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Abstract

The dynamics of interacting many-particle systems on quantum mechanical scale is a
broad subject of research in modern physics. The understanding of the quantum correlations,
or entanglement, between the particles in an isolated many-body quantum system may
however be challenging, as the amount of interactions may be large. To be able to describe
the system in a simpler way, mean field theory is often applied; the interactions of all
individual particles are substituted by an averaged effect.

First and second order mean field approximations are applied to the equations of motion
of the amplitudes cn = 〈ân〉 for each mode of the many-body system. In first order mean
field, under the assumption that each mode has the same magnitude of the (constant)
amplitude, the Kuramoto equation follows for the phases of the complex amplitudes [1]. To
study this first order approximation and to refine the mean field solution, the equations of
motion have been extended to second order mean field.

After that, numerical integration is used to solve the system of coupled differential equa-
tions for two modes. The solutions seem unstable, which is verified by defining quantum
fluctuations beyond mean field. These are shown not to be negligible for a two mode system.

It was discovered that the mean field equations of motion show divergent fluctuations
for a system of two modes, which opens a whole set of questions on the validity of the first
order mean field approximation and therefore the use of the Kuramoto model for quantum
many-body dynamics. The extension to the second order mean field solutions might be
promising as this does include correlations between the operators.
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1 Introduction

The world around us consists of interacting many-particle systems. The dynamics of these sys-
tems on quantum mechanical scale is a broad subject of research in modern physics. Quantum
many-body theory (for example condensed matter physics or statistical mechanics) could be
seen as the essential link between entanglement theory and quantum computing [40, 15]. The
correlations that originate from coherent interaction between a large number of constituents are
present in both quantum many-body models describing natural systems or materials as well as
the physical systems that are built in laboratories to realize quantum information processing [15].

The understanding of the quantum correlations, or entanglement, between the particles within
the system may however be challenging. Namely, in a system consisting of a large number of
particles, the amount of interactions will be large. Hilbert space grows exponentially with the
number of particles due to entanglement [23]. Therefore, the wave function which describes
the state of the total system holds a lot of information and might be very impractical to work
with. Systems with non-trivial interactions are impossible to treat fully analytically [41]. To be
able to describe the many-body system, one often approximates the interactions of all individual
particles with an averaged effect. This is known as mean field theory, and is applied often in
condensed matter physics. Another approach to describe the complex system is to use perturb-
ation theory; one takes the exact solution of a simpler system as a starting point and perturbs
this system by introducing a small disturbance [20, 41].

This thesis is based on the article ”Classical synchronization indicates persistent entanglement
in isolated quantum systems” by Dirk Witthaut et al. [1]. This article, published in Nature in
April 2017, concerns a relatively new topic in physics which lives on the boundary of two differ-
ent subjects; classical synchronization and quantum entanglement. Collective phenomena of the
classical and the quantum realms were previously seen as two distinct subjects with their own
mathematical description and physical behaviour. In this paper however, a connection was shown
between classical synchronization and entanglement in the earlier discussed quantum many-body
systems. The results showed that it is possible to describe a quantum many-body system like
the Bose-Einstein condensate with the relatively simple Kuramoto model. Both mean field and
perturbation theory were used to find and assess the Kuramoto equations as a means to express
entanglement as classical synchronization.

In this thesis, the link between the Kuramoto model for classical synchronization and quantum
entanglement is explained in detail. In order to do so, knowledge on both the Kuramoto model
and quantum field dynamics or quantum optics is needed. In the derivation of the Kuramoto
equations for the quantum many-body system, first order mean field theory is applied in Witthaut
et al. [1]. The goal of this research is to examine this approximation and to apply second order
mean field to approach the theoretical exact solution more closely. The coupled differential equa-
tions that are found to describe the system in second order mean field are solved numerically, as
they are non-linear and therefore cannot be solved analytically. The results showed that for two
modes only, the mean field approximation gives unstable solutions. To confirm this, equations
for the quantum fluctuations beyond mean field are derived using perturbation theory.

As the results for the second order mean field solutions were unstable for two modes, a natural
continuation of this research would be to expand the numerical solutions to a higher number of
modes. This way, the theoretically more accurate equations can be checked and their influence
can be tested.

4



The theoretical background needed to derive the Kuramoto model for the quantum-many body
systems will be discussed in Sections 2 and 3. In Section 3.4 the first order mean field approxima-
tion is used to derive the equations of motion for the quantum many-body system. To this point,
all results were found in earlier research. In Section 4, the newly found results will be discussed.
Section 4.1 gives the derivation of the differential equations for second order mean field. For both
first and second order mean field, the coupled differential equations are solved numerically for
two modes. These results are discussed in Section 4.2. The stability of the solutions is further
examined in Section 4.3. Finally, the concluding remarks are presented in Section 5.
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2 Classical Synchronization - the Kuramoto Model

Synchronization is a phenomenon which shows in many different forms, and is therefore studied
in many fields of science [8]. In physical and technological applications and research, it shows in
for example power, sensor and communication networks [13] as well as in coupled lasers [26] or
Josephson junctions [37]. In biology and social sciences, synchronization plays an important role
in neurology but can also be applied to opinion or voting dynamics [8].

As synchronization is such a fundamental principle, applicable in many fields and situations,
it might be difficult to express the fundamental phenomenon mathematically. In the 1970s,
Yoshiki Kuramoto proposed a model to describe the behaviour of a large set of coupled oscil-
lators which may or may not synchronize [2]. This model was mathematically simple enough to
be easily solvable, but at the same time it was very universally applicable and showed a large
variety of synchronization patterns. Therefore, it is now a celebrated model for a large range of
synchronization problems.

The Kuramoto Model is thus used to describe (classical) synchronization networks. It describes
the behaviour of a large set of N coupled phase oscillators, θi(t), which have a natural frequency
ωi. These frequencies are drawn from the (possibly unknown) frequency distribution g(ω). Intu-
itively, the situation is as follows. Each oscillator tends to move independently at its own natural
frequency, but the coupling between the oscillators forces them to synchronize with each other.
The dynamics of these coupled oscillators can be described by the following differential equation
[2, 8, 12, 27]

dθi
dt

= ωi +

N∑
j=1

Kij sin(θj − θi), i = 1, 2..., N (2.1)

In this equation, the coupling between each oscillator is described by the second term. Oscillator
i is influenced by all other N − 1 oscillators sinusoidally, with coupling parameter Kij . This
parameter is a measure for the extend to which the two oscillators interact. When the coupling
is sufficiently weak, all oscillators will run incoherently. Beyond a certain threshold, synchroniz-
ation emerges spontaneously and the oscillators will move collectively.

The assumptions that have to be made in order for this model to describe the system accurately
are as follows [2]. Firstly, the oscillators all have to be (nearly) identical. This ensures that each
oscillator influences the other in a similar manner. Furthermore, the interactions between the
oscillators have to depend sinusoidally on the phase difference between each pair. This is often
the case in physical systems, for example for a simple pendulum. In this case, the interaction is
periodic and the contribution must be zero if the phases are the same.

As the Kuramoto model constitutes a set of N coupled non-linear differential equations, it is
not trivially solvable analytically. When the oscillators are assumed to have mean field coupling,
the equations can indeed be solved analytically [2, 8]. In the next section, this assumption will
be introduced. Its analytical solutions will be presented in Sections 2.1.1, 2.1.2 and 2.1.3.
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2.1 Mean Field Coupling

Mean field coupling can be seen as a simplification of the Kuramoto model, in which the differ-
ential equations can be solved analytically under the assumption of infinitely many oscillators.
In mean field coupling, the coupling is all to all and constant. This means that each oscil-
lator will feel a contribution from all other oscillators of the same strength , given that they
have the same phase difference. This can be implemented in the Kuramoto model by choosing
the coupling parameter Kij to be a constant for all combinations of i and j. For example, let
Kij = K/N > 0. In this case, the coupling constant can be put in front of the summation in
the original differential equation (2.1). The behaviour of a large set of individual oscillators is
studied by the replacing it with a simpler model, in which the effect of all other oscillators on
one particular oscillator is approximated by a single averaged effect [2, 8].

The mean field limit of the Kuramoto model for network synchronization can be solved ana-
lytically for infinitely many oscillators, thus for N → ∞ [2, 8, 42]. After a transformation to a
different set of coordinates, the problem reduces to a system of independent differential equa-
tions. The solutions for this problem can be divided into three types; the incoherent solution,
global synchronization and solutions for partial synchronization. These solutions will be dis-
cussed separately in Sections 2.1.1, 2.1.3 and 2.1.2 respectively. The derivation of these solutions
is explained very clearly by Acebrón et al. [2] and will be discussed briefly.

Firstly, a transformation can be made to the order parameter R, defined as in equation (2.2).
This parameter will take a value in the complex plane in such a way that it describes the average
effect of the system on one oscillator.

R =
1

N

N∑
j=1

eiθj (2.2)

This parameter can be rewritten as R = reiφ. This way, r is a measure of the phase coherence,
whereas φ is the average phase of all oscillators. In Figure 1, these descriptions are visualized.
The oscillators are represented by particles moving on the unit circle in the complex plane. Their
phase θi is represented by the angle at which they are positioned. The order parameter R = reiφ

is visualized by the blue arrow. The measure of phase coherence r=|R| can thus be deduced
from the length of the arrow. The average phase φ = arg(R) is shown by the angle of the arrow.
The left picture shows scattered phases, in which case r is small. The oscillators are therefore
not synchronized. The right picture shows clumped phases, in which case r is large. If this is
the case for the equilibrium, thus for long times, the system is shown to be synchronized [28].
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Figure 1: Visualization of oscillators moving on the unit circle, represented by the red dots, and the
corresponding order parameter R, shown with the blue arrow. The left and right images show a

non-synchronized and a synchronized system respectively [28].

In this parameter transformation, the mean field approximation is visible very clearly; the influ-
ence of all oscillators on one particular oscillator is replaced by the average influence that they
generate together.

When the definitions of these order parameters are implemented in the Kuramoto equation
(2.1), it reduces to

dθi
dt

= ωi +Kr sin(φ− θi), i = 1, 2, ..., N (2.3)

In this equation, the order parameters r and φ are time-dependent and thus govern the dynam-
ical behaviour. Note that the oscillators’ equations are no longer explicitly coupled. From this
equation, it can be noticed that each oscillator is coupled to the average phase with a coupling
strength of Kr. The phase of an oscillator is thus pulled towards the mean phase φ, as might
be expected. Furthermore, the strength of the coupling is proportional to the coherence r. This
means that the behaviour includes positive feedback; the higher the coherence, the larger the
coupling strength which will once again lead to a higher coherence.

The order parameter R = reiφ can be rewritten into a continuous integral over dθ in the following
way

reiφ =

∫ π

−π
eiθ
(

1

N

N∑
j=1

δ(θ − θj)
)
dθ (2.4)

In definition (2.2), and thus in equation (2.4), the mean over all oscillators was calculated in
a discrete way with a summation. However, the oscillators may be expected to be distributed
with a probability density ρ(θ, t|ω) in the limit of infinitely many oscillators. This probability
density describes the density of these oscillators for each phase θ and time t for given frequency
ω. The frequencies can be described with a distribution as well. Therefore, this mean becomes
an average over phase and frequency in the following way

reiφ =

∫ π

−π

∫ ∞
−∞

eiθρ(θ, t|ω)g(ω)dθdω (2.5)

This equation can only be solved if the density distribution function ρ(θ, t|ω) is determined, as
the frequency distribution g(ω) is already given. To find this density distribution ρ, a continuity
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equation can be defined for the oscillator density [2, 8, 27]

∂ρ

∂t
+

∂

∂θ
[ρv] = 0 (2.6)

In this equation, v is the angular or drift velocity of the oscillators defined as (2.7), in accordance
with equation (2.3) [2].

v = ω +Kr sin(φ− θ) (2.7)

This gives the following continuity equation.

∂ρ

∂t
+

∂

∂θ

(
[ω +Kr sin(φ− θ)]ρ

)
= 0 (2.8)

The set of equations (2.5), (2.8) and the normalization condition (2.9) can be now be solved with
an initial condition [2, 8]. ∫ π

−π
ρ(θ, t|ω)dθ = 1 (2.9)

In the following sections, the solutions to this set of equations will be discussed.

2.1.1 Incoherent Solution

The first solution is the trivial solution to the set of equations (2.5), (2.8) and (2.9), namely the
uniform distribution

ρ(θ, t|ω) =
1

2π
(2.10)

along with the phase coherence r = 0. This corresponds to a uniform angular distribution on the
interval [−π, π]. In this steady-state solution, the oscillators run independently and incoherently
[2, 8].

A different way to find this solution is the following. If the coupling parameter is assumed
to go to zero, K → 0, the differential equation (2.3) reduces such that the coupling term is left
out. The solution for the phase then becomes

θi(t) = ωit+ θi(0) (2.11)

This solution matches with the intuitive effect; when the coupling becomes very weak and can be
neglected, each oscillator will rotate at its own natural angular frequency. If θ = ωt is inserted
in equation (2.5) and we let t → ∞, it follows that the double integral goes to zero by the
Riemann-Lebesgue lemma [6]. 1 This results in r → 0, which is in accordance with the fact that
the order parameter can be seen as a measure of the coherence of the population. The oscillators
do not synchronize, thus their coherence approaches zero [2].

Theoretically, this solution results in Figure 2 if we plot the measure of phase coherence r = |R|
(definition 2.2) versus the time [28]. The phase coherence will decrease to zero as all oscillators
will move at their own natural frequency.

1The Riemann-Lebesgue lemma says that the Fourier transform or Laplace transform of an L1 function vanishes
at infinity: f̂(z) :=

∫
f(x)e−iz·xdx→ 0 as |z| → ∞
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Figure 2: Theoretical plot of the magnitude of the order parameter |R| = r versus time t with weak
coupling [28]. This plot mainly serves to see the intuitive effect of a small coupling coupling parameter
to the behaviour of the order parameter in time and is based on the numerical plot with K = 0.1 and

N = 256 in [28].

2.1.2 Partial Synchronization

The second solution to the set of equations (2.5), (2.8) and (2.9) can be found under the following
assumption

∂ρ(θ, t|ω)

∂t
= 0 (2.12)

The continuity equation (2.6) then implies

∂

∂θ
[ρv] = 0 (2.13)

Thus, the product of the oscillators’ probability distribution and the angular velocity is constant
in θ. C(ω) can be introduced to describe ρv [2, 9]. The behaviour of the oscillators can now
be split up into two categories, based on this parameter C(ω). If C(ω) = 0, the oscillators will
be locked in synchronization. For a non-zero value of this variable, the oscillators will move
incoherently at their own natural frequency. These two domains will be discussed briefly, such
that the derivation is clear. For more details, see [2, 8, 9, 42].

If on the one hand ρv = C(ω) = 0, the normalization condition (2.9) forces the drift velo-
city v to be zero. Namely, the probability distribution may not be constantly zero, as this would
not satisfy the normalization condition (2.9). A zero drift velocity implies

Kr sin(φ− θ) = ω (2.14)

An oscillator moving at at its own drift velocity vi will become stably locked at an angle such that
(2.14) holds and −π2 ≤ (θ − φ) ≤ π

2 [2]. The oscillators will then be locked for some frequencies
only, depending on the coupling parameter K and the coherence r. Oscillators with frequencies
satisfying

|ω| < Kr (2.15)

can be locked and will synchronize [2, 8, 9]. This can be shown by determining the Jacobi matrix
of the system.

