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Abstract
This thesis is devoted to option pricing on backwardlooking rates. For the last decades, interest rate
products were often linked to IBOR rates. IBORs are shortterm borrowing rates charged between
global banks in the unsecured interbank market. The purpose of this thesis is to compare the Hull
White model to the BlackKarasinski model for the pricing of caps/floors on compounded rates. Both
models are socalled shortrate models, which are widely used for interest rate modelling. Due to
the IBOR reform, new products are expected to appear in the market. One type of these products is
caps/floors linked to the new RiskFree Rate (RFR). The new RFRs will be inarrears backwardlooking
rates and, as a consequence, have an impact on the choice of pricing models.

This thesis considers caps/floors on the new compounded RFR rates. For both models various
pricing techniques for caps/floors on compounded rates are investigated. For the HullWhite model,
the pricing kernel approach and a Monte Carlo simulation are explored. The pricing kernel approach
yields an analytic formula for caps/floors on compounded rates. This formula is also used for the
comparison. For the BlackKarasinski model, the pricing kernel approach, the trinomial tree method
and the Monte Carlo simulation are considered. The pricing kernel approach yields a semianalytic
formula for caps/floors on compounded rates. However, in practice the computation time of this semi
analytic formula turned out to be substantial. Further, despite the fast computation time of the trinomial
tree for LIBOR caps/floors, the trinomial tree method is rather slow for the caps/floors on compounded
rates. As a result, the Monte Carlo simulation is the most suitable pricing technique, along the three
explored methods, for caps/floors on compounded rates under the BlackKarasinski model. Therefore,
the Monte Carlo simulation is used for pricing caps on compounded rates in the model comparison.

Since there exists no liquid market yet for caps/floors linked to the new RFR, the models are cali
brated to a proxy market. First, the BlackKarasinski model is calibrated to the proxy market using a
heuristic approach. This heuristic approach is chosen as a compromise between computation time and
accuracy. Then, the HullWhite model is calibrated to the BlackKarasinski model using the stripping
method. Having both models calibrated, the price of caplets/floorlets on compounded rates are calcu
lated. Thereafter, these prices are inverted to Bachelier implied volatilities for a uniform comparison.
From the comparison of the two models, a difference in Bachelier implied volatility is observed in a
range of 4 to 4 bps. This is of one order less than the volatility itself.
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1
Introduction

This thesis is devoted to option pricing on backwardlooking rates. For the last decades, interest rate
products were often linked to InterBank Offered Rate (IBOR) rates. IBORs are shortterm borrowing
rates charged between global banks in the unsecured interbank market. One of the well known IBORs
is the London InterBank Offered Rate (LIBOR). The LIBOR rates are calculated for various currencies
and borrowing periods, ranging from one day to one year. The calculation of the LIBORs is based on
the quotes of a set of panel banks. The LIBOR rates were traditionally used as reference rates for
different interest rate products. The LIBOR rates are forwardlooking rates and, thus, are fixed at the
beginning of the period.

LIBOR rates have been subject to manipulations. In the past, some banks have already paid large
fines for manipulating LIBOR rates for their own gain. As a consequence, the LIBOR rates will be
reformed and replaced by the new RiskFree Rate (RFR). In general, LIBOR rates were planned to be
discontinued at the end of 2021. The new RFR will become the main reference rate for new interest
rate products. Moreover, the new RFR will have to replace the LIBOR for legacy contracts. In the
Eurozone, this new RFR is called the Euro Short Term Rate (ESTR) and will replace the current Euro
OverNight Index Average (EONIA) rate. The ESTR will be based on unsecured overnight transactions.
The compounded rate linked to the new RFR will thus be an inarrears backwardlooking rate. In
contrast to the LIBOR rate, this compounded rate is only known at the end of the period since it is
based on the new RFR, which is published daily.

Chapter 2 provides an introduction to derivatives pricing and is recommended for people who are
not familiar with interest rate derivatives. Within this chapter the definition of the zerocoupon bond and
different interest rates are introduced. Furthermore, a number of plain vanilla interest rate derivatives
and their pricing formulae are discussed. These pricing formulae can, for example, be obtained with
the Black and Bachelier models.

In this thesis, we focus on interest rate caps/floors. The LIBOR caps/floors provide an insurance
against the LIBOR rate rising above/falling below a certain level. However, since the LIBOR rate will
cease to exist, new products are expected to appear in the market. One of these products will be
caps/floors on compounded rates linked to the new RFR. These caps/floors linked to the new RFR will
provide an insurance against the compounded average of the new RFR rising above/falling below a
certain level. The IBOR reform has implications for the existing derivatives linked to the LIBOR rate,
as they will be amended to reference to compounded new RFRs. Moreover, the IBOR reform has
implications for new derivatives linked to the new RFR and their pricing models. The LIBOR rates are
forwardlooking and are fixed at the beginning of the accrual period. The compounded rates linked to
the new RFRs, however, are inarrears backwardlooking and are calculated at the end of the accrual
period. This is graphically illustrated in Figure 1.1. The compounded rate linked to the new RFR rate
fixes gradually during the whole accrual period, and therefore violates the assumptions of the Black
and Bachelier type models. As a consequence, standard models like the Black and Bachelier models
cannot directly be used anymore. Therefore, in this thesis, term structure models are used to price
derivatives linked to the new RFRs. In general, numerous models can be applied for this purpose.
However, this thesis focuses only on the socalled shortrate models.

There are two main research objectives. The first main research objective is how to price options

1



2 1. Introduction

on backwardlooking rates efficiently under various models. The second main research objective is
a model comparison to determine model risk. In this thesis, two different shortrate models are con
sidered. For this comparison, pricing techniques are required to calculate the price of caps/floors on
compounded rates. Based on the first main research objective, two pricing techniques are used for the
comparison between the models.

The first model is the onefactor HullWhite model. An advantage of the HullWhite model is the
existence of an analytical zerocoupon bond price formula due to the affine nature of the model. Further,
the HullWhite model exhibits mean reversion, which is desirable in interest rate modelling. Moreover,
the HullWhite model is a normally distributed model and has an analytical formula for caps/floors.
The model is chosen since it can be used as a potential interpolation model for cap/floor volatilities.
Since the market generally quotes vanilla options on a grid of strikes and maturities, prices of other
options have to be inferred from them based on interpolation. Therefore, one prefers an analytically
tractable model, which is the case for the onefactor HullWhite model. A detailed discussion about the
HullWhite model can be found in Chapter 3.

The second model we consider, is the BlackKarasinski model. This is a lognormally distributed
model that also exhibits mean reversion. A drawback of the BlackKarasinski model in comparison to
the HullWhite model is the absence of an analytical formula for the zerocoupon bond prices. This
model is considered because of the existence of a semianalytic pricing formula for caps/floors derived
by Turfus, 2021 using the pricing kernel approach. However, it turns out that in practice the computation
time is substantial. Therefore, we also consider numerical methods. More details about the Black
Karasinski model and the pricing methods are presented in Chapter 4.

Chapter 5 is dedicated to amodel comparison between the HullWhite and BlackKarasinski models.
As mentioned before, the HullWhite model might be used for interpolation, which can lead to potential
model risk. Therefore, this model comparison is done to infer the model risk. The foundations of this
comparison, like pricing techniques, etc., are laid down in Chapters 3 and 4 corresponding to the Hull
White and BlackKarasinski models, respectively. In order to make a comparison, the models have
to be calibrated to market data. However, at the moment, there exists no liquid market for derivatives
linked to the new RFR. Therefore, a quasicalibration to a proxy market is used, in order to obtain
realistic option prices for the model comparison. For more details, we refer to Chapter 5.

Lastly, a conclusion about the two models is given in Chapter 6. This chapter also includes recom
mendations for further research.

Today 𝑡 𝑡 + 3𝑀
(a) Rate definition of the 3𝑀 LIBOR rate.

Today 𝑡 𝑡 + 3𝑀
(b) Rate definition of the 3𝑀 compounded rate linked to the new RFR.

Figure 1.1: For a derivative linked to the 3𝑀 LIBOR rate, the payoff is known at time 𝑡 since the LIBOR fixes at the beginning of
the period. For a derivative linked to a compounded rate, the payoff is only known at the end of the period.



2
Introduction to interest rate derivatives

In this chapter we give an introduction to interest rates, interest rate derivatives, pricing techniques
and numerical methods for the derivative pricing. Below we focus on notions and tools needed for our
further considerations, a more extensive introduction can be found in e.g. Andersen and Piterbarg,
2010. We begin with the definition of a zerocoupon bond and different interest rates in Section 2.1,
which we use during this thesis. In Section 2.2 we present the basics of derivative pricing and Section
2.3 is devoted to various basic interest rate products and their pricing formulae. Last, Section 2.4
introduces various pricing techniques that can be used for option pricing.

2.1. Definitions
We start with the definition of the simplest product, namely a zerocoupon bond.

Definition 2.1. A zerocoupon bond is a product without coupon payments which pays 1 at maturity.
The 𝑡value of a zerocoupon bond with maturity 𝑇 is denoted by 𝑃(𝑡, 𝑇). Since a zerocoupon bond
pays 1 at maturity 𝑃(𝑇, 𝑇) = 1.

Below we introduce some notions of the interest rates that are used in this thesis.

Definition 2.2. Let 0 ≤ 𝑡 ≤ 𝑆 < 𝑇 be in year fractions, we define the following:

1. The spot LIBOR rate for the interval [𝑆, 𝑇] is given by:

𝐿(𝑆, 𝑇) = 1
𝑇 − 𝑆 (

1
𝑃(𝑆, 𝑇) − 1) .

2. The simple compounded forward LIBOR rate for the interval [𝑆, 𝑇] at time 𝑡 is defined as:

𝐹𝑙𝑖𝑏(𝑡, 𝑆, 𝑇) =
1

𝑇 − 𝑆 (
𝑃(𝑡, 𝑆)
𝑃(𝑡, 𝑇) − 1) .

3. The instantaneous forward rate at time 𝑡 with maturity 𝑇 is given by:

𝑓(𝑡, 𝑇) = −𝜕 log(𝑃(𝑡, 𝑇))𝜕𝑇 .

The instantaneous forward rate is the interest at time 𝑡 for an investment from time 𝑇 to 𝑇 + Δ
where Δ ↓ 0.

4. The shortrate at time 𝑡 is defined as:

𝑟(𝑡) = 𝑓(𝑡, 𝑡).

3



4 2. Introduction to interest rate derivatives

5. The compounded rate linked to an overnight rate over the period [𝑆 = 𝑡1, 𝑡1, … , 𝑡𝑀 = 𝑇] is given
by:

𝐶𝑅(𝑆, 𝑇) = 1
𝜏 (

𝑀

∏
𝑖=1
(1 + 𝜏𝑖𝑅𝑖) − 1) ,

where the product is over all business days in the period [𝑆, 𝑇], 𝜏 is the year fraction from 𝑆 to 𝑇,
𝜏𝑖 is the year fraction from 𝑡𝑖 to 𝑡𝑖+1 and 𝑅𝑖 is the overnight rate, for example EONIA, for time 𝑡𝑖.

2.2. Derivative pricing
As a brief introduction to the derivative pricing, we describe some general pricing theorems in Section
2.2.1. Moreover, the concept of change of measure is explained in Section 2.2.2. The measure change
is a useful tool that can help to simplify derivative pricing, especially for interest rate derivatives.

2.2.1. Pricing theorem
Most derivatives considered in this thesis are defined by their payoff paid at maturity time 𝑇. The
derivative pricing answers the question what the value of the derivative at any time 𝑡 < 𝑇 is. In order to
give a general result for the derivative pricing we have to start with some notions. We introduce the risk
neutral measureℚ with the moneymarket account as numeraire. Further, we define the moneymarket
account as 𝑀(𝑡) with dynamics:

𝑑𝑀(𝑡) = 𝑟(𝑡)𝑀(𝑡)𝑑𝑡, (2.1)

where 𝑟(𝑡) is a shortrate, see Definition 2.2. Solving this differential equation gives us:

𝑀(𝑡) = 𝑀(0)𝑒∫
𝑡
0 𝑟(𝑢)𝑑𝑢 .

Usually, 𝑀(0) = 1 such that we end up with:

𝑀(𝑡) = 𝑒∫
𝑡
0 𝑟(𝑢)𝑑𝑢 .

For a general numeraire, the following theorem gives the price of a derivative at time 𝑡.

Theorem 2.1. Let �̂�(𝑇) be the payoff at time 𝑇 of a derivative. Let us assume �̂�(𝑇) is a ℱ𝑇measurable
random variable. Then, for any 𝑡 < 𝑇 the time 𝑡value of the derivative under the measure ℚ�̂�, with
general numeraire �̂�, can be calculated as:

�̂�(𝑡) = 𝔼ℚ�̂� [ �̂�(𝑡)�̂�(𝑇) �̂�(𝑇)|ℱ𝑡] ,

where 𝔼ℚ�̂� is the expectation under the measure ℚ�̂�.

Proof. For the proof of this theorem, we refer to Shreve, 2004, p. 218.

Notice, when the moneymarket account is considered as numeraire, according to Theorem 2.1,
the time 𝑡value of a derivative can be calculated with:

�̂�(𝑡) = 𝔼ℚ [ 𝑀(𝑡)𝑀(𝑇) �̂�(𝑇)|ℱ𝑡] ,

where 𝔼ℚ is the expectation under the riskneutral measure with the moneymarket account as nu
meraire. Alternatively, if a derivative with maturity 𝑇 depends on an underlying 𝑋(𝑇), one can use the
FeynmanKac Theorem 2.2 to obtain the value of the derivative at time 𝑡 < 𝑇.

Theorem 2.2 (FeynmanKac). Let us assume that the moneymarket account is defined by (2.1) with
constant interest rate 𝑟(𝑡) = 𝑟. Let 𝑉(𝑡, 𝑋) be the value of a derivative depending on underlying 𝑋 = 𝑋(𝑡)
with dynamics:

𝑑𝑋(𝑡) = 𝜇(𝑡, 𝑋)𝑑𝑡 + 𝜎(𝑡, 𝑋)𝑑𝑊ℚ.



2.2. Derivative pricing 5

Suppose that 𝑉(𝑡, 𝑋) satisfies the following Partial Differential Equation (PDE):

𝜕𝑉
𝜕𝑡 + 𝜇(𝑡, 𝑋)

𝜕𝑉
𝜕𝑋 +

1
2𝜎

2(𝑡, 𝑋)𝜕
2𝑉
𝜕𝑋2 − 𝑟𝑉 = 0,

with final condition given by 𝑉(𝑇, 𝑋) = 𝐻(𝑇, 𝑋). The solution 𝑉(𝑡, 𝑋) of this PDE at any time 𝑡 < 𝑇 is
then given by:

𝑉(𝑡, 𝑋) = 𝑒−𝑟(𝑇−𝑡)𝔼ℚ [𝐻(𝑇, 𝑋)|ℱ𝑡] ,

where the expectation is under the riskneutral measure with the moneymarket account as numeraire.

Proof. For the proof, we refer to Oosterlee and Grzelak, 2020, p. 61.

Using either Theorem 2.1 or 2.2 one can price derivatives at time 𝑡. In particular, in the case of
European call and put options under the Black or Bachelier models, there exist analytic expressions
for the prices. More specifically, if the underlying is lognormally distributed, Black’s formula given in
Theorem 2.3 can be used. If the underlying is normally distributed Bachelier’s formula given in Theorem
2.4 can be used.

Theorem 2.3 (Black’s formula for European call and put options). Let 𝑋(𝑡) be the value of an underlying
asset at time 0 ≤ 𝑡 ≤ 𝑇, �̂�(𝑡) be the forward price at time 𝑡 of 𝑋(𝑇), i.e., �̂�(𝑡) = 𝔼ℚ𝑇 [𝑋(𝑇)|ℱ𝑡] where
the expectation is under the 𝑇forward measure. The 𝑇forward measure is the measure with zero
coupon bond 𝑃(⋅, 𝑇) as numeraire. Further, let 𝜎 be the volatility of the forward price. Assume that
𝑋(𝑇) conditional on the information at time 𝑡 is lognormally distributed with mean �̂�(𝑡) and standard
deviation 𝜎√𝑇 − 𝑡. Then, the price of a European call and put option with maturity 𝑇, strike 𝐾 and
underlying 𝑋(𝑡) is given by:

�̂�𝐶(𝑡) = 𝑃(𝑡, 𝑇) (�̂�(𝑡)Φ(𝑑1) − 𝐾Φ(𝑑2)) ,
�̂�𝑃(𝑡) = 𝑃(𝑡, 𝑇) (𝐾Φ(−𝑑2) − �̂�(𝑡)Φ(−𝑑1)) ,

where Φ(⋅) is the cumulative distribution function of a standard normal distribution, �̂�𝐶(𝑡) and �̂�𝑃(𝑡)
denote respectively the value of the call and put option and

𝑑1 =
log ( �̂�(𝑡)𝐾 ) + 1

2𝜎
2(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
,

𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡.

Proof. Following the proof of the general pricing theorem of GemanEl KarouiRochet, see Björk, 2004,
p. 361, we obtain for a European call option:

�̂�𝐶(𝑡) = 𝑋(𝑡)Φ(𝑑1) − 𝑃(𝑡, 𝑇)𝐾Φ(𝑑2).

With this expression for a European call option the following can be derived:

�̂�𝐶(𝑡) = 𝑋(𝑡)Φ(𝑑1) − 𝑃(𝑡, 𝑇)𝐾Φ(𝑑2)

= 𝑃(𝑡, 𝑇) ( 𝑋(𝑡)
𝑃(𝑡, 𝑇)Φ(𝑑1) − 𝐾Φ(𝑑2))

= 𝑃(𝑡, 𝑇) (𝔼ℚ𝑇 [ 𝑋(𝑇)𝑃(𝑇, 𝑇) |ℱ𝑡]Φ(𝑑1) − 𝐾Φ(𝑑2))

= 𝑃(𝑡, 𝑇) (�̂�(𝑡)Φ(𝑑1) − 𝐾Φ(𝑑2)) .

Similarly, with the general pricing theorem of GemanEl KarouiRochet the following expression for a
European put option can be obtained:

�̂�𝑃(𝑡) = 𝑃(𝑡, 𝑇)𝐾Φ(−𝑑2) − 𝑋(𝑡)Φ(−𝑑1)
= 𝑃(𝑡, 𝑇) (𝐾Φ(−𝑑2) − �̂�(𝑡)Φ(−𝑑1)) .
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Theorem 2.4 (Bachelier formula for European call and put options). Consider an underlying asset
𝑋(𝑡), 0 ≤ 𝑡 ≤ 𝑇. Let �̂�(𝑡) be the forward price at time 𝑡 of 𝑋(𝑇) under the 𝑇forward measure and 𝜎
the volatility of the forward price. Assume that 𝑋(𝑇) conditional on the information at time 𝑡 is normally
distributed with mean �̂�(𝑡) and standard deviation 𝜎√𝑇 − 𝑡. The price of a European call and put option
with maturity 𝑇, strike 𝐾 and underlying 𝑋(𝑡) is then given by:

�̂�𝐶(𝑡) = 𝑃(𝑡, 𝑇) [(𝑋(𝑡) − 𝐾)Φ(𝑑1) − 𝜎√𝑇 − 𝑡𝜑(𝑑1)] ,

�̂�𝑃(𝑡) = 𝑃(𝑡, 𝑇) [(𝐾 − 𝑋(𝑡))Φ(−𝑑1) + 𝜎√𝑇 − 𝑡𝜑(𝑑1)] ,

where Φ(⋅) is the cumulative distribution function of a standard normal distribution, 𝜑(⋅) is the standard
normal density function and 𝑑1 is given by:

𝑑1 =
𝑋(𝑡) − 𝐾
𝜎√𝑇 − 𝑡

.

Proof. For a proof of the Bachelier formula for European put and call options, we refer to Delbaen and
Schachermayer, 2006.

2.2.2. Change of measure
The numeraire is a standard, or in other words a unit, which one uses to express the value of other
tradable assets. In the very basic formulation, pricing is done under the riskneutral measure ℚ cor
responding to the moneymarket account as numeraire, see Section 2.2.1. However, sometimes it is
more convenient to use another numeraire, as it might simplify the expression to be calculated under
the conditional expectation. As an alternative numeraire one can take any positive nondividendpaying
asset. Then, for each eligible numeraire there exists a corresponding equivalent martingale measure.

Before proceeding, we give a number of definitions and theorems relevant for the measure change
toolbox where we follow Seifried, 2013 and Brigo and Mercurio, 2007.

Definition 2.3. A numeraire is any positive nondividendpaying asset.

When changing the numeraire, the definition of the RadonNikodym derivative is often used. This
definition is stated below.

Definition 2.4. Let (Ω, ℱ,ℚ) be a probability space, let ℚ̃ be another probability measure on (Ω, ℱ) that
is equivalent to ℚ, and let 𝑍 be an almost surely positive random variable with 𝔼[𝑍] = 1 that relates ℚ
and ℚ̃ via:

ℚ̃(𝐴) = ∫
𝐴
𝑍(𝑤)𝑑ℚ(𝑤) for all 𝐴 ∈ ℱ.

Then 𝑍 is called the RadonNikodym derivative of ℚ̃ with respect to ℚ, and we write:

𝑍 = 𝑑ℚ̃
𝑑ℚ.

To change the numeraire, the following theorem can be used.

Theorem 2.5 (Change of numeraire). Suppose that 𝑋(𝑡) is a price process on [0, 𝑇] such that 𝑋(𝑡)𝑀(𝑡) is a
ℚmartingale on [0, 𝑇], where 𝑀(𝑡) is the moneymarket account. Then, there exists a uniquely deter
mined probability measure ℚ̃ equivalent to ℚ on ℱ𝑇 such that for every asset 𝑆(𝑡) the 𝑋(𝑡)discounted
price process is a ℚ̃martingale on [0, 𝑇] with 𝑋(𝑡) as numeraire, i.e.,

𝑆(𝑡)
𝑋(𝑡) is a ℚ̃martingale on [0, 𝑇].

Moreover, the RadonNikodym derivative defining the measure ℚ̃ is given by:

𝑑ℚ̃
𝑑ℚ = 𝑀(𝑡)𝑋(𝑇)

𝑀(𝑇)𝑋(𝑡) . (2.2)
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Proof. For a proof, we refer to Seifried, 2013, p. 47.

There are two facts about the change of numeraire which are stated below without a proof. For
more details about these facts we refer to Brigo and Mercurio, 2007, p. 29.
Fact 1: The price of any asset divided by the numeraire is a martingale under the measure associated
with that numeraire.
Fact 2: The time 𝑡 riskneutral price under the measure ℚ is invariant by change of measure. Let ℚ̃ be
another equivalent measure with 𝑋(𝑡) as numeraire. The RadonNikodym derivative of ℚ̃ with respect
to ℚ is given by Equation (2.2). This gives:

�̂�(𝑡) = 𝔼ℚ [𝑀(𝑡)𝑉(𝑇)𝑀(𝑇) |ℱ𝑡] = 𝔼ℚ̃ [
𝑀(𝑡)𝑉(𝑇)
𝑀(𝑇)

𝑀(𝑇)𝑋(𝑡)
𝑀(𝑡)𝑋(𝑇)|ℱ𝑡] = 𝔼

ℚ̃ [𝑋(𝑡)𝑉(𝑇)𝑋(𝑇) |ℱ𝑡] .

When changing the numeraire, sometimes the dynamics of an underlying asset need to be changed
as well. To change the dynamics under the measure of another numeraire Girsanov’s theorem, pre
sented below, can be used.

Theorem 2.6 (Girsanov). Consider the Stochastic Differential Equation (SDE) with Lipschitz coeffi
cients:

𝑑𝑋(𝑡) = �̂�(𝑋(𝑡))𝑑𝑡 + 𝜎(𝑋(𝑡))𝑑𝑊ℚ(𝑡),

under ℚ. Let �̄�(𝑥) be a new drift and assume �̄�(𝑥)−�̂�(𝑥)
𝜎(𝑥) to be bounded. Define the measure ℚ̃ by:

𝑑ℚ̃
𝑑ℚ|ℱ𝑡

= exp(−12 ∫
𝑡

0
(�̃�(𝑋(𝑠)) − �̂�(𝑋(𝑠))𝜎(𝑋(𝑠)) )

2
𝑑𝑠 + ∫

𝑡

0

�̃�(𝑋(𝑠)) − �̂�(𝑋(𝑠))
𝜎(𝑋(𝑠)) 𝑑𝑊ℚ(𝑠)) .

Then ℚ̃ is equivalent to ℚ. Moreover, the process𝑊�̃�(𝑡) defined by:

𝑑𝑊�̃�(𝑡) = −(�̃�(𝑋(𝑡)) − �̂�(𝑋(𝑡))𝜎(𝑋(𝑡)) ) 𝑑𝑡 + 𝑑𝑊ℚ(𝑡),

is a Brownian motion under ℚ̃ and

𝑑𝑋(𝑡) = �̃�(𝑋(𝑡))𝑑𝑡 + 𝜎(𝑋(𝑡))𝑑𝑊�̃�(𝑡).

Proof. For a proof, we refer to Brigo and Mercurio, 2007, p. 911.

2.3. Interest rate derivatives
In this section we describe some plain vanilla interest rate derivatives, which are relevant for this thesis,
and their pricing formulae. We start with a zerocoupon bond. Thereafter, fixed and floating rate bonds,
swaps and caps/floors are discussed. For the definitions below, let us define a set of payment dates
𝒯𝑚 = {𝑇0, 𝑇1, … , 𝑇𝑚} and the corresponding year fractions 𝜏𝑖 = 𝑇𝑖 −𝑇𝑖−1, for 𝑖 = 1,… ,𝑚. For this section
a single curve framework is considered.

2.3.1. Zerocoupon bond
As mentioned before, a zerocoupon bond is a contract which pays 1 at maturity 𝑇. The zerocoupon
bond is the simplest contract and is a building block for our further definitions and discussions.

The below corollary of Theorem 2.1 gives a formula for the zerocoupon bond price.

Corollary 2.6.1. The value of a zerocoupon bond at time 𝑡 with maturity 𝑇 is given by:

𝑃(𝑡, 𝑇) = 𝔼ℚ [𝑒−∫
𝑇
𝑡 𝑟(𝑢)𝑑𝑢𝑃(𝑇, 𝑇)|ℱ𝑡] = 𝔼ℚ [𝑒−∫

𝑇
𝑡 𝑟(𝑢)𝑑𝑢|ℱ𝑡] .
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2.3.2. Fixed and floating rate bonds
Let 𝑁 be the notional and 𝐾 be a fixed rate. Consider the payment dates 𝒯𝑚\𝑇0. A fixed rate bond is a
financial contract with the following coupon payments:

𝐶𝑓𝑖𝑥𝑖 = {𝑁𝐾𝜏𝑖 for 𝑖 ∈ {1, … ,𝑚 − 1},
𝑁 + 𝑁𝐾𝜏𝑖 for 𝑖 = 𝑚.

Since a fixed rate bond can be seen as 𝑚 zerocoupon bonds with notional 𝐶𝑓𝑖𝑥𝑖 for 𝑖 = 1,… ,𝑚, a
replication argument can be used to obtain a pricing formula for the coupons of a fixed rate bond:

�̂�𝑓𝑖𝑥𝑖 (𝑡) = 𝑃(𝑡, 𝑇𝑖)𝐶𝑓𝑖𝑥𝑖 .

The total 𝑡value of a fixed rate bond is then given by:

�̂�𝑓𝑖𝑥(𝑡) =
𝑚

∑
𝑖=1
�̂�𝑓𝑖𝑥𝑖 (𝑡) = 𝑃(𝑡, 𝑇𝑚)𝑁 +

𝑚

∑
𝑖=1
𝑃(𝑡, 𝑇𝑖)𝑁𝐾𝜏𝑖 . (2.3)

Let 𝑁 be the notional and consider the payment dates 𝒯𝑚\𝑇0. A floating rate bond is a contract with
the following coupon payments:

𝐶𝑓𝑙𝑖 = {𝑁𝜏𝑖𝐿(𝑇𝑖−1, 𝑇𝑖) for 𝑖 ∈ {1, … ,𝑚 − 1},
𝑁𝜏𝑖𝐿(𝑇𝑖−1, 𝑇𝑖) + 𝑁 for 𝑖 = 𝑚,

where 𝐿(𝑡𝑖−1, 𝑇𝑖) is the LIBOR rate as defined in Definition 2.2. Using the zerocoupon bond 𝑃(𝑡, 𝑇𝑖) as
numeraire the following holds:

�̂�𝑓𝑙𝑖 (𝑡)
𝑃(𝑡, 𝑇𝑖)

= 𝔼ℚ𝑇𝑖 [ 𝐶𝑓𝑙𝑖
𝑃(𝑇𝑖 , 𝑇𝑖)

|ℱ𝑡] ,

which gives the value at time 𝑡 < 𝑇0 of a payment at time 𝑇𝑖:

�̂�𝑓𝑙𝑖 (𝑡) = 𝑃(𝑡, 𝑇𝑖)𝔼ℚ
𝑇𝑖 [𝐶𝑓𝑙𝑖 |ℱ𝑡] .

Since the expectation of the LIBOR rate, 𝐿(𝑇𝑖−1, 𝑇𝑖), under the 𝑇𝑖 forwardmeasure is equal to 𝐹𝑙𝑖𝑏(𝑡, 𝑇𝑖−1, 𝑇𝑖),
given in Definition 2.2, we can write the following in a single curve framework:

�̂�𝑓𝑙𝑖 (𝑡) = {
𝑃(𝑡, 𝑇𝑖) (𝑁𝜏𝑖

1
𝜏𝑖
(𝑃(𝑡,𝑇𝑖−1)𝑃(𝑡,𝑇𝑖)

− 1)) for 𝑖 ∈ {1, … ,𝑚 − 1}

𝑃(𝑡, 𝑇𝑖) (𝑁𝜏𝑖
1
𝜏𝑖
(𝑃(𝑡,𝑇𝑖−1)𝑃(𝑡,𝑇𝑖)

− 1) + 𝑁) for 𝑖 = 𝑚

= {𝑁 (𝑃(𝑡, 𝑇𝑖−1) − 𝑃(𝑡, 𝑇𝑖)) for 𝑖 ∈ {1, … ,𝑚 − 1}
𝑁𝑃(𝑡, 𝑇𝑖−1) for 𝑖 = 𝑚.

The value of the floating rate bond in a single curve framework at time 𝑡 is given by:

�̂�𝑓𝑙(𝑡) =
𝑚

∑
𝑖=1
�̂�𝑓𝑙𝑖 (𝑡) = 𝑁𝑃(𝑡, 𝑇0). (2.4)

2.3.3. Swaps
In this section two different interest rate swaps are described: the LIBOR interest rate swaps and
the Overnight Index Swap (OIS). Swaps are commonly used derivatives. We mention OIS swaps
separately, since the structure of the underlying for the new RFR has similarities with the OIS swap.
More specifically, they are both referencing daily compounding rates.
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2.3.3.1. Interest rate swaps
Let 𝑁 be the notional and 𝐾 be a fixed rate and consider the payment dates 𝒯𝑚\𝑇0. A payer interest
rate swap is a financial contract in which the holder pays the fixed coupons 𝜏𝑖𝑁𝐾 and receives the
floating coupons 𝜏𝑖𝑁𝐿(𝑇𝑖−1, 𝑇𝑖) at time 𝑇𝑖. A receiver interest rate swap is a financial contract in which
the holder receives the fixed coupons 𝜏𝑖𝑁𝐾 and pays the floating coupons 𝜏𝑖𝑁𝐿(𝑇𝑖−1, 𝑇𝑖) at time 𝑇𝑖.

When dealing with a plain vanilla interest rate swap, the payments are in the same currency. The
notional amounts are not exchanged between the parties. To derive the pricing formula for an interest
rate swap, we assume that both parties exchange the notional at time 𝑇𝑚. This does not change the
value of the contract. With this assumption, a payer interest rate swap can be seen as the difference
between a floating rate bond and a fixed rate bond. Analogously, the value of the receiver interest rate
swap is the difference between the values of a fixed rate bond and a floating rate bond. This results in
the following pricing formula in a single curve framework:

�̂�𝑆(𝑡) = 𝜔 (�̂�𝑓𝑙(𝑡) − �̂�𝑓𝑖𝑥(𝑡)) , (2.5)

where 𝜔 equals 1 in case of a payer interest rate swap and 1 in case of a receiver interest rate swap.
Further, �̂�𝑓𝑖𝑥(𝑡) and �̂�𝑓𝑙(𝑡) denote the values of the fixed rate bond and the floating rate bond at time
𝑡, respectively.

Swap rate Consider a payer or receiver interest rate swap. By substituting Equations (2.3) and (2.4)
into Equation (2.5) the values of such swaps at time 𝑡 are given by:

�̂�𝑆(𝑡) = 𝜔𝑁(𝑃(𝑡, 𝑇0) − 𝑃(𝑡, 𝑇𝑚) −
𝑚

∑
𝑖=1
𝑃(𝑡, 𝑇𝑖)𝜏𝑖𝐾) . (2.6)

An interest rate swap is usually traded to par at the inception. The fixed rate 𝐾 is chosen such that the
value of the swap at the time of issue is equal to zero. Such a fixed rate is called the swap rate. From
Equation (2.6) the swap rates at time 𝑡 for both payer and receiver interest rate swaps are given by:

𝑆0,𝑚(𝑡) =
𝑃(𝑡, 𝑇0) − 𝑃(𝑡, 𝑇𝑚)
∑𝑚𝑖=1 𝑃(𝑡, 𝑇𝑖)𝜏𝑖

.

The swap rate is usually defined as:

𝑆0,𝑚(𝑡) =
𝑃(𝑡, 𝑇0) − 𝑃(𝑡, 𝑇𝑚)

𝐴0,𝑚(𝑡)
,

where 𝐴0,𝑚(𝑡) is called the annuity and is defined as:

𝐴0,𝑚(𝑡) ∶=
𝑚

∑
𝑖=1
𝑃(𝑡, 𝑇𝑖)𝜏𝑖 .

2.3.3.2. OIS swaps
An OIS swap is an agreement between two parties to exchange floating and fixed payments. The fixed
coupon payments are the same as for a LIBOR interest rate swap, but the floating coupon payments are
linked to a compounding overnight index. With a notional of 𝑁 and payment dates 𝒯𝑚\𝑇0, the floating
coupon payments are given by:

𝐶𝑂𝐼𝑆𝑖 = 𝜏𝑖𝑁𝑅𝑂𝐼𝑆𝑖 ,
with

𝑅𝑂𝐼𝑆𝑖 = 1
𝜏𝑖
(
𝑛𝑖
∏
𝑗=1
(1 + 𝜏𝑖𝑗𝑒𝑖𝑗) − 1) ,

where the product includes all overnight fixings of the 𝑖th coupon, 𝑒𝑖𝑗 is the 𝑗th overnight rate fixing
of the 𝑖th coupon and 𝜏𝑖𝑗 is the year fraction between the (𝑗 − 1)th and 𝑗th fixing of the 𝑖th coupon.
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Notice, 𝑅𝑂𝐼𝑆𝑖 is a stochastic variable and known at the end of the coupon. To make the notation a bit
easier, we get rid of the index 𝑖 corresponding to the coupon. The forward rate is given by:

𝐹𝑂𝐼𝑆(𝑡, 𝑇𝑏𝑒𝑔𝑖𝑛 , 𝑇𝑒𝑛𝑑) =
1
𝜏 (

𝑃(𝑡, 𝑇𝑏𝑒𝑔𝑖𝑛)
𝑃(𝑡, 𝑇𝑒𝑛𝑑)

− 1) ,

where 𝑇𝑏𝑒𝑔𝑖𝑛 and 𝑇𝑒𝑛𝑑 denote the start and end date of the coupon, respectively. For the derivation of
this forward rate, we refer to Appendix A.

