insert

j ← tcrt

23: end for
24: for all m∈∆ do
25: tdrop

m ← tcrt

26: end for
27: τk← τk − τmin

28: if τk = 0 then
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29: k← k+ 1
30: end if
31: end while
Output: t

Next we present how we compute the variablesτ insert
j with j ∈ {1, . . . ,F} andτ

drop
m with

m∈ {1, . . . ,Nboxes} involved in determining the event-based model ofAlgorithm 1 .
The variableτ insert

j with j ∈ {1,2, . . . ,F} is determined as follows.

• If the streamsj is empty then we setτ insert
j = ∞ (note that ifτ insert

j = ∞ thenτ insert
j

will never be selected at step 10).

• Otherwise, we search for the next empty box transported towards the inserting device
I j and so that its position is larger than or equal topinserter

j and smaller thanpinserter
j+1

(note that if j = F then we considerpinserter
j+1 = l total).

Note that a box can be either empty or loaded. Then we distinguish two cases:

all boxes are loaded: If all the boxes are loaded, then no feeding event can occur,
and therefore we setτ insert

j = ∞.

there is an empty box: If such an empty box exists, then let this box be indexed
by m. Furthermore, according to the operational constraintC3 that will
be presented on page 32, in order to avoid executing the actions insert,
drop, insert at the same time instant for the same box, a minimum period
of wbox/vtop time instants has to pass between two consecutive inserting
events for boxm with m∈ {1, . . . ,Nboxes}. Then the time that will pass
until the first flat inserting event from the buffer corresponding to stream
sj is determined as follows:

feeding allowed for boxm: If the last time when we had dropping from
box m is larger than or equal totcrt − wboxvtop (so operational con-
straintC3 on page 32 is satisfied), then

τ insert
j =

pbox
m − pinserter

j

vtop

wherepbox
m is the position of boxm, pinserter

j is the position of the

inserting device Ij , andtdrop
m is the time instant when we had the last

dropping from boxm.

feeding not allowed for boxm: If we are not allowed to feed boxmdue
to constraintC3, then we setτ insert

j = ∞.

The variableτdrop
m with m∈ {1,2, . . . ,Nboxes} is determined as follows. Assume that

boxm carries the flat that has to be dropped in destination bini. Then we computeτdrop
m as

follows.

• If the boxm is positioned on top of the bini — i.e. 0≤ pbox
m − pbin

i ≤ wbin − wbox or
pbox

m + l total − pbin
i ≤ wbin − wbox (see Figure 3.7 ) — then the flat can be immediately

dropped. So, in this case we setτ
drop
m = 0.
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wbox

wbin

pbin
ipbox

m0

vtop

(a) 0≤ pbox
m − pbin

i ≤ wbin −wbox

wbox

wbin

pbin
ipbox

m 0

vtop

(b) pbox
m + l total − pbin

i ≤ wbin −wbox

Figure 3.7: Positioning when the box transports the flat to bedropped in the bin below
and the dropping is still allowed. We consider the positionsof bins and
the positions of boxes relative to the position of the first inserting device
as illustrated in Figure 3.6.

• Otherwise, we distinguish three cases as presented next. Note that we can drop as
soon as boxm is on top of bini.

case 1: vbottom
k > vtop

In this caseτdrop
m =

d

vtop− vbottom
k

whered is the shortest distance that

the bin i and boxι have to travel at constant speed until they meet and
dropping is allowed. So,d is the distance between the right-hand side of
boxm and the right-hand side of bini.

The distanced is defined as follows (see also Figure 3.8):

d =







pbin
i − pbox

m if pbox
m ≤ pbin

i

l total− pbox
m + pbin

i otherwise.

vtop

vbottom
k

pbin
i pbox

m0

d

(a) d = l total − pbox
m + pbin

i

vtop

vbottom
k

pbin
i pbox

m 0

d

(b) d = pbin
i − pbox

m

Figure 3.8: Distance to be traveled between the position of bin i and the posi-
tion of box m when vbottom

k > vtop.

case 2: vbottom
k < vtop

In this caseτdrop
m =

d

vtop− vbottom
k

wherevbottom
k is the velocity of the bot-

tom system at the current time instant andd is the shortest distance that
bin i and boxι have to travel at speed until they meet and dropping is
allowed. So,d is the distance between the left-hand side of boxm and
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wbox

wbin

vtop

vbottom
k

pbin
i − wbinpbox

m − wbox 0

d

(a) d = l total − (pbin
i −wbin)+ (pbox

m −wbox)

vtop

vbottom
k

pbin
i − wbinpbox

m − wbox 0

d

(b) d = (pbox
m −wbox)− (pbin

i −wbin)

Figure 3.9: Distance to be traveled between the position of bin i and the posi-
tion of box m when vbottom

k < vtop.

the left-hand side of bini and is defined as follows (for a more intuitive
explanation see also Figure 3.9):

d =







l total− (pbin
i − wbin)+ (pbox

m − wbox) if pbox
m − wbox≤ pbin

i − wbin

(pbox
m − wbox)− (pbin

i − wbin) otherwise

wherepbox
m −wbox is the position of the left-hand side of boxmandpbin

i −
wbin is the position of the left-hand side of bini.

case 3: vbottom
k = vtop

Since the boxm is not positioned on top of bini (otherwise we would
not have reached this case) we setτ

drop
m = ∞.

3.4 Constraints and control objective

The operational constraints derived from the mechanical and design limitations of the ma-
chine are the following:

C1: the velocity of the bottom system is bounded between−vbottom,max (the bottom part
moves in opposite direction than the top system at speedvbottom,max) andvbottom,max,

C2: τk ≥ τct for k = 0,1, . . . ,N with τct the minimum time period for which the velocity of
the bottom system has to stay constant,

C3: the three actions insert, drop, insert cannot happen at the same time instant for the same
box. Therefore, if at the same time instant we inserted a flat into, e.g., boxm and we
could immediately drop that flat, then boxm can be fed again only after a minimum
time period ofwbox/vtop time instants.

These constraints are denoted byC (vbottom,τττ )≤ 0.

Recall that our goal is to increase the throughput of the flat sorting machine. Hence, let
the control objective functionJ be defined as the throughput of the flat sorting system. For
a given scenario and for the current state of the system,J depends onvbottom andτττ .
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3.5 Control methods

In order to determine the speed of the bottom system that maximizes the throughput of the
flat sorting system, we propose two model-based control approaches namely optimal control
and model predictive control.

3.5.1 Optimal control

We now propose different variants of optimal control with gradually decreasing complexity
such as optimal control with a piecewise constant speed on time intervals of variable length,
optimal control with a piecewise constant speed on time intervals of constant length, and
optimal control with a constant speed.

Optimal control with a piecewise constant speed on time intervals of variable length

One may first divide the period[t0,t0 + τsort,max) into N + 1 time intervals of variable length
τ0, τ1, .., τN such that∑N

k=0τk = τsort,max. Define the time instantstk+1 = tk + τk with k≥ 0.
Then the piecewise constant control lawvbottom= [vbottom

0 vbottom
1 . . .vbottom

N ]⊤, and the inter-
valsτ0, τ1, . . . , τN on whichvbottom

0 , vbottom
1 , . . . , vbottom

N are constant have to be computed
such that the throughputJ is maximized. As a consequence, the optimal control problemis
defined as follows:

P1: max
vbottom,τττ

J(x(t0),vbottom,τττ )

subject to
t = M (x(t0),vbottom,τττ )
C (vbottom,τττ )≤ 0

Optimal control with a piecewise constant speed on time intervals of constant length

One may further simplify the problem P1 by consideringτk for k = 0,1, . . . ,N − 1 equal to a
fixed sampling timeτs, andτN = τsort,max−∑N−1

k=0 τs. So,τττ = [τs τs . . . τs τsort,max−∑N−1
k=0 τs]

⊤.
Accordingly, we define the optimal control problem with a piecewise constant speed on time
intervals of constant length as follows:

P2: max
vbottom

J(x(t0),vbottom,τττ )

subject to
t = M (x(t0),vbottom,τττ )
C (vbottom,τττ )≤ 0

In both P1 and P2, the throughput increases monotonically with a smallerτs or with an
increasingN until the best achievable throughput is reached. However, this comes at the
cost of a higher computation time.
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Optimal control with a constant speed

Now consider the simplest case of P1 and P2. For the entire stream of flats entering the sys-
tem in one sorting round, the constant speeduct that maximizes the throughput is computed.
This optimal control problem can be defined as follows:

P3: max
uct

J(x(t0),uct, τsort,max)

subject to
t = M (x(t0),uct, τsort,max)
C (uct, τsort,max)≤ 0

The throughput obtained when solving P3 is in general smaller than the one obtained
when using optimal control with piecewise constant speed (described by P1 and P2), but the
total computation time also decreases significantly.

3.5.2 Centralized MPC

In order to obtain a trade-off between the optimality of the throughput and the time required
to compute the optimal velocity sequence of the bottom system, model predictive control
(MPC) is introduced.

The MPC optimization problem can be solved by using a modifiedversion of optimal
control with a piecewise constant speed where at stepk, the control sequence to be computed
is vbottom

k , vbottom
k+1 , . . . , vbottom

k+Nc−1, and whereτk+ j is constant (τk+ j = τs) for j = 0,1. . . ,Np − 1.

Then forτττ k = [τk τk+1 . . . τk+Np−1]
⊤, the MPC optimization problem can be written as fol-

lows:

P4: max
vbottom
k ,vbottom

k+1 ,...,vbottom
k+Nc−1

Jk,Nc,Np(x(tk), [vbottom
k vbottom

k+1 . . .vbottom
k+Np−1]

⊤,τττ k)

subject to
t = M (x(tk), [vbottom

k vbottom
k+1 . . .vbottom

k+Np−1]
⊤,τττ k)

C ([vbottom
k vbottom

k+1 . . .vbottom
k+Np−1]

⊤,τττ k)≤ 0

vbottom
k+ j = vbottom

k+Nc−1 for j ≥ Nc

whereJk,Nc,Np is the throughput of the flat sorting system computed at time stepk over the
prediction horizon[kτs,(k+ Np)τs), and for a control horizonNc.

The prediction horizon is determined using the following procedure3. Assume that one
wants to determine in advance the optimal speed profile for sorting b flats — the variableb
is defined asb = ∑F

j=1b j whereb j is the number of flats that are actually in the buffer at the
inserting device indexj for j = 1,2, . . . ,F , 0≤ b j ≤ bmax

j with bmax
j the maximum number

of flats that can be in the buffer corresponding to the inserting device Ij . Then forNcτs time
units the velocity sequencevbottom

k , vbottom
k+1 , . . . , vbottom

k+Nc−1 is used. Each velocityvbottom
k+ j , with

j = 0,1, . . . ,Nc−1, is applied during a sampling period of lengthτs. All this results inb1≤ b

3In this variant of MPC the prediction horizon depends on the number of flats to be sorted in advance.
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flats being sorted in the period[t0,t0 + Ncτs). For sorting the rest ofb− b1 flats, the velocity
of the bottom system is kept constant, equal tovbottom

k+Nc−1. Consequently, the timeτhorizon

needed to sort theb flats divided byτs determines the prediction horizon as follows (τhorizon

is determined via simulation):Np =
⌈

τhorizon

τs

⌉

where⌈x⌉ denotes the smallest integer larger
than or equal tox.

One of the advantages of MPC over optimal control with variable speed is given by a
smaller computation time sinceNpτs ≤ τsort,max. However, this happens at the cost of a
suboptimal throughput.

Optimization methods

In order to solve the optimization problems presented abovein this subsection, and hence,
to determine the optimal speed of the bottom system of a flat sorting machine, one may
use the following Matlab functions:fmincon incorporated in the Optimization Toolbox, or
patternsearch andga, incorporated in the Genetic Algorithm and Direct Search Toolbox.

Thefmincon function finds a local minimum of a smooth function based on gradient
methods, whilepatternsearch andga determine a local minimum of a non-smooth ob-
jective function.

3.6 Case study

In this section we compare the proposed control methods based on simulation examples. We
will first detail the scenarios to be used for this comparison. Next we analyze the obtained
results.

3.6.1 Scenarios

Recall that the velocityvtop of the top system is constant. Assumevtop to be equal to 1m/s,
while the velocityvbottom of the bottom system is allowed to vary between−0.5m/s and
0.5m/s. It is also assumed that the width of the bin is four times thewidth of the box. The
examples in the following sections involveNbins = 100 bins andNboxes= 400 boxes, while
the lengthNflats of the stream of flats that enter the sorting system equals 24000.

Furthermore, we assume that each destination bin has a unique identification code. Let
these identification codes be: 1,2, . . . ,Nbins. At time instantt0 we assign the identification
codes to the destination bins so thatpbin

1 = 0 m, pbin
2 = 0.4 m, . . . , pbin

Nbins = l total − 0.4 m.
Also, the initial state of all the boxes is “empty” and the time when we had the last dropping
event is initialized with−∞ for all boxes (this initialization allows the system to insert the
first flat into a box as soon as the box arrives in front of an inserting device).

Finally, we consider several scenarios for the same initialstate of the system described
above. According to these scenarios, the streams of codes consists of:

scenario 1: ordered codes (i.e., with the same order as the order of codesallocated to the
bins). Since the width of the bin is four times the width of thebox, a per-
fectly ordered stream of flats is a stream of the form e.g. 1,1,1,1,2,2,2,2, . . . ,
Nbins,Nbins, Nbins,Nbins,1,1,1,1, . . . . The order of theNbins bins passing under
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the first inserting device when the bottom system moves to theright is in this
case 1,2,3, . . . ,Nbins.

scenario 2: alternating sequences of random, and respectively orderedcodes, e.g.,σσσ1, . . . ,
σσσm where ifσσσ j is a sequence of random codes, 1≤ j < m, thenσσσ j+1 is a se-
quence of ordered codes and vice versa. The length of each sequenceσσσ j for
j = 1,2, . . . ,m is also chosen randomly. This scenario has been chosen due to
the fact that the mail may be partially presorted;

scenario 3: completely random codes.

3.6.2 Results

For the scenarios above, the throughput of the flat sorting machine with a static bottom
system (i.e.,vbottom≡ 0m/s) has been listed in Table 3.1.

Table 3.1: The throughputJopt(flats/s) for the scenarios considered, when the bottom sys-
tem of the sorting machine is static (vbottom= 0m/s).

Scenario 1 feeder 2 feeders
1 9.90 13.19
2 9.85 13.14
3 9.85 13.07

According to these results, one can notice that adding the second feeding device in-
creases with about 33% the throughput of the flat sorting machine with a feeder only. Next
we will determine whether using the proposed new design of the flat sorting machine and the
proposed optimal control and model predictive control approaches increase the throughput
even more.

Optimal control with a constant speed

In this section we compute the constant speed of the bottom system that optimizes the
throughput for all the flats that enter the system in one sorting round. So, we solve the
optimization problem P3.

Figure 3.2 shows the throughput versus the velocity of the bottom system by discretizing
the velocity with the sampling step of, e.g., 0.01m/s. One may notice many variations of the

Table 3.2: Comparison of throughput and computation time obtained by using the Matlab
functionsfmincon,patternsearch, andga for the set-up with two feeders.

Jopt(flats/s) computation time (s)
Scenario fmincon patternsearch ga fmincon patternsearch ga

1 15.68 15.68 15.68 2.39·103 6.32·102 1.74·103

2 15.81 15.84 15.84 4.63·103 1.20·103 4.01·103

3 15.79 15.88 15.77 5.27·103 1.22·103 4.20·103
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throughput’s amplitude. Hence, in order to optimize the throughput, a global or multi-start
local optimization method is required. Therefore, when solving the optimization problems
P1, P2, P3, P4 corresponding to (1) optimal control with a piecewise constant speed on time
intervals of variable length, (2) optimal control with a piecewise constant speed on time
intervals of constant length, (3) optimal control with a constant speed, and (4) MPC with a
piecewise constant speed on time intervals of constant length respectively, we have used as
optimization algorithms:

• the pattern searchalgorithm incorporated in the Matlab optimization toolboxGe-
netic Algorithm and Direct Searchimplemented via the functionpatternsearch
with multiple initial points,

• thesequential quadratic programmingmethod, incorporated in the MatlabOptimiza-
tion toolbox implemented via the functionfmincon with multiple initial points.

• thegeneticalgorithm, incorporated in the Matlab optimization toolbox Genetic Algo-
rithm and Direct Searchimplemented via the functionga with multiple runs.

In Table 3.2 we have listed the throughput and the corresponding computation4 time ob-
tained when solving P3 by using the Matlab functionsfmincon andpatternsearch with
three random initial points and when running the Matlab function ga three times. Note that
we have used for this comparison only three initial points inorder to keep the computation
time low. Then, by comparing the throughput attained for each of the three optimization
routines and the corresponding computation time, one may note that thepatternsearch
function gives the best results, i.e., the maximal throughput and the lowest computation
time. Consequently, this optimization technique will be further used for solving the opti-
mization problems.

The results listed in Table 3.2 also indicate that for the case where the flats are ordered
(scenario 1), the obtained throughput is smaller than the throughput corresponding to sce-
nario 2 and 3, where the flats have also random codes. This situation appears since both
feeders feed the transport boxes with flats that have the following order of codes 1, 1 ,1, 1,
2, 2 ,2, 2,. . . , 100, 100 ,100, 100 repeated 30 times (due to our initialization, see page 35).
Furthermore, due to assumptionA4 and due to our initialization, see page 35, the inserting
devices corresponding to these two feeders are positioned over boxes aligned (att0) with
the destination bins that have identification codes 1 and 51 respectively. Hence, the order
that we use in scenario 1 does not help the sortation, but in contrary, it yields more loaded
boxes passing under the inserting devices. Then the inserting rate will be lower than when
considering random codes, and consequently, the throughput is also lower.

The improvement of the throughput obtained when using optimal control with a constant
speed is defined with respect to the throughput obtained whenthe bottom system of the flat
sorting machine is static. Simulations indicate that for a set-up with one and two feeders the
improvement is about 1% and 20%, respectively. Hence, sincethe improvement obtained
by using the proposed set-up with only one feeder is not substantial, only the system with
two feeders is further considered. The results obtained when using optimal control with a
constant speed are shown in Table 3.3.
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Optimal control with a piecewise constant speed

Table 3.3 also lists the throughput obtained when solving P2 corresponding to optimal con-
trol with a piecewise constant speed on time intervals of constant lengthτs = 3s. Simula-
tions show that using a smaller sampling interval does not further increase the throughput.
Also, if one solves P2 for N > 4 control variables, and P1 corresponding to optimal con-
trol with a piecewise constant speed on time intervals of variable length, for 2N control
variables, the resulted throughput is the same within an accuracy of 10−3. However, the
computation time when solving P1 is much larger than the one required when solving P2.
So, optimal control with a piecewise constant speed on time intervals of constant length out-
performs the optimal control with a piecewise constant speed on time intervals of variable
length.

Model predictive control

When applying MPC, the smallerτs is chosen the biggerNc has to be set in order to max-
imize the performance. If one does not want to increaseNc, blocking5 can be also used.
First we consider improving the performance and afterwards, we also take into account the
computational effort.

To this aim we consider three cases:

• First, we try to obtain the best throughput. Therefore, we select a maximal prediction
horizon —bmax

j for j = 1,2, . . . ,F equals the length of the streamsj that will be fed
to the system using inserting device Ij — while Nc is set equal toNp. To this aim,
we compute the period lengthτsort,max needed to sort the entire stream of flats using
optimal control with a constant speed. Accordingly, the prediction horizon is set to
⌈

τsort,max

τs

⌉

, while Nc = Np. We have considered various lengthsτs of the sampling
time period. Based on simulation results, it has been noticed that forτs≪ 5s the
resulting values of the throughput remain the same within anaccuracy of 10−3. This
choice gives high performance, but is not feasible due to thehigh computational effort
required.

• Secondly, we consider a prediction horizon determined by a buffer of bmax
j = 120 flats

for j = 1,2, . . . ,F , Nc = Np, andτs = 5s. Simulations indicate that applying MPC

Table 3.3: Comparison of throughput (expressed in(flats/s)) obtained by using the pro-
posed control methods for a set-up with two feeders.

Scenario Optimal Optimal MPC MPC
control with piece- control with (τs = 5s (τs = 10s
wise constant speed constant speedNc = Np) Nc = 1)

1 15.78 15.68 15.73 15.71
2 15.89 15.84 15.87 15.63
3 15.91 15.88 15.83 15.73

4The simulations were performed on a 3.0 GHz P4 with 1 GB RAM.
5Instead of making the input to be constant beyond the controlhorizon only, one can force the input to remain

constant during some predefined intervals.
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Figure 3.10: Speed evolution for the bottom part of the flat sorting machine (vbottom is neg-
ative when the bottom system has the opposite direction of movement with
respect to the top system). The profile has been determined when applying
MPC with Np = Nc, Np determined by a buffer of120flats, andτs = 5s.

with these characteristics gives already the throughput within 1% deviation of the
throughput achieved when applying optimal control with a piecewise constant speed
(see Table 3.3). Nevertheless, the computation time is still high.

• Finally, we consider a prediction horizon determined by a buffer of bmax
j = 120 flats

for j = 1,2, . . . ,F , Nc = 1, andτs = 10s. This choice produces real-time, but subop-
timal results.

For the second case that we have considered when assessing the performance of MPC,
we have also plotted the velocity profile of the bottom part ofa flat sorting machine with
two feeders, see Figure 3.10. This profile has been determined when applying MPC with
Np = Nc, Np determined by a buffer of 120 flats, andτs = 5s, for scenario 2 (with alter-
nating sequences of random and ordered codes) and for scenario 3 (random codes only)
respectively. According to the profile illustrated in Figure 3.10, during the entire sorting
period (τsort,max = 1535 s for scenario 2 andτsort,max = 1525s for scenario 3) the velocity
of the bottom part varies between 0 m/s and 0.5 m/s when the bottom part has the opposite
direction of movement with respect to the top part and between 0 m/s and 0.4 m/s when
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Table 3.4: Comparison of the average throughput and the average computation time of the
proposed control methods for a flat sorting machine with two feeders.

Control method total CPU time relative performance
(s) (%)

optimal control with piecewise constant
speed on time intervals of variable length 2.4 ·106 100

optimal control with piecewise constant
speed on time intervals of constant length 8.6 ·105 100

optimal control with constant speed 1.0 ·103 99.60
MPC with Nc = Np andτs = 5 s 1.3 ·104 99.68
MPC with Nc = 1 andτs = 10 s 1.5 ·103 98.93
static bottom system 0 82.80

the bottom system has the same direction of movement as the top part. These results also
confirm that the flat sorting machine with a static bottom partis not optimal, but neither the
one wherevbottom = −0.5 m/s is (in Section 3.6.4 we will also show that only increasing
the relative speed between the top and the bottom part of a flatsorting machine does not
maximize the throughput).

3.6.3 Discussion

Table 3.4 summarizes the results obtained when using the proposed optimal control ap-
proaches and model predictive control.

We have assumed that the maximal achievable throughput is obtained by using the op-
timal control with piecewise constant speed on time intervals of variable length. The per-
formance of the other approaches was computed relative to this maximum. But, for each of
the control methods to be compared, the throughput corresponding to the chosen scenarios
varies. Therefore, in order to summarize the results of Table 3.3, the average throughput,

J =
∑Nscenarios

j=1 Jscenario
j

Nscenarios , is used in calculating the relative performance. The computation time

is also averaged over all the considered scenarios.
The simulation results show that applying MPC gives a good trade-off between the com-

putation time and the maximal achievable throughput. Also,the optimal control approach
is not feasible, in the sense that in reality the entire stream of flats that enter the system
in one sorting round is not known in advance. Only a finite buffer b of codes is known
beforehand, withb depending on the maximal time allowed to prepare the flats forsort-
ing. Therefore, in practice, MPC is the most suitable for determining the optimal velocity
sequence of the bottom system. Moreover, note that the totalsorting time satisfies the rela-
tion 1500s≤ τsort,max≤ 1550 s for all proposed methods and for all considered scenarios.
Hence, out of the MPC variants that we consider, only the one whereNc = 1 andτs = 10 s
offers real-time results. However, also note that one can easily gain several orders of mag-
nitude in the total computation time of MPC by using parallelcomputation when solving an
optimization problem, better implementation, object coded programming languages instead
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of Matlab, or dedicated optimization algorithms. In futurework also other control meth-
ods will be considered such as fast rule-based approaches, neural networks, see, e.g., [36],
and fuzzy-based approaches, see, e.g., [63]. These approaches will then use the receding
horizon principle (for more details see Section 5.3).

3.6.4 Influence of structural changes

In this subsection we analyze how the number of feeders, their position, and the velocity of
the top system influence the throughput of a flat sorting machine.

Number of feeding devices

Consider a flat sorting machine withF inserting devices positioned symmetrically,F ≤
Nboxes. Assume that both the transport boxes and the destination bins move with constant
speed.

First we determine analytically the maximum throughput when considering two cases:
the flats that enter the sorting part of the flat sorting machine have (1) perfectly ordered codes
and (2) perfectly random codes. For both cases we compute themaximum throughput when
the sorting system is in steady6 state. Moreover, note that we want to compute the maximum
throughput for a system where the velocity of the top system is fixed,vtop, while the velocity
of the bottom system is bounded (−vbottom,max≤ vbottom≤ vbottom,max with vbottom,max the
maximum speed that the bottom part can use).

Next we compute (via simulation) the throughput of a flat sorting machine where the
top part moves with a constant speed and the bottom part moveswith an optimal constant
speed that is determined using optimal control with a constant speed.

Finally, we illustrate the maximum throughput determined analytically or via simulation
for the case study of Section 3.6.1.

Perfectly ordered codes We now consider the case where the flats that enter the sorting
part of the flat sorting machine have perfectly ordered codes. This means that the flats are
ordered in such a way that once they enter the system, the timethat they spend in the box is
negligible.

Note that since the flats are dropped as soon as they enter the system, the maximum
throughput is in fact bounded by the maximum feeding rate of the flat sorting machine.
Let ζ feed,max denote the maximum feeding rate. Note thatζ feed,max is bounded due to the
operational constraintC3 on page 32 — in order to avoid executing the actions insert, drop,
insert at the same time instant for the same box, a minimum period of wbox/vtop time instants
has to pass between two consecutive inserting events for anyboxmwith m∈ {1, . . . ,Nboxes}.
As a consequence,ζ feed,max is bounded by the speed that the top system can use and by the
width of the box. Assume that the transport boxes move with the constant speedvtop, then
ζ feed,max = vtop

wbox .

6In this thesis we say that a system is in its steady state if thesystem is at its equilibrium (the system is working
in a regular and constant mode).
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Let Jmax,orderedbe the maximal throughput when dealing with perfectly ordered codes to
be fed into the machine. Then

Jmax,ordered= Fζ feed,max = F
vtop

wbox .

Example As example, consider a flat sorting machine where the top partmoves with
1m/s, and where the width of a box is 0.1 m. Suppose that there areF = 4 inserting
devices, then the maximal throughput is

Jmax,ordered= 4 ·
1

0.1
flats/s= 40flats/s.

Perfectly random codes Next we determine a tighter upper bound for the case in which
each of theF inserting devices feeds the system with perfectly random sequences of codes
with respect to the destination bins. Assume the system in steady state. This computation
goes as follows. In order to make the explanation more clear,we first assume that each of
theF inserting devices feeds the system at a constant rateζi (flats/s) with i ∈ {1,2, . . . ,F}.
Then, since we consider perfectly random sequences of codeswith respect to the identifica-
tion codes of the destination bins, the flats are dropped uniformly along the bins. Let the part
of the sorting system between two inserting points be calleda “segment”. Then,ζi

F flats per
second are dropped along each segment of the sorting machinefor i = 1, . . . ,F . As example
we have illustrated in Figure 3.11 the feeding rate and the dropping rate along each segment
of the sorting machine (solid arrows going in and out of the ellipse illustrate the feeding and
dropping rates that correspond to inserting device I1, dashed arrows for inserting device I2,
and so on).

Consider a pointP fixed to the bottom system. For the simplicity of the explanation
assume that this point is situated on the segment between IF and I1. However, note that
a similar reasoning holds for any positioning ofP along the destination bins. Moreover,
assume that the bottom system moves in opposite direction than the top system. Note,
however, that the reasoning that we make below is similar forthe case where the bottom
system moves in the same direction as the top system. But since we want to have a maximum
relative speed between the top and the bottom system, see page 45, the second case is not
relevant.

The boxes that pass a pointP are either loaded or empty. These boxes are either trans-
porting flats inserted into the system by feeder 1 up to feederF or have been emptied
somewhere between the inserting device I1 andP, see Figure 3.12. Then, one can make the
following remarks:

• The inserting device I1 feeds the system in steady state withζ1 flats per second. Then,
assuming thatζdrop

1,P flats per second are dropped between the inserting device I1 and

P, ζ1 − ζ
drop
1,P loaded boxes per second will pass pointP transporting flats inserted by

the inserting device I1.