On the other hand, all oscillators with frequencies |ω| > Kr cannot be locked in phase with the
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synchronized oscillators. For these oscillators, (2.14) will never be satisfied, therefore C(ω) 6= 0.
The normalization condition (2.9) gives

C(ω) =
1

2π

√
ω2 − (Kr)2 (2.16)

The expression for the density of oscillators becomes [2, 9, 42]

ρ(θ, t|ω) =
C(ω)

v
=

C(ω)

|ω −Kr sin(θ − φ)|
(2.17)

This means the density is inversely proportional to the speed. This is in accordance with the
intuitive expectations; one would expect most populated places (with high density) to have a
drift which is more slowly, and in very free places (with low density) the flow can be fast.

In conclusion, partial synchronization results in the following stationary density [2]

ρ(θ, t|ω) =

{
δ
(
θ − φ− sin−1

(
ω
Kr

))
H(cos(θ)) |ω| < Kr

C(ω)
|ω−Kr sin(θ−φ)| elsewhere

(2.18)

with H(x) the Heaviside unit step function.

Now, the order parameter is evaluated by substituting the found density in equation (2.5) [2]. 2.
The final equation for the order parameter results in

r = Kr

∫ π/2

−π/2
cos2(θ)g(Kr sin(θ))dθ (2.19)

Clearly, the trivial solution is r = 0, which again corresponds with the incoherently moving os-
cillators. Furthermore, it has a branch of solutions that correspond to the partially synchronized
phase. These solutions must satisfy

1 = K

∫ π/2

−π/2
cos2(θ)g(Kr sin(θ))dθ (2.20)

This branch bifurcates continuously from r = 0 at the critical value for the coupling parameter
K = Kc [2]. If we set r = 0 in equation (2.20) the critical coupling parameter is found.

Kc =
2

πg(0)
(2.21)

Above this critical coupling parameter, synchronization will occur. This means that the oscillat-
ors which satisfy |ω| < Kr will be locked, whereas the others will move out of synchrony. The
measure of phase coherence r = |R| (definition 2.2) for the total system will be between zero and
one, and is dependent on the number of oscillators which satisfy equation (2.15) with K > Kc

of equation (2.21).

2The derivation of this integral can be found in Acebrón et al. Two assumptions have to be made in order
to find the proper result. Firstly, the frequency distribution function is even, thus g(ω) = g(−ω). Secondly, the
density function is symmetric such that ρ(θ + π| − ω) = ρ(θ|ω).
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2.1.3 Global Synchronization

In the limit of strong coupling, K → ∞, all oscillators will be synchronized to their average
phase φ. This results in total synchronization; all oscillators will move at the same frequency ω
and phase θi = φ for all i. Therefore, the phase coherence will be maximal, which results in r = 1.

Where the full and partial synchronization solutions could be found from the differential equa-
tions (2.5), (2.8) and (2.9), this is not possible for the global synchronization solution. This is
due to the fact that these equations can only be solved for finite values of K. Therefore, the
global synchronization solution is a limit of the partial synchronization, namely for large K.

In Figure 3, the theoretical plot of the measure of phase coherence r = |R| (definition 2.2)
versus time for strong coupling [28]. The phase coherence will increase to one as all oscillators
will synchronize.

Figure 3: Theoretical plot of the magnitude of the order parameter |R| = r versus time t with strong
coupling [28]. This plot mainly serves to see the intuitive effect of a large coupling coupling parameter
to the behaviour of the order parameter in time and is based on the numerical plot with K = 0.5 and

N = 256 in [28].

2.1.4 Conclusions and Stability

In conclusion, we have seen that we can solve Kuramoto’s model for an infinite number of oscil-
lators in the mean field limit. By transferring to the coordinate system of the order parameters
r (a measure of the phase coherence) and φ (the average phase), three types of solutions can be
found. The incoherent solution shows total incoherence, in the absence of any coupling between
the oscillators. Partial synchronization occurs for non-zero coupling parameters and implies that
only part of the oscillators will synchronize. Namely, those which are in the interval |ω| < Kr.
Lastly, in the limit of infinitely strong coupling, all oscillators will synchronize and move together.

Note that all derivations and solutions in the above Sections 2.1.1, 2.1.2 and 2.1.3, hold only for
the limit of infinitely many oscillators or N →∞.

For infinitely many oscillators, partial synchronization will occur for values of the coupling para-
meter of Kc < K < ∞. This results in values of the order parameter 0 < r < 1. For K < Kc,
the incoherent solution is found, which gives r = 0. Only for K →∞, total synchronization will
occur in which all oscillators have locked together and move at the same frequency. In this case,
the phase coherence is maximal, indicated by r = 1.

As noted before, the differential equations cannot be solved this way for a finite number of
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oscillators. One can conclude however, that in this case there is no critical coupling parameter
that indicates a (discontinuous) critical point before which no oscillators synchronize [2]. Fur-
thermore, only partial synchronization will occur if N 6=∞. This can be seen from the definition
of the order parameter (2.2). Only for an infinite number of oscillators the order parameter will
be zero.

The solutions that may occur in a real system will therefore always be partial synchronization.
The system includes both some synchronized oscillators (as the coupling parameter is non-zero)
and some non-synchronized oscillators (as the coupling parameter is not infinitely large). In other
words, several oscillators will be phase-locked and will move together with constant frequency.
The others will rotate out of synchrony with the locked oscillators.

The conclusions above for the solutions for either a finite or infinite number of oscillators are
visualised in Figure 4 [3] and Table 1.

Figure 4: Theoretical plot of the magnitude of the order parameter |R| = r versus coupling strength K,
for infinitely many oscillators (−) and for a finite amount of oscillators (· · · ). The critical coupling

strength is indicated with Kc [3].

N synchronization r K ω oscillators

finite partial synchronization 0 < r < 1 0 < K < Kc
|ω| > Kr independent
|ω| < Kr locked

infinite

incoherent solution r = 0 K < Kc |ω| > Kr independent

partial synchronization 0 < r < 1 Kc < K <∞ |ω| > Kr independent
|ω| < Kr locked

global synchronization r = 1 K →∞ |ω| < Kr locked

Table 1: Overview of the different domains for systems of coupled oscillators. N is the amount of
oscillators, r the measure of phase coherence (defined as |R| in equation (2.2)) and K the coupling

parameter. The amount of synchronization is reflected in r. The natural frequency of the oscillators ω
determines its behaviour on the long term. If an oscillator satisfies the inequality of the fifth column,

its behaviour is described in the sixth column.

The stability of any of the solutions cannot be proven that easily. Linear stability analysis 3

has to be done in order to find out which solutions are stable [8, 29]. It can be shown that the

3A stationary or quasi-stationary solution to a non-linear system of differential equations is linearly unstable
if the linearisation of the equation has eigenvalues with positive real part.[7]
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incoherent state is linearly (neutrally) stable for |K| < Kc and unstable otherwise. The trivial
incoherent solution is neutrally stable [8]. For the phase-locked state, all but two eigenvalues
are negative and merge into a continuous spectrum as the number of oscillators tends to infinity.
One eigenvalue is always zero, by rotational invariance. The final eigenvalue, corresponding to
a collective mode, determines the stability of the locked state [29]. Chiba and Medvedev [8] or
Mirollo and Strogatz [29] can be read for more on stability.
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3 Theory on Quantum Mechanics

3.1 Coherent States

In this section, the quantum mechanical theory needed to understand the derivations and conclu-
sions of Witthaut et al. [1] is illustrated. To begin with, the quantization of the electromagnetic
field is described in Section 3.1.1. This is the origin of the quantum mechanical field operators,
which form the basis of the Heisenberg picture of quantum mechanics. In this representation,
the operators (e.g. the observables) are time-dependent and the state-vectors are time independ-
ent. This is in contrast to the Schrödinger picture, in which the operators are constant and
the quantum state is time-dependent. Throughout this thesis, the Heisenberg picture is used to
describe the system. In this representation, the annihilation and creation operators represent
the most prominent role of time-dependent operators. These non-observable operators will be
introduced in Section 3.1.2. After the Fock number states and the quadrature operators are
introduced in Sections 3.1.3 and 3.1.4, the coherent states can be defined and characterized.
These are the states that will describe the quantum many-body system in Witthaut et al. [1]
4. Therefore, this quantum background is needed to understand spin squeezing and number
entanglement, and thus to derive the Kuramoto model for many-body entanglement.

3.1.1 Quantization of the Electromagnetic Field

The single-mode electromagnetic field can be expressed quantum mechanically. This is done
by writing the classical expressions for both the electric and the magnetic field in terms of
the corresponding quantum mechanical operators. The derivation is shortly explained here and
is analogous to various books on quantum optics, for example Introductory Quantum Optics [17].

When the Maxwell equations are solved for a single-mode field, this results in the following
expression for the electromagnetic field. The boundary conditions are taken such that the EM-
waves are confined to a domain between two perfectly conducting walls. Therefore, the perturb-
ation at both z = 0 and z = L is zero for the electric field. The electric field is assumed to be
polarized in the x̂ direction, and thus the magnetic field in the ŷ direction, as these are always
orthogonal to each other and to the direction of propagation. The solutions of the Maxwell
equations under these conditions are the following.

Ex(z, t) =

(
2ω2

V ε0

)1/2

q(t) sin(kz) (3.2)

By(z, t) =
µ0ε0
k

(
2ω2

V ε0

)1/2

q̇(t) cos(kz) (3.3)

In these equations, ω is the mode frequency and k = ω/c is the wave number. The time-dependent
variable q represents the canonical position and therefore its derivative q̇ stands for the canonical

4The actual states that are used in Witthaut et al. are two-mode spin coherent states. These are maximally
localized in phase space and thus provide a natural link to the classical mean field dynamics of for example the
Kuramoto model. Their definition is as follows [1]

|z,∆φ〉 =
1
√
N !

(√
1 + z

2
â†1 +

√
1− z

2
e−i∆φâ†2

)N
|0〉 (3.1)

In this equation, â†1 is the creation operator for the first mode, and â†2 for the second. The parameters z and ∆φ
stand for the number difference and the phase difference between the two modes. The number difference gives a
feeling for the difference in occupancy between the two modes. N is the total number of photons.
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momentum of a unit mass. When the classical variables for the position and momentum are
replaced with their quantum mechanical operators, the quantum mechanical expression for the
electric and magnetic fields of a single mode is found.

Êx(z, t) =

(
2ω2

V ε0

)1/2

q̂(t) sin(kz) (3.4)

B̂y(z, t) =
µ0ε0
k

(
2ω2

V ε0

)1/2

p̂(t) cos(kz) (3.5)

The quantum mechanical operators must satisfy the canonical commutation relation

[q̂, p̂] = i~ (3.6)

The classical field energy of the single-mode field is given by the following Hamiltonian.

H =
1

2

∫ (
ε0E

2
x(x, t) +

1

µ0
B2
y(z, t)

)
dV (3.7)

=
1

2
(p2 + ω2q2) (3.8)

It can be shown that these representations are equivalent, and thus the classical field energy of
the electromagnetic wave is equivalent to the Hamiltonian of a harmonic oscillator of unit mass
[17]. When this Hamiltonian is rewritten in quantum mechanical representation, this results the
following Hamiltonian Ĥ.

Ĥ =
1

2
(p̂2 + ω2q̂2) (3.9)

3.1.2 Creation and Annihilation Operators

In this light, the annihilation (â) and creation (â†) operators can be introduced. These operators
are non-Hermitian, and therefore non-observable. They can be defined in terms of q̂ and p̂ as

â =
1√
2~ω

(ωq̂ + ip̂) (3.10)

â† =
1√
2~ω

(ωq̂ − ip̂) (3.11)

These are time-dependent operators, because the position and momentum operators are also
time-dependent. Intuitively, the annihilation operator decreases and the creation operator in-
creases the number of particles in a given state by one. This can be seen in equations (3.26) and
(3.27) after the Fock number states are introduced in Section 3.1.3.

The annihilation and creation operator satisfy the commutation relation

[â, â†] = 1 (3.12)

With the annihilation and creation operator, the single-mode electromagnetic field operators
(3.4) and (3.5) can be rewritten in the following way.

Êx(z, t) = E0(â+ â†) sin(kz) (3.13)

B̂y(z, t) =
B0

i
(â− â†) cos(kz) (3.14)
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In these equations, E0 = (~ω/ε0V )1/2 and B0 = (µ0/k)(ε0~ω3/V )1/2 represent the electric and
magnetic fields ’per photon’ respectively. Note that the time dependence of both fields is included
in the annihilation and creation operators.
The Hamiltonian operator (3.9) can now be written in the following form

Ĥ = ~ω
(
â†â+

1

2

)
(3.15)

This Hamiltonian can be used to determine time dependency of the newly introduced operators
â and â†, by substituting them in the Heisenberg equation of motion (3.16). When this is
written out this results in the following differential equation, where the commutation relation as
in equation (3.12) is used.

dâ

dt
=
i

~
[Ĥ, â] (3.16)

= iω(â†ââ− ââ†â)

= iω[â†, â]â

= −iω[â, â†]â

= −iωâ (3.17)

Which has the following exponential solution

â(t) = â(0)e−iωt (3.18)

In a similar way, the result that follows for the creation operator is

â† = â†(0)eiωt (3.19)

3.1.3 Fock Number States

With the annihilation and creation operator, the number operator n̂ can be defined as

n̂ = â†â (3.20)

The commutation relations between the number operator and the previously introduced annihil-
ation and creation operator can be calculated very straightforwardly, and result in

[n̂, â†] = â† (3.21)

[n̂, â] = −â (3.22)

Note that the Hamiltonian for the electric field as given in equation (3.15) includes this number
operator. The eigenstates |n〉 of the number operator are called the Fock number states. These
states obey the equation

n̂ |n〉 = n |n〉 (3.23)

These number states can be thought of as the states for the various energy levels of a harmonic
oscillator, as the earlier mentioned Hamiltonian (3.15) describes the energy of a harmonic os-
cillator with unit mass. Fock states have a well-defined number of photons and a well defined
energy, because the operator expresses both observables. Clearly, the energy operator Ĥ and
the number operator n̂ commute. The eigenvalue n of the number operator is interpreted as the
number of photons in the field-mode. Therefore, the expectation value of the number operator
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represents the mean number of photons in the corresponding mode, 〈n〉 = n̄. The amount of
energy in a system is related to this average number of photons; the more photons present, the
higher the energy value. The energy of each Fock state can therefore be expressed by

En = ~ω(n+
1

2
), n = 0, 1, 2, ... (3.24)

The state for n = 0 is the vacuum state, in which there are no photons present. This state |0〉
has a non-zero energy value, namely E0 = 1

2~ω, which is a result of the commutation relation
between the creation and annihilation operators, equation (3.12). These operators do not com-
mute as the commutation relation does not equal zero.

Next to their corresponding energy value, some more characteristics of the number states will
be discussed. Firstly, number states are normalised; 〈n|n〉 = 1. Furthermore, states of different
number are orthogonal, thus 〈n′|n〉 = δnn′ . Therefore, they form an orthonormal complete set,
which spans the Hilbert space or Fock space [17].