In order to calculate the expected value of a floating coupon, we use the 𝑇𝑒𝑛𝑑forward measure. We
assume that the pay date is the same as the end date. The start and end date of the 𝑗th fixing of the
coupon are denoted by 𝑇𝑗𝑏𝑒𝑔𝑖𝑛 and 𝑇

𝑗
𝑒𝑛𝑑, respectively. We consider two types of OIS coupons: coupons

that start in the future, i.e., 𝑡 < 𝑇𝑏𝑒𝑔𝑖𝑛, and running coupons. For a coupon that starts in the future the
following holds:

𝔼ℚ𝑇𝑒𝑛𝑑 [𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁𝜏𝑅𝑂𝐼𝑆|ℱ𝑡] = 𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁𝜏𝐹𝑂𝐼𝑆(𝑡, 𝑇𝑏𝑒𝑔𝑖𝑛 , 𝑇𝑒𝑛𝑑).

For a running coupon, the expectation of the OIS leg is given by:

𝔼ℚ𝑇𝑒𝑛𝑑 [𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁𝜏𝑅𝑂𝐼𝑆|ℱ𝑡] = 𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁 (
𝑚

∏
𝑗=1
(1 + 𝜏𝑗𝑒𝑗)�̄�𝐹𝑂𝐼𝑆(𝑡, 𝑇𝑚+1𝑏𝑒𝑔𝑖𝑛 , 𝑇𝑒𝑛𝑑)) ,

where 𝑚 corresponds to the day of the last available historical overnight fixing rate of the running
coupon and �̄� is the year fraction from 𝑇𝑚+1𝑏𝑒𝑔𝑖𝑛 to 𝑇𝑒𝑛𝑑. For the derivations of these two coupons, we
refer to Appendix A.

2.3.4. Caps and Floors
An interest rate cap is a product which provides insurance against the floating interest rate rising above
a certain level. This level is called the cap rate or strike. On the other hand, an interest rate floor
provides insurance against the floating interest rate falling below a certain level. This level is called the
floor rate or strike. We make a distinction between LIBOR caps/floors and caps/floors on compounded
rates. Historically, there were only caps/floors linked to the LIBOR rate. However, since the IBOR rates
will disappear, the market will develop new products and one of them are caps/floors linked to the new
RFR. Those rates are based on an inarrears compounding.

2.3.4.1. LIBOR caps and floors
A LIBOR caplet/floorlet is a European call/put option with notional 𝑁𝑖 and strike 𝐾𝑖 on the LIBOR rate
𝐿(𝑇𝑖−1, 𝑇𝑖) that is fixed on 𝑇𝑖−1. At time 𝑇𝑖 the payoff of the LIBOR caplet/floorlet is:

�̂�𝑖(𝑇𝑖) = 𝑁𝑖𝜏𝑖max (𝜔 [𝐿(𝑇𝑖−1, 𝑇𝑖) − 𝐾𝑖] , 0) , for 𝑖 = 1,… ,𝑚,

where 𝜔 equals 1 in case of a caplet and 1 in case of a floorlet and 𝜏𝑖 = 𝑇𝑖 − 𝑇𝑖−1 is a year fraction.
A cap/floor is a sum of 𝑚 caplets/floorlets with the same notional and strike, i.e., 𝑁 = 𝑁𝑖 and 𝐾 = 𝐾𝑖
for 𝑖 = 1,… ,𝑚. The value of a cap/floor at time 𝑡 < 𝑇0 is the sum of the values of the individual
caplets/floorlets at time 𝑡.

Since the LIBOR caplet/floorlet is a European call/put option with the LIBOR rate as underlying,
both the Black and the Bachelier model can be used to value a LIBOR caplet/floorlet at time 𝑡. Both
models are in principal the same, only the assumption of the distribution of the underlying at the fixing
time is different. The Black model assumes the LIBOR rate 𝐿(𝑇𝑖−1, 𝑇𝑖) conditional on the information at
time 𝑡 to be lognormally distributed with mean 𝐹𝑙𝑖𝑏(𝑡, 𝑇𝑖−1, 𝑇𝑖) and standard deviation 𝜎𝑖√𝑇𝑖 − 𝑡. Where
𝜎𝑖 is the volatility of the forward LIBOR rate. This gives

�̂�𝐶𝑖 (𝑡) = 𝑁𝑖𝜏𝑖𝑃(𝑡, 𝑇𝑖) (𝐹𝑙𝑖𝑏(𝑡, 𝑇𝑖−1, 𝑇𝑖)Φ(𝑑1) − 𝐾𝑖Φ(𝑑2)) ,
�̂�𝑃𝑖 (𝑡) = 𝑁𝑖𝜏𝑖𝑃(𝑡, 𝑇𝑖) (𝐾𝑖Φ(−𝑑2) − 𝐹𝑙𝑖𝑏(𝑡, 𝑇𝑖−1, 𝑇𝑖)Φ(−𝑑1)) ,

𝑑1 =
log (𝐹𝑙𝑖𝑏(𝑡,𝑇𝑖−1 ,𝑇𝑖)𝐾𝑖

) + 1
2𝜎

2
𝑖 (𝑇𝑖 − 𝑡)

𝜎𝑖√𝑇0 − 𝑡
,

𝑑2 = 𝑑1 − 𝜎𝑖√𝑇𝑖 − 𝑡,
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where �̂�𝐶𝑖 (𝑡) and �̂�𝑃𝑖 (𝑡) denote the value of the caplet and floorlet at time 𝑡, respectively. On the other
hand, the Bachelier model assumes the LIBOR rate 𝐿(𝑇𝑖−1, 𝑇𝑖) conditional on the information at time 𝑡
to be normally distributed with mean 𝐹𝑙𝑖𝑏(𝑡, 𝑇𝑖−1, 𝑇𝑖) and standard deviation 𝜎𝑖√𝑇𝑖 − 𝑡. Where 𝜎𝑖 is the
volatility of the forward LIBOR rate. This gives:

�̂�𝐶𝑖 (𝑡) = 𝑁𝑖𝜏𝑖𝑃(𝑡, 𝑇𝑖) ((𝐹𝑙𝑖𝑏(𝑡, 𝑇𝑖−1, 𝑇𝑖) − 𝐾)Φ(𝑑1) + 𝜎√𝑇𝑖 − 𝑡𝜑(𝑑1)) ,

�̂�𝑃𝑖 (𝑡) = 𝑁𝑖𝜏𝑖𝑃(𝑡, 𝑇𝑖) ((𝐾 − 𝐹𝑙𝑖𝑏(𝑡, 𝑇𝑖−1, 𝑇𝑖))Φ(−𝑑1) + 𝜎√𝑇𝑖 − 𝑡𝜑(𝑑1)) ,

𝑑1 = 𝐹𝑙𝑖𝑏(𝑡, 𝑇𝑖−1, 𝑇𝑖) − 𝐾
𝜎√𝑇𝑖 − 𝑡

.

With these values of a caplet/floorlet at time 𝑡, the value of a cap/floor at time 𝑡 < 𝑇0 can be obtained
by:

�̂�𝐶𝑎𝑝(𝑡) =
𝑚

∑
𝑖=1
�̂�𝐶𝑖 (𝑡),

�̂�𝐹𝑙𝑜𝑜𝑟(𝑡) =
𝑚

∑
𝑖=1
�̂�𝑃𝑖 (𝑡),

where �̂�𝐶𝑖 (𝑡) and �̂�𝑃𝑖 (𝑡), dependent on the distribution of the underlying, are given by the above Black
or Bachelier model.

2.3.4.2. Caps and floors on compounded rates
As a result of the IBOR reform, the IBOR rates will cease to exist and will be replaced by the new
RFR. New market instruments will reference a compounding RFR rate similar to the floating rates of
the already existing OIS swaps. To be more precise, the compounded underlying rates over the period
[𝑆, 𝑇] are as defined in Definition 2.2, and denoted by 𝐶𝑅(𝑆, 𝑇).

The caps/floors on compounded rates have a similar payoff as the LIBOR caps/floors. The same
as the LIBOR caps/floors, the caps/floors on the compounded rates provide an insurance against the
compounded average of the new RFR rising above or falling below a certain level. Namely, the payoff
of a caplet/floorlet linked to the new RFR over the period [𝑇𝑖−1, 𝑇𝑖] with strike 𝐾𝑖 and notional 𝑁𝑖 is given
by:

�̂�𝐶𝑅(𝑇𝑖) = 𝑁𝑖𝜏𝑖max (𝜔 [𝐶𝑅(𝑇𝑖−1, 𝑇𝑖) − 𝐾𝑖] , 0) , for 𝑖 = 1,… ,𝑚,

where𝜔 equals 1 in case of a caplet and 1 in case of a floorlet. Similar to LIBOR caps/floors, caps/floors
on compounded rates are the sum of caplets/floorlets on compounded rates. However, note that in case
of the LIBOR caplets/floorlets the underlying rate is fixed at the beginning of the caplet/floorlet, but in
case of the compounding rate it will be fixed and paid at the end of the caplet/floorlet.

Due to the compounding property of the compounded rate linked to the new RFR, a Black or Bache
lier model cannot directly be applied. The Black and Bachelier models assume a quantity which fixes
from one to another time instance. The new RFR rate fixes gradually during the whole coupon period,
and thus violates the assumptions of the Black/Bachelier type models. Therefore, in this thesis, we
look into various pricing techniques to price these options on backwardlooking rates, which follow the
compounding mechanism as described above.

2.4. Pricing techniques
In this section, an introduction of various pricing techniques in option pricing is given. First, the Monte
Carlo (MC) simulation is described in Section 2.4.1. Thereafter, Section 2.4.2 is dedicated to the tree
method. Last, Green functions are considered in Section 2.4.3.

2.4.1. Monte Carlo methods
This section provides a brief summary of MC methods for completeness, but we expect the reader
to be familiar with the concept. MC methods are numerical methods used to calculate expectations of
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random quantities. They rely on the Law of Large Numbers and the Central Limit Theorem. In particular,
MC methods are used in option pricing. For this introduction we follow Kostiuk, 2004 and Oosterlee
and Grzelak, 2020, for more details about MC methods we refer to Korn et al., 2010 or Glasserman,
2004.

With a MC simulation the expectation 𝔼 [𝑋] can be estimated where 𝑋 is a random variable. The
idea behind this calculation is simulating �̃� independent identically distributed (i.i.d.) realisations of the
random variable 𝑋 denoted by 𝑋𝑖 for 𝑖 = 1,… , �̃�. The MC approximation of this expectation is then
given by:

�̂� = 1
�̃�

�̃�

∑
𝑖=1
𝑋𝑖 .

According to the Law of Large Numbers, see Rice, 2007, p. 178, this approximation is accurate for
large �̃�.

With this MC approximation an error is made. Here we assume that no timediscretisation is used
to simulate 𝑋𝑖. Under this assumption, the statistical error is the only error which is made by the MC
estimator. By the Central Limit Theorem, the size of the statistical error can be determined. From the
Central Limit Theorem, see Rice, 2007, p. 184, it follows that theMC approximation is𝒩(𝔼 [𝑋] , 𝑉𝑎𝑟 [𝑋])
distributed. In practice the variance is often unknown. However, the sample variance, denoted by �̄�2�̃�,
can be used to estimate the variance:

�̄�2�̃� ∶=
1

�̃� − 1

�̃�

∑
𝑗=1
(𝑋𝑖 − �̄�)2.

The standard error is then defined by:

𝜖�̃� ∶=
�̄��̃�
√�̃�

.

Notice, that if the number of MC paths increases with a factor 4, the standard error decreases with a
factor 2.

Sometimes, in order to price derivatives, an expectation of a function of a solution of a differential
equation has to be computed. For example, the price of an Asian call option with arithmetic continuous
averaging, maturity 𝑇 and strike 𝐾 is given by:

𝑉𝐶𝐴𝑠𝑖𝑎𝑛(𝑡, 𝑋(⋅)) = 𝔼ℚ [𝑒−𝑟𝑇 (
1
𝑇 ∫

𝑇

0
𝑋(𝑢)𝑑𝑢 − 𝐾)

+

|ℱ𝑡] ,

where the dynamics of 𝑋(𝑡) is given by the following SDE:

𝑑𝑋(𝑡) = 𝜇(𝑡, 𝑋)𝑑𝑡 + 𝜎(𝑡, 𝑋)𝑑𝑊ℚ(𝑡). (2.7)

For simplifications, we consider a constant interest rate. When using a MC simulation in order to obtain
the price of this Asian option, a number of i.i.d. realisations of 𝑒−𝑟𝑇 ( 1𝑇 ∫

𝑇
0 𝑋(𝑢)𝑑𝑢 − 𝐾)

+
have to be

drawn. However, this is not possible straightaway, since there is no closed form solution of the integral
of 𝑋(𝑡). Moreover, the solution of the SDE is not known. Therefore, a discretisation scheme needs to
be used to simulate the path of the process 𝑋(𝑡) and this causes a discretisation error.

Consider a derivative with payoff 𝑉(𝑇, 𝑋(⋅)) dependent on underlying 𝑋(𝑡) with dynamics defined
by (2.7). With the following MC algorithm the 𝑡0value of this derivative can be determined for 𝑡0 < 𝑇,
Oosterlee and Grzelak, 2020, p. 249.
Step 1: Define a grid on the interval [0, 𝑇], 0 = 𝑡0, 𝑡1, … , 𝑡𝑚 = 𝑇, where 𝑡𝑖 =

𝑖𝑇
𝑚 . The number of time

steps is defined by 𝑚 + 1.
Step 2: Generate asset values, denoted by 𝑥𝑖,𝑗, on �̃� MC paths taking the riskneutral dynamics of the
underlying model. 𝑥𝑖,𝑗 has two indices, the time step 𝑖, when a discretisation scheme is used, and the
MC path 𝑗. Two well known discretisation schemes are the Euler and Milstein schemes given below.
Step 3: Compute the �̃� payoff values, 𝑉𝑗. In the case of European options, 𝑉𝑗 = 𝑉(𝑇, 𝑥𝑚,𝑗), in the case
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of pathdependent options, 𝑉𝑗 = 𝑉(𝑇, {𝑥𝑖,𝑗}𝑚𝑖=0).
Step 4: Calculate the value of the option with:

𝑉(𝑡0, 𝑋(𝑡0)) = 𝑒−𝑟(𝑇−𝑡0)𝔼ℚ [𝑉(𝑇, 𝑋(𝑇))|ℱ𝑡0] ≈ 𝑒−𝑟(𝑇−𝑡0)
1
�̃�

�̃�

∑
𝑖=1
𝑉𝑗 .

Step 5: Determine the standard error obtained by this MC simulation.

The Euler scheme is a basic integration method to solve the dynamics of (2.7). The solution of
𝑋(𝑡𝑖+1) at time 𝑡𝑖+1, denoted by 𝑥𝑖+1 is approximated by:

𝑥𝑖+1 ≈ 𝑥𝑖 +∫
𝑡𝑖+1

𝑡𝑖
𝜇(𝑡𝑖 , 𝑥𝑖)𝑑𝑡 + ∫

𝑡𝑖+1

𝑡𝑖
𝜎(𝑡𝑖 , 𝑥𝑖)𝑑𝑊ℚ(𝑡)

≈ 𝑥𝑖 + 𝜇(𝑡𝑖 , 𝑥𝑖)Δ𝑡 + 𝜎(𝑡𝑖 , 𝑥𝑖)𝑊ℚ(Δ𝑡),
where Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖.

The Milstein scheme has a higher rate of convergence. Discretisation with the Milstein scheme is
given by the Euler scheme with an extra term:

𝑥𝑖+1 ≈ 𝑥𝑖 +∫
𝑡𝑖+1

𝑡𝑖
𝜇(𝑡𝑖 , 𝑥𝑖)𝑑𝑡 + ∫

𝑡𝑖+1

𝑡𝑖
𝜎(𝑡𝑖 , 𝑥𝑖)𝑑𝑊ℚ(𝑡) + 12𝜎(𝑡𝑖 , 𝑥𝑖)[(𝑊

ℚ(Δ𝑡))2 − Δ𝑡]𝜕𝜎𝜕𝑥 (𝑡𝑖 , 𝑥𝑖).

In the case of 𝜎(𝑡, 𝑋(𝑡)) = �̄�𝑋(𝑡), the Milstein scheme is given by:

𝑥𝑖+1 ≈ 𝑥𝑖 + 𝜇(𝑡𝑖 , 𝑥𝑖)Δ𝑡 + �̄�𝑥𝑖𝑊ℚ(Δ𝑡) + 12�̄�
2𝑥𝑖 [(𝑊ℚ(Δ𝑡))2 − Δ𝑡] .

2.4.2. Trees
Trees provide another method to numerically calculate the price of options. In this section, a short
introduction is given about option pricing with trees, for more details we refer to Korn and Stefanie, 2010.
Consider an option on an underlying asset denoted by 𝑋(𝑡). A discretisation of the time 0 = 𝑡0, 𝑡1, … , 𝑡�̃�
is needed if one wants to determine the price of this option at time 𝑡0 with trees. For each time the
representative values of the underlying asset are determined iteratively. Start at time 𝑡0, for this time
the value of the underlying asset is known. When a trinomial tree is considered, three possible values
of asset 𝑋(𝑡) are assumed for time 𝑡1. More specifically, the value of the asset can make a jump with
size 𝑢, 𝑑 or 𝑚 with corresponding probabilities 𝑝𝑢 , 𝑝𝑑 and 𝑝𝑚. This is shown in Figure 2.1. From each
node at time 𝑡1 the asset can again take three possible values for the next time step. The trinomial
trees is then defined by:

𝑋(𝑡𝑖+1) = {
𝑋(𝑡𝑖)𝑢 with probability 𝑝𝑢
𝑋(𝑡𝑖)𝑚 with probability 𝑝𝑚
𝑋(𝑡𝑖)𝑑 with probability 𝑝𝑑

.

The probabilities 𝑝𝑢 , 𝑝𝑑 and 𝑝𝑚 have to sum up to 1. Figure 2.2 illustrates an example of a trinomial
tree. We denote the nodes of the tree by (𝑖, 𝑗), where 𝑖 corresponds to the time step and 𝑗 corresponds
to the state in that time step.

With a trinomial tree, the price of an option at time 𝑡0 with maturity 𝑇 and underlying 𝑋(𝑡) can be
obtained in the following way:

• Construct a trinomial tree from time 𝑡0 to time 𝑇. Discretise the time in �̃� + 1 time steps.
• Calculate the payoff of the option at each leaf of the tree. Denote the value of the option on node
(𝑖, 𝑗) by 𝑉𝑖,𝑗.

• Calculate the value of the option on the other nodes of the tree with a backward iteration. The
value of the option on node (𝑖, 𝑗) is obtained using the formula:

𝑉𝑖,𝑗 = 𝑒−𝑟(𝑡𝑖+1−𝑡𝑖) [𝑝𝑢𝑉𝑖+1,𝑗+1 + 𝑝𝑚𝑉𝑖+1,𝑗 + 𝑝𝑑𝑉𝑖+1,𝑗−1] .
For simplification, the shortrate 𝑟 is assumed to be constant.
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𝑋(𝑡𝑖)𝑚

𝑋(𝑡𝑖)𝑢

𝑋(𝑡𝑖)𝑑

𝑋(𝑡𝑖)

𝑝𝑢

𝑝𝑚

𝑝𝑑

Figure 2.1: Possible values for asset 𝑋(𝑡) at time 𝑡𝑖+1 evolving from asset 𝑋(𝑡) at time 𝑡𝑖.

With the steps described above, we give present how trees can be used for option pricing. Moreover,
there is a relation between the tree method and finite difference method. More precisely, the tree
method corresponds to an explicit finite difference method applied on a transformed version of the
pricing PDE. For details, we refer to Higham, 2004, p.261.

Figure 2.2: Trinomial tree Clifford et al., 2010, p. 3.

2.4.3. Green functions
Another pricing technique is based on Green functions. With the FeynmanKac Theorem 2.2, the
pricing PDE of a derivative can be written. In order to determine the 𝑡value of this derivative, one
needs to solve this differential equation. In this section we give briefly describe the idea behind the
application of the Green function technique to solve differential equations. For details see Kirkwood,
2003. We would like to stress that we do not give a proof, but rather a brief motivation while omitting
technicalities. Moreover, for simplification, an Ordinary Differential Equation (ODE) is used for this brief
sketch.

Consider a secondorder linear differential equation:

ℒ(𝑦(𝑥)) ∶= 𝑎2(𝑥)
𝜕2𝑦(𝑥)
𝜕𝑥2 + 𝑎1(𝑥)

𝜕𝑦(𝑥)
𝜕𝑥 + 𝑎0(𝑥)𝑦(𝑥) = ℎ(𝑥), (2.8)

for 𝑏 ≤ 𝑥 ≤ 𝑐.
Fix 𝑧, 𝑏 ≤ 𝑧 ≤ 𝑐 and let us assume that there is a parametric function �̂�(𝑥, 𝑧) that solves the following

parametric differential equation:
ℒ(�̂�(𝑥, 𝑧)) = 𝛿(𝑥 − 𝑧), (2.9)

where 𝛿 is the Dirac delta function. This function �̂�(𝑥, 𝑧) is called the Green function.
If both sides in Equation (2.9) are first multiplied by ℎ(𝑧) and then integrated with respect to 𝑧, the

following is obtained:

∫
𝑐

𝑏
ℒ(�̂�(𝑥, 𝑧))ℎ(𝑧)𝑑𝑧 = ∫

𝑐

𝑏
𝛿(𝑥 − 𝑧)ℎ(𝑧)𝑑𝑧 = ℎ(𝑥),
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where for regular enough ℎ(𝑥) the second equal sign holds because of the Dirac delta function proper
ties. Then, under some sufficient conditions, the integral and differential operator ℒ(⋅) can be swapped:

∫
𝑐

𝑏
ℒ(�̂�(𝑥, 𝑧))ℎ(𝑧)𝑑𝑧 = ℒ (∫

𝑐

𝑏
�̂�(𝑥, 𝑧)ℎ(𝑧)𝑑𝑧) .

This gives:

ℒ (∫
𝑐

𝑏
�̂�(𝑥, 𝑧)ℎ(𝑧)𝑑𝑧) = ℎ(𝑥),

which in turn implies that

𝑦(𝑥) = ∫
𝑐

𝑏
�̂�(𝑥, 𝑧)ℎ(𝑧)𝑑𝑧

is a solution of Equation (2.8).
To conclude, Green functions that solve the pricing PDE are related to the density function of the

asset price. More precisely, the discounted transition probability density function can be seen as the
Green function and is called ArrowDebreu security in finance. For more details, we refer to Oosterlee
and Grzelak, 2020.





3
Onefactor HullWhite model

This chapter is dedicated to the onefactor HullWhite shortrate model. For the sake of notational
simplicity, we refer to it as the HullWhite model. The HullWhite model belongs to the class of affine
models that have the useful result, presented in Section 3.1, that the zerocoupon bond price is analyt
ically tractable. Furthermore, a brief introduction to the Vasicek shortrate model is given. Thereafter,
the onefactor HullWhite model, which is an extension of the Vasicek model, is described. More
over, the prices of LIBOR caps/floors and caps/floors on compounded rates are investigated. Both
types of the caps/floors will be priced using two different pricing methods: closed form formulae and a
MC approach. In Section 3.3.1 the pricing formula for caps/floors using the pricing kernel is derived.
Thereafter, in Section 3.3.2 the cap/floor prices are calculated using a MC simulation. Moreover, a
comparison of the various pricing methods is presented in Section 3.4. Last, the chapter is concluded
in Section 3.5.

3.1. Affine model
If the dynamics of a shortrate model are given as in Proposition 3.1, the model belongs to the class of
affine shortrates models Andersen and Piterbarg, 2010. These models have an affine term structure
which can be found by solving two differential equations. This useful result is presented in Proposition
3.1.

Proposition 3.1. Suppose the dynamics of 𝑟(𝑡) are given by:

𝑑𝑟(𝑡) = 𝜇(𝑡, 𝑟(𝑡))𝑑𝑡 + 𝜎(𝑡, 𝑟(𝑡))𝑑𝑊(𝑡),

and 𝜇(𝑡, 𝑟(𝑡)) and 𝜎(𝑡, 𝑟(𝑡)) are of the form:

𝜇(𝑡, 𝑟(𝑡)) = 𝜆(𝑡)𝑟(𝑡) + 𝜈(𝑡),
𝜎2(𝑡, 𝑟(𝑡)) = 𝛾(𝑡)𝑟(𝑡) + 𝛿(𝑡).

Then the model has an affine term structure of the form:

𝑃(𝑡, 𝑇) = 𝐴(𝑡, 𝑇) exp(−𝐵(𝑡, 𝑇)𝑟(𝑡)),

where 𝐴 and 𝐵 satisfy the following Riccati differential equations:

𝜕
𝜕𝑡𝐵(𝑡, 𝑇) + 𝜆(𝑡)𝐵(𝑡, 𝑇) −

1
2𝛾(𝑡)𝐵

2(𝑡, 𝑇) + 1 = 0,
𝜕
𝜕𝑡 log𝐴(𝑡, 𝑇) − 𝜈(𝑡)𝐵(𝑡, 𝑇) +

1
2𝛿(𝑡)𝐵

2(𝑡, 𝑇) = 0,

with 𝐵(𝑇, 𝑇) = 0 and 𝐴(𝑇, 𝑇) = 1.

Proof. For a proof, we refer to Björk, 2004, par 22.3.

17
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3.2. Shortrate models
At first, an introduction to the Vasicek shortrate model is briefly presented. Thereafter, the HullWhite
model, an extension of the Vasicek model, is discussed in more detail. As mentioned before, due to
the affine nature of the model, there exists an analytic formula for zerocoupon bond prices under the
HullWhite model. Section 3.1 provides a proposition for affine models, which is used to obtain the
zerocoupon bond price for the HullWhite model. The existence of an analytic formula for the zero
coupon bond is one of the advantages of the HullWhite model. These formulae for both constant and
piecewise constant volatilities will be derived. In this section we follow Sterling and Hári, 2007.

3.2.1. Vasicek Model
Empirical studies show that interest rates exhibit mean reversion, see e.g. Andersen and Piterbarg,
2010. In the Vasicek model the mean reversion is, under the riskneutral measure ℚ, captured by
following the OrnsteinUhlenbeck process:

𝑑𝑟(𝑡) = 𝑘(𝜃 − 𝑟(𝑡))𝑑𝑡 + 𝜎𝑑𝑊ℚ(𝑡),
where 𝑘, 𝜃 and 𝜎 are constants and 𝑊ℚ(𝑡) is a Brownian motion at time 𝑡 under the riskneutral mea
sure. The mean reverting rate is denoted by 𝜃. If a realisation of 𝑟(𝑡) is larger than 𝜃, the drift term will
become negative and the process will tend to 𝜃 from above, while if the realisation of 𝑟(𝑡) is smaller
than 𝜃, the reverse will happen, i.e., the drift term will become positive and the process will tend to 𝜃
from below. Parameter 𝑘 is called the mean reverting speed. As its name suggests, it is the speed
at which the rate reverts back to 𝜃. The volatility is denoted by 𝜎. Using Itô’s lemma Oosterlee and
Grzelak, 2020 for 𝑡 > 0, the solution of the above SDE is given below:

𝑟(𝑡) = 𝑟(0)𝑒−𝑘𝑡 + 𝑘𝜃(1 − 𝑒−𝑘𝑡) + 𝜎∫
𝑡

0
𝑒−𝑘𝑢𝑑𝑊ℚ(𝑢).

Note, for 𝑠 < 𝑡 the shortrate in the Vasicek model is normally distributed with:
𝔼ℚ [𝑟(𝑡)|ℱ𝑠] = 𝑟(𝑠)𝑒−𝑘(𝑡−𝑠) + 𝑘𝜃(1 − 𝑒−𝑘(𝑡−𝑠)),

Varℚ [𝑟(𝑠) ∣ ℱ𝑠] = 𝜎2
2𝑘 (1 − 𝑒

−2𝑘(𝑡−𝑠)) .

The conditional probability that the shortrate is negative at time 𝑡 > 𝑠 > 0 is equal to:

ℚ(𝑟(𝑡) < 0|ℱ𝑠) = Φ⎛

⎝

𝑟(𝑠)𝑒−𝑘(𝑡−𝑠) + 𝑘𝜃(1 − 𝑒−𝑘(𝑡−𝑠))

√𝜎2
2𝑘 (1 − 𝑒

−2𝑘(𝑡−𝑠))
⎞

⎠

,

where Φ(⋅) is the standard normal cumulative distribution function.
A drawback of this model is that the model implied initial term structure (at 𝑡 = 0), i.e., the prices of

the zerocoupon bonds 𝑃(0, 𝑇) for 𝑇 > 0, does not align with the observed market prices. This problem
is addressed by the HullWhite model, an extension of the Vasicek model, which is discussed in the
next section.

3.2.2. HullWhite Model
The dynamics of the instantaneous shortrate in the HullWhite model under the riskneutral measure
ℚ are given by:

𝑑𝑟(𝑡) = (𝜃(𝑡) − 𝑎𝑟(𝑡)) 𝑑𝑡 + 𝜎𝑑𝑊ℚ(𝑡) = 𝑎 (𝜃(𝑡)𝑎 − 𝑟(𝑡)) 𝑑𝑡 + 𝜎𝑑𝑊ℚ(𝑡), (3.1)

where 𝜃(𝑡) is a deterministic function calibrated such that the model implied initial term structure
matches the market observed term structure. Then 𝜃(𝑡)

𝑎 is a timedependent mean reverting rate, 𝑎
is the mean reverting speed and 𝜎 is a constant volatility. Using Itô’s lemma the shortrate in the
HullWhite model is given by:

𝑟(𝑡) = 𝑟(0)𝑒−𝑎𝑡 +∫
𝑡

0
𝜃(𝑢)𝑒−𝑎(𝑡−𝑢)𝑑𝑢 + 𝜎∫

𝑡

0
𝑒−𝑎(𝑡−𝑢)𝑑𝑊ℚ(𝑢). (3.2)
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TheHullWhitemodel belongs to the class of affine shortratemodels Andersen and Piterbarg, 2010.
For affine shortrate models there is a formula for zerocoupon bond prices, which can be obtained with
Proposition 3.1. Since the dynamics of Equation (3.1) satisfy the conditions of Proposition 3.1, the price
of a zerocoupon bond can be derived by solving two ODEs. These ODEs can be solved analytically
to obtain the following formula for the term structure:

𝑃(𝑡, 𝑇) = 𝐴(𝑡, 𝑇) exp(−𝐵(𝑡, 𝑇)𝑟(𝑡)), (3.3)

log𝐴(𝑡, 𝑇) = 𝜎2
2 ∫

𝑇

𝑡
𝐵2(𝑢, 𝑇)𝑑𝑢 − ∫

𝑇

𝑡
𝜃(𝑢)𝐵(𝑢, 𝑇)𝑑𝑢,

𝐵(𝑡, 𝑇) = 1
𝑎(1 − exp(−𝑎(𝑇 − 𝑡))).

In order to fit to the initial term structure, an expression for 𝜃(𝑡) has to be obtained. By substituting
Equation (3.3) into the formula for the instantaneous forward rate, given in Definition 2.2, the following
formula is derived:

𝑓(0, 𝑇) = 𝜕
𝜕𝑇𝐵(0, 𝑇)𝑟(0) −

𝜕
𝜕𝑇 log(𝐴(0, 𝑇))

= 𝑟(0)𝑒−𝑎𝑇 − 𝜎2
2𝑎2 (1 − 𝑒

−𝑎𝑇)2 + 𝑒−𝑎𝑇∫
𝑇

0
𝜃(𝑢)𝑒𝑎𝑢𝑑𝑢.

This implies:

𝜃(𝑡) = 𝜕
𝜕𝑡𝑓(0, 𝑡) + 𝑎𝑓(0, 𝑡) +

𝜎2
2𝑎(1 − 𝑒

−2𝑎𝑡). (3.4)

For details we refer to Sterling and Hári, 2007. Substituting Equation (3.4) into Equation (3.2) gives:

𝑟(𝑡) = 𝑟(0)𝑒−𝑎𝑡 + 𝑔(𝑡) − 𝑔(0)𝑒−𝑎𝑡 + 𝜎∫
𝑡

0
𝑒−𝑎(𝑡−𝑢)𝑑𝑊ℚ(𝑢), (3.5)

where

𝑔(𝑡) = 𝑓(0, 𝑡) + 𝜎2
2𝑎2 (1 − 𝑒

−𝑎𝑡)2. (3.6)

Substituting Equation (3.5) into Equation (3.3) yields the formula for the zerocoupon bond prices:

𝑃(𝑡, 𝑇) = 𝑃(0, 𝑇)
𝑃(0, 𝑡) exp(𝐵(𝑡, 𝑇)𝑓(0, 𝑡) −

𝜎2
4𝑎𝐵

2(𝑡, 𝑇)(1 − 𝑒−2𝑎𝑡) − 𝐵(𝑡, 𝑇)𝑟(𝑡)) . (3.7)

We note that for 𝑠 < 𝑡 the shortrate in the HullWhite model is, as well as in the Vasicek model,
normally distributed with:

𝔼ℚ [𝑟(𝑡) ∣ ℱ𝑠] = 𝑟(𝑠)𝑒−𝑎(𝑡−𝑠) + 𝑔(𝑡) − 𝑔(𝑠)𝑒−𝑎(𝑡−𝑠),

Varℚ [𝑟(𝑠) ∣ ℱ𝑠] = 𝜎2
2𝑎 (1 − 𝑒

−2𝑎(𝑡−𝑠)) .

The conditional probability that the shortrate at time 𝑡 > 𝑠 > 0 is negative is equal to:

ℚ(𝑟(𝑡) < 0|ℱ𝑠) = Φ⎛

⎝

𝑟(𝑠)𝑒−𝑎(𝑡−𝑠) + 𝑔(𝑡) − 𝑔(𝑠)𝑒−𝑎(𝑡−𝑠)

√𝜎2
2𝑎 (1 − 𝑒

−2𝑎(𝑡−𝑠))
⎞

⎠

.

Historical negative rates admitted by the HullWhite model were seen as a disadvantage of the model.
However, nowadays in the low/negative rate environment this became an advantage of the model.
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3.2.2.1. Zero mean process
Since the expression for the instantaneous forward rate 𝑓(0, 𝑡) is a cumbersome term, due to the
derivative in the definition, one prefers to remove this term in the zerocoupon bond price formula
and work with the socalled zero mean process that has the following dynamics under the riskneutral
measure:

𝑑𝑥(𝑡) = −𝑎𝑥(𝑡)𝑑𝑡 + 𝜎𝑑𝑊ℚ(𝑡),
𝑥(0) = 0.