• The inserting device I2 feeds the system withζ2 flats per second. But
ζ2

F
flats per

second have been dropped along the segment bounded by the inserting devices I2 and

I1. Assume thatζdrop
2,P flats per second are dropped between I1 andP. Then,ζ2 −

ζ2

F
−
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ζ
drop
2,P = (F − 1)

ζ2

F
− ζ

drop
2,P loaded boxes per second will pass pointP transporting flats

inserted by the inserting device I2.

• . . .

• The inserting device IF feeds the system withζF flats per second. But(F − 1)
ζF

F
flats

per second have been dropped along the segment bounded by theinserting devices
IF and I1. Assume thatζdrop

F,P flats per second are dropped between I1 andP. Then
ζF

F
− ζ

drop
F,P loaded boxes per second will pass pointP transporting flats inserted by the

inserting device IF .

Hence one can write:

ζ1

F
+ 2

ζ2

F
+ · · ·+ (F − 1)

ζF−1

F
+ ζF −

F

∑
i=1

ζ
drop
i,P = ̺box,loaded

P

where̺box,loaded
P is the number of loaded boxes that pass pointP per second.

Now assumeζi = ζ for i = 1,2, . . . ,F . And since

1+ 2+ · · ·+ F =
F(F + 1)

2
,

inserting device I1
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inserting
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Figure 3.11: Top part of a flat sorting machine. Each of the F feeders feeds the system at
rate ζi with i ∈ {1, . . . ,F}. The flats are dropped uniformly. Then∑F

i=1
ζi
F flats

per second are dropped between each two consecutive inserting points.
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Figure 3.12: The point P is positioned between the insertingdeviceI1 and inserting device
IF . Then∑F

i=1ζ
drop
i flats per second are dropped between P andIF .

we can derive the relation:

ζ

F
F(F + 1)

2
=

F

∑
i=1

ζ
drop
i,P + ̺box,loaded

P

But
F

∑
i=1

ζ
drop
i,P + ̺box,loaded

P = ̺box
P

where̺box
P the number of boxes (loaded or empty) that pass pointP per second. Then

ζ =
2

F + 1
̺box

P .

Note that, in steady state,ζ is not only the feeding rate per inserting device, but also
the actual throughput corresponding to that feeder. Hence,the actual throughput (Fζ) of
a flat sorting machine obtained forF streams of flats, the codes of which are uniformly
distributed, is given by:

Fζ =
2F

F + 1
̺box

P .

Next we determine the maximum feeding rate (and as a consequence the maximum
throughput) that we can obtain, in steady state, for streamsof uniformly distributed codes.
We have two bottlenecks:

1. the feeding rate is bounded due to the operational constraint C3,

2. the dropping rate depends on the relative speed between the top and the bottom part
of the flat sorting system.

As explained on page 41, the maximum feeding rate is

ζ feed,max =
vtop

wbox .

Next we maximize the dropping rate. Note that the speed of thebottom system is
bounded. As a consequence, in order to maximize the droppingrate, we have to setvbottom=
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−vbottom,max (the bottom part moves with constant speedvbottom,max in opposite direction
than the top system). Then the dropping rate will depend on the relative speedvrel,max =
vtop+ vbottom,max.

The maximum dropping rate is in fact the maximum number of boxes (̺ box,max
P ) that

pass a pointP fixed on the bottom part of the machine per second, and is givenby

ζdrop,max = ̺box,max
P =

vrel,max

wbox .

Let Jmax,rand denote the maximum throughput that we can obtain in this case. Then
Jmax,rand is given by

Jmax,rand= min
(

Fζ feed,max,
2F

F + 1
ζdrop,max

)

= min

(

F ·
vtop

wbox ,
2F

F + 1
·
vtop+ vbottom,max

wbox

)

.

Example As an example, according to our case study the bottom system can move in
both directions (clockwise and counterclockwise with maximum speed of 0.5 m/s). The
velocity of the top part of the machine isvtop = 1 m/s. The width of a box iswbox = 0.1 m.
So, ζ feed,max = 10flats/s. The maximum number of boxes that pass per second a point
associated to the bottom part of the machine is obtained for the relative speedvrel,max = 1.5
m/s. Thenζdrop,max = ̺box,max = 15 flats/s. Accordingly, when dealing withF inserting
devices, we have

Jmax,rand= min

(

F ·10flats/s,
2F

F + 1
·15flats/s

)

.

AssumeF = 1 thenJmax,rand = 10flats/s. AssumeF = 4 thenJmax,rand =
8
5
·15flats/s=

24flats/s.

Simulation results Next we compute via simulation the maximum throughput of a flat
sorting machine where the top part of the flat sorting machinemoves withvtop = 1 m/s
and the bottom part of the machine moves with the constant speed determined by using
optimal control with a constant speed. We consider optimal control with a constant speed
to determine the optimal velocity of the bottom system due tothe following reasons:

• We can now solve the optimization problem off-line.

• We are mainly interested in obtaining a high throughput, andnot anymore in the
tractability of the control method.

• Optimal control with a constant speed gives better results than MPC, but still with
relatively low computation time (see Table 3.4).

Figure 3.13 illustrates the throughput achieved by using optimal control with a constant
speed to determine the optimal velocity of the bottom part when dealing with the scenarios
presented in Section 3.6.1. This throughput is plotted versus the number of feeders of the flat
sorting machine,F = 1,2, . . . ,50. The maximum throughput obtained for scenario 1 (that
consists of ordered codes) has been denoted byJmax,sim,1, the maximum throughput obtained
for scenario 2 (that consists of alternating sequences of random and ordered codes) has been
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Figure 3.13: Throughput versus number of feeders.

denoted byJmax,sim,2, and the maximum throughput obtained for scenario 3 (that consists
of random codes) has been denoted byJmax,sim,3. Note that the throughput first increases
with the number of feeders, but levels off around twenty feeders. Also, adding more feeders
makes the system more complex and more expensive.

Position of inserting devices

Next we analyze how the position of the inserting devices influences the throughput of a
flat sorting machine. To this aim, we consider a flat sorting machine withF feeders. Then
we have to determine the optimal positions of theF − 1 inserting devices corresponding to
theF − 1 feeders when the position of the inserting device of the first feeder is fixed. This
is then the problem of optimizing the sequence of distancesd = [d1 d2 . . . dF−1]

⊤, where
d j , j = 1, . . . ,F − 1, is the distance between thejth and the( j + 1)st inserting device. This
optimization problem can be formulated as follows:

P5: max
d

Jnew(x(t0),uct,∗,d)

subject to
t = M (x(t0),uct,∗, τsort,max)
C (uct,∗, τsort,max)≤ 0

whereJnew is the throughput of the flat sorting machine obtained when using the optimal
constant velocity of the bottom systemuct,∗ for configurationd and for the given scenario,
andd is the sequence of distances between the feeders defined above.
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Figure 3.14: Layouts.

We consider a flat sorting machine with 3 feeders since this machine offers a good
trade-off between the performance and the costs of the system. Accordingly, we consider
three layouts for positioning the inserting devices of thisflat sorting machine, described as
follows (see also Figure 3.14):

case 1: the three existing feeders of the flat sorting machine have their inserting devices
positioned one next to the other,

case 2: the inserting devices are positioned in an equidistant way,

case 3: the inserting devices are positioned at distancesd1 andd2 computed by solving P5
for the optimal constant speed of the bottom system for that specific scenario.

The throughput obtained for each of these configurations is illustrated in Table 3.5.
One may notice that the throughput obtained in Table 3.5 for the first case (where the flat
sorting machine has 3 feeders in a row) is very close to the throughput obtained by a sorting
machine with only one feeder (see, e.g., Table 3.1 or Figure 3.2). Hence, the simulation
results indicate that, e.g., 3 feeders in a row perform like if there is only one feeder, whereas
by positioning them in an equidistant way one obtains the throughput within 1 % of the one
obtained when solving P5.

To conclude the analysis regarding the influence of the position of the inserting devices
over the throughput of the flat sorting machine, we can generalize these results and note
that positioning the inserting devices along the transportboxes equidistantly is a balanced
arrangement. To support this conclusion we note that the throughput obtained for this con-
figuration is typically very close to the one obtained when solving the optimization problem
P5.

Table 3.5:Jopt(flats/s) obtained when positioning the feeders according to the considered
layouts.

Scenario Case 1 Case 2 Case 3
1 9.98 20.49 20.49
2 9.97 19.87 19.94
3 9.94 19.71 19.85
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Relative velocity between the transport boxes and the destination bins

In this section we analyze how an increase in the velocity of the top system, and conse-
quently the increase of the relative velocity between the transport boxes and the destination
bins, influences the throughput of a flat sorting machine. We consider a flat sorting machine
with 1, 2, and 3 feeders respectively. The inserting devicesare positioned at equidistant
distances along the transport boxes. Assuming that the process of inserting a flat into a
transport box can be performed also when the top system moveswith higher speed, in this
section we considervtop = 5m/s. In Figure 3.15, the throughput of the flat sorting machine
is plotted versus the velocity of the bottom system, for a velocity range between−0.5 and
0.5m/s and a discretization sampling step of 0.01m/s. We have plotted only the curves for
the second scenario, since the plots for the first and third scenario are similar.

The plots illustrated in Figure 3.15 are nonlinear and nonsmooth, with many variations
of the throughput’s amplitude. Also, the simulation results indicate that the amplitude of
the variation of the throughput’s amplitude increases withthe number of feeders of the flat
sorting machine.

Hence, one can conclude with the following remark: only increasing the relative speed
between the top and the bottom system does not maximize the thoughput. As a consequence,
implementing advanced control methods to compute the optimal velocity of the bottom
system is still required.
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Figure 3.15: Throughput versus vbottomwhen vtop = 5m/s for a flat sorting machine with 1,
2, and 3 feeders respectively. The inserting devices are positioned at equidis-
tant distances along the transport boxes.
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3.7 Summary

In this chapter we have considered sorting machines in mail sorting centers designed to
handle large mail items such as newspapers, catalogs, and large letters. We have given a
brief description of how flat sorting machines currently work. Afterwards, a new set-up
has been proposed by making minor design changes, i.e., adding extra feeders and moving
the bottom bin system. An event-driven model of the process has been determined, and
advanced control methods have been implemented so as to ensure the optimal speed of the
bin movements.

We have also analyzed how the number of feeders, their position, and the velocity of the
top system influence the throughput of the automated flat sorting machine. The simulation
results show that just increasing the speed of the top system, and hence, the relative speed
between the top and bottom system, does not have as immediateconsequence an increase
in the throughput. Hence, determining the optimal bottom velocity is still required so as
to maximize the efficiency of the flat sorting machine. The results indicate that model pre-
dictive control is the most suitable control method to determine the velocity of the bottom
system for the proposed flat sorting machine. To support thisconclusion we make two re-
marks: (1) the simulation results show that applying MPC gives a good trade-off between
the computation time and the maximal achievable throughput, (2) the optimal control ap-
proach is not feasible in the sense that in reality the entirestream of flats that enter the
system in one sorting round is not known in advance (only a finite buffer of codes is known
beforehand, the length of this buffer depends on the maximaltime allowed to prepare the
flats for sorting).

In future work also other control methods will be consideredsuch as fast heuristic ap-
proaches, fuzzy control, case-based control, etc. In future work we will also include more
complex dynamics of the system than those considered in thischapter (acceleration and
deceleration of the speed at which the destination bins move).





Chapter 4

Baggage handling

In this chapter we consider state-of-the-art baggage handling systems in large airports. The
chapter is structured as follows. In Section 4.1 we describethe automated baggage handling
process and the current problems of a baggage handling system. Afterwards, in Section 4.2
we present the simplifying assumptions made in order to obtain a fast simulation, and the
resulting nonlinear event-driven model of the DCV-based baggage handling system. This
model will be later on used for model-based control. Next, inSection 4.3, we describe the
operational constraints together with the control objective. Furthermore, in Section 4.4, we
propose several control approaches for determining the route choice of bags through the
baggage handling system. First we develop and compare centralized, decentralized, and
distributed predictive methods that could be used to optimize the performance of the sys-
tem. This results in a nonlinear, nonconvex, mixed integer optimization problem that is very
expensive to solve in terms of computational effort. Therefore, we also propose an alterna-
tive approach for reducing the complexity of the computations by simplifying the nonlinear
optimization problem and writing it as a mixed integer linear programming (MILP) opti-
mization problem for which solvers are available that allowus to efficiently compute the
global optimal solution. Finally, in order to reduce the computational requirements, we also
propose two heuristic methods and a hierarchical control framework. The analysis of the
simulation results and the comparison of the proposed control methods and control frame-
works are elaborated in Section 4.5. Finally, in Section 4.6, we draw the conclusions of this
chapter and we present possible directions for future research.

Parts of this chapter have been published in [76–78, 80–83, 85–89].

4.1 State-of-the-art solutions

In this section we briefly present the state-of-the-art in baggage handling systems and their
control problems.

4.1.1 Process description

The main tasks of a baggage handling system are the following:

51
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DCVs
empty

Buffer with

Figure 4.1: Loading a DCV.

• to transport baggage from the check-in area to the appropriate end point1 and from
there to the plane or between two different cargo terminals in case of transfer luggage,

• to transport baggage from a check-in desk or from a certain gate during transfers and
to store them in the temporarily storage area (if the person checked in too early or the
different flights have more than two hours waiting period),

• to transport baggage from the arrival gate to the baggage claim area.

The state-of-the-art technology used by baggage handling systems at airports to trans-
port the bags in an automated way incorporates:

1. scanners that scan the (electronic) baggage tags on each piece of luggage,

2. baggage screening equipment for security scanning,

3. networks of conveyors equipped with junctions that routethe bags through the system,

4. destination coded vehicles (DCVs). These vehicles are used in large airports only,
where the distances between the check-in desks and the end points towards which the
baggage has to be transported are too large (for these airports the conveyor systems
are too slow, and therefore, a faster carrier is required foreach bag).

As illustrated in Figure 4.1, a DCV is a metal cart with a plastic tub on top. These carts
are propelled by linear induction motors mounted on the tracks. The DCVs transport the
bags at high speed on a network of tracks. The nodes via which the DCVs enter the track
network are called loading stations, the nodes via which theDCVs exit the network are
called unloading stations, while all the other nodes in the network are called junctions. The
section of track between two nodes is called link.

In this thesis we consider the general DCV-based baggage handling system sketched in
Figure 4.2. This baggage handling system operates as follows: given a demand of bags
(identified by their unique code) together with their arrival times at the loading stations,
and the network of single-direction tracks, the route of each DCV in the network has to be
computed subject to the operational and safety constraintspresented in Section 4.3, such
that all the bags to be handled arrive at their end points within given time windows. The

1An end point of the baggage handling system is the final part ofthe system where the bags are lined up,
waiting to be loaded into containers and from there to the plane.
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Figure 4.2: Baggage handling system using DCVs.

bags unloaded outside their end points’ time window are thenpenalized as presented in
Section 4.3.

We consider a system withL loading stations L1, L2, . . . , LL, U unloading stations U1,
U2, . . . , UU , andS junctions S1, S2,. . . , SS. Let us index the bags loaded onto DCVs
at station Lι with ι ∈ {1, . . . ,L} as bload

ι,1 , ...,bload
ι,Nload

ι

with Nload
ι the number of bags that

will be loaded at station Lι during the entire simulation period. Then lettarrival
ι, j denote

the time instant when bagbload
ι, j actually arrives at loading station Lι (tarrival

ι, j < tarrival
ι, j+1 for

j = 1, . . . ,Nload
ι − 1). Then we define theL-tupleT = (tarrival

1 , tarrival
2 , . . . , tarrival

L ) that com-
prises the vectors of bag arrival timestarrival

ι = [tarrival
ι,1 . . .tarrival

ι,Nload
ι

]⊤ with ι ∈ {1,2, . . . ,L}.

4.1.2 Control problems

One can describe the control problems of a DCV-based baggagehandling system in a hier-
archical framework. At the lowest level the control problems are coordination and synchro-
nization when loading a bag onto a DCV and when unloading it atits end point (in order
to avoid damaging the bags or blocking the system). We assumethe low-level controllers
already present in the system. These low-level controllersare typically PID controllers and
logic controllers that can stop the DCV when necessary. The velocity control of each DCV
can be seen as a medium-level control problem. In this thesiswe assume that each DCV has
a medium-level speed controller on board. This controller ensures a minimum safety dis-
tance between DCVs and also holds DCVs at switching points, if required. So, we assume
that the velocity of each DCV is always at its maximum,vmax= 20 m/s, unless overruled by
the local on-board collision avoidance controller. Finally, the higher-level control problems
are route assignment for each DCV transporting a bag (and implicitly the switch control
of each junction), line balancing (i.e., assignment of loading stations for each empty DCV
such that all the loading stations have enough empty DCVs at any time instant), empty cart
management (route assignment for each empty DCV), and prevention of buffer overflows.

In this chapter we focus on the higher-level control problemof determining the route
choice for each DCV transporting a bag. Currently, the DCVs are routed through the system
using routing schemes based on preferred routes. These routing schemes respond to the
occurrence of predefined events as follows. Each junction has a logic controller and a lookup
table storing preferred routes from that junction to all unloading stations. If the currently
preferred route is blocked due to e.g. jams or buffer overflows, then the next to-be-preferred-
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route of the lookup table is chosen and the switch out of that junction is toggled accordingly.
In the research we conduct we do not consider such predefined preferred routes. Instead we
develop advanced control methods to determine the optimal routing in case of dynamic
demand.

In the literature, the route assignment problem has been addressed to a large extent for
automated guided vehicles (AGVs). The algorithms developed for routing AGVs can be
classified in three categories: algorithms for general pathtopology [22, 33, 39, 45, 47, 50,
73], algorithms for optimizing the path layout [30, 34, 41, 48], and algorithms for specific
path topologies [5, 16]. Since we consider general DCV-based baggage handling systems,
where the network of tracks is represented as a directed graph, we will look in more detail
only to the first category where the path topology is general.These methods can also be
classified into three categories:

1. static methods, where an entire path is considered to be occupied until a vehicle com-
pletes the tour [22, 33],

2. time-window-based methods, where a path segment can be used by different vehicles
during different time windows [39, 45],

3. dynamic methods, where the utilization of any segment of path is dynamically deter-
mined using, e.g.,

• incremental route planning — the next node to travel to (for each vehicle) is
selected so that the distance from the vehicle’s current position to its destination
is minimal — [2, 73, 74],
• enumeration of transportation plans — dispatching and assigning conflict-free

routes— by means of dynamic programming [50].

Traditionally, the AGVs that execute the transportation tasks are controlled by a central
server via wireless communication. Hence, the computational complexity of the centralized
route choice controller increases with the number of vehicles to be routed. Therefore, [96]
presents a decentralized architecture for routing AGVs through a warehouse. However, even
for a small number of AGVs to be used for transportation (12 AGVs), the communication
requirements are high. But in baggage handling systems the number of DCVs used for
transportation is large (typically airports with DCV-based baggage handling systems have
more than 700 DCVs). Hence, in practice, designing an on board route choice controller
for each DCV is not yet tractable. Also, we do not deal with a shortest-path or shortest-time
problem, since, due to the airport’s logistics, we need the bags at their end points within
given time windows.

The route choice problem for a DCV-based baggage handling system has been presented
in [25] where an analogy to data transmission via internet isproposed, and in [38] where
a multi-agent hierarchy has been developed. However, the analogy between routing DCVs
through a track network and transmitting data over internethas limitations, see [25], while
the latter reference, [38], does not focus on control approaches for computing the optimal
route of DCVs, but on designing a multi-agent hierarchy for baggage handling systems and
analyzing the communication requirements. Moreover, the multi-agent system of [38] is
faced with major challenges due to the extensive communication required. Therefore, the
goal of our work is to develop and compare efficient control approaches (viz., predictive
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control methods and heuristic approaches) for route choicecontrol of each DCV transport-
ing bags to their end points in case of dynamic demand at loading stations. These control
approached are developed in a centralized, a decentralized, and a distributed manner. Note
that the control approach is said to bedecentralizedif the local control actions are computed
without any communication or coordination between the local controllers, while the control
approach is said to bedistributed if additional communication and coordination between
neighboring controllers is involved, see e.g. [94], [95].

4.2 Event-based model

In this section we present the simplifying assumptions and the continuous-time event-driven
model to be used in order to determine the optimal route choice for DCVs in a baggage
handling system.

4.2.1 Assumptions

Later on we will use the model for on-line model-based control. So, in order to obtain a
balanced trade-off between a detailed model that requires large computation time and a fast
simulation we make the following assumptions:

A1: A sufficient number of DCVs are present in the system so that when a bag is at the
loading station there is a DCV ready for transporting it.

A2: Each junction Ss with s∈ {1,2, . . . ,S} has maximum 2 incoming links and 2 outgoing
links, both indexed byl ∈ {0,1} as sketched in Figure 4.3. If Ss has 2 incoming links
then it also has a switch going into the junction (called switch-in hereafter). If Ss has
2 outgoing links then it has also a switch going out of the junction (called switch-out
hereafter). Note that a junction can have only a switch-in, only a switch-out, or both a
switch-in and a switch-out.

A3: We assume each loading station to have only one outgoing linkand each unloading
station to have only one incoming link.

A4: A route switch at a junction can be performed in a negligible time span.

A5: The speed of a DCV is piecewise constant.

incoming incoming
link 0 link 1

(a) switch-in

outgoingoutgoing
link 0 link 1

(b) switch-out

Figure 4.3: Incoming and outgoing links at a junction.
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A6: The capacity of the end points is large enough that no buffer overflow can occur.

A7: The flight numbers of the planes to which the bags have to be transported, are allocated
to the end points when the process starts.

Next we will discuss for each of the assumptions above what todo if they do not hold:

A1: AssumptionA1 was made in order to simplify the route choice problem. In practice,
the DCV-based baggage handling system does not have an unlimited number of DCVs
in the system. Hence, in practice, one has also to efficientlysolve the line balancing
problem and to optimally assign routes to empty DCVs.

A2: If one junction would have more than two incoming links or more than two outgo-
ing links, in order to keep using the proposed model and control methods, one could
virtually expand such a junction to junctions with maximum 2incoming links and 2
outgoing links connected via links of length 0, or one could adapt the control methods
themself.

A3: If a loading station would have more than one outgoing link, then one can virtually
expand a loading station into a loading station connected via a link of length 0 to a
junction with a switch-out. Similarly, one can virtually expand an unloading station
with more than one outgoing link.

A4: AssumptionA4 was made in order to simplify the explanation of the model. IfA4

would not be valid, then one has to take into account the time needed to perform the
switch when computing the control actions and the time period until the next event (see
Section 4.2.2).

A5: AssumptionA5 is a fair approximation of the real speed of DCVs on the link segments
between any 2 induction motors positioned consecutively.

A6: The number of bags for each flight is known in advance (due to advance flight booking
and historical data). So, one can assume without loss of generality that a sufficient
number of end points is associated with a flight, or, if more than one end point is not
available, then at the end point assigned to that specific flight there is human force or
there are robots to load the bags into containers and from there to the plane.

A7: During one day several flights are typically assigned to an end point. However, the time
window when an end point is available for each of those flightsis known beforehand
(it is also known from historical data). Hence, this assumption is not restrictive.

So, these approximations are reasonable and give a good approximation of the real baggage
handling system.

4.2.2 Model

In order to obtain a fast simulation, we write the model as an event-driven system consisting
of a continuous part describing the movement of the individual vehicles transporting bags
through the network, and of the following discrete events:
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• loading a new bag into the system,

• unloading a bag that arrives at its end point,

• crossing a junction,

• updating the position of the switch-in at a junction,

• updating the position of a switch-out at a junction,

• updating the velocity of a DCV.

Let Nbags be the number of bags that the baggage handling system has to handle and
let Nbags,crt be the total number of bags that entered the track network up to the current
time instanttcrt < t0 +τmax_simwith t0 the initial simulation time andτmax_simthe maximum
simulation period. Also, let DCVi denote the DCV that transports theith bag that entered
the track network up to the current time instant,i ≤ Nbags,crt. Note that if two or more bags
are loaded onto DCVs at the same time instantt, we order the DCVs according to the index
of the loading stations (DCVi will then denote the DCV transporting the bag loaded at the
loading station with the smallest index, DCVi+1 will denote the DCV transporting the bag
loaded at the loading station with the next smallest index, and so on).

The state of the DCV-based baggage handling system consists of the link on which
each of the DCVs travel, their speed and their position on that link, and the position of the
switch-in and switch-out at each junction. Furthermore, the input of the system consists
of the demand of bags together with their arrival times at theloading stations and of the
control variables. Note that, depending on the control method, thecontrol variables can
be the switch positions or the time periods after which we toggle the position of the switch
as presented later on. Finally, theoutput consists of the time instants when we load and
unload each of the bags to be handled (these time instants will be collected into a vector
denoted byt, they will be derived via simulation and will be used later onwhen measuring
the performance of the system).

Algorithm 2. Model of the baggage handling system
Input: the demand of bags together with their arrival times at the loading stations, and

the initial state of the system
1: tcrt← t0
2: while tcrt < t0 + τmax_simdo
3: for ι = 1 to L do
4: τ load

ι ← time that will pass until the next loading event of Lι

5: end for
6: for υ = 1 toU do
7: τunload

υ ← time that will pass until the next unloading event of Uυ

8: end for
9: for s= 1 to Sdo

10: τcross
s ← time that will pass until the next DCV-crosses-Ss event

11: τsw_in
s ← time that will pass until the next switch-in event at Ss

12: τsw_out
s ← time that will pass until the next switch-out event at Ss

13: end for
14: for i = 1 toNbags,crt do
15: τ

v_update
i ← time that will pass until the next velocity-update event of DCVi
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16: end for

17:

τmin←min
(

min
ι=1,2,...,L

τ load
ι , min

υ=1,2,...,U
τunload
υ , min

s=1,2,...,S
τcross

s , min
s=1,2,...,S

τsw_in
s ,

min
s=1,2,...,S

τsw_out
s , min

i=1,...,Nbags,crt
τ

v_update
i

)

18: tcrt← tcrt + τmin

19: take action (i.e. load, unload, cross junction, switch-in update, switch-out update,
velocity update)

20: update the state of the system
21: end while
Output: t

Note that if multiple events occur at the same time, then we take all these events into
account when updating the state of the system at step 20.

Next we describe the variables involved in determining the event-based model ofAlgo-
rithm 2 . This goes as follows, whereι ∈ {1,2, . . . ,L}, υ ∈ {1,2, . . . ,U}, s∈ {1,2, . . . ,S},
andi ∈ {1,2, . . . ,Nbags,crt}:

τ load
ι : If there is no bag coming towards loading station Lι, thenτ load

ι = ∞. Otherwise,
a conveyor transports bags towards loading station Lι. Recall that we assume that
there are sufficient DCVs present in the system so that when a bag is at the loading
station there is a DCV ready for transporting it. Then, for the current state of the
system at time instanttcrt, the time periodτ load

ι is equal to max
(

tarrival
ι, j − tcrt,tsafe

ι, j ,i

)

wheretarrival
ι, j denotes the time instant when bagbload

ι, j actually arrives at loading
station Lι, j − 1 is the number of bags that have been already loaded from Lι (so,
the next bag to be loaded at Lι has local indexj), andτsafe

ι, j ,i expresses the time

period that has to pass until it is safe for bagbload
ι, j to be loaded onto a DCV. This

duration is given by:

τsafe
ι, j ,i =











0 if dtravel
ι, j−1 ≥ dmin

dmin − dtravel
ι, j−1

max
(

vjam,vload
ι, j−1

) otherwise

wheredmin is the minimum safe distance between DCVs,dtravel
ι, j−1 is the position of

the DCV transporting bagbload
ι, j−1 on the outgoing link of loading station Lι, vload

ι, j−1 is

the velocity of that DCV, andvjam≪ 1 m/s is the speed to be used in case of jam.
The speedvjam is determined based on empirical data.

τunload
υ : The time period that will pass until the next unloading eventoccurs at unloading

station Uυ is given by:

τunload
υ =

dlink
υ − dtravel,closest

υ

vclosest
υ

wheredlink
υ is the length of the incoming link of unloading station Uυ, dtravel,closest

υ

is the position of the DCV closest to Uυ on the incoming link of Uυ, andvDCV
υ is

the current speed of this DCV. If there is no DCV on the incoming link of Uυ, then
τunload
υ = ∞ by definition.
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τcross
s : Consider the switch into junction Ss to be positioned at the current time on the

incoming link l ∈ {0,1} of Ss. Then the time that will pass until the next DCV
crosses Ss is given by:

τcross
s =











dlink
s,l − dtravel,closest

s,l

max
(

vjam,vclosest
s,l

)

if there is a DCV
on link l into Ss

∞ otherwise

wheredlink
s,l is the length of the incoming linkl of junction Ss, dtravel,closest

s,l is the

position of the DCV closest to Ss on the incoming linkl of Ss, andvclosest
s,l is the

velocity of that DCV.