∞∑
n=0

|n〉 〈n| = 1 (3.25)

When we let the annihilation and creation operators work on the number states, they work as
ladder operators. In other words, the energy states will increase or decrease with one unit of
’quantum energy’ ~ω. Therefore, the operator â† is called the creation operator, as it creates
one unit of quantum energy. Similarly, the annihilation operator â annihilates or destroys one
quantum of energy. The following relations show this, with the corresponding pre-factor. This
pre-factor is derived from the fact that the number states must be normalized.

â |n〉 =
√
n |n− 1〉 (3.26)

â† |n〉 =
√
n+ 1 |n+ 1〉 (3.27)

From this, it can be seen that the number states can be generated from the ground state, or
vacuum state, |0〉 by letting the creation annihilator work repeatedly.

|n〉 =
(â†)n√
n!
|0〉 (3.28)

Because the number states are orthogonal, the only matrix elements of the annihilation and
creation operators that do not vanish are the following.

〈n− 1| â |n〉 =
√
n 〈n− 1|n− 1〉 =

√
n (3.29)

〈n+ 1| â† |n〉 =
√
n+ 1 〈n+ 1|n+ 1〉 =

√
n+ 1 (3.30)

With the relations previously derived, the expectation value and the quantum fluctuations of a
single-mode electric field can be determined. The expectation value of the electric field operator,
as expressed in equation (3.13) can be determined for a number state |n〉 in the following way

〈n| Êx(z, t) |n〉 = E0 sin(kz)[〈n| â |n〉+ 〈n| â† |n〉] = 0 (3.31)

This results in a zero mean field, because the number states that result when the annihilation and
creation operator are worked out are orthogonal. Therefore, the number state is not a state of
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well-defined electric field. However, the expectation of the square of the electric field is non-zero.

〈n| Ê2
x(z, t) |n〉 = E2

0 sin2(kz) 〈n| â†2 + â2 + â†â+ ââ† |n〉
= E2

0 sin2(kz) 〈n| â†2 + â2 + 2â†â+ 1 |n〉 (3.32)

= 2E2
0 sin2(kz)

(
n+

1

2

)
As the square of the electric field contributes to the energy density, and the number states are
well-defined energy states, it could have been expected that this value is non-zero. This means
that the electric field is a fluctuating quantity with a mean value of zero. These fluctuations in
the field are characterized by the variance of the electric field operator, thus〈

(∆Êx(z, t))2
〉

=
〈
Ê2
x(z, t)

〉
−
〈
Êx(z, t)

〉2

(3.33)

Combining equations (3.31), (3.32) and (3.33) thus gives the variance of the electric field operator.
The uncertainty in this field is expressed by the standard deviation ∆Ex, which is the square
root of the variance. Finally, the uncertainty in the electric field thus results in

∆Ex =
√

2E0 sin(kz)
(
n+

1

2

)1/2
(3.34)

Thus even for the vacuum state |0〉, the quantized radiation field fluctuations are present. The
cause for these vacuum fluctuations are the same as the cause for the zero-point energy, namely
that the creation and annihilation operator do not commute.

3.1.4 Quadrature Operators

There are two more operators which are important to introduce for a single-mode field, namely
the quadrature operators. These operators are represented by X̂1 and X̂2 and are associated
with field amplitudes of the electric field.

In equation (3.13), the single-mode electric field is defined in terms of the annihilation and cre-
ation operator. These are, however, still time-dependent operators. When this time-dependence
is explicitly included in the expression, this results in the following

Êx = E0(âe−iωt + â†eiωt) sin(kz) (3.35)

In this equation, â(0) ≡ â and â†(0) ≡ â†, which are now independent of time. The quadrature
operators are defined in terms of these newly defined annihilation and creation operator.

X̂1 =
1

2
(â+ â†) (3.36)

X̂2 =
1

2i
(â− â†) (3.37)

The electric field can now be rewritten in terms of these operators.

Êx = 2E0 sin(kz)[X̂1 cos(ωt) + X̂2 sin(ωt)] (3.38)

From this expression it is clear why the quadrature operators are associated with field amplitudes
of the electric field. They oscillate out of phase by 90◦ and are hence in quadrature. They satisfy
the following commutation relation

[X̂1, X̂2] =
i

2
(3.39)
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The uncertainty relation that follows is〈
(∆X̂1)2

〉〈
(∆X̂2)2

〉
≥ 1

16
(3.40)

The expectation value of the quadrature operators for the number states is zero, 〈n| X̂1 |n〉 =
〈n| X̂2 |n〉 = 0. However, the second moment is non-zero and can be derived by

〈n| X̂2
1 |n〉 =

1

2
〈n| â2 + â†2 + â†â+ ââ† |n〉

=
1

4
〈n| â2 + â†2 + 2â†â+ 1 |n〉 (3.41)

=
1

4
(2n+ 1)

The same derivation holds for X̂2, thus

〈n| X̂2
2 |n〉 =

1

4
(2n+ 1) (3.42)

For a number state, the uncertainties are therefore the same for both quadratures. Particularly,
for the vacuum state |0〉, the uncertainty product is minimized. The following relation holds.〈

(∆X̂1)2
〉

vac
=
〈

(∆X̂2)2
〉

vac
=

1

4
(3.43)

The relations that represent the uncertainties in these quadrature operators will be used in
Sections 3.1.6 and 3.2.1 to compare number states, coherent states and squeezed states. Figure
5 (Section 3.2) is the phase-space portrait of each of these states, and gives insight in their
uncertainty characteristics.

3.1.5 Definition of Coherent States

Coherent states can be defined in two ways, which will be explained briefly. 5

Firstly, coherent states are the eigenstates of the annihilation operator. These ’right’ eigen-
states |α〉 satisfy the following relation, with eigenvalue α. This eigenvalue may be complex, as
the annihilation operator is non-Hermitian.

â |α〉 = α |α〉 (3.44)

For the creation operator, the states 〈α| are ’left’ eigenstates with eigenvalue α∗.

〈α| â† = α∗ 〈α| (3.45)

When these coherent states |α〉 are expanded in terms of the number states |n〉 and the normal-
ization requirement is met, the expression for these states is the following [17]

|α〉 = exp

(
−1

2
|α|2

) ∞∑
n=0

αn√
n!
|n〉 (3.46)

5Coherent states can actually be defined in three ways. The third definition is based on the most important
characteristic of coherent states, described in Section 3.1.6. Namely, that coherent states are states with a
minimum-uncertainty relationship. However, this definition is not unique. For example, the ideal squeezed states
as discussed in Section 3.2 also obey this definition as well as they also minimize the uncertainty [44]
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Secondly, coherent states can be defined as displaced vacuum states. The Glauber displacement
operator is defined as

D̂(α) = exp
(
αâ† − α∗â

)
(3.47)

This operator is unitary, which means that

D̂†(α) = D̂(−α) =
(
D̂(α)

)−1
(3.48)

If this operator acts on a vacuum state |0〉, this results in a coherent state.

|α〉 = D̂(α) |0〉 (3.49)

Working this out results in the same definition as from the eigenstates of the annihilation oper-
ator, given in equation (3.46) [17].

3.1.6 Characteristics of Coherent States

The most important property of coherent states is that they are minimum uncertainty states. In
other words, these are the states for which the Heisenberg uncertainty relation for two Hermitian
operators is minimized [4].

When the three Hermitian operators Â, B̂ and Ĉ satisfy the commutation relation (3.50), they
satisfy the Heisenberg uncertainty relation (3.51) [17].

[Â, B̂] = iĈ (3.50)

〈(∆Â)2〉〈(∆B̂)2〉 ≥ 1

4
〈(∆Ĉ)2〉 (3.51)

For coherent states however, the uncertainty in operators Â and B̂ are minimized such that the
equality in the uncertainty relation (3.51) holds. 6

Additionally, coherent states always have the following Poisson photon number distribution.
In other words, when measuring the number of photons in the field the probability of detecting
n photons is described by the following probability distribution [4, 17]

P (n) = | 〈n|α〉 |2 = exp
(
−|α|2

) |α|2n
n!

(3.52)

The mean of this distribution is |α|2, which is the expectation value of the photon number
operator n̂ in coherent state |α〉.

n̄ = 〈n〉 = 〈α| n̂ |α〉 = 〈α| â†â |α〉 = |α|2 (3.53)

Therefore, the probability distribution (3.52) can be rewritten into

P (n) =
n̄ne−n̄

n!
(3.54)

6Applying this minimum uncertainty relation to the position operator q̂ and momentum operator p̂ was the
original motivation for Schrödinger to propose the coherent states. These states follow the classical motion of the
harmonic oscillator [44].
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which can clearly be recognised as a Poissonian distribution.

Where the number states are orthogonal, normalized and complete (see Section 3.1.2), the co-
herent states are normalized, but not orthogonal and overcomplete [17, 38].

The normalization follows from the definition directly. As the displacement operator is unit-
ary, it follows with equation (3.48) that

〈α|α〉 = 〈0| D̂†(α)D̂(α) |0〉 = 1 (3.55)

The coherent states are not orthogonal. This can be derived from the definition (3.46) for two
coherent states |α〉 and |β〉 [17].

| 〈β|α〉 |2 = e−|β−α|
2

6= 0 (3.56)

By integrating over the complex α-plane, completeness can be shown. This results in [17]∫
|α〉 〈α| d

2α

π
= 1 (3.57)

However, the coherent states |α〉 are overcomplete. That is, some eigenstates could be left out
such that the system or set is still complete. This can be intuitively supported by the fact that
the coherent states are not orthogonal; there could be a representation or integral which does
not include all coherent states but does result in a unit answer [30, 38].

Coherent states are very close to classical states, mainly due to the minimum uncertainty relation
that they obey. Due to this minimized uncertainty and therefore minimal fluctuations, coherent
states are maximally localized in phase space. Phase space is the infinite (complex) plane of
eigenvalues that belong with two Hermitian operators [14]. Phase space portraits are shown in
Figure 5 (Section 3.2). The radius of the circle represents the uncertainty in the two operators
or quadratures. Therefore, the coherent state has the smallest radius and is therefore maximally
localized in phase space.

Moreover, a few more characteristics of coherent states will be discussed, which cause these
states to resemble classical physics.

Firstly, coherent states have an expectation value of the electric field that is of the classical
form, in contrast with those of the number states. Recall that the expectation of the electric
field operator was zero for the number states, see equation (3.31). For coherent states however,
this is not the case.

Additionally, the fluctuations in the fractional uncertainty for the photon number decrease with
an increasing average photon number. Therefore, the states become well localized in phase with
increasing average photon number, which makes them resemble classical states. To explore this
mathematically, the fluctuation of photon number can be calculated. Recall that the first mo-
ment, the expectation value of the number operator n̂, is equal to |α|2, see equation (3.53). The
second moment is calculated by

〈α| n̂2 |α〉 = 〈α| â†ââ†â |α〉
= 〈α| (â†â†ââ+ â†â) |α〉 (3.58)

= |α|4 + |α|2 = n̄2 + n̄
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Thus the fluctuations in photon number are

∆n =

√
〈n̂2〉 − 〈n̂〉2 =

√
n̄ = |α| (3.59)

This is again characteristic for a Poissonian process thus in accordance with the probability
distribution (3.54). The fractional uncertainty in the photon number is given by

∆n

n̄
=

1√
n̄

=
1

|α|
(3.60)

Note this uncertainty decreases with an increasing average number of photons, and thus an
increasing field strength.

3.1.7 Standard Quantum Limit

In this light, the Standard Quantum Limit can be examined shortly. This shot noise limit is the
limit that refers to the minimum level of quantum noise which is obtainable without squeezed
states (Section 3.2), given by

∆ϕ ≥ 1√
N

(3.61)

For coherent states, the quantum fluctuations are minimal, and thus equal to 1√
N

. This is valid

for all N -photon separable states, thus in the absence of entanglement between the photons [11,
21, 24].

Inequality (3.61) shows the uncertainty in the photon number given by equation (3.59) is the
minimal value that it could have. Therefore, in coherent states the uncertainty in the number
of photons in a certain state is indeed minimized. This holds for all observables, which is why
coherent states are called minimal uncertainty states [4, 17].
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3.2 Squeezed States

We saw in Section 3.1.6 that when the three Hermitian operators Â, B̂ and Ĉ satisfy the com-
mutation relation [Â, B̂] = iĈ, they satisfy the Heisenberg uncertainty relation

〈(∆Â)2〉〈(∆B̂)2〉 ≥ 1

4
〈(∆Ĉ)2〉 (3.62)

A state of the system is a squeezed state if either [17, 31]〈
(∆Â)2

〉
<

1

2

∣∣∣〈Ĉ〉∣∣∣ or
〈

(∆B̂)2
〉
<

1

2

∣∣∣〈Ĉ〉∣∣∣ (3.63)

Intuitively, this means that the uncertainty in one of the operators is diminished, therefore the
fluctuations are smaller. The other operator however will have a larger uncertainty, because the
Heisenberg equation (3.62) must be satisfied.

Ideal sqeezed states can be defined as sqeezed states for which the equality in the Heisenberg
uncertainty relation (3.62) holds. The product of the two uncertainties is therefore as small
as possible, thus the variances satisfy the minimum-uncertainty relation. These ideal squeezed
states can be obtained from the coherent states with a scale transformation that compresses one
axis and dilates the other. Visually, in a phase-space plot, the circle that represents a coherent
state is transformed into an ellipse; one direction is stretched out whereas the other is pushed
in. This is visualised in Figure 5 [10, 31].

Figure 5 shows the phase space plots of various states on the left, and a plot of the electric
field in time on the right [31]. The classical expression for the electric field would be a sine
without any uncertainty or fluctuations.
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Figure 5: The left column shows phase-space plots of various states and the right column shows the
corresponding plot of the electric field in time. The visualised states are: (a) vacuum state, (b)

coherent state, (c) squeezed state with reduced phase uncertainty (d) squeezed state with reduced
amplitude uncertainty [31].

The radius of the phase-space plots represent the uncertainty in the of the state. When one
would compare the coherent or vacuum states with the Fock number states, the number states
would thus have a larger radius.

3.2.1 Quadrature Squeezing

When the operators in equations (3.63) are taken to be the quadrature operators, Â = X̂1 and
B̂ = X̂2, it follows from equation (3.40) that Ĉ = 1

2 . Consequently, quadrature squeezing occurs
whenever 〈

(∆X̂1)2
〉
<

1

4
or

〈
(∆X̂2)2

〉
<

1

4
(3.64)

For both the vacuum state and the coherent state, both quadratures had an uncertainty of 1
4 .

Therefore, a quadrature squeezed state is present when the uncertainty in one of the quadrature
operators is less than the uncertainty of the vacuum state |0〉 or the coherent state |α〉. One of
the quadratures has less noise, thus the fluctuations in this quadrature are said to be squeezed.
As a consequence, the fluctuations in the other quadrature are larger than those of |0〉 or |α〉,
since the Heisenberg uncertainty relation must always hold.