With Itô’s lemma, the solution for the above SDE is given by:

𝑥(𝑡) = 𝑥(0)𝑒−𝑎𝑡 + 𝜎∫
𝑡

0
𝑒−𝑎(𝑡−𝑢)𝑑𝑊ℚ(𝑢).

Note that:
𝑟(𝑡) = 𝑥(𝑡) + 𝑔(𝑡),

with 𝑔(𝑡) as in (3.6). By substituting this into Equation (3.7), the formula for the zerocoupon bond price,
without the 𝑓(0, 𝑡) term, becomes:

𝑃(𝑡, 𝑇) = 𝑃(0, 𝑇)
𝑃(0, 𝑡) exp (−𝐺(𝑡, 𝑇) − 𝐵(𝑡, 𝑇)𝑥(𝑡)) ,

where:
𝐺(𝑡, 𝑇) = 𝜎2

2𝑎𝐵(𝑡, 𝑇)(1 − 𝑒
−𝑎𝑡) (𝐵(𝑡, 𝑇)2 (1 + 𝑒−𝑎𝑡) + 1 − 𝑒

−𝑎𝑡

𝑎 ) .

3.2.3. HullWhite model with piecewise constant volatility
In this section we consider an extension of the onefactor HullWhite model with piecewise constant
volatility. Piecewise constant volatility gives the model more flexibility. A model with piecewise con
stant volatility can be calibrated to multiple calibration instruments, for example, to 𝑛 caps/floors, with
maturities 𝑡1 < … < 𝑡𝑛. This gives an extra degree of freedom in the calibration process, which is an
advantage of piecewise constant volatility compared to the constant volatility. Taking the same volatility
on each interval degenerates it to the constant onefactor HullWhite model.

We assume that the instantaneous shortrate is modelled by:

𝑟(𝑡) = 𝑥(𝑡) + �̄�(𝑡), (3.8)

where �̄�(𝑡) is a deterministic function which has to be determined by a calibration to the initial term
structure. Moreover, the dynamics of the zero mean process 𝑥(𝑡) under the riskneutral measure are
given by:

𝑑𝑥(𝑡) = −𝑎𝑥(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊ℚ(𝑡), (3.9)
𝑥(0) = 0,

where 𝜎(𝑡) is piecewise constant on the intervals between 0 = 𝑡0 < 𝑡1 < … < 𝑡𝑛 = 𝑇.
Proposition 3.2. Let us define the piecewise constant volatility function by 𝜎(𝑡) = 𝜎𝑗 for any 𝑡 ∈
(𝑡𝑗−1, 𝑡𝑗], 𝑗 ∈ {1, 2, … , 𝑛}. Then the time 𝑡 price of a zerocoupon bond with maturity 𝑇 = 𝑡𝑛 under the
HullWhite model with piecewise constant volatility is given by:

𝑃(𝑡, 𝑇) = 𝑃(0, 𝑇)
𝑃(0, 𝑡) exp(

1
2(𝑊(𝑡, 𝑇) −𝑊(0, 𝑇) +𝑊(0, 𝑡)) − 𝐵(𝑡, 𝑇)𝑥(𝑡)) ,

with

𝐵(𝑡, 𝑇) = 1
𝑎 (1 − 𝑒

−𝑎(𝑇−𝑡)) ,

𝑊(𝑡, 𝑇) = 𝑊(𝑡, 𝑡𝑗) +
𝑛−1

∑
𝑘=𝑗

𝑊(𝑡𝑘 , 𝑡𝑘+1),
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where 𝑃(0, 𝑡) and 𝑃(0, 𝑇) are the zerocoupon bond prices observed in the market and for every (𝑙, 𝑢) ⊆
(𝑡𝑘 , 𝑡𝑘+1]:

𝑊(𝑙, 𝑢) = ∫
𝑢

𝑙
𝜎2𝑘+1𝐵2(𝑠, 𝑇)𝑑𝑠 =

𝜎2𝑘+1
2𝑎3 (𝑒

−2𝑎𝑇(𝑒𝑎𝑢 − 𝑒𝑎𝑙)(𝑒𝑎𝑢 + 𝑒𝑎𝑙 + 4𝑒𝑎𝑇) + 2𝑎(𝑢 − 𝑙)) .

Proof. For a proof, we refer to Hoorens, 2011.

3.3. Pricing methods
In this section two different pricing methods to obtain caplet/floorlet prices are described. We begin with
the HullWhite pricing kernel approach yielding analytical pricing formulae in Section 3.3.1. Thereafter,
we look into the numerical MC simulation in Section 3.3.2. The two methods are applied to price both
LIBOR caplets/floorlets and caplets/floorlets on compounded rates.

3.3.1. HullWhite pricing kernel
In this section we derive an analytic formula for caplet/floorlet prices using the kernel approach. The
idea behind the kernel pricing is, first, to formulate the pricing problem as a problem of solving the
corresponding PDE, see Theorem 2.2. Second, apply the socalled Green functions approach to solve
this pricing PDE. In Section 2.4.3 we briefly sketched the idea behind the Green functions approach to
solve differential equations. Note, that herewith the pricing formulae for both LIBOR caplets/floorlets
and caplets/floorlets on compounded rates are derived. We denote �̂�(𝑡, 𝑇, 𝑥(𝑡)) ≡ 𝑃(𝑡, 𝑇), to be clear
that the zerocoupon bond depends on process 𝑥(𝑡).

3.3.1.1. HullWhite pricing kernel for LIBOR rates
Consider a derivative with payoff 𝑉(𝑇, 𝑥(𝑇)) dependent on the value of the process 𝑥(𝑡) at time 𝑇,
where 𝑥(𝑡) is given as in Equation (3.9) with deterministic yet timedependent volatility 𝜎(𝑡). According
to Theorem 2.1, the value of this derivative at time 𝑡 < 𝑇 is given by:

ℎ(𝑡, 𝑥(𝑡)) = 𝔼 [𝑒−∫
𝑇
𝑡 𝑟(𝑢)𝑑𝑢𝑉(𝑇, 𝑥(𝑇)) ∣ ℱ𝑡] . (3.10)

From the FeynmanKac Theorem, it follows that (3.10) is a solution of the Kolmogorov backward diffu
sion equation:

𝜕ℎ
𝜕𝑡 − 𝑎𝑥

𝜕ℎ
𝜕𝑥 +

1
2𝜎

2(𝑡)𝜕
2ℎ
𝜕𝑥2 − 𝑟(𝑡)ℎ = 0,

for 𝑡 ≥ 0 with the final condition ℎ(𝑇, 𝑥) = 𝑉(𝑇, 𝑥).
Turfus, 2019 derives the following Green function that solves the above Kolmogorov backward

diffusion equation:

𝐺(𝑥, 𝑡; 𝜉, 𝑇) = �̂�(𝑡, 𝑇, 𝑥)𝜑(𝜉 + 𝐼(𝑡, 𝑇) − 𝑥𝜙(𝑡, 𝑇); Σ(𝑡, 𝑇)),
where �̂�(𝑡, 𝑇, 𝑥) is the zerocoupon bond price under the Hullwhite model and

𝜑(𝑥; Σ) = 1
√2𝜋Σ

exp(− 1
2Σ𝑥

2) ,

𝜙(𝑡, 𝑇) = exp(−𝑎(𝑇 − 𝑡)),

Σ(𝑡, 𝑇) = ∫
𝑇

𝑡
𝜙2(𝑢, 𝑇)𝜎2(𝑢)𝑑𝑢,

𝐼(𝑡, 𝑇) = ∫
𝑇

𝑡
𝜙(𝑢, 𝑇)Σ(𝑡, 𝑢)𝑑𝑢.

For the details of the derivation of this pricing kernel, we refer to Appendix B.
This Green function is also called the pricing kernel. Note, that 𝑥 represents the value of the process

𝑥(𝑡) at time 𝑡 and 𝜉 the value of 𝑥(𝑡) at time 𝑇. The price at time 𝑡 < 𝑇 of a derivative with payoff
𝑉(𝑇, 𝑥(𝑇)) can be obtained by calculating the following integral:

ℎ(𝑡, 𝑥(𝑡)) = ∫
ℝ
𝑉(𝑇, 𝜉)𝐺(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝜉. (3.11)
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LIBOR caplet/floorlet prices Below we derive the pricing formula for the LIBOR caps/floors using
the kernel approach. The caplet/floorlet payoff at time 𝑇𝑖+1 with notional 𝑁 and strike 𝐾 on the LIBOR
rate over [𝑇𝑖 , 𝑇𝑖+1] can be written as:

𝑉(𝑇𝑖+1, 𝑥(𝑇𝑖)) = 𝑁𝜏max(𝜔 [1𝜏 (
1

�̂�(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖))
− 1) − 𝐾] , 0) ,

where 𝜔 equals 1 in case of a caplet and 1 in case of a floorlet.
In order to determine the present value of the caplet/floorlet, first the value of the caplet/floorlet at

time 𝑇𝑖 has to be determined:

𝑉(𝑇𝑖 , 𝑥(𝑇𝑖)) = �̂�(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖))𝑉(𝑇𝑖 , 𝑥(𝑇𝑖)).

Second, the pricing kernel can be applied to the 𝑇𝑖value to calculate the present value of the caplet/floorlet
at time 𝑡 = 0. Notice, for 𝑡 = 0, also 𝑥(𝑡) = 0. This approach then yields the following formulae for the
today’s present value of caplets/floorlets:

𝑉𝐶(0, 0) = 𝑁(𝑃(0, 𝑇𝑖)Φ(−𝑑1) − (1 + 𝜏𝐾)𝑃(0, 𝑇𝑖+1)Φ(−𝑑2)), (3.12)
𝑉𝑃(0, 0) = 𝑁((1 + 𝜏𝐾)𝑃(0, 𝑇𝑖+1)Φ(𝑑2) − 𝑃(0, 𝑇𝑖)Φ(𝑑1)),

where

𝑑1 =
log (𝑃(0,𝑇𝑖+1)𝑃(0,𝑇𝑖)

(1 + 𝜏𝐾)) − 1
2𝐵

2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖)

𝐵(𝑇𝑖 , 𝑇𝑖+1)√Σ(0, 𝑇𝑖)
,

𝑑2 = 𝑑1 + 𝐵(𝑇𝑖 , 𝑇𝑖+1)√Σ(0, 𝑇𝑖).

For the derivations, we refer to Appendix C.1. Notice, these pricing formulae are the same as the well
known analytical formulae for caplets/floorlets which are described in the literature, see e.g. Sterling
and Hári, 2007. This is expected since the same model is used but only a different approach.

3.3.1.2. HullWhite pricing kernel for compounded rates
For caplets/floorlets linked to the new RFR, the payoff no longer depends on the LIBOR rate but on a
compounding rate. Although the rates are daily compounding, their usual approximation by a continu
ously compounded rate is used in practice. The interest over a period [𝑡, 𝑇] is calculated by:

�̃�(𝑡, 𝑇) = exp(∫
𝑇

𝑡
𝑟(𝑠)𝑑𝑠) − 1. (3.13)

Therefore, the compounded interest (3.13) is path dependent. Subsequently, the payoff of a caplet/floorlet
on compounded rates depends not only on the process 𝑥(𝑡) at the start of the caplet/floorlet, but also
on the whole path of 𝑥(𝑡) until maturity. Following Turfus, 2020a we introduce a new variable 𝑧(𝑡):

𝑧(𝑡) = ∫
𝑡

0
(�̂�(𝑡) + 𝑥(𝑠)) 𝑑𝑠,

where �̄�(𝑡) = �̂�(𝑡) + 𝑓(0, 𝑡). Using 𝑟(𝑡) from Equation (3.8), we rewrite the interest over a period [𝑡, 𝑇]
as:

�̃�(𝑡, 𝑇) = 𝑃(0, 𝑡)
𝑃(0, 𝑇) exp(𝑧(𝑇) − 𝑧(𝑡)) − 1.

Let us now consider a derivative with payoff �̃�(𝑇, 𝑥(𝑇), 𝑧(𝑇)) that depends on the process 𝑥(𝑇) at ma
turity and the variable 𝑧(𝑇) at maturity. For such a derivative, the following pricing PDE holds:

𝜕ℎ
𝜕𝑡 − 𝑎𝑥

𝜕ℎ
𝜕𝑥 + (�̂�(𝑡) + 𝑥)

𝜕ℎ
𝜕𝑧 +

1
2𝜎

2(𝑡)𝜕
2ℎ
𝜕𝑥2 − 𝑟(𝑡)ℎ = 0,

for 𝑡 ≥ 0 and ℎ(𝑇, 𝑥, 𝑧) = �̃�(𝑇, 𝑥, 𝑧).
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Analogously to the previous section, this pricing PDE can be solved using the Green function ap
proach. In Turfus, 2020b the Green function for the above PDE is derived in the following form:

�̃�(𝑥, 𝑧, 𝑡; 𝜉; 𝜁, 𝑇) = �̂�(𝑡, 𝑇, 𝑥)𝜑2[𝜉 + 𝐼(𝑡, 𝑇) − 𝑥𝜙(𝑡, 𝑇), 𝜁 + 𝐾(𝑡, 𝑇) − 𝜇(𝑥, 𝑡, 𝑇) − 𝑧; Σ+(𝑡, 𝑇)],

where 𝜑2[⋅, ⋅; Σ] is a bivariate Gaussian probability density function with a covariance Σ and:

𝐾(𝑡, 𝑇) = ∫
𝑇

𝑡
𝐼(𝑡, 𝑢)𝑑𝑢,

Σ+(𝑡, 𝑇) = (Σ(𝑡, 𝑇) 𝐼(𝑡, 𝑇)
𝐼(𝑡, 𝑇) 2𝐾(𝑡, 𝑇)) .

Using this Green function the price at time 𝑡 < 𝑇 of a derivative with payoff �̃�(𝑥(𝑇), 𝑧(𝑇), 𝑇) can be
obtained by calculating:

ℎ(𝑡, 𝑥(𝑡), 𝑧(𝑡)) = ∫
ℝ
�̃�(𝑇, 𝜉, 𝜁)�̃�(𝑥, 𝑧, 𝑡; 𝜉, 𝜁, 𝑇). (3.14)

Caplet/floorlet prices on compounded rates Using the above result, the caps/floors on the com
pounded rates can be priced with the kernel approach. The caplet/floorlet payoff at time 𝑇𝑖+1 on com
pounded rates over the period [𝑇𝑖 , 𝑇𝑖+1] with notional 𝑁 and strike 𝐾 is defined as:

�̃�𝐶𝑅(𝑇𝑖+1, 𝑥(⋅), 𝑧(⋅)) = 𝑁𝜏max(𝜔 [1𝜏𝑀(𝑇𝑖 , 𝑇𝑖+1) − 𝐾] , 0) , (3.15)

where 𝜔 is equals 1 in case of a caplet and 1 in case of a floorlet.
The calculation of today’s present value of the caplet/floorlet on compounded rates is a two step

approach. First, the pricing kernel needs to be applied to the payoff at time 𝑇𝑖+1 to determine the time𝑇𝑖
value of the caplet/floorlet. Second, the kernel has to be applied again, but then to the time𝑇𝑖 value
to obtain the present value. With this approach the present value (at time 𝑡 = 0) of a caplet/floorlet on
compounding rates is given by:

�̃�𝐶𝐶𝑅(0, 0, 0) = 𝑁(𝑃(0, 𝑇𝑖)Φ(−𝑑2) − 𝜅𝑃(0, 𝑇𝑖+1)Φ(−𝑑1)), (3.16)

�̃�𝑃𝐶𝑅(0, 0, 0) = 𝑁(𝜅𝑃(0, 𝑇𝑖+1)Φ(𝑑1) − 𝑃(0, 𝑇𝑖)Φ(𝑑2)),

where

𝑑2 =
log (𝑃(0,𝑇𝑖+1)𝑃(0,𝑇𝑖)

(1 + 𝜏𝐾)) − 1
2 (𝐵

2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) + 2𝐾(𝑇𝑖 , 𝑇𝑖+1))

√𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) + 2𝐾(𝑇𝑖 , 𝑇𝑖+1)
,

𝑑1 = 𝑑2 +√𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) + 2𝐾(𝑇𝑖 , 𝑇𝑖+1),

and Φ(⋅) is a Gaussian cumulative distribution function. For details of the derivation, we refer to Ap
pendix C.2.

3.3.2. Monte Carlo simulation
The last approach we describe is pricing caps/floors using MC simulations. For a short introduction
to MC methods we refer to Section 2.4.1 and references therein. With the MC approach, process
𝑥(𝑡) needs to be simulated. Therefore, in this section we explain how to determine the value of
caplets/floorlets when process 𝑥(𝑡) is simulated directly from the distribution. First, we discuss LIBOR
caps/floors and then consider caps/floors on compounded rates.

3.3.2.1. Monte Carlo simulation for LIBOR rates
Under the onefactor HullWhite model the shortrate can be expressed as in Section 3.2.2.1. The price
of a LIBOR caplet/floorlet over the period [𝑇𝑖 , 𝑇𝑖+1] is equal to:

𝑉(𝑡, 𝑥(⋅)) = 𝔼ℚ [exp(−∫
𝑇𝑖+1

𝑡
𝑟(𝑠)𝑑𝑠)max(𝜔 [ 1

𝑃(𝑇𝑖 , 𝑇𝑖+1)
− (1 + 𝜏𝐾)] , 0) |ℱ𝑡] ,
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where the conditional expectation is under the riskneutral measure and 𝜔 equals 1 in case of a caplet
and 1 in case of a floorlet. To calculate this expression using the MC estimator, one would need to
simulate the process 𝑥(𝑡) at time 𝑇𝑖 to compute 𝑃(𝑇𝑖 , 𝑇𝑖+1) and simulate the whole path of process 𝑥(𝑡)
to compute the moneymarket numeraire exp (−∫𝑇𝑖+1𝑡 𝑟(𝑠)𝑑𝑠).

As explained in Section 2.2.2, it might be more convenient to price such a caplet/floorlet under the
𝑇forward measure. Therefore, first the value of the caplet/floorlet at time 𝑇𝑖 is considered under the
𝑇𝑖+1forward measure, where the martingale property is used:

𝑉(𝑇𝑖 , 𝑥(𝑇𝑖))
𝑃(𝑇𝑖 , 𝑇𝑖+1)

= 𝔼ℚ𝑇𝑖+1 [𝑉(𝑇𝑖+1, 𝑥(𝑇𝑖))𝑃(𝑇𝑖+1, 𝑇𝑖+1)
|ℱ𝑇𝑖]

⟹ 𝑉(𝑇𝑖 , 𝑥(𝑇𝑖)) = 𝑃(𝑇𝑖 , 𝑇𝑖+1)max(𝜔 [ 1
𝑃(𝑇𝑖 , 𝑇𝑖+1)

− (1 + 𝜏𝐾)] , 0) .

Second, the general 𝑇forward measure is used to obtain the 𝑡value of the caplet/floorlet:
𝑉(𝑡, 𝑥(𝑇𝑖))
𝑃(𝑡, 𝑇) = 𝔼ℚ𝑇 [𝑉(𝑇𝑖 , 𝑥(𝑇𝑖))𝑃(𝑇𝑖 , 𝑇)

|ℱ𝑡] ,

which implies:

𝑉(𝑡, 𝑥(𝑇𝑖)) = 𝑃(𝑡, 𝑇)𝔼ℚ𝑇 [𝑉(𝑇𝑖 , 𝑥(𝑇𝑖))𝑃(𝑇𝑖 , 𝑇)
|ℱ𝑡]

= 𝑃(𝑡, 𝑇)𝔼ℚ𝑇 [𝑃(𝑇𝑖 , 𝑇𝑖+1)
𝑉(𝑇𝑖+1, 𝑥(𝑇𝑖))
𝑃(𝑇𝑖 , 𝑇)

|ℱ𝑡]

= 𝑃(𝑡, 𝑇)𝔼ℚ𝑇 [𝑃(𝑇𝑖 , 𝑇𝑖+1)𝑃(𝑇𝑖 , 𝑇)
max(𝜔 [ 1

𝑃(𝑇𝑖 , 𝑇𝑖+1)
− (1 + 𝜏𝐾)] , 0) |ℱ𝑡]

As a result, under the 𝑇forward measure, process 𝑥(𝑡) only needs to be simulated at time 𝑇𝑖 in order to
compute 𝑃(𝑇𝑖 , 𝑇𝑖+1) and 𝑃(𝑇𝑖 , 𝑇). This result follows because zerocoupon bonds are used to discount
the payoff instead of the moneymarket account.

Since we change to pricing under the 𝑇forward measure, we also need the dynamics of 𝑥(𝑡) under
the 𝑇forward measure. By applying Itô’s lemma on Equation (3.3), the dynamics of the zerocoupon
bond price in the HullWhite model are given by:

𝑑𝑃(𝑡, 𝑇) = 𝑟(𝑡)𝑃(𝑡, 𝑇)𝑑𝑡 + 𝜎(𝑡)𝐵(𝑡, 𝑇)𝑃(𝑡, 𝑇)𝑑𝑊ℚ(𝑡).
The RadonNikodym of ℚ𝑇 with respect to ℚ given by:

𝜂 = 𝑀(𝑡0)/𝑀(𝑇)
𝑃(𝑡0, 𝑇)/𝑃(𝑇, 𝑇)

,

is a martingale under ℚ, where 𝑡0 = 0 is today’s date. The SDE of this RadonNikodym derivative is
given by:

𝑑𝜂(𝑡) = −𝜂(𝑡)𝜎(𝑡)𝐵(𝑡, 𝑇)𝑑𝑊ℚ(𝑡).
Solving this SDE gives:

𝜂(𝑡) = exp(−12 ∫
𝑇

0
𝜎2(𝑢)𝐵2(𝑢, 𝑇)𝑑𝑢 + ∫

𝑇

0
𝜎(𝑢)𝐵(𝑢, 𝑇)𝑑𝑊ℚ(𝑢)) .

According to Girvanov’s Theorem 2.6:

𝑑𝑊ℚ𝑇(𝑡) = 𝜎(𝑡)𝐵(𝑡, 𝑇)𝑑𝑡 + 𝑑𝑊ℚ(𝑡),
is a Brownian motion under ℚ𝑇. With this expression of the Brownian motion, the dynamics of 𝑥(𝑡)
under the 𝑇forward measure are given by:

𝑑𝑥(𝑡) = [−𝜎(𝑡)2𝐵(𝑡, 𝑇) − 𝑎𝑥(𝑡)] 𝑑𝑡 + 𝜎(𝑡)𝑑𝑊ℚ𝑇(𝑡),
𝑥(0) = 0.
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Using Itô’s lemma, process 𝑥(𝑡) is presented by:

𝑥(𝑡) = 𝑥(𝑠)𝑒−𝑎(𝑡−𝑠) −∫
𝑡

𝑠
𝑒−𝑎(𝑡−𝑢)𝜎2(𝑢)𝐵(𝑢, 𝑇)𝑑𝑢 + ∫

𝑡

𝑠
𝑒−𝑎(𝑡−𝑢)𝜎(𝑢)𝑑𝑊ℚ𝑇(𝑢).

Therefore, process 𝑥(𝑡) can be simulated directly from the distribution for any 𝑡 > 𝑠 under the 𝑇forward
measure with:

𝑥(𝑡) = 𝔼ℚ𝑇 [𝑥(𝑡)|𝑥(𝑠)] + √Varℚ𝑇 [𝑥(𝑡)|𝑥(𝑠)]𝒩(0, 1),

where𝒩(0, 1) is a standard normal random variable.

Conditional expectation and variance under the Tforward measure As mentioned above, the
conditional expectation and variance are needed to simulate process 𝑥(𝑡) directly from the distribution.
This expectation and variance at time 𝑡 conditional on the information at time 𝑠 are given by:

𝔼ℚ𝑇 [𝑥(𝑡)|𝑥(𝑠)] = 𝑥(𝑠)𝑒−𝑎(𝑡−𝑠) −∫
𝑡

𝑠
𝑒−𝑎(𝑡−𝑢)𝜎2(𝑢)𝐵(𝑢, 𝑇)𝑑𝑢,

Varℚ
𝑇 [𝑥(𝑡)|𝑥(𝑠)] = ∫

𝑡

𝑠
𝑒−2𝑎(𝑡−𝑢)𝜎2(𝑢)𝑑𝑢.

Note, that the variance is independent of 𝑥(𝑠).
Since we consider a case of the piecewise constant volatility, we simplify the above expressions on

the constant intervals, with volatility 𝜎, yielding:

∫
𝑢

𝑙
𝑒−𝑎(𝑡−𝑠)𝐵(𝑠, 𝑇)𝑑𝑠 = 𝜎2

2𝑎 (𝑒
−𝑎(𝑇+𝑡)(𝑒𝑎𝑙 − 𝑒𝑎𝑢)(𝑒𝑎𝑙 − 𝑒𝑎𝑇 + 𝑒𝑎𝑢)) ,

∫
𝑢

𝑙
𝑒−2𝑎(𝑡−𝑠)𝜎2𝑑𝑠 = 𝜎2

2𝑎 (𝑒
−2𝑎(𝑡−𝑢) − 𝑒−2𝑎(𝑡−𝑙)) .

3.3.2.2. Monte Carlo simulation for compounded rates
For the LIBOR caplets/floorlets a single zerocoupon bond price 𝑃(𝑇𝑖 , 𝑇𝑖+1) determines the LIBOR rate.
In contrast, for the caplets/floorlets on compounded rates a sequence of daily zerocoupon bonds along
the path should be used to calculate the compounded rate. The value of the compounded rate can be
presented in terms of daily bond prices since the value of the overnight rate is simple compounded and
can be calculated by:

1
𝜏𝑗
( 1
𝑃(𝑡𝑗 , 𝑡𝑗+1)

− 1) ,

where the overnight fixing is for day 𝑡𝑗 and 𝜏𝑗 is the year fraction corresponding to [𝑡𝑗 , 𝑡𝑗+1]. The daily
compounded rate is determined as in Definition 2.2, which can be simplified by taking the following
product:

𝐶𝑅(𝑇𝑖 , 𝑇𝑖+1) =
1
𝜏 (

𝑛

∏
𝑗=1

1
𝑃(𝑡𝑗 𝑡𝑗+1)

− 1) ,

where the compounded rate is over the period [𝑇𝑖 , 𝑇𝑖+1] with fixing dates 𝑇𝑖 = 𝑡1 < … < 𝑡𝑛 = 𝑇𝑖+1 and 𝜏
is the year fraction from 𝑇𝑖 to 𝑇𝑖+1. Notice, the zerocoupon bond 𝑃(𝑡𝑗 , 𝑡𝑗+1) depends on the simulation
of process 𝑥(𝑡) at time 𝑡𝑗. Therefore, to compute this daily compounded rate, process 𝑥(𝑡) has to be
simulated on each date within the tenor of the caplet. Based on these realisations of 𝑥(𝑡) the daily
bond prices 𝑃(𝑡𝑗 , 𝑡𝑗+1) are computed.

3.4. Numerical results
In this section we compare different approaches to the cap/floor pricing under the HullWhite model. A
comparison between the pricing kernel and the MC simulation for caps/floors on compounded rates is
presented in Section 3.4.1. Thereafter, a convergence test for the MC approach for compounded rates
is shown in Section 3.4.2. Lastly, the values of the LIBOR caplets and the caplets on compounded
rates are compared in Section 3.4.3. Therein we also comment on a relation between their prices.



26 3. Onefactor HullWhite model

3.4.1. Pricing kernel vs Monte Carlo
In this section we compare prices of the caplets on compounded rates obtained by different methods:
the HullWhite pricing kernel, see Section 3.3.1.2, and the MC simulation, see Section 3.3.2.2. To do
so, we fix a realistic piecewise constant volatility shown in Table 3.1. Since there does not exists a
liquid market for options on compounded rates, we consider a proxy market generated from 3𝑀 LIBOR
caplets and the market implied United States Dollar Secured Overnight Financing Rate (USD SOFR)
curve as of 23112020. The calibration instruments that are used to calibrate the volatilities are 3𝑀
LIBOR caplets with maturities 2𝑌, 5𝑌, 7𝑌, 10𝑌 and 15𝑌. For more details about this proxy market and
how the volatilities are calibrated, we refer to Chapter 5.

For the comparison of the two pricingmethods, a set of caplets is priced with a tenor of 1𝑌 on a grid of
maturities [2𝑌, 5𝑌, 7𝑌, 10𝑌, 15𝑌] and strikes [−10%,−2%, 0%, 0.5%, 1%, 2%, 10%]. For completeness,
the extreme cases of a strike of −10% and 10% are included in this comparison. We consider caplets
with a tenor of 1𝑌 as those are expected to be the most commonly traded ones in the market. Also to
calculate caplets on compounded rates we use the market implied USD SOFR curve as of 23112020.

𝑡 ∈ [0, 2) [2, 5) [5, 7) [7, 10) [10, 15)
𝜎 0.5503% 0.7768% 0.9814% 0.7433% 1.0071%

Table 3.1: Piecewise constant volatility with mean reversion speed 𝑎 = 0.03 and 𝑡 is in years.

Table 3.3 summarises the values of the caplets on the aforementioned grid of maturities and strikes.
We observe that the difference between the values obtained by the pricing kernel and by the MC
simulation are in line with the corresponding standard errors. Hence, the analytical formula derived
from the kernel approach is correct. Furthermore, the prices behave as expected. More specifically,
for any fixed maturity the price behaves monotonically in strike dimension. In particular, the price
decreases when the strike increases. Note, for a high strike of 10% the caplets are deep Out of the
Money (OTM) and, thus, their values are expected to be close to zero. This is in line with the results
of Table 3.3. Furthermore, for a low strike of −10% the caplets are deep It the Money (ITM) and, thus,
their values are expected to be close to the values of the corresponding swaplets. Table 3.4 illustrates
that this holds for the extreme low strike of −10%.

Further to the above, we present computation times of the calculations in Table 3.2. First, notice
that, as we expected, the computation times are independent of the maturity and strike. For the MC
estimator, this is the case since we sample directly from the distribution and do not apply a time dis
cretisation between the reference date and the start of the caplet. In other words, one jump is made in
the simulation from the reference date to the start date of the caplet. Furthermore, it is not a surprise
that the computation times of the MC simulation are much higher than those of the pricing kernel for
compounded rates. For the MC estimator, a daily realisation of process 𝑥(𝑡) is needed, which causes
these high computational times.

Strike Maturity 1Y Maturity 2Y Maturity 5Y Maturity 10Y Maturity 15Y
Kernel MC Kernel MC Kernel MC Kernel MC Kernel MC

10% 0.209 887 0.359 753 0.295 753 0.410 767 0,350 774
2% 0.279 758 0.264 734 0.306 750 0.360 778 0.330 769
0% 0.270 726 0.271 742 0.320 746 0.437 782 0.355 767
0.5% 0.237 745 0.280 752 0.360 757 0,330 762 0.358 773
1% 0.304 801 0.310 734 0.320 753 0.336 766 0.363 771
2% 0.295 752 0.290 739 0.280 758 0.335 766 0.478 766
10% 0.340 747 0.246 743 0.344 757 0.350 779 0.376 787

Table 3.2: Computation time in seconds for caplet prices on compounded rates obtained with the HullWhite pricing kernel for
compounded rates and the MC simulation for compounded rates. For the MC simulation 10.000.000 paths are used. The caplets
have a tenor of 1𝑌 and are on the aforementioned grid of maturities and strikes. The computations are done on a computer with
processor: Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz (2 processors) and 256 GB RAM.
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Strike Kernel Monte
Carlo

Standard
error Difference

10% 1005 1005 1 ⋅ 10−2 4 ⋅ 10−3
2% 206 206 1 ⋅ 10−2 6 ⋅ 10−3
0% 16 16 6 ⋅ 10−3 3 ⋅ 10−2
0.5% 1 1 2 ⋅ 10−3 7 ⋅ 10−3
1% 1 ⋅ 10−2 1 ⋅ 10−2 2 ⋅ 10−4 1 ⋅ 10−4
2% 3 ⋅ 10−9 0 0 3 ⋅ 10−9
10% 9 ⋅ 10−200 0 0 9 ⋅ 10−200

(a) Results for caplets with a maturity of 1𝑌.

Strike Kernel Monte
Carlo

Standard
error Difference

10% 1003 1003 2 ⋅ 10−2 2 ⋅ 10−2
2% 207 207 2 ⋅ 10−2 1 ⋅ 10−2
0% 29 29 1 ⋅ 10−2 4 ⋅ 10−3
0.5% 9 9 7 ⋅ 20−3 1 ⋅ 10−2
1% 2 2 3 ⋅ 10−3 2 ⋅ 10−3
2% 2 ⋅ 10−2 2 ⋅ 10−2 3 ⋅ 10−4 9 ⋅ 10−5
10% 3 ⋅ 10−52 0 0 3 ⋅ 10−52

(b) Results for caplets with a maturity of 2𝑌.

Strike Kernel Monte
Carlo

Standard
error Difference

10% 1044 1044 4 ⋅ 10−2 3 ⋅ 10−2
2% 255 255 4 ⋅ 10−2 2 ⋅ 10−2
0% 86 86 3 ⋅ 10−2 2 ⋅ 10−2
0.5% 57 57 3 ⋅ 10−2 2 ⋅ 10−2
1% 35 35 2 ⋅ 10−2 3 ⋅ 10−2
2% 10 10 1 ⋅ 10−2 3 ⋅ 10−3
10% 2 ⋅ 10−10 0 0 2 ⋅ 10−10

(c) Results for caplets with a maturity of 5𝑌.

Strike Kernel Monte
Carlo

Standard
error Difference

10% 1057 1057 6 ⋅ 10−2 7 ⋅ 10−3
2% 311 311 6 ⋅ 10−2 3 ⋅ 10−2
0% 152 152 5 ⋅ 10−2 2 ⋅ 10−2
0.5% 120 120 4 ⋅ 10−2 2 ⋅ 10−2
1% 92 92 4 ⋅ 10−2 1 ⋅ 10−2
2% 50 50 3 ⋅ 10−2 3 ⋅ 10−2
10% 2 ⋅ 10−3 2 ⋅ 10−3 1 ⋅ 10−4 7 ⋅ 10−5

(d) Results for caplets with a maturity of 10𝑌.

Strike Kernel Monte
Carlo

Standard
error Difference

10% 993 992 8 ⋅ 10−2 8 ⋅ 10−2
2% 304 304 7 ⋅ 10−2 6 ⋅ 10−2
0% 165 165 6 ⋅ 10−2 2 ⋅ 10−1
0.5% 136 136 5 ⋅ 10−2 1 ⋅ 10−1
1% 111 111 5 ⋅ 10−2 2 ⋅ 10−1
2% 70 70 4 ⋅ 10−2 5 ⋅ 10−2
10% 9 ⋅ 10−2 9 ⋅ 10−2 1 ⋅ 10−3 1 ⋅ 10−3

(e) Results for caplets with a maturity of 15𝑌.