τsw_in
s , τsw_out

s : Once the toggle command of switch-in and switch-out is given, the position
of the switch-in and switch-out is toggled afterτsw_in

s andτsw_out
s time units respec-

tively. Assume that the toggle commands are given attsw_in≥ tcrt andtsw_out≥ tcrt.
Thenτsw_in

s andτsw_out
s are given by:

τsw_in
s = max

(

tsw_in,tsw_in_prev
s + τswitch)− tcrt

τsw_out
s = max

(

tsw_out,tsw_out_prev
s + τswitch)− tcrt

whereτswitch is the minimum time period after which the switch at a junction can
be toggled, and wheretsw_in_prev

s andtsw_out_prev
s are respectively the time instants

when the switch-in and the switch-out at junction Ss have been toggled last.

τ
v_update
i : We calculate the durationτv_update

i according to the cases enumerated below —
dmin is the minimum safe distance between DCVs anddtravel

DCVi
is the position of

DCVi on the incoming link of Ss.

• Assume DCVi to be traveling towards junction Ss on link l ∈ {0,1}, with no
other DCV traveling in front of DCVi on the same linkl . Then we distinguish
two situations:

1. vDCVi < vmax anddlink
s,l − dtravel

DCVi
> dmin.

2. vDCVi > 0, dlink
s,l − dtravel

DCVi
≤ dmin, and the switch-in at Ss is not positioned

on the incoming linkl that DCVi travels.

In both cases the velocity of DCVi has to be updated immediately,τv_update
i =

0. Hence, the velocity of DCVi will be updated as follows:vDCVi ← vmax for
the first case andvDCVi ← 0 for the latter.

• Let DCVprev
i denote the DCV traveling on the same incoming linkl of Ss as

DCVi , in front of DCVi , with no other DCV between them. Also, letdtravel
DCVprev

i

denote the position of DCVprev
i on link l . We distinguish two situations:

1. vDCVi < vmax anddtravel
DCVprev

i
− dtravel

DCVi
> dmin

2. vDCVi > vDCVprev
i

anddtravel
DCVprev

i
− dtravel

DCVi
≤ dmin
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Then the velocity of DCVi has to be updated immediately for the first case
and after

τ
v_update
i =

dtravel
DCVprev

i
− dtravel

DCVi
− dmin

max
(

vjam,vmax− vDCVprev
i

)

for the latter one. The velocity of DCVi will be updated as follows:vDCVi ←
vmax for the first case andvDCVi ← vDCVprev

i
for the latter.

For any other case, we setτ
v_update
i = ∞.

According to the model, for each bag that has to be handled, wecompute the time
instants when each bag enters and exits the track network. Let t load

i denote the time instant
when theith bag that entered the track network is loaded onto a DCV (so,this is DCVi) and
let tunload

i denote the time instant when the same bag is unloaded at its end point. Then we
denote two models of the baggage handling system which will be used for (1) route control
— we determine a route for each DCV, and consequently, the switch will be positioned so
that each DCV travels on the assigned route — and (2) switch control — we determine
switch positions over the simulation period — respectively:

t = M
route_ctrl(

T ,x(t0), r
)

or

t = M
switch_ctrl(

T ,x(t0),U
)

where:

• t = [t load
1 . . . t load

Nbags tunload
1 . . . tunload

Nbags ]⊤.

• T = (tarrival
1 , tarrival

2 , . . . , tarrival
L ) defined in Section 4.1.1.

• x(t0) is the initial state of the system witht0 the initial simulation time.

• r is the route control sequence defined as follows: assume thatthere is a fixed number
R of possible routes from a loading station to an unloading station and that theR
routes are numbered 1,2, . . . ,R. Let r(i) ∈ {1,2, . . . ,R} denote the route of DCVi .
Then the route sequence is represented byr = [r(1) r(2) · · · r(Nbags)]⊤.

• U is the switch control input for the entire network defined asU = (u1,u2, . . . ,uS)
with us = [usw_in

s (1) . . . usw_in
s (Nbags)usw_out

s (1) . . . usw_out
s (Nbags)]⊤, s∈ {1,2, . . . ,S},

if junction Ss has both a switch-in and a switch-out,us = [usw_in
s (1) . . . usw_in

s (Nbags)]⊤

if junction Ss has only a switch-in,us = [usw_out
s (1) . . . usw_out

s (Nbags)]⊤ if junction Ss

has only a switch-out.

4.3 Constraints and control objective

In this section we present the safety and operational constraints of a DCV-based baggage
handling system, together with the control objective to be used when comparing the pro-
posed control methods.
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Operational constraints The operational constraints are derived from the mechanical and
design limitations of the system. Such constraints are:

C1: A DCV can transport only one bag at the time.

C2: A bag can be loaded onto a DCV only if there is an empty DCV underthe loading
station. This means that if there is a traffic jam at a loading station, then no loading
event can occur at that loading station.

These constraints (C1 andC2) have been already included when modeling the system.
Next we write the set of inequalities describing the operational constraints of a DCV-

based baggage handling system as follows:

C (t)≤ 0 (4.1)

Examples of operational constraints described by (4.1) are:

C3: A switch at a junction has to wait at leastτswitch time units after a switch has occurred
(before a new switch can take place), in order to avoid the quick and repeated movement
back and forth of the switch which may lead to mechanical damage.

C4: The speed of each DCV is bounded between 0 andvmax.

Control objective Since the baggage handling system performs successfully ifall the
bags are transported to their end point before a given time instant, from a central point of
view, the primary objective is the minimization of the overdue time. A secondary objective
is the minimization of the additional storage time at the endpoint. This objective is required
due to the intense utilization of the end points in a busy airport. Hence, one way to construct
the objective functionJpen

i corresponding to the bag with indexi, i ∈ {1,2, . . . ,Nbags}, is
to penalize the overdue time and the additional storage time. Accordingly, we define the
following penalty for bag indexi, see Figure 4.4:

Jpen
i (tunload

i ) =σi max(0,tunload
i − tclose

i )+ λ1max(0,tclose
i − τ

open
i − tunload

i ) (4.2)

σi

λ1

tunload
itclose

itclose
i −τ

open
i

Jpen
i

Figure 4.4: Objective function Jpen
i .
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σi

λ1

tunload
itclose

itclose
i −τ

open
i

Jpen
i Ji

Figure 4.5: Objective functions Jpen
i and Ji .

wheretclose
i is the time instant when the end point closes and the bags are loaded onto the

plane,σi is the static priority of bag indexi (the flight priority), andτopen
i is the maximum

possible length of the time window for which the end point corresponding to bag indexi is
open for that specific flight. The weighting parameterλ1 > 0 expresses the penalty for the
additionally stored bags.

However, the above performance function has some flat parts,which yield difficulties
for many optimization algorithms. Therefore, in order to get some additional gradient and
also minimize the energy consumption, we also include the time that a bag spends in the
system. This results in see Figure 4.5:

Ji(t
unload
i ) = Jpen

i (tunload
i )+ λ2(t

unload
i − t load

i ) (4.3)

whereλ2 is a small weight factor (0< λ2≪ 1).
The final objective function to be used when comparing the proposed control approaches

is given by:

Jtot(t) =
Nbags,sim

∑
i=1

Jpen
i (tunload

i ) (4.4)

whereNbags,sim is the number of bags that reached their end point during the simulation
period[t0,t0+τsim), whereτsim is either the time instant when all the bags have been handled
(and thenNbags,sim = Nbags) or τsim = τmax_sim.

4.4 Control methods

In this section we develop and compare centralized, decentralized, and distributed predictive
methods that could be used to optimize the performance of thesystem. The centralized
control method results in a nonlinear, nonconvex, mixed integer optimization problem that
is very expensive to solve in terms of computational effort.Therefore, we also propose an
alternative approach for reducing the complexity of the computations by approximating the
nonlinear optimization problem by a mixed integer linear programming (MILP) problem.
Finally, in order to reduce the computational requirements, we also develop two heuristic
methods and a hierarchical control framework.
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4.4.1 Optimal control

Assume that there is a fixed numberR of possible routes from a loading station to an un-
loading station and that theR routes are numbered 1,2, . . . ,R. Let r(i) ∈ {1,2, . . . ,R} denote
the route of DCVi . Then the route sequence is represented byr = [r(1) r(2) · · · r(Nbags)]⊤.

The optimal control problem is defined as follows:

min
r

Jtot(t)

subject to
t = M route_ctrl

(

T ,x(t0), r
)

C (t)≤ 0

But computing the optimal route of each DCV transporting bags through the network
so as to minimize the performance indexJtot requires extremely high computational effort
as we have shown in Section 4.5.1. In practice, this problem becomes intractable when the
number of possible routes and the number of bags to be transported are large.

4.4.2 Centralized MPC

We define now a variant of MPC, wherek is not a time index, but a bag index. In this context
bag stepk corresponds to the time instantt load

k when thekth bag has just entered the track
network — ifk= 0 bag stepk corresponds to the time instantt0. For this variant of MPC, the
horizonN corresponds to the number of bags for which we look ahead, while computing the
control inputsr(k+1), r(k+2), . . . , r(k+N) wherer(k+ j) with j ∈ {1,2, . . . ,N} represents
the route of DCVk+ j (from a given loading station to the corresponding unloading station).
Next, we implement all the computed control samples, and accordingly we shift the horizon
with N steps. So, once we have assigned a route to a DCV, the route of that DCV cannot be
later on changed.

The total objective function of centralized MPC is then defined as:

JCentr_MPC
k,N (t(k)) =

k+N

∑
i=1

Ji(t̂
unload
i )

wheret̂unload
i is the predicted unloading time of DCVi depending on the routes of the first

k+ N bags that entered the network, andt(k) = [t load
1 . . . t load

k+N tunload
1 . . . tunload

k+N ]⊤.
Now let r(k) denote the future route sequence for the nextN bags entering the network

at bag stepk, r(k) = [r(k+ 1) r(k+ 2) . . . r(k+ N)]⊤. Accordingly, the MPC optimization
problem at bag stepk is defined as follows:

min
r(k)

JCentr_MPC
k,N (t(k))

subject to
t(k) = M route_ctrl

(

T ,x(t load
k ), r(k)

)

C (t(k)) ≤ 0

When using centralized MPC, at each bag stepk, the future route sequencer(k) is
computed over an horizon ofN bags so that the objective function is minimized subject to
the dynamics of the system and the operational constraints.
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Next we show how we compute for this control method the durationsτsw_in
s andτsw_out

s
with s∈ {1,2, . . . ,S}. Assume that the switch-in at Ss is positioned on linkl ∈ {0,1}. Then
let zs denote the bag closest to Ss and traveling at time instanttcrt on the incoming link 1− l
of Ss. Also let τarrival

s be the time period that the DCV transporting bagzs needs to travel
(at maximum speed) the distance between the current position of bagzs and Ss. Then the
durationτsw_in

s is given by:

τsw_in
s =







max
(

τswitch− τ
sw_in_prev
s , τarrival

s

) if at tcrt there is a DCV on the
incoming link 1− l of Ss

∞ otherwise

whereτ
sw_in_prev
s is the time period for which the switch-in at junction Ss has been in its

current position. Hence, the bag closest to junction Ss is allowed to pass first if the switch
is positioned on the appropriate incoming link, or if a toggle is possible (due to constraint
C3).

The durationτsw_out
s is given by:

τsw_out
s =







max
(

0, τswitch− τ
sw_out_prev
s

) if at tcrt there is a DCV at Ss and
its route asks for toggle

∞ otherwise

whereτ
sw_out_prev
s is the time period for which the switch-out at junction Ss has been in its

current position.
Centralized MPC can compute on-line the route of each DCV in the network, but it

requires large computational efforts as will be illustrated in Section 4.5. Therefore, we also
propose decentralized and distributed control approaches, which offer a trade-off between
the optimality of the performance for the controlled systemand the time required to compute
the solution.

4.4.3 Decentralized MPC

In decentralized model predictive route choice control we consider each junction separately,
as a local system. For all junctions we will then define similar local MPC problems. No
communication and no coordination is involved between the local controllers.

Local system

Each local system consists of a junction, its incoming links, and its outgoing links. Let us
now consider the most complex case, where junction Ss with s∈ {1,2, . . . ,S} has both a
switch-in and a switch-out. Moreover, Ss is not directly connected to an unloading station.
Then we first index2 the bags that successively cross junction Ss during the entire simulation
period[t0,t0 +τmax_sim) asbs,1,bs,2, . . . ,bs,Nbags

s
, whereNbags

s is the number of bags that cross
Ss during the simulation period.

2This order depends on the evolution of the position of the switch-in at junction Ss.
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Local control measures

In decentralized route choice control we compute for each junction Ss the positions of the
switch-in and switch-out of junction Ss for each bag that crosses the junction Ss.

Now consider junction Ss. Recall from Section 4.4.2 that we use a variant of MPC with
a bag index. So, in this approach, the local control is updated at every time instant when
some bag has just entered an incoming link of junction Ss. Let tcrt

s be such a time instant.
Then we determine bag indexk such thattcross

s,k ≤ tcrt
s < tcross

s,k+1, wheretcross
s,k is defined as the

time instant when bagbs,k has just crossed the junction. If no bag has crossed the junction
yet, we setk = 0.

Let Nmax be the maximum prediction horizon for a local MPC problem andnhorizon
s,l the

number of DCVs traveling at time instanttcrt on link l ∈ {0,1} going into Ss. Then, the
local optimization is performed over the nextNs = min

(

Nmax,nhorizon
s,0 + nhorizon

s,1

)

bags that
will cross junction Ss after bag indexk. By solving this local optimization problem we
compute the control sequence

us(k) = [usw_in
s (k+ 1) . . . usw_in

s (k+ Ns) usw_out
s (k+ 1) . . . usw_out

s (k+ Ns)]
⊤

corresponding to the nextNs bagsbs,k+1,bs,k+2, . . . ,bs,k+Ns that will cross the junction. The
control variableusw_in

s (k+ j) with j ∈ {1, . . . ,Ns} represents the position of the switch into
Ss for thek+ jth bag to cross Ss — usw_in

s (k+ j) = l with l the index of the incoming link
on which the switch-in at Ss is positioned,l ∈ {0,1}. The control variableusw_out

s (k + j)
with j ∈ {1, . . . ,Ns} represents the position of the switch out of Ss for the k + jth bag to
cross Ss — usw_out

s (k+ j) = l with l the index of the outgoing link on which the switch-out
at Ss is positioned,l ∈ {0,1}. So, the control decisionsusw_in

s (k+ 1), . . . , usw_in
s (k+ Ns) of

the switch into Ss determine the order3 in which the bags cross the junction and the time
instants at which the bagsbs,k+1, . . . ,bs,k+Ns enter Ss. The control decisionsusw_out

s (k+ 1),
. . . , usw_out

s (k+Ns) determine the next junction towards which the bagsbs,k+1, . . . ,bs,k+Ns will
travel.

Local objective function

When solving the local MPC optimization problem for junction Ss, we will use a local
objective functionJDec_MPC

s,k,Ns
. The local objective function is computed via a simulation of

the local system for the nextNs bags that will cross the junction, and is defined as follows:

JDec_MPC
s,k,Ns

(ts(k)) =
min(Ns,Ncross

s )

∑
j=1

Jk+ j(t̂
unload,∗
s,k+ j )+ λpen(Ns− Ncross

s )

where

• Ncross
s is the number of DCVs that actually cross junction Ss during the prediction

period,

• t̂unload,∗
s,k+ j is the predicted unloading time instant of bagbs,k+ j ,

3The order of DCVs is given by setting their speed in accordance with the control variables of the switch-in.
For example ifusw_in

s (k+1) = 0 andusw_in
s (k+2) = 1, but on the incoming link 0 there are more DCVs in a queue,

then after allowing the first DCV traveling on incoming link 0to enter Ss, the velocity of the other DCVs in the
queue is set to 0 until the DCV coming from the incoming link 1 enters Ss and the switch-in is set back on link 0.
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• λpen is a nonnegative weighting parameter,

• ts(k) = [t load
s,k+1 . . . t load

s,k+Ns
t̂unload,∗
s,k+1 . . . t̂unload,∗

s,k+Ns
]⊤ with t load

s,k+ j the loading time for bags
bs,k+ j .

The second term of the local objective function is included for the following reasoning. As-
sume that, at stepk, there are no DCVs traveling on the incoming linkl ∈ {0,1} of junction
Ss, whileN DCVs travel on link 1− l . If this term would not be considered, thenJDec_MPC

s,k,Ns
(t)

would be minimum when the switch-in is positioned on linkl during the prediction period.
However, this is obviously not a good solution when the endpoints are open. Also note
thatNcross

s andt̂unload,∗
s,k+ j are determined by simulating at time instanttcrt the prediction model

presented next for a given control sequenceus(k).

Local prediction model

The local prediction model at bag indexk is an event-driven model for the local system
over an horizon ofNs bags. So, according toAlgorithm 2 , for the nextNs bags to cross Ss,
given the current state of the local system, we compute the period τmin

s until the next event
will occur in the local system (loading if Ss is connected to loading stations, unloading if Ss

is connected to unloading stations, switching at Ss, updating the speed of a DCV running
through the local system), we shift the current timetcrt

s of the local prediction model at
junction Ss with τmin

s , take the appropriate action, and update the state of the local system.
First we show how we compute the durationsτsw_in

s andτsw_out
s for the local prediction

model at time instanttcrt
s . Note that we now computeτsw_in

s andτsw_out
s for each of the

nextNs bags to cross Ss during the prediction period. Assume that the switch-in at junction
Ss is positioned on linklk+ j = usw_in

s (k+ j). Let zs,k+ j denote the bag to cross Ss next, for
j = 1,2, . . . ,Ns. Also letτarrival

s,k+ j be the time period that the DCV transporting bagzs,k+ j needs
to travel (at maximum speed) the distance between the current position of bagzs,k+ j and Ss.
Note that if at time instanttcrt

s with tcross
s,k+ j−1 ≤ tcrt

s < tcross
s,k+ j , there is no bag on incoming link

1− usw_in
s (k+ j) of Ss, thenτarrival

s,k+ j = ∞.

Then the durationτsw_in
s is given by:

τsw_in
s =







max
(

τswitch− τsw_in_prev
s , τarrival

s,k+ j

) if at time instanttcrt
s the switch-in at

Ss is not on linklk+ j = usw_in
s (k+ j)

∞ otherwise

Hence, now the order in which the DCVs cross junction Ss is given by the control inputs
usw_in

s (k+ 1), . . . , usw_in
s (k+ Ns).

The durationτsw_out
s is given by:

τsw_out
s =







max
(

0, τswitch− τsw_out_prev
s

) if bagbs,k+ j is at Ss and the switch-out at
Ss is not positioned on linkusw_out

s (k+ j)
∞ otherwise

The durationsτsw_in
s andτsw_out

s for the model ofAlgorithm 2 at time instanttcrt are
computed similarly. But in this case, we do not compute any more these durations forNs

bags, but only for one bag, according to the control inputsusw_in
s (k+ 1) andusw_out

s (k+ 1).
Next, we present how we predict the unloading time instant for each of the next bags to

cross Ss during the prediction period. To this aim, we consider a fixedrelease rate during
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the prediction period for each outgoing linkl ∈ {0,1} of Ss. Let ζs,l be the fixed release
rate at time instanttcrt. We now present how we calculateζs,l given the state of the local
system attcrt. Let τ rate be the length of the time window over which we compute the link
release rate. The variableτ rate can be derived using empirical data. Iftcrt < t0 + τ rate we
considerζs,l = ζmax with ζmax the maximum number of DCVs per time unit that can cross
a junction using maximum speed. Iftcrt ≥ t0 + τ rate, let nrate

s,l denote the number of DCVs
that left the outgoing linkl within the time window[tcrt − τ rate,tcrt). Then, ifnrate

s,l > 0 the
fixed release rate of linkl out of Ss to be used during the entire prediction period is given

by ζs,l =
nrate

s,l

τ rate, while if nrate
s,l = 0 we setζs,l = ε with 0 < ε≪ 1. We do not setζs,l = 0 when

nrate
s,l = 0 because later on this release rate will be used as denominator, and we want to avoid

the division by zero, while obtaining consistent results.
Recall that we want to predict the arrival time of bagbs,k+ j with j ∈ {1, . . . ,Ns} at its end

point. Let Snext
s,lk+ j

denote the junction that bagbs,k+ j will cross next wherelk+ j = usw_out
s (k+ j),

and let Sdest
s,k+ j be the end point of bagbs,k+ j . Then, for each possible router ∈Rnext

s,k+ j , where

Rnext
s,k+ j is the set of routes from Snext

s,lk+ j
to Sdest

s,k+ j , we predict the time when bagbs,k+ j will

arrive at Sdest
s,k+ j via router as follows:

t̂unload
s,r,k+ j = tcross

s,k+ j + τ̂ link
s,k+ j + τ̂ route

r (4.5)

where

• tcross
s,k+ j is the time instant (computed by the local prediction model)at which bagbs,k+ j

crosses Ss.

• τ̂ link
s,k+ j is the time we predict4 that bagbs,k+ j spends on linklk+ j out of Ss. For this

prediction we take:

τ̂ link
s,k+ j =























max

(

dlink
s,lk+ j

vmax ,
1+ ns,k+ j

ζs,lk+ j

)

if link lk+ j is not jammed

max

(

dlink
s,lk+ j

vjam ,
1+ ns,k+ j

ζs,lk+ j

)

if link lk+ j is jammed

wheredlink
s,lk+ j

is the length of linklk+ j out of Ss, ns,k+ j is the number of DCVs on

link l at time instanttcross
s,k+ j , andvjam is the speed to be used in case of jam, typically

vjam = 0.02 m/s. We consider the outgoing linklk+ j of Ss to be jammed only if
Qs,lk+ j ≥ αQmax

s,lk+ j
whereQs,lk+ j is the capacity linklk+ j at time instanttcross

s,k+ j , Qmax
s,lk+ j

is
its maximum capacity, andα is a weighting parameter determined based on empirical
data (typicallyα = 0.8).

• τ̂ route
r is the predicted travel time on router ∈Rnext

s,k+ j for an average speed determined
based on empirical data.

4If Snext
s,lk+ j

is an unloading station and Snext
s,lk+ j

is not Sdest
s,k+ j then τ̂

link
s,k+ j = τ

max with τ
max a large nonnegative

scalar.
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Then the optimal predicted unloading time instant is definedas follows:

t̂unload,∗
s,k+ j = argmin

{t̂unload
s,r,k+ j |r∈Rnext

s,k+ j }

Jk+ j(t̂
unload
s,r,k+ j )

Local optimization problem

So, the MPC optimization problem at junction Ss and bag indexk is defined as follows:

min
us(k)

JDec_MPC
s,k,Ns

(t(k))

subject to
t(k) = M local,switch_ctrl

(

T ,xs(tcross
s,k ),us(k)

)

C (t(k)) ≤ 0

whereM local,switch_ctrl
(

T ,xs(tcross
s,k ),us(k)

)

describes the local dynamics of junction Ss with
its incoming and outgoing links, withxs(tcross

s,k ) the state of the local system at time instant
tcross
s,k .

After computing the optimal control, onlyusw_in
s (k+ 1) andusw_out

s (k+ 1) are applied.
Next the state of the system is updated. At bag stepk+ 1, a new optimization will be then
solved over the nextNs bags.

The main advantage of decentralized MPC consists in a smaller computation time than
the one needed when using centralized control due to the factthat we now compute for
each junction, independently, the solution of a smaller andsimplified optimization prob-
lem. However, using decentralized MPC to compute the DCVs’ route choice also yields a
decrease in the overall performance of the DCV-based baggage handling system.

4.4.4 Distributed MPC

One can increase the performance of thedecentralizedcontrol approach proposed above by
implementing adistributedapproach that uses additional communication between neigh-
boring junctions.

Levels of influence

In distributed model predictive route choice control we consider local subsystems, each
consisting of a junction Ss with s∈ {1,2, . . . ,S}, its incoming and its outgoing links. But in
contrast to decentralized MPC, data will be now communicated between neighboring junc-
tions which are characterized by the concept of level of influence. The levels of influence
are defined as follows.

Let us first assign one or more levels ofdownstreaminfluence to each junction in the
network. We assign downstream influence level 1 to each junction in the network connected
via a link to a loading station. Next, we consider all junctions connected to some junction
with influence level 1 via an outgoing link, and we assign influence level 2 to them. In
this way we recursively assign an influence level to each junction with the constraint that at
mostκmax

d downstream influence levels are assigned to a given junction5. For example see

5The constraint that at mostκ
max
d downstream influence levels are assigned to a junction limits the computa-

tional complexity and keeps all levels of influence finite.
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Figure 4.6: Levels of downstream influence for parallel computation.

Figure 4.6 where we define maximum 2 levels of downstream influence for each junction in
the network. For this example we have considered the junctions S1 and S2 to have assigned
downstream influence levelκd − 1. Then S3 and S4 have been assigned levelκd (since these
junctions are connected to S1 and S2 via outgoing links). Next, we assign influence level
κd + 1 to S4, S5, S3, and S6 (since they are connected to S3 and S4). Note that now S3 and
S4 have 2 levels of downstream influence:κd andκd + 1. Therefore, S5 and S6 are also
assigned influence levelκd + 2 (since they are connected to S3 and S4 with influence level
κd + 1).

Similarly we can also assign levels ofupstreaminfluence to each junction in the net-
work. We assign upstream influence level 1 to each junction inthe network connected via a
link to an unloading station. Next, we assign upstream influence level 2 to all the junctions
connected to some junction on upstream influence level 1 via its incoming links. Recur-
sively, we then assign levels of upstream influence to each junction with the constraint that
at mostκmax

u levels of upstream influence are assigned to a given junction.

Distributed MPC with a single round of downstream communication

Let us now consider distributed MPC with a single round of downstream communication.
This means that first the local controller of each junction with influence levelκd = 1 solves
the local optimal control problem of Section 4.4.3.

After computing the optimal switch control sequence, each junction with influence level
κd = 1 communicates to its neighboring junctions at levelκd + 1 = 2 which bags (out of all
the bags over which we make the prediction for the corresponding junction with influence
level κd) will enter the incoming link of the junction at levelκd + 1 and at which time
instant. Next, we iteratively consider the junctions at levelsκd = 2,3, . . . ,Kdownstream, were
Kdownstreamis the largest level of downstream influence assigned in the network. Then, for
each junction with influence levelκd > 1, we compute a local solution to the local MPC
problem as presented next.

Assume Ss with s∈ {1, . . . ,S} has influence levelκd > 1. Let Sprev
s,l denote the neighbor-
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ing junction of Ss connected via the incoming linkl ∈ {0,1} of Ss (so, Sprev
s,l has influence

level κd − 1). Then, we compute a local solution for Ss to the local MPC problem defined
below over an horizon of

Ns = min
(

Nmax,
1

∑
l=0

(

nhorizon
s,l + npred_cross

s,l ,0 + npred_cross
s,l ,1

)

)

(4.6)

bags whereNmax is the maximum prediction horizon for the local MPC problem,nhorizon
s,l

is the number of DCVs traveling at time instanttcrt on link l ∈ {0,1} going into Ss, and
npred_cross

s,l ,m is the number of DCVs traveling towards Sprev
s,l on its incoming linkm that we

predict (while solving the local optimization problem at Sprev
s,l ) to cross Sprev

s,l and continue
their journey towards Ss.

The MPC optimization problem at junction Ss and bag indexk is defined as follows:

min
us(k)

JDistr_MPC
s,k,Ns

(t(k))

subject to
t(k) = M local,switch_ctrl

(

T ,xs(tcross
s,k ),us(k)

)

C (t(k)) ≤ 0

with Ns given by (4.6). Note that in this approachM local,switch_ctrl
(

T ,xs(tcross
s,k ),us(k)

)

de-
scribes the local dynamics of junction Ss with its incoming and outgoing links and additional
data from neighboring junctions (if any).

After computing the optimal control, onlyusw_in
s (k+ 1) andusw_out

s (k+ 1) are applied.
Next the state of the system is updated. At bag stepk+ 1, a new optimization will be then
solved over the nextNs bags.

The computation of the local control is performed accordingto the following algorithm.

Algorithm 3. Distributed computation of local control with a single iteration of down-
stream communication

1: for κd = 1 toKdownstreamdo
2: compute independently local switching sequences for influence levelκd taking into

account the control on influence levelκd − 1
3: end for

Every time some bag has crossed some junction we update the local control of junctions
in the network as follows. Assume that some bag has just crossed junction Ss which has
assigned levelκd. Then, we update the control as follows. We consider a subtree rooted at
Ss and consisting of nodes of subsequent levels of influence that are connected via a link.
So, only the control of the switch-in and switch-out of the junctions in this subtree have to
be updated.

Note that the controllers of the junctions on levelκd have to wait for the completion of
the computation of the switching sequences of the controllers on the previous level before
they can start to compute their future control action. Therefore, when comparing with de-
centralized MPC, such distributed MPC may improve the performance of the system, but at
the cost of higher computation time due to the required synchronization in computing the
control actions.
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Distributed MPC with a single round of downstream and upstream communication

In order to further improve the performance of the distributed control approach presented
above, we now add an extra round of communication and consider distributed MPC with
a round of downstream and upstream communication. This method involves the following
steps:

• Every time a bag has crossed a junction we compute the local control sequences
according to the downstream levels of influence as explainedabove.