After discussing the properties of these squeezed states, it is important to note how to gen-
erate a squeezed state mathematically. In order to do so, the squeeze operator Ŝ(ξ) is defined
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as

Ŝ(ξ) = exp

(
1

2
(ξ∗â2 − ξâ†2)

)
(3.65)

In this definition, ξ = reiθ. Parameter r is known as the squeeze parameter and takes values
between 0 ≤ r < ∞. Parameter θ takes values between 0 ≤ θ ≤ 2π. When the squeezing
operator acts on the vacuum state |0〉, the wave function of the squeezed vacuum is obtained.

|0, ξ〉 = Ŝ(ξ) |0〉 (3.66)

This is an ideal squeezed state, and the method for deriving the squeezing operator boils down to
the scale transformation as introduced in Section 3.2.1. The parameter ξ = reiθ shows that the
transformation is a combination of squeezing and rotation. The amount of squeezing is thus rep-
resented by the squeeze parameter r, as might be expected. The angle under which the squeezing
is applied is θ

2 . The squeezing operator corresponds to a compression in the quadrature at θ
2 and

a dilation in the quadrature at θ
2 + π

2 [10].

More generally, the family of ideal squeezed states is generated by displacing the squeezed vacuum
with the displacement operator D̂(α) as introduced previously in Section 3.1.5.

|α, ξ〉 = D̂(α)Ŝ(ξ) |0〉 (3.67)

The same resulting minimum-uncertainty state can be obtained by applying the squeezing oper-
ator to a coherent state. The squeezing operator and the displacement operator do however not
commute, but the same state can be obtained with a different parameter α [17].

The average number of photons in a squeezed state can be obtained by determining the ex-
pectation value of the number operator.

〈α, ξ| n̂ |α, ξ〉 = |α|2 + sinh2(r) (3.68)

When one looks at the number of photons in a squeezed vacuum, where |α|2 = 0, the above
expression however does not go to zero. The fact that the average number of photons in the
squeezed vacuum state is non-zero shows that energy is required to squeeze the vacuum [10].

3.2.2 Spin Squeezing

Spin squeezing aims to redistribute the fluctuations of two conjugate spin directions among each
other. Spin squeezing can indicate an entangled state, and is therefore used to detect the pres-
ence of entanglement [1, 21]. The name ’spin squeezing’ does not originate from the fact that
the physical spin would in a way be squeezed, but because N particles can be described by a
fictitious spin J = N

2 [16]. In this section, the mathematical concept of spin squeezing will be
introduced. When this concept is known, entanglement criteria can be defined in Section 3.3.

We consider one two-mode system or atom with modes |1〉 and |2〉. This can be mapped onto a
spin J = 1

2 system. Any observable with a spin J system can be expressed by the three spin oper-

ators Ĵx, Ĵy, Ĵz and the identity operator. This simplest system is described in the following way.

State |1〉 is mapped to the eigenstate of Ĵz with eigenvalue − 1
2 (spin down) and state |2〉 is

mapped to the eigenstate with eigenvalue + 1
2 (spin up). Any pure quantum state of a two-level

system described by
|θ, φ〉 = sin(θ/2) |1〉+ cos(θ/2)eiφ |2〉 (3.69)
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can now be depicted on a Bloch sphere, as shown in Figure 6 [16, 21].

Figure 6: Schematic representation of the quantum state |θ, φ〉 of a spin- 1
2

system on a Bloch Sphere
[21].

This description of a single system or atom consisting of two modes can be generalized for N
particles, where each particle is restricted to two modes. There are no quantum correlations
present between the particles. The collective spin is defined as the sum over all elementary spin
operators, or Pauli matrices. 7 The derivation of this total spin system can be read in Groß [21].
The expression for the total state |θ, ϕ〉 is the following.

|θ, ϕ〉 =
1√
N !

(
sin(θ/2)â†1 + cos(θ/2) exp(iϕ)â†2

)N |0〉 (3.70)

Therefore, the generalized Bloch sphere now describes the mean spin direction and its fluctu-
ations.

The earlier mentioned operators which can describe the spin- 1
2 system are defined below for

the generalization to N particles. Squeezing can be quantified using these fictitious spin com-
ponents [1, 16, 21].

Ĵz =
1

2
(â†2â2 − â†1â1) (3.71)

Ĵy =
i

2
(â†2â1 − â†1â2) (3.72)

Ĵx =
1

2
(â†2â1 + â†1â2) (3.73)

These operators together form an angular momentum algebra [1]. Note that the operator Ĵz
actually represents half the atom number difference between the modes. Namely, it can be re-
written as Ĵz = 1

2 (n̂2 − n̂1), with the number operators as defined in Section 3.1.3.

The three orthogonal spin components are conjugate variables. The commutation relation

7The definition in terms of Pauli matrices will be used in Section 3.3.2, equations (3.71) to (3.73).
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between these operators is described in equation (3.75), with εijk the Levi-Civita symbol [21]. 8

[Ĵi, Ĵj ] = iεijkĴk (3.75)

Consequently, any pair of spin operators obeys a Heisenberg uncertainty relation. For example,
for Ĵz and Ĵy this is [21, 34]

(∆Ĵz)
2(∆Ĵy)2 ≥ 1

4
(∆Ĵx)2 (3.76)

The variance in each direction is given by ∆Ĵx = 〈Ĵ2
x〉 − 〈Ĵx〉2. For the operator Ĵx, the

expectation value is however equal to zero. Therefore, the only resulting term is 1
4 〈Ĵ

2
x〉 = J

4 .
This gives

(∆Ĵz)
2(∆Ĵy)2 ≥ J

4
(3.77)

In this equation, J is the total spin length, for which J = N
2 [21]. For a coherent spin state, this

uncertainty relation again reduces to the equality due to their minimum uncertainty character-
istics. When no quantum correlations between the particles are present, which is the case for
coherent states, the variance in each direction Ĵ⊥ orthogonal to the mean spin direction (θ, φ)
are equal.

∆Ĵ2
z = ∆Ĵ2

y =
J

2
(3.78)

Recall the standard quantum limit (3.61) discussed in Section 3.1.7. The variable ∆ϕ can be
seen as the isotropic angular uncertainty; the uncertainty of the perpendicular spin directions
∆Ĵ⊥ to the mean spin length J [21]. The derivation of this limit for coherent state fluctuations
is relatively easy when considering the spin representation.

∆ϕ =
∆Ĵ⊥

〈Ĵ〉
=

1√
2J

=
1√
N

(3.79)

Spin squeezing or number squeezing
Now that we know how N particles can be described by a fictitious spin J , the spin squeezed
states can be defined. Quantum states are considered to be spin squeezed if the variance of one
spin component is smaller than the shot noise limit for a coherent spin state, which is J

2 as in
equation (3.78). Note that this definition is completely analogous to the definition of squeezed
states in general (3.63), but is now applied to the spin operators that describe the system. Due
to the Heisenberg uncertainty relation, the variance in the other direction will increase [1, 16,
21, 32, 34].

Coherent spin squeezing can also be referred to as coherent number squeezing, because the
purely theoretical spin has links to the number of atoms occupying a certain state. Remember
that the operator Ĵz represents half the atom number difference. When a system is spin-squeezed
in the Ĵz direction, this is equivalent to

(∆Ĵz)
2 <

J

2
(3.80)

8The Levi-Civita symbol is a discrete function of three variables, defined in the following way.

εijk =

+1 if (i, j, k) is (1,2,3), (2,3,1) or (3,1,2)
−1 if (i, j, k) is (3,2,1), (1,3,2) or (2,1,3)
0 if i = j, j = k or k = i

(3.74)
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In other words, the atom number fluctuations are squeezed or diminished. In practice, this boils
down to two observations. First, the mean angular momentum of the state is large. Secondly, the
variance of the angular momentum in a direction orthogonal to the mean direction is small. This
number squeezing can be used to detect entanglement and to enable high precision metrology,
which will be discussed in Section 3.3. [1, 16, 21, 32]

Spin squeezing was one of the first ways found to overcome the standard quantum limit (Wine-
land et al. [39]). This is valuable, as quantum research often requires very precise measurements.
Spin squeezing is therefore applied in (non-linear) quantum optics and interferometry [43, 21].
However, it was found in 2001 that spin squeezing can also be applied to achieve entanglement
in Bose-Einstein condensates, which can thereafter be used for information processing [16, 32].
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3.3 Number Entanglement

Coherent spin squeezing, or coherent number squeezing, amongst N particles is related to many-
body entanglement. In this section, many-body entanglement will be defined. After this, we can
see how spin squeezing indicates many-body entanglement. This will be done by introducing a
criterion for the squeezing parameter ξ2, which can be defined with the variables discussed in
Section 3.2.2.

3.3.1 Many-Body Entanglement

Entanglement in many-body systems is defined as the non-separability of the density matrix.

The Density Matrix
The density matrix or density operator ρ̂ is an alternate representation of the quantum state,
which is equivalent to description with a wave function |ψ〉. The formal definition for this density
operator is the following

ρ̂ = |ψ〉 〈ψ| =
∑
i

pi |ψi〉 〈ψi| (3.81)

In this definition, pi is the probability of the system being in the ith state |ψi〉 [17].

The density operator has a few important characteristics, which will not be derived here. 9

These properties are:

1. ρ̂ is Hermitian

2. Tr ρ̂ = 1 10

3. Tr ρ̂2

{
= 1 for a pure state
< 1 for a mixed state

4. 〈Â〉 = Tr
(
ρ̂Â
)

In the third property, pure and mixed states are distinguished. A pure quantum state can be
described by state vectors only, mixed states cannot as they are a probabilistic mixture of pure
states. Therefore, the density operator reduces to ρ̂ = |ψj〉 〈ψj | for pure states because all other
probabilities pi for i 6= j vanish and pj = 1 [17, 31].

When the N -particle density matrix ρ̂ is inseparable, the quantum state is known to be en-
tangled. A matrix is separable if it can be decomposed in the following way [17, 32]

ρ̂ =
∑
i

pi ρ̂i
(1) ⊗ ρ̂i(2) ⊗ ...⊗ ρ̂i(N) (3.82)

with pi the probability for state i and ρ̂
(k)
i a density matrix for the kth particle. For non-

entangled systems, the total density matrix can thus be decomposed into density matrices for
each particle by itself. This intuitively corresponds with the definition of entangled particles;
those who interact in ways such that the state of each particle can not be described independently.
An entangled quantum system must be described as a whole and therefore the density matrix
cannot be split up. [1, 16, 18, 32]

9For more background information, one can read Gerry and Knight [17] or Scully and Zubairy [31].
10Tr means taking the trace of the matrix; summation of the diagonal matrix elements. This second property

thus expresses the normalization of any state described by the density matrix.
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3.3.2 Entanglement Criterion

The earlier discussed spin squeezing (Section 3.2.2) and many-body entanglement (Section 3.3.1)
are linked. In Bose-Einstein condensates, spin squeezing is one of the most successful approaches
for creating many-body entanglement [16, 18, 32]. 11 Furthermore, spin squeezing can be used
to show the presence of entanglement. This property is most important for understanding the
main research of Witthaut et al. [1]. In order to show that the Kuramoto model can be used to
describe entanglement in Bose-Einstein condensates, one must be able to detect when entangle-
ment is present.

More generally, when quantum experiments require entanglement, it is important to detect it as
well. The creation of an entangled state is often followed by measurements to make sure that
the produced state was indeed entangled. In many-particle experiments however, it is often im-
possible to address the particles individually [34]. Therefore, it is important to derive conditions
such that it is possible to create and detect entanglement with collective operations. In most
many-particle experiments, observables are limited to the first and second order moments of
the distribution functions in different spin directions [21]. This is mainly due to small counting
statistics and technical noise [21]. Therefore, it would be suitable if these moments could be used
to derive a criterion for many-particle entanglement.

As stated in Estève et al. [16] ”The fluctuation measurement of the two conjugate variables,
number and phase, yields information about the quantum state of the system and, in particular,
allows for the detection of macroscopic entanglement between the particles.” It can be shown that
when one is able to detect number squeezing (spin-squeezing in the Ĵx direction), this implies the
presence of entanglement immediately. This implication of number squeezing to entanglement
will be discussed by introducing the squeezing parameter ξ2 and its entanglement criterion, as
used in Witthaut et al [1]. This is only one of the criteria which can be used to detect entan-
glement, though it is the most commonly used. There are more inequalities which imply the
violation of the separability of the density operator, which can be found in for example [18, 21].

With the parameters and operators introduced in Section 3.2.2 to describe N particles with
two modes as a spin J system, a squeezing parameter ξ2 can be defined.

ξ2 = N
∆Ĵ2

z

〈Ĵx〉2 + 〈Ĵy〉2
(3.83)

For separable states, the squeezing parameter obeys ξ2 ≥ 1. For entangled states however,
the squeezing parameter will decline to a value ξ2 < 1. The entanglement properties of the
system can be expressed in terms of the spin operators, such that the spin squeezed states for
which the entanglement parameter is smaller than one will always be entangled [1, 16, 18, 21, 32].

The proof for the easiest example of a two particle system with pure states will be given first.
Assume that the particles are non-entangled, their density matrix is separable. The squeezing
parameter will be shown to have a value larger or equal to one.

Note that the definitions of the spin component operators (equations (3.71) to (3.73)) can be

11Bose-Einstein condensates are particularly useful for entanglement theory, because they can be considered
pure at single particle level. This is a crucial requirement for the production of entangled states. A method to
achieve this is by applying a resonant laser pulse to all atoms in the condensate. These atoms are then allowed
to evolve freely, so that collisional interactions produce entanglement between the atoms [32]
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rewritten in terms of the Pauli matrices, as the collective spin was defined as the sum over all
elementary Pauli matrices (footnote 7 page 27). For two particles, this reduces to the following
definitions [21, 32].

Ĵz =
1

2

(
σ(1)
z + σ(2)

z

)
(3.84)

Ĵy =
1

2

(
σ(1)
y + σ(2)

y

)
(3.85)

Ĵx =
1

2

(
σ(1)
x + σ(2)

x

)
(3.86)

In these equations, the usual definition of the Pauli matrices holds. 12 The upper index (1) or
(2) indicates which particle the operator works upon.

To determine ξ2, the values for ∆Ĵz
2

= 〈Ĵz
2
〉 − 〈Ĵz〉2, 〈Ĵx〉2 and 〈Ĵy〉2 have to be determined.

From the definition (3.84)

Ĵz
2

=
1

4

(
(σ(1)
z )2 + (σ(2)

z )2 + 2σ(1)
z σ(2)

z

)
=

1

2

(
I + σ(1)

z σ(2)
z

)
(3.88)

This gives an expectation value of

〈Ĵz
2
〉 =

1

2

(
1 + 〈σ(1)

z 〉〈σ(2)
z 〉
)

(3.89)

However, this expectation value is the same for both particles. 13 Therefore

〈Ĵz
2
〉 =

1

2

(
1 + 〈σz〉2

)
(3.90)

Similarly, in the expression for 〈Ĵz〉2, the four terms that occur when expanding the brackets are
all equal.