Table 3.3: Values of caplets on the aforementioned grid of strikes and maturities with a tenor of 1Y and a notional of 10.000. The
values of the caplet are computed with the pricing kernel for compounded rates and the MC simulation for compounded rates.
For the MC simulation 10.000.000 paths are used. Furthermore, this table presents the standard error which is made due to the
MC simulation and the difference between the values obtained with the pricing kernel and the MC simulation for compounded
rates.

Maturity Caplet Swaplet
2𝑌 1005 1005
5𝑌 1003 1003
7𝑌 1044 1044
10𝑌 1057 1057
15𝑌 993 993

Table 3.4: Values of caplets and swaplets with a tenor of 1𝑌 for a strike of −10% and a notional of 10.000.

3.4.2. Convergence Monte Carlo method
SDE MC estimation, in general, involves two types of errors: a discretisation error and a standard
error. The discretisation error results from an application of some discretisation scheme. However,
in our setting we sample exactly from the distribution and, thus, our MC estimator does not have a
discretisation error. As mentioned in Section 2.4.1, the standard error is given by:

𝜖�̃� =
�̄��̃�
√�̃�

,
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where �̄�2�̃� is the sample variance. Therefore, when the number of MC paths increases with a factor 10,
the standard error should decrease with a factor √10 ≈ 3.16. This straightforward result is shown in
Figure 3.1 and Table 3.5. Figure 3.1 illustrates standard errors for different numbers of paths and three
caplets with different maturities. Table 3.5 shows the corresponding values of caplets on compounded
rates with a MC simulation and the HullWhite pricing kernel for various number of MC paths. We
indeed observe that if the numbers of MC paths increases with a factor 10, the standard error decreases
with a factor of √10. Furthermore, the difference between the values obtained with the MC simulation
and the pricing kernel also decreases when the number of MC paths increase. Hence, we observe a
convergence of the MC simulation to the pricing kernel if the number of MC paths increases.
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Figure 3.1: A loglog plot of the standard error made by the MC simulation against number of MC paths. This is shown for caplets
with a tenor of 1𝑌 and maturity of 2𝑌 (red), 5𝑌 (blue) and 10𝑌 (green).

3.4.3. LIBOR vs Compounded rates
In this section, the values of LIBOR caplets and the values of caplets on compounded rates are com
pared. To start, we compare the pricing formulae for the LIBOR caplets and the caplets on compounded
rates. For LIBOR caplets over the period [𝑇𝑖 , 𝑇𝑖+1] formula (3.12) is considered and compared to for
mula (3.16) for caplets on compounded rates over the period [𝑇𝑖 , 𝑇𝑖+1]. It is easy to spot that if𝐾(𝑇𝑖 , 𝑇𝑖+1)
in Equation (3.16) is set equal to zero, it collapses to Equation (3.12). Therefore, we investigate the
impact of 2𝐾(𝑇𝑖 , 𝑇𝑖+1) on the LIBOR caplet formula and seek for a relation between 2𝐾(𝑇𝑖 , 𝑇𝑖+1) and
𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖), see Equation (3.17) and (3.18). For the sake of simplicity we assume a constant
volatility.

First, we would like to mention that Σ(0, 𝑇𝑖) is the accumulated variance from the reference date until
the start of a caplet and 𝐾(𝑇𝑖 , 𝑇𝑖+1) is the accumulated variance of the integrated shortrate over the pe
riod [𝑇𝑖 , 𝑇𝑖+1]. One can think of𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) as the variance of a LIBOR rate and𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖)
+2𝐾(𝑇𝑖 , 𝑇𝑖+1) as the variance of a compounded rate.

Second, we analytically compare the formulae of 2𝐾(𝑇𝑖 , 𝑇𝑖+1) and 𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) to find a rela
tion. Let us assume 𝑎 ≥ 0, 0 ≤ 𝑡 ≤ 𝑇 and define Δ = 𝑇𝑖+1 − 𝑇𝑖. The following then holds:

2𝐾(𝑇𝑖 , 𝑇𝑖+1) = 𝜎2∫
𝑇

𝑡
𝐵2(𝑇𝑖 , 𝑢)𝑑𝑢 ≤

𝜎2
𝑎2 Δ, (3.17)

𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) = 𝐵(𝑇𝑖 , 𝑇𝑖+1)
𝜎2
2𝑎(1 − 𝑒

−2𝑎𝑇𝑖) = 𝜎2
2𝑎2 (1 − 𝑒

−𝑎Δ)(1 − 𝑒−2𝑎𝑇𝑖). (3.18)

From these two equations, one can conclude:
• the upper bound of 2𝐾(𝑇𝑖 , 𝑇𝑖+1) is dependent on the caplet tenor, Δ, and is independent of the
caplet start time 𝑇𝑖;

• 𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) depends on the caplet tenor, Δ, and grows monotonically with the caplet start
time 𝑇𝑖;
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#Paths Monte
Carlo

Standard
error Difference

100 2,05 9, 27 ⋅ 10−1 1, 26 ⋅ 10−1
1.000 1,89 3, 14 ⋅ 10−1 3, 43 ⋅ 10−2
10.000 1,96 9, 63 ⋅ 10−2 3, 10 ⋅ 10−2
100.000 1,94 3, 05 ⋅ 10−2 1, 14 ⋅ 10−2
1.000.000 1,92 9, 53 ⋅ 10−3 4, 41 ⋅ 10−3
10.000.000 1,92 3, 01 ⋅ 10−3 2, 01 ⋅ 10−3

(a) Caplets with a maturity of 2𝑌. The value obtained with the kernel is 1, 93.

#Paths Monte
Carlo

Standard
error Difference

100 27,57 5,45 7,02
1.000 34,37 1,98 2,23
10.000 34,16 6, 32 ⋅ 10−1 4, 33 ⋅ 10−1
100.000 34,93 2, 03 ⋅ 10−1 3, 37 ⋅ 10−1
1.000.000 34,52 6, 36 ⋅ 10−2 7, 41 ⋅ 10−2
10.000.000 34,62 2, 01 ⋅ 10−2 2, 52 ⋅ 10−2

(b) Caplets with a maturity of 5𝑌. The value obtained with the kernel is 34, 59.

#Paths Monte
Carlo

Standard
error Difference

100 103,25 12,1 10,9
1.000 88,81 3,86 3,52
10.000 94,67 1,27 2,34
100.000 91,99 3, 97 ⋅ 10−1 3, 38 ⋅ 10−1
1.000.000 92,45 1, 26 ⋅ 10−1 1, 17 ⋅ 10−1
10.000.000 92,32 3, 98 ⋅ 10−2 1, 33 ⋅ 10−2

(c) Caplets with a maturity of 10𝑌. The value obtained with the kernel is 92, 33.

Table 3.5: Value of caplets on compounded rates with a strike of 1% and a notional of 10.000 for various numbers of MC paths.
The caplets have a tenor of 1𝑌 and a maturity of 2𝑌, 5𝑌 and 10𝑌. Furthermore, the value of the caplets obtained with the pricing
kernel for compounded rates are shown, the standard error due to the MC simulation is presented and the difference between
the values obtained with the pricing kernel and the MC simulation for compounded rates are given.

Since 𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) is bounded from below by zero, the difference between 𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) and
2𝐾(𝑇𝑖 , 𝑇𝑖+1) is always bounded by zero and

𝜎2
𝑎2 Δ.

To continue, Figure 3.2 illustrates the value of 2𝐾(𝑇𝑖 , 𝑇𝑖+1) and 𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) for two different
tenors and various maturities. First, notice that 2𝐾(𝑇𝑖 , 𝑇𝑖+1) is constant for the different maturities and
only differs for the two tenors. Recall, this is the special case of constant volatility. Second, observe that
𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) grows with the maturity, while this is not the case for 2𝐾(𝑇𝑖 , 𝑇𝑖+1). More specifically,
for a tenor of 1𝑌, the difference between 2𝐾(𝑇𝑖 , 𝑇𝑖+1) and 𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) at the 1𝑌 maturity is of an
order 12 and at the 4𝑌 maturity of an order 1. Furthermore, it is clear that the impact of 2𝐾(𝑇𝑖 , 𝑇𝑖+1)
decreases when the maturity increases. This is also in line with Figure 3.3 and the conclusion from
Equations (3.17) and (3.18).

Table 3.6 shows the values of both LIBOR caplets and the corresponding caplets on compounded
rates for two different tenors and various maturities. As in line with the above points, the differences
are larger for caplets with short maturities than for caplets with long maturities. With the putcall parity,
it is easy to observe that the same holds for floorlets. However, note that this comparison assumes
a constant volatility. When piecewise constant volatility is considered, the comparison does not hold
anymore. An example is shown in Table 3.7. In particular, for a maturity of 5𝑌 the difference between
a LIBOR caplet and caplet on compounded rates is larger than for a maturity of 1𝑌.
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Figure 3.2: The log values of 𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) and 2𝐾(𝑇𝑖 , 𝑇𝑖+1) for two different tenors. In blue we have 𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖)
and 2𝐾(𝑇𝑖 , 𝑇𝑖+1) with a tenor of 6 months and in red we have 𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) and 2𝐾(𝑇𝑖 , 𝑇𝑖+1) with a tenor of 1 year. The
horizontal axis denotes the start time of the caplet in years.
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Figure 3.3: 2𝐾(𝑇𝑖 , 𝑇𝑖+1) as a percentage of 𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖), where we consider a tenor of 1Y and the horizontal axis denotes
the start time of the caplet in years.

3.5. Conclusion
Based on the results from Section 3.4 a conclusion is given below. For the HullWhite model, two
approaches have been considered to price caplets/floorlets on compounded rates: the pricing kernel
approach and the MC simulation. The results showed that the differences between the two approaches
are in line with the MC error. Moreover, as expected, the computation time with the pricing kernel
approach was smaller than with the MC simulation. Therefore, we use the analytical pricing formula
obtained with the pricing kernel to price caplets/floorlets on compounded rate in the comparative study
in Chapter 5.

Further, the convergence of the MC simulation has been investigated. As in line with the theory, the
standard error increases with a factor 2 when the MC paths increases with a factor 4. Moreover, the
MC estimation converged to the value obtained with the analytic pricing kernel.

Last, the LIBOR caplets/floorlets have been compared to the caplets/floorlets on compounded rates.
First, the difference in the analytical pricing formula has been observed and results in an extra con
vexity adjustment term for the compounded rate. Further, in case of a constant volatility, this convexity
adjustment has the most impact for caplets/floorlets with a shorter maturity than for caplets/floorlets
with a longer maturity. However, this does not hold in the case of nonconstant volatility.
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Maturity LIBOR caplet Caplet on
compounded rate Difference (bps)

2𝑌 7,63 8,66 1,03
5𝑌 30,20 31,00 0,81
10𝑌 57,36 57,93 0,57

(a) Tenor of 6M.

Maturity LIBOR caplet Caplet on
compounded rate Difference (bps)

2𝑌 9,04 13,27 4,23
5𝑌 54,44 57,76 3,32
10𝑌 111,27 113,61 2,33

(b) Tenor of 1Y

Table 3.6: Caplet values calculated with the pricing kernel used for LIBOR rates and the pricing kernel for compounded rates for
various maturities and two tenors. In the right column the difference between the two caplets is presented in Basis Points (bps).
The caplets have a strike of 1%, a notional of 10.000 and a constant volatility of 1% is used.

Maturity LIBOR caplet Caplet on
compounded rate Difference (bps)

2𝑌 1,24 1,53 0,30
5𝑌 18,53 19,21 0,69
10𝑌 46,73 47,13 0,40

(a) Tenor of 6M.

Maturity LIBOR caplet Caplet on
compounded rate Difference (bps)

2𝑌 0,95 1,93 0,97
5𝑌 31,75 34,59 2,84
10𝑌 90,70 92,33 1,63

(b) Tenor of 1Y

Table 3.7: Caplet values calculated with the pricing kernel used for LIBOR rates and the pricing kernel for compounded rates for
various maturities and two tenors. In the right column the difference between the two caplets is presented in bps. The caplets
have a strike of 1%, a notional of 10.000 and the piecewise volatility from Table 3.1 is used.





4
BlackKarasinski model

This chapter introduces the BlackKarasinski model in Section 4.1. As in Chapter 3 on the HullWhite
model, various methods to price caps/floors under the BlackKarasinski model are investigated in Sec
tion 4.2. For every method, both LIBOR caps/floors and caps/floors on compounded rates are consid
ered. Thereafter, a comparison of the various pricing methods is given in Section 4.3. The chapter is
concluded in Section 4.4.

4.1. Shortrate model
The BlackKarasinski model is a lognormal shortrate model. Within this model the instantaneous
shortrate process is assumed to be modelled as an exponential of an OrnsteinUhlenbeck process
with timedependent parameters, for further details see e.g. Brigo and Mercurio, 2007. The dynamics
of the shortrate under the riskneutral measure are given by:

𝑑 ln(𝑟(𝑡)) = [𝜃(𝑡) − 𝑎(𝑡) ln(𝑟(𝑡))] 𝑑𝑡 + 𝜎(𝑡)𝑑𝑊ℚ(𝑡),
𝑟(0) = 𝑟0.

The volatility and mean reversion parameter are denoted by 𝜎(𝑡) and 𝑎(𝑡), respectively. As in the Hull
White model, 𝜃(𝑡) is a deterministic function calibrated such that the model implied initial term structure
matches the market observed term structure. For the rest of this thesis, we assume the mean reversion
parameter to be constant, i.e., 𝑎(𝑡) = 𝑎.

Using Itô’s lemma, the shortrate under the BlackKarasinski model is given by:

𝑟(𝑡) = exp(ln(𝑟(0))𝑒−𝑎𝑡 +∫
𝑡

0
𝑒−𝑎(𝑡−𝑢)𝜃(𝑢)𝑑𝑢 + ∫

𝑡

0
𝑒−𝑎(𝑡−𝑢)𝜎(𝑡)𝑑𝑊ℚ(𝑡)) .

Hence, the shortrate is lognormally distributed with the following conditional expectation and vari
ance, for 𝑠 < 𝑡:

𝔼 [𝑟(𝑡)|ℱ𝑠] = exp(ln(𝑟(𝑠))𝑒−𝑎(𝑡−𝑠) +∫
𝑡

𝑠
𝑒−𝑎(𝑡−𝑢)𝜃(𝑢)𝑑𝑢) ,

𝑉𝑎𝑟 [𝑟(𝑡)|ℱ𝑠] = ∫
𝑡

𝑠
𝑒−2𝑎(𝑡−𝑢)𝜎2(𝑢)𝑑𝑢.

For lognormally distributed shortrates, the expected value of the moneymarket account is infinite
for every maturity, see Proposition 4.1 and Andersen and Piterbarg, 2010 for amore general discussion.
This is one of the drawbacks of modelling the shortrate with a lognormal model.

In contrast to the HullWhite model, the BlackKarasinski model does not have an analytic formula
for the zerocoupon bond prices. This makes the calibration to the market observed term structure
harder than for the HullWhite model. In order to calibrate to the initial term structure, trees can be
used. The construction of a trionomial tree and the calibration to the initial term structure is described
in Section 4.2.2.

33
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Proposition 4.1. Assume the shortrate to be modelled by the BlackKarasinski model, then the ex
pectation of the moneymarket account is infinite, for every maturity 𝑇, i.e.,

𝔼 [exp(∫
𝑇

𝑡
𝑟(𝑠)𝑑𝑠)] = ∞.

Proof. For a proof, we refer to Brigo and Mercurio, 2007.

4.2. Pricing methods
This section describes three pricing methods for the caps/floors. We begin with the pricing kernel for
the BlackKarasinski model in Section 4.2.1. Thereafter, we discuss the trinomial trees and the MC
simulation for the caps/floors pricing in Section 4.2.2 and Section 4.2.3, respectively.

4.2.1. BlackKarasinski pricing kernel
Similar to the HullWhite model, there exists a pricing kernel for the BlackKarasinski model provided
in Turfus, 2021. However, contrary to the HullWhite case, there does not exist a closed form formula
for the cap/floor prices. Using the pricing kernel for the BlackKarasinski model, an approximation for
caplet/floorlet prices can be obtained. In this section, we present the approximate pricing formulae
for both LIBOR caplets/floorlets and caplets/floorlets on compounded rates derived using the pricing
kernel approach.

4.2.1.1. BlackKarasinski pricing kernel for LIBOR rates
First, we introduce the pricing PDE in the BlackKarasinski model. Thereafter, the formulae for the
present value of the caplets/floorlets are provided.

To proceed further, we represent the shortrate as:

𝑟(𝑡) = �̃�(𝑡) exp(𝑥(𝑡) − 12Σ(0, 𝑡)) , (4.1)

where �̃�(𝑡) is a deterministic function to be calibrated to the initial term structure, 𝑥(𝑡) is the zero mean
process defined by Equation (3.9) and Σ(0, 𝑡) is defined as in Section 3.3.1.1.

Similar to the HullWhite model, the pricing PDE for the BlackKarasinski model is given by:

𝜕ℎ
𝜕𝑡 − 𝑎𝑥

𝜕ℎ
𝜕𝑥 +

1
2𝜎

2(𝑡)𝜕
2ℎ
𝜕𝑥2 − 𝑟(𝑡)ℎ = 0, (4.2)

for 𝑡 ≥ 0with ℎ(𝑇, 𝑥) = 𝑉(𝑇, 𝑥) for a derivative with the payoff 𝑉(𝑇, 𝑥) . Then, according to FeynmanKac
Theorem 2.2, the solution of the PDE gives the value function of the corresponding derivative.

Following Turfus, 2021, Chapter 5, this pricing PDE can be solved with a Green function. This
results in the following approximation of the pricing formulae for the present value (𝑡 = 0) of LIBOR
caplets/floorlets:

𝑉𝐶(0, 0) = (𝐷(0, 𝑇𝑖) − 𝜅𝐷(0, 𝑇𝑖+1))Φ(−𝑑1(𝑥∗, 0, 𝑇𝑖))

−𝐷(0, 𝑇𝑖)∫
𝑇𝑖

0
�̄�(𝑢) (Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑢)) − Φ(−𝑑1(𝑥∗, 0, 𝑇𝑖))) 𝑑𝑢

+𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

0
�̄�(𝑢) (Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑢)) − Φ(−𝑑1(𝑥∗, 0, 𝑇𝑖))) 𝑑𝑢

−𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑣)∫

𝑣

0
�̄�(𝑢)𝑒𝜙(𝑢,𝑣)Σ(0,𝑢) (Φ(−𝑑∗2(𝑥∗, 0, 𝑇𝑖 , 𝑢, 𝑣))

−Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑣))) 𝑑𝑢𝑑𝑣 + 𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑣)∫

𝑣

0
�̄�(𝑢)(Φ(−𝑑∗1(𝑥∗, 0, 𝑇𝑖 , 𝑢, 𝑣))

−Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑣)) + Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑢)) − Φ(−𝑑1(𝑥∗, 0, 𝑇𝑖)))𝑑𝑢𝑑𝑣 + 𝒪(𝜖3),
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𝑉𝑃(0, 0) = (𝜅𝐷(0, 𝑇𝑖+1) − 𝐷(0, 𝑇𝑖))Φ(𝑑1(𝑥∗, 0, 𝑇𝑖))

+𝐷(0, 𝑇𝑖)∫
𝑇𝑖

0
�̄�(𝑢) (Φ(𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑢)) − Φ(𝑑1(𝑥∗, 0, 𝑇𝑖))) 𝑑𝑢

−𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

0
�̄�(𝑢) (Φ(𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑢)) − Φ(𝑑1(𝑥∗, 0, 𝑇𝑖))) 𝑑𝑢

+𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑣)∫

𝑣

0
�̄�(𝑢)𝑒𝜙(𝑢,𝑣)Σ(0,𝑢) (Φ(𝑑∗2(𝑥∗, 0, 𝑇𝑖 , 𝑢, 𝑣)) − Φ(𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑣))) 𝑑𝑢𝑑𝑣

−𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑣)∫

𝑣

0
�̄�(𝑢)(Φ(𝑑∗1(𝑥∗, 0, 𝑇𝑖 , 𝑢, 𝑣)) − Φ(𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑣))

+Φ(𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑢)) − Φ(𝑑1(𝑥∗, 0, 𝑇𝑖)))𝑑𝑢𝑑𝑣 + 𝒪(𝜖3),

where

𝑑1(𝜉, 𝑡, 𝑇𝑖) ∶= 𝜉
√Σ(𝑡, 𝑇𝑖)

,

𝑑2(𝜉, 𝑡, 𝑇𝑖 , 𝑤) ∶= 𝑑1(𝜉 − 𝜙(𝑇𝑖 ∧ 𝑤, 𝑇𝑖 ∨ 𝑤)Σ(𝑡, 𝑇𝑖 ∧ 𝑤), 𝑡, 𝑇𝑖),
𝑑∗1(𝜉, 𝑡, 𝑇𝑖 , 𝑢, 𝑣) ∶= 𝑑1(𝜉 − 𝜙(𝑇𝑖 , 𝑣)Σ(𝑢 ∧ 𝑇𝑖 , 𝑇𝑖), 𝑡, 𝑇𝑖),
𝑑∗2(𝜉, 𝑡, 𝑇𝑖 , 𝑢, 𝑣) ∶= 𝑑2(𝜉 − 𝜙(𝑇𝑖 , 𝑣)Σ(𝑢 ∧ 𝑇𝑖 , 𝑇𝑖), 𝑡, 𝑇𝑖 , 𝑢).

The binary operators ∧ and ∨ denote the minimum and maximum, respectively. Further, 𝑥∗ is defined
in (D.7). For details, we refer to Appendix D.1.

4.2.1.2. BlackKarasinski pricing kernel for compounded rates
In this section, the BlackKarasinski pricing kernel is extended to compounded rates. Similar to Section
3.3.1.2, the compounded interest can be modelled as in (3.13), where the shortrate for the Black
Karasinski model is defined by Equation (4.1). Recall, the payoff of the caplet/floorlet on compounded
rates is not only dependent on the value of 𝑥(𝑡) at maturity, but also on the whole path of the process
𝑥(𝑡) from 𝑡 to 𝑇. Therefore, a new variable is introduced:

𝑧(𝑡) ∶= ∫
𝑡

0
�̃�(𝑠)𝑒𝑥(𝑠)−

1
2Σ(0,𝑠) − �̄�(𝑠)𝑑𝑠. (4.3)

Let us consider a derivative which 𝑡value depends on 𝑥(𝑡) and 𝑧(𝑡), i.e., �̃�(𝑡, 𝑥(𝑡), 𝑧(𝑡)). The corre
sponding pricing PDE is then given by:

𝜕ℎ
𝜕𝑡 − 𝑎𝑥

𝜕ℎ
𝜕𝑥 + (�̃�(𝑡)𝑒

�̂�(𝑥,𝑡,𝑡) − �̄�(𝑡)) 𝜕ℎ𝜕𝑧 +
1
2𝜎

2(𝑡)𝜕
2ℎ
𝜕𝑥2 − �̃�(𝑡)𝑒

𝜃(𝑥,𝑡,𝑡)ℎ = 0, (4.4)

for 𝑡 ≥ 0 and where �̂�(𝑥, 𝑡, 𝑇) is defined as in (D.4) and ℎ(𝑇, 𝑥, 𝑧) = �̃�(𝑇, 𝑥, 𝑧). Following Turfus, 2021,
Chapter 13, an approximation for caplets/floorlets on compounded rates can be derived with the kernel
approach, yielding:

𝑉𝐶𝐶𝑅(0, 0) ≈ 𝑉𝐶(0, 0) + Δ𝑉𝐶𝐶𝑅(0, 0),
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where

𝑉𝐶(0, 0) = (𝐷(0, 𝑇𝑖) − 𝜅𝐷(0, 𝑇𝑖+1))Φ(−𝑑1(𝑥∗, 0, 𝑇𝑖))

−𝐷(0, 𝑇𝑖)∫
𝑇𝑖

0
�̄�(𝑡1)(Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑡1)) − Φ(−𝑑1(𝑥∗, 0, 𝑇1)))𝑑𝑡1

+𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

0
�̄�(𝑡1)(Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑡1)) − Φ(−𝑑1(𝑥∗, 0, 𝑇1)))𝑑𝑡1

−𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑡2)∫

𝑡2

0
�̄�(𝑡1)𝑒𝜙(𝑡1 ,𝑡2)Σ(0,𝑡1)(Φ(−𝑑∗2(𝑥∗, 0, 𝑇𝑖 , 𝑡1, 𝑡2))

−Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑡1)))𝑑𝑡1𝑑𝑡2

+𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑡2)∫

𝑡2

0
�̄�(𝑡1)(Φ(−𝑑∗1(𝑥∗, 0, 𝑇𝑖 , 𝑡1, 𝑡2)) − Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑡2))

+Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑡1)) − Φ(−𝑑1(𝑥∗, 0, 𝑇𝑖)))𝑑𝑡1𝑑𝑡2,

with 𝑥∗ as defined in (D.7) and

𝑑1(𝜉, 𝑡, 𝑇𝑖) ∶= 𝜉 + �̂�(𝑇𝑖 , 𝑇𝑖+1)

√Σ(𝑡, 𝑇𝑖) + 2�̂�(𝑇𝑖 , 𝑇𝑖+1
,

𝑑2(𝜉, 𝑡, 𝑇𝑖 , 𝑤) ∶= 𝑑1(𝜉 − 𝜙(𝑇𝑖 ∧ 𝑤, 𝑇𝑖 ∨ 𝑤)Σ(𝑡, 𝑇𝑖 ∧ 𝑤) − 2�̂�(𝑇𝑖 , 𝑇𝑖+1)),

�̂�(𝑇𝑖 , 𝑇𝑖+1) ∶= ∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑡2)∫

𝑡2

𝑇𝑖
�̄�(𝑡1)𝑒Δ𝑥∗(𝑇𝑖 ,𝑡1 ,𝑡2)(𝑒𝜙(𝑡1 ,𝑡2)Σ(𝑇𝑖 ,𝑡1) − 1)𝑑𝑡1𝑑𝑡2,

Δ𝑥∗(𝑇𝑖 , 𝑡1, 𝑡2) ∶= 𝜙(𝑇𝑖 , 𝑡1)𝜙(𝑇1, 𝑡2)Σ(0, 𝑇1).

The formula for Δ𝑉𝐶𝐶𝑅(0, 0) is given by:

Δ𝑉𝐶𝐶𝑅(0, 0) = 𝐷(0, 𝑇𝑖)
�̂�(𝑇𝑖 , 𝑇𝑖+1)

∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑡2)∫

𝑡2

𝑇𝑖
�̄�(𝑡1)𝑒Δ𝑥∗(𝑇𝑖 ,𝑡1 ,𝑡2)(𝑒𝜙(𝑡1 ,𝑡2)Σ(𝑇𝑖 ,𝑡1) − 1) ⋅

(𝜑(−𝑑2(𝑥∗ − Δ𝑥∗(𝑇𝑖 , 𝑡1, 𝑡2), 0, 𝑇1)) − 𝜑(−𝑑2(𝑥∗, 0, 𝑇𝑖)))𝑑𝑡2𝑑𝑡2.

For details, we refer to Appendix D.2.

4.2.2. Trinomial tree
In this section, caplets/floorlets are priced with the tree method. A short introduction to option pricing
with trees has been given in Section 2.4.2. In Section 4.2.2.1, trinomial trees are constructed to price
LIBOR caplet/floorlets. Thereafter, the trinomial trees are expanded to pricing of the caplets/floorlets
on compounded rates in Section 4.2.2.2.

4.2.2.1. Trionomial tree for LIBOR rates
To construct the trinomial tree, we follow Brigo and Mercurio, 2007. Let 𝑥(𝑡) be the zero mean process
as defined in (3.9). We define a deterministic function:

𝛼(𝑡) = ln(𝑟0)𝑒−𝑎𝑡 +∫
𝑡

0
𝑒−𝑎(𝑡−𝑢)𝜃(𝑢)𝑑𝑢.

Then, the shortrate can be written as:

𝑟(𝑡) = exp (𝑥(𝑡) + 𝛼(𝑡)) . (4.5)

Two steps have to be taken in order to build a trinomial tree for the shortrate. First, a trinomial tree for
the zero mean process 𝑥(𝑡) has to to be constructed. Second, the nodes of the tree for the zero mean
process have to be displaced. More precisely, for each time step 𝑡𝑖, the nodes of the tree have to be
displaced by the corresponding 𝛼(𝑡𝑖).
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Construction of tree for the zero mean process To construct a trinomial tree for the process 𝑥(𝑡)
we fix a time grid from 0 to 𝑇, 0 = 𝑡0 < 𝑡1 < … < 𝑡𝑛 = 𝑇. Note, the time grid does not necessary
have to be equidistant. The distance between the neighbouring points in the time grid is denoted by
Δ𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖. Let us denote the nodes of the tree by (𝑖, 𝑗) for 𝑖 ranging from 0 to 𝑛 and 𝑗 from 𝑗 to 𝑗.
The value of process 𝑥(𝑡) at the node (𝑖, 𝑗) is denoted by 𝑥𝑖,𝑗 and is calculated by 𝑗Δ𝑥𝑖. Notice, Δ𝑥𝑖 is
the vertical discretisation at time 𝑡𝑖 of the tree and still has to be determined.

From node (𝑖, 𝑗) at time 𝑡𝑖 process 𝑥(𝑡) can move to three possible nodes at time 𝑡𝑖+1, namely to
nodes {(𝑖 +1, 𝑘+ 𝑙)}𝑙=1,0,−1 with respectively the probabilities 𝑝𝑢, 𝑝𝑚 and 𝑝𝑑. The 𝑘th node at time 𝑡𝑖+1
is called the central node. In the below, the level of 𝑘 and the value of Δ𝑥𝑖 are determined. Therefore,
we make use of the following conditional expectation and variance:

𝔼 [𝑥(𝑡𝑖+1)|𝑥(𝑡𝑖) = 𝑥𝑖,𝑗] = 𝑥𝑖,𝑗𝑒−𝑎Δ𝑡𝑖 =∶ 𝐸𝑖,𝑗 , (4.6)

𝑉𝑎𝑟 [𝑥(𝑡𝑖+1)|𝑥(𝑡𝑖) = 𝑥𝑖,𝑗] = ∫𝑡𝑖+1𝑡𝑖 𝑒−2𝑎(𝑡𝑖+1−𝑢)𝜎2(𝑢)𝑑𝑢 =∶ 𝑉2𝑖 . (4.7)

The next step is to determine the probabilities 𝑝𝑢, 𝑝𝑚 and 𝑝𝑑 such that they match the conditional
expectation and variance given by (4.6) and (4.7), respectively. Since 𝑝𝑢, 𝑝𝑚 and 𝑝𝑑 are probabilities,
they are all positive numbers that sum up to one. Further, notice that {𝑥𝑖+1,𝑘+𝑙}𝑙=1,0,1 = {𝑥𝑖+1,𝑘 + 𝑙 ⋅
Δ𝑥𝑖+1}𝑙=1,0,1. Then, the matching conditions can be written as the following set of equation:

{ 𝑝𝑢(𝑥𝑖+1,𝑘 + Δ𝑥𝑖+1) + 𝑝𝑚𝑥𝑖+1,𝑘 + 𝑝𝑑(𝑥𝑖+1,𝑘 − Δ𝑥𝑖+1) = 𝐸𝑖,𝑗 ,
𝑝𝑢(𝑥𝑖+1,𝑘 + Δ𝑥𝑖+1)2 + 𝑝𝑚𝑥2𝑖+1,𝑘 + 𝑝𝑑(𝑥𝑖+1,𝑘 − Δ𝑥𝑖+1)2 = 𝑉2𝑖 + 𝐸2𝑖,𝑗 .

This can be simplified to:

{ 𝑥𝑖+1,𝑘 + (𝑝𝑢 − 𝑝𝑑)Δ𝑥𝑖+1 = 𝐸𝑖,𝑗 ,
𝑥2𝑖+1,𝑘 + 2𝑥𝑖+1,𝑘Δ𝑥𝑖+1(𝑝𝑢 − 𝑝𝑑) + Δ𝑥2𝑖+1(𝑝𝑢 + 𝑝𝑚) = 𝑉2𝑖 + 𝐸2𝑖,𝑗 .

Set 𝜂𝑖,𝑗 = 𝐸𝑖,𝑗 − 𝑥𝑖+1,𝑘 to get:

{(𝑝𝑢 − 𝑝𝑑)Δ𝑥𝑖+1 = 𝜂𝑖,𝑗 ,
Δ𝑥2𝑖+1(𝑝𝑢 + 𝑝𝑑) = 𝑉2𝑖 + 𝜂2𝑖,𝑗 .

Reckoning that 𝑝𝑢 + 𝑝𝑚 + 𝑝𝑑 = 1, the above equations are solved to:

𝑝𝑢 = 𝑉2𝑖
2Δ𝑥2𝑖+1

+
𝜂2𝑖,𝑗

2Δ𝑥2𝑖+1
+

𝜂𝑖,𝑗
2Δ𝑥𝑖+1

,

𝑝𝑚 = 1 − 𝑉2𝑖
Δ𝑥2𝑖+1

−
𝜂2𝑖,𝑗
Δ𝑥2𝑖+1

,

𝑝𝑑 = 𝑉2𝑖
2Δ𝑥2𝑖+1

+
𝜂2𝑖,𝑗

2Δ𝑥2𝑖+1
−

𝜂𝑖,𝑗
2Δ𝑥𝑖+1

.

It remains to make sure that 𝑝𝑢, 𝑝𝑚 and 𝑝𝑑 are all positive. This is done by the choice of Δ𝑥𝑖+1 = √3𝑉2𝑖
and the choice of the level of 𝑘 such that 𝑥𝑖+1,𝑘 is as close as possible to 𝐸𝑖,𝑗 by:

𝑘 = round(
𝐸𝑖,𝑗
Δ𝑥𝑖+1

) ,

where round(𝑥) is the closest integer to 𝑥. The probabilities can then be written as:

𝑝𝑢 = 1
6 +

𝜂2𝑖,𝑗
6𝑉2𝑖

+
𝜂𝑖,𝑗
2√3𝑉𝑖

,

𝑝𝑚 = 2
3 −

𝜂2𝑖,𝑗
3𝑉2𝑖

,

𝑝𝑑 = 1
6 +

𝜂2𝑖,𝑗
6𝑉2𝑖

−
𝜂𝑖,𝑗
2√3𝑉𝑖

.
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Now it can be easily seen that 𝑝𝑢 and 𝑝𝑑 are positive for every value of 𝜂𝑖,𝑗. Meanwhile, 𝑝𝑚 is positive

if |𝜂𝑖,𝑗| ≤ √2𝑉𝑖. The aforementioned choice of 𝑘 implies that |𝜂𝑖,𝑗| ≤ √3
2 𝑉𝑖 and, thus, 𝑝𝑚 is positive, as

well. The value of Δ𝑥𝑖+1, the level of 𝑘 and the probabilities define the geometry of the tree for process
𝑥(𝑡).

Displacement of the tree nodes The tree for the zero mean process 𝑥(𝑡) described above can be
used to build a tree for the shortrate process. Formula (4.5) is used to displace all the tree nodes
from 𝑥(𝑡) to 𝑟(𝑡). In order to displace all the nodes with this formula, a deterministic function 𝛼(𝑡) is
needed. In turn, 𝛼(𝑡) is determined recursively by a calibration to the initial term structure. Contrarily
to the HullWhite model case, this has to be done numerically since there exists no analytic expression
for the zerocoupon bond prices in the BlackKarasinski model.