• Next, for the junctions on level 1 of upstream influence we update the release rate of
their incoming links as follows. We take as example junctionSs with κu = 1. For all
other junctions we will apply the same procedure. We virtually apply at Ss the optimal
control sequenceu∗s that we have computed when optimizing downstream. Lett last,∗

s

be the time instant at which the last bag crossed Ss (out of all the bags over which
we make the prediction for Ss). If t last,∗

s < t0 + τ rate we setζs,l = ζmax for l = 0,1.
Otherwise, ifnrate

s,l > 0 with nrate
s,l the number of DCVs that left the outgoing linkl of

Ss within the time window[t last,∗
s −τ rate,t last,∗

s ), we setζs,l =
nrate

s,l

τ rate. Finally, if nrate
s,l = 0

we setζs,l = ε with 0 < ε≪ 1. Now we solve the local MPC problem presented
on page 70 using the updated release rates and we compute the local control of all
junctions at upstream levelκu + 1. Recursively, we compute the local control until
level KupstreamwhereKupstreamis the largest level of upstream influence assigned in
the network.

These steps are summarized inAlgorithm 4 .

Algorithm 4. Distributed computation of local control with a single round of down-
stream and upstream coordination

1: for κd = 1 toKdownstreamdo
2: compute independently local switching sequences for influence levelκd taking into

account the local control on downstream influence levelκd − 1
3: end for
4: for κu = 1 toKupstreamdo
5: compute independently local switching sequences for influence levelκu taking into

account the local control on upstream influence levelκu − 1 and the updated release
rate

6: end for

By also performing the upstream round of communication, more information about the
future congestion is provided via the updated release rate.This information might change
the initial intended control actions of each junction. Typically (if one allows sufficient time
to compute the solution of each local optimization problem), this new variant of distributed
MPC increases the performance of the system, but also the computational effort increases
since we deal with one more round of optimizations.

In future work we will farther improve the performance of thesystem by considering
multiple up and down rounds of optimizations and by extending the range of communication
exchange to more than one level. Moreover, we will also extend the local control area to
more than one node and assess the efficiency of such distributed approaches.
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4.4.5 MPC with mixed-integer linear programming

We now present an alternative approach for reducing the complexity of the computations.
In this approach we simplify and approximate the nonlinear route choice optimization prob-
lem by a mixed integer linear programming (MILP) problem. The advantage is that for
MILP optimization problems solvers are available, see e.g.[27], that allow us to efficiently
compute the global optimal solution. The solution of the MILP problem can then be used as
a good initial starting point for the original nonlinear optimization problem of centralized
MPC. In future work we will also consider this approach to compute a good initial starting
point for the nonlinear optimization problem of decentralized and distributed MPC.

Mixed integer linear programming

Mixed integer linear programming (MILP) problems are optimization problems with a lin-
ear objective function, subject to linear equality and inequality constraints. The general
formulation for a mixed-integer linear programming problem is the following:

min
xMILP

c⊤xMILP

subject to
AeqxMILP = beq

AxMILP ≤ b
xlow ≤ xMILP ≤ xup

wherec, xMILP, xlow, xup, beq, andb are vectors, withxlow the lower bound ofxMILP and
xup its upper bound, and whereAeq andA are matrices (all these vectors and matrices have
appropriate size). Note that MILP solvers compute solutions xMILP for the problem above,
where some of the elements ofxMILP are restricted to integer values.

In order to transform the original nonlinear route choice model of a DCV-based baggage
handling system into an MILP model we will use two equivalences, see, e.g., [7], wheref
is a function defined on a bounded setX with upper and lower boundsbup andblow for the
function values,δ is a binary variable,y is a real-valued scalar variable, andǫ is a small
tolerance6 (typically the machine precision):

P1: [ f (x) 6 0] ⇐⇒ [δ = 1] is true if and only if

{

f (x) 6 bup(1− δ)
f (x) > ǫ + (blow − ǫ)δ ,

P2: y = δ f (x) is equivalent to















y 6 bupδ
y > blowδ
y 6 f (x)− blow(1− δ)
y > f (x)− bup(1− δ) .

6The toleranceǫ is needed to transform a constraint of the formy> 0 intoy≥ 0, since in MILP problems only
nonstrict inequalities are allowed.
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Figure 4.7: Three cases with a gradually increasing complexity: network with one unload-
ing station, more unloading stations close together, more unloading station far
apart.

Simplified route choice models

Now we present simplified route choice models that can be written as MILP models. We
consider three cases with a gradually increasing complexity where the DCV-based baggage
handling system has only one unloading station, more unloading stations close together,
and more unloading stations far apart, as illustrated in Figure 4.7. We consider these cases
since they grow in complexity and, for each of these cases, additional assumptions have to
be made in order to obtain a simplified route choice model thatcan be recast as an MILP
model. Note that these route choice models will not be event-based models, but a discrete-
time models.

Common assumptions for all three cases

In order to transform the route choice problem into an MILP problem, we first simplify it
by assuming the following:

A8: The DCVs run with maximum speed along the track segment and, if necessary, they
wait at the end of the link in a vertical queue. In principle, the queue lengths should
be integers as their unit is “number of DCVs”, but we will approximate them using
reals.

A9: The dynamic demandDi of loading station Li , i ∈ {1, . . . ,L}, whereL is the number
of loading stations, is approximated with a piecewise constant demand. The piecewise
constant demandDi has level changes occurring only at integer multiples ofτs with τs

the sampling time. This is necessary in order to easily combine the time when a bag
reaches a queue at a junction with the time when the demand changes. Let the time
instanttk be defined astk = t0 +kτs with t0 the initial simulation time which is assumed
to be integer multiple ofτs, andk∈N with N the set of natural numbers. Then, during
the time interval[tk,tk+1), the demand at loading station Li is Di(k).

A10: For each link a free-flow travel time is assigned. This free-flow travel time represents
the time period that a DCV requires to travel on a link in case of no congestion, using,
hence, maximum speed. The free-flow travel time of a link is always a multiple ofτs.

Note that the assumptionsA1-A7 that we have considered when writing the event-based
model of the baggage handling systems (see Section 4.2.1) hold for all the cases to be
considered next.
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Figure 4.8: Network elements.

Case 1: one unloading station

We now consider the case of a DCV-based baggage handling system with only one unload-
ing station.

Model The control time step for each junction in the network isτs. Then at time stepk
with k ∈ N and for each junction Ss with s∈ {1,2, . . . ,S}, we compute the control actions
usw_in

s (k) andusw_out
s (k), whereusw_in

s (k) expresses the position of the switch-in at junction
Ss during the time period[tk,tk+1) (if Ss has two incoming links) andusw_out

s (k) that ex-
presses the position of the switch-out at junction Ss during the time period[tk,tk+1) (if Ss

has two outgoing links).
In order to illustrate the derivation of the route choice model let us now consider the

most complex cell a network can contain, as depicted in Figure 4.8 where junction Sd has
2 neighboring junctions Sb and Sc connected to it via its incoming links, and both junctions
Sb and Sc have 2 outgoing links.

Next we present how the evolution of the queue length at the end of each incoming link
of Sd is determined. At time stepk, usw_out

b (k) andusw_out
c (k) are computed for junctions Sb

and Sc, andusw_in
d (k) for junction Sd. Let ℓs,l denote the link between a junction Ss and its

upstream neighbor connected to it via the incoming linkl as illustrated in Figure 4.8. Also,
let qs,l (k) denote the length of the queue at the end of linkℓs,l at time instanttk. Recall that
each link in the network has been assigned a given free-flow travel time (assumptionA10).
Then, letτd,0 denote the free-flow travel time of linkℓd,0 and letτd,1 denote the free-flow
travel time of linkℓd,1. Hence, the control signalsusw_out

b (k) andusw_out
c (k) influenceqd,0

andqd,1 after
τd,0

τs
and

τd,1

τs
time steps7 respectively.

The evolution of the length of the queue at the end of linkℓd,l , is given by:

qd,l(k+ 1) = max

(

0,qd,l (k)+
(

Id,l
(

k−
τd,l

τs

)

− Omax
d,l (k)

)

τs

)

(4.7)

where

7Recall that, according to assumptionA10, τs,l is an integer multiple ofτs.
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• qd,l (k+ 1) is the length of the queue at the end of linkℓd,l at time instanttk+1.

• Id,l (k) represents the inflow8 of link ℓd,l during the period[tk,tk+1). Note that if a
junction Ss with s∈ {1,2, . . . ,S} is directly connected to a loading station Li with
i ∈ {1,2, . . . ,L} via the incoming linkl ∈ {0,1} of Ss, then

Is,l (k) = Di(k).

• Omax
d,l (k) is the maximum number of DCVs per time unit that cross Sd during[tk,tk+1)

after traveling on linkℓd,l .

Note that we also have the constraint that the length of the queue at the end of linkℓd,l

has an upper bound:

∑
d∈D

qd,l (k+ 1)≤ qmax
d,l (4.8)

whereqmax
d,l expresses the maximum number of DCVs that linkℓd,l can accommodate. The

variableqmax
d,l is defined asqmax

d,l =
⌊ ds,l

dmin

⌋

where⌊x⌋ denotes the largest integer less than or

equal tox, ds,l is the length of the linkℓs,l with l ∈ {0,1}, anddmin consists of the minimum
safe distance between DCVs and the length of a DCV.

Furthermore, the maximum number of DCVs per time unit that wait in the queue or
arrive at the end of linkℓd,l , and that cross Sd during[tk,tk+1) is defined as follows:

Omax
d,0 (k) = (1− usw_in

d (k))Omax (4.9)

Omax
d,1 (k) = usw_in

d (k)Omax (4.10)

whereOmax is the maximum outflow9 of a junction. Note that we have used the operator
max in (4.7) since the length of the queue is always larger than or equal to 0.

The inflowsId,0(k) andId,1(k) are given by:

Id,0(k) = usw_out
b (k)Ob(k) (4.11)

Id,1(k) = (1− usw_out
c (k))Oc(k) (4.12)

with Ob(k) andOc(k) respectively the outflow of junction Sb and Sc during the time interval
[tk,tk+1).

The outflowOs(k) of a junction Ss with s∈ {1,2, . . . S} can be defined as follows (we
consider two cases):

• Ss has one incoming link. Then

Os(k) = min

(

Omax,
(qs,0(k)

τs
+ Is,0

(

k−
τs,0

τs

)

)

)

(4.13)

• Ss has two incoming links. Then

Os(k) = min

(

Omax,
(

1− usw_in
s (k)

)

(qs,0(k)
τs

+ Is,0
(

k−
τs,0

τs

)

)

+

usw_in
s (k)

(qs,1(k)
τs

+ Is,1
(

k−
τs,1

τs

)

)

)

(4.14)

8The inflow of a link equals the number of DCVs that entered thatlink per time unit.
9The outflow of a junction is defined as the number of DCVs that cross that junction per time unit.
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Next, assume junction Se with e∈ {1,2, . . . S} to be directly connected to the unloading
station U1. Then the outflowOe(k) of junction Se during the period[tk,tk+1) is derived as
presented above. Furthermore, letU1(k) denote the outflow of unloading station U1 during
[tk,tk+1), and letτ1 be the free-flow travel time between Se and U1. In order to derive the
outflowU1(k) we distinguish two cases:

• Se has only one outgoing link. Then

U1(k) = Oe
(

k−
τ1

τs

)

.

• Se has two outgoing links. Without loss of generality we assumethat the unloading
station is link 0 out of Se. Then

U1(k) =
(

1− usw_out
e

(

k−
τ1

τs

)

)

Oe
(

k−
τ1

τs

)

whereusw_out
e (k) expresses the position of the switch out of Se during the time interval

[tk,tk+1).

MILP model We now use the MILP propertiesP1 andP2 presented in this section in
order to obtain an MILP model for the route choice model givenby equations (4.7)–(4.14).
Note that depending on the order in which propertiesP1 andP2 are applied and in which
additional auxiliary variables are introduced, we may end up with more or less binary and
real-valued variables in the final MILP problem. The number of binary variables — and to
a lesser extent the number of real variables — should be kept as small as possible since this
number has a direct impact on the computational complexity of the final MILP problem.

We start by transforming (4.14) using PropertyP1. Let the real-valued variablef out
s (k)

be equal to

f out
s (k) =

(

1−usw_in
s (k)

)

(qs,0(k)
τs

+ Is,0
(

k−
τs,0

τs

)

)

+usw_in
s (k)

(qs,1(k)
τs

+ Is,1
(

k−
τs,1

τs

)

)

(4.15)

Now, we introduce the binary variableδout
s (k) that equals 1 if and only ifOmax≤ f out

s (k).
Then we rewrite (4.14) as follows:

Os(k) = δout
s (k)Omax+

(

1− δout
s (k)

)

f out
s (k) (4.16)

where the conditionδout
s (k) = 1 if and only ifOmax− f out

s (k)≤ 0 is equivalent to (cf. Property
P1):

{

Omax− f out
s (k)≤ bup

(

1− δout
s (k)

)

Omax− f out
s (k)≥ ǫ + (blow − ǫ)δout

s (k)

with bup = Omax andblow = − 1
τs

qmax whereqmax = qmax
s,0 + qmax

s,1 .
However, (4.16) is not yet linear. So, we use PropertyP2 and introduce the real-valued

scalar variablesyout
s (k) such that:

yout
s (k) = δout

s (k) f out
s (k)
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or equivalently:














yout
s (k) 6 bupδout

s (k)
yout

s (k) > 0
yout

s (k) 6 f out
s (k)

yout
s (k) > f out

s (k)− bup(1− δout
s (k)) .

Hence, one obtains:

Os(k) = Omaxδout
s (k)+ f out

s (k)− yout
s (k)

which is linear. Note that (4.15) can be written as a linear expression by introducing the
additional variablesyin

q,s,l (k) = usw_in
s (k)qs,l (k) andyin

I,s,l (k) = usw_in
s (k)Is,l

(

k− τs,l
τs

)

and the
corresponding system of linear inequalities corresponding to PropertyP2 for f (x) = qs,l(k)
with bup = qmax, and blow = 0, and f (x) = Is,l

(

k − τs,l
τs

)

with bup = Omax, andblow = 0
respectively.

Similarly we can write the MILP equivalent for (4.13). Finally, we transform (4.7) into

its MILP equivalent. Let the real-valued variablefd,l (k) be equal toqd,l(k)+
(

Id,l
(

k− τd,l
τs

)

−

Omax
d,l (k)

)

τs. Additionally we also introduce the binary variableδd,l (k) that equals 1 if and

only if fd,l (k)≤ 0 and we rewrite (4.7) as:

qd,l (k+ 1) =
(

1− δd,l(k)
)

fd,l (k)) (4.17)

together with the system of linear inequalities corresponding to PropertyP1 with bup =
qmax+ Omaxτs andblow = −Omaxτs.

But (4.17) is not yet linear. Therefore, we introduce the variableyd,l (k) = δd,l (k) fd,l (k)
and the system of linear inequalities corresponding to Property P2 for f (x) = fd,l (k), with
bup andblow as defined above, and we obtain:

qd,l (k+ 1) = fd,l (k)− yd,l (k)

which is linear. Next we collect all the variables for the route choice model (i.e., inputs,
control variables, and extra variables introduced by the MILP transformations) in a vector
denoted byxMILP(k) and all the partial queue lengthsqs,l (k) in a vector denoted byq(k+1).
Then the expressions derived above allow us to expressq(k + 1) as an affine function of
xMILP(k):

q(k+ 1) = ΛΛΛxMILP(k)+γγγ

with a properly defined matrixΛΛΛ and vectorγγγ, wherexMILP(k) satisfies a system of linear
equations and inequalities

AeqxMILP(k) = beq

AxMILP(k) ≤ b,

which corresponds to the linear equations and constraints introduced above by the MILP
transformations.



78 4 Baggage handling

SexitSe

U1 Uυ UU

τ1 τυ

τU

Figure 4.9: Unloading stations close together.

Case 2: more unloading stations close together

We now determine the route choice model for a network of tracks with more unloading
stations close together as illustrated in Figure 4.9 where,without loss of generality, we con-
sider that a junction can directly serve all unloading stations (this can be done by lumping
together a sequence of junctions that are located closely together and connected to unloading
stations). Let Se with e∈ {1,2, . . . ,S} denote this junction. Also, letU denote the number
of unloading stations in the system. Then the free-flow travel time from Se to unloading
station Uυ with υ ∈ {1, . . . ,U}, is expressed byτυ which is an integer multiple ofτs.

Assumptions In this case we make an additional assumption:

A11: Out of the total demand of bags, a certain fractionρυ of bags have to be transported
to unloading station Uυ for υ = 1, . . . ,U such that∑U

υ=1ρυ = 1. So, at junction Se the
stream of bags is split intoυ substreams according to the fractionsρυ.

Model Note that one can virtually expand junction Se to two junctions Se and Se con-
nected via a link of length 0 (Sexit has only one incoming link). Then the flow model for
all junctions in the network except Sexit can be derived as in Case 1 above. Next we will
determine the flow model corresponding to the junction Sexit.

The stream of DCVs waiting at the end of the link going into Sexit can be now divided
into substreams (each substream corresponding to an unloading station). Letqexit

υ (k) denote
the queue length (located at the end of the link going into Sexit) of the substream correspond-
ing to unloading station Uυ at time instanttk. The evolution ofqexit

υ (k) is then defined as
follows:

qexit
υ (k+ 1) =qexit

υ (k)+
(

ρυOe(k)−Uυ(k+
τυ

τs
)
)

τs

with Oe(k) the outflow of Se andUυ(k) the outflow of unloading station Uυ during[tk,tk+1).
Note that the “max” operator is not needed here due to the definition of Uυ(k) (Uυ(k) ≥ 0
always by definition).

We consider two patterns that the low-level switch-out controller could follow:

Pattern 1: During the time interval[tk,tk+1) the low-level switch-out controller at Sexit

serves only one unloading station. To determine which unloading station to
serve, we introduce the integer control variableuexit(k) that indicates the index
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of the unloading station to be served during the time interval [tk,tk+1). Then the
outflow of unloading station U1 during[tk,tk+1) is given by:

Uυ(k) =











min
(

Omax,
qexit

υ (k− τυ

τs
)

τs
+ ρυOe(k−

τυ

τs
)
)

if υ = uexit(k−
τυ

τs
)

0 otherwise.
(4.18)

Pattern 2: During the time interval[tk,tk+1) all unloading stations are served (we consider
fast switching). Then each partial queue is emptied according to the fractions
ρυ for υ = 1, . . . ,U . Note that we now assume a different type of switch for
Sexit (since Sexit has more than two outgoing links). This switch can be more
expensive so as to allow fast switching. However, we only need one, so, we can
spend more money on it. The outflow of unloading station U1 during[tk,tk+1) is
then given by:

Uυ(k) = min
(

Omax,
qexit

υ (k− τυ

τs
)

τs
+ ρυOe(k−

τυ

τs
)
)

. (4.19)

MILP model The MILP equivalents for the additional equations describing the outflow
of an unloading station except (4.18) can be derived using a reasoning similar to that above.

We now briefly explain how we write the MILP equivalents for (4.18). One can intro-
duceU binary variablesδexit

1 (k), . . . ,δexit
U (k) whereδexit

υ (k) = 1 means that unloading station
Uυ is served during the time interval[tk,tk+1). Additionally, we introduce the constraint
that:

U

∑
υ=1

δexit
υ (k) = 1

which means that there can only be one unloading station served at the time. Then, for
υ = 1, . . . ,U , we have:

Uυ(k) = δexit
υ (k−

τυ

τs
)min

(

Omax,
qexit

υ (k− τυ

τs
)

τs
+ ρυOe(k−

τυ

τs
)
)

So, one can now write the complete MILP model for the case of a network with more
unloading stations close together.

Case 3: more unloading stations far apart

Finally, we analyze the case where the track network has moreunloading stations far apart.

Assumptions If for the previous case (of a network with more unloading stations close
together), we made the additional assumptionA11, for this case we make different additional
assumptions:

A12: We now define partial demand patterns at loading stations. So, each loading station
has a demand pattern corresponding to each end point. Then, for each loading station
L i , with i ∈ {1,2, . . . ,L} and for each unloading station Uυ, with υ ∈ {1,2, . . . ,U},
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Di,1(t), Di,2(t)
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τst1 t2 tK−1 tK

Figure 4.10: Demand profile at loading stationL i for a network with two unloading stations.
The solid line corresponds to unloading stationU1 and the dashed line demand
corresponds toU2.

there is a dynamic, piecewise constant demand patternDi,υ(·) as shown in Figure 4.10
whereDi,υ(k) is the demand of bags at loading station Li with destination Uυ in the
time interval[tk,tk+1) for k = 0, . . . ,K − 1 with K the demand horizon (we assume that
beyondtK the demand is 0).

As example we illustrate in Figure 4.10 the dynamic demand pattern at loading station
L i , with i ∈ {1,2, . . . ,L} for a network with two unloading stations. In this figure
the piecewise constant demand represented as a solid line corresponds to unloading
station U1, and is denoted byDi,1(t), while the dashed piecewise constant demand
corresponds to U2, and is denoted byDi,2(t). Then for a network withU unloading
stations, the total demand of Li during the time interval[tk,tk+1) is given byDi(k) =

∑U
υ=1Di,υ(k).

A13: Since we deal with partial demands at each loading station, we assume that the DCVs
wait before the junctions in partial vertical queues according to the unloading station
towards which the DCVs travel.

A14: Recall fromA1 that we assume enough DCVs present at loading stations so that when
a bag is at a loading station, there is a DCV ready to transportit. Additionally, we now
assume that no buffer overflow can occur on the link connectedto the loading station,
and than the demand at a loading station is smaller than the loading capacity. As a
consequence, no queues can appear at the loading stations.

Model The control time step for each junction in the network isτs. So, at each time stepk,
for each junction Ss with 2 incoming links, we compute the position of the switch-in during
the time interval[tk,tk+1) that has been denoted byusw_in

s (k). The position of the switch-out
is controlled as presented next.

We consider two patterns that the switch-out controller of ajunction Ss with 2 outgoing
links could follow. The first pattern is a realistic one, which has been already used for the
first two cases presented above, while the second pattern hasbeen considered in order to
decrease the computational complexity.

Pattern 1: During the time interval[tk,tk+1) the switch-out controller serves only one outgo-
ing link of Ss. To determine which outgoing link to serve, we computeusw_out

s (k)
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Figure 4.11: Network elements when the switch-out is controlled according to
Pattern 1.

which will then be a variable of the optimization problem presented at the end of
this subsection.

Pattern 2: During the time interval[tk,tk+1) a low-level switch-out controller serves both
outgoing links. This pattern gives a fair distribution overall the outflows while
considering fixed turning rates for each junction Ss as presented below. Note
that when using this pattern, no extra variables are introduced. Therefore, we
will solve simpler optimization problems, and this will give faster results. In
future work we will define a similar pattern for the control ofthe switch-in and
then compare the performance and the computation time obtained when using
Pattern2 for the control of both the switch-in and switch-out.

According to these patterns, we derive the route choice model by referring to the network
cell illustrated in Figure 4.11.

Pattern 1: In this case we consider partial queues atthe end of each linkthat correspond
to each unloading station. Letqs,l ,υ(k) denote the length of the partial queue
during the time interval[tk,tk+1) at the end of the incoming linkl of junction Ss

that consists of DCVs going towards unloading station Uυ with υ ∈ {1, . . . ,U}.
Then the evolution of length of the partial queue is given by:

qd,l ,υ(k+ 1) = qd,l ,υ(k)+
(

Id,l ,υ
(

k−
τd,l

τs

)

− Od,l ,υ(k)
)

τs

whereId,l ,υ(k) is the partial inflow corresponding to Uυ of link ℓd,l andOd,l ,υ(k)
is the partial outflow corresponding to Uυ of link ℓd,l during the time interval
[tk,tk+1). The partial inflowsId,l ,υ(k) are defined at the beginning of a link, while
the partial outflowsOd,l ,υ(k) are defined at the end of a link as pointed in Figure
4.11.

If junction Sb has 2 incoming links, the inflowId,0,υ(k) is defined as:

Id,0,υ(k) = usw_out
b (k)

(

(

1− usw_in
b (k)

)

Ob,0,υ(k)+ usw_in
b (k)Ob,1,υ(k)

)

,
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Figure 4.12: JunctionSz is directly connected toUυ. The unloading station is
connected via link0 out ofSz.

while if Sb has only one incoming link the inflowId,0,υ(k) is defined as:

Id,0,υ(k) = usw_out
b (k)Ob,0,υ(k).

Similarly, one can defineId,1,υ(k). Note that if a junction Ss with s∈ {1,2, . . . ,S}
is directly connected to a loading station Li i ∈ {1,2, . . . ,L} via the incoming link
l ∈ {0,1} of Ss, then

Is,l ,υ(k) = Di,υ(k).

The partial outflowsOs,l ,υ(k) at the end of linkℓs,l with l = usw_in
s (k) are de-

termined such that we have maximal exhaustion of the available capacity as
described inAlgorithm 5 for Os,l ,υ(k) = Oalg

υ (k) andqs,l ,υ(k) = qalg
υ (k) where

Oalg
υ (k) andqalg

υ (k) are variables that characterizeAlgorithm 5 . Note that if junc-
tion Ss has 2 incoming links, thenOs,1−l ,υ(k) = 0 since only the partial queues at
the end of the incoming link indexed byl = usw_in

s (k) are emptied during[tk,tk+1).

Without loss of generality we assume that for any junction Sz directly connected
to Uυ, the unloading station is connected via link 0 out of Sz, see Figure 4.12.

Then, the outflow of unloading station Uυ during the period[tk,tk+1) is given by:

Uυ(k) = min

(

(

1− usw_out
z (k−

τυ

τs
)
)

Oz,0,υ(k−
τυ

τs
),Omax

)

with τυ the free-flow travel time of the link directly connected to unloading sta-
tion Uυ with υ ∈ {1, . . . ,U}, τυ is considered to be an integer multiple ofτs.

Pattern 2: In this case we consider partial queues ateach junctionSs with s∈ {1, . . . ,S}
corresponding to each unloading station Uυ. The length of the partial queue at
junction Ss that consists of DCVs going towards unloading station Uυ is denoted
by qs,υ. Then we determine the partial outflowsOs,υ(k) for a junction Ss such
that∑U

υ=1Os,υ(k)≤Omax. To this aim we consider again a fair distribution over

all flows as described inAlgorithm 5 for Os,υ(k) = Oalg
υ (k) andqs,υ(k) = qalg

υ (k),

andξs,υ(k) = Ialg
υ (k) with ξs,υ(k) the number of DCVs going towards unloading

station Uυ that enter the partial queue at junction Ss during the time interval
[tk,tk+1). The partial inflowsξs,υ(k) and the partial outflowsOs,l ,υ(k) are defined
at for each junction Ss as pointed in Figure 4.13.

Based on off-line optimization, for each junction Ss we can determineU fixed
turning ratesηs,υ with υ = 1, . . . ,U . These fixed turning rates represent the frac-
tion of the partial queueqs,υ(k) that will be sent to link 0 out of Ss during[tk,tk+1).
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ξd,υ

ξd,υ

Od,υ Od,υ

Sb

Sd

Sc

τd,0

ℓd,0

ℓd,1

τd,1

0

0

0

1

1

1

Figure 4.13: Network elements when the switch-out is controlled by a low level
controller according toPattern 2.

Thenτs∑U
υ=1ηs,υOs,υ(k) DCVs will be sent towards the outgoing link 0 of Ss,

andτs∑U
υ=1(1− ηs,υ)Os,υ(k) DCVs will be sent towards its outgoing link 1.

Then the evolution of the length of the partial queue is givenby:

qd,υ(k+ 1) = qd,υ(k)+
(

ξd,υ(k)− Od,υ(k)
)

τs

whereξd,υ(k) expresses the number of DCVs going towards unloading station
Uυ that enter the partial queue at junction Sd during the time interval[tk,tk+1):

ξd,υ(k) = (1− usw_in
d (k))(1− ηb,υ)Ob,υ(k−

τd,0

τs
)+ usw_in

d (k)ηc,υOc,υ(k−
τd,1

τs
).

Note that if a junction Ss with s∈ {1,2, . . . ,S} is directly connected to a loading
station Li i ∈ {1,2, . . . ,L} then

ξs,υ(k) = Di,υ(k).

Accordingly,Uυ(k) = min

(

Omax,
(

1− usw_out
z (k−

τυ

τs
)
)

ηz,υOz,υ(k−
τυ

τs
)

)

.

Algorithm 5 describes the procedure that we consider in order to determine the distribu-
tion of the partial outflows such that we have maximal exhaustion of the available capacity.
We use this algorithm since it results in a fair distributionover all the outflows.