〈Ĵz〉2 =
1

4

(
〈σ(1)
z 〉+ 〈σ(2)

z 〉
)2

= 〈σz〉2 (3.91)

The same can be written for spin directions x and y, thus

〈Ĵx〉2 = 〈σx〉2 (3.92)

〈Ĵy〉2 = 〈σy〉2 (3.93)

The variance in spin z can be found from expressions (3.90) and (3.91)

(∆Ĵz)
2 =

1

2

(
1− 〈σz〉2

)
(3.94)

With these calculations, the squeezing parameter is reduced to the expression below. The factor
1
2 in the variance cancels to the factor N = 2, resulting in

ξ2 =
1− 〈σz〉2

〈σx〉2 + 〈σy〉2
(3.95)

12 The Pauli matrices are defined in the following way.

σz =

(
1 0
0 −1

)
σy =

(
0 −i
i 0

)
σx =

(
0 1
1 0

)
(3.87)

13We assume that the two particles are identical, thus |ψ〉 =
∣∣ψ(1)

〉
⊗
∣∣ψ(1)

〉
.
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Now assume that the quantum state which the squeezing parameter is determined for is pure.
To simplify, we can write this state as the simple vector

|Ψ〉 =

(
a
b

)
(3.96)

In this vector a and b might be complex valued and the vector must be normalized. This notation
might seem like a simplification, but may be used as each pure state can be described by a vector
in Hilbert space. In fact, only the normalization of this vector is what will be needed to prove
the inequality for the squeezing parameter ξ2. With this state, the expectation values result in

〈Ψ|σz |Ψ〉2 =|a|4 + |b|4 − 2|ab|2 (3.97)

〈Ψ|σx |Ψ〉2 =(a∗b)2 + (b∗a)2 + 2|ab|2 (3.98)

〈Ψ|σy |Ψ〉2 =− (a∗b)2 − (b∗a)2 + 2|ab|2 (3.99)

Substituting this into equation (3.95) and using the normalization of |Ψ〉 gives ξ2 = 1. Therefore,
this separable (thus non-entangled) state obeys the inequality ξ2 ≥ 1.

Now for a mixed two particle quantum state, the state cannot be written as a vector of Hilbert
space. The density matrix is needed to determine the value of ξ2. For a separable (non-entangled)
two particle system, the density matrix is defined as

ρ̂ = |ψ〉 〈ψ| =
∑
i

pi |ψi〉(1) 〈ψi|(1) ⊗ |ψi〉(2) 〈ψi|(2)
(3.100)

This follows from definitions (3.81) and (3.82). The expectation values that have to be determined

in order to find ξ2 can be found using the last property of the density operator; 〈Â〉 = Tr
(
ρ̂Â
)

as given in Section 3.3.1.

Instead of working out this expectation value directly, note that the density matrix ρ̂ is a convex

combination of |ψ〉(1) 〈ψ|(1) ⊗ |ψ〉(2) 〈ψ|(2)
because all probabilities satisfy 0 ≤ pi ≤ 1. Now be-

cause the inequality holds for pure states, it must also hold for mixed states as the expectation
value of these mixed states will be smaller. Namely, a pure state is always an extreme point of
the convex set of states [5].

In conclusion, with the squeezing parameter ξ2 the presence or absence of entanglement can
be measured. Namely, ξ2 < 1 is only possible for entangled states. 14

14In a similar manner the entanglement parameter Wjk is defined in Witthaut et al. [1] to express whether
entanglement is present between the two modes j and k.

Wjk = ∆Z2
jk − 〈n̂j + n̂k〉 (3.101)

In this equation, n̂i is the number operator as introduced in Section 3.1.3, applied to mode i. The definition of
the number difference operator Ẑjk is the following.

Ẑjk = n̂j − N̂k (3.102)

For a pure state, presence of entanglement of the modes is proven if the entanglement parameter Wjk exceeds
zero.
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3.4 Mean Field Approximation

Mean field theory is applied when the behaviour of a large number of individual components is
studied, which all interact with each other. The interaction of these individual components is
then approximated by an average effect. This reduces the many-body problem to a single-body
problem.

With the mean field approximation, the equations of motion for the amplitudes cj = 〈âj〉 are be
derived from Heisenberg’s equation in Witthaut et al. [1] Working this out will show that the
phases of these complex amplitudes evolve according to the Kuramoto model. The main results
within the derivation will be shown here, but for the details one might want to read Supplement-
ary Note 3 of Witthait et al. [1].

Recall Heisenberg’s equation of motion (3.16) in Section 3.1.2. When considering the amplitude
for the mode n, the equation will be

dân
dt

=
i

~
[Ĥ, ân] (3.103)

The Hamiltonian which describes a quantum many-body system is shown in equation (3.104). It
describes L spatially localized modes, j ∈ {1, ..., L}, with on-site two-body interactions of energy
scale U [1].

Ĥ =

L∑
l=1

ωlâ
†
l âl +

U

2
â†2l â

2
l + Ĥs, (3.104)

Ĥs =

L∑
j,l=1

K̃j,l

8

[
i(â†j âl − â

†
j âj)(â

†
j âj − â

†
l âl) + h.c.

]
This Hamiltonian will be used to derive the equations of motion for each mode (3.103). The
first part of the Hamiltonian shows the contribution by the operators of the mode itself. The
last term Ĥs In this can be seen as the interaction-Hamiltonian of this system; it describes the
coupling between the different modes. In this sum, if j = l, the contribution will be 0. The
coupling strength K̃j,l regulates the amount of contribution of the interaction-Hamiltonian and
defines the correlation between different modes.

The dynamics of this (isolated) quantum many-body system are described in Witthaut et al.
[1]. The system’s behaviour can be described in either the weakly or the strongly correlated
regime. Between these regimes, the system exhibits a sharp transition. As Witthaut et al. [1]
states: ”When the coupling strengths K̃j,l exceed a critical value, correlations emerge dynamic-
ally and persist independent of the initial state. For small coupling strengths, correlations remain
negligible and the modes will gradually dephase.”

With this Hamiltonian, Heisenberg’s equation of motion (3.103) will be solved for ân. With
the commutation relations of the creation and annihilation operator as described in Section
3.1.2, the commutators with the Hamiltonian terms can be determined. 15

i
d

dt
ân = ωnân + Uâ†nâ

2
n +

L∑
j=1

K̃n,j

2i
(â†j â

2
n + â†j â

2
j − 2â†nânâj) (3.107)

15It is important to note that the annihilation and/or creation operator(s) commute for different modes. There-
fore, the terms which include either a commutator between different modes or of the same operator (either two
annihilation or two creation operators) are zero. In short, all commutation relations that are needed are those for
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Taking the expectation value of this equation yields

i
d

dt
〈ân〉 = ωn〈ân〉+ U〈â†nâ2

n〉+

L∑
j=1

K̃n,j

2i
(〈â†j â

2
n〉+ 〈â†j â

2
j 〉 − 2〈â†nânâj〉) (3.108)

Note that taking the expectation values of the operators is allowed as the Heisenberg picture is
considered. Hence, the state is considered time-independent and the operators hold the system
dynamics.

The difficulty for a quantum many-body system now shows; the Heisenberg equations induce
an infinite hierarchy of coupled equations for the expectation values [1]. That is, to solve equa-
tion (3.108), the expectation values for the third order products have to be determined. These
equations will show fifth order products of annihilation and creation operators, and those will
show seventh order products, and so on. This can be seen by the fourth order terms in the
Hamiltonian (3.104). These add a product of two more operators to each equation in compar-
ison with the previous one. To reduce this infinite number of coupled equations to a finite number
of differential equations, the mean field approximation is applied.

In first order mean field, all higher order expectation values are approximated by products of
first order ones. In this case, the three-point functions are approximated in terms of one-point
functions.

〈â†j âkâl〉 ≈ 〈â
†
j〉〈âk〉〈âl〉 (3.109)

The error in this approximation vanishes as 1/N , due to which the truncation is generally valid
for Bose-Einstein condensates with a lot of particles [1, 33]. The possibility of extending this
approximation to second order and therefore truncating the higher order moments in a way to
include interaction between the operators is discussed in Section 4.

The mean field equations of motions for first order result in

i
d〈ân〉
dt

= ωn〈ân〉+ U〈â†n〉〈ân〉2 +

L∑
j=1

K̃n,j

2i

(
〈â†j〉〈ân〉

2 + 〈â†j〉〈âj〉
2 − 2〈â†n〉〈ân〉〈âj〉

)
(3.110)

All expectation values have now become products of the complex amplitudes cn, which can be
expressed in polar coordinates

〈ân〉 = cn = |cn|e−iφn (3.111)

The amplitude and phase are defined as

|cn| =
√
c∗ncn and φn = − arctan

(
Im(cn)

Re(cn)

)
(3.112)

multiple-boson systems;

[âi, â
†
j ] = âiâ

†
j − â

†
j âi = δij (3.105)

and
[â†i , â

†
j ] = [âi, âj ] (3.106)
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With this representation, the equations of motion (3.110) can be expressed for both the amp-
litudes and the phases.

d

dt
|cn|2 = −

L∑
j=1

K̃n,j(|cj |2 − |cn|2)|cj ||cn| cos(φn − φj) (3.113)

d

dt
φn = ωn + U |cn|2 +

L∑
j=1

K̃n,j

2

|cj |
|cn|

(3|cn|2 − |cj |2) sin(φj − φn) (3.114)

In the case that all the amplitudes have the same value, that is if |cj |2 = |cn|2 for all j and n
in {1, 2, ..., L}, the amplitudes remain constant. Namely, all terms on the right side of equation
(3.113) become zero. The equations for the phase φn will simplify to

d

dt
φn = ωn + U |cn|2 +

L∑
j=1

K̃n,j |cn|2 sin(φj − φn) (3.115)

which is the celebrated Kuramoto equation for the phases φn.

Furthermore, the amplitudes are chosen |cn|2 = N
L and the coupling parameter is replaced by

Kn,j = K̃n,jN/L. This substitution corresponds to the number of excitations N =
∑L
l=1 |cl|2

being evenly over all L modes. Additionally, the frequency ωn is substituted by the rescaled
frequency ω̄n = ωn + U N

L . The mean field equations of motion for the phase φn of the complex
amplitudes cn = 〈âl〉 will then be the differential equations of the Kuramoto model, see equation
(2.1).

dφn
dt

= ω̄n +

L∑
j=1

Kn,j sin(φj − φn) (3.116)
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4 Beyond First Order Mean Field

In the theoretical research of Witthait et al. [1] the mean field approximation was used and only
the first order moments were assumed to contribute to the solutions of the equations of motion.
In other words, the approximation of equation (3.109) is used. When the amplitudes of these
expectation values are assumed to be constant, this results in the equations of the Kuramoto
model, see equation (3.116).

When applying mean field approximation to first order only, all correlations between the op-
erators are neglected. The original equation (3.108) includes not only first order moments 〈ân〉,
but also terms with the expectation value of three operators, for example 〈â†nâ2

n〉. For these third
order moments, all correlations between the operators is reduced to zero when the approximation
(3.109) is used. This might yield different results than when all correlations would be taken into
account and the original equation (3.108) would be solved.

However, if one would want to solve equation (3.108) without using an approximation, the set of
coupled differential equations would be infinitely large. Namely, for the first order moments the
third order moments have to be known. When one would solve for these expectation values with
three operators, their equations of motion will include terms with the product of five operators.
This is due to the higher order terms in the Hamiltonian (3.104). These expectation values then
have to be solved for with their equations of motion that includes terms with seven operators,
and so forth. The length of the operator products will thus grow infinitely long, and therefore
the amount of coupled differential equation will be infinite as well. This could be seen as a chain
of equations of which the first equation, which is the main equation we are interested in, can
only be solved if the second is known and so on. Additionally, the amount of possible products
of a higher number of operators will only be larger as well.

Therefore, the equations have to be truncated. The most simple way to do this would be to
approximate all equations with their first order moments, as was done in Witthaut et al. [1].
However, as noted above, the correlations between the operators are then neglected fully. To find
a solution which might have a higher resemblance with the exact equation (3.108), the second
order moments could be added to the mean field approximation. This is where the goal of this
research, to apply second order mean field in order to approach the theoretically exact solution
more closely, is studied. The second order mean field equations of motion will result into five
coupled differential equations for the first and second order moments. These equations will how-
ever be more complex and cannot be solved analytically in a similar manner. Therefore, this will
not result in the analytical expression for the Kuramoto model.

In this chapter, the derivation of the system of coupled non-linear differential equations will
be discussed in Section 4.1.1. These equations are solved numerically in Matlab, and their solu-
tions are shown in Section 4.2. These numerical results will be compared to the solution of
Witthaut et al. [1]. Their stability will be verified by defining quantum fluctuations beyond
mean field in Section 4.3.
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4.1 Second Order Mean Field Approximation

The second order mean field approximation includes terms of first and second order only. The
higher order moments, the expectation values of the products with more than two annihila-
tion and/or creation operators, must be approximated in terms of these first and second order
moments. This is done in the following ways, for products of three or four operators [1, 33]. 16

〈ÂB̂Ĉ〉 ≈ 〈Â〉〈B̂Ĉ〉+ 〈B̂〉〈ÂĈ〉+ 〈Ĉ〉〈ÂB̂〉 − 2〈Â〉〈B̂〉〈Ĉ〉 (4.1)

〈ÂB̂ĈD̂〉 ≈ 〈ÂB̂〉〈ĈD̂〉+ 〈ÂĈ〉〈B̂D̂〉+ 〈ÂD̂〉〈B̂Ĉ〉 − 2〈Â〉〈B̂〉〈Ĉ〉〈D̂〉 (4.2)

Applying this to the initial equation (3.108) yields the following approximation

i
d

dt
〈ân〉 =ωn〈ân〉+ U

(
〈â†n〉〈â2

n〉+ 2〈ân〉〈â†nân〉 − 2〈â†n〉〈ân〉2
)

(4.3)

+

L∑
j=1

K̃n,j

2i

(
2〈âj〉〈â†j âj〉 − 2〈âj〉〈â†nân〉+ 2〈ân〉〈â†j ân〉 − 2〈ân〉〈â†nâj〉

+ 〈â†j〉〈â
2
j 〉+ 〈â†j〉〈â

2
n〉 − 2〈â†n〉〈âj ân〉 − 2〈â†j〉〈âj〉

2 − 2〈â†j〉〈ân〉
2 + 4〈â†n〉〈âj〉〈ân〉

)
It can be noted that there are various new expectation values for which the equation of motion
will have to be determined in order to solve (4.3). The additional equations that are needed to
solve this new system are the time derivatives for the following expectation values 〈â2

n〉, 〈â†nân〉,
〈ânâm〉 with n 6= m and 〈â†nâm〉 with n 6= m. These are given in Section 4.1.1. The other possible
combinations of annihilation and creation operators are either the same as or can be deduced
from the products above. For example, as Witthaut et al. [1] used already, the following can be
used for the differential equation for the creation operator for mode n.

〈â†n〉 = 〈ân〉∗ (4.4)

In words, the expectation value of the creation operator is the complex conjugate of the annihil-
ation operator. For 〈â†2n 〉 and 〈â†nâ†m〉 similar relations can be used.

〈â†2n 〉 =〈â2
n〉∗ (4.5)

〈â†nâ†m〉 =〈ânâm〉∗ n 6= m (4.6)

Furthermore, the equation of 〈ânâ†n〉 can be shown to be equal to the differential equation for
〈â†nân〉. Namely, from the commutation relation (3.12) it can be deduced that

â†nân = ânâ
†
n − 1 (4.7)

Substituting this into a time derivative will give the same result, as this constant −1 will fall out.

Note that the operators for different modes commute and can therefore be re-ordered arbitrarily.
As a result, 〈ânâm〉 = 〈âmân〉 and 〈â†nâm〉 = 〈âmâ†n〉 for n 6= m. Therefore only one equation
suffices for each combination of operators for n and m, regardless of the order that they appear in.