Let us denote the displacement at time 𝑡𝑖 by 𝛼𝑖. This displacement is the same for all states at
time 𝑡𝑖. To determine these displacements the present value of an instrument paying 1 if node (𝑖, 𝑗) is
reached and zero otherwise is used, denoted by 𝑄𝑖,𝑗1. First, set 𝛼0 = log(− log(𝑃(0, 𝑡1))/Δ𝑡1) to get
the correct discount factor at time 𝑡1. Then 𝑄𝑖+1,𝑗 for 𝑗 = 𝑗𝑖+1, … , 𝑗𝑖+1 are recursively defined as:

𝑄𝑖+1,𝑗 =∑
ℎ
𝑄𝑖,ℎ𝑞(ℎ, 𝑗) exp (− exp(𝛼𝑖 + ℎΔ𝑥𝑖)Δ𝑡𝑖) ,

where the sum is calculated over all states at time 𝑡𝑖 and 𝑞(ℎ, 𝑗) denotes the probability of going from
the node (𝑖, ℎ) to the node (𝑖 + 1, 𝑗). Notice, the sum over all 𝑄𝑖,𝑗 at time 𝑡𝑖 should match the market
observed term structure. Then, 𝛼𝑖 can be obtained by solving:

𝜓(𝛼𝑖) ∶= 𝑃(0, 𝑡𝑖+1) −
𝑗𝑖
∑
𝑗=𝑗

𝑖

𝑄𝑖,𝑗 exp (− exp(𝛼𝑖 + 𝑗Δ𝑥𝑖)Δ𝑡𝑖) = 0.

This rootfinding problem has to be solved numerically, for example, one can use the NewtonRaphson
method, Oosterlee and Grzelak, 2020. Note, that the NewtonRaphson method is a gradient method
and, thus, requires the derivative of 𝜓(𝛼𝑖):

𝑑
𝑑𝛼𝑖

𝜓(𝛼𝑖) =
𝑗𝑖
∑
𝑗=𝑗

𝑖

𝑄𝑖,𝑗 exp (− exp(𝛼𝑖 + 𝑗Δ𝑥𝑖)Δ𝑡𝑖) exp(𝛼𝑖 + 𝑗Δ𝑥𝑖)Δ𝑡𝑖 .

The final step to build the tree for the shortrate process from the tree of the zero mean process 𝑥(𝑡),
is to take the exponential function of 𝛼𝑖 + 𝑥𝑖,𝑗 for every node in the tree such that 𝑟𝑖,𝑗 = exp(𝛼𝑖 + 𝑥𝑖,𝑗),
see Equation (4.5).

4.2.2.2. Trees for compounded rates
In order to price caplets/floorlets on compounded rates, the tree for the shortrate needs to be expanded
to a tree for the compounded shortrate. This is because the compounded rate can be seen as an
expression involving an average, see for example (3.13) as a continuously compounded rate. A daily
compounded rate over the period [𝑆 = 𝑡1, … , 𝑡𝑛 = 𝑇] can then be modelled by:

𝑀𝑑𝑎𝑖𝑙𝑦(𝑆, 𝑇) = exp(
𝑛

∑
𝑖=1
𝜏𝑖𝑟(𝑡𝑖)) − 1,

where 𝜏𝑖 is the year fraction from 𝑡𝑖 to 𝑡𝑖+1 and 𝑟(𝑡𝑖) is the shortrate at time 𝑡𝑖. Consider the tree in
Figure 4.1. For node 𝐸 it is clear how to determine the value of the compounded rate in this point.
However, there are multiple paths to reach node 𝐺 and each paths will give a different value of the
compounded rate. The number of possible compounded rates at each node will explode with the
increase of the number of time steps in the tree. Therefore, we follow Klassen, 2001 for an efficient
1Similar as ArrowDebreu prices, see Andersen and Piterbarg, 2010.
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implementation of a tree for Asian options. The caps/floors on the compounded rate can be seen as
Asian options where the compounded rate is similar to an average of the underlying stock of the Asian
option. The idea by Klassen, 2001 is not to keep track of all the possible paths to reach one node and,
thus, all the possible compounded rates at each node. Instead, the idea is to consider a representative
set of compounded rate values at each node. This approach consists of three steps:

1. Determine the set of representative compounded rates for each node;

2. Calculate the payoff of the derivative at every leaf (or every node which represents a payment
date) of the tree for each compounded rate in the representative set;

3. Backward step to obtain the present value of the derivative.

A

B

C

D

E

F

G

H

I

Figure 4.1: A trinomial tree.

First, we explain how the representative set of compounded rate values at each node can be chosen.
For each node (𝑖, 𝑗) the minimum and maximum values of the compounded rate, which correspond to
the paths in Figure 4.2, have to be calculated. Let us denote these minimum and maximum values of
the compounded rate at the node (𝑖, 𝑗) by 𝐴𝑚𝑖𝑛(𝑖, 𝑗) and 𝐴𝑚𝑎𝑥(𝑖, 𝑗), respectively. The representative
values between 𝐴𝑚𝑖𝑛(𝑖, 𝑗) and 𝐴𝑚𝑎𝑥(𝑖, 𝑗) are then set to be:

𝐴𝑘(𝑖, 𝑗) = 𝐴𝑚𝑖𝑛(𝑖, 𝑗)𝑒𝑘Δ𝑡𝑖 , for 𝑘 = 1, 2, … , 𝑘𝑚𝑎𝑥 , (4.8)

where 𝑘𝑚𝑎𝑥 is the smallest integer such that 𝐴𝑘(𝑖, 𝑗) ≥ 𝐴𝑚𝑎𝑥(𝑖, 𝑗).

(𝑖, 𝑗)

Figure 4.2: The paths corresponding to the maximum and minimum value of the compounded rate at node (𝑖, 𝑗) in blue and red
respectively.
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When the representative values for each node are determined, the payoff for the representative
values at each leaf can be calculated. For a caplet/floorlet, the payoff for every representative value
𝐴𝑘(𝑖, 𝑗) at leaf node (𝑖, 𝑗) is given by:

𝑁𝜏max(𝜔 [1𝜏 (exp (𝐴𝑘(𝑖, 𝑗)) − 1) − 𝐾, ] 0) ,

where 𝜔 is equal to 1 in case of a caplet and equal to 1 in case of a floorlet.
Given the payoff at each leaf and each corresponding representative value of the average, the

recursive backward run is performed to calculate the present value of the derivative. For a given time
step 𝑖 consider representative value 𝐴𝑘(𝑖, 𝑗) from node (𝑖, 𝑗). In the backward step, the value of the
derivative corresponding to 𝐴𝑘(𝑖, 𝑗) is determined. For 𝐴𝑘(𝑖, 𝑗) there are three different values for the
average in the next time step 𝑖 + 1, namely, {𝐴𝑙}𝑙=𝑢𝑝,𝑚𝑖𝑑,𝑑𝑜𝑤𝑛 corresponding to the nodes {(𝑖 + 1, 𝑗 +
𝑙)}𝑙=−1,0,1 respectively. To obtain the value �̃�𝐶𝑅(𝑖, 𝑗, 𝐴𝑘) corresponding to representative value 𝐴𝑘(𝑖, 𝑗),
the values {�̃�𝐶𝑅(𝑖+1, 𝑗+1, 𝐴𝑙)}𝑙=𝑢𝑝,𝑚𝑖𝑑,𝑑𝑜𝑤𝑛 corresponding to the representative values {𝐴𝑙}𝑙=𝑢𝑝,𝑚𝑖𝑑,𝑑𝑜𝑤𝑛
are needed. If the values {𝐴𝑙}𝑙=𝑢𝑝,𝑚𝑖𝑑,𝑑𝑜𝑤𝑛 are not available in the representative sets of the nodes
{(𝑖 + 1, 𝑗 + 𝑙)}𝑙=−1,0,1 respectively, an interpolate between the neighbouring values of {𝐴𝑙}𝑙=𝑢𝑝,𝑚𝑖𝑑,𝑑𝑜𝑤𝑛
in the representative sets can be used to obtain {�̃�𝐶𝑅(𝑖 + 1, 𝑗 + 1, 𝐴𝑙)}𝑙=𝑢𝑝,𝑚𝑖𝑑,𝑑𝑜𝑤𝑛. With these three
values, the value corresponding to 𝐴𝑘(𝑖, 𝑗) can be derived with the following formula:

�̃�𝐶𝑅(𝑖, 𝑗, 𝐴𝑘) = 𝑒−𝑟Δ𝑡𝑖 [𝑝𝑢�̃�𝐶𝑅(𝑖 + 1, 𝑗 + 1, 𝐴𝑢𝑝) + 𝑝𝑚�̃�𝐶𝑅(𝑖 + 1, 𝑗 + 1, 𝐴𝑚𝑖𝑑) + 𝑝𝑑�̃�𝐶𝑅(𝑖 + 1, 𝑗 + 1, 𝐴𝑑𝑜𝑤𝑛)] .

This is also illustrated in Figure 4.3. This procedure is done for all values in the representative set of
the nodes of time step 𝑖. Thereafter, the same step is carried out for all the nodes at time step 𝑖 − 1,
and so on.

𝐴𝑘

𝐴𝑢𝑝

𝐴𝑚𝑖𝑑

𝐴𝑑𝑜𝑤𝑛

(𝑖, 𝑗)

(𝑖 + 1, 𝑗 + 1)

(𝑖 + 1, 𝑗)

(𝑖 + 1, 𝑗 − 1)

𝑝𝑢

𝑝𝑚

𝑝𝑑

Figure 4.3: The backward step to calculate the value corresponding to 𝐴𝑘.
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4.2.3. Monte Carlo simulation
This section is dedicated to a MC approach to price caplets/floorlets on compounded rates. For the
HullWhite model, the zerocoupon bond prices can be used to price both LIBOR caplets/floorlets and
caplets/floorlets on compounded rates. In contrast to the HullWhite model, there is no analytic expres
sion for the zerocoupon bond in the BlackKarasinski model. This makes it computationally harder to
use the MC simulation with zerocoupon bonds as one would need to calculate the bond price numeri
cally. However, to simulate the daily compounded rate, the shortrate can be used as their approxima
tion. Notice that this approach is only applicable for caplets/floorlets on daily compounded rates and
not for LIBOR caplets/floorlets. The shortrate at time 𝑡 is the interest rate for a infinitesimally short
period of time from time 𝑡. Approximating bond prices with a longer tenor, for example in the case
of LIBOR, by the instantaneous shortrate would lead to too big errors. Therefore, the MC simulation
using the shortrate directly is only shown below for caplets/floorlets on daily compounded rates.

4.2.3.1. Pricing of caplets and floorlets on compounded rate with Monte Carlo
As explained above, a MC simulation can be used to approximate the shortrate. In that case the time
𝑡value of a caplet/floorlet on the compounded rate between [𝑇𝑖 , 𝑇𝑖+1] under the riskneutral measure
is given by:

𝑉𝐶𝐶𝑅(𝑡, 𝑥(⋅)) = 𝔼ℚ [exp(−∫
𝑇𝑖+1

𝑡
𝑟(𝑠)𝑑𝑠)𝑁𝜏max(𝜔 (1𝜏 [exp(∫

𝑇𝑖+1

𝑇𝑖
𝑟(𝑠)𝑑𝑠) − 1] − 𝐾) , 0) |ℱ𝑡] ,

where 𝑟(𝑠) denotes the shortrate and 𝜔 is equal to 1 in case of a caplet and equal to 1 in case of a
floorlet. Recall from Section 4.2.2, the shortrate can be written as 𝑟(𝑡) = exp (𝑥(𝑡) + 𝛼(𝑡)). Therefore,
paths of the process 𝑥(𝑡) are simulated using MC and then 𝛼(𝑡) is added to obtain the shortrate paths.
Note, that the deterministic function 𝛼(𝑡) needs to be calibrated to the initial term structure. This, for
example, can be done using the trinomial trees.

For theMC simulation under the HullWhitemodel, caplets/floorlets were priced under the 𝑇terminal
measure and, thus, the process 𝑥(𝑡) was simulated under the 𝑇terminal measure, see Section 3.3.2.
As mentioned before, for the HullWhite model it is convenient to price caplets/floorlets under the termi
nal measure since there exists an analytic formula for the zerocoupon bond prices. Then, the discount
factor can be calculated with only one realisation of process 𝑥(𝑡). In contrast to the HullWhite model,
there does not exists an analytic solution for zerocoupon bond prices. Therefore, the zerocoupon bond
price needs to be calculated numerically in order to use for discounting under the 𝑇forward measure.
For the BlackKarasinski model both under the riskneutral measure with the moneymarket account
as numeraire as under the 𝑇forward measure, the discount factor has to be calculated numerically.
Hence, for the BlackKarasinski model, we price the caplets/floorlets under the riskneutral measure
with the moneymarket account as numeraire.

4.3. Results
This section is dedicated to the results obtained with various pricing methods for the BlackKarasinski
model described above. Based on the advantages and disadvantages of the different pricing methods
given in Section 4.3.1, the same numerical test as for the HullWhite model could not be done for the
BlackKarasinski model. However, a convergence test of the tree for compounded rates is discussed
in Section 4.3.2. Moreover, in this section we comment on the computation times. Therefore, we note
that the computations are done on a computer with processor: Intel(R) Xeon(R) Gold 6132 CPU @
2.60GHz (2 processors) and 256 GB RAM.

4.3.1. Advantages and disadvantages of the methods
In this section, we discuss the advantages and the disadvantages of the different pricing methods for
caplets/floorlets on compounded rates: BlackKarasinski pricing kernel, see Section 4.2.1, trees, see
Section 4.2.2, and MC simulation, see Section 4.2.3.

4.3.1.1. BlackKarasinski pricing kernel
An advantage of the BlackKarasinski pricing kernel relative to the other two methods, is the existence
of an approximate semianalytical pricing formula for a low rate environment, see Section 4.2.1.2. How
ever, the semianalytic formula is complex and computationally challenging. For example, to get the
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value of 𝑥∗, see Equation (D.7), a numerical optimisation is needed over the zerocoupon bond value
as a target. In turn, the zerocoupon bond formula is, as already known, only semianalytic and con
tains twodimensional integrals, that have to be computed numerically and involve some embedded
integrals. This all makes it computationally expensive to find 𝑥∗.

In order to speed up the computation we precalculated some of the integrals on a fixed grid. If a
value of the integral is needed which is not on the grid, a linear interpolation is used. Nevertheless,
this did not speed up the computation enough to use it in practice. Even after a day, the computation
to get a value for 𝑥∗ was not yet completed. Therefore, we do not gain anything in computation time
in comparison to a MC simulation, see Section 4.3.1.3. Due to these complexities, we do not consider
the BlackKarasinski pricing kernel for other tests.

4.3.1.2. Trees
The main advantage of trees, in general, is their computational speed in comparison to MC simulations.
A disadvantage of the tree method is that they become more complex for multidimensional asset
options. For example, the tree method is less useful for pricing basket options because it is difficult to
construct a multidimensional tree.

For the special case of derivatives on compounded rates, a disadvantage of the tree method is the
computation time. For pricing such derivatives with the tree method, it is clear that the computation
time depends on the number of time steps in the discretisation. However, it might be less clear, the
computation time also depends on the volatility. The volatility has an impact on the minimum and
maximum value of the compounded rate at a node of the tree. The value of this minimum and maximum
subsequently have an impact on the number of values in the representative set of the node. An increase
of the size of the representative sets, increases the computational time. Recall, these representative
sets represent the possible compounded rates at the corresponding node. Instead of considering every
possible compounded rate at each node of the tree, this representative set of the compounded rate is
considered at each note.

For caplets/floorlets on compounded rates the tree method is not useful in practice due to enormous
computation time. The caplets/floorlets with a tenor of 1𝑌 are expected to be most commonly traded
in the market. The length of the tenor has an impact on the computation time. For a derivative on daily
compounded rates, a daily discretisation within the tenor of the derivative is needed. Therefore, the
longer the tenor, the longer the computation time. In our case, we estimate the computation time to
obtain the price of a caplet on daily compounded rates with tenor of 1𝑌 to be in order of months. There
fore, we consider two solutions for this computational challenge: consider a smaller representative set
or use a coarser grid than a daily grid. Note, the high computation times arise due to the backward
step in order to price a derivative and not due to the construction of the tree itself. Moreover, we would
like to note, in contrast to caplets on compounded rates, the computation time of LIBOR caplets with
trees is in order of seconds and is useful in practice.

The convergence of the compounded tree when using a coarser grid than a daily grid, is discussed in
Section 4.3.2. For a smaller representative set the following formulae, instead of (4.8), are considered:

𝐴𝑘(𝑖, 𝑗) = 𝐴𝑚𝑖𝑛(𝑖, 𝑗)𝑒2𝑘Δ𝑡𝑖 , for 𝑘 = 1, 2, … , 𝑘𝑚𝑎𝑥 ,
𝐴𝑘(𝑖, 𝑗) = 𝐴𝑚𝑖𝑛(𝑖, 𝑗)𝑒3𝑘Δ𝑡𝑖 , for 𝑘 = 1, 2, … , 𝑘𝑚𝑎𝑥 ,
𝐴𝑘(𝑖, 𝑗) = 𝐴𝑚𝑖𝑛(𝑖, 𝑗)𝑒4𝑘Δ𝑡𝑖 , for 𝑘 = 1, 2, … , 𝑘𝑚𝑎𝑥 .

The results of using these representative sets are presented in Table 4.1. The values of an At theMoney
(ATM) caplet are calculated for three different levels of the interest rate curves. The value corresponding
to 𝑘 = 1 is the value of the caplet on a weekly compounded rate. We observe a convergence of the
caplet price with respect of the size of the representative set. However, the difference between the
values for 𝑘 = 1 and 𝑘 ≠ 1 are still essential. Therefore, this is not a solution which can be used to
speed up the computation time.

4.3.1.3. Monte Carlo simulation
An advantage of MC simulations is their flexibility in comparison to other numerical pricing approaches.
MC simulations can be used for different types of payoffs. On the other hand, MC simulations are in
general considered to be slow. However, in the case of BlackKarasinski for compounded rates, it can
be that MC will be the most timeefficient one compared to the other two methods.
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k 1 2 3 4
Value 5% flat curve 15,93 15,39 15,39 12,95
Value 3% flat curve 3,18 2,03 0,17 0,16
Value 1% flat curve 4,03 2,96 0,00 0,00

Table 4.1: The value of an ATM caplet on weekly compounded rates with a maturity of 1𝑌, tenor of 6𝑀 and notional of 10.000
for three different levels of interest rate curves and various representative sets of the compounded rate.

A disadvantage is the standard error of the MC estimator. This standard error decreases when
the number of MC paths increases. In turn, an increase in the number of MC paths also results in an
increase of computation time, see Table 4.2. However, the computational time for this MC simulation
is significantly less in relation to the computation time with trees.

#Paths Computation time
100 2.85
1.000 2.61
10.000 3.10
100.000 5.97
1.000.000 91.6

Table 4.2: The computation time, in seconds, of a caplet on compounded rates with a tenor of 1𝑌 and a maturity of 2𝑌 computed
with a MC simulation for various number of MC paths.

Another disadvantage of the MC simulation for caplets under the BlackKarasinski model, is the
absence of an analytical formula for zerocoupon bonds. Hence, it is more convenient to price under the
riskneutral measure with the moneymarket account as numeraire than under the 𝑇forward measure.
However, this has as a consequence that process 𝑥(𝑡) has to be simulated on a dense grid from the
reference date until the maturity in order to compute value of the moneymarket account needed to
discount the payoff. As shown in Table 4.3, this increases the computation time when the maturity
increases.

Maturity Computation time
2𝑌 1.53
5𝑌 3.07
7𝑌 4.09
10𝑌 5.58
15𝑌 8.32

Table 4.3: The computation time, in minutes, of a caplet on compounded rates with a tenor of 1𝑌 computed with a MC simulation.

As mentioned before in Section 4.1, the expectation of the moneymarket account is equal to infinity
in the BlackKarasinski model. This, in particular, has an impact on the MC simulation. For some of the
paths of the MC simulation an explosion of the moneymarket account is observed. Namely, on single
realisations, the value of the moneymarket account is so big that it is out of value range for standard
double floats. Table 4.4 displays numbers of paths with the explosion of the moneymarket account
for various piecewise constant volatilities. Notice, the number of explosions depends on the volatility.
The number of paths with an explosion is small in comparison to the total number of paths. Therefore,
we use an approximation for the paths where we observed an explosion. The applied approximation
is described below. Notice, for the piecewise constant volatility corresponding to 𝜎1, the number of
explosions are of a higher order than for the other volatilities. This high number of explosions is caused
by the high volatility corresponding to 𝜎1.

The 𝑡0value of a caplet on a compounded rate over the period [𝑡, 𝑇] is given by:

𝑉𝐶𝐶𝑅(𝑡0, 𝑥(⋅)) = 𝑁𝔼ℚ [exp(−∫
𝑇

𝑡0
𝑟(𝑠)𝑑𝑠)max(exp(∫

𝑇

𝑡
𝑟(𝑠)𝑑𝑠) − (1 + 𝜏𝐾), 0) |ℱ𝑡0] .

Since the moneymarket account, denoted in red, explodes, (1 + 𝜏𝐾) can be neglected. By neglecting
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Maturity 1𝑌 2𝑌 3𝑌 4𝑌 5𝑌 6𝑌 7𝑌 8𝑌 9𝑌 10𝑌 11𝑌 12𝑌 13𝑌 14𝑌 15𝑌
𝜎1 0 0 0 0 0 5 26 95 363 995 1921 2661 3954 5314 6904
𝜎2 0 0 0 0 0 0 0 0 0 0 0 2 2 3 7
𝜎3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜎4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.4: Number of paths where an explosion is observed with corresponding piecewise constant volatil
ity 𝜎1 = [105.2%, 199.0%, 187.6%, 337.8%, 337.8%], 𝜎2 = [124.1%, 42.24%, 72.73%, 89.32%, 123.8%],
𝜎3 = [112.0%, 7.374%, 39.62%, 59.42%, 75.52%] and 𝜎4 = [102.1%, 19.56%, 5.112%, 48.48%, 58.36%] for
𝑡 ∈ [[0, 2), [2, 5), [5, 7), [7, 10), [10, 15)]. The paths are used to compute the price of a caplet on compounded rates with
a MC simulation. In total 1.000.000 paths are used.

(1 + 𝜏𝐾), the following is obtained:

𝑉𝐶𝐶𝑅(𝑡0, 𝑥(⋅)) ≈ 𝑁𝔼ℚ [exp(−∫
𝑇

𝑡0
𝑟(𝑠)𝑑𝑠)max(exp(∫

𝑇

𝑡
𝑟(𝑠)𝑑𝑠), 0) |ℱ𝑡0] .

The max function can be removed as well since the value of the moneymarket account is definitely
greater than zero, which gives the following:

𝑉𝐶𝐶𝑅(𝑡0, 𝑥(⋅)) ≈ 𝑁𝔼ℚ [exp(−∫
𝑇

𝑡0
𝑟(𝑠)𝑑𝑠) exp(∫

𝑇

𝑡
𝑟(𝑠)𝑑𝑠)|ℱ𝑡0] = 𝑁𝔼ℚ [exp(−∫

𝑡

𝑡0
𝑟(𝑠)𝑑𝑠) |ℱ𝑡0] .

4.3.2. Tree for compounded grids
As discussed above, the computation time for the daily compounded tree is too high to use in prac
tice. Therefore, we cannot do the same comparison for caplets under the BlackKarasinski model as
for caplets under the HullWhite model. However, to gain confidence in the implementation and the
accuracy of the MC simulation, we investigate whether the tree converges to the MC value. There
fore, a coarser grid than a daily compounded grid is considered. Then, we perform a numerical test to
investigate the convergence of the prices when the coarser grid becomes finer.

For this convergence test, the value of an ATM caplet with a tenor of 3𝑀 and a maturity of 9𝑀 is
calculated. Note, the choice of this test caplet is motivated by computational time reasons. The prices
are calculated under three different interest rate curves with corresponding realistic2 constant volatility
presented in Table 4.5.

Curve Volatility
1% flat 17.84%
3% flat 5.162%
5% flat 18.12%

Table 4.5: The constant volatility used for the convergence test of the compounded tree. For each interest rate curve, a different
constant volatility is used.

Figure 4.4 illustrates the value of the caplet price for the various compounded grids. The horizontal
axis defines the compounded grid. For example, 2 means a bidaily compounded grid and 4 means
a fourdaily compounded grid. Further to this, the value obtained with the MC simulation is shown.
Note, for the MC simulation a daily compounded rate is used. As the figure shows, the value from the
compounded tree converges to the MC value for all curves. Additionally, observe for the 1% flat curve
that the value of the compounded tree does not converge monotonically to the MC value. This is a
known phenomena for trees, for details see e.g. Albrecher et al., 2013.

Further to the above, Table 4.6 shows the computation times of the compounded tree. As expected,
the finer the compounded grid, the higher the computation time. Moreover, as mentioned before, the
computation time depends on the volatility, the higher the volatility, the higher the computation time.
Notice, the computation time for the caplet on the bidaily compounded grid for the 1% flat curve is
approximately 18 days.
2The used volatility was fitted to a proxy market, see Chapter 5 for the details.
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Compounded
grid 1% flat curve 3% flat curve 5% flat curve

14 0.73 0.085 0.023
10 6.97 0.74 0.136
7 39.47 3.76 0.63
4 692.63 61.59 8.72
2 25972.43 2229.44 291.55

Table 4.6: The computation time, in minutes, to compute a caplet on compounded rates with a tenor of 6𝑀 and maturity of 9𝑌
with the tree method for three different interest rate curves and various compounded grids.

Last, to gain extra confidence in the implementation and accuracy of the MC simulation, we imple
mented the MC simulation from Section 4.2.3 for the HullWhite model and compared it with the analytic
pricing formula from Section 3.3.1.2. With this test, the difference between the two methods was in line
with the standard error.

4.4. Conclusion
Based on the results discussed in Section 4.3, a conclusion is given below for the BlackKarasinski
model. For the BlackKarasinski model three approaches have been considered to price caplets/floorlets:
the pricing kernel approach, the trinomial trees and the MC simulation. Due to computational complex
ities, the BlackKarasinski pricing kernel has not been considered further in the result section. With this
approach not much was gained in terms of computation time in comparison to the MC simulation.

Further, due to the high computation times of the calculation with the compounded trinomial tree,
we could not make the same comparison as for the HullWhite model. In order to gain confidence in the
implementation and the accuracy of the MC simulation for the BlackKarasinski model, the convergence
of the compounded tree has been investigated in Section 4.3.2. There we saw the convergence of the
compounded tree to the value of the MC simulation. Moreover, we implemented this MC simulation for
the HullWhite model and compared it with the analytic pricing formula from Section 3.3.1.2. With this
test, the difference between the two methods was in line with the standard error. Therefore, we gained
confidence in the correctness of the MC implementation. As a result, the MC simulation is used in the
comparative study, see Chapter 5, to calculate the price of caplets/floorlets on compounded rates. In
case the price of a LIBOR caplet has to be calculated, the tree method is used.
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Figure 4.4: The value of ATM caplets on compounded rates with a tenor of 3𝑀 and a maturity of 9𝑀 for three different interest
rate curves. In orange the value of the MC simulation using a daily compounded rate and 100.000.000 paths is illustrated. In
blue the convergence of the compounded tree is illustrated where the compounded grid is denoted on the horizontal axis in days.
Moreover, the difference between the value of the caplets on compounded rates obtained with the two methods is presented.



5
Comparative study

This chapter is dedicated to a comparison between the HullWhite and BlackKarasinski models. The
HullWhite model can be used as an interpolation model, see Section 5.1 for a short introduction. This
leads to potential model risk. Therefore, we do a comparative study to infer the model risk measured
by differences in Bachelier implied volatilities. In this comparative study, we choose the pricing ker
nel approach for pricing caps/floors on compounded rates under the HullWhite model, based on the
discussion in Section 3.5. Further, we use a MC simulation for pricing caps/floors on compounded
rates under the BlackKarasinski model based on Section 4.4. The model calibration is described in
Section 5.2, the testing strategy for this comparative study is outlined in Section 5.3 and the results are
discussed in Section 5.4.

5.1. Introduction
The market quotes cap/floor implied volatilities on a grid of strikes and maturities, for example Bachelier
implied volatilities. In order to price caps/floors, which are not on this grid, an interpolation is needed
to obtain the corresponding implied volatility to be plugged into the Bachelier formula. In the case of
swaptions, the Stochastic Alpha, Beta, Rho (SABR) model is often used as interpolation model for
the swaption volatilities, for details see e.g. Iwashita, 2014. Similar, in the context of this thesis, the
HullWhite model can be used as an interpolation model for cap/floor volatilities.

Every model brings certain risks due to, for example, model assumptions and data and calibration
errors. Therefore, when the HullWhite model is used as an interpolation model, it can lead to potential
model risk. To this end, we perform a comparative study to infer the model risk. For this compara
tive study, we compare the caplet prices obtained using the HullWhite and BlackKarasinski models
and measure their difference in terms of Bachelier implied volatilities. This inversion to Bachelier im
plied volatilities is only done for comparison purposes. It is a metric often used by practitioners, e.g.
traders and risk managers, in such contexts. In order to make this comparison, both models have to
be calibrated, see Section 5.2.

5.2. Model calibration
In order to compare models one would usually calibrate them to market data, where they are assumed
to be applied. However, at the moment there exists no liquid market for caps/floors on compounded
rates linked to the new RFR1. Therefore, we use a proxy market. We take 3𝑀 USD LIBOR volatilities,
represented in terms of normal volatilities, as an approximation for SOFR volatilities, and the USD
SOFR curve for forwarding and discounting. The market data is taken as of 23112020. Then, one of
the models is heuristically calibrated to this proxy market and the second model is calibrated to the first
model. More details about this heuristic calibration are given in Section 5.2.2.1.

To be more precise, to be able to compare two models, we first heuristically calibrate the Black
Karasinski model to a proxy market to find potentially realistic values for the caplets on the compounded

1Recall, this is the new RiskFree Rate.
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rates. Then, we calibrate the HullWhite model to these realistic values. The proxy market and quasi
calibration of the BlackKarasinski model are described in Section 5.2.2. Both the HullWhite model and
the BlackKarasinski model are fitted on a grid of maturities and strikes. For each strike we consider,
the models are separately calibrated to the market. This results in an individually calibrated model for
each strike.

Before we continue with a particular case of the calibration of the BlackKarasinski model, the gen
eral problem of calibration is given below in section 5.2.1. Within this section a global fitting method
and the stripping method are described.

5.2.1. Calibration methods
This section describes the problem of model calibration. The general problem of the calibration is to
find model parameters such that the model prices are as close as possible to the market prices. In our
case we calibrate to cap/floor prices. Two calibration methods are described below. The first method
is a global fitting methodology, see Section 5.2.1.1. Thereafter, the stripping method is discussed in
Section 5.2.1.2.

5.2.1.1. Global fitting method
With the global fitting method the differences between the model and market prices for a set of calibra
tion instruments has to be minimised. Consider a set of 𝑛 calibration instruments, for example caplets,
with different maturities. Denote by 𝒫𝑖𝑚𝑎𝑟𝑘𝑒𝑡 and 𝒫𝑖𝑚𝑜𝑑𝑒𝑙 the market and model price of calibration in
strument 𝑖, respectively. With the global fitting method, the total difference for all 𝑖 = 1,…𝑛 between
𝒫𝑖𝑚𝑎𝑟𝑘𝑒𝑡 and 𝒫𝑖𝑚𝑜𝑑𝑒𝑙 has to be minimised. By taking a piecewise constant volatility with 𝑚 ≤ 𝑛 intervals,
we have 𝑚 degrees of freedom in the piecewise constant volatility. When 𝑚 < 𝑛, a perfect fit to all
calibration instruments can not be achieved. However, we seek for the solution where, for example, a
weighted quadratic distance between the market and model price is minimised. Then, the global fitting
is as follows:

min
𝜎

𝑛

∑
𝑖=1
𝑤𝑖 (𝒫𝑖𝑚𝑜𝑑𝑒𝑙 − 𝒫𝑖𝑚𝑎𝑟𝑘𝑒𝑡)

2 .

The sum is over all calibration instruments, the minimisation is over the model volatility, denoted by
𝜎, and 𝑤𝑖 is the weight corresponding to calibration instrument 𝑖. For more information about a global
fitting, we refer to White and Iwashita, 2014. A multidimensional optimisation is needed for the global
fitting and, thus, the global fitting is complex and rather tedious. For instance, the global fitting may end
up in a local minimum which is not desirable. Therefore, we consider a stripping method, see Section
5.2.1.2, which is a series of onedimensional optimisations.

5.2.1.2. Stripping method
Recall, in our particular case, we fix a strike and then calibrate the model for that specific strike. We
seek for a piecewise constant volatility with 𝑚 degrees of freedom. With the stripping method, we strip
over nonoverlapping caplets and fit these caplets to the market. This leads to a sequence of one
dimensional problems. To obtain𝑚 degrees of freedom in the piecewise constant volatility, 𝑚 caps are
needed in ascending order of maturity. With stripping, one aims to obtain an exact fit to the market
data.

For the following steps of the stripping method, we follow White and Iwashita, 2014. First, put the
caps in ascending order of maturity. Second, find the price difference for the caps. Third, partition the
caplets such that they are assigned to the relevant price difference. Fourth, for each caplet partition,
assign a common volatility for the price difference with a onedimension root finding method.

5.2.2. Calibration BlackKarasinski model
This section explains how to obtain the BlackKarasinski model with realistic parameters for prices of
caplets/floorlets on compounded rates. We fix the mean reversion speed 𝑎 = 0.03 and then a quasi
calibration is used to calibrate to a proxy market. For the sake of readability, we refer below to this
proxy market and quasicalibration as simply market and calibration.

As we already have observed, on the level of model prices, the values of LIBOR caplets and caplets
on compounded rates do not differ much, see Section 3.4.3. Note, market prices between the LIBOR
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caplets and caplets linked to the new RFR might differ more. Due to the lack of data, we use LIBOR
caps/floors market data. Then, we calibrate the BlackKarasinski model to the market prices of LIBOR
caplets. For this calibration, the stripping method is used, described in Section 5.2.1.2. The LIBOR
caplet prices for the BlackKarasinski model are computed using trinomial trees introduced in Chapter
4. The tree method is used in this case because for LIBOR caplets this is a fast approach. Since for the
trees it is not straightforward to use a gradient method as optimisation in the stripping method, we use
a bisection to solve the optimisation/rootfinding problem. The volatilities obtained herewith are then
used to calculate the prices of caplets on compounded rates under the BlackKarasinski model. We
consider these volatilities and corresponding prices for caplets on compounded rates as realistic values
for the BlackKarasinski model and use them for our further analysis. Later, Section 5.2.3 explains how
the HullWhite model can be calibrated to the prices obtained by the BlackKarasinski model.