Algorithm 10 5. Outflow distribution at the end of link ℓs,l

1: Ω = {1,2, . . . ,U}
2: while Ω 6= /0 do

3: Λ = argmin
υ∈Ω

(

qalg
υ (k)+ Ialg

υ (k)τs

)

4: for all υ ∈ Λ do
5: Oalg

υ (k) = min
(

Omax

|Ω| , qalg
υ (k)
τs

+ Ialg
υ (k)

)

10In Algorithm 5 , |Ω| represents the cardinality of the setΩ.
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6: Omax←Omax− Oalg
υ (k)

7: end for
8: Ω← Ω\Λ
9: end while

Let us now considerPattern1 and derive (as example) the output ofAlgorithm 5 for
link ℓd,l of the cell illustrated in Figure 4.8 and forU = 2. According toAlgorithm 5 , if
qd,l ,1(k) + Id,l ,1(k)τs≥ qd,l ,2(k) + Id,l ,2(k)τs then the outflowOd,l ,υ(k), for υ = 1,2 is given
by:

Od,l ,1(k) =min

(

Omax

2
,
qd,l ,1(k)

τs
+ Id,l ,1(k)

)

(4.20)

Od,l ,2(k) =min

(

Omax−
qd,l ,1(k)

τs
− Id,l ,1(k),

qd,l ,2(k)

τs
+ Id,l ,2(k)

)

(4.21)

and otherwise (i.e., ifqd,l ,1(k) + Id,l ,1(k)τs < qd,l ,2(k) + Id,l ,2(k)τs) the outflowOd,l ,υ(k) is
given by:

Od,l ,1(k) =min

(

Omax−
qd,l ,2(k)

τs
− Id,l ,2(k),

qd,l ,1(k)

τs
+ Id,l ,1(k)

)

(4.22)

Od,l ,2(k) =min

(

Omax

2
,
qd,l ,2(k)

τs
+ Id,l ,2(k)

)

. (4.23)

Similarly, one can derive the outflowOs,l ,υ(k) with s∈ {1,2, . . . ,S}, l ∈ {0,1}, andυ ∈
{1,2, . . . ,U}, for networks of tracks withU > 2. Then (ifU > 2), one gets more complex
formulas, but these new formulas can still be written using “if-then-else” statements and
“min” operators.

MILP model We now transform (4.20)–(4.23) into their MILP equivalents. The rest of
the MILP route choice model for the case with more unloading stations far apart, can be
derived using a reasoning similar to that above (see pages 76–77 describing the MILP route
choice model for a network with one unloading station).

To transform (4.20)–(4.23),we introduce the binary variablesδd,l ,1(k), δd,l ,2(k), δd,l ,3(k),
andδd,l ,4(k) such that:

• δd,l ,1(k) = 1 if and only ifqd,l ,1(k)+ Id,l ,1(k)τs≥ qd,l ,2(k)+ Id,l ,2(k)τs,

• δd,l ,2(k) = 1 if and only ifqd,l ,1(k)+ Id,l ,1(k)τs≤
Omax

2
τs,

• δd,l ,3(k) = 1 if and only ifqd,l ,2(k)+ Id,l ,2(k)τs≤
Omax

2
τs,

• δd,l ,4(k) = 1 if and only ifqd,l ,2(k)+ Id,l ,2(k)τs≤Omaxτs− qd,l ,1(k)− Id,l ,1(k)τs,

together with the system of linear inequalities corresponding to PropertyP1. Then the



4.4 Control methods 85

outflowsOd,l ,1(k) andOd,l ,2(k) can be written as follows:

Od,l ,1(k) =δd,l ,1(k)

(

δd,l ,2(k)
(qd,l ,1(k)

τs
+ Id,l ,1(k)

)

+
(

1− δd,l ,2(k)
)Omax

2

)

+
(

1− δd,l ,1(k)
)

(

δd,l ,4(k)
(qd,l ,1(k)

τs
+ Id,l ,1(k)

)

+
(

1− δd,l ,4(k)
)(

Omax−
qd,l ,2(k)

τs
− Id,l ,2(k)

)

)

(4.24)

Od,l ,2(k) =δd,l ,1(k)

(

δd,l ,4(k)
(qd,l ,2(k)

τs
+ Id,l ,2(k)

)

+

(

1− δd,l ,4(k)
)(

Omax−
qd,l ,1(k)

τs
− Id,l ,1(k)

)

)

+

(

1− δd,l ,1(k)
)

(

δd,l ,3(k)
(qd,l ,2(k)

τs
+ Id,l ,2(k)

)

+
(

1− δd,l ,3(k)
)Omax

2

)

. (4.25)

To transform (4.24)–(4.25) into MILP equations one has to further introduce real-valued
scalar variables and the corresponding systems of linear inequalities corresponding to Prop-
ertyP2using a reasoning similar to that above (see pages 76–77).

Model predictive route choice control

Next we define the general MILP model that will be used in MPC framework, the MPC
objective function, and the MPC optimization problem for both the nonlinear and the MILP
case.

MPC MILP model For each MPC stepk corresponding to time instanttk, we now derive
the overall MILP model. Letqk+1,N be a vector that consists of all the partial queue lengths
at MPC stepk, over an horizon ofN steps. Then the general MPC MILP model can be
written as follows:

qk+1,N = ΛΛΛk,NxMILP
k,N +γγγk,N

with a properly defined matrixΛΛΛk,N and vectorγγγk,N, wherexMILP
k,N consists of all the vari-

ables for the MILP route choice model (i.e., inputs, controlvariables, and extra variables
introduced by the MILP transformations) and satisfies a system of linear equations and in-
equalities

Aeq
k,NxMILP

k,N = beq
k,N

Ak,NxMILP
k,N ≤ bk,N,

which corresponds to the linear equations and constraints introduced above by the MILP
transformations.

MPC objective function Recall that the baggage handling system performs optimallyif
each of the bags to be handled arrives at its given end point within a specific time window11

11In order to simplify the explanation, we now consider that each unloading station is assigned to one flight
only. However, this case can be easily extended to the general case, where more flights are assigned to an unloading
station.
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topen
υ tclose

υ

t

Udesired,cont
υ

(a) continuous outflow profile

topen
υ tclose

υ

t

Udesired,cont
υ

Udesired,pwc
υ

τs

(b) piecewise constant outflow profile

Figure 4.14: Desired outflow profile at unloading stationUυ.

[tclose
υ −τ

open
υ ,tclose

υ ) wheretclose
υ is the time instant when the end point Uυ closes and the last

bags are loaded onto the plane, andτ
open
υ is the time period for which the end point Uυ stays

open for a specific flight. We have assumedtclose
υ andτ

open
υ to be integer multiple ofτs. We

consider the objective of reaching a desired outflow for eachunloading station.

Note that the desired outflow at each unloading station is in general a dynamic signal.
LetUdesired,cont

υ denote the desired flow profile at unloading station Uυ as sketched in Figure
4.14(a) where the area under the curveUdesired,cont

υ equals the total number of bags out of
the total demand to be sent to Uυ. Note that outside the time window[topen

υ ,tclose
υ ) with

topen
υ = tclose

υ − τ
open
υ no bags should enter the incoming link of unloading station Uυ, and

consequently,Udesired,cont
υ (t) = 0 for t outside the given time window. Since we want to use

this profile for our control, we first have to sample it and approximate it with a piecewise
constant one.

The most straightforward way to perform this approximationis to define the piecewise
constant flowUdesired,pwc

υ (t) = Udesired,cont
υ (tk) for tk ≤ t < tk+1 andk ∈ N, as illustrated in

Figure 4.14(b). However, one can perform an even better approximation by computing the
piecewise constant outflow profile that minimizes the area between the desired continuous
outflow profileUdesired,cont

υ (t) and the piecewise constant outflow profileUdesired,pwc
υ (t). This

can be obtained by solving off-line, for each unloading station, the optimization problem de-
fined below. For the sake of simplicity of notations let us consider unloading station Uυ and
omit the subscriptυ for the variables that clearly refer to Uυ. Furthermore, we defineχk as
follows, see, e.g., Figure 4.15:

for t ∈ [topen
υ ,tclose

υ ), Udesired,pwc
υ (t) = χ j if θ j ≤ t < θ j+1 with θ j = topen

υ + jτs.

Then one can approximateUdesired,pwc
υ (t) for t ∈ [topen

υ ,tclose
υ ) with the solution of the

following optimization problem:

min
χ0 ,...,χKυ−1

Kυ−1

∑
j=0

∫ θ j+1

θ j

(

Udesired,cont
υ (t)− χ j

)2
dt (4.26)

whereKυ = τ
open
υ

τs
. Let χ∗0, χ∗1, . . . , χ∗Kυ−1 denote the solution of (4.26).

Then, the optimal piecewise constant flow at unloading station Uυ is given by:
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θ0 θ1 θKυ−1 θKυ
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Figure 4.15: Desired piecewise constant outflow profile at unloading stationUυ.







Udesired
υ ( j) = χ∗

j−kopen
υ

for kopen
υ ≤ j ≤ kclose

υ − 1

Udesired
υ ( j) = 0 otherwise

with j ∈ N, kopen
υ defined askopen

υ = topen
υ −t0

τs
, andkclose

υ defined askclose
υ = tclose

υ −t0
τs

.

The first objective of the MILP controller is to reach a desired outflow for each unload-
ing station during the simulation period. LetUυ(i) denote the actual outflow of unloading
station Uυ during the period[ti ,ti+1) with i ∈ N. Then, one could define the following ob-
jective function during the period[ti ,ti+1):

Joutflow
i

(

U1(i), . . . ,UU(i)
)

=
U

∑
υ=1

wυ

∣

∣

∣
Uυ(i)−Udesired

υ (i)
∣

∣

∣

wherewυ is a nonnegative weighting parameter that expresses the penalty on the unloading
stations (in this way we can penalize differently the unloading stations depending on, e.g.,
the priority of the assigned flight).

However, to add some additional gradient to this objective function and make sure that
all the bags will be handled, we also consider the weighted length of queues at each junction
in the network, but only for time steps bigger than or equal tokclose

υ with υ ∈ {1, . . . ,U}.
Then we define the additional penalty:

Jadd
i

(

q1(i), . . . ,qS(i)
)

=











0 if i < kclose
υ

S

∑
s=1

U

∑
υ=1

λs,υqs(i) otherwise

whereqs(i) is the summation of the lengths of the partial queues at time instantti consisting
of DCVs that wait before junction Ss, while λs,υ is a nonnegative weighting parameter that
expresses the penalty12 on junction Ss.

12Since a baggage handling system has to transport all the checked in or transfer bags to the corresponding end
points before the planes have to be loaded, the weighting parameterλs,υ is set to be proportional to the shortest
distance from junction Ss to unloading station Uυ .
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Finally, at MPC stepk which corresponds to time instanttk, the MPC performance index
is defined as follows:

JMILP
k,N

(

xMILP
k,N ,qk+1,N) =

k+N−1

∑
i=k

Joutflow
i

(

U1(i), . . . ,UU (i)
)

+
k+N

∑
i=k+1

Jadd
i

(

q1(i), . . . ,qS(i)
)

(4.27)

Next, we want to write the MILP optimization problem at MPC time stepk. Let us first
consider the simplest case wherek+ N < kclose

υ , case for which

JMILP
k,N

(

xMILP
k,N ,qk+1,N) =

k+N−1

∑
i=k

U

∑
υ=1

wυ

∣

∣

∣
Uυ(i)−Udesired

υ (i)
∣

∣

∣
,

since∑k+N−1
i=k Jadd

i

(

q1(i), . . . ,qS(i)
)

= 0.
Then one can write the MPC optimization problem for an MILP model as follows:

min
Uυ(k),...,Uυ(k+N−1)

k+N−1

∑
i=k

U

∑
υ=1

wυUdiff
υ (i)

subject to
MILP model
MILP constraints
Udiff

υ (i) > Uυ(i)−Udesired
υ (i) for i = k, . . . ,k+ N − 1

Udiff
υ (i) > −Uυ(i)+Udesired

υ (i) for i = k, . . . ,k+ N − 1.

Then the MPC optimization problem above is a linear programming problem that has as
optimal solution

Udiff ,∗
υ (i) = max(U∗υ(i)−Udesired

υ (i),−U∗υ(i)+Udesired
υ (i)) =

∣

∣

∣
U∗υ(i)−Udesired

υ (i)
∣

∣

∣
.

For the case wherek+ N≥ kclose
υ we will still obtain an MILP optimization problem by

applying a similar procedure because the penaltyJadd
k is linear.

Optimization problems Next, we formulate the optimization problem for both the non-
linear and the MILP model formulations at time stepk.

The nonlinear MPC optimization problem is defined as:

min
Uk,N

Jnonlinear
k,N

(

t(k)
)

subject to

t(k) = M
switch_ctrl(

T ,x(tk),Uk,N
)

(4.28)

C (t(k))≤ 0

where

• Jnonlinear
k,N

(

t(k)
)

penalizes the absolute difference between the actual outflow and the
desired outflow at each unloading station, and the queues in the network, as (4.27)
does,
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• T is theL-tuple that comprises the vectors of bag arrival timesT = (tarrival
1 , . . . , tarrival

L )
defined in Section 4.1.1,

• x(tk) is the state of the system at time instanttk,

• theN-tupleUk,N =
(

u(k),u(k+ 1), . . . ,u(k+ N − 1)
)

represents the route choice con-
trol, with u(k+ j) for j = 0,1, . . . ,N − 1 consisting of the positions of the switch-in
and switch-out of all junctions in the network at time instant tk+ j .

The outflows of the unloading stations are determined via simulation when using the event-
driven model presented in Section 4.2.2.

Similarly, the MILP MPC optimization problem is defined as:

min
xMILP

k,N

JMILP
k,N

(

xMILP
k,N ,qk+1,N

)

subject to

qk+1,N = ΛΛΛk,NxMILP
k,N +γγγk,N (4.29)

Aeq
k,NxMILP

k,N = beq
k,N

Ak,NxMILP
k,N ≤ bk,N

To solve the MILP optimization problem one could use solverssuch as CPLEX, Xpress-
MP, GLPK, see, e.g., [3].

In general, computing the route for each DCV in the network when solving nonlinear
MPC optimization problems will give a better performance than when solving the MILP
optimization problems (due to the simplifying assumptionsused to write the MILP model),
but at the cost of higher computational efforts. So, one could use MILP to compute a good
initial point for the nonlinear optimization problem and this will reduce the computation
time. One could also use directly the MILP solution, but at the cost of suboptimality. The
results obtained when using MPC with nonlinear and MILP formulation respectively, for its
optimization problems will be presented in Section 4.5.3.

4.4.6 Decentralized heuristic approach

In this subsection and the next one we propose heuristic approaches that could be used to
efficiently control the route of each DCV, for the model determined in Section 4.2. Each
switch is now locally controlled based on heuristic rules aspresented next. Note that the
local switch control of the decentralized heuristic approach is determined based only on
local information regarding the flow of DCVs on the incoming and outgoing links of a
junction. Consider junction Ss with s∈ {1,2, ...,S}.

4.4.6.1 Control of the switch-in

If Ss has a switch-in, as the junctions illustrated in Figure 4.16, every time when a bag
enters one of the incoming links of Ss we update the local control of the switch-in at Ss.
Let tcompute_sw_in

s be such a time instant. Then we compute (as presented below) the control
variableτsw_in

s , which represents the time period until the position of the switch-in has to be
changed next.

For a junction Ss, we define the following variables:
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incoming incoming incoming incoming
link 0 link 0link 1 link 1

Figure 4.16: Junctions with a switch-in. The time when the next toggle will take place is
determined by a local rule-based controller.

• Γs,l is the set of bags transported by DCVs that travel on the incoming link l ∈ {0,1}

of junction Ss at time instanttcompute_sw_in
s ,

• ρstatic
s,l is the total static priority of the bags transported on the incoming link l of

junction Ss at time instanttcompute_sw_in
s , ρstatic

s,l = ∑
i∈Γs,l

σi , whereσi is the static priority

of bag indexi,

• ρdyn
s,l is the total dynamic priority of the bags transported on the incoming link l of

junction Ss at time instanttcompute_sw_in
s , ρdyn

s,l = ∑
i∈Γs,l

δ̂i

δmax
i

with δ̂i the estimate of the

actual time bag indexi requires to get from its current position to its final destination
in case of no congestion and maximum speed, andδmax

i the maximum time left to bag
index i to spend in the system while still arriving at the plane on time. If bag indexi
misses the flight, then the bag has to wait for a new plane with the same destination.
Hence, a new departure time is assigned to bag indexi, and consequentlytnew_end

i for
bag indexi is considered. Then the variableδmax

i is defined as follows:

δmax
i =

{

tclose
i − tcompute_sw_in

s if tclose
i − tcompute_sw_in

s > 0

tnew_end
i − tcompute_sw_in

s if tclose
i − tcompute_sw_in

s ≤ 0

In order to determine the next position of the switch-in at junction Ss we compute a
performance measurepsw_in

s,l for l = 0,1 at time instanttcompute_sw_in
s . This performance

measure takes into account the static and dynamic priorities of the bags transported by
DCVs on the incoming linkl , and the current position of the switch-in at junction Ss (due to
the operational constraintC3 according to which the position of a switch at a junction can
only change after minimumτswitch time units):

psw_in
s,0 = wst_prρstatic

s,0 + wdyn_prρ
dyn
s,0 − wsw_inτswitchIcrt

s (4.30)

psw_in
s,1 = wst_prρstatic

s,1 + wdyn_prρ
dyn
s,1 − wsw_inτswitch(1− Icrt

s ) (4.31)

whereIcrt
s denotes the current position of the switch-in at junction Ss (i.e. Icrt

s = 0 if the
switch-in is positioned on the incoming link 0, andIcrt

s = 1 if the switch-in is positioned on
the incoming link 1). The weighting parameterswst_pr, wdyn_pr, andwsw_in can be tuned as
explained in Section 4.4.6.3.
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outgoingoutgoingoutgoingoutgoing
link 0link 0 link 1link 1

bag indexibag indexi

Figure 4.17: Junctions with a switch-out. The time when the next toggle will take place is
determined by a local rule-based controller.

Let zs,l ∈ Γs,l denote the bag traveling on the incoming linkl of Ss and which is closest
to Ss and letτarrival_at_Ss

l be the time period that the DCV transporting bagzs,l needs to travel
(at maximum speed) to reach Ss.

The position of the switch-in at Ss is toggled only ifpsw_in
s,0 > psw_in

s,1 andIcrt
s = 1, or if

psw_in
s,1 > psw_in

s,0 andIcrt
s = 0. If this is the case, then the current position of the switch-in is

toggled after

τsw_in
s = max(τswitch− τsw_in_prev

s , τarrival_at_Ss
1−Icrt

s
)

time units whereτsw_in_prev
s is the time for which the switch-in at junction Ss has been in its

current position. Otherwise, we setτsw_in
s = ∞.

4.4.6.2 Control of the switch-out

If Ss has a switch-out, as the junctions illustrated in Figure 4.17, every time when a bag
is positioned just before junction Ss and the switch-in at Ss allows its crossing, we update
the local control of the switch-out at Ss. Let bag indexi be the bag positioned just before
junction Ss when the switch-in at Ss allows bag indexi to cross Ss, and lettcompute_sw_out

s,i
be the time instant when this happens. Then we compute (as presented below) the control
variableτsw_out

s , which represents the time period until the position of the switch-out has to
be changed next. This goes as follows.

Assume that bag indexi is at junction Ss. Let Snext
s,l denote the junction that is connected

to Ss via the outgoing linkl ∈ {0,1} of Ss, and let Sdest
s,i be the end point of bag indexi.

Then, we can predict the unloading timet̂unload
s,l ,r,i of bag indexi at Sdest

s,i , when traveling on
link l ∈ {0,1} out of Ss and next along router ∈Rnext

s,l ,i whereRnext
s,l ,i is the set of routes from

Snext
s,l to Sdest

s,i .
We estimate the time that bag indexi needs to reach its end point similar to how we

proceeded in Section 4.4.3. Hence, we can definet̂unload
s,l ,r,i as follows:

t̂unload
s,l ,r,i = tcompute_sw_out

s,i + τ̂ link
s,l ,i + τ̂ route

r

where

• τ̂ link
s,l ,i is the time we predict that bag indexi spends on linkl with l ∈ {0,1} out of Ss.
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For this prediction we take:

τ̂ link
s,l ,i =























max

(

dlink
s,l

vmax,
1+ ns,l ,i

ζs,l

)

if link l out of Ss is not jammed

max

(

dlink
s,l

vjam ,
1+ ns,l ,i

ζs,l

)

if link l out of Ss is jammed

(4.32)

where

– dlink
s,l is the length of linkl out of Ss,

– ns,l ,i is the number of DCVs on linkl at time instanttcompute_sw_out
s,i ,

– ζs,l is the release rate at time instanttcompute_sw_out
s,i computed over the time win-

dow [tcompute_sw_out
s,i − τ rate,tcompute_sw_out

s,i ) (recall from Section 4.4.3 that when

tcompute_sw_out
s,i < t0 + τ rate we considerζs,l = ζmax, while if no DCV left link

l within the time window[tcompute_sw_out
s,i − τ rate,tcompute_sw_out

s,i ) we setζs,l = ε
with 0 < ε≪ 1),

– vjam is the speed to be used in case of jam, typicallyvjam = 0.02 m/s. We con-
sider the outgoing linkl of Ss to be jammed only ifQs,l ≥ αQmax

s,l whereQs,l is
the capacity linkl at time instanttcross

s,i , Qmax
s,l is its maximum capacity, andα is

a weighting parameter determined based on empirical data (typically α = 0.8).

• τ̂ route
r is the predicted travel time on router ∈Rnext

s,i for an average speed determined
based on empirical data.

Next we define the cost criterioncsw_out
s,l ,i for l = 0,1 that takes into accountJi(t̂

unload,∗
s,l ,i ),

where
t̂unload,∗
s,l ,i = argmin

{t̂unload
s,l ,r,i |r∈Rnext

s,l ,i }

Ji(t̂
unload
s,l ,r,i ),

and the positionOcrt
s of the outgoing switch at time instanttcompute_sw_out

s,i :

csw_out
s,0,i = wpenJi(t̂

unload,∗
s,0,i )+ wsw_outτswitchOcrt

s (4.33)

csw_out
s,1,i = wpenJi(t̂

unload,∗
s,1,i )+ wsw_outτswitch(1− Ocrt

s ) (4.34)

The last term ofcsw_out
s,l ,i for l = 0,1 is necessary due to the operational constraintC3. The

weighting parameterswpen andwsw_outcan be tuned as explained in Section 4.4.6.3.
The position of the switch-out at junction Ss is toggled only ifcsw_out

s,0,i < csw_out
s,1,i and

Ocrt
s = 1, or if csw_out

s,1,i < csw_out
s,0,i and Ocrt

s = 0. If this is the case, then the switch-out is
toggled after

τsw_out
s = max(0, τswitch− τsw_out_prev

s )

whereτ
sw_out_prev
s is the time for which the switch-out at junction Ss has been in its current

position. Otherwise, we setτsw_out
s = ∞.

The results obtained for this control approach will be illustrated in Section 4.5.2.
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Figure 4.18: Influence of weighting parameters over Jtot. The curve corresponding to e.g.
Jtot

st_pr is obtained when wst_pr varies between10−5 and 1 for a discretization
step of0.01 and between1.1 and4 for a discretization step of0.1, while all
the other weighting parameters are kept constant.

4.4.6.3 Tuning the weighting parameters for the heuristic approach

The switch control sequence of each junction depends now also on the weighting parameters
wst_pr, wdyn_pr, wpen, wsw_in, wsw_out introduced above. Consequently, the total performance
indexJtot given by (4.4) depends on the weighting parameters.

In Figure 4.18 we have plotted — for the case study13 presented in [78] and for a typical
loading profile14 — the total performance indexJtot as follows. The curve corresponding
to e.g.Jtot

st_pr is obtained whenwst_pr varies between 10−5 and 1 for a discretization step of
0.01 and between 1.1 and 4 for a discretization step of 0.1, while all the other weighting
parameters are kept constant, equal to 0.5. Similarly, we have plottedJtot

dyn_pr, Jtot
sw_in, Jtot

pen,
andJtot

sw_out.
As illustrated in Figure 4.18 there are many variations in the amplitude of the total

performance index. Therefore, the weighting parameters have to be first calibrated.
In order to calibrate the weighting parameters, we use the event based model of a DCV-

based baggage handling system described byAlgorithm 2 of Section 4.2.2 that can be recast
as t = M switch_ctrl

(

T ,x(t0),uheuristic
)

whereuheuristic is the heuristic control sequence for

13In this case study we consider a network of tracks with one loading station, one unloading station, and four
junctions.

14We consider 200 bags to be handled, their arrival at the loading station being dynamically assigned according
to a uniform distribution.
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the entire network consisting of all the time intervals after which the position of a switch-in
and the position of a switch-out at each junction is toggled.

The tuning of the control weighting parameters will be then done by solving off-line the
following optimization problem:

min
w

Nscenario

∑
j=1

Jtot
j ,w
(

t
)

subject to
t = M switch_ctrl

(

T ,x(t0),uheuristic
)

depending onw
C (t)≤ 0

whereNscenariois the number of scenarios over which the tuning is performed, Jtot
j ,w is the

total objective function corresponding to scenarioj, with j ∈ {1,2, . . . ,Nscenario}, andw =
[wst_prwdyn_prwsw_in wpenwsw_out]⊤.

The above optimization problem is nonlinear, nonconvex andhas continuous variables.
So, in order to solve this problem, one can use multi-start local optimization algorithms such
as sequential quadratic programmingor multi-start global optimization algorithms such
aspattern search, simulated annealingalgorithms, orgeneticalgorithms, see e.g. Section
2.1.2.

4.4.7 Distributed heuristic approach

In this subsection we develop an approach where the switch control is performed based on
both local information and additional data regarding the flow of DCV on the incoming and
outgoing links of the neighboring junctions. This is an extension of the previous decentral-
ized heuristic approach.

4.4.7.1 Control of the switch-in

As in Section 4.4.6.1, we compute based on heuristic rules the control of a switch-in for
each junction in the network that has two incoming links (seeFigure 4.19). Let Ss with
s∈ {1,2, . . . ,S} be such a junction. The control of the switch-in is updated every time
(tcompute_sw_in

s ) some bag enters the incoming links of Ss.
When applying the distributed heuristic approach we compute again the objective func-

tions psw_in
s,0 of (4.30) andpsw_in

s,1 of (4.31) defined in the previous subsection. However, we
now also take into account the bags that will come towards Ss from its neighboring junctions
in the nextτpred time units. The periodτpred is determined based on empirical data.

incoming incoming incoming incoming
link 0 link 0link 1 link 1

Figure 4.19: Junctions with a switch-in. The time when the next toggle will take place is
determined by a local rule-based controller.
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Let Sprev
s,l be the junction connected to Ss via the incoming linkl ∈ {0,1} of Ss. We

predict which bags will cross Sprev
s,l and continue traveling towards Ss as follows. At time

instanttcompute_sw_in
s we compute the control sequence for the switch-in and switch-out at

Sprev
s,0 and Sprev

s,0 using the decentralized heuristic rules for switch-in presented above, and the
heuristic rules for switch-out presented in the paragraphControl of the switch-outof this
subsection respectively. As prediction model we use the simulation model ofAlgorithm
2 for the time period[tcompute_sw_in

s ,tcompute_sw_in
s + τpred). As result of this simulation we

determine which bags will cross Sprev
s,l with l ∈ {0,1}, and continue traveling towards Ss and

at which time they will enter the incoming linkl of Ss.
LetΩs,l be the set of bags that will cross Sprev

s,l when traveling towards Ss in the nextτpred

time units. Then, the time when junction Ss toggles its position is computed as inControl of
the switch-inof Section 4.4.6. The difference is that here we use the following performance
measures:

psw_in
s,0 =wst_pr(ρstatic

s,0 + ϕstatic
s,0 )+ wdyn_pr(ρ

dyn
s,0 + ϕ

dyn
s,0 )− wsw_inτswitchIcrt

s (4.35)

psw_in
s,1 =wst_pr(ρstatic

s,1 + ϕstatic
s,1 )+ wdyn_pr(ρdyn

s,1 + ϕdyn
s,1 )− wsw_inτswitch(1− Icrt

s ) (4.36)

where

• ϕstatic
s,l is total static priority of the bags inΩs,l , ϕstatic

s,l = ∑
i∈Ωs,l

σi ,

• ϕ
dyn
s,l is the total dynamic priority of the bags inΩs,l , ϕ

dyn
s,l = ∑

i∈Ωs,l

δ̂i

δmax
i

.

4.4.7.2 Control of the switch-out

For each junction which has a switch-out, as the junctions illustrated in Figure 4.20, we
update the control of the switch-out as presented next. Let Ss with s∈ {1,2, . . . ,S} be such
a junction. Then, every time when a bag is positioned just before junction Ss and the switch-
in at Ss allows its crossing, we compute (as presented below) the control variableτsw_out

s ,
which represents the time period until the position of the switch-out has to be changed next.
Assume that bag indexi is just before junction Ss. Then we update the control of the switch-
out at time instanttcompute_sw_out

s,i . The control of the switch-out at junction Ss is computed
using a reasoning similar to that in Section 4.4.6.2. However, in this case, when computing
the predicted objective function for the outgoing linkl = 0,1 and bag indexi, we do not
look only at the congestion on the outgoing links of junctionSs, but also at the congestion
farther (downstream) in the network.