16As only first order mean field was considered in Witthaut et al. [1], the second order equations of motion
are derived by hand with he approximations (4.1) and (4.2). These approximations were found in Tikhonenkov
et al. [33], the source that [1] cited to justify the first order mean field. The truncations are based on the
Hartree-Fock-Bogoliubov theory and can be applied to condensates and weakly interacting Bose gases [19, 33].
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The number of equations will be higher for a larger set of modes, as equations of motion are
needed for each mode. The amount of distinct equations will however not be dependent on the
number of modes assumed, as the equation is of the same form for each mode (or combination
of modes) because the modes are assumed to be identical. Therefore the only effect of a higher
number of modes is that the system will have to be solved with a higher number of equations
numerically, but these equations are all of the same shape.

A few checks can be done for each equation of motion that is computed. In the initial equation
(3.108), the contribution of the interaction Hamiltonian Ĥs will reduce to zero for the term j = n
in the summation. This can be seen from the definition of the Hamiltonian (3.104) as well as
by filling in j = n in the equation (3.108). This physically means that there is only coupling
present between different modes. The contribution for the mode itself is entirely expressed in
the first part of the Hamiltonian. The fact that this term of the sum should reduce to zero can
be used as the first check for each of the (approximated) equations. Also, each equation should
have 10 negative and 10 positive terms in the terms that follow from the interaction part of the
Hamiltonian Ĥs. Furthermore, the the order of the terms can be easily checked, as well as the
number of creation versus annihilation operators. The summations over j for either Kn,j or Km,j

should be the same (but m substituted for n or the other way around). Lastly, the symmetry in
the commutation relations has to be visible in the equations as well.

4.1.1 Equations of Motion

In order to solve equation (4.3) (for different modes n), the equations of motion for 〈â2
n〉, 〈â†nân〉,

〈ânâm〉 with n 6= m and 〈â†nâm〉 with n 6= m have to be determined. With the use of various
commutation relations, the equations of motion for (second order) products of annihilation and
creation operators (for either different or the same modes) are derived with the Heisenberg equa-
tion of motion (3.16).

The commutation relations that were used are

[ân, â
†
j âj ] = δnj ân (4.8)

[â†n, â
†
j âj ] = −δnj â†n (4.9)

[ân, â
†2
j â

2
j ] = 2δnj â

†
nâ

2
n (4.10)

[â†n, â
†2
j â

2
j ] = −2δnj â

†2
n ân (4.11)

[ân, â
†
j âlâ

†
j âj ] = δnj âlâ

†
j âj + δnja

†
j âlâj (4.12)

[â†n, â
†
j âlâ

†
j âj ] = −δnlâ†2j âj − δnj â

†
j âlâ

†
j (4.13)

[ân, â
†
j âlâ

†
l âl] = δnj âlâ

†
l âl + δnlâ

†
kâ

2
k (4.14)

[â†n, â
†
j âlâ

†
l âl] = −δnlâ†j â

†
l âl − δnlâ

†
j âlâ

†
l (4.15)

These are all derived from equations (3.105) and (3.106), see footnote 15, which boil down to
the elementary commutation relation (3.12).

After computing the equations of motion, the second order mean field approximations (4.1)
and (4.2) are applied. This results in the final second order mean field equations of motion; a
system of five coupled differential equations. Equation (4.3) is the first one, and the expecta-
tion values that appear in any of the five coupled equations are expressed in one of the other
equations.
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i
d

dt
〈â2
n〉 =2ωn〈â2

n〉+ U

(
2〈â†n〉〈â2

n〉+ 4〈ân〉〈â†nân〉 − 4〈ân〉2〈â†n〉
)

(4.16)

+

L∑
j=1

K̃n,j

2i

(
2〈â2

j 〉〈â
†
j ân〉+ 6〈â2

n〉〈â
†
j ân〉 − 4〈â2

n〉〈â†nâj〉+ 4〈â†j âj〉〈âj ân〉

− 8〈â†nân〉〈âj ân〉 − 4〈â†j〉〈âj〉
2〈ân〉 − 4〈â†j〉〈ân〉

3〈+8〈â†n〉〈âj〉〈ân〉2
)

i
d

dt
〈â†nân〉 =U

(
〈â†n〉〈â2

n〉+ 2〈ân〉〈â†nân〉 − 2〈â†n〉〈â†nân〉 − 〈ân〉〈â†2n 〉 − 2〈â†n〉〈ân〉2 (4.17)

+ 2〈â†n〉2〈ân〉
)

+

L∑
j=1

K̃n,j

2i

(
+ 2〈â†j âj〉〈â

†
j ân〉+ 2〈â†j âj〉〈â

†
nâj〉

− 2〈â†nân〉〈â
†
j ân〉 − 2〈â†nân〉〈â†nâj〉 − 2〈â†2n 〉〈âj ân〉+ 2〈â†2j 〉〈âj ân〉

− 〈â2
n〉〈â†nâ

†
j〉+ 〈â2

j 〉〈â†nâ
†
j〉 − 2〈â†j〉

2〈ân〉〈âj〉+ 2〈â†n〉2〈ân〉〈âj〉

− 2〈â†n〉〈â
†
j〉〈âj〉

2 + 2〈â†n〉〈â
†
j〉〈ân〉

2

)
For different modes (n 6= m), when applying the second order mean field approximation, the
equations of motion are the following.

i
d

dt
〈ânâm〉 =(ωn + ωm)〈ânâm〉+ U

(
〈â2
n〉〈â†nâm〉+ 〈â2

m〉〈â†mân〉 (4.18)

+ 2〈â†nân〉〈ânâm〉+ 2〈â†mâm〉〈ânâm〉 − 2〈ân〉2〈âm〉〈â†n〉 − 2〈âm〉2〈ân〉〈â†m〉
)

L∑
j=1

K̃n,j

2i

(
2〈â†j âj〉〈âj âm〉 − 2〈â†nân〉〈âj âm〉+ 2〈â†j ân〉〈ânâm〉

− 2〈â†nâj〉〈ânâm〉 − 2〈â†nâm〉〈ânâj〉+ 〈â†j âm〉〈â
2
j 〉+ 〈â†j âm〉〈â

2
n〉

− 2〈â†j〉〈âj〉
2〈âm〉 − 2〈â†j〉〈ân〉

2〈âm〉+ 4〈â†n〉〈âj〉〈ân〉〈âm〉
)

+

L∑
j=1

K̃m,j

2i

(
2〈â†j âj〉〈âj ân〉 − 2〈â†mâm〉〈âj ân〉+ 2〈â†j âm〉〈ânâm〉

− 2〈â†mâj〉〈ânâm〉 − 2〈â†mân〉〈âmâj〉+ 〈â†j ân〉〈â
2
j 〉+ 〈â†j ân〉〈â

2
m〉

− 2〈â†j〉〈âj〉
2〈ân〉 − 2〈â†j〉〈âm〉

2〈ân〉+ 4〈â†m〉〈âj〉〈ân〉〈âm〉
)
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i
d

dt
〈â†nâm〉 =(ωm − ωn)〈â†nâm〉+ U

(
− 〈â†2n 〉〈ânâm〉+ 〈â2

m〉〈â†nâ†m〉 (4.19)

− 2〈â†nân〉〈â†nâm〉+ 2〈â†mâm〉〈â†nâm〉+ 2〈â†n〉2〈ân〉〈âm〉 − 2〈â†n〉〈â†m〉〈âm〉2
)

L∑
j=1

K̃n,j

2i

(
2〈â†j âj〉〈â

†
mâj〉 − 2〈â†nân〉〈â†mâj〉+ 2〈â†mân〉〈â

†
j ân〉 − 2〈â†mân〉〈â†nâj〉

+ 〈â2
j 〉〈â

†
j â
†
m〉+ 〈â2

n〉〈â
†
j â
†
m〉 − 2〈âj ân〉〈â†j â

†
m〉

− 2〈â†j〉〈â
†
m〉〈âj〉2 − 2〈â†j〉〈â

†
m〉〈ân〉2 + 4〈â†n〉〈â†m〉〈ân〉〈âj〉

)
+

L∑
j=1

K̃m,j

2i

(
2〈â†j âj〉〈â

†
nâj〉 − 2〈â†mâm〉〈â

†
j ân〉+ 2〈â†mân〉〈â†mâj〉 − 2〈â†mân〉〈â

†
j âm〉

+ 〈â2
j 〉〈âj ân〉+ 〈â2

m〉〈âj ân〉 − 2〈â†j â
†
n〉〈ânâm〉

− 2〈â†j〉
2〈â†n〉〈âj〉 − 2〈â†m〉2〈ân〉〈âj〉+ 4〈â†j〉〈â

†
m〉〈ân〉〈âm〉

)
Equations (4.3) and (4.16) - (4.19) will have to be solved to find the behaviour of the total
system. Analytically, this is not possible any longer as the equations have become too complex.
Therefore, the equations will be solved numerically in Matlab.
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4.2 Numerical Results

The new equations of motion (4.3) and (4.16) - (4.19) cannot be solved analytically. Therefore,
these equations are numerically solved in Matlab. As stated before, the higher the amount of
modes considered in the system, the higher the number of equations that have to be solved.
Therefore, the most simple system of two modes is solved for first. To solve for 〈â1〉 and 〈â2〉, a
system of nine coupled and non-linear differential equations is defined (one for each operator, and
different modes yield different operators although they have the same form of equations). These
differential equations are solved simultaneously in small time steps, such that the dynamics of
the system can be studied. The code for the numerical solution is included in Appendix A.

To be able to compare the results to the first order mean field solution, this system of equa-
tions is solved numerically as well. This will be a system of two differential equations, one for
each mode. These equations are defined as (3.110).

The input values ωi, U and K are chosen the same for both the first and second order mean
field approximations. Therefore, the only difference between the two solutions can be a con-
sequence of the different approximation, thus of the interaction between the various modes. The
use of second order moments instead of first order moments is intended to be the only difference
between the two numerical solutions. However, when using the second order moments, a higher
number of equations has to be solved. As the system is more complex, the numerical errors
might effect the system more strongly. Moreover, as the calculations were done by hand, small
errors might be more probable to occur.

The numerical solutions for both the first and second order were unstable when using the Runge-
Kutta method; for a longer integration time, the expectation values would increase rapidly. The
two-mode system seemed unstable for both first and second order, which showed for larger time
spans. With a different time-integration method however, for example the trapezoidal method or
the Verlet algorithm, the first order mean field solutions were found to be stable. The numerical
results for first and second order mean field will be discussed in Sections 4.2.1 and 4.2.2.

4.2.1 First Order Mean Field

The numerical solution for the first order mean field equations can be found for various time
spans, parameter choices and initial conditions. The Runge-Kutta formula for numerical integ-
ration was used first to find the solutions for (3.110) in case of two modes. For very long time
spans or higher values for U , K or ωi, the amplitudes of the operator expectations c1 = 〈â1〉
and c2 = 〈â2〉 grow to high values such that the numerical integration stops. The solution thus
seems to be unstable for long times or a high value of the parameters.

For a shorter integration time, or lower values for U and K in equation (3.110), the dynam-
ics of the system can be studied and compared to the theoretical expectations and the solutions
of Witthaut et al. [1]. In Figures 7 and 8, the amplitude of the (complex valued) expectation
value of the creation operator |ci|2 = |〈âi〉|2 is plotted versus time for each mode i. Figure 7
shows the behaviour for very short times, and thus shows the very first dynamics of the system
and the first part of Figure 8, which shows a longer integration time.
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Figure 7: Matlab plot of the modulus of the amplitudes of the (complex) expectation value 〈â1〉 = c1
and 〈â2〉 = c2 versus time, by numerical integration (Appendix A) of the first order mean field

equations of motion with the Runge-Kutta method. The input parameters were U = 0.5, K = 0.5,
ω1 = 0.6 and ω2 = 0.8. The initial conditions were chosen c1 = c2 = 2i at t = 0.

Figure 8: Matlab plot of the modulus of the amplitudes of the (complex) expectation value 〈â1〉 = c1
and 〈â2〉 = c2 versus time, by numerical integration (Appendix A) of the first order mean field

equations of motion with the Runge-Kutta method. The input parameters were U = 0.5, K = 0.5,
ω1 = 0.6 and ω2 = 0.8. The initial conditions were chosen c1 = c2 = 2i at t = 0.
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A few things can be noticed in these plots. First, for both modes the expectation values of the
annihilation operator indeed grow in amplitude exponentially. Secondly, the amplitudes cn oscil-
late in time and there is a clear difference in amplitude between mode 1 and mode 2, whereas the
only difference in their equations was their natural frequency ωi. Furthermore, the oscillations
of the amplitudes seem to be mirrored; when the amplitude of c1 increases the amplitude of
c2 decreases and the other way around. These observations could be explained by looking at
the system as a non-linear oscillator, although the values of c1 and c2 are complex because of
which the comparison does not hold exactly. When both the initial conditions and the natural
frequencies were however set to the same value, both modes show exactly the same behaviour (as
could be expected). This is one of the checks to exclude the possibility that cause for unexpected
behaviour is in improper implementation of the equations of motion.

The phase plots for the complex amplitudes 〈âi〉 = ci were not as insightful and are there-
fore not included in this report. When the amplitudes do not stay constant, the phase of these
complex values cannot be easily compared with the phase in the sense of the Kuramoto model.
For longer times, the phase plot showed a lot of oscillations due to the jump in argument from
0 to 2π, which undermined the ability to interpret the plot correctly.

As the most important result is the instability of the numerical results, the possible causes
are elaborated on. These could be either in the system of equations itself or in the numerical
time integration.

On the one hand, one might not expect the system of equations to be unstable as its results
in Witthaut et al. [1] do not show any instability. In this paper however, for this problem
only the theoretical solutions were given and those were only analytically computed under the
assumption that the amplitude |ci| would be constant for each mode. In other words, on the
manifold where

d|cn|2

dt
= 0 (4.20)

the Kuramoto equation would follow as the differential equations for the phases of these amp-
litudes φn [1]. Equation (4.20) holds if the amplitudes of all modes have the same value, thus
for two modes if [1]

|c1|2 = |c2|2 (4.21)

The initial conditions used for the numerical solutions did satisfy this characteristic, as they were
both taken exactly the same (complex) value. It seems from the results in Figure 8 however,
that the system does not stay on the (toric) manifold where (4.20) and (4.21) hold [1].

If the instability of the numerical results were assumed to be caused by an unstable system
of equations, the most likely explanation for the instability of the first order mean field equations
is the limitation of two modes only. The truncation to first order moments is generally valid
for Bose-Einstein condensates with a high number of modes, as the error decreases as 1/N [1,
33]. The minimal value of two modes might not satisfy the mean field equations close enough,
due to which the approximation of the system is unstable. It could therefore be that the theor-
etical equations are stable, but that the numerical execution for two modes only will be unstable.

On the other hand, the exponential growth of the parameters for large times or high-valued
parameters might be caused by errors in the numerical integration. This is quite likely, as even
the harmonic oscillator is unstable when using the Runge-Kutta 4 method for integration. This
can be explained by the eigenvalues of the system. As these are purely imaginary in case of
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the harmonic oscillator, the real part should be zero. In the numerical values however, this real
part will be close to zero but can be either slightly positive or negative. A positive real part of
the eigenvalue will cause the system to blow up, which will show in the results. A solution to
this problem might be using the Verlet integration algorithm 17 , or using a different numerical
integration method.