As mentioned before, the market consists of 3𝑀 LIBOR volatilities represented in terms of normal
volatilities and the market implied USD SOFR curve is used for discounting and forwarding. Since
the volatilities are presented as normal volatilities, we use the Bachelier model to calculate the 3𝑀 LI
BOR caplets. We fix the BlackKarasinski piecewise constant volatility grid on the following maturities
[2𝑌, 5𝑌, 7𝑌, 10𝑌, 15𝑌] and on each interval one caplet is used to calibrate the corresponding volatility
using stripping. For the sake of simplicity, we calibrate to the market data with only one caplet. Since
we fit the model per strike, we consider the stripping method for calibration, see Section 5.2.1.2, and
seek for an exact match. As calibration instruments 3𝑀 LIBOR caplets are used with maturities cor
responding to the BlackKarasinski volatility grid. Furthermore, the USD SOFR curve is used and the
calibration is done on the following grid of strikes [0.5%, 1%, 1.5%, 2%].

The results of the BlackKarasinski volatilities for a strike of 1% are shown in Table 5.1. For the
other strikes, the stripping is not so straightforward. For a strike of 0.5% the market price could not be
reached, not even for unreasonably high volatilities. This is caused by the following. Nowadays, normal
volatilities are used to calculate the market prices. For example, with a pure lognormal model, it is not
possible to obtain prices observed in the current low/negative rate environment. Therefore, on the one
hand, we calculated the market prices with the Bachelier model, which is a normal model, and, thus,
does not have an upper bound for the caplet prices. On the other hand, the BlackKarasinski model
is a lognormal model and assumes a positive underlying. For a positive underlying, there is a model
independent upper bound which is given by the discounted forward rate corresponding to the caplet.
For the low strike of 0.5%, the market price of the caplet with maturity 15𝑌 is higher than the upper bound
of the BlackKarasinski model. Therefore, we are not able to match the market price for this maturity.
This is also illustrated by Table 5.2. Even when a higher volatility is used, the difference between the
market and model price is not less than 2 bps. Remark, the volatility in the row of 2𝑌 corresponds to the
piecewise constant volatility from 0𝑌 tot 2𝑌, the volatility in the row of 5𝑌 corresponds to the piecewise
constant volatility from 2𝑌 tot 5𝑌, etc.

𝑡 ∈ [0, 2) [2, 5) [5, 7) [7, 10) [10, 15)
𝜎 124.1% 42.24% 72.73% 89.32% 123.8%

Table 5.1: The piecewise constant volatility for the BlackKarasinski model with a strike of 1%.

Maturity BK vol Market price Model price Diff prices
2Y 105.2% 0,23 0,23 1, 83 ⋅ 10−7
5Y 199.0% 13,79 13,79 3, 13 ⋅ 10−6
7Y 187.6% 21,92 21,92 4, 64 ⋅ 10−6
10Y 337.8% 29,44 29,44 2, 98 ⋅ 10−6
15Y 337.8% 30,43 28,38 2,06

Table 5.2: The piecewise constant volatility, with corresponding market and model prices with a notional of 10.000, for the
BlackKarasinski model with a strike of 0.5%.

For the strikes of 1.5% and 2% a volatility squeeze is observed. This means that at some stage
of stripping, given already some fitted volatility, a new volatility for a later maturity cannot be attained.
Even for volatilities close to zero, the model price is too high for the market price. For example, we are
able to calibrate to the first caplet with a maturity of 2𝑌. However, even if a volatility close to zero is
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used between 2𝑌 and 5𝑌, the value of the caplet with a maturity of 5𝑌 is higher than its market price.
Therefore, we are not able to calibrate to the second caplet with a maturity of 5𝑌. This is called a
volatility squeeze. Note, this can be an indication that the model is not the most suitable model for the
data.

In practice, a global fitting along the whole strike, instead of stripping, can be used to avoid a
volatility squeeze. However, this leads to a multidimensional optimisation which might end up in a
local minimum. Since we use the tree method to price LIBOR caplets, we do not have an analytic
pricing formula. Hence, it is not straightforward to use a gradient method for the global calibration. As
a consequence, there will be a high computation time to perform the global optimisation. Therefore,
we seek for a balance in computation time and accuracy. A solution used in practice, instead of using
a global fitting, is to relax the requirement of matching the volatility exactly. The simplest approach
is to set the volatility to an arbitrarily low value for the interval where a volatility squeeze is observed.
Often in practice, one is then able to calibrate to the subsequent caplet. This is the first approach we
consider.

The aim is to set the volatility to an arbitrarily low value for the interval where a volatility squeeze is
observed. Then, we investigate how well the calibrated model fits to the market data. For the strike of
1%, BlackKarasinski volatilities in a range of [40%, 130%] are obtained. Therefore, we suspect that
setting the volatility to 1%, for the interval where a volatility squeeze is observed, is low enough to
continue the calibration for the other maturities. However, to investigate the impact of the size of that
low volatility value, we also set the volatility to 0.5% and 5% for the interval where a volatility squeeze
is observed. The results for strike 1.5% and 2% are shown in Table 5.3. Firstly, notice that for the
strike of 1.5% there is still a volatility squeeze between 5𝑌 and 7𝑌 when the volatility between 2𝑌 and
5𝑌 is set to a low value. For the strike of 2% this is also the case. Moreover, for this strike a volatility
squeeze between 7𝑌 and 10𝑌 is observed. As a consequence, the market prices and model prices do
not match for these caplets. Secondly, the volatility is set to 0.5%, 1% or 5% when a volatility squeeze
is observed. However, for all three of these values the impact of the model price is of the same order.
Therefore, the value of 1% was indeed low enough and better results would not be obtained if the value
of the volatility is reduced even more. With this calibration, the model cannot be fitted appropriately
to the market. Note, this is expected since we calibrate a lognormal model to prices from a low rate
environment. In this case, such a high volatility is already needed to fit to the first maturity, that it is not
possible to obtain an exact fit for longer maturities.

It can be concluded that for both strikes the volatility calibrated to the first caplet is too high in order
to also calibrate to the second, third, and for strike 2% even the fourth, caplet. As mentioned before, a
global fitting method could be used to avoid a volatility squeeze. However, as a compromise between
computation time and accuracy, a heuristic fitting is proposed. Therefore, the requirement to match the
volatility exactly up to 2𝑌 is relaxed by setting the volatility up to 2𝑌 to a lower value. After relaxing this
requirement, the volatility for the later maturities might have an exact fit. We do this in a heuristic way
described below. This approach is considered instead of a global fit, in order to still be able to make
use of stripping, i.e., onedimensional optimisation instead of a multidimensional optimisation.

5.2.2.1. Heuristic approach
This section describes how one can still make use of stripping, i.e., onedimensional optimisation,
but avoid volatility squeezing using a heuristic approach. We want to calibrate a lognormal model to
prices from a low rate environment. Here, we want to avoid a volatility squeeze on a significant part
of the piecewise constant volatility grid, see Table 5.3. Therefore, we compromise on an exact fit for
shorter maturities, e.g., by lowering the model volatility such that a slightly lower price is obtained for
these maturities. This is done with the purpose of having a better fit for the longer maturity. With this
approach, the goal is to have a better overall fit for all prices compared to the plain stripping method.

Suppose one wants to calibrate to caplets with maturity 𝑇1, 𝑇2, … , 𝑇𝑛. If a volatility squeeze for the
caplet with maturity 𝑇𝑖 is observed, take the following steps:
Step 1: Lower the volatility, obtained with the plain stripping method, belonging to maturity 𝑇𝑖−1 by
setting it to 1 − 𝑛

8 times the original volatility with 𝑛 = 1 initially.
Step 2: If the volatility squeeze for maturity 𝑇𝑖 is still observed, go back to step 1 and take 𝑛 = 2𝑛. If
no volatility squeeze for maturity 𝑇𝑖 is observed, go to the step 3.
Step 3: Increase the volatility belonging to maturity 𝑇𝑖−1 by setting it to 1−1/(

8
𝑛 +𝑚) times the original

volatility, where 𝑚 = 1 initially and 𝑛 is the highest number from step 1 where no volatility squeeze for
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Maturity BK vol Market
price

Model
price

Diff
prices

2𝑌 140.0% 0,28 0,28 1, 16 ⋅ 10−7
5𝑌 5% 4,59 6,29 1, 70
7𝑌 5% 9,60 11,30 1, 70
10𝑌 46.26% 15,88 15,88 2, 89 ⋅ 10−6
15𝑌 74.87% 17,91 17,91 5, 81 ⋅ 10−6
(a) Strike 1.5% in case of volatility squeeze set volatility to 5%.

Maturity BK vol Market
price

Model
price

Diff
prices

2𝑌 140.0% 0,28 0,28 1, 16 ⋅ 10−7
5𝑌 1% 4,59 6,24 1,65
7𝑌 1% 9,60 11,31 1,70
10𝑌 46.41% 15,88 15,88 4, 93 ⋅ 10−6
15𝑌 74.90% 17,91 17,91 2, 79 ⋅ 10−6
(b) Strike 1.5% in case of volatility squeeze set volatility to 1%.

Maturity BK vol Market
price

Model
price

Diff
prices

2𝑌 140.0% 0,28 0,28 1, 16 ⋅ 10−7
5𝑌 0.5% 4,59 6,24 1,65
7𝑌 0.5% 9,60 11,31 1,70
10𝑌 46.41% 15,89 15,88 7, 93 ⋅ 10−7
15𝑌 74.91% 17,91 17,91 7, 94 ⋅ 10−7

(c) Strike 1.5% in case of volatility squeeze set volatility to 0.5%.

Maturity BK vol Market
price

Model
price

Diff
prices

2𝑌 153.2% 0,30 0,30 1, 73 ⋅ 10−7
5𝑌 5% 3,26 6,42 3, 17
7𝑌 5% 6,40 10,42 4,03
10𝑌 5% 11,47 13,19 1,72
15𝑌 53.05% 13,46 13,46 5, 43 ⋅ 10−6
(d) Strike 2% in case of volatility squeeze set volatility to 5%.

Maturity BK vol Market
price

Model
price

Diff
prices

2𝑌 153.2% 0,30 0,30 1, 73 ⋅ 10−7
5𝑌 1% 3,26 6,43 3,17
7𝑌 1% 6,40 10,43 4,03
10𝑌 1% 11,47 13,21 1,74
15𝑌 53.17% 13,46 13,46 3, 59 ⋅ 10−7
(e) Strike 2% in case of volatility squeeze set volatility to 1%.

Maturity BK vol Market
price

Model
price

Diff
prices

2𝑌 153.2% 0,30 0,30 1, 73 ⋅ 10−7
5𝑌 0.5% 3,26 6,43 3,17
7𝑌 0.5% 6,40 10,43 4,03
10𝑌 0.5% 11,47 13,21 1,74
15𝑌 53.18% 13,46 13,46 2, 79 ⋅ 10−6
(f) Strike 2% in case of volatility squeeze set volatility to 0.5%.

Table 5.3: Values of the calibrated volatility for strike 1.5% and 2% and the corresponding market price and BlackKarasinski
model price. When we observe a volatility squeeze we set the volatility to 0.5%, 1% or 5%.

maturity 𝑇𝑖 is observed.
Step 4: If no volatility squeeze for maturity 𝑇𝑖 is observed, go back to step 3 and increase 𝑚 by 1. If a
volatility squeeze for maturity 𝑇𝑖 is observed, take 𝑛 as in step 3 and 𝑚 = 𝑚− 1 and continue with the
calibration for the other maturities.

This heuristic approach is illustrated for a strike of 1.5%. With the plain stripping method, a volatility
squeeze for maturity 5𝑌 is observed. Hence, we want to lower the volatility for maturity 2𝑌.
Step 1: The originally fitted volatility for maturity 2𝑌 is 140%. Reduce this volatility by multiplying the
original value by 1 − 1

8 , which gives a volatility of 122.5%.
Step 2: With this volatility, a volatility squeeze for maturity 5𝑌 is observed as shown in Table 5.4a.
Therefore, go back to step 1.
Step 1: Take 140% ⋅ (1 − 1

4) = 105% as volatility for maturity 2𝑌.
Step 2: As shown in Table 5.4b there is no volatility squeeze observed anymore for maturity 5𝑌. There
fore, go to step 3.
Step 3: Then, take 140% ⋅ (1 − 1/(82 + 1)) = 112% as volatility for maturity 2𝑌.
Step 4: As shown in Table 5.4c there is no volatility squeeze observed for maturity 5𝑌. Therefore, go
back to step 3 and take 𝑚 = 2.
Step 3: Take 140% ⋅ (1 − 1/(82 + 2)) = 116, 6% as volatility for maturity 2𝑌.
Step 4: As shown in Table 5.4d there is a volatility squeeze observed for maturity 5𝑌. To this end, take
112% as volatility for maturity 2𝑌 and continue the calibration for the other maturities.

The BlackKarasinski volatilities for strike 1.5% and 2% fitted in this heuristic manner are shown in
Table 5.5. As expected, there is a difference for a maturity of 2𝑌, since we heuristically relaxed the
requirement of a perfect match of the piecewise constant volatility for that interval. However, for the
other maturities there is a match up to a small error. With this heuristic approach, the total error for
strike 1.5% and 2% is of 0,21 and 0,27 bps, respectively. While applying the plain stripping method
results in a total difference of 3.35 and 8,94 bps between the model and market prices for respectively
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Maturity BK vol Market price Model price Diff prices
2𝑌 122.5% 0,28 0,13 0,15
5𝑌 1% 4,59 5,13 0,54

(a) Volatility up to 2Y is set to (1 − 1
8 ) ⋅ original volatility.

Maturity BK vol Market price Model price Diff prices
2𝑌 105.0% 0,28 0,05 0,23
5𝑌 26.37% 4,59 4,59 2, 2 ⋅ 10−7
7𝑌 41.70% 9,60 9,60 2, 46 ⋅ 10−6
10𝑌 59.84% 15,88 15,88 2, 5 ⋅ 10−6
15𝑌 75.51% 17,91 17,91 4, 3 ⋅ 10−6

(b) Volatility up to 2Y is set to (1 − 1
4 ) ⋅ original volatility.

Maturity BK vol Market price Model price Diff prices
2𝑌 112.0% 0,28 0,07 0,21
5𝑌 7.374% 4,59 4,59 1, 26 ⋅ 10−6
7𝑌 39.62% 9,60 9,60 2, 56 ⋅ 10−6
10𝑌 59.42% 15,88 15,88 3, 03 ⋅ 10−6
15𝑌 75,52% 17,91 17,91 3, 74 ⋅ 10−6

(c) Volatility up to 2Y is set to (1 − 1
5 ) ⋅ original volatility.

Maturity BK vol Market price Model price Diff prices
2𝑌 116.6% 0,28 0,09 0,19
5𝑌 1% 4,59 4,75 0,16

(d) Volatility up to 2Y is set to (1 − 1
6 ) ⋅ original volatility.

Table 5.4: Values of the calibrated volatility where we use the heuristic approach described in Section 5.2.2.1.

strike 1.5% and 2%, see Table 5.3b and 5.3e. With this heuristic approach a better overall fit with the
market is obtained than with the plain stripping method. Table 5.6 presents the calibrated volatilities
per strike for the BlackKarasinski model, which will be used in the remainder of this thesis.

Maturity BK vol Market price Model price Diff prices
2𝑌 112.0% 0,28 0,07 0,21
5𝑌 7.374% 4,59 4,59 1, 26 ⋅ 10−6
7𝑌 39.62% 9,60 9,60 2, 56 ⋅ 10−6
10𝑌 59.42% 15,88 15,88 3, 03 ⋅ 10−6
15𝑌 75.52% 17,91 17,91 3, 74 ⋅ 10−6

(a) For a strike of 1.5%.

Maturity BK vol Market price Model price Diff prices
2𝑌 102.1% 0,30 0,03 0,27
5𝑌 19.56% 3,26 3,26 1, 14 ⋅ 10−6
7𝑌 5.112% 6,40 6,40 3, 29 ⋅ 10−9
10𝑌 48.48% 11,47 11,47 2, 62 ⋅ 10−6
15𝑌 58.36% 13,46 13,46 3, 32 ⋅ 10−6

(b) For a strike of 2%.

Table 5.5: BlackKarasinski volatilities for strikes 1.5% and 2%. The model prices are obtained from the BlackKarasinski model.
The prices are of LIBOR caplet with a tenor of 3𝑀 and a notional of 10.000.

5.2.3. Calibration HullWhite model
In this section, the calibration of the HullWhite model to the BlackKarasinski model is described.
The BlackKarasinski volatilities obtained with the approach from the previous section are shown in
Table 5.6. Table 5.7 displays the BlackKarasinski cap prices on compounded rates obtained with
these volatilities under the BlackKarasinski model. Note, these caps assume the 1𝑌 tenor for their
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𝑡 ∈ [0, 2) [2, 5) [5, 7) [7, 10) [10, 15)
𝜎1 105.2% 199.0% 187.6% 337.8% 337.8%
𝜎2 124.1% 42.24% 72.73% 89.32% 123.8%
𝜎3 112.0% 7.374% 39.62% 59.42% 75.52%
𝜎4 102.1% 19.56% 5.112% 48.48% 58.36%

Table 5.6: The piecewise constant volatilties 𝜎1, 𝜎2, 𝜎3 and 𝜎4 for the BlackKarasinski model corresponding to strikes
0.5%, 1%, 1.5% and 2%, respectively.

caplets. For the HullWhite model we also fix the mean reversion speed 𝑎 = 0.03 and fix a volatility
grid [2𝑌, 5𝑌, 7𝑌, 10𝑌, 15𝑌]. Since for the HullWhite model there exists a fast analytic pricing formula for
caplets on compounded rates, we calibrate to caps with maturities corresponding to the volatility grid.
For this calibration the stripping method with a bisection for rootfinding is used. Since there exists an
analytic pricing formula, a gradient method like NewtonRaphson could also be used. However, it was
decided to use the bisection for the calibration since this is a more robust method. The results of this
calibration are presented in Table 5.8.

Maturity 𝐾 = 0.5% 𝐾 = 1% 𝐾 = 1.5% 𝐾 = 2%
2𝑌 0,64 0,52 0,16 0,04
5𝑌 80,21 43,19 25,16 15,84
7𝑌 229,79 137,86 85,75 57,08
10𝑌 540,15 360,35 239,24 163,88
15𝑌 767,52 819,02 577,30 414,40

Table 5.7: Cap prices on compounded rates obtained with the volatilities presented in Table 5.6 and the BlackKarasinski model.
The caps consists of consecutive caplets with a tenor of 1𝑌 and notional of 10.000.

𝑡 ∈ [0, 2) [2, 5) [5, 7) [7, 10) [10, 15)
𝜎1 0.235% 0.697% 0.951% 0.649% 0.593%
𝜎2 0.426% 0.656% 0.814% 0.742% 0.788%
𝜎3 0.523% 0.702% 0.675% 0.773% 0.733%
𝜎4 0.591% 0.779% 0.605% 0.760% 0.745%

Table 5.8: The piecewise constant volatilties 𝜎1 , 𝜎2 , 𝜎3 and 𝜎4 for the HullWhite model corresponding to strikes 0.5%, 1%, 1.5%
and 2%, respectively.

5.3. Testing strategy
In order to make a comparison between the HullWhite and BlackKarasinski model, both models need
to be calibrated. This sections first gives a recap of the calibration steps and then describes the testing
strategy of the model comparison.

First, the BlackKarsinski model is calibrated to prices of 3𝑀 LIBOR caplets on a grid of maturities
[2𝑌, 5𝑌, 7𝑌, 10𝑌, 15𝑌] and strikes [0.5%, 1%, 1.5%, 2%]. The mean reversion speed is set to 𝑎 = 0.03
and a separate calibration is done for each strike. The stripping method is used for strikes 0.5% and
1%, see Section 5.2.1.2. For the other two strikes, the calibration is done with the heuristic approach
described in Section 5.2.2.1. Second, the calibrated BlackKarasinski model is used to price caps on
compounded rates, with the same maturities and strikes as mentioned above. Third, for each strike, a
piecewise constant HullWhite volatility is calibrated to prices of caps on compounded rates, generated
by the BlackKarasinski model. This generates a grid of cap prices on which the HullWhite and Black
Karasinski model are calibrated.

With the calibrated HullWhite and BlackKarasinski model the prices of individual caplets with a
tenor of 1𝑌 can be calculated. The models are not explicitly calibrated to these caplets. Therefore,
these can be seen as interpolated values for these caplets. The tenor of 1𝑌 is chosen since it is
expected to be the most commonly traded one in the market. Thereafter, the prices of these individual
caplets are inverted to derive Bachelier implied volatilities which allows a uniform comparison. Note,
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the inversion to Bachelier implied volatilities is only done for comparison purposes. The comparison
of the difference in Bachelier implied volatilities can give an insight into the model risk for caplets on
compounded rates. The results of this comparison are given Section 5.4.

5.4. Results
In this section, a comparison between the HullWhite model and the BlackKarasinski model is made.
This comparison is for pricing caplets on compounded rates. The Bachelier implied volatilities are
used to make a uniform model comparison. These Bachelier implied forward volatilities are obtained
from caplets with a tenor of 1𝑌 and are also referred to as forward volatilities. Table E.1 presents the
Bachelier implied volatilities obtained from the HullWhite and BlackKarasinski models. Moreover, the
Bachelier implied volatilities are illustrated in Figure 5.1. The orange lines in the figure display the
difference between the Bachelier volatilities implied by the BlackKarasinski model and the HullWhite
model. Since we price caplets that are not on the calibrated grid, we expect to find a difference in the
Bachelier implied volatilities.

First, as shown in the figure below, we observe a difference in Bachelier implied volatilities for all
strikes. The differences are significant and only up to one order less than the volatility. For example,
for strike 0.5% and maturity 8𝑌, the implied volatilities are 58 and 62 bps for the BlackKarasinski and
HullWhite models, respectively. This results in a difference of 4 bps. This means that, as expected,
there is a difference in interpolation between the two models.

Second, for a strike of 0.5% we observe differences in the implied volatility between 3 and 4 bps.
As Figure 5.1b shows, the difference in the implied volatility for a strike of 1% is between 4 and 1.5
bps. Moreover, for a strike of 1.5% we observe a difference in the implied volatility between 3 and 1
bps and for a strike of 2% we observe a difference in the implied volatility between 1 and 35 bps.

Last, for a strike of 2% the difference in implied volatility for the first caplet is up to 30 bps, while for
the longer maturities the difference is in a range of 1 and 1 bps, see Figure 5.1d. Moreover, Table E.1d
shows that the difference in price for a maturity of 1𝑌 is only of order 10−8 bps. This can be explained
by a low Vega for short maturities. Vega measures the sensitivity of the option price with respect to the
change in the volatility of the underlying asset. Due to a low Vega for short maturities, a large volatility
is needed for a small change in the price. This can result in a large difference in implied volatility, for a
small maturity, even though the difference in price is small.

5.5. Conclusion
This chapter was dedicated to a comparison between the HullWhite and BlackKarasinski models for
pricing caplets on compounded rates. In order to do a model comparison, both models have to be
calibrated to market data. However, at the moment there exists no liquid market for caps/floors on
compounded rates linked to the new RFR. Therefore, we took the LIBOR caps market as a proxy
market. Then, for each strike, the BlackKarasinski model was separately calibrated to this market
and the prices of caps on compounded rates were calculated on a grid of maturities. Thereafter, the
HullWhite model was calibrated to these cap values.

For the calibration of the BlackKarasinski model to the market, the stripping method was used. For
two strikes, a volatility squeeze was observed. A global fitting method instead of the stripping method
could avoid this. However, as a balance in computation time and accuracy, we proposed a heuristic
fitting approach instead of a global fitting method. With this heuristic fitting approach a better total fit to
the market was obtained than with the plain stripping method.

When the models were calibrated on a grid of strikes and maturities, individual caplets could be
priced with both the calibrated HullWhite and BlackKarasinski models. To make a uniform compar
ison these caplet prices were inverted to Bachelier implied volatilities. These implied volatilities were
compared and could give an insight of the model risk for caplets on compounded rates. As expected
we observed differences in the implied volatilities. These differences were in a range of 4 and 4 bps
which is one order less than the implied volatities themselves. There was one exception on this range
for strike 2% and maturity 1𝑌, but this could be explained by a low Vega for short maturities.
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(a) Bachelier implied volatilities for a strike of 0.5%.
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(b) Bachelier implied volatilities for a strike of 1%.
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(c) Bachelier implied volatilities for a strike of 1.5%.
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(d) Bachelier implied volatilities for a strike of 2%.

Figure 5.1: The Bachelier implied volatitities for the HullWhite model (blue) and BlackKarasinski model (red) for the different
strikes. In orange the differences between the implied volatilities obtained with the BlackKarasinski and HullWhite models are
illustrated. All values are expressed in bps.





6
Conclusion and future recommendations
This chapter concludes the thesis and provides recommendations for further research.

6.1. Conclusion
As a result of the IBOR reform, the IBOR rates will cease to exist and be replaced by the new RFR
rates. This new RFR is an inarrears backwardlooking rate and therefore only known at the end of
the accrual period. Standard models like the Black and Bachelier models cannot be applied directly
anymore in order to price derivatives linked to this new RFR. Hence, this thesis is dedicated to option
pricing on backwardlooking rates. The first main research objective was how to price options on
backwardlooking rates efficiently under various models.

In this thesis two models have been considered. The first model was the onefactor HullWhite
model. This is a normally distributed shortrate model which captures mean reversion. Within the
HullWhite model two pricing approaches have been considered. First, the pricing kernel approach
was used to price caplets/floorlets. For the LIBOR caplets/floorlets the same analytical formula was
obtained as already known in the literature. Moreover, for caplets/floorlets on compounded rates also
an analytical formula was obtained. To verify the correctness of this formula we implemented a MC
simulation. The prices obtained with the kernel approach and the MC simulation were in line with
the standard error of the MC simulation. Furthermore, the computation times of the kernel approach
and the MC simulation were compared. As expected, the computation time of the MC simulation was
significantly higher. This is caused by the daily simulation which is needed for a daily compounded
rate. Lastly, LIBOR caplets/floorlets were compared to caplets/floorlets on compounded rates. The
difference between the pricing formulae of these two caplets/floorlets is a convexity adjustment which
is added for the compounded rate. We observed, that for a constant volatility case, the convexity
adjustment had more impact on caplets/floorlets with a shorter maturity than caplets/floorlets with a
longer maturity. However, this does not have to hold in case of nonconstant volatility.

The secondmodel we considered was the BlackKarasinski model. This is a lognormally distributed
shortrate model which also captures mean reversion. For the BlackKarasinski model we considered
three different pricing approaches: the pricing kernel approach, the trinomial tree method and a MC
simulation. With the BlackKarasinski pricing kernel a semianalytic pricing formula for caplets/floorlets
is obtained. However, we observed complexities and challenges in both the derivation and computa
tion time. As a consequence, this approach was not used further for the numerical tests. The second
approach was the trinomial tree method. For caplets/floorlets on compounded rates the tree method
was computationally hard due to the backward step and the size of the representative sets of the com
pounded rates. Our estimation predicts the computation time to calculate the price of a caplet/floorlet
with a tenor of 1𝑌 and maturity of 1𝑌 to be in the order of months. Subsequently, we considered two
solutions to speed up the computation. The first option was to consider smaller representative sets
for the compounded rate. Despite the convergence with respect to the size of the representative sets,
which we observed, the differences between the prices for the various representative sets were essen
tial. The second option to speed up the computation was to consider a coarser compounded grid than
a daily compounded grid. Therefore, we investigated the convergence of the compounded tree when
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the coarser grid becomes finer. A convergence of the compounded tree was observed. Moreover, the
value converged to the value obtained with a MC simulation. Despite the observed convergence, the
difference between the value with a daily compounded grid and a coarser grid was still essential. The
last method considered for the BlackKarasinski model was a MC simulation. For lognormal models,
like the BlackKarasinski model, the expectation of the moneymarket account is equal to infinity. This
is what we call an explosion of the moneymarket account. This had in particular an impact on the MC
simulation. On single realisations of the moneymarket account such an explosion was observed. The
number of MC paths that is equal to infinity, and thus explode, depends on both the interest rate curve
and the volatility. For the MC paths where an explosion of the moneymarket account was observed,
an approximation of the caplet/floorlet value was used. Further, the computation time for caplets on
compounded rates with the MC simulation was in the order of minutes while the computation time for
both the kernel approach as the trinomial tree method were significantly higher.

Based on the high computation time for the compounded tree, not the same numerical test has been
performed for the BlackKarasinski model as for the HullWhite model. However, with the convergence
test of the compounded tree, we gained confidence in the implementation and accuracy of the MC
simulation. As a result, the MC simulation was further used in the comparative study.

The second main research objective was to perform a model comparison between the HullWhite
and BlackKarasinski models to infer the model risk. Prices of vanilla options are in general quoted on a
grid of maturities and strikes. Therefore, option prices for other maturities and strikes have to be inferred
from the quoted instruments. It is market practice to use a model for this. For example, SABR is used
to parametrise the swaption volatility smile and Black/Bachelier is used to strip LIBOR caplet/floorlet
volatilities. For the caps/floors linked to the new RFR, either the HullWhite model or BlackKarasinski
model can be used. In the current low/negative rate environment, the HullWhite model might be a bit
more realistic. Using a model to interpolate the quoted volatilities can lead to potential model risk. To
this end, a comparative study has been performed to investigate the model risk arising from applica
tions of the HullWhite and BlackKarasinski models. For this model comparison, caplets/floorlets on
compounded rates had to be priced. For the HullWhite model the analytic formula obtained with the
pricing kernel approach has been used, based on the discussion in Chapter 3. Furthermore, for the
BlackKarasinski model the numerical MC has been used, based on the discussion in Chapter 4.

In order to perform a model comparison, both models have to be calibrated to market data. Since
at the moment there exists no liquid market for caps/floors on the new RFR, a proxy market was used.
First, a quasicalibration was used to calibrate the BlackKarasinski model to the proxy market. With
the calibrated BlackKarasinski model, cap prices on compounded rates were calculated on a grid
of maturities. Then, the HullWhite model was calibrated to these cap prices obtained by the Black
Karasinski model. For each considered strike, a separate calibration was performed which resulted in
an individual model for each strike. The stripping method was used for the calibration, where we sought
for an exact match with themarket. For some of the strikes, there were challenges to calibrate the Black
Karasinski model to the proxy market. The BlackKarasinski model assumes a positive underlying
shortrate. For a positive underlying there is a model independent upper bound. For one strike we
observed that the market price was higher than the upper bound. For another strike, we observed
a volatility squeeze. A global fitting instead of a stripping method can be used to avoid a volatility
squeeze. However, this leads to a complex multidimensional optimisation problem instead of a series
of onedimensional optimisation problems. To obtain a balance in computation time and accuracy, we
used a heuristic approach to calibrate the BlackKarasinski model in case of a volatility squeeze. This
heuristic approach was valid since we made use of proxy market data. Moreover, we compromised on
the fit for some short maturities, in order to improve the fit for longer maturities. This was done with the
purpose of reducing the overall calibration error.

After the calibration, both the HullWhite and BlackKarasinski models were calibrated on a grid
of maturities for the considered strikes. For the comparative study, the individual caplets with a tenor
of 1𝑌 were calculated with the calibrated models. Then, to make a uniform comparison, the caplet
prices were inverted to Bachelier implied volatilities. Since these caplets are not on the calibrated
grid, we expected a difference in the Bachelier implied volatilities obtained from the HullWhite and
BlackKarasinski models. With this comparative study, we observed differences of Bachelier implied
volatilities in a range of 4 to 4 bps for maturities greater than 1𝑌. This was of one order less than the
value of the Bachelier implied volatilities. The Bachelier implied volatilities can give an insight of the
model risk for caplets on compounded rates.
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6.2. Future research
This section gives recommendations for further research.

To begin with, this thesis considers the BlackKarasinski model which can only model positive short
rates. In the current negative/low rate environment, this is a drawback of the model. Therefore, for
future research, a shifted BlackKarasinski model can be considered. A shifted BlackKarasinski model
would be able to model these negative/low rates. Moreover, a shifted BlackKarasinski model might
solve the challenges observed by the model calibration, i.e., the volatility squeeze due to the high
volatility for the first interval of piecewise constant volatility and the market price which was higher
than the upper bound of the model. The proxy market for the calibration was taken from a low rate
environment. With a shifted BlackKarasinski model, we could shift to this low rate environment and
obtain a better fit. For example, smaller volatility would be needed to fit to the first interval of the
piecewise constant volatility, which could avoid the volatility squeeze for the other intervals. Moreover,
the upper bound of the BlackKarasinski model could also be shifted with a shifted BlackKarasinski
model.

Furthermore, wewould recommend to investigate the use of the COSmethod to price caplets/floorlets
on compounded rates. The COS method is a pricing approach based on Fourier cosine series. Gen
erally, it can be used to approximate the probability density function. Then using the FeynmanKac
theorem, the price of derivatives can be obtained. Note, that the COS method can be used when
the characteristic function is available. Since the BlackKarasinski model is a lognormally distributed
model, the characteristic function is not known in closed form. Therefore, the COS method cannot
be applied to a lognormal characteristic function. However, to recover the density function for a log
normal model, the COS method can be applied to a transformed form of a normal model, where the
characteristic function is known. Notice that a twodimensional COS method is needed in case of
caplets/floorlets on compounded rates.

Lastly, variance reduction techniques can be applied to theMC simulation under the BlackKarasinski
model. This potentially has to improve the computation time as less MC paths could be used while
keeping the same accuracy. Examples of variance reduction techniques are control variate, antithetic
variate, stratified sampling and importance sampling. For more information about the variance reduc
tion techniques, we refer to Glasserman, 2004.





A
Derivation for OIS swaps

This appendix gives the derivation of the forward rate corresponding to an OIS swap. Moreover, the
value of an OIS leg is derived.