So, we will predict the time that bag indexi needs to travel on the next15 νnext,max links
when trying to reach its destination whereνnext,max denotes the maximum number of links
we look ahead.

Let us consider next the case whereνmax = 2. As sketched in Figure 4.21, Snext
s,l ,m for

m= 0,1 denotes the neighboring junction of Snext
s,l connected via linkm out of Snext

s,l . Then

15We look only at the nextνnext,max links in order to get some extra information on the network congestion
state, while keeping the communication requirements low.
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the time period that bag indexi needs to travel linkm out of Snext
s,l considering the release

rateζs,l ,m of link m out of Snext
s,l is defined as:

τ̂ link
s,l ,m,i =























max

(

dlink
s,l ,m

vmax ,
1+ ÑDCV

s,l ,m,i

ζs,l ,m

)

if link mout of Snext
s,l is not jammed

max

(

dlink
s,l ,m

vjam ,
1+ ÑDCV

s,l ,m,i

ζs,l ,m

)

if link mout of Snext
s,l is jammed

where

• dlink
s,l ,m is the length of the linkmout of Snext

s,l ,

• ÑDCV
s,l ,m,i represents the number of DCV that we estimate to have on linkm out of Snext

s,l

at the time instant when bag indexi will cross f Snext
s,l

ÑDCV
s,l ,m,i = ns,l ,m,i + ñs,l ,m,i − ñcross

s,l ,m,i

with

– ns,l ,m,i the number of DCVs on linkm out of Snext
s,l at time instanttcompute_sw_out

s,i .

– ñs,l ,m,i the estimated number of DCVs on linkl out of Ss that choose linkm
out of Snext

s,l . In order to estimatẽns,l ,m,i , we assume that for a junction Snext
s,l , a

fractionηs,l of the DCVs crossing Snext
s,l take linkm= 0 out of Snext

s,l . The fraction
ηs,l is determined based on historical data.

– ñcross
s,l ,m,i the estimated number of DCVs that cross Snext

s,l ,m after traveling on linkm
out of Snext

s,l . We definẽncross
s,l ,m,i as follows:

ñcross
s,l ,m,i = min

(

ns,l ,m,i + ñs,l ,m,i , ζs,l ,mτ̂ link
s,l ,i

)

whereτ̂ link
s,l ,i is the time we predict that bag indexi spends on linkl out of Ss (see

(4.32).

Let Rnext
s,l ,m,i with l ∈ {0,1} andm∈ {0,1} denote the set of routes from junction Snext

s,l ,m

to Sdest
s,i , the end point of bag indexi. In this case, for each router ∈Rnext

s,l ,m,i we predict the

outgoingoutgoingoutgoingoutgoing
link 0link 0 link 1link 1

bag indexibag indexi

Figure 4.20: Junctions with a switch-out. The time when the next toggle will take place is
determined by a local rule-based controller.
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Ss

Snext
s,0 Snext

s,1

Snext
s,0,0

Snext
s,0,1

Snext
s,1,0

Snext
s,1,1

Figure 4.21: Subtree of neighboring junctions for junctionSs.

time t̂unload
s,l ,m,r,i when bag indexi will reach Sdest

s,i if the bag takes linkl out of Ss, link m out of
Snext

s,l , and router. This time is given by:

t̂unload
s,l ,m,r,i = tcompute_sw_out

s,i + τ̂ link
s,l ,i + τ̂ link

s,l ,m,i + τ̂ route
r

where

• τ̂ link
s,l ,m,i is the time we predict that bag indexi will spend on linkm out of Snext

s,l ,

• τ̂ route
r is the average travel time on router ∈Rnext

s,l ,m,i , determined based on historical
data.

Finally, in computing the cost criterioncsw_out
s,l ,i for l = 0,1 defined in Section 4.4.6 we

useJi(t̂
unload,∗
s,l ,i ) wheret̂unload,∗

s,l ,i is the predicted unloading time that optimizes the objective
function of bag indexi when choosing linkm∈ {0,1} out of Snext

s,l , and router ∈Rnext
s,l ,m,i :

t̂unload,∗
s,l ,i = argmin

{t̂unload
s,l ,m,r,i |r∈Rnext

s,l ,m,i ,m∈{0,1}}

Ji(t̂
unload
s,l ,m,r,i)

The analysis of the results obtained for this control approach will be illustrated in Sec-
tion 4.5.2.

4.4.8 Hierarchical control

In this subsection we propose a hierarchical control framework for DCV-based baggage
handling systems. In this control framework switch controllers provide position instructions
for each switch in the network. A collection of switch controllers is then supervised by a so-
called network controller that mainly takes care of the route choice instructions for DCVs.
We will first focus on the route choice control problem for thenetwork controller. Next we
will also present the independent, but supervised, switch control.

Control Framework

In order to efficiently compute the route choice of each DCV wepropose a hierarchical
control framework that consists of a multi-level control structure as shown in Figure 4.22.
The layers of the framework can be characterized as follows:
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Network controller

Switch controllerSwitch controller

DCV controller DCV controller DCV controller DCV controller

Figure 4.22: Hierarchical control for DCV-based baggage handling systems.

• Thenetwork controllerprovides the route choice for DCVs by determining reference
flow trajectories over time for each link in the network. These flow trajectories are
computed so that the performance of the DCV-based baggage handling system is
optimized. Then the optimal reference flow trajectories arecommunicated to switch
controllers.

• The switch controllerpresent in each junction receives the information sent by the
network controller and determines the sequence of optimal positions for its ingoing
and outgoing switches at each time step so that the tracking error between the refer-
ence flow trajectory and the actual flow trajectory is minimal.

• TheDCV controllerpresent in each vehicle detects the speed and position of thevehi-
cle in front of it, if any, and the position of the switch into the junction the DCV travels
towards to. This information is then used to determine the speed to be used next such
that no collision will occur and such that the DCV stops in front of a junction when
its ingoing switch is not positioned on the link that the DCV travels on.

The lower levels in this hierarchy deal with faster time scales (typically in the millisec-
onds range for the DCV controllers up to the seconds range forthe switch controllers),
whereas for the higher-level layer (network controller) the frequency of updating is up to
the minutes range.

In the remainder of this subsection we will focus on the higher-level controllers of the
proposed hierarchy and in particular on how the optimal routes can be determined for the
DCVs transporting bags through the network.

Approach

In general, the predictive switch control problem in DCV-based baggage handling systems
results in a huge nonlinear integer optimization problem with high computational complex-
ity and requirements, making the problem in fact intractable in practice as will be illustrated
in Section 4.5. So, since considering each individual switch is too computationally intensive
we will consider streams of DCVs instead (characterized by real-valued demands and flows
expressed in vehicles per second). The routing problem willthen be recast as the problem
of determining the flows on each link. Once these flows are determined, they can be im-
plemented by switch controllers at the junctions. So, the network controller provides flow
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Figure 4.23: Set-up for the DCV-based baggage handling system. The transportation net-
work has a set of origin nodesO = {L1,L2, . . . ,LL}, a set of destination nodes
D = {U1,U2, . . . ,UU}, and a set of internal nodesI = {S1,S2, . . . ,SS}.

targets to the switch controllers, which then have to control the position of the switch into
and out of each junction in such a way that these targets are met as well as possible.

Set-up

We consider the following set-up. We have a transportation network with a set of origin
nodesO consisting of the loading stations, a set of destination nodesD consisting of the
unloading stations, and a set of internal nodesI consisting of all the junctions in the net-
work, see Figure 4.23. We define the set of all nodes asV = O ∪I ∪D . The nodes are
connected by unidirectional links. LetL denote the set of all links.

Let the time instanttk be defined astk = kτnc with τnc the sampling time for the network
controller. Then, for each pair(o,d) ∈ O ×D , there is a dynamic, piecewise constant
demand patternDo,d(·) as shown in Figure 4.24 withDo,d(k) the demand of bags at origin
o with destinationd in the time interval[tk,tk+1) for k = 0, . . . ,K − 1 with K the demand
horizon (we assume that beyondtK the demand is 0).

Next, letLd be the set of links that belong to some route going to destination d, Ld ⊆
L . We denote the set of incoming links for nodev∈ V by L in

v , and the set of outgoing

...

...

Do,d

t
0 tKt1 t2 tK−2 tK−1

Do,d(0)

Do,d(1)
Do,d(K − 2)

Do,d(K − 1)

Figure 4.24: Piecewise constant time-varying demand profile Do,d.
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links of v by L out
v . Note that for originso∈O we haveL in

o = /0 and for destinationsd ∈D

we haveL out
d = /0. Also, recall from Section 4.2.1 that we have assumed eachorigin node

to have only one outgoing link and each destination node to have only one incoming link
(assumptionA3). Then|L out

o |= 1 and|L in
d |= 1.

Next, for each destinationd ∈D and for each linkℓ ∈Ld in the network we will define
a real-valued flowuℓ,d(k). The flow uℓ,d(k) denotes the number of DCVs per time unit
traveling towards destinationd that enter linkℓ during the time interval[tk,tk+1).

The aim is now to compute using MPC, for each time stepk, flows uℓ,d(k) for every
destinationd ∈ D and for every linkℓ ∈Ld in such a way that the capacity of the links is
not exceeded and such that the performance criterion is minimized over a given prediction
period[tk,tk+N). Later on we will write a model of the baggage handling systemto be used
by the network controller, and show that this model can be rewritten as an MILP model.
Therefore, in order to obtain an MILP optimization problem one has to define a linear or
piecewise affine performance criterion. Possible goals forthe network controller that allow
linear or piecewise affine performance criteria are reaching a desired outflow at destination
d or minimizing the lengths of the queue in the network.

Model

We now determine the model for the DCV flows through the network. Let τℓ denote the
free-flow travel time on linkℓ. Recall that the free-flow travel time of linkℓ represents the
time period that a DCV requires to travel on linkℓ when using maximum speed. In this
subsection we assume the travel timeτℓ to be an integer multiple ofτnc, say

τℓ = κℓτ
nc with κℓ an integer. (4.37)

In case the capacity of a loading station is less than the demand, queues might appear
at the origin of the network. Letqo,d(k) denote the length at time instanttk of the partial
queue of DCVs at origino going to destinationd. In principle, the queue lengths should be
integers as their unit is “number of vehicles”, but we will approximate them using reals.

For every origin nodeo∈ O and for every destinationd ∈D we now have:

uℓ,d(k) 6 Do,d(k)+
qo,d(k)

τnc for ℓ ∈L
out
o ∩Ld (4.38)

with Do,d(k) = 0 for k > K. Moreover,

qo,d(k+ 1) = max

(

0, qo,d(k)+
(

Do,d(k)− ∑
ℓ∈L out

o ∩Ld

uℓ,d(k)
)

τnc
)

(4.39)

But queues can form also inside the network. We assume that the DCVs run with maxi-
mum speed along the track segments and, if necessary, they wait before crossing the junction
in vertical queues. Letqv,d(k) denote the length at time instanttk of the vertical queue at
junctionv∈ I , for DCVs going to destinationd ∈ D . In this subsection we do not con-
sider outflow restrictions on queues to destinationd for a junctionv connected via a link to
destinationd, and henceqv,d(k) = 0 for all k.
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Taking into account that a flow on linkℓ has a delay ofκℓ time steps before it reaches
the end of the link, for every internal nodev∈I and for everyd ∈D we have:

Fout
v,d (k)6 F in

v,d(k)+
qv,d(k)

τnc (4.40)

whereF in
v,d(k) is the flow into the queue at junctionv, being defined as:

F in
v,d(k) = ∑

ℓ∈L in
v ∩Ld

uℓ,d(k− κℓ) (4.41)

and whereFout
v,d (k) is the flow out of the queue at junctionv, defined as:

Fout
v,d (k) = ∑

ℓ∈L out
v ∩Ld

uℓ,d(k) . (4.42)

The evolution of the length of the queue for every internal node v∈ I and for every
d ∈D is given by:

qv,d(k+ 1) = max
(

0,qv,d(k)+
(

F in
v,d(k)− Fout

v,d (k)
)

τnc
)

(4.43)

Moreover, for each origino ∈ O and for each junctionv ∈ I we have the following
constraints:

∑
d∈D

qo,d(k+ 1)≤ qmax
o (4.44)

∑
d∈D

qv,d(k+ 1)≤ qmax
v (4.45)

whereqmax
o andqmax

v express (respectively) the maximum number of DCVs the conveyor
belt transporting bags towards loading stations can accommodate and the maximum number
of DCVs the track segments of the incoming links of that junction can accommodate.

We also have the following condition for every linkℓ:

∑
d∈D

uℓ,d(k) 6 Umax (4.46)

whereUmax is the maximum flow of DCVs that can enter a link.
Then, at time stepk, the model of the DCV flows through the network of tracks describ-

ing (4.38)–(4.46) can be written as a system of equalities and a system of inequalities as
follows:

qk+1 = M
eq(qk,uk)

M
ineq(qk+1,uk)≤ 0

where

• qk is the vector consisting of all the queue lengthsqo,d(k), for all o ∈ O and for all
d ∈D , and of all the queue lengthsqv,d(k), for all v∈I and for alld ∈D

• uk is the vector consisting of all the flowsuℓ,d(k), for all d ∈D and for allℓ ∈Ld.
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tclose
d −τ

open
d tclose

d

t

udesired
d

τnc

Figure 4.25: Desired arrival profile at destination d.

Performance index

Next we define the performance index to be used for computing the optimal routing at step
k for a prediction period ofN time steps.

The objective is to have each bag arriving at its end point within a given time interval
[tclose

d − τ
open
d ,tclose

d ) wheretclose
d is the time instant when the end pointd closes andτopen

d is
the time period for which the end pointd stays open for a specific flight. We assumetclose

d
andτ

open
d to be integer multiples ofτs.

Hence, one MPC objective that allows a piecewise affine performance criterion is to
achieve a desired flow at destinationd during the prediction period. Letudesired

d denote the
desired piecewise constant flow profile at destinationd as sketched in Figure 4.25, where
the area underudesired

d equals the total number of bags out of the total demand that have to
be sent to destinationd. Note thatudesired

d (k) = 0 for all k < kopen
d and allk≥ kclose

d with

kopen
d =

tclose
d −τopen

τnc andkclose
d =

tclose
d
τnc .

Let κℓd =
τℓd
τnc . Hence, one can define the following penalty for flow profiles correspond-

ing to destinationd ∈D :

Jpen
d (k) = udesired

d (k)− uℓd,d(k+ κℓd)

whereℓd is the incoming link of destinationd.

Later on we will include the penalty term
k+N−1−κℓd

∑
i=k

Jpen
d (i) into the MPC performance

criterion for each destinationd and for each time stepk. Note that we make the summation
of these penalization indices only up tok+N−1−κℓd since fori > k+N−1−κℓd the variable
uℓd,d(k+ κℓd) is not defined at MPC stepk.

Moreover, note that using as MPC performance criterion∑
k+N−1−κℓd
i=k Jpen

d (i) for each
destinationd and for each time stepk, could have adverse effects for small prediction hori-
zons. Therefore, to counteract these effects, we also consider as additional controller goal
maximizing the flows of all links that are not directly connected to unloading stations. To
this aim, letτ link

ℓ,d,k be the typical16 time required for a DCV that entered linkℓ in [tk,tk+1) to

reach destinationd, with τ link
ℓ,d,k an integer multiple ofτs. Also, letκl ,d =

τ link
ℓ,d,k
τnc . Then one can

16These durations are determined based on historical data.
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define the following penalty:

Jflow
ℓ,d (k) =

{

uℓ,d(k) if kopen
d − κl ,d ≤ k < kclose

d − κl ,d

0 otherwise

This penalty will be later on used in the MPC performance criterion.
Next, in order to make sure thatall the bags will be handled in finite time, we also

include in the MPC performance criterion the weighted length of queues at each junction
in the network as presented next. Letτ

junc
v,d be the typical16 time required for a DCV in the

queue at junctionv to reach destinationd, with τ
junc
v,d (k) an integer multiple ofτnc. Also, let

κv,d =
τ

junc
v,d (k)

τnc . Then we define the new penalty:

Joverdue
v,d (k) =

{

dmin
v,d qv,d(k) if k≥ kclose

d − κv,d

0 otherwise

wheredmin
v,d represents the length of the shortest route from junctionv to destinationd.

Note thatJoverdue
v,d (k) is nonzero only for steps that are larger than or equal tokclose

d − κv,d.

Moreover, for these stepsJoverdue
v,d (k) is proportional todmin

v,d . The reason for this is that
we want to penalize more the queues at junctions that are further away from destinationd
because the DCVs in those queues will need longer time to travel to destinationd.

Finally, letL destdenote the set of links directly connected to unloading stations. Then
the MPC performance index is defined as follows:

Jk,N(qk,uk) = ∑
d∈D

(

λd

k+N−1−κℓd

∑
i=k

Jpen
d (i)+ β

k+N−1

∑
i=k

∑
v∈I

Joverdue
v,d (i)−

α
k+N−1

∑
i=k

∑
ℓ∈(L \L dest)∩Ld

Jflow
ℓ,d (i)

)

(4.47)

with λd > 0 a weight that expresses the importance of the flight assigned to destinationd,
α≪ 1 andβ≪ 1 nonnegative weighting parameters.

Then the nonlinear MPC optimization problem is defined as follows:

min
uk,...,uk+N−1,qk+1,...,qk+N

Jk,N(qk,uk)

subject to
qk+1 = M eq(qk,uk)

...
qk+N = M eq(qk+N−1,uk+N−1)
M ineq(qk+1,uk)≤ 0

...
M ineq(qk+N,uk+N−1)≤ 0
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MILP optimization problem for the network controller

Hence, we deal with a nonlinear, nonconvex, and nonsmooth optimization problem. How-
ever, using the propertiesP1 andP2 presented in Section 4.4.5, this problem can also be
written as an MILP problem.

In principle, — i.e., when an MILP optimization algorithm isnot terminated prema-
turely due to time or memory limitations, — the MILP optimization algorithm guarantees
to find the global optimum. This global optimization featureis not present in the other op-
timization methods that can be used to solve the original nonlinear, nonconvex, nonsmooth
route choice optimization problem. Moreover, if the computation time is limited (as is often
the case in on-line real-time control), then it might occur that the MILP solution can be
found within the allotted time whereas the global and multi-start local optimization algo-
rithm still did not converge to a good solution. As a result, the MILP solution may even
give a better system performance than the solution returnedby the prematurely terminated
global and multi-start local optimization method.

Switch control

We now focus on the switch controller for the proposed hierarchy, and on how optimal
switch positions can be determined.

Recall that at each control stepk, the network controller provides optimal flows for each
link in the network and for each destination. Let these flows be denoted byuopt

ℓ,d(k), . . . ,

uopt
ℓ,d(k+ N − 1) with d ∈ D , ℓ ∈L ∩Ld andN the prediction horizon of the network con-

troller. Then the switch controller of each junction has to compute optimal switch-in and
switch-out positions such that the tracking error between the reference optimal flow trajec-
tory and the flow trajectory obtained by the switch controller is minimal for each network
controller time stepk = 0, . . . ,Ksim.

Recall that the optimal flowsuopt
ℓ,d(k), . . . ,u

opt
ℓ,d(k+N−1) are determined for the time win-

dow[tk,tk+N) with tk = t0+kτnc. Moreover, note that in order to determine the switch control
action during the time window[tk,tk+N) we will use again MPC. Next we will refer to one
junction v ∈ I only. For all other junctions, the switch control actions are determined
similarly.

Let τsc be the switch controller sampling17 time. Also, letksc be an integer that expresses
the number of switch control actions determined until now. At tk, ksc is defined asksc =
τnc

τsck. Then lettsw
ksc denote the time instant corresponding to the time stepksc of the switch

controller,tsw
ksc = t0 + kscτsc with t0 the time instant when we start the simulation.

Furthermore, letsin
v (ksc) denote the position of the switch-in at junctionv during the

time interval
[

tsw
ksc,tsw

ksc+1

)

and letsout
v (ksc) denote the position of the switch-out at junctionv

during
[

tsw
ksc,tsw

ksc+1

)

.
We want to determine the switch control sequence during the time window [tk,tk+N)

while using MPC with prediction period ofNsc steps. Hence, at each MPC stepksc, the
switch controller solves the following optimization problem:

min
sv,ksc,Nsc

Jsw
v,ksc,Nsc(xv,ksc,sv,ksc,Nsc) (4.48)

17We select the sampling timeτnc of the network controller and the sampling timeτ
sc of the switch controller

such thatτnc is an integer multiple ofτ sc.
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with xv,ksc the current local state at junctionv, sv,ksc,Nsc = [sin
v (ksc) . . . sin

v (ksc+ Nsc− 1) . . .
sout
v (ksc) . . . sout

v (ksc+ Nsc− 1)]⊤ if junction v has 2 incoming and 2 outgoing links (sv,ksc,Nsc

contains only switch-in or only switch-out positions if junctionvhas only 1 outgoing or only
1 incoming link respectively) and withJsw

v,ksc,Nsc the local MPC performance index defined
as:

Jsw
v,ksc,Nsc(xv,ksc,sv,ksc,Nsc) = ∑

ℓ∈L out
v

∣

∣

∣
Xopt

ℓ,k,ksc,Nsc(u
opt
ℓ )− Xℓ,ksc,Nsc(xv,ksc,sv,ksc,Nsc)

∣

∣

∣

+ γ
(

nsw_in
ksc,Nsc(xv,ksc,sv,ksc,Nsc)+ nsw_out

ksc,Nsc(xv,ksc,sv,ksc,Nsc)
)

where

• Xopt
ℓ,k,ksc,Nsc(u

opt
ℓ ) denotes the optimal number of DCVs to enter the outgoing linkℓ

of junction v during the period
[

tsw
ksc,tsw

ksc+Nsc−1

)

, whereuopt
ℓ is the vector consisting

of all the flowsuopt
ℓ,d(k), . . . ,u

opt
ℓ,d(k + N) with d ∈ D andℓ ∈ L ∩Ld. The variable

Xopt
ℓ,k,ksc,Nsc(u

opt
ℓ ) is derived later on (see (4.49)).

• Xℓ,ksc,Nsc(xv,ksc,sv,ksc,Nsc) is the actual number of DCVs entering linkℓ during the pre-
diction period. Given the current state of local system and the sequence of switch
control, the variableXℓ,ksc,Nsc is determined via simulation for a nonlinear (event-
based) model similar to the one of Tarău et al. [80] (the difference is that now the
switch positionssv,ksc,Nsc are given for each period[tsw

ksc,tsw
ksc+1), . . . , [tsw

ksc+Nsc−1,t
sw
ksc+Nsc)

instead of for each of the nextNsc DCVs to cross a junction).

• nsw_in
ksc,Nsc(xv,ksc,sv,ksc,Nsc) and nsw_out

ksc,Nsc(xv,ksc,sv,ksc,Nsc) represent the number of toggles
of the switch-in and of the switch-out respectively during the prediction window
[

tsw
ksc,tsw

ksc+Nsc

)

. These variables are obtained from simulation (for the given the cur-
rent state of local system and the sequence of switch control).

• γ is a nonnegative weighting parameter.

Next we derive the variableXopt
ℓ,k,ksc,Nsc(u

opt
ℓ ). To this aim, we first determine how many

stepspksc of the network controller will be involved in solving (4.48)as follows: pksc =
⌈

Nscτsc

τnc

⌉

where⌈x⌉ denotes the smallest integer larger than or equal tox (so, pksc ≥ 1).
Furthermore, note that the indexk of the time instanttk for which tk ≤ tsw

ksc < tk+1 can be
computed as follows:k =

⌊

kscτsc

τnc

⌋

where⌊x⌋ denotes the largest integer less than or equal to
x. Figure 4.26 illustrates the prediction window

[

tsw
ksc,tsw

ksc+Nsc−1

)

with respect to the window
[tk,tk+pksc).

tk tk+1 tk+2 tk+pksc−1 tk+pksc

τ left
1,ksc (p− 2)τnc τ left

2,ksc

tsw
ksc tsw

ksc+Nsc−1

Figure 4.26: Prediction window
[

tsw
ksc,tsw

ksc+Nsc−1

)

over which we solve the MPC optimization
problem (4.48) illustrated with respect to the window[tk,tk+pksc) for pksc > 2.
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The variableXopt
ℓ,k,ksc(u

opt
ℓ ) is given by:

Xopt
ℓ,k,ksc,Nsc(u

opt
ℓ ) =τ left

1,ksc ∑
d∈D

uopt
ℓ,d(k)+ τnc

k+pksc−2

∑
i=k+1

∑
d∈D

uopt
ℓ,d(i)+

τ left
2,ksc ∑

d∈D

uopt
ℓ,d(k+ pksc − 1) (4.49)

where∑k+ j
i=k+1x(i) = 0 by definition for j < 1 and where

τ left
1,ksc =min(tk+1,t

sw
ksc+Nsc−1)− tsw

ksc,

τ left
2,ksc =

{

tsw
ksc+Nsc−1 − tk+pksc−1 if pksc > 1
0 otherwise.

The results obtained when using the hierarchical control framework are presented in
Section 4.5.4.

4.5 Experimental results

In this section we present the experimental results obtained when determining the optimal
DCV route choice of a baggage handling system by using the control methods proposed
in Section 4.4. Hence, we now assess the efficiency of the following approaches: opti-
mal control, centralized, decentralized, and distributedMPC, decentralized and distributed
heuristics — these approaches are developed for a 1-level route choice control framework
—, and MPC in a 2-level route choice control framework. In order to reduce the com-
putational complexity of MPC, we have also compared the results obtained when solving
nonlinear optimization problems, and when solving MILP optimizations.

4.5.1 Optimal control versus model predictive control

In this subsection we compare the results (the system performance and the total computation
time required to determine the route choice control) obtained when using the optimal control
method presented in Section 4.4.1 and when using the model predictive control (MPC)
approach presented in Section 4.4.2. The comparison will bemade based on simulation
results.

Set-up

We consider the network of tracks depicted in Figure 4.27 with two loading stations L1 and
L2, two unloading stations U1 and U2, and two junctions S1 and S2. We have considered
this simple network since the computational complexity of these methods increases with
the number of junctions in the network. Note that the controlapproaches considered in this
section allow the choice of routes containing loops.

We assume that the velocity of each DCV varies between 0 m/s and 20 m/s. The lengths
of the track segments are indicated in Figure 4.27.
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Scenarios

We have defined fifteen scenarios where the stream of bags thatwill enter the network of
tracks aftert0 has the lengthNbags= 10,20,30, . . . ,150, the destination of each bag be-
ing randomly assigned using a uniform distribution. Recallfrom Section 4.1.1 that the
2-tupleT = (tarrival

1 , tarrival
2 ) comprises the vectors of bag arrival times defined astarrival

ι =
[tarrival

ι,1 . . .tarrival
ι,Nload

ι

]⊤ with Nload
ι the number of bags to be loaded onto DCVs at loading station

Lι. According to these scenariosNload
ι = 5,10,15, . . . ,75 for ι = 1,2. The arrival times

tarrival
ι,1 , . . . , tarrival

ι,Nload
ι

at loading station Lι with ι ∈ {1,2}, are allocated randomly during the

time interval[t0,t0 + 100s), using a uniform distribution.
For this case study we assume that both end points U1 and U2 are open during the time

window[t0+100s,t0+200s). Also, we assume that at time instantt0, no DCV is transporting
bags through the network, while all the considered scenarios start from the same initial state
of the system.

Results

To solve the route choice optimization problems of optimal control and MPC, we have
chosen thegeneticalgorithm with multiple runs and “bitstring” population, implemented via
the functionga of the Matlab optimization toolboxGenetic Algorithm and Direct Search.
We made this choice since simulations show that this optimization technique gives good
performance, with a short computation time.

Regarding the optimal control optimization, we setNrun = 6+ Nbags

5 andNgen= Nbags·40
whereNrun is the number of times that we run the genetic algorithm whilesolving the
optimization problem, andNgen is the maximum number of generations of population that
we allow when computing a solution. All the other options areset by using the default
options of the functionga. Note that we have chosen these large values forNrun andNgen

since this should increase the chance of finding a solution that is close to the global one,
see, e.g., Section 2.1.2.

For the MPC approach we set the horizon toN = 10 bags. Recall from Section 4.4.2
that, at each MPC step, we implement all the computed controlsamples, and accordingly
we shift the horizon withN steps. When solving the MPC optimization problem withga,
we setNrun = 3 andNgen= 70. Note that for MPCNrun andNgen have smaller values than
the ones we have considered for optimal control. This choicehas been made since MPC
solves smaller optimization problems than optimal control.

500m

500m 700m

700m

100m

L1

L2

U1

U2

S1

S2

Figure 4.27: Case study for a DCV-based baggage handling system of Section 4.5.1.
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Figure 4.28: Comparison of the results obtained using optimal control (OC) and model pre-
dictive control (MPC) for the total closed-loop simulation. In order to assess
the efficiency of these approaches, we progressively increase the number of
bags to be handled.