It was checked first whether the complex integration was causing errors in the numerical process
by separating the complex differential equations into a real and imaginary part. This was shown
to have no effect however, as the numerical solutions were the same.

Moreover, it could be that the differential equations show stiffness, such that certain numer-
ical methods are numerically unstable. Stiff differential equations describe problems that exhibit
transients [36]. Their solutions are the sum of high frequency oscillations and a decaying func-
tion, which tends to an equilibrium value. Due to these high frequency oscillations, explicit
time-integration methods show problems. Namely, the time step of an explicit time-integration
method has to be chosen small enough to show these fast oscillations. However, with respect to
the accuracy of the quasi-stationary solution, larger time steps could be taken. Therefore, for
solutions which show both high frequency oscillations and a long-term quasi-stable solutions, the
stability condition restricts the time step more than the accuracy requirement [36]. Implicit time-
integration methods must be used instead, as these are unconditionally stable and thus impose
no restrictions on the step size. An example of such an implicit method which is unconditionally
stable, the trapezoidal method could be studied. This method is indeed unconditionally stable
when all eigenvalues have a non-positive real part whereas the Runge-Kutta methods are only
stable for the region shown in Figure 9.

Figure 9: Stability region for the Runge-Kutta time-integration method for second and fourth order
[25].

As the numerical results did indeed show high frequency oscillations as well as different long-term

17The Verlet integration method is a numerical method used to integrate Newton’s equations of motion. It
provides good numerical stability and can be seen as an explicit central difference method. More on this algorithm
can be read in Verlet [35] or Hairer et al. [22].
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Figure 10: Matlab plot of the modulus of the amplitudes of the (complex) expectation value 〈â1〉 = c1
and 〈â2〉 = c2 versus time, by numerical integration with the trapezoidal rule (Appendix A). The input

parameters were U = 0.5, K = 0.5, ω1 = 0.6 and ω2 = 0.8. The initial conditions were chosen
c1 = c2 = 2i at t = 0.

behaviour, the instability of the Runge-Kutta time-integration method might have caused the
instability in the numerical results for the first order mean field solutions, shown in Figures 7
and 11. To check whether this is the case, an implicit numerical integration method is used to
solve the system of differential equations. The results of integration with the trapezoidal method
are shown in Figure 10.

It can be noted that there was indeed a cause for instability in the numerical integration as the
integration with the implicit trapezoidal method shows no ongoing increase in magnitude of the
complex amplitude. Its values oscillate strongly in the beginning, but seem to converge to a finite
value for longer times. A high frequent oscillation is still present however, but the amplitude
of this oscillation is small. This oscillation does still cause the phase plots to be incomparable
to the Kuramoto phase oscillations. Namely, the solutions for the magnitudes of the complex
amplitude are not constant and thus do not satisfy equation (4.20).

Further research is needed on the (in)stability of the time-integration methods used to solve
the equations of motion for the mean field approximation. The amplification factor of the sys-
tem and the eigenvalues of the Jacobian matrix could give more insight in the propagation of
numerical errors. The Verlet algorithm could be studied and applied to the system of differential
equations, as this would provide a stable numerical integration method.
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4.2.2 Second Order Mean Field

The second order mean field equations of motion were solved numerically as well. Nine coupled
differential equations were implemented in Matlab en solved for using the Runge-Kutta as well
as the trapezoidal time-integration again, see Appendix A.

Where the first order solutions could be computed for longer times, the second order solu-
tion grows even more rapidly and can therefore only be numerically integrated for very short
time spans. The results of this time integration can be seen in Figure 11. Notice that the plot
has a logarithmic y-axis and is thus scaled differently from the earlier plots. Unfortunately, no
solutions were found which could give some insight in the new approximation of the mean field
equations of motion. It can therefore not be concluded what the effect is of extending the mean
field approximation to second order, for a set of two modes.

Figure 11: Matlab plot of the modulus of the amplitudes of the (complex) expectation value 〈â1〉 = c1
and 〈â2〉 = c2 versus time, by numerical integration (Appendix A) of the second order mean field
equations of motion using the trapezoidal method. The input parameters were U = 0.5, K = 0.5,

ω1 = 0.6 and ω2 = 0.8. The initial conditions were chosen c1 = c2 = 2i at t = 0. The time integration
has stopped early because the magnitude of the complex amplitude has reached too high values.

The fact that for second order, the amplitude of the complex expectation values increases at
an even faster rate is remarkable. Both the Runge-Kutta integration as well as the trapezoidal
method give unstable solutions. This was striking as this new approximation was expected to
resemble the theoretical solution of equation (3.108) more closely, and was therefore not expected
to have such a large influence. In fact, the second order influences were hypothetically assumed
to be small as the first order mean field approximation was said to be justified. This difference
could however be due to the use of only two modes. Furthermore, when the first order solution
was found to show instability as well, the second order was naturally predicted to be unstable
as well. With more equations (which all have roughly the same form as the first order equa-
tions), the unstable effects are only enlarged. Even more fundamentally, the correctness of the
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second order mean field equations of motion could be questioned. These were based on equa-
tions (4.1) and (4.2) from Tikhonenkov et al. [33]. The justification for this way of truncation
includes models, such as the Hartree-Fock-Bogoliubov theory, which were not studied for this
thesis. Therefore, further research into this branch of quantum mechanics is needed. Also, the
second order equations of motion were derived by hand and thereafter implemented in Matlab
manually. Errors could have slipped in, although multiple checks have been done to avoid this
(see Section 3.4). The numerical time integration must again be investigated into further detail,
such that the integration can be excluded as a cause for instability in the second order mean
field equations of motion.

In Section 4.3, the difference between the first and second order mean field solutions are studied
by looking at quantum fluctuations beyond mean field.

48



4.3 Quantum Fluctuations

To find out whether the mean field approximation is indeed unstable when the system is limited
to two modes only, the dynamics beyond mean field are studied. If these can be shown to be
unstable, the growth in amplitude of the expectation values would be explained by the instability
of the mean field approximation.

To do so, the dynamics of quantum fluctuations beyond mean field are studied. This is sim-
ilar to the approach followed in Witthaut et al. [1] to describe system the beyond mean field.
The bosonic annihilation operators are decomposed into two parts. The first part is the condens-
ate mode cn, which is the averaged effect of the condensate [1]. This mode is described by the
expectation value of the annihilation operator in (first order) mean field 〈ân〉. The second part

is the operator for the remaining quantum fluctuations b̂n. This results in the following ansatz:

ân = cn + b̂n (4.22)

For the creation operator, the ansatz is analogously

â†n = c∗n + b̂†n (4.23)

In these equations, the condensate mode cn or c∗n are given by the expectation value of ân and
â†n respectively, in the absence of any correlations between the condensate operators (and thus
in first order mean field). This way of describing the system resembles perturbation theory, as
the condensate mode system can be solved analytically and the perturbation of the quantum
fluctuations is assumed to be small.

In an almost pure condensate with N atoms, cn is of order
√
N whereas the fluctuations b̂n

are of order 1 [1]. This shows that for a high number of modes, the quantum fluctuations can
indeed be neglected, which results in the mean field solution. For two modes only however, the
orders of cn and b̂n are similar.

If the quantum fluctuations b̂n are high and cannot be neglected, the (first order) mean field ap-
proximation does not resemble the theoretical solution for the expectation value of ân correctly.
Namely, in the first order mean field approximation, the expectation value of the annihilation
operator is assumed to be exactly cn and b̂n is set to zero.

To find out the influence of the quantum fluctuations, the difference between the first and second
order mean field equations is studied. Equations (4.22) and (4.23) are substituted in the first
and second order mean field equations of motion, equations (3.110) and (4.3) respectively. In
first order mean field however, the fluctuations do not contribute to the equations as their mean
value is zero. As stated before, 〈b̂n〉 fades and the ansatz leaves 〈âi〉 = ci unaffected.

The second order moments will be

〈âiâj〉 = 〈(ci + b̂i)(cj + b̂j)〉 (4.24)

This product can be expanded, which gives terms up to second order in b̂. Because the quantum
fluctuations are assumed small, all equations are worked out up to first order in b̂.

Therefore, the time dependence of the operator b̂n for quantum fluctuations can be constructed
by taking the difference of the first and second order mean field equations of motion. This way,
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all terms with cn only will drop out, as they occur in both first and second order mean field. 18

The equations for b̂n will therefore remain.

After rewriting the equations for two modes, a differential equation for b̂1 and b̂2 can be found
in terms of the operators themselves and their complex conjugates. As the equations are worked
out to first order in b̂n and b̂†n, differential equations for b̂n and b̂†n are linear. For two modes,
the system of linear coupled differential equations can therefore be described in a 2x2 matrix B
such that 

˙̂
b1
˙̂
b†1
˙̂
b2
˙̂
b†2

 = B


b̂1

b̂†1

b̂2

b̂†2

 (4.26)

The 4x4 matrix B is defined as
B =

(
α β γ δ

)
(4.27)

With

α =

4U |c1|2 + 2iK12(c∗1c2 − c1c∗2)
−2Uc∗21 + 2iK12c

∗
1c
∗
2

2iK12(|c2|2 − |c1|2)
−iK12(c∗21 + c∗22 )

β =

2Uc21 + 2iK12c1c2
−4U |c1|2 + 2iK12(c1c

∗
2 − c∗1c2)

−iK21(c21 + c22)
2iK12(|c2|2 − |c1|2)

γ =

2iK12(|c1|2 − |c2|2)
−iK12(c∗21 + c∗22 )

4U |c2|2 + 2iK12(c1c
∗
2 − c∗1c2)

−2Uc∗22 + 2iK12c
∗
1c
∗
2

δ =

−iK12(c21 + c22)
2iK12(|c1|2 − |c2|2)
2Uc22 + 2iK12c1c2

−4U |c2|2 + 2iK12(c∗1c2 − c1c∗2)

The eigenvalues for the matrix B are determined with Matlab (see Appendix A). For the values
of c1 and c2, the results from the first order mean field equations of motion are used. These vary
in time, and thus will the eigenvalues have a different value for each time instance. However, it
can be noted that the eigenvalues are always of the form ai, b, −ai and −b, with a and b real
and positive. It is important to point out that this result was thus found by filling in various
values for |c1|2 and |c2|2 at random times, and is not proven mathematically. From this, it can

be deduced (with a critical note) that the system of differential equations for b̂1, b̂1, b̂†1 and b̂†2 is
unstable because one of the eigenvalues has a real part larger than zero.

Therefore, the quantum fluctuations b̂n cannot be neglected for this two mode system. These
results (partly) explain the instability that shows in te solutions of the equations of motion in
Section 4.2.

18Intuitively, this can be described in the following manner. The equation is not exact however, but can be
seen as a guide to show what way the resulting differential equations for b̂n will appear.

d〈ân〉
dt

∣∣∣∣
mf 2

−
d〈ân〉
dt

∣∣∣∣
mf 1

=
dcn

dt
+
db̂n

dt
−
dcn

dt
=
db̂n

dt
(4.25)

. In the equation above, ’mf 1’ is for first order and ’mf 2’ for second order mean field.
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5 Concluding Remarks

First and second order mean field approximations are applied to the equations of motion of
the amplitudes cn = 〈ân〉 for each mode of an isolated quantum many-body system. In first
order mean field, under the assumption that each mode has the same (constant) amplitude, the
Kuramoto equation follows for the phases of the complex amplitudes [1]. All correlations between
the operators of various modes are neglected in this approximation. To study this and to refine
the mean field solution, the equations of motion have been extended to second order mean field.

Numerical integration has been used to solve the system of coupled differential equations
for two modes. The solutions showed to be unstable. This was verified by defining quantum
fluctuations beyond mean field, which were shown not to be negligible. Possible causes for
instability could be the limitation to two modes only, for which the mean field solution might
not approximate the system closely enough.

Because of the high frequent oscillations in the amplitudes and the instability of the solutions,
comparison between the mean field equations of motion and the Kuramoto model was difficult.
Furthermore, no solutions were found which could give some insight in the new approximation
of the mean field equations of motion. It can therefore not be concluded what the effect is of
extending the mean field approximation to second order, for a set of two modes.

Further research could include a higher number of modes in the numerical integration, to be
able to check for the effects of extending to second order mean field. These equations of motion
are theoretically determined for an arbitrary number of modes, and can thus be used. Moreover,
the use of different integration methods and their stability could be analysed further, as well as
the stability of the Kuramoto equations themselves.
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[16] J. Estéve et al. Squeezing and entanglement in a Bose-Einstein condensate. Nature, 2008.

[17] Christopher C. Gerry and Peter L. Knight. Introductory Quantum Optics. Cambridge Uni-
versity Press, 2005.
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A Matlab Code

The first order equations of motion for c1 and c2 are implemented in Matlab the following way.

1 f unc t i on [ dy ] = Ode1( y )
2 % F i r s t order equat ions o f motion f o r two modes
3 w= [ 0 . 6 , 0 . 8 ] ;
4 U=1;
5 K=1;
6 dy=ze ro s (2 , 1 ) ;
7 dy (1) =(w(1) *y (1 )+U*( conj ( y (1 ) ) *y (1 ) ˆ2)+K/(2 j ) *( conj ( y (2 ) ) *y (1 )ˆ2+conj

( y (2 ) ) *y (2 ) ˆ−2*y (1 ) * conj ( y (1 ) ) *y (2 ) ) ) /1 j ;
8 dy (2) =(w(2) *y (2 )+U*( conj ( y (2 ) ) *y (2 ) ˆ2)+K/(2 j ) *( conj ( y (1 ) ) *y (2 )ˆ2+conj

( y (1 ) ) *y (1 ) ˆ−2*y (2 ) * conj ( y (2 ) ) *y (1 ) ) ) /1 j ;
9 end

The system of coupled differential equations for the second order mean field approximation is
implemented in Matlab the following way. These equations are the equations (4.3) and (4.16) -
(4.19) defined for both modes.

1 f unc t i on [ dy ] = Ode2( y )
2 %UNTITLED Summary o f t h i s func t i on goes here
3 % Deta i l ed exp lanat ion goes here
4 w= [ 0 . 6 , 0 . 8 ] ;
5 U=0.5;
6 K=0.5;
7 dy=ze ro s (9 , 1 ) ;
8 dy (1)= (w(1) *y (1 ) . . .
9 +U*( conj ( y (1 ) ) *y (3 )+2*y (1 ) *y (6 )−2*conj ( y (1 ) ) *y (1 ) ˆ2) . . .