Consider a notional of 𝑁 and payment dates 𝒯𝑚\𝑇0, the floating coupon payments of an OIS leg are
given by:

𝐶𝑂𝐼𝑆𝑖 = 𝜏𝑖𝑁𝑅𝑂𝐼𝑆𝑖 ,
with

𝑅𝑂𝐼𝑆𝑖 = 1
𝜏𝑖
(
𝑛𝑖
∏
𝑗=1
(1 + 𝜏𝑖𝑗𝑒𝑖𝑗) − 1) ,

where the product includes all overnight fixings of the 𝑖th coupon, 𝑒𝑖𝑗 is the 𝑗th overnight rate fixing
of the 𝑖th coupon and 𝜏𝑖𝑗 is the year fraction between the (𝑗 − 1)th and 𝑗th fixing of the 𝑖th coupon.
Notice, 𝑅𝑂𝐼𝑆𝑖 is a stochastic variable and known at the end of the coupon. In order to obtain the forward
rate at time 𝑡, the expectation of this rate has to be considered. By definition:

𝑒𝑖𝑗 =
1
𝜏𝑖𝑗
( 1
𝑃(𝑇𝑖𝑗𝑏𝑒𝑔𝑖𝑛 , 𝑇

𝑖𝑗
𝑒𝑛𝑑)

− 1) ,

where 𝑇𝑖𝑗𝑏𝑒𝑔𝑖𝑛 and 𝑇
𝑖𝑗
𝑒𝑛𝑑 are the start and end date of the 𝑗th fixing of the coupon 𝑖, respectively. To make

the notation a bit easier, we get rid of the index 𝑖 corresponding to the coupon. The start and end date
of the coupon are denoted by respectively 𝑇𝑏𝑒𝑔𝑖𝑛 and 𝑇𝑒𝑛𝑑 and the start and end date of the 𝑗th fixing
of the coupon are denoted by respectively 𝑇𝑗𝑏𝑒𝑔𝑖𝑛 and 𝑇𝑗𝑒𝑛𝑑. The forward rate, under the 𝑇𝑒𝑛𝑑forward
measure, is then calculated by:

𝐹𝑂𝐼𝑆(𝑡, 𝑇𝑏𝑒𝑔𝑖𝑛 , 𝑇𝑒𝑛𝑑) = 𝔼ℚ𝑇𝑒𝑛𝑑 [1𝜏 (
𝑛

∏
𝑗=1
(1 + 𝜏𝑗𝑒𝑗) − 1) |ℱ𝑡]
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∗= 𝔼ℚ𝑇𝑒𝑛𝑑 [1𝜏 (
1
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Due to no arbitrage, for 𝑆 < 𝑇 < 𝑉 it holds that:

𝑃(𝑆, 𝑇)𝑃(𝑇, 𝑉) = 𝑃(𝑆, 𝑉).

Notice, at the ∗=step we make use of this no arbitrage rule.
In order to calculate the expected value of a floating coupon, we also use the 𝑇𝑒𝑛𝑑forward measure.

We assume here that the pay date is the same as the end date. We consider two types of OIS coupons,
coupons that start in the future, i.e., 𝑡 < 𝑇𝑖, and running coupons. For a coupon that starts in the future
the following holds:

𝔼ℚ𝑇𝑒𝑛𝑑 [𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁𝜏𝑅𝑂𝐼𝑆|ℱ𝑡] = 𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁𝜏𝔼ℚ
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= 𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁𝜏𝔼ℚ
𝑇𝑒𝑛𝑑 [𝐹𝑂𝐼𝑆(𝑇𝑏𝑒𝑔𝑖𝑛 , 𝑇𝑏𝑒𝑔𝑖𝑛 , 𝑇𝑒𝑛𝑑)|ℱ𝑡]

= 𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁𝜏𝐹𝑂𝐼𝑆(𝑡, 𝑇𝑏𝑒𝑔𝑖𝑛 , 𝑇𝑒𝑛𝑑)

= 𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁𝜏 [
1
𝜏 (

𝑛

∏
𝑗=1
(1 + 𝜏𝑗𝐹𝑂𝐼𝑆(𝑡, 𝑇𝑗𝑏𝑒𝑔𝑖𝑛 , 𝑇

𝑗
𝑒𝑛𝑑)) − 1)] .

Notice, this last step above is not required. It is more consistent to the payoff of the OIS coupon
to multiply over all fixing dates. However, computationally this is much more expensive than directly
calculating the forward over the whole period.

For a running coupon, the expectation of the OIS leg is given by:

𝔼ℚ𝑇𝑒𝑛𝑑 [𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁𝜏𝑅𝑂𝐼𝑆|ℱ𝑡] = 𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁𝜏𝔼ℚ
𝑇𝑒𝑛𝑑 [1𝜏 (

𝑚

∏
𝑗=1
(1 + 𝜏𝑗𝑒𝑗)⋅

𝑛

∏
𝑗=𝑚+1

(1 + 𝜏𝑗𝐹𝑂𝐼𝑆(𝑇𝑗𝑏𝑒𝑔𝑖𝑛 , 𝑇
𝑗
𝑏𝑒𝑔𝑖𝑛 , 𝑇

𝑗
𝑒𝑛𝑑)) − 1) |ℱ𝑡]

= 𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁𝔼ℚ
𝑇𝑒𝑛𝑑 [

𝑚

∏
𝑗=1
(1 + 𝜏𝑗𝑒𝑗)

1
𝑃(𝑇𝑚+1𝑏𝑒𝑔𝑖𝑛 , 𝑇𝑒𝑛𝑑)

− 1|ℱ𝑡]

= 𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁 (
𝑚

∏
𝑗=1
(1 + 𝜏𝑗𝑒𝑗)�̄�𝐹𝑂𝐼𝑆(𝑡, 𝑇𝑚+1𝑏𝑒𝑔𝑖𝑛 , 𝑇𝑒𝑛𝑑))

= 𝑃(𝑡, 𝑇𝑒𝑛𝑑)𝑁 (
𝑚

∏
𝑗=1
(1 + 𝜏𝑗𝑒𝑗)

𝑛

∏
𝑗=𝑚+1

(1 + 𝜏𝑗𝐹𝐼𝑂𝑆(𝑡, 𝑇𝑗𝑏𝑒𝑔𝑖𝑛 , 𝑇
𝑗
𝑒𝑛𝑑))

where 𝑚 corresponds to the day of the last available historical overnight fixing rate of the running
coupon and �̄� is the year fraction from 𝑇𝑚+1𝑏𝑒𝑔𝑖𝑛 to 𝑇𝑒𝑛𝑑. Again notice, the last step above is not required.
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This appendix provides an idea to obtain the HullWhite pricing kernel from Section 3.3.1. For detail
and the full proof, we refer to Turfus, 2019. The shortrate in the HullWhite model can be written as:

𝑟(𝑡) = 𝑥(𝑡) + �̄�(𝑡),

where 𝑥(𝑡) is the zero mean process defined in (3.9) and �̄�(𝑡) is a deterministic function. Further, define
the following for later use:

𝜙(𝑡, 𝑇) = 𝑒−𝑎(𝑇−𝑡),

Σ(𝑡, 𝑇) = ∫
𝑇

𝑡
𝜙2(𝑢, 𝑇)𝜎2(𝑢)𝑑𝑢,

𝐼(𝑡, 𝑇) = ∫
𝑇

𝑡
𝜙(𝑢, 𝑇)Σ(𝑡, 𝑢)𝑑𝑢,

𝐵(𝑡, 𝑇) = ∫
𝑇

𝑡
𝜙(𝑡, 𝑢)𝑑𝑢.

Consider the pricing PDE:

𝜕ℎ
𝜕𝑡 − 𝑎𝑥

𝜕ℎ
𝜕𝑥 +

1
2𝜎

2(𝑡)𝜕
2ℎ
𝜕𝑥2 − (𝑥 + 𝑔(𝑡))ℎ = 0, (B.1)

for 𝑡 ≥ 0 with the final condition ℎ(𝑇, 𝑥) = 𝑉(𝑇, 𝑥). Then according to the FeynmanKac Theorem 2.2,
the solution of the pricing PDE gives the value function of the corresponding derivative. This appendix
provides the idea to obtain the Green function which solves this pricing PDE.

First, the following change of variables is applied to the pricing PDE:

𝑦 ≡ 𝑥𝜙(𝑡, 𝑇),
𝑠 ≡ Σ(𝑡, 𝑇),

𝑝(𝑦, 𝑠) ≡ ℎ(𝑥, 𝑡),

which gives:

𝜕𝑝
𝜕𝑠 −

1
2
𝜕2𝑝
𝜕𝑦2 + (𝐴(𝑠)𝑦 + 𝑅(𝑠)) 𝑝 = 0,

for 0 < 𝑠 < 𝑠𝑀 where 𝑠𝑀 = Σ(0, 𝑇) and

𝐴(𝑠) ≡ 1
𝜎2(𝑡)𝜙3(𝑡, 𝑇) ,

𝑅(𝑠) ≡ 𝑔(𝑡)
𝜎2(𝑡)𝜙2(𝑡, 𝑇) .
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In symbolic operator notation, this can be written as:

( 𝜕𝜕𝑠 − ℒ0 − 𝒱(𝑠)) 𝑝(𝑦, 𝑠) = 0,

where

ℒ0 = 1
2
𝜕2
𝜕𝑦2 ,

𝒱(𝑠) = − (𝐴(𝑠)𝑦 + 𝑅(𝑠)) ⋅ .

The Green function 𝐺∗(𝑦, 𝑠, 𝜂) for the above pricing PDE satisfies the following initial condition:

𝐺∗(𝑦, 0; 𝜂) = 𝛿(𝜂 − 𝑦),

where 𝛿(⋅) is the Dirac delta function.
To obtain the Green function of (B.1), Turfus, 2019 uses Definition B.1 and Theorem B.1. We do

not go into details of this definition and theorem. However, the idea is to treat 𝒱(𝑠) as a perturbation
on ℒ0. Then, the Green function of (B.1) can be expressed as a product of the Green function of ℒ0
and a restterm corresponding to the perturbation 𝒱(𝑠). The green function of:

𝜕
𝜕𝑠 = ℒ0,

is well known, see for example Craig, 2018, and given by:

𝐺∗0(𝑦, 𝑠; 𝜂) = 𝜑 (
𝜂 − 𝑦
√𝑠

) .

Further, to derive the Green function corresponding to (B.1), the following oneparameter family of
operators is considered:

𝑈(𝑠) = ℰ𝑠0(ℒ0 + 𝒱(⋅)),

which satisfy the following initial value problem:

𝜕𝑈
𝜕𝑠 = (ℒ0 + 𝒱(𝑠))𝑈

𝑈(0) = 𝐼.

Moreover, the commutator function is used:

𝑎𝑑ℒ0(𝒱(𝑢)) = ℒ0𝒱(𝑢) − 𝒱(𝑢)ℒ0.

To derive this commutator, consider an arbitrary function 𝑏(𝑦) which is twice differentiable with respect
to 𝑦. Then, we want to calculate:

𝑎𝑑ℒ0(𝒱(𝑢))𝑏(𝑦) = ℒ0𝒱(𝑢)𝑏(𝑦) − 𝒱(𝑢)ℒ0𝑏(𝑦).

For clarity, we break down the righthand side into two parts.

ℒ0𝒱(𝑢)𝑏(𝑦) = 1
2
𝜕2
𝜕𝑦2 [− (𝐴(𝑢)𝑦 + 𝑅(𝑢))] 𝑏(𝑦)

= − 𝜕
𝜕𝑦 [𝐴(𝑢)𝑏(𝑦) + (𝐴(𝑢)𝑦 + 𝑅(𝑢))

𝜕
𝜕𝑦𝑏(𝑦)]

= −12 [𝐴(𝑢)
𝜕
𝜕𝑦𝑏(𝑦) + 𝐴(𝑢)

𝜕
𝜕𝑦𝑏(𝑦) + (𝐴(𝑢)𝑦 + 𝑅(𝑢))

𝜕2
𝜕𝑦2 𝑏(𝑦)] .

𝒱(𝑢)ℒ0𝑏(𝑦) = − (𝐴(𝑢)𝑦 + 𝑅(𝑢)) ⋅ 12
𝜕2
𝜕𝑦2 𝑏(𝑦).
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Combining this yields:

𝑎𝑑ℒ0(𝒱(𝑢))𝑏(𝑦) = −12 [𝐴(𝑢)
𝜕
𝜕𝑦𝑏(𝑦) + 𝐴(𝑢)

𝜕
𝜕𝑦𝑏(𝑦) + (𝐴(𝑢)𝑦 + 𝑅(𝑢))

𝜕2
𝜕𝑦2 𝑏(𝑦)] +

1
2 (𝐴(𝑢)𝑦 + 𝑅(𝑢))

𝜕2
𝜕𝑦2 𝑏(𝑦)

= −𝐴(𝑢) 𝜕𝜕𝑦𝑏(𝑦).

This implies:

𝑎𝑑ℒ0(𝒱(𝑢)) = −𝐴(𝑢)
𝜕
𝜕𝑦 .

To end, the Green function corresponding to (B.1), derived with this approach, is given by:

𝐺(𝑥, 𝑡; 𝜉, 𝑇) = �̂�(𝑡, 𝑇, 𝑥)𝜑(𝜉 + 𝐼(𝑡, 𝑇) − 𝑥𝜙(𝑡, 𝑇); Σ(𝑡, 𝑇)),

where �̂�(𝑡, 𝑇, 𝑥) is the zerocoupon bond price under the Hullwhite model and

𝜑(𝑥; Σ) = 1
√2𝜋Σ

exp(− 1
2Σ𝑥

2) .

For details of the derivation, we refer to Turfus, 2019.

Definition B.1. The quantity defined for a timedependent linear operator ℒ(𝑡) by:

ℰ𝑏𝑎(ℒ(⋅)) = 𝐼 +
∞

∑
𝑛=1

∫
𝑎≤𝑠1≤…≤𝑠𝑛≤𝑏

ℒ(𝑠𝑛)…ℒ(𝑠1)𝑑𝑠1…𝑑𝑠𝑛 ,

generalises the exponential of the integral of a function to the case of a timedependent linear operator.

Note, in the case where the operator ℒ(𝑠) is replaced by the realvalue function 𝑘 ∶ [𝑎, 𝑏] → ℝ, the
following holds:

ℰ𝑏𝑎(𝑘(⋅)) = 𝑒∫
𝑏
𝑎 𝑘(𝑢)𝑑𝑢 .

More generally, the same holds when:

∫
𝑡

0
∫
𝑡2

0
(ℒ(𝑡2)ℒ(𝑡1) − ℒ(𝑡1)ℒ(𝑡2)) 𝑑𝑡1𝑑𝑡2 = 0.

Theorem B.1. Suppose that the initial boundary value problem:

( 𝜕𝜕𝑠 − ℒ0(𝑠) − 𝒱(𝑠)) 𝑝(y, 𝑠) = 0,

𝑝(y, 0) = ℎ(y),
𝑝(y, 𝑠) → 0 as ||𝕪|| → ∞, 𝑠 > 0,

is known to have a unique solution 𝑝 ∶ ℝ𝑛 × [0, 𝑠𝑀] → ℝ for linear operators ℒ0(𝑠), 𝒱(𝑠) depending
continuously on the parameters 𝑠 and some 𝐿1 function ℎ ∶ ℝ𝑛 → ℝ. Denote by 𝑋 the vector space
generated by operation on 𝑝 of multinomials of the form:

ℳ(𝑠1, … 𝑠𝑛) =
𝑛

∏
𝑖=1

𝑀𝑖(𝑠𝑖),

with 𝑠𝑖 ∈ [0, 𝑠𝑀], 𝑀𝑖 ≡ ℒ0 or 𝒱 and 𝑛 ≥ 0, and by 𝑋𝑀 the corresponding space resulting when the
domain of ℎ(⋅) is restricted to [−𝑀,𝑀]. Suppose further that, for any 𝑀 > 0, ℒ0(𝑠) and 𝒱(𝑠) are
uniformly bounded over 𝑋𝑀 for 𝑠 ∈ [0, 𝑠𝑀] under some suitable norm. Then:
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1. There exists a linear operator 𝑈(𝑠) acting on 𝑋 which satisfies the initial value problem:

𝜕𝑈(𝑠)
𝜕𝑠 = (ℒ0(𝑠) + 𝒱(𝑠))𝑈(𝑠),
𝑈(0) = 𝐼.

2. This operator can be expressed as:

𝑈(𝑠) = 𝑄(𝑠)𝑈0(𝑠),

where

𝑈0(𝑠) = ℰ𝑠0(ℒ0(⋅)),
𝑄(𝑠) = ℰ𝑠0(𝒲(⋅, 𝑠)),

𝒲(𝑢, 𝑠) = ℰ𝑠𝑢 (𝑎𝑑ℒ0(⋅)) (𝒱(𝑢)).

Proof. For a proof of this theorem, we refer to Turfus, 2019.



C
Derivation of caplet and floorlet prices

with the HullWhite pricing kernel

In this appendix we derive the pricing formulae for both a LIBOR caplet and a caplet on compounded
rates using the HullWhite pricing kernel. Before we start, we write the zerocoupon bond formula using
the following notation:

𝜙(𝑡, 𝑇) = exp(−𝑎(𝑇 − 𝑡)),

Σ(𝑡, 𝑇) = ∫
𝑇

𝑡
𝜙2(𝑢, 𝑇)𝜎2(𝑢)𝑑𝑢,

𝐼(𝑡, 𝑇) = ∫
𝑇

𝑡
𝜙(𝑢, 𝑇)Σ(𝑡, 𝑢),

𝜈(𝑥, 𝑡, 𝑇) = 𝐵(𝑡, 𝑇)(𝑥 + 𝐼(0, 𝑡)) + 12𝐵
2(𝑡, 𝑇)Σ(0, 𝑡),

which gives us:

�̂�(𝑡, 𝑇, 𝑥(𝑡)) = 𝑃(0, 𝑇)
𝑃(0, 𝑡) exp(−𝜈(𝑥(𝑡), 𝑡, 𝑇)).

Moreover, with a calibration to the initial term structure we obtain �̂�(𝑡) = 𝐼(0, 𝑡). For details, we refer to
Turfus, 2019. This notation makes it easier later in the derivation. Note that 𝑃(𝑡, 𝑇) ≡ �̂�(𝑡, 𝑇, 𝑥(𝑡)).

C.1. Caplet price with pricing kernel
The payoff of a LIBOR caplet at time 𝑇𝑖+1 depending on the LIBOR between [𝑇𝑖 , 𝑇𝑖+1] with notional 𝑁
and strike 𝐾 is given by:

𝑉𝐶(𝑇𝑖+1, 𝑥(𝑇𝑖)) = 𝜏𝑁max(𝐿(𝑇𝑖 , 𝑇𝑖+1) − 𝐾, 0),

where 𝜏 is the year fraction between 𝑇𝑖 and 𝑇𝑖+1.
With the pricing kernel from Equation (3.11) the present value of a LIBOR caplet is derived. In order

to arrive to that formula, first the value of the caplet at time 𝑇𝑖 has to be determined. Equation (C.1)
gives this value where 𝜅 is equal to (1 + 𝜏𝐾):

𝑉𝐶(𝑇𝑖 , 𝑥(𝑇𝑖)) = �̂�(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖))𝑁max( 1
�̂�(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖)

− 𝜅, 0) . (C.1)

In order to derive the present value of a LIBOR caplet, the price at time 𝑇𝑖 of the caplet is considered
as the payoff of the caplet at time 𝑇𝑖. Then, the pricing kernel is applied to the payoff at time 𝑇𝑖:
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𝑉𝐶(𝑇0, 𝑥(𝑇0)) = ∫
ℝ
𝑁�̂�(𝑇𝑖 , 𝑇𝑖+1, 𝜉)max( 1

�̂�(𝑇𝑖 , 𝑇𝑖+1, 𝜉)
− 𝜅, 0) �̂�(𝑇0, 𝑇𝑖 , 𝑥(𝑇0)) ⋅

1
√2𝜋Σ(𝑇0, 𝑇𝑖)

exp( 1
2Σ(𝑇0, 𝑇𝑖)

[𝜉 + 𝐼(𝑇0, 𝑇𝑖) − 𝑥(𝑇0)𝜙(𝑇0, 𝑇𝑖)]
2)𝑑𝜉.

Note that 𝑥(𝑇0) = 0 and we set 𝑇0 = 0. In order to get rid of the max function we need the following:
1

�̂�(𝑇𝑖 , 𝑇𝑖+1, 𝜉)
− 𝜅 ≥ 0,

𝑃(0, 𝑇𝑖)
𝑃(0, 𝑇𝑖+1)

exp(−𝐵(𝑇𝑖 , 𝑇𝑖+1)(𝜉 + 𝐼(0, 𝑇𝑖)) −
1
2𝐵

2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖)) − 𝜅 ≥ 0,

𝜉 ≤ −
log (𝑃(0,𝑇𝑖+1)𝑃(0,𝑇𝑖)

𝜅) + 𝐵(𝑇𝑖 , 𝑇𝑖+1)𝐼(0, 𝑇𝑖) +
1
2𝐵

2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖)
𝐵(𝑇𝑖 , 𝑇𝑖+1)

.

Substitute 𝑚 = 1
√Σ(0,𝑇𝑖)

(𝜉 + 𝐼(0, 𝑇𝑖)), this gives:

𝑚 ≤ −
log ( 𝑃(0,𝑇𝑖)

𝑃(0,𝑇𝑖+1)
)𝜅) + 1

2𝐵
2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖)

𝐵(𝑇𝑖 , 𝑇𝑖+1)√Σ(0, 𝑇𝑖)
=∶ 𝑑1.

With this substitution the following formula for the LIBOR caplet price is obtained:

𝑉𝐶(0, 0) = ∫
∞

𝑑1
𝑁( 1

�̂�(𝑇𝑖 , 𝑇𝑖+1, Σ(0, 𝑇𝑖)𝑚 − 𝐼(0, 𝑇𝑖))
− 𝜅) �̂�(𝑇𝑖 , 𝑇𝑖+1, Σ(0, 𝑇𝑖)𝑚 − 𝐼(0, 𝑇𝑖)) ⋅

𝑃(0, 𝑇𝑖)
1
√2𝜋

exp(12𝑚
2)𝑑𝑚

= 𝑁𝑃(0, 𝑇𝑖)Φ(−𝑑1)

−∫
∞

𝑑1
𝑁𝜅�̂�(𝑇𝑖 , 𝑇𝑖+1, Σ(0, 𝑇𝑖)𝑚 − 𝐼(0, 𝑇𝑖))𝑃(0, 𝑇𝑖))

1
√2𝜋

exp(12𝑚
2)𝑑𝑚

= 𝑁𝑃(0, 𝑇𝑖)Φ(−𝑑1) − ∫
∞

𝑑1
𝑁𝜅𝑃(0, 𝑇𝑖+1)𝑃(0, 𝑇𝑖)

𝑃(0, 𝑇𝑖) ⋅

1
√2𝜋

exp(−𝐵(𝑇𝑖 , 𝑇𝑖+1)𝑚 −
1
2𝐵

2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖)) exp(
1
2𝑚

2)𝑑𝑚.

Substituting ℎ = 𝑚 − 𝐵(𝑇𝑖 , 𝑇𝑖+1)√Σ(0, 𝑇𝑖) gives:

𝑉𝐶(0, 0) = 𝑁𝑃(0, 𝑇𝑖)Φ(−𝑑1)

−∫
∞

𝑑2
𝑁𝜅𝑃(0, 𝑇𝑖+1)

1
√2𝜋

exp(12ℎ
2)𝑑ℎ

= 𝑁𝑃(𝑇0, 𝑇𝑖)Φ(−𝑑1) − 𝑁𝜅𝑃(𝑇0, 𝑇𝑖+1)Φ(−𝑑2),

where 𝑑2 = 𝑑1 − 𝐵(𝑇𝑖 , 𝑇𝑖+1)√Σ(0, 𝑇𝑖).
With this derivation we obtain the present value of a LIBOR caplet given by:

𝑉𝐶(0, 0) = 𝑁(𝑃(0, 𝑇𝑖)Φ(−𝑑1) − (1 + 𝜏𝐾)𝑃(0, 𝑇𝑖+1)Φ(−𝑑2)),

where

𝑑1 =
log (𝑃(0,𝑇𝑖+1)𝑃(0,𝑇𝑖)

(1 + 𝜏𝐾)) − 1
2𝐵

2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖)

𝐵(𝑇𝑖 , 𝑇𝑖+1)√Σ(0, 𝑇𝑖)
,

𝑑2 = 𝑑1 + 𝐵(𝑇𝑖 , 𝑇𝑖+1)√Σ(0, 𝑇𝑖).
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For the present value of a floorlet, the exact same steps as above can be followed, but then one
should start with a payoff of:

𝑉𝑃(𝑇𝑖+1, 𝑥(𝑇𝑖)) = 𝜏𝑁max(𝐾 − 𝐿(𝑇𝑖 , 𝑇𝑖+1), 0).

C.2. Caplet price with compounded pricing kernel
The payoff of a caplet at time 𝑇𝑖+1 on compounded rates over the period [𝑇𝑖 , 𝑇𝑖+1] with notional 𝑁 and
strike 𝐾 is given by:

𝑉𝐶𝐶𝑅(𝑇𝑖+1, 𝑥(⋅)) = 𝑁𝜏max(1𝜏 (𝑀(𝑇𝑖 , 𝑇𝑖+1) − 1) − 𝐾, 0) ,

where 𝜏 is the year fraction between 𝑇𝑖 and 𝑇𝑖+1 and 𝑀(𝑇𝑖 , 𝑇𝑖+1) can be modelled by:

𝑀(𝑇𝑖 , 𝑇𝑖+1) =
𝑃(0, 𝑇𝑖)
𝑃(0, 𝑇𝑖+1)

exp (𝑧(𝑇𝑖+1) − 𝑧(𝑇𝑖)) − 1,

where

𝑧(𝑡) = ∫
𝑡

0
(�̂�(𝑡) + 𝑥(𝑠)) 𝑑𝑠.

Note, the caplet on compounded rates now also depends on 𝑧(⋅). Hence, we use the notation �̃�𝐶𝐶𝑅(𝑡, 𝑥(⋅), 𝑧(⋅))
for the 𝑡value of a caplet on compounded rates.

With the compounded pricing kernel from Equation (3.14) the present value of a caplet on com
pounded rates can be derived. In order to derive that formula, first the pricing kernel has to be applied
to get the value of the caplet at time 𝑇𝑖. In the derivation below, 𝜅 is equal to (1 + 𝜏𝐾).

�̃�𝐶𝐶𝑅(𝑇𝑖 , 𝑥(𝑇𝑖), 𝑧(𝑇𝑖)) = ∫∫
ℝ2
𝑁max( 𝑃(0, 𝑇𝑖)

𝑃(0, 𝑇𝑖+1)
exp (𝜁 − 𝑧(𝑇𝑖)) − 𝜅, 0) �̂�(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖)) ⋅

1
2𝜋√Σ(𝑇𝑖 , 𝑇𝑖+1)√2𝐾(𝑇𝑖 , 𝑇𝑖+1)

exp(− 1
2 (1 − 𝐼2(𝑇𝑖 ,𝑇𝑖+1)

2𝐾(𝑇𝑖 ,𝑇𝑖+1)Σ(𝑇𝑖 ,𝑇𝑖+1)
)

[ 1
Σ(𝑇𝑖 , 𝑇𝑖+1)

(𝜉 + 𝐼(𝑇𝑖 , 𝑇𝑖+1) − 𝑥𝜙(𝑇𝑖 , 𝑇𝑖+1))2

+ 1
2𝐾(𝑇𝑖 , 𝑇𝑖+1)

(𝜁 + 𝐾(𝑇𝑖 , 𝑇𝑖+1) − 𝜈(𝑥(𝑇𝑖), 𝑇𝑖 , 𝑇𝑖+1) − 𝑧(𝑇𝑖))2

− 2𝐼(𝑇𝑖 , 𝑇𝑖+1)
2𝐾(𝑇𝑖 , 𝑇𝑖+1)Σ(𝑇𝑖 , 𝑇𝑖+1)

(𝜉 + 𝐼(𝑇𝑖 , 𝑇𝑖+1) − 𝑥𝜙(𝑇𝑖 , 𝑇𝑖+1))⋅

(𝜁 + 𝐾(𝑇𝑖 , 𝑇𝑖+1) − 𝜈(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖)) − 𝑧(𝑇𝑖)) ])𝑑𝜉𝑑𝜁.

In order to get rid of the max function, the following is needed:

𝑃(0, 𝑇𝑖)
𝑃(0, 𝑇𝑖+1)

exp (𝜁 − 𝑧(𝑇𝑖)) − 𝜅 ≥ 0,

𝜁 ≥ log(𝜅𝑃(0, 𝑇𝑖+1)𝑃(0, 𝑇𝑖)
) + 𝑧(𝑇𝑖).

Moreover, the following substitutions are used:

𝜁 = 𝑦√2𝐾(𝑇𝑖 , 𝑇𝑖+1) − 𝐾(𝑇𝑖 , 𝑇𝑖+1) + 𝜈(𝑥(𝑇𝑖), 𝑇𝑖 , 𝑇𝑖+1) + 𝑧(𝑇𝑖),

𝜉 = √Σ(𝑇𝑖 , 𝑇𝑖+1) (
𝐼(𝑇𝑖 , 𝑇𝑖+1)

√2𝐾(𝑇𝑖 , 𝑇𝑖+1)Σ(𝑇𝑖 , 𝑇𝑖+1)
𝑦 + √1 − 𝐼2(𝑇𝑖 , 𝑇𝑖+1)

2𝐾(𝑇𝑖 , 𝑇𝑖+1)Σ(𝑇𝑖 , 𝑇𝑖+1)
ℎ) − 𝐼(𝑇𝑖 , 𝑇𝑖+1) + 𝑥𝜙(𝑇𝑖 , 𝑇𝑖+1).
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This gives:

𝑦 ≥
log (𝜅 𝑃(0,𝑇𝑖+1)𝑃(0,𝑇𝑖)

) + 𝐾(𝑇𝑖 , 𝑇𝑖+1) − 𝜈(𝑥(𝑇𝑖), 𝑇𝑖 , 𝑇𝑖+1)

√2𝐾(𝑇𝑖 , 𝑇𝑖+1)
=∶ �̂�1(𝑥(𝑇𝑖)).

With these steps we obtain:

�̃�𝐶𝐶𝑅(𝑇𝑖 , 𝑥(𝑇𝑖), 𝑧(𝑇𝑖)) = ∫
∞

�̂�1(𝑥(𝑇𝑖))
∫
ℝ
𝑁( 𝑃(0, 𝑇𝑖)
𝑃(0, 𝑇𝑖+1)

exp(𝑦√2𝐾(𝑇𝑖 , 𝑇𝑖+1) − 𝐾(𝑇𝑖 , 𝑇𝑖+1)+

𝜈(𝑥(𝑇𝑖), 𝑇𝑖 , 𝑇𝑖+1)) − 𝜅)𝑃(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖))
1
2𝜋 exp(−

1
2(ℎ

2 + 𝑦2)) 𝑑ℎ𝑑𝑦

= ∫
∞

�̂�1(𝑥(𝑇𝑖))
∫
ℝ
𝑁 1
2𝜋 exp(𝑦√2𝐾(𝑇𝑖 , 𝑇𝑖+1) − 𝐾(𝑇𝑖 , 𝑇𝑖+1) + 𝜈(𝑥(𝑇𝑖), 𝑇𝑖 , 𝑇𝑖+1)

−12(ℎ
2 + 𝑦2))𝑑ℎ𝑑𝑦 − 𝑁𝑃(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖))𝜅Φ(−�̂�1(𝑥(𝑇𝑖))).

Substituting:

𝑛 = 𝑦 − √2𝐾(𝑇𝑖 , 𝑇𝑖+1)

into this gives:

�̃�𝐶𝐶𝑅(𝑇𝑖 , 𝑥(𝑇𝑖), 𝑧(𝑇𝑖)) = ∫
∞

�̂�2(𝑥(𝑇𝑖))
∫
ℝ
𝑁 1
2𝜋 exp(−

1
2(ℎ

2 + 𝑛2)) 𝑑ℎ𝑑𝑛 − 𝑁�̂�(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖))𝜅Φ(−�̂�1(𝑥(𝑇𝑖)))

= 𝑁(Φ(−𝑑2(𝑥(𝑇𝑖))) − �̂�(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖))𝜅Φ(−�̂�1(𝑥(𝑇𝑖)))),

where
�̂�2(𝑥(𝑇𝑖)) = �̂�1(𝑥(𝑇𝑖)) − √2𝐾(𝑇𝑖 , 𝑇𝑖+1).

With this derivation the value of a caplet at time 𝑇𝑖 is obtained:

�̃�𝐶𝐶𝑅(𝑇𝑖 , 𝑥(𝑇𝑖), 𝑧(𝑇𝑖)) = 𝑁(Φ(−�̂�2(𝑥(𝑇𝑖))) − �̂�(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖))𝜅Φ(−�̂�1(𝑥(𝑇𝑖)))),

�̂�1(𝑥(𝑇𝑖)) =
log (𝜅 𝑃(0,𝑇𝑖+1)𝑃(0,𝑇𝑖)

) + 𝐾(𝑇𝑖 , 𝑇𝑖+1) − 𝜈(𝑥(𝑇𝑖), 𝑇𝑖 , 𝑇𝑖+1)

√2𝐾(𝑇𝑖 , 𝑇𝑖+1)
,

�̂�2(𝑥(𝑇𝑖)) = �̂�1(𝑥(𝑇𝑖)) − √2𝐾(𝑇𝑖 , 𝑇𝑖+1).

In order to derive the present value of a caplet, the price at time 𝑇𝑖 is considered as the payoff at
time 𝑇𝑖. Then the pricing kernel has to be applied again:

�̃�𝐶𝐶𝑅(0, 0, 0) = ∫∫
ℝ2
𝑁 (Φ(−�̂�2(𝜉)) − �̂�(𝑇𝑖 , 𝑇𝑖+1, 𝜉)𝜅Φ(−�̂�1(𝜉))) 𝑃(0, 𝑇𝑖) ⋅

𝑁2 (
𝜉 + 𝐼(0, 𝑇𝑖)
√Σ(0, 𝑇𝑖)

, 𝜁 + 𝐾(0, 𝑇𝑖) − 𝜈(0, 0, 𝑇𝑖) − 𝑧(𝑇0)
√2𝐾(0, 𝑇𝑖)

) 𝑑𝜉𝑑𝜁.

Substituting:

𝜉 = 𝑦√Σ(𝑇𝑖 , 𝑇𝑖+1) − 𝐼(0, 𝑇𝑖),

𝜁 = √2𝐾(0, 𝑇𝑖) (
𝐼(0, 𝑇𝑖)

√2𝐾(0, 𝑇𝑖)Σ(0, 𝑇𝑖)
𝑦 + √1 − 𝐼2(0, 𝑇𝑖)

2𝐾(0, 𝑇𝑖)Σ(0, 𝑇𝑖)
ℎ) − 𝐾(0, 𝑇𝑖) + 𝜈(0, 0, 𝑇𝑖) + 𝑧(𝑇0),
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gives:

�̃�𝐶𝐶𝑅(0, 0, 0) = ∫
ℝ
𝑁(Φ(−�̂�2(𝑦√Σ(𝑇𝑖 , 𝑇𝑖+1) − 𝐼(0, 𝑇𝑖))) −

𝑃(0, 𝑇𝑖+1)
𝑃(0, 𝑇𝑖)

exp(−𝑦𝐵(𝑇𝑖 , 𝑇𝑖+1)√Σ(0, 𝑇𝑖)

−12𝐵
2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖))𝜅Φ(−�̂�1(𝑦√Σ(0, 𝑇𝑖) − 𝐼(0, 𝑇𝑖))))𝑃(0, 𝑇𝑖)

1
√2𝜋

exp(−12𝑦
2)𝑑𝑦

∗= 𝑁𝑃(0, 𝑇𝑖)Φ(−𝑑2) − 𝑁𝑃(0, 𝑇𝑖+1)𝜅
1
√2𝜋

exp(−𝑦𝐵(𝑇𝑖 , 𝑇𝑖+1)√Σ(0, 𝑇𝑖)

−12𝐵
2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) −

1
2𝑦

2)𝑑𝑦.