Based on simulations we now compare, for the given scenarios, the proposed control
methods. LetJtot,approachdenote the total performance index expressed by (4.4) that cor-
responds to the control methods that we compare in this subsection (optimal control and
MPC). In Figure 4.28 we have plotted the performance indexJtot,approachversus the num-
ber of bags that we handle in each scenario, and the total computation time18 needed for
the total closed-loop simulation. Note that the lower the performance indexJtot,approachis,
the better the performance of the baggage handling system is, e.g if the baggage handling
system has transported all the bags to their end points within the given time window, then
no penalization is needed. Hence, the best performance of the system would correspond to
Jtot,approach= 0.

The results indicate that optimal control gives a better system performance than MPC
or as good as MPC only forNbags≤ 60, while forNbags> 60 MPC performs better than
optimal control. This happens because the values set for thenumber of runsNrun and for
the number of population generationsNgen are too low. This means that in order to obtain
better results when using optimal control, one has to increase even moreNrun andNgen.
The results also indicate, that even for the computational restrictions mentioned above, the
total computation time obtained when computing the route choice solution using optimal
control, is always larger than the one obtained when using MPC. Moreover, the difference
in computational effort required by the considered approaches increases with the number

18The simulations were performed on a 3.0 GHz P4 with 1 GB RAM.
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of bags to be handled by the DCV-based baggage handling system. In particular, the total
computation time of MPC is about 2.7 hours, while the total computation time of optimal
control is about 40 hours forNbags= 150.

In practice, optimal control is not suitable for computing the route choice control of a
DCV-based baggage handling system. The first reason to support this remark is that, in
practice, the arrival time at loading stations of all the bags to be handled is not known at
time instantt0. The second reason, is the huge amount of computational effort required to
compute the optimal route choice control. However, even if MPC could be used to compute
on-line the DCV route choice control because this method only looks ahead at a buffer of
bags to be handled, the total computation time is still quitehigh for real-time optimizations.

4.5.2 Centralized, decentralized, and distributed control approaches

In this subsection we compare the performance of the centralized, decentralized, and dis-
tributed MPC, and the decentralized and distributed heuristics based on simulation exam-
ples. These control approaches have been presented in Section 4.4.2, Section 4.4.3, Section
4.4.4, Section 4.4.6, and Section 4.4.7 respectively.

Set-up

We consider the network of tracks depicted in Figure 4.29 with four loading stations, two
unloading station, nine junctions, and twenty unidirectional links. Note that this network al-
lows more than four possible routes to each destination fromany origin point (e.g., U1 can be
reached from L1 via junctions S1,S4,S8; S1,S4,S8,S9,S8; S1,S2,S5,S4,S8; S1,S2,S5,S6,S5,
S4,S8; S1,S2,S6,S7,S9,S8, and so on). We consider this network because on the one hand
it is simple, allowing an intuitive understanding of and insight in the operation of the sys-
tem and the results of the control19, and because on the other hand, it also contains all the
relevant elements of a real set-up.

We assume that the velocity of each DCV varies between 0 m/s andvmax= 20 m/s, and
that the minimum time period after we allow a switch toggle isτswitch = 2 s. The lengths of
the track segments are indicated in Figure 4.29.

In order to faster assess the efficiency of our control methodwe assume that we do not
start with an empty network but with a network already populated by DCVs transporting
bags.

Scenarios

For the tuning of the weighting parametersw we define eighteen scenarios where 120 bags
will be loaded into the baggage handling system (30 bags at each loading station). We con-
sider three classes of demand profiles called “dp1”, “ dp2”, and “dp3” hereafter. According
to these classes, the bags arrive at each loading station in the time interval[t0,t0 +100s) with
t0 the time instant when we start the simulation. The arrival times at a loading station are
allocated randomly, using a uniform distribution according to the following cases:

dp1: the bags arrive at the loading station with a constant rate of1.2 bags/s;

19The proposed control approaches allow the choice of routes containing loops.
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dp2: 5 bags arrive at a loading station during each of the time intervals [t0,t0 + 40s) and
[t0 + 60s,t0 + 100s), and the rest of 110 bags arrives during[t0 + 40s,t0 + 60s);

dp3: 10 bags arrive during the time interval[t0,t0 + 80s) and the rest of the bags, i.e., 110
bags, arrives aftert = t0 + 80s, i.e., during[t0 + 80s,t0 + 100s).

Note that for the demand profiles “dp2” and “dp3” the bags arrival time is uniformly
distributed over the mentioned time intervals.

More specifically, we consider two different initial statesof the system called “Init 1”
and “Init 2”, where 60, and respectively 120 DCVs are already transporting bags in the
network, running from loading stations L1, . . . ,L4 to junctions S1 and S2, from S1 to S2, and
from S3 to S2. Their positions att0 and their static priorities are assigned randomly.

The bags to be handled can be organized in two groups of bags. Let “group 1” consist
of the bags that populate the DCV network beforet0 and “group 2” consist of the bags that
enter the network aftert0. For a maximum storage period of 100 s at unloading stations,we
examine both situations where the transportation of the bags is very tight (the last bag that
enters the system can only arrive in time at its end point if the DCV travels the shortest route
with maximum speed), and respectively more relaxed. Fort0 = 0 s we denote the scenarios
according to Table 4.1 wheretclose

1 andtclose
2 indicate the time when the end point closes for

“group 1” and “group 2” respectively.
We first calibrate the weighting parametersw over all the scenarios we have considered.

Next, for the same scenarios we compare the control methods,but now we consider different
samples of the demand profiles than those used for calibration.
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50m50m 50m50m
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100m100m

100m 100m

100m100m
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Figure 4.29: Case study for a DCV-based baggage handling system of Section 4.5.2.
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Table 4.1: Considered Scenarios

Scenario type End time x0 Demand Scenario ID
same dp1 1

end time Init 1 dp2 2
Relaxed dp3 3

tclose
1 = 200 s dp1 4
tclose
2 = 200 s Init 2 dp2 5

dp3 6
different dp1 7
end time Init 1 dp2 8

Relaxed dp3 9
tclose
1 = 100 s dp1 10
tclose
2 = 200 s Init 2 dp2 11

dp3 12
different dp1 13
end time Init 1 dp2 14

Tight dp3 15
tclose
1 = 100 s dp1 16
tclose
2 = 144 s Init 2 dp2 17

dp3 18

Results

To solve the MPC optimization problems we have chosen again thegeneticalgorithm with
multiple runs and “bitstring” population of the Matlab optimization toolboxGenetic Algo-
rithm and Direct Search.

Based on simulations we now compare, for the given scenarios, the proposed control
methods. For all the proposed predictive control methods weset the horizon toN = 5 bags.
We make this choice since for a larger horizon, the computation time required to obtain a
good solution of the local optimization problem increases substantially. Hence, using larger
horizons for the considered MPC optimization problems, yields a considerable larger total
computation time.

Let Jtot,approach
j denote the performance index of the baggage handling systemcorre-

sponding to scenario indexj and the considered control approach. In Figure 4.30 we plot
the total performance indexJtot,approachand the total computation time20 obtained when us-
ing the proposed control approaches — centralized, decentralized, and distributed MPC,
decentralized and distributed heuristics — versus the considered scenarios. In this figure
we plot the performance indexJtot,approachcorresponding to centralized MPC, but only for
the scenarios where the initial population of the network oftracks is small (60 DCVs). We
do this since the computation time for the case where the network is populated with 120
DCVs is larger than 106 s. Recall that the lower the performance indexJtot,approachis, the
better the performance of the baggage handling system.

Let Japproach,avg denote the average performance index obtained when using the predic-

20The simulations were performed on a 3.0 GHz P4 with 1 GB RAM.
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Figure 4.30: Comparison of the results obtained using the proposed centralized, decentral-
ized, and distributed control approaches (MPC and heuristics) for the total
closed-loop simulation. In order to visualize on the logarithmic scale results
such as Jtot,approach= 0 for some scenario, we set Jtot,approach= 10−4 for that
scenario. The scenarios over which we make this comparison have been de-
fined in Section 4.5.2.

tive control methods and the heuristic approaches. This performance index is defined over
the scenarios for which we have plotted the results of Figure4.30:

Japproach,avg =
1

|∆approach| ∑
j∈∆approach

Jtot,approach
j

with ∆approachthe set of scenarios for which we have illustrated the performance index
Jtot,approachin Figure 4.30, e.g.,∆approach= {1,2,3,7,8,9,13,14,15} for centralized MPC
and∆approach= {1,2, . . . ,18} for all the other approaches. Then in Table 4.2 we list the
average resultsJapproach,avg of Figure 4.30.

One expects that the best performance of the system is obtained when usingcentralized
predictive switch control. This would have happened if we had allowed more runs and if
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Table 4.2: Comparison of average performance of the system and total computation time
for the proposed control methods.

Control Japproach,avg total CPU time
approach (s) (s)
Centralized MPC 1.16·102 2.2 ·105

Decentralized MPC 1.10·105 3.2 ·103

Distributed MPC
downstream communication 1.13·104 5.8 ·103

Distributed MPC
communication back & forth 1.4 ·103 2.0 ·104

Decentralized heuristics 5.24·103 0.06
Distributed heuristics (τpred= 5 s) 3.01·103 131.48

we had allowed a larger computation time to calculate the solution of an MPC optimization
problem (in these simulations, in order to reduce the computational effort of the route choice
control using centralized MPC, we ran thegeneticalgorithm 4 times for each optimization
problem, while limiting the time allowed to compute a solution to 400 s). Moreover, note
that centralized control becomes intractable in practice when the number of junctions is
large due to the high computation time required.

The simulation results indicate that usingdecentralized MPClowers the computation
time. Furthermore, the results indicate thatdistributed MPCgives better performance than
decentralized MPC (in many casesJtot,approachis much lower than the rest), but at the cost
of higher computational effort. Note that when using decentralized and distributed MPC
we ran thegeneticalgorithm 4 times for each local optimization problem, while allowing a
maximum of 20 generations of population. We have chosen these options in order to have a
balance between the overall performance and the total computation time.

Finally, thedecentralizedanddistributed heuristic approachesgive typically worse re-
sults than distributed MPC with a single round of downstreamand upstream communica-
tion, but with very low computation time.

Let τhandledenote the length of the time period in which we handle all thebags. Accord-
ing to simulations 110s≤ τhandle≤ 240 s for all scenarios and all proposed methods. Hence,
according to the present implementation, only the decentralized and distributed heuristic ap-
proaches would give real-time results. However, note that one can easily gain several orders
of magnitude in the total computation time of the proposed control approaches by using
parallel computation when solving an optimization problem, better implementation, object
coded programming languages instead of Matlab, or dedicated optimization algorithms.

4.5.3 Switch control using mixed integer linear programming

In this subsection we compare the results obtained when using the nonlinear and MILP
formulation for the optimization problem of centralized MPC. These formulations have
been presented in Section 4.4.5.
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Figure 4.31: Case study for a DCV-based baggage handling system of Section 4.5.3.

Set-up

We are interested in analyzing the trade-off between performance and computation time
when using the two formulations of the MPC optimization problem. To this aim we consider
as benchmark case study the network depicted in Figure 4.31.This network consists of four
loading stations, five junctions, and three unloading stations close together connected via
single-direction track segments, where the free-flow travel time is indicated for each link.

We consider the second case where the network hasmore unloading stations close to-
gether. Hence, we will compute the control for the switch-in and theswitch-out of each
junction in the network except the control of the switch-outof the junction directly con-
nected to the unloading stations. The low-level controllerfor this special switch-out is
computed according toPattern2. So, during the time interval[tk,tk+1) with tk = t0 +kτs with
k∈ N, all unloading stations are served.

Then the evolution of each queue at the end of a link in the network,qs,l for s= 1,2,3,4
andl = 0,1 is given by:

qs,l (k+ 1) = max
(

0, fs,l (k)
)

with fs,l (k) defined as follows:

f1,0(k) =q1,0(k)+
(

D1(k− 2)−
(

1− usw_in
1 (k)

)

Omax
)

τs

f1,1(k) =q1,1(k)+
(

(

1− usw_out
2 (k− 4)

)

O2(k− 4)− usw_in
1 (k)Omax

)

τs

f2,0(k) =q2,0(k)+
(

D2(k− 2)−
(

1− usw_in
2 (k)

)

Omax
)

τs

f2,1(k) =q2,1(k)+
(

D3(k− 2)− usw_in
2 (k)Omax)τs

f3,0(k) =q3,0(k)+
(

usw_out
2 (k− 3)O2(k− 3)−

(

1− usw_in
3 (k)

)

Omax
)

τs

f3,1(k) =q3,1(k)+
(

D4(k− 2)− usw_in
3 (k)Omax)τs
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Figure 4.32: Demand profile.

f4,0(k) =q4,0(k)+
(

O1(k− 4)−
(

1− usw_in
4 (k)

)

Omax
)

τs

f4,1(k) =q4,1(k)+
(

O3(k− 3)− usw_in
4 (k)Omax)τs

whereOs(k) with s∈ {1,2,3} is given by (4.14).
The evolution of the partial queues corresponding to unloading station Uυ for m= 1,2,3

at the end of the link leading toSexit is given by:

qexit
υ (k+ 1) = qexit

υ (k)+
(

ρυOe(k)−Uυ(k+
τυ

τs
)
)

τs

with Uυ(k) given by (4.19), and

Oe(k) = min

(

Omax,
(q4,0(k− 1)

τs
+ O1(k− 5)

)

(

1− usw_in
4 (k− 1)

)

+

(q4,1(k− 1)

τs
+ O3(k− 4)

)

usw_in
4 (k− 1)

)

.

Scenarios

We assume that the velocity of each DCV varies between 0 m/s and 20 m/s. In order to
faster assess the efficiency of our control method we assume that we do not start with an
empty network but with a network already populated by DCVs transporting bags.

To compare the results we consider six scenarios where 800 bags have to be handled for
different initial states of the system, where DCVs are waiting to cross different junctions
in queues of different length, and whereρυ = 25 % form= 1,2, andρ3 = 50 %. For this
particular case study we considerwυ = 1 for m = 1,2,3. We simulate a period of 600
s, for a network where the capacity of each junction is 5 DCVs/s (this is a realistic value
for the junction capacity when no switching occurs). The simulation time stepτs is set to
20 s. We consider the bag arrival pattern for each loading station according to the three
different classes of demand profiles sketched in Figure 4.32, whereT load= 100 s is the total
loading time. The demand of each loading station equals 0 fort ≥ T load. These scenarios
will involve very tight transportation since the time window for each unloading station is
[t0 + 150s,t0 + 350s) — the last bag that enters the system can only arrive in time atthe
corresponding end point if the DCV travels the shortest route with maximum speed.
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Figure 4.33: Comparison of the results obtained using the proposed MPC formulations for
the total closed-loop simulation. At each MPC step we consider three possible
approaches: (1) we solve the MILP optimization only, (2) we use the MILP
solution as good initial guess to solve the original MPC optimization problem,
and (3) we solve the MPC original optimization starting fromrandom initial
points. The nonlinear MPC optimization problem is solved using a genetic
algorithm (GA) with “bitstring” population.

Results

Let us now compare the results obtained when using the proposed predictive control method
with different formulations of the optimization problem.

In order to solve the MILP optimization problem (4.29) we have used the CPLEX solver
implemented through thecplex interface function of the MatlabTomlabtoolbox, while to
solve the original mixed integer nonlinear MPC optimization problem (4.28) we have cho-
sen again thegeneticalgorithm with multiple runs and “bitstring” population ofthe Matlab
optimization toolboxGenetic Algorithm and Direct Search. Note that typically thega Mat-
lab function starts the search from random initial points which have been set by the algo-
rithm. However, this function has also the option to allow the user to set the initial search
point. Then we can apply directly the results of the MILP optimization to the original non-
linear route choice problem, we can solve the nonlinear optimization problem starting from
random initial points only, or we can use the solution of the MILP optimization problem
as a good initial guess when solving the nonlinear optimization. As prediction horizon we
have consideredN = 8 for all MPC optimization problems.

Based on simulations we now compare, for the given scenarios, the results obtained for
the proposed formulations of the optimization problem. Theresults of the simulations are
reported in Figure 4.33. Note that the MPC performance indexpenalizes the absolute dif-
ference between the actual outflow profile and the desired outflow profile at each unloading
station, and the queues in the network (as described in (4.27)), while the total performance
of the system used to compare the proposed formulations penalizes both, the overdue time
and the additional storage time at the end point (as described in (4.4)).

These results confirm that computing the route choice using the original nonlinear for-
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mulation for the MPC optimization problem gives better performance than using only the
MILP formulation. However, this happens at the cost of higher computational effort. Fi-
nally, we also compute the DCVs route choice using as initialfeasible solution for the
original nonlinear MPC problem the control sequence determined by solving the MILP op-
timization problem. As illustrated in Figure 4.33, the results indicate that this last method
offers a good trade-off between performance and computational effort.

4.5.4 Route choice control using a hierarchical control framework

In this subsection we want to assess the efficiency of the hierarchical route choice control
framework presented in Section 4.4.8. Recall that in Section 4.5.2 we have compared the
results obtained when using a 1-layer route choice control framework. Therefore, in order
to compare the efficiency of the proposed control frameworks, we will now select three
representative methods of the 1-layer route choice controlframework, namely:

1. centralized MPC presented in Section 4.4.2,

2. distributed MPC with a single round of downstream and upstream communication
presented in Section 4.4.4,

3. distributed heuristics presented in Section 4.4.7.

These methods have been chosen since they are the first three methods (in Table 4.2) that
give good performance for a DCV-based baggage handling system when the computation
time is not an issue.

Set-up

We consider the network of tracks depicted in Figure 4.34 with four loading stations, two un-
loading stations, nine junctions, and twenty unidirectional links, where the free-flow travel
time is provided for each link. Note that the proposed hierarchical control allows the choice
of routes containing loops.

We again assumevmax = 20 m/s andτswitch = 2 s. As for the previous case studies, we
assume that we do not start with an empty network but with a network already populated by
DCVs transporting bags, as presented next.

Scenarios

In order to assess the performance of the proposed hierarchical control framework we define
six scenarios where 2400 bags will be loaded into the baggagehandling system (600 bags
at each loading station). We consider three classes of demand profiles called “dp1”, “ dp2”,
and “dp3” hereafter. According to these classes, the bags arrive at each loading station in the
time interval[t0,t0 + 180s), the arrival times at a loading station being allocated randomly,
using a uniform distribution according to the following cases:

dp1: the bags arrive at the loading station with a constant rate of3.33 bags/s;

dp2: 50 bags arrive at a loading station during each of the time intervals[t0,t0 + 60s) and
[t0 + 120s,t0 + 180s), and the rest of 500 the bags arrives during[t0 + 60s,t0 + 120s);
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Figure 4.34: Case study for a DCV-based baggage handling system of Section 4.5.4.

dp3: 100 bags arrive during the time interval[t0,t0 +120s) and the rest of the bags, i.e., 500
bags, arrives aftert = t0 + 120s, i.e., during[t0 + 120s,t0 + 180s).

We also consider two different initial states of the system where 60, and respectively 120
DCVs are already transporting bags in the network, running from loading stations L1, . . . ,L4

to junctions S1 and S3, from S1 to S2, and from S3 to S2. Their positions att0 are assigned
such that between each 2 consecutive DCVs we have a minimum safe distance of 2 m, and
between the DCV closest to the next to be passed junction and the junction we again have
2 m. The static priorities of these DCVs are assigned randomly in the set{1,2} using a
uniform distribution.

We assume that we have only two flights assigned to the unloading stations U1 and U2

(one flight assigned to one unloading station). Also, assuming that we start the simulation
at time instantt0 = 0 s, we consider that the time windows within which we need thebags
at their end points are[t0 + 800s,t0 + 1400s) for U1 and[t0 + 1000s,t0 + 1600s) for U2.

We simulate a period of 40 minutes. The control time step for the network controller
is set to 60 s, while the control time step for the switch controller is set to 2 s. Note that in
these scenarios we also consider the occurrence of queues atorigin.

Results

In this section we compare the results obtained when using the proposed hierarchical control
framework and the approaches of a 1-layer control frameworkthat have proved to give good
performance in Section 4.5.2: centralized MPC, distributed MPC with a single round of
downstream and upstream communication, and distributed heuristics.

In order to solve the MILP optimization of the network controller we have used the
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CPLEX solver of the Matlab optimization toolboxTomlab, while to solve the nonlinear
optimization problem of the switch controller we have chosen thegeneticalgorithm imple-
mented in Matlab via the functionga with multiple runs (for these simulations we run the
genetic algorithm three times for each optimization). Notethat in order to keep the total
computation time low, for both approaches — hierarchical MPC and centralized MPC —
we shift the horizon withN, respectivelyNsc,max samples at each MPC step. Also, due to the
same reason (computational requirements), we allow a limited amount of time for solving an
optimization problem corresponding to the centralized route choice control and distributed
MPC with a single round of downstream and upstream communication (the computation
time allowed for each optimization is of 1 hour and 80 seconds, respectively).

As prediction horizon we considerN = 6 for the network controller andNsc,max = 15
for the switch controller of the hierarchical control,N = 40 for the centralized MPC switch
control, andN = 5 for the distributed MPC. We have chosen these values since simulations
indicate that they give a good trade-off between the total computation time and performance.

Based on simulations we now compare, for the given scenarios, the results obtained for
the proposed control frameworks. The results of the simulations are reported in Figure 4.35.
For this comparison we consider the total performance of thesystem defined in Section 4.3
that penalizes both the overdue time and the additional storage time for each of the bags to
be handled:

Jtot(t) =
Nbags

∑
i=1

Jpen
i (tunload

i )

with Nbagsthe number of bags to be handled.
Recall that the lower the performance indexJtot is, the better the performance of the

baggage handling system is. The simulation results indicate that using the hierarchical con-
trol framework typically yields a better system performance than using centralized MPC
or distributed MPC with a single round of downstream and upstream communication, the
solutions of which were returned by the prematurely terminated global and multi-start local
optimization method. However, even with the computationalrestrictions mentioned above
(we allow a limited amount of time for solving an optimization problem), the total computa-
tion time21 of centralized MPC and of distributed MPC with a single roundof downstream
and upstream communication (over 17 hours) is much larger than the one of the hierarchi-
cal control (an average of 100 s per junction, plus 5 s for solving the MILP optimization
problems).

Moreover, these results indicate that the performance index Jtot obtained when using the
distributed heuristics (forτpred= 5 s) is close to the one obtained when using the hierarchical
control framework, and sometimes even lower (e.g., for scenario 2 and scenario 6), but the
total computation time required to determine the solution is also much larger when using
the distributed heuristics.

Hence, the hierarchical control with MILP flow solutions offers a balanced trade-off
between the performance of the system and the total computation time required to determine
the route choice solution.

21The simulations were performed on a 3.0 GHz P4 with 4 GB RAM.
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Figure 4.35: Comparison of the results obtained for the total closed-loop simulation when
using (1) the hierarchical control framework, (2) the centralized route choice
control approach presented in Section 4.4.2, (3) the distributed MPC with a
single round of downstream and upstream communication (distributed MPC2)
presented in Section 4.4.4, and (4) the distributed heuristic approach presented
in Section 4.4.7.

4.6 Summary

In this chapter we have considered the baggage handling process in large airports using
destination coded vehicles (DCVs) running at high speeds ona network of tracks. Then,
for a DCV-based baggage handling system, a fast event-driven model of the continuous-
time bag handling process has been determined. Next, we haveelaborated the performance
criterion for this system. This performance criterion is then used to compare the control
methods that we have proposed to use in order to optimally route the DCVs through the
baggage handling system. In particular, we have developed and compared optimal control
and centralized, decentralized, and distributed predictive methods for route choice control.

In practice, optimal control (OC) and centralized model predictive control (MPC) are not
suitable for determining the optimal DCV route choice control due to the high computation
time required to solve the route choice optimization problem. However, usingdecentralized
MPC lowers the computation time. Furthermore, the results indicate thatdistributed MPC
may give better performance than decentralized MPC, but at the cost of higher computa-
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tional effort.
Since the MPC methods based on the event-driven route choicemodel involve solving a

nonlinear, nonconvex, mixed integer optimization problemthat is very expensive in terms of
computational effort, we have also proposed an alternativeapproach for reducing the com-
plexity of the computations by simplifying the nonlinear optimization problem and writing
it as a mixed integer linear programming (MILP) optimization problem. The advantage is
that for MILP problems solvers are available that allow us toefficiently compute the global
optimal solution. The solution of the MILP problem can then be used as a good initial start-
ing point for the original nonlinear optimization problem.Finally, in order to reduce the
computational requirements, we have also proposed two heuristic methods and a hierarchi-
cal control framework. Simulations confirm that the decentralized and distributed heuristic
approaches give typically very fast results, but the performance of the system when using
the heuristic approaches is worse than when using the predictive methods. Finally, the re-
sults show that the hierarchical control with MILP flow solutions offers a balanced trade-off
between the performance of the system and the total computation time required to deter-
mine the route choice solution when a limited amount of time is allowed for solving the
optimization problems.

In future work we will also develop efficient control methodsto solve the line balancing
problem, and accordingly compute the optimal route choice for all (empty and loaded)
DCVs in the network. We will also consider the early baggage storage area and analyze
whether presorting the bags going out of the early baggage storage area can improve the
performance of the system. Finally, we will apply these methods to more complex case
studies.





Chapter 5

Conclusions and future research
directions

In this chapter we will first present the summary and the conclusions of this thesis. Next, we
will summarize the main contributions of the thesis. Finally, we will discuss the remaining
open problems and we will give some recommendations for future research.

5.1 Summary and conclusions

In this thesis we have considered two specific applications of transportation systems for ma-
terial handling, namely mail sorting machines in mail sorting centers and baggage handling
systems in airports. Accordingly, this section presents the summary and the conclusions
regarding each of the considered applications.

Postal automation We have considered mail sorting machines for large mail items such
as newspapers, catalogs, and large letters, which have beenshortly called “flats”. These
sorting systems are then called “flat sorting machines”.

Regarding this application, we have first given a brief description of how flat sorting
machines currently work. Afterwards, we have proposed a newset-up by making minor
design changes, i.e., adding extra feeders and moving the bottom bin system. For the new
set-up we have determined an event-driven model of the continuous-time process that has
later on been used for model-based control. In order to ensure the optimal speed of the bin
movements we have implemented and compared advanced control methods. In particular
we have considered the following control approaches:

• different variants of optimal control with gradually decreasing complexity, namely:

1. optimal control with a piecewise constant speed on time intervals of variable
length,

2. optimal control with a piecewise constant speed on time intervals of constant
length,

3. optimal control with a constant speed,

123
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• model-based predictive control (MPC) with a piecewise constant speed on time inter-
vals of constant length.

According to the obtained results we have concluded that MPCis the most appropriate
control method to determine the velocity of the bottom system for the proposed flat sorting
machine. To support this conclusion we have noted that MPC gives a throughput within 1%
deviation of the throughput achieved when applying the mostcomplex variant of optimal
control that we have considered (optimal control with a piecewise constant speed on time
intervals of variable length). Moreover, we have noted thatMPC can compute real-time
control actions, while optimal control requires an extremely large computation time.

We have also analyzed how the structural changes — the increased number of feeders,
the variable position of inserting devices — and parameter changes — the increased max-
imal bound for the velocity of the top system of the flat sorting machine — influence the
throughput of the automated flat sorting machine. Based on simulation results we draw the
following conclusion: increasing the speed of the top system only, does not have as imme-
diate consequence an increase in the throughput. Hence, determining the optimal bottom
velocity is still needed in order to maximize the efficiency of the flat sorting machine.

Baggage handling We have considered the part of the baggage handling system which
transports the bags in an automated way using destination coded vehicles (shortly called
DCVs). These DCVs run at high speed on a network of tracks, transporting one bag at the
time.

We have first given a brief description of how DCV-based baggage handling systems
currently work. Next, we have determined a fast event-driven model of the continuous-time
baggage handling process that has been later on used for model-based control. In order
to maximize the efficiency of this system we have developed and implemented advanced
control methods that could be used to optimally route the DCVs through the system. In par-
ticular, we have developed and compared efficient centralized, decentralized, and distributed
predictive methods, and efficient decentralized and distributed heuristic approaches.

Based on the obtained simulation results we draw the following conclusions:

1. Optimal controlbecomes intractable in practice even for a network with a very small
number of junctions due to the high computation time required to determine the opti-
mal routing.

2. Centralized MPCstill requires high computational effort to determine the control of
DCV routes . The simulation results indicate that for a network with nine junctions
centralized MPC requires more than one hour to compute the optimal routing for an
horizon of 40 bags, while in practice, at rush hours, a large number of bags (over 2000
bags/hour) have to be handled within an hour.

3. Decentralized MPClowers the computation time due to the parallel computationof
the local control actions. However, this comes at the cost ofreduction in the total
performance.

4. Distributed MPCtypically gives better performance than decentralized MPC, but at
the cost of higher computational effort than decentralizedMPC. This happens due to
the required communication and coordination in computing the control actions.
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5. Decentralizedanddistributed heuristic approachesdetermine the DCV routing while
requiring much lower computational effort. However, theseapproaches give typically
worse results than the predictive methods.