10 +K/(2 j ) *(2*y (2 ) *y (7 )−2*y (2 ) *y (6 ) . . .
11 +2*y (1 ) *y (9 )−2*y (1 ) *y (8 ) . . .
12 +conj ( y (2 ) ) *y (4 )+conj ( y (2 ) ) *y (3 )−2*conj ( y (1 ) ) *y (5 ) . . .
13 −2*y (2 ) ˆ2* conj ( y (2 ) )−2*y (1 ) ˆ2* conj ( y (2 ) )+4*y (1 ) *y (2 ) * conj ( y (1 ) ) ) ) /1 j ;
14 dy (2) = (w(2) *y (2 ) . . .
15 +U*( conj ( y (2 ) ) *y (4 )+2*y (2 ) *y (7 )−2*conj ( y (2 ) ) *y (2 ) ˆ2) . . .
16 +K/(2 j ) *(2*y (1 ) *y (6 )−2*y (1 ) *y (7 ) . . .
17 +2*y (2 ) *y (8 )−2*y (2 ) *y (9 ) . . .
18 +conj ( y (1 ) ) *y (3 )+conj ( y (1 ) ) *y (4 )−2*conj ( y (2 ) ) *y (5 ) . . .
19 −2*y (1 ) ˆ2* conj ( y (1 ) )−2*y (2 ) ˆ2* conj ( y (1 ) )+4*y (2 ) *y (1 ) * conj ( y (2 ) ) ) ) /1 j ;
20 dy (3) = (2*w(1) *y (3 ) . . .
21 +U*(2* conj ( y (1 ) ) *y (3 )+4*y (1 ) *y (6 )−4*y (1 ) ˆ2* conj ( y (1 ) ) ) . . .
22 +K/(2 j ) *(2*y (4 ) *y (9 )+6*y (3 ) *y (9 )−4*y (3 ) *y (8 ) . . .
23 +4*y (7 ) *y (5 )−8*y (6 ) *y (5 ) . . .
24 −4*conj ( y (2 ) ) *y (2 ) ˆ2*y (1 )−4*conj ( y (2 ) ) *y (1 ) ˆ2 . . .
25 +8*conj ( y (1 ) ) *y (2 ) *y (1 ) ˆ2) ) /1 j ;
26 dy (4) = (2*w(2) *y (4 ) . . .
27 +U*(2* conj ( y (2 ) ) *y (4 )+4*y (2 ) *y (7 )−4*y (2 ) ˆ2* conj ( y (2 ) ) ) . . .
28 +K/(2 j ) *(2*y (3 ) *y (8 )+6*y (4 ) *y (8 )−4*y (4 ) *y (9 ) . . .
29 +4*y (6 ) *y (5 )−8*y (7 ) *y (5 ) . . .
30 −4*conj ( y (1 ) ) *y (1 ) ˆ2*y (2 )−4*conj ( y (1 ) ) *y (2 ) ˆ2 . . .
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31 +8*conj ( y (2 ) ) *y (1 ) *y (2 ) ˆ2) ) /1 j ;
32 dy (5) = (w(1) *y (5 )+w(2) *y (5 ) . . .
33 +U*( y (9 ) *y (4 )+y (8) *y (3 )+2*y (5 ) *y (7 )+2*y (5 ) *y (6 ) . . .
34 −2*y (1 ) ˆ2*y (2 ) * conj ( y (1 ) )−2*y (1 ) *y (2 ) ˆ2* conj ( y (2 ) ) ) . . .
35 +K/(2 j ) *(2*y (7 ) *y (4 )−2*y (6 ) *y (4 ) . . .
36 +2*y (9 ) *y (5 )−4*y (8 ) *y (5 ) . . .
37 +y (7) *y (4 )+y (7) *y (3 ) . . .
38 −2*y (2 ) ˆ3* conj ( y (2 ) )−2*y (1 ) ˆ2*y (2 ) * conj ( y (2 ) )+4*y (1 ) *y (2 ) ˆ2* conj ( y (1 )

) ) . . .
39 +K/(2 j ) *(2*y (6 ) *y (3 )−2*y (7 ) *y (3 ) . . .
40 +2*y (8 ) *y (5 )−4*y (9 ) *y (5 ) . . .
41 +y (6) *y (4 )+y (6) *y (3 ) . . .
42 −2*y (1 ) ˆ3* conj ( y (1 ) )−2*y (1 ) *y (2 ) ˆ2* conj ( y (1 ) )+4*y (1 ) ˆ2*y (2 ) * conj ( y (2 )

) ) ) /1 j ;
43 dy (6) = (U*( conj ( y (1 ) ) *y (3 )+2*y (1 ) *y (6 ) . . .
44 −2*conj ( y (1 ) ) *y (6 )−y (1 ) * conj ( y (3 ) ) . . .
45 −2*conj ( y (1 ) ) *y (1 ) ˆ2+2* conj ( y (1 ) ) ˆ2*y (1 ) ) . . .
46 +K/(2 j ) *(2*y (9 ) *y (7 )+2*y (8 ) *y (7 ) . . .
47 −2*y (9 ) *y (6 )−2*y (8 ) *y (6 ) . . .
48 −2*conj ( y (3 ) ) *y (5 )+2*conj ( y (4 ) ) *y (5 ) . . .
49 −conj ( y (5 ) ) *y (3 )+conj ( y (5 ) ) *y (4 ) . . .
50 −2*conj ( y (2 ) ) ˆ2*y (1 ) *y (2 )+2*conj ( y (1 ) ) ˆ2*y (1 ) *y (2 ) . . .
51 −2*conj ( y (1 ) ) * conj ( y (2 ) ) *y (2 ) ˆ2+2* conj ( y (1 ) ) * conj ( y (2 ) ) *y (1 ) ˆ2) ) /1 j ;
52 dy (7) = (U*( conj ( y (2 ) ) *y (4 )+2*y (2 ) *y (7 ) . . .
53 −2*conj ( y (2 ) ) *y (7 )−y (2 ) * conj ( y (4 ) ) . . .
54 −2*conj ( y (2 ) ) *y (2 ) ˆ2+2* conj ( y (2 ) ) ˆ2*y (2 ) ) . . .
55 +K/(2 j ) *(2*y (8 ) *y (6 )+2*y (9 ) *y (6 ) . . .
56 −2*y (8 ) *y (7 )−2*y (9 ) *y (7 ) . . .
57 −2*conj ( y (4 ) ) *y (5 )+2*conj ( y (3 ) ) *y (5 ) . . .
58 −conj ( y (5 ) ) *y (4 )+conj ( y (5 ) ) *y (3 ) . . .
59 −2*conj ( y (1 ) ) ˆ2*y (2 ) *y (1 )+2*conj ( y (2 ) ) ˆ2*y (2 ) *y (1 ) . . .
60 −2*conj ( y (2 ) ) * conj ( y (1 ) ) *y (1 ) ˆ2+2* conj ( y (2 ) ) * conj ( y (1 ) ) *y (2 ) ˆ2) ) /1 j ;
61 dy (8) = (−w(1) *y (8 )+w(2) *y (8 ) . . .
62 +U*(− conj ( y (3 ) ) *y (5 )−2*y (6 ) *y (8 ) . . .
63 +conj ( y (5 ) ) *y (4 )+2*y (8 ) *y (7 ) . . .
64 +2*conj ( y (1 ) ) ˆ2*y (1 ) *y (2 )−2*conj ( y (1 ) ) * conj ( y (2 ) ) *y (2 ) ˆ2) . . .
65 +K/(2 j ) *(2*y (7 ) *y (7 )−2*y (7 ) *y (6 ) . . .
66 +2*y (9 ) *y (9 )−2*y (9 ) *y (8 ) . . .
67 +y (4) * conj ( y (4 ) )+y (3) * conj ( y (4 ) )−2*y (5 ) * conj ( y (5 ) ) . . .
68 −2*conj ( y (2 ) ) ˆ2*y (2 ) ˆ2−2* conj ( y (2 ) ) ˆ2*y (1 ) ˆ2+4* conj ( y (1 ) ) * conj ( y (2 ) ) *

y (1 ) *y (2 ) ) . . .
69 +K/(2 j ) *(2*y (6 ) *y (6 )−2*y (6 ) *y (7 ) . . .
70 +2*y (9 ) *y (9 )−2*y (9 ) *y (8 ) . . .
71 +y (3) * conj ( y (3 ) )+y (3) * conj ( y (4 ) )−2*y (5 ) * conj ( y (5 ) ) . . .
72 −2*conj ( y (1 ) ) ˆ2*y (1 ) ˆ2−2* conj ( y (2 ) ) ˆ2*y (1 ) ˆ2+4* conj ( y (1 ) ) * conj ( y (2 ) ) *

y (1 ) *y (2 ) ) ) /1 j ;
73 dy (9) = (−w(2) *y (9 )+w(1) *y (9 ) . . .
74 +U*(− conj ( y (4 ) ) *y (5 )−2*y (7 ) *y (9 ) . . .
75 +conj ( y (5 ) ) *y (3 )+2*y (9 ) *y (6 ) . . .
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76 +2*conj ( y (2 ) ) ˆ2*y (2 ) *y (1 )−2*conj ( y (2 ) ) * conj ( y (1 ) ) *y (1 ) ˆ2) . . .
77 +K/(2 j ) *(2*y (6 ) *y (6 )−2*y (6 ) *y (7 ) . . .
78 +2*y (8 ) *y (8 )−2*y (8 ) *y (9 ) . . .
79 +y (3) * conj ( y (3 ) )+y (4) * conj ( y (3 ) )−2*y (5 ) * conj ( y (5 ) ) . . .
80 −2*conj ( y (1 ) ) ˆ2*y (1 ) ˆ2−2* conj ( y (1 ) ) ˆ2*y (2 ) ˆ2+4* conj ( y (2 ) ) * conj ( y (1 ) ) *

y (2 ) *y (1 ) ) . . .
81 +K/(2 j ) *(2*y (7 ) *y (7 )−2*y (7 ) *y (6 ) . . .
82 +2*y (8 ) *y (8 )−2*y (8 ) *y (9 ) . . .
83 +y (4) * conj ( y (4 ) )+y (4) * conj ( y (3 ) )−2*y (5 ) * conj ( y (5 ) ) . . .
84 −2*conj ( y (2 ) ) ˆ2*y (2 ) ˆ2−2* conj ( y (1 ) ) ˆ2*y (2 ) ˆ2+4* conj ( y (2 ) ) * conj ( y (1 ) ) *

y (2 ) *y (1 ) ) ) /1 j ;
85

86 end

The code to solve these equations is included below.

1 c l e a r a l l
2 c l o s e a l l
3

4 tmax=100;
5

6 % f i r s t order
7 y01=2j * ones (2 , 1 ) ;
8 [ t1 , y1]=ode45 (@( t , y1 )Ode1( y1 ) , [ 0 tmax ] , y01 ) ; %or ode23t
9 p lo t ( t1 , ang le ( y1 ( : , 1 ) ) )

10 hold on
11 p lo t ( t1 , ang le ( y1 ( : , 2 ) ) , ’ r ’ )
12 h1=legend ( ’ $\ phi 1$ ’ , ’ $\ phi 2$ ’ ) ;
13 x l a b e l ( ’Time $t$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Fonts i z e ’ ,15)
14 y l a b e l ( ’ Phase $\ p h i i $ o f complex amplitude $ c i $ ’ , ’ I n t e r p r e t e r ’ , ’

Latex ’ , ’ Fonts i z e ’ , 15)
15 s e t ( h1 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ , 15)
16 f i g u r e
17 p lo t ( t1 , abs ( y1 ( : , 1 ) ) ) ;
18 hold on
19 p lo t ( t1 , abs ( y1 ( : , 2 ) ) , ’ r ’ ) ;
20 h2=legend ( ’ $ | c 1 |ˆ2 $ ’ , ’ $ | c 2 |ˆ2 $ ’ ) ;
21 s e t ( h2 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ ,15)
22 x l a b e l ( ’Time $t$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Fonts i z e ’ ,15)
23 y l a b e l ( ’ Magnitude complex amplitude $ | c i |ˆ2 $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ,

’ Fonts i z e ’ ,15)
24

25 %% second order
26 y02=2j * ones (9 , 1 ) *2 j ;
27 [ t2 , y2]=ode45 (@( t , y2 )Ode2( y2 ) , [ 0 tmax ] , y02 ) ; %or ode23t
28 f i g u r e
29 p lo t ( t2 , ang le ( y2 ( : , 1 ) ) , ’ b ’ )
30 hold on
31 p lo t ( t2 , ang le ( y2 ( : , 2 ) ) , ’ r ’ )
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32 h1=legend ( ’ $\ phi 1$ ’ , ’ $\ phi 2$ ’ ) ;
33 x l a b e l ( ’Time $t$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Fonts i z e ’ ,15)
34 y l a b e l ( ’ Phase $\ p h i i $ o f complex amplitude $ c i $ ’ , ’ I n t e r p r e t e r ’ , ’

Latex ’ , ’ Fonts i z e ’ , 15)
35 s e t ( h1 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ , 15)
36 pr in t −djpeg90 phasesecondorder . jpg
37

38 f i g u r e
39 p lo t ( t2 , abs ( y2 ( : , 1 ) ) , ’b ’ ) ;
40 hold on
41 p lo t ( t2 , abs ( y2 ( : , 2 ) ) , ’ r ’ ) ;
42 h2=legend ( ’ $ | c 1 |ˆ2 $ ’ , ’ $ | c 2 |ˆ2 $ ’ ) ;
43 s e t ( h2 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ ,15)
44 x l a b e l ( ’Time $t$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Fonts i z e ’ ,15)
45 y l a b e l ( ’ Magnitude complex amplitude $ | c i |ˆ2 $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ,

’ Fonts i z e ’ ,15)
46

47 %% matrix
48 c l c
49 tpo in t = 0.5* tmax ; %moment in time f o r

determining matrix element
50 n1 = round ( tpo in t *( l ength ( t1 ) /tmax) ) ; %index o f element at t=tpo in t
51 n2 = round ( tpo in t *( l ength ( t2 ) /tmax) ) ;
52 c1=y1 ( n1 , 1 ) ;
53 c2=y1 ( n1 , 2 ) ;
54 w= [ 0 . 6 , 0 . 8 ] ;
55 U=0.5;
56 K=0.8;
57 matrix = 1/1 j * [ 4*U*abs ( c1 )ˆ2+2 j *K*( conj ( c1 ) *c2−c1* conj ( c2 ) ) ,2*U* c1

ˆ2+2 j *K* c1*c2 , . . .
58 2 j *K*( abs ( c1 )ˆ2−abs ( c2 ) ˆ2) , −1 j *K*( c1ˆ2+c2 ˆ2) ; . . .
59 −2*U* conj ( c1 )ˆ2+2 j *K* conj ( c1 ) * conj ( c2 ) , −4*U*abs ( c1 )ˆ2+2 j *K*( c1* conj (

c2 )−conj ( c1 ) * c2 ) , . . .
60 −1 j *K*( conj ( c1 )ˆ2+conj ( c2 ) ˆ2) , 2 j *K*( abs ( c1 )ˆ2−abs ( c2 ) ˆ2) ; . . .
61 2 j *K*( abs ( c2 )ˆ2−abs ( c1 ) ˆ2) , −1 j *K*( c1ˆ2+c2 ˆ2) , 4*U*abs ( c2 )ˆ2+2 j *K*( c1

* conj ( c2 )−conj ( c1 ) * c2 ) , . . .
62 2*U* c2ˆ2+2 j *K* c1* c2 ; . . .
63 −1 j *K*( conj ( c1 )ˆ2+conj ( c2 ) ˆ2) ,2 j *K*( abs ( c2 )ˆ2−abs ( c1 ) ˆ2) , −2*U* conj (

c2 )ˆ2+2 j *K* conj ( c1 ) * conj ( c2 ) , . . .
64 −4*U*abs ( c2 )ˆ2+2 j *K*( conj ( c1 ) *c2−c1* conj ( c2 ) ) ] ;
65 e=e i g ( matrix ) ;
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