With the substitution:
𝑛 = (𝑦 + 𝐵(𝑇𝑖 , 𝑇𝑖+1)√Σ(0, 𝑇𝑖)),

we obtain:

�̃�𝐶𝐶𝑅(0, 0, 0)
∗= 𝑁 (𝑃(0, 𝑇𝑖)Φ(−𝑑2) − 𝑃(0, 𝑇𝑖+1)𝜅Φ(−𝑑1)) ,

where

𝑑2 =
log (𝑃(0,𝑇𝑖)𝑃(0,𝑇𝑖)

𝜅) − 1
2 (𝐵

2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) − 𝐾(𝑇𝑖 , 𝑇𝑖+1))

√𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) + 2𝐾(𝑇𝑖 , 𝑇𝑖+1)
,

𝑑1 = 𝑑2 +√𝐵2(𝑇𝑖 , 𝑇𝑖+1)√Σ(0, 𝑇𝑖) + 2𝐾(𝑇𝑖 , 𝑇1+2).

Note that in * we made use of the property:

∫
ℝ
Φ(𝑎 + 𝑏𝑥)𝜑(𝑥)𝑑𝑥 = Φ( 𝑎

√1 + 𝑏2
) ,

whereΦ(⋅) is a normal cumulative distribution function and 𝜑(⋅) is a normal probability density function.
In this appendix the present value of a caplet on compounding rates is obtained:

�̃�𝐶𝐶𝑅(0, 0, 0) = 𝑁(𝑃(0, 𝑇𝑖)Φ(−𝑑2) − 𝜅𝑃(0, 𝑇𝑖+1)Φ(−𝑑1)),

where

𝑑2 =
log (𝜅 𝑃(0,𝑇𝑖+1)𝑃(0,𝑇𝑖)

) − 1
2 (𝐵

2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) + 2𝐾(𝑇𝑖 , 𝑇𝑖+1))

√𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) + 2𝐾(𝑇𝑖 , 𝑇𝑖+1)
,

𝑑1 = 𝑑2 +√𝐵2(𝑇𝑖 , 𝑇𝑖+1)Σ(0, 𝑇𝑖) + 2𝐾(𝑇𝑖 , 𝑇𝑖+1).

The present value of a floorlet on compounded rates can be obtained following the same steps but
then with payoff function:

𝑉𝑃𝐶𝑅(𝑇𝑖+1, 𝑥(⋅)) = 𝑁𝜏max(𝐾 − 1𝜏 (𝑀(𝑇𝑖 , 𝑇𝑖+1) − 1) , 0) .





D
Derivation of caplet and floorlet prices

with the BlackKarasinski pricing kernel

This appendix provides details about an approximation of caplet/floorlet pricing formulae obtained with
the BlackKarasinski pricing kernel. First, LIBOR caplets/floorlets are considered. Thereafter, also the
pricing formula for caplets/floorlets on compounded rates is provided.

D.1. BlackKarasinski pricing kernel for LIBOR rates
This appendix is dedicated to price LIBOR caplets/floorlets with the BlackKarsinski pricing kernel.
Following Turfus, 2021, Chapter 5, the below theorem provides a Green function to solve the pricing
PDE given in Equation (4.2) for a low rate environment.

Theorem D.1 (BlackKarasinski pricing kernel). Suppose ||�̃�(𝑡)|| = 𝒪(𝜖) in (4.1) under some suitable
norm for 𝜖 ⟶ 0. The pricing kernel for (4.2) is then given by:

𝐺(𝑥, 𝑡; 𝜉, 𝑇) = 𝐷(𝑡, 𝑇)
∞

∑
𝑛=0

𝐺𝑛(𝑥, 𝑡; 𝜉, 𝑇), (D.1)

with 𝐷(𝑡, 𝑇) = 𝑃(0,𝑇)
𝑃(0,𝑡) , where today’s date is given by 0, and where 𝐺𝑛(𝑥, 𝑡; 𝜉, 𝑇) = 𝒪(𝜖𝑛). Further, the

requirement that the calibrated model has to fit the forward interest rate curve implied by 𝐷(𝑡, 𝑇) is met
by specifying a suitable asymptotic series for �̃�(⋅), as follows:

�̃�(𝑡) =
∞

∑
𝑛=1

�̃�𝑛(𝑡), (D.2)

with ||�̃�𝑛(⋅)|| = 𝒪(𝜖𝑛). A solution to secondorder in 𝜖 is provided by deriving:

𝐺0(𝑥, 𝑡, 𝜉, 𝑇) = 1
√Σ(𝑡, 𝑇)

𝜑 (𝜉 − 𝜙(𝑡, 𝑇)𝑥
√Σ(𝑡, 𝑇)

) ,

𝐺1(𝑥, 𝑡; 𝜉, 𝑇) = −∫
𝑇

𝑡
(𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1) − �̄�(𝑡1)) 𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝑡1,

𝐺2(𝑥, 𝑡; 𝜉, 𝑇) = ∫
𝑇

𝑡
(𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1) − �̄�(𝑡1))∫

𝑇

𝑡1
(𝑅1(𝑥, 𝑡, 𝑡2)ℳ(𝑡, 𝑡2) − �̄�(𝑡2)) 𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝑡2𝑑𝑡1

−∫
𝑇

𝑡
𝑅2(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1)𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝑡1,

73



74 D. Derivation of caplet and floorlet prices with the BlackKarasinski pricing kernel

where �̄�(⋅) is the instantaneous forward curve and we define:

𝑅𝑛(𝑥, 𝑡, 𝑡1) ∶= �̃�𝑛(𝑡1)𝑒�̂�(𝑥,𝑡,𝑡1), 𝑛 = 1, 2, … , (D.3)

�̂�(𝑥, 𝑡, 𝑡1) ∶= 𝜙(𝑡, 𝑡1)𝑥 −
1
2Σ(0, 𝑡), (D.4)

ℳ(𝑡, 𝑡1)𝑔(𝑥, …) ∶= 𝑔(𝑥 + Δ(𝑡, 𝑡1), …), (D.5)

Δ(𝑡, 𝑡1) ∶= Σ(𝑡, 𝑡1)
𝜙(𝑡, 𝑡1)

,

where 𝜙(𝑡, 𝑇) and Σ(𝑡, 𝑇) are defined as in Section 3.3.1.1. Truncation of (D.2) at 𝑛 = 2 and the choice:

�̃�1(𝑡) = �̄�(𝑡),

�̃�2(𝑡) = �̃�2(𝑡)∫
𝑡

0
�̃�1(𝑡1) (𝑒𝜙(𝑡1 ,𝑡)Σ(0,𝑡1) − 1) ,

ensures an exact calibration of the secondorder Green’s function to the forward curve represented by
𝐷(𝑡, 𝑇).

Proof. For a proof, we refer to Turfus, 2021, p. 55.

Using the pricing kernel from Theorem D.1 the 𝑡value of a derivative with payoff 𝑉(𝑇, 𝑥(𝑇)) can be
derived by calculating the following integral:

𝑉(𝑡, 𝑥(𝑡)) = ∫
ℝ
𝑉(𝑇, 𝜉)𝐺(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝜉.

Zerocoupon bond prices Before starting with the prices of caplets/floorlets, the value of a zero
coupon bond has to be obtained. The 𝑡value of a zerocoupon bond is derived by applying the kernel
approach to the payoff of 1 at the maturity 𝑇. Recall, �̂�(𝑡, 𝑇, 𝑥(𝑡)) ≡ 𝑃(𝑡, 𝑇).

�̂�(𝑡, 𝑇, 𝑥) = 𝐷(𝑡, 𝑇)∫
ℝ
1 ⋅ 𝐺(𝑥, 𝑡, 𝜉, 𝑇)𝑑𝜉

= 𝐷(𝑡, 𝑇)∫
ℝ
𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝜉 + 𝐷(𝑡, 𝑇)∫

ℝ
𝐺1(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝜉 + 𝐷(𝑡, 𝑇)∫

ℝ
𝐺2(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝜉.

For clarity, we break this calculation down in parts below.

𝐷(𝑡, 𝑇)∫
ℝ
𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝜉 = ∫

ℝ

1
√Σ(𝑡, 𝑇)

𝜑 (𝜉 − 𝜙(𝑡, 𝑇)𝑥
√Σ(𝑡, 𝑇)

) 𝑑𝜉 = 𝐷(𝑡, 𝑇).

𝐷(𝑡, 𝑇)∫
ℝ
𝐺1(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝜉 = 𝐷(𝑡, 𝑇)∫

ℝ
−∫

𝑇

𝑡
(𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1) − �̄�(𝑡1))

1
√Σ(𝑡, 𝑇)

𝜑 (𝜉 − 𝜙(𝑡, 𝑇)𝑥
√Σ(𝑡, 𝑇)

) 𝑑𝑡1𝑑𝜉

= −𝐷(𝑡, 𝑇)∫
𝑇

𝑡
∫
ℝ
(𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1) − �̄�(𝑡1))

1
√Σ(𝑡, 𝑇)

𝜑 (𝜉 − 𝜙(𝑡, 𝑇)𝑥
√Σ(𝑡, 𝑇)

) 𝑑𝜉𝑑𝑡1

= −𝐷(𝑡, 𝑇)∫
𝑇

𝑡
∫
ℝ
(𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1) − �̄�(𝑡1))

1
√Σ(𝑡, 𝑇)

𝜑 (𝜉 − 𝜙(𝑡, 𝑇)𝑥
√Σ(𝑡, 𝑇)

) 𝑑𝜉𝑑𝑡1

= −𝐷(𝑡, 𝑇)∫
𝑇

𝑡
(𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1) − �̄�(𝑡1))𝑑𝑡1

= −𝐷(𝑡, 𝑇)∫
𝑇

𝑡
(𝑅1(𝑥, 𝑡, 𝑡1) − �̄�(𝑡1))𝑑𝑡1.
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𝐷(𝑡, 𝑇)∫
ℝ
𝐺2(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝜉 = 𝐷(𝑡, 𝑇)∫

ℝ
(∫

𝑇

𝑡
(𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1) − �̄�(𝑡1)) ∫

𝑇

𝑡1
(𝑅1(𝑥, 𝑡, 𝑡2)ℳ(𝑡, 𝑡2) − �̄�(𝑡2))

𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝑡2𝑑𝑡1 −∫
𝑇

𝑡
𝑅2(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1)𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝑡1)𝑑𝜉

= 𝐷(𝑡, 𝑇)∫
ℝ
∫
𝑇

𝑡
∫
𝑇

𝑡1
(𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1) − �̄�(𝑡1)) (𝑅1(𝑥, 𝑡, 𝑡2)ℳ(𝑡, 𝑡2) − �̄�(𝑡2)) ⋅

𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝑡2𝑑𝑡1𝑑𝜉 − 𝐷(𝑡, 𝑇)∫
ℝ
∫
𝑇

𝑡
𝑅2(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1)𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝑡1𝑑𝜉

= 𝐷(𝑡, 𝑇)∫
𝑇

𝑡
∫
𝑇

𝑡1
∫
ℝ
(𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1) − �̄�(𝑡1)) (𝑅1(𝑥, 𝑡, 𝑡2)ℳ(𝑡, 𝑡2) − �̄�(𝑡2)) ⋅ .

𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝜉𝑑𝑡2𝑑𝑡1 − 𝐷(𝑡, 𝑇)∫
𝑇

𝑡
∫
ℝ
𝑅2(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1)𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝜉𝑑𝑡1

= 𝐷(𝑡, 𝑇)∫
𝑇

𝑡
∫
𝑇

𝑡1
(𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1) − �̄�(𝑡1)) (𝑅1(𝑥, 𝑡, 𝑡2)ℳ(𝑡, 𝑡2) − �̄�(𝑡2)) ⋅

∫
ℝ
𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝜉𝑑𝑡2𝑑𝑡1 − 𝐷(𝑡, 𝑇)∫

𝑇

𝑡
𝑅2(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1)∫

ℝ
𝐺0(𝑥, 𝑡; 𝜉, 𝑇)𝑑𝜉𝑑𝑡1

= 𝐷(𝑡, 𝑇)∫
𝑇

𝑡
∫
𝑇

𝑡1
(𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1) − �̄�(𝑡1)) (𝑅1(𝑥, 𝑡, 𝑡2)ℳ(𝑡, 𝑡2) − �̄�(𝑡2)) 𝑑𝑡2𝑑𝑡1

−𝐷(𝑡, 𝑇)∫
𝑇

𝑡
𝑅2(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1)𝑑𝑡1

= 𝐷(𝑡, 𝑇)∫
𝑇

𝑡
∫
𝑇

𝑡1
𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1)𝑅1(𝑥, 𝑡, 𝑡2)ℳ(𝑡, 𝑡2) − �̄�(𝑡1)𝑅1(𝑥, 𝑡, 𝑡2)ℳ(𝑡, 𝑡2)

−�̄�(𝑡2)𝑅1(𝑥, 𝑡, 𝑡1)ℳ(𝑡, 𝑡1) − �̄�(𝑡1)�̄�(𝑡2)𝑑𝑡2𝑑𝑡1 − 𝐷(𝑡, 𝑇)∫
𝑇

𝑡
𝑅2(𝑥, 𝑡, 𝑡1)𝑑𝑡1

= 𝐷(𝑡, 𝑇)∫
𝑇

𝑡
∫
𝑇

𝑡1
𝑅1(𝑥, 𝑡, 𝑡1)�̃�1(𝑡2) exp(𝜙(𝑡, 𝑡2)(𝑥 +

Σ(𝑡, 𝑡1)
𝜙(𝑡, 𝑡1)

) − 12𝜙
2(𝑡, 𝑡2)Σ(0, 𝑡))

−�̄�(𝑡1)𝑅1(𝑥, 𝑡, 𝑡2) − �̄�(𝑡2)𝑅1(𝑥, 𝑡, 𝑡1) − �̄�(𝑡1)�̄�(𝑡2)𝑑𝑡2𝑑𝑡1

−𝐷(𝑡, 𝑇)∫
𝑇

𝑡
𝑅2(𝑥, 𝑡, 𝑡1)𝑑𝑡1

= 𝐷(𝑡, 𝑇)∫
𝑇

𝑡
∫
𝑇

𝑡1
𝑅1(𝑥, 𝑡, 𝑡1)𝑅1(𝑥, 𝑡, 𝑡2)𝑒𝜙(𝑡1 ,𝑡2)Σ(𝑡,𝑡1)) − �̄�(𝑡1)𝑅1(𝑥, 𝑡, 𝑡2)

−�̄�(𝑡2)𝑅1(𝑥, 𝑡, 𝑡1) − �̄�(𝑡1)�̄�(𝑡2)𝑑𝑡2𝑑𝑡1 − 𝐷(𝑡, 𝑇)∫
𝑇

𝑡
𝑅2(𝑥, 𝑡, 𝑡1)𝑑𝑡1

= 𝐷(𝑡, 𝑇)∫
𝑇

𝑡
(𝑅1(𝑥, 𝑡, 𝑡1) − �̄�(𝑡1))∫

𝑇

𝑡1
(𝑅1(𝑥, 𝑡, 𝑡2) − �̄�(𝑡2)) 𝑑𝑡2𝑑𝑡1

+𝐷(𝑡, 𝑇)∫
𝑇

𝑡
𝑅1(𝑥, 𝑡, 𝑡1)∫

𝑇

𝑡1
𝑅1(𝑥, 𝑡, 𝑡2) (𝑒𝜙(𝑡1 ,𝑡2)Σ(𝑡,𝑡1) − 1)𝑑𝑡2𝑑𝑡1

−𝐷(𝑡, 𝑇)∫
𝑇

𝑡
𝑅2(𝑥, 𝑡, 𝑡1))𝑑𝑡1.
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As a result, the 𝑡value of a zerocoupon bond with maturity 𝑇 is given by:

�̂�(𝑡, 𝑇, 𝑥) = 𝐷(𝑡, 𝑇) + 𝑃1(𝑡, 𝑇, 𝑥) + 𝑃2(𝑡, 𝑇, 𝑥) + 𝒪(𝜖3),

�̂�1(𝑡, 𝑇, 𝑥) = −𝐷(𝑡, 𝑇)∫
𝑇

𝑡
𝑅1(𝑥, 𝑡, 𝑡1) − �̄�(𝑡1)𝑑𝑡1,

�̂�2(𝑡, 𝑇, 𝑥) = 𝐷(𝑡, 𝑇)∫
𝑇

𝑡
(𝑅1(𝑥, 𝑡, 𝑇) − �̄�(𝑡1))∫

𝑇

𝑡1
𝑅1(𝑥, 𝑡, 𝑡2) − �̄�(𝑡2)𝑑𝑡2𝑑𝑡1

+𝐷(𝑡, 𝑇)∫
𝑇

𝑡
𝑅1(𝑥, 𝑡, 𝑡1)∫

𝑇

𝑡1
𝑅1(𝑥, 𝑡, 𝑡2) (𝑒𝜙(𝑡1 ,𝑡2)Σ(𝑡,𝑡1) − 1)𝑑𝑡2𝑑𝑡1

−𝐷(𝑡, 𝑇)∫
𝑇

𝑡
𝑅2(𝑥, 𝑡, 𝑡1)𝑑𝑡1.

Note, that 𝑥 in the zerocoupon bond formula corresponds to the value of the process 𝑥(𝑡) at time 𝑡.

LIBOR caplet/floorlet prices Let us consider a LIBOR caplet over the period [𝑇𝑖 , 𝑇𝑖+1] with strike 𝐾
and notional 𝑁. In order to obtain the 𝑡value of this caplet with the BlackKarasinski pricing kernel, first
the 𝑇𝑖value of the caplet needs to be determined. This value is given by:

𝑉𝐶(𝑇𝑖 , 𝑥(𝑇𝑖)) = 𝑁max (1 − 𝜅�̂�(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖)), 0), (D.6)

where 𝜅 = (1 + 𝜏𝐾). We seek for a formula of the 𝑡value of this caplet with secondorder accuracy
with respect to 𝜖. This is obtained by applying the pricing kernel to the 𝑇𝑖value of the caplet. The
approximation which is derived below, is valid for a low rate environment. Suppose that strike 𝐾 is of
order 𝒪(𝜖), such that the strike is in line with the LIBOR payment. The corresponding integral which
needs to be calculated goes over the range of [−∞,∞] for the value of 𝑥(𝑇𝑖). Since the payoff of
the LIBOR caplet consists of a maxfunction in (D.6), the range of the integral can simply be reduced
and start from the point where this maxfunction has a positive value. This can be done due to the
monotonicity of �̂�(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖)). The values of 𝑥(𝑇𝑖) for which the maxfunction is positive satisfy the
following inequalities:

1 − 𝜅�̂�(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖)) ≥ 0
�̂�(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖)) ≤ 𝜅−1

𝐷(𝑇𝑖 , 𝑇𝑖+1) + �̂�1(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖)) + �̂�2(𝑇𝑖 , 𝑇𝑖+1, 𝑥(𝑇𝑖)) ≤ 𝜅−1

The critical value of 𝑥∗ to remove this maxfunction can be found by solving the equation:

𝐷(𝑇𝑖 , 𝑇𝑖+1) + �̂�1(𝑇𝑖 , 𝑇𝑖+1, 𝑥∗) + �̂�2(𝑇𝑖 , 𝑇𝑖+1, 𝑥∗) = 𝜅−1. (D.7)

Remark, the background idea is similar to the Jamshidian trick, see Andersen and Piterbarg, 2010. To
obtain the secondorder approximation, the payoff of the LIBOR caplet is split into two parts and the
pricing kernel is applied in the following way:

𝑉𝐶(𝑡, 𝑥) = ∫
ℛ
𝑉(𝜉, 𝑇)𝐺(𝑥, 𝑡; 𝜉.𝑇)𝑑𝜉

= 𝐷(𝑡, 𝑇𝑖)∫
ℝ
�̂�1(𝜉)𝐺0(𝑥, 𝑡; 𝜉, 𝑇𝑖) + �̂�1(𝜉)𝐺1(𝑥, 𝑡; 𝜉, 𝑇𝑖) + �̂�2(𝜉)𝐺0(𝑥, 𝑡; 𝜉, 𝑇𝑖)𝑑𝜉 + 𝒪(𝜖3),

where

�̂�1(𝜉) ∶= (1 − 𝜅𝐷(𝑇𝑖 , 𝑇𝑖+1)(1 + �̂�1(𝑇𝑖 , 𝑇𝑖+1, 𝜉))) 𝟙𝜉>𝑥∗ ,
�̂�2(𝜉) ∶= −𝜅𝐷(𝑇𝑖 , 𝑇𝑖+1)�̂�2(𝑇𝑖 , 𝑇𝑖+1, 𝜉)𝟙𝜉>𝑥∗ ,

with 𝑉𝑛(𝜉) = 𝒪(𝜖𝑛), since we assume:

1 − 𝜅𝐷(𝑇𝑖 , 𝑇𝑖+1) = 1 − (1 + 𝜏𝐾)𝐷(𝑇𝑖 , 𝑇𝑖+1) = 𝜏𝐾𝐷(𝑇𝑖 , 𝑇𝑖+1) = 𝒪(𝜖).
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As a result, the 𝑡value of a LIBOR caplet is given by:

𝑉𝐶(𝑡, 𝑥) = (𝐷(𝑡, 𝑇𝑖) − 𝜅𝐷(𝑡, 𝑇𝑖+1))Φ(−𝑑1(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇1))

+𝜅𝐷(𝑡, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
𝑅1(𝑥, 𝑡, 𝑢)Φ(−𝑑2(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖 , 𝑢))

−�̄�(𝑢)Φ(−𝑑1(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖))𝑑𝑢

− (𝐷(𝑡, 𝑇𝑖) − 𝜅𝐷(𝑡, 𝑇𝑖+1))∫
𝑇𝑖

𝑡
𝑅1(𝑥, 𝑡, 𝑢)𝜙(−𝑑2(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖 , 𝑢))

−�̄�(𝑢)Φ(−𝑑1(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖))𝑑𝑢

−𝜅𝐷(𝑡, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
𝑅1(𝑥, 𝑡, 𝑣)∫

𝑣

𝑡
𝑒𝜙(𝑢,𝑣)Σ(𝑡,𝑣)𝑅1(𝑥, 𝑡, 𝑢)Φ(−𝑑∗2(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖 , 𝑢, 𝑣))

−�̄�(𝑢)Φ(−𝑑∗1(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖 , 𝑢, 𝑣))𝑑𝑢𝑑𝑣

+𝜅𝐷(𝑡, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
𝑅1(𝑥, 𝑡, 𝑣)∫

𝑣

𝑡
𝑅1(𝑥, 𝑡, 𝑢)Φ(−𝑑2(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖 , 𝑢))

−�̄�(𝑢)Φ(−𝑑1(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖))𝑑𝑢𝑑𝑣

+𝜅𝐷(𝑡, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
𝑅2(𝑥, 𝑡, 𝑣)Φ(−𝑑2(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖 , 𝑣))𝑑𝑣 + 𝒪(𝜖3),

where, for 𝑣 ≥ 𝑇𝑖 and 𝑢 ∈ (𝑡, 𝑣], we define:

𝑑1(𝜉, 𝑡, 𝑇𝑖) ∶= 𝜉
√Σ(𝑡, 𝑇𝑖)

,

𝑑2(𝜉, 𝑡, 𝑇𝑖 , 𝑤) ∶= 𝑑1(𝜉 − 𝜙(𝑇𝑖 ∧ 𝑤, 𝑇𝑖 ∨ 𝑤)Σ(𝑡, 𝑇𝑖 ∧ 𝑤), 𝑡, 𝑇𝑖),
𝑑∗1(𝜉, 𝑡, 𝑇𝑖 , 𝑢, 𝑣) ∶= 𝑑1(𝜉 − 𝜙(𝑇𝑖 , 𝑣)Σ(𝑢 ∧ 𝑇𝑖 , 𝑇𝑖), 𝑡, 𝑇𝑖),
𝑑∗2(𝜉, 𝑡, 𝑇𝑖 , 𝑢, 𝑣) ∶= 𝑑2(𝜉 − 𝜙(𝑇𝑖 , 𝑣)Σ(𝑢 ∧ 𝑇𝑖 , 𝑇𝑖), 𝑡, 𝑇𝑖 , 𝑢).

The binary operators ∧ and ∨ denote the minimum and maximum, respectively.

Then, for 𝑡 = 0 and 𝑥 = 0, the present value of the LIBOR caplet is given by:

𝑉𝐶(0, 0) = (𝐷(0, 𝑇𝑖) − 𝜅𝐷(0, 𝑇𝑖+1))Φ(−𝑑1(𝑥∗, 0, 𝑇𝑖))

−𝐷(0, 𝑇𝑖)∫
𝑇𝑖

0
�̄�(𝑢) (Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑢)) − Φ(−𝑑1(𝑥∗, 0, 𝑇𝑖))) 𝑑𝑢

+𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

0
�̄�(𝑢) (Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑢)) − Φ(−𝑑1(𝑥∗, 0, 𝑇𝑖))) 𝑑𝑢

−𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑣)∫

𝑣

0
�̄�(𝑢)𝑒𝜙(𝑢,𝑣)Σ(0,𝑢) (Φ(−𝑑∗2(𝑥∗, 0, 𝑇𝑖 , 𝑢, 𝑣)) − Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑣))) 𝑑𝑢𝑑𝑣

+𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑣)∫

𝑣

0
�̄�(𝑢)(Φ(−𝑑∗1(𝑥∗, 0, 𝑇𝑖 , 𝑢, 𝑣)) − Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑣))

+Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑢)) − Φ(−𝑑1(𝑥∗, 0, 𝑇𝑖)))𝑑𝑢𝑑𝑣 + 𝒪(𝜖3).



78 D. Derivation of caplet and floorlet prices with the BlackKarasinski pricing kernel

Moreover, using the putcall parity, the present value of a LIBOR floorlet is easy to obtain:

𝑉𝑃(0, 0) = (𝜅𝐷(0, 𝑇𝑖+1) − 𝐷(0, 𝑇𝑖))Φ(𝑑1(𝑥∗, 0, 𝑇𝑖))

+𝐷(0, 𝑇𝑖)∫
𝑇𝑖

0
�̄�(𝑢) (Φ(𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑢)) − Φ(𝑑1(𝑥∗, 0, 𝑇𝑖))) 𝑑𝑢

−𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

0
�̄�(𝑢) (Φ(𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑢)) − Φ(𝑑1(𝑥∗, 0, 𝑇𝑖))) 𝑑𝑢

+𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑣)∫

𝑣

0
�̄�(𝑢)𝑒𝜙(𝑢,𝑣)Σ(0,𝑢) (Φ(𝑑∗2(𝑥∗, 0, 𝑇𝑖 , 𝑢, 𝑣)) − Φ(𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑣))) 𝑑𝑢𝑑𝑣

−𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑣)∫

𝑣

0
�̄�(𝑢)(Φ(𝑑∗1(𝑥∗, 0, 𝑇𝑖 , 𝑢, 𝑣)) − Φ(𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑣))

+Φ(𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑢)) − Φ(𝑑1(𝑥∗, 0, 𝑇𝑖)))𝑑𝑢𝑑𝑣 + 𝒪(𝜖3).

D.2. BlackKarasinski pricing kernel for compounded rates
This appendix is dedicated to price caplets/floorlets on compounded rates using the kernel approach.
Following Turfus, 2021, Chapter 13, the below theorem yields the Green function corresponding to the
pricing PDE given in Equation (4.4) for a low rate environment.

Theorem D.2. The pricing kernel for the extended BlackKarasinski pricing equation from (4.4) can be
asymptotically, for ||�̄�(⋅)|| = 𝒪(𝜖), represented as:

�̃�(𝑥, 𝑧, 𝑡; 𝜉, 𝜁, 𝑇) = 𝐷(𝑡, 𝑇)
∞

∑
𝑗=0
�̃�𝑗(𝑥, 𝑧, 𝑡; 𝜉, 𝜁, 𝑇), (D.8)

with ||𝐺𝑗(⋅; ⋅)|| = 𝒪(𝜖𝑗),

�̃�0(𝑥, 𝑧, 𝑡; 𝜉, 𝜁, 𝑇) = 1
√Σ(𝑡, 𝑇)

𝜑 (𝜉 − 𝜙(𝑡, 𝑇)𝑥
√Σ(𝑡, 𝑇)

) 𝛿(𝜁 − 𝑧),

�̃�1(𝑥, 𝑧, 𝑡; 𝜉, 𝜁, 𝑇) = 𝑍0(𝑡, 𝑇)(1 − 𝜕𝑧�̃�0(𝑥, 𝑧, 𝑡; 𝜉, 𝜁, 𝑇) − ∫
𝑇

𝑡
�̄�(𝑡1)𝑒�̂�(𝑥,𝑡,𝑡1) [1 − 𝜕𝑧�̃�0(𝑥, 𝑧, 𝑡; 𝜉 − Σ(𝑡, 𝑡1), 𝜁, 𝑇)] 𝑑𝑡1,

�̃�2(𝑥, 𝑧, 𝑡; 𝜉, 𝜁, 𝑇) = 1
2𝑍

2
0(𝑡, 𝑇)(1 −

𝜕
𝜕𝑧)

2�̃�0(𝑥, 𝑧, 𝑡; 𝜉, 𝜁, 𝑇)

−∫
𝑇

𝑡
(𝑍0(𝑡, 𝑇)�̄�(𝑡1)(1 − 𝜕𝑧) + �̃�2(𝑡1))𝑒�̂�(𝑥,𝑡,𝑡1)(1 − 𝜕𝑧)�̃�0(𝑥, 𝑧, 𝑡; 𝜉 − Σ(𝑡, 𝑡1), 𝜁, 𝑇)

+∫
𝑇

𝑡
�̄�(𝑡2)𝑒𝜃(𝑥,𝑡,𝑡2)∫

𝑡2

𝑡
�̄�(𝑡1)𝑒�̂�(𝑥,𝑡,𝑡1)+𝜙(𝑡1 ,𝑡2)Σ(𝑡,𝑡1)(1 − 𝜕𝑧)2 ⋅

�̃�0 (𝑥, 𝑧, 𝑡; 𝜉 −
2

∑
𝑖=1
Σ(𝑡, 𝑡𝑖), 𝜁, 𝑇)𝑑𝑡1𝑑𝑡2,

where 𝜕𝑧 denotes the differential operator with respect to 𝑧, 𝛿(⋅) is the Dirac delta function and 𝑍(𝑡, 𝑇)
is defined as:

𝑍(𝑡, 𝑇) = ∫
𝑇

𝑡
�̄�(𝑠)𝑑𝑠.

Proof. For a proof, we refer to Turfus, 2021, Chapter 13.

Using this secondorder approximation of the above pricing kernel, the 𝑡value of a caplet on com
pounded rates between [𝑇𝑖 .𝑇𝑖+1] can be obtained. Then, the approximate price of a caplet on com
pounded rate can be calculated according to the below theorem. The approximation is due to a trun
cation of the pricing kernel and due to freezing 𝐹2(𝑇𝑖 , 𝑇𝑖+1) at the value of �̂�(𝑇𝑖 , 𝑇𝑖+1), see both formulae
below, to obtain an analytically tractable value of the caplet at time 𝑇𝑖.
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Theorem D.3. For the BlackKarasinski shortrate process, governed by (4.1), the present value, at
time 0, of a caplet with a compounded rate underlying, strike 𝐾 and payment period [𝑇𝑖 , 𝑇𝑖+1] is given
to an approximation by:

𝑉𝐶𝐶𝑅(0, 0) ≈ 𝑉𝐶(0, 0) + Δ𝑉𝐶𝐶𝑅(0, 0), (D.9)

where

𝑉𝐶(0, 0) = (𝐷(0, 𝑇𝑖) − 𝜅𝐷(0, 𝑇𝑖+1))Φ(−𝑑1(𝑥∗, 0, 𝑇𝑖))

−𝐷(0, 𝑇𝑖)∫
𝑇𝑖

0
�̄�(𝑡1)(Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑡1)) − Φ(−𝑑1(𝑥∗, 0, 𝑇1)))𝑑𝑡1

+𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

0
�̄�(𝑡1)(Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑡1)) − Φ(−𝑑1(𝑥∗, 0, 𝑇1)))𝑑𝑡1

−𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑡2)∫

𝑡2

0
�̄�(𝑡1)𝑒𝜙(𝑡1 ,𝑡2)Σ(0,𝑡1)(Φ(−𝑑∗2(𝑥∗, 0, 𝑇𝑖 , 𝑡1, 𝑡2))

−Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑡1)))𝑑𝑡1𝑑𝑡2

+𝜅𝐷(0, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑡2)∫

𝑡2

0
�̄�(𝑡1)(Φ(−𝑑∗1(𝑥∗, 0, 𝑇𝑖 , 𝑡1, 𝑡2)) − Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑡2))

+Φ(−𝑑2(𝑥∗, 0, 𝑇𝑖 , 𝑡1)) − Φ(−𝑑1(𝑥∗, 0, 𝑇𝑖)))𝑑𝑡1𝑑𝑡2,

with 𝑥∗ as defined in (D.7) and

𝑑1(𝜉, 𝑡, 𝑇𝑖) ∶= 𝜉 + �̂�(𝑇𝑖 , 𝑇𝑖+1)

√Σ(𝑡, 𝑇𝑖) + 2�̂�(𝑇𝑖 , 𝑇𝑖+1
,

𝑑2(𝜉, 𝑡, 𝑇𝑖 , 𝑤) ∶= 𝑑1(𝜉 − 𝜙(𝑇𝑖 ∧ 𝑤, 𝑇𝑖 ∨ 𝑤)Σ(𝑡, 𝑇𝑖 ∧ 𝑤) − 2�̂�(𝑇𝑖 , 𝑇𝑖+1)),

�̂�(𝑇𝑖 , 𝑇𝑖+1) ∶= ∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑡2)∫

𝑡2

𝑇𝑖
�̄�(𝑡1)𝑒Δ𝑥∗(𝑇𝑖 ,𝑡1 ,𝑡2)(𝑒𝜙(𝑡1 ,𝑡2)Σ(𝑇𝑖 ,𝑡1) − 1)𝑑𝑡1𝑑𝑡2, (D.10)

Δ𝑥∗(𝑇𝑖 , 𝑡1, 𝑡2) ∶= 𝜙(𝑇𝑖 , 𝑡1)𝜙(𝑇1, 𝑡2)Σ(0, 𝑇1).

The formula for Δ𝑉𝐶𝐶𝑅(0, 0) is given by:

Δ𝑉𝐶𝐶𝑅(0, 0) = 𝐷(0, 𝑇𝑖)
�̂�(𝑇𝑖 , 𝑇𝑖+1)

∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑡2)∫

𝑡2

𝑇𝑖
�̄�(𝑡1)𝑒Δ𝑥∗(𝑇𝑖 ,𝑡1 ,𝑡2)(𝑒𝜙(𝑡1 ,𝑡2)Σ(𝑇𝑖 ,𝑡1) − 1) ⋅

[𝜑(−𝑑2(𝑥∗ − Δ𝑥∗(𝑇𝑖 , 𝑡1, 𝑡2), 0, 𝑇1)) − 𝜑(−𝑑2(𝑥∗, 0, 𝑇𝑖))] 𝑑𝑡2𝑑𝑡2.

The errors in the term 𝑉𝐶(0, 0) are of order 𝒪(𝜖2) with 𝜖 = ||�̃�(⋅)|| and the errors in the term Δ𝑉𝐶𝐶𝑅(𝑡0