Since model-based predictive control methods involve solving a nonlinear, nonconvex,
mixed integer optimization problem that is very expensive in terms of computational effort,
we have also proposed an alternative approach for reducing the computational complex-
ity. This alternative approach consists of simplifying thenonlinear optimization problem
and then writing it as a mixed integer linear programming (MILP) optimization problem.
The advantage is that for MILP problems solvers are available that allow us to efficiently
compute the global optimal solution. This approach involves again a trade-off between the
efficiency of the system and the total computation time sinceone can directly apply to the
real system the solution obtained using the MILP formulation of the optimization problem,
or use it as a feasible initial guess for the original (nonlinear) optimization problem.

Finally, we have also proposed a hierarchical control framework for computing the op-
timal routes. In this control framework switch controllersprovide position instructions for
each switch in the network. A collection of switch controllers is then supervised by a so-
called network controller that mainly takes care of the route choice instructions for DCVs.
Based on the obtained results we conclude that computing theoptimal routes using the hier-
archical control framework outperforms the centralized route choice control when a limited
amount of time is allowed for solving the optimization problems of centralized route choice
control.

5.2 Main contributions

In this section we present the main contributions of this research regarding the two appli-
cations that we have considered. Note that the control approaches that we have developed
for these systems can also be applied to other transportation systems, e.g., distribution sys-
tems, automated guided vehicles in warehouses, port container terminals, or manufacturing
systems.

The main contributions of this research with respect to postal automation are the follow-
ing:

• We have proposed an event-driven model for the continuous-time flat sorting system
which has been designed such that the destination bins can move bidirectionally with
variable speed.

• We have developed and compared efficient model-based control methods to compute
the speed profile of the destination bins that maximizes the throughput of the flat
sorting machine. In particular, we have proposed variants of optimal control with
gradually decreasing complexity and model predictive control.

The main contributions of this research with respect to baggage handling systems are
the following:

• We have proposed an event-driven model for the continuous-time DCV-based bag-
gage handling system.
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• We have developed and compared efficient model-based control methods to compute
the optimal routing of DCVs transporting bags from a given origin to a given desti-
nation such that the performance of a DCV-based baggage handling system is max-
imized. In particular we have considered centralized, decentralized, and distributed
model predictive control, and heuristic approaches. We have also proposed a hierar-
chical route choice control framework for the DCV-based baggage handling system.

5.3 Open problems and recommendations for future re-
search

In this section we briefly present some of the open problems that still have to be tackled
with respect to the applications considered in this thesis.Additionally, we give some rec-
ommendations for future research.

Postal automation

Regarding this application one could further develop control methods to compute the speed
profile of the bottom part for a flat sorting system. Next, we will develop efficient control
methods for higher-level control problems — such as optimally assigning identification
codes to the destination bins, sorting the flats in end-delivery sequence — that are currently
not optimized. Finally, we will present other design changes for a flat sorting system, and
other means to increase the efficiency of the postal services.

New control methods to set the speed of the bottom systemIn this thesis we have com-
pared several model-based control methods that could be used to determine the optimal
velocity of the bottom system of an augmented design for a flatsorting machine. In future
work also other control methods will be considered such as fast rule-based approaches, neu-
ral networks, see, e.g., [36], and fuzzy-based approaches,see, e.g., [63]. These approaches
can use the receding horizon principle. Then, at each time step, the following steps are
involved:

• automatic feature extraction: Recall that before entering the sorting phase, we
know, for a buffer of flats, the identification codes which were also printed on each
item in form of a bar code. Then, given the buffer of identification codes, we will
compute one or more feature measures for the stream of identification codes (such as
entropy).
• automatic speed calculation:In order to determine the speed of the destination bins

we will use neural networks and fuzzy-based approaches, or rule-based approaches.
• use of speed:Then we will apply the computed speed to the system for a giventime

period.

Also note that one can use the solution of these approaches asinitial feasible solution when
solving the MPC optimization problem described in Section 3.5.2.

In future work we will also determine an approximation for the minimum number of
scenarios that we have to use when comparing control methodssuch that the relative error
is smaller than a given boundǫ (0 < ǫ < 1) with a given probabilityδ (0 < δ < 1), see [51].
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Control methods for higher-level control problems A higher-level control problem for
a flat sorting system is to assign destinations to the bins that collect the sorted mail so that
the overall performance is optimized when considering a given set of scenarios. Currently,
this is done by assigning destinations to the bins before theprocess starts (several destina-
tion addresses and postal codes can be assigned to one bin if the corresponding addresses are
close on the route that a post man takes for the mail delivery). However, one can increase the
performance of the flat sorting machine by optimally assigning identification codes to the
destination bins. This can be done beforehand, by solving off-line a mixed integer optimiza-
tion problem over a given set of scenarios. This optimization problem will have multiple
objectives (to determine the optimal speed of the bins for a given destination assignment,
and to determine the optimal destination assignment). Therefore, one can solve, in an in-
ner loop, the optimization problem that has the goal to determine the optimal speed using
optimal control or model predictive control. Then, this speed will be used when solving, in
an outer loop, the optimization problem that will determinethe optimal destination assign-
ment. Both optimizations will be solved with respect to the model of the flat sorting system
and so that the operational constraints are satisfied.

Another open problem for a flat sorting system is to ensure thecorrect order of the mail
not only with respect to postal codes and street names, but also with respect to the street
and house number. Then this would save time when actually delivering the mail items. The
sequence of mail sorted with respect to the street and house number is called “end-delivery
sequence” of the sorted mail. Currently, to obtain this order, the mail is sorted several
times. Therefore, designing a sorting machine that would ensure the fast mail sorting in
end-delivery sequence is a big challenge. To this aim, one can develop intelligent control
methods to dynamically allocate destinations to the destination bins and to the intermediary
pockets collecting the mail, so that the number of sorting rounds necessary to ensure the
end-delivery sequence of the sorted mail is minimized.

In the future all the big companies that use the postal service to deliver their catalogs
or advertisement brochures should also print the address and postal code according to the
end-delivery sequence that mail sorting centers use. This could additionally decrease the
time needed for sorting the flats in end-delivery sequence.

Changes and optimizations In order to further increase the efficiency the flat sorting
system one can also make other design changes such as:

• Augment the flat sorting system with more intermediate levels of transport pockets
between the top part of the system and the bottom part. Then wewill not have only
transport boxes and destination bins, but also several layers of intermediate trans-
portation. Then for this new set-up one can develop efficientcontrol methods to
dynamically allocate destinations for each intermediate pocket so that the items are
sorted in end-delivery sequence as fast as possible.

• Augment the flat sorting system with smaller sorting systemsat each destination bin.
Then these smaller secondary systems would sort the items inend-delivery sequence.

• Augment the system with a weight sensor. Then, knowing the weight of each flat, we
can determine more accurately the time instant for correct dropping and stacking. As
a consequence, we can increase the maximum relative velocity between the top and
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the bottom system, and this, combined with determining the optimal speed profile for
the bottom system, will increase the throughput of a flat sorting machine.

Furthermore, the scope of the research can be broadened. Then, in order to increase the
efficiency of the postal services, while minimizing the costs, one can:

• Remove more human work from the postal services by using, e.g., automated guided
vehicles or conveyor systems to transport the bins with sorted mail to the postal vehi-
cles.
• Optimize the number and the position of mail sorting centersand post offices.
• Optimize also the routes and the number of postal vehicles and postal trucks needed

when delivering the mail, or when transporting mail from onemail sorting center to
another.

Baggage handling

Regarding this applications we will further improve the control methods already developed
in this thesis. Next, we will continue developing other efficient control methods for the
DCV route choice problem. We will also develop advanced control methods for other con-
trol problems — such as presorting the bags that leave the early baggage storage area, line
balancing, and empty cart management— which are currently not optimized. Finally, we
will present other means to increase the efficiency of a DCV-based baggage handling sys-
tem.

Improving the developed control methods Regarding the DCV-based baggage handling
systems, one can further develop and analyze control methods that could be used to effi-
ciently route the DCVs on the network of tracks. Therefore, in future work we will also
consider several extensions of the current approaches:

• We will improve the heuristic approaches (e.g., we will takeinto account more fea-
tures (such as density of DCVs on the links of the network) when computing the
control action for the switch out of a junction, and also optimize the number of links
that one will look farther when estimating the time that a bagwill spend in the system.
• We will combine the model-based predictive control with heuristics (e.g., one can

use the solution of the heuristic approach as good initial guess for the optimization
algorithm).
• Regarding the distributed control we will:

– use multiple up and down rounds of optimizations,
– extend the range of communication exchange to more than one level,
– extend the local control area to more than one node.

New route choice control methods We can develop new efficient control approaches to
determine the DCV route choice. These approaches involve the use of neural networks and
fuzzy control.

Furthermore, one can introduce the concept ofplatooning, [92]. In this framework the
groups of DCVs will travel closely spaced together with short intervehicle distances and
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larger distances between platoons. So, we can develop model-based methods for optimally
creating, routing, and splitting platoons of DCVs. The biggest advantage of routing pla-
toons of DCVs instead of individual DCVs will be a much lower computation time than the
one obtained when using the distributed approaches developed in this thesis. This happens
because we will then compute routes for platoons instead of computing routes for individual
DCVs.

Finally, we will compare the efficiency of these methods withthe performance of the
control methods already developed in this thesis.

New control problems Note that state-of-the-art baggage handling systems also have an
early baggage storage area where the bags that have been checked-in too early can be ad-
ditionally stored. In this thesis we have not considered theearly baggage storage area, but
in order to emulate its presence, one or more loops were included in which the bags that
entered the network of tracks too early were kept. In busy airports, the order in which the
bags leave the early baggage storage area also has high importance. Therefore, in future
work we will considerpresortingthe bags that leave the early baggage storage area so that
the overall performance of the DCV-based baggage handling systems is maximized. In or-
der to optimally presort the bags leaving the early baggage storage area one can design a
local MPC controller to solve on-line an integer optimization problem. Hence, for a given
prediction period, we will compute the vector of bag identification codes that leave the early
baggage storage area during the prediction period so that the performance of the DCV-based
baggage handling system is optimized with respect to the dynamics of the system and its
safety and operational constraints.

Next, one can also use the concept ofplatooningfor the bags leaving the early baggage
storage area, and develop efficient control methods for optimally creating the platoons.

Also, recall that in this thesis we have assumed a sufficient number of DCVs to be
present in the system so that when a bag is at the loading station there is a DCV ready to
transport it. In practice, we also have to efficiently managethe empty DCVs in order to en-
sure a balanced service to all loading stations. Hence, we have to develop intelligent control
methods that will dynamically assign loading stations to each empty DCV and efficiently
route the DCV through the network so that all loading stations have sufficient DCVs in their
buffer. Note that the problem of dynamically assigning loading stations to each empty DCV
is also called the “line balancing” problem, while the problem of routing the empty DCVs
through the network is also called “empty cart management”.In order to solve these prob-
lems, one can develop control methods similar to the ones already developed in this thesis
or the ones proposed as recommendations for future research.

Changes and optimizations Finally, one can optimize the number of DCVs required for
an efficient baggage handling system, and minimize the energy consumption. Also, one can
investigate whether the layout of the network can be optimized while minimizing the costs
of the infrastructure and maximizing the overall performance of the DCV-based baggage
handling system. Moreover, one could investigate how the network of tracks should be
equipped with sensors so that events such as congestion or jams can be determined in time
and, as a consequence, how to maximize the efficiency of this system while minimizing the
number of sensors in the network (and, consequently, minimizing the costs).
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Other recommendations

For both applications (postal automation and baggage handling) one can also include more
complex dynamics of the system than those that have been considered in this thesis (e.g.,
one can include the acceleration and deceleration of the bottom system of a flat sorting
machine and of the DCVs respectively, instead of considering a piecewise constant speed
of their movements), friction, characteristics of motors,and the effects and the limitations
of distributed actuation.

The control approaches developed in this thesis can be successfully used also in control-
ling and optimizing other applications of transportation systems such as:

• Roller belts for people. These systems are often used in airports or in buildings where
people have to travel (on foot and in a short time) large walking distanced between
important points of the building. These systems are very attractive due to their con-
tinuously transport capacity during operation. An important problem of such systems
is to determine the optimal speed of a roller belt that minimizes the energy consump-
tion, while maximizing the people’s satisfaction, and while quaranteeing some level
of safety and passenger comfort. To this aim optimization problems can be solved
similar to how we proceed for determining the optimal speed for the bottom part of a
flat sorting system.
• Automated guided vehicles (AGVs). The AGVs are completely automated vehicles

that can load, unload, and transport goods in warehouses, port container terminals, or
manufacturing systems. Typically, they navigate from a point to another along fixed
pathways by following some markers. Hence, an efficient use of AGVs can increase
the performance of transportation in the production, trade, and service sector, while
minimizing the energy consumption. The systems consistingof AGVs deal with plan-
ning, routing, and scheduling problems just as the DCV-based baggage handling sys-
tem. In particular, for large-scale AGV-based systems, theefficient planning, routing,
and scheduling is difficult. Then, one can apply the control methods presented in this
thesis.
• Traffic systems. Advanced technologies from the field of control theory, communi-

cation, and information technology are currently being combined with the existing
road transportation infrastructure and equipment. Hence,soon, intelligent vehicles
will be driving on roads in an automated way. The routing and speed problems of
these intelligent vehicles can also be controlled using themethods presented in this
thesis. Similar approaches can be used for unmanned aerial vehicles (UAVs). The
UAVs could fly freely on optimal routes between an origin and adestination. Then
distributed controllers could compute the routes and speeds of UAVs flying on a 3-D
network such that a smooth, efficient, reliable, and safe automated flight control is
ensured.
• Power distribution and water management. The network infrastructure of the systems

dealing with power distribution and water management can bevery complex. The
control problem of these systems can be stated as follows: compute the optimal power
flow or water level, respectively, such that the overall performance of the system is
maximized. Then lower level controllers could try to achieve the optimal power flow
or water level. Therefore, one can use decentralized and distributed control methods
similar to the ones presented in this thesis.
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Glossary

Terminology

Below we present the specific terminology used in this thesis:

Flats: Large mail items such as large letters, journals, magazines, and newspapers.

DCV: Metal cart with a plastic tub on top, used to transport athigh speed one bag at the
time on a network of tracks. These carts are propelled by linear induction motors
similar to roller coasters.

List of abbreviations

The following abbreviations are used in this thesis:

DCV Destination coded vehicle
AGV Automated guided vehicles
OC Optimal Control
MPC Model Predictive Control
MILP Mixed Integer Linear Programming
HR Heuristics
GA Genetic Algorithm

Conventions

The following conventions are used in this thesis for notation and symbols:

• A lower case character typeset in boldface, e.g.,x, represents a column vector. The
transpose of a vector is denoted by the superscript⊤. For instance, the transpose ofx
is x⊤.

• The number of elements of a setΛ is indicated by|Λ|.

• The absolute value of a scalar variablex is denoted by|x|.
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Samenvatting

In dit proefschrift wordt gefocused op twee specifieke transportsystemen, namelijk geau-
tomatiseerde postsorteermachines en bagage-afhandelingssystemen.

Geautomatiseerde postsorteermachines

In de laatste decennia is de hoeveelheid tijdschriften, catalogi en andere in plastic verpakte
poststukken die worden verwerkt in geautomatiseerde sorteercentra aanzienlijk toegeno-
men. Om deze grote stroom aan post te kunnen verwerken zijn state-of-the-art sorteercentra
uitgerust met geautomatiseerde sorteermachines. De productiviteit van een sorteermachi-
ne is gedefinieerd als het aantal gesorteerde poststukken gedeeld door de tijd die nodig is
om deze te sorteren. In dit proefschrift beperken we ons tot poststukken in A4 formaat
enveloppen. Poststukken van deze afmetingen worden flats genoemd.

Kort samengevat werkt een geautomatiseerde flat sorteermachine als volgt: de flats wor-
den door een invoegmachine in transportbakken geplaatst; de transportbakken bewegen met
een constante snelheid en leveren poststukken af op stationaire bestemmingen volgens een
vooraf bepaalde sorteerstrategie. De doorlooptijd van hethierboven geschetste basissys-
teem kan nog worden verkort door het systeem zo te ontwerpen dat de ontvangstbakken in
twee richtingen kunnen meebewegen met de transportbakken.

Voor een continu sorteerproces wordt een event-driven model opgesteld met behulp van
simulatie. Om de optimale snelheid van het ontvangstsysteem te berekenen wordt een aantal
geavanceerde regelsystemen geïmplementeerd en vergeleken. De verschillende varianten
vanoptimal controldie worden vergeleken zijn, in volgorde van afnemende complexiteit:
optimal control voor constante snelheden over tijdsintervallen met variabele lengte, optimal
control met een constante snelheid over tijdsintervallen met constante lengte en optimal
control met een constante snelheid. Vervolgens worden dezemethoden vergeleken met een
regelsysteem gebaseerd opmodel predictive control(MPC) voor een constante snelheid
over tijdsintervallen van gelijke lengte. De voorgesteldemethoden worden vergeleken in
verschillende scenario’s.

Vervolgens wordt geanalyseerd hoe structurele veranderingen zoals een toename in het
aantal feeders, een variabele positie van het aantal invoersystemen en parametrische veran-
deringen zoals een verhoogde maximumsnelheid van het bovensysteem van de sorteerma-
chine de doorlooptijd van de sorteermachine beïnvloeden.
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Bagage-afhandelingssystemen

De continue vraag naar kostenbesparing in de luchttransportsector en de toename van goed-
kope vluchten vereist een effectievere werking van luchthavens. Deze doelstelling kan mede
bereikt worden door het intelligenter afhandelen van de bagage door middel van automa-
tisering en het gebruik van geïntegreerde sensoren, actuatoren en intelligente regeleenhe-
den. Moderne bagage-afhandelingssystemen op grote luchthavens transporteren de bagage
door middel van bestemmingsgecodeerde transportmiddelen(DCV’s), dit zijn onbeman-
de eenheden die met grote snelheden bagage via een netwerk van rails vervoeren. Zo’n
bagage-afhandelingssysteem bestaat uit laadplekken, losplekken, een eenrichtingsnetwerk
van transportsmiddelen met verschillende (lokale) lussenvoor het laden, lossen en de opslag
van DCV’s, en de vroegtijdige bagage-opslag waar de bagage die vroegtijdig gearriveerd is
enkele uren kan worden opgeslagen. Dit resulteert in een complexe infrastructuur met vele
interacties tussen de verschillende componenten en plaatsen waar regelbeslissingen moeten
worden genomen, waardoor een adaptieve, on-line management en regelstructuur vereist is.

Typische zaken in een geautomatiseerd bagage-afhandelingssysteem zijn de coördina-
tie van de “processing units”, tijdsplanning, planning vanalle middelen, routekeuze, het
aansturen van het transport tussen verschillende vervoersmiddelen (bijvoorbeeld DCV’s en
lopende band) en het voorkomen van deadlocks en het vollopenvan buffers. Tegelijkertijd
moet er worden gestreefd naar een optimale doorstroom- en verwerkingstijd zodanig dat an-
dere eisen en condities gerespecteerd worden (bijvoorbeeld het niet beschadigen van bagage
en de bagage af te leveren binnen de gegeven tijd). Het bedienen van een DCV’s-gebaseerd
bagage-afhandelingssysteem vraagt daarom om het oplossenvan eenvoudige bedienings-
problemen bijvoorbeeld de coördinatie en synchronisatie van het laden en lossen van de
bagage op een DCV, de snelheidscontrole van elke DCV alswel het oplossen van hogere
orde problemen bijvoorbeeld de route van alle DCV’s door hetnetwerk. In deze studie leg-
gen we de nadruk op de hogere orde problemen en veronderstellen we dat de lagere orde
regelsystemen aanwezig zijn om hun problemen effectief oplossen. Met name concentreren
we ons op het vraagstuk van het effectief transporteren van de DCV’s door het netwerk. De
vroegtijdig bagage-opslag is nog niet meegenomen, echter de aanwezigheid van zo’n opslag
is wel gesimuleerd door het introduceren van enkele lussen waarin de vroegtijdig aan het
netwerk aangeboden bagage opgeslagen kan worden.

Het op DCV gebaseerde bagage-afhandelingssysteem werkt als volgt: voor een gege-
ven dynamische vraag naar bagage en lege DCV’s voor elk oplaadpunt, samen met een
eenrichtingsnetwerk van rails, wordt de route voor elk DCV zodanig berekend onder de van
toepassing zijnde veiligheids-en operationele condities, dat elk bagagestuk binnen een voor-
af bepaalde tijd op het eindpunt arriveert. Op dit moment hebben de netwerken een simpele
structuur, de DCV’s worden door het netwerk vervoerd door middel van route schema’s
gebaseerd op “geprefereerde” routes. De schema’s kunnen gewijzigd worden indien een
vooraf gedefinieerde gebeurtenis optreedt. Echter, de hoeveelheid bagage verschilt van mo-
ment tot moment afhankelijk van externe factoren bijvoorbeeld het jaargetijde, tijdstip van
de dag, het vliegtuigtype aan de gate en het aantal passagiers op de vlucht. In dit onderzoek
wordt niet uitgegaan van vooraf gespecificeerde routes maarontwikkelen en vergelijken we
efficiënte regelmethodes die de optimale route tijdens veranderende omstandigheden recht-
streeks bepalen. We bestuderen met name devoorspellendeen heuristischemethodes die
geïmplementeerd zijn in eengecentraliseerde, gedecentraliseerdeengedistributeerdeme-
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thode.
Men spreekt van eengecentraliseerdeaanpak als er één oplossing wordt bepaald voor

het hele systeem, bij eengedecentraliseerdeaanpak worden de oplossingen lokaal bepaald
zonder onderlinge communicatie en coördinatie. De aanpak is gedistribueerdindien de be-
slissingen lokaal worden genomen maar er ook sprake is van communicatie en coördinatie
tussen aangrenzende regelaars. Verder wordt de suggestie gedaan om de route van elke
DCV te bepalen aan de hand van eenhierarchischeregelstructuur bestaande uit twee lagen
bestaande uit lokale schakelaars op het lagere niveau en eensurveillerende regelaar op een
hoger niveau. In dit raamwerk voorzien de schakelregelaarspositie-instructies aan de scha-
kelaars in het netwerk. De verzameling van schakelregelaars staat onder toezicht van een
netwerkregelaar die als hoofdtaak de verschillende schakelregelaars van stroom instructies
voorziet.

Het bepalen van een optimale route resulteert in een niet-linear, niet-convex, “mixed-
integer” optimalisatie probleem. De rekentijd om deze vraagstukken op te lossen is dermate
hoog dat het onoplosbaar is, “intractable”. Derhalve presenteren we een alternatieve me-
thode om de complexiteit van het probleem te reduceren door het niet-lineare probleem als
een lineair programmerings probleem met reële en integer variabelen (mixed integer linear
programming— MILP) te definiëren. Het voordeel van deze MILP-problemen is dat de
globale, optimale oplossing gevonden kan worden door efficiënte software algorithmen. De
oplossing van het MILP-probleem kan dan direct dienen als beginconditie voor het oor-
spronkelijke optimalisatie probleem.

De prestaties van deze aanpak worden getoetst aan de hand vaneen “benchmark case
study” waar de verschillende methodes toegepast en vergeleken worden.





Summary

In this thesis we focus on two specific transportation systems, namely postal automation
and baggage handling.

Postal automation

During the last decades the volume of magazines, catalogs, and other plastic wrapped mail
items that have to be processed by mail sorting centers has increased considerably. In order
to be able to handle the large volumes of mail, state-of-the-art mail sorting centers are
equipped with dedicated mail sorting machines. The throughput of a mail sorting machine
is defined as the number of sorted mail items divided by the time needed to sort them. In
this thesis we consider large letters of A4 size envelopes. Such mail items are called flats.

Briefly, a state-of-the-art automated flat sorting machine operates as follows: the flats are
inserted into transport boxes by feeding devices; the boxescarry the pieces with constant
speed and sort them into static destination bins according to the selected sorting scheme.
The throughput of a basic system sketched above can be augmented by designing a system
where the bottom part consisting of destination bins can move bidirectional with piecewise
constant speed.

For the continuous sorting process we determine an event-driven model using simula-
tion. In order to compute the speed of the bottom system that maximazes the throughput of
this machine, we implement and compare several advanced control methods. In particular
we first consider different variants ofoptimal controlwith gradually decreasing complex-
ity, namely: optimal control with a piecewise constant speed on time intervals of variable
length, optimal control with a piecewise constant speed on time intervals of constant length,
optimal control with a constant speed. Next we also considermodel-based predictive control
(MPC) with a piecewise constant speed on time intervals of constant length. The proposed
control methods are then compared for several scenarios.

Furthermore, we also analyze how the structural changes — the increased number of
feeders, the variable position of inserting devices — and parameter changes — the increased
maximal bound for the velocity of the top system of the flat sorting machine — influence
the throughput of the automated flat sorting system.
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Baggage handling

The continuous need for reduction of costs in the air transport industry and the rise of low-
cost carriers require a cost effective operation of the airports. To this aim major efforts are
now being invested in making the baggage handling systems atairports more intelligent by
increasing automation and by including embedded sensors, actuators, and intelligent control
units. As a result, modern baggage handling systems at largeairports transport luggage in
an automated way using destination coded vehicles (DCVs), which are unmanned carts
that transport the bags at high speeds on a network of tracks.A baggage handling system
consists of several parts: loading stations, unloading stations, a network of conveyors of
single-direction tracks with several (local) loops (for loading, unloading, and temporary
storage of DCVs), and the early baggage storing area, where the bags that enter the system
too early can be stored for longer time periods (e.g., hours). All this results in a complex
infrastructure with many interacting components and points at which control decisions have
to be taken, requiring an adaptive, on-line management and control structure.

Typical issues in automated baggage handling systems are coordination of the process-
ing units, time scheduling, scheduling of resources, routechoice, controlling the transfers
between different modes of transportation (e.g., conveyorbelts and DCVs), and prevention
of deadlocks and buffer overflows. At the same time, the control should aim at optimal
throughput and processing times subject to various operational and other constraints (e.g.,
the bags should not be damaged, bags should arrive at unloading stations within prescribed
time windows). Therefore, the operation of a DCV-based baggage handling system involves
solving both low-level control problems e.g., coordination and synchronization when load-
ing a bag onto a DCV and when unloading it to its end point, or velocity control of each
DCV and higher-level control problems e.g., routing DCVs through the network. In this
thesis, we focus on the higher-level control problems for DCV-based systems where we
assume that the low-level controllers are present and efficiently solve the low-level control
problems. In particular, we only focus on routing DCVs transporting bags through the net-
work such that the performance of the system is maximized. The early baggage storage area
is not yet considered, but in order to emulate its presence, one or more loops were included
in which the bags that entered the network of tracks too earlywere kept.

The DCV-based baggage handling operates as follows: given adynamic demand of bags
and a buffer of empty DCVs for each loading station, togetherwith the network of single-
direction tracks, the route of each DCV has to be computed subject to operational and safety
constraints such that each of the bags to be handled arrives at its given end point within a
specific time window.

Currently, the networks have a simple structure, the DCVs being routed through the sys-
tem use routing schemes based on preferred routes. These routing schemes can be adapted
to respond to the occurrence of predefined events. However, the load patterns of the sys-
tem are highly variable, depending on, e.g., the season, time of the day, type of aircraft at
each gate, or the number of passengers for each flight. Therefore, in this thesis, we do not
consider predefined preferred routes, but instead we develop and compare efficient control
methods to determine the optimal routing in case of dynamic demand. In particular, we
considerpredictiveandheuristicapproaches implemented in acentralized, decentralized,
anddistributedmanner — the control approach is said to becentralizedif the overall so-
lution is determined by a single controller, the control approach is said to bedecentralized
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if local control actions are computed by local controllers without any communication or
coordination between these controllers, the control approach is said to bedistributedif the
local control actions are computed while considering also communication and coordination
between neighboring controllers. Furthermore, in order toefficiently determine the route
choice of each DCV we also propose ahierarchicalcontrol framework that consists of a 2-
level control structure with local switch controllers at the lowest level and one higher super-
visory controller. In this control framework, switch controllers provide position instructions
for each switch in the network. The collection of switch controllers is then supervised by
a so-called network controller that mainly takes care of theflow instructions for the switch
controllers.

Computing the optimal route choice yields a nonlinear, nonconvex, mixed integer opti-
mization problem. The computational efforts required to determine the optimal route choice
are high, and therefore, solving this optimization problembecomes intractable in practice.
Consequently, we also present an alternative approach for reducing the complexity of the
computations by writing the nonlinear optimization problem as amixed integer linear pro-
gramming(MILP) problem. The advantage is that for MILP optimizationproblems solvers
are available that allow to efficiently compute the global optimal solution. The solution of
the MILP problem can then be used directly or as an initial starting point for the original
optimization problem.

To assess the performance of the proposed control approaches and control frameworks,
we consider a benchmark case study, in which the methods are compared for several sce-
narios.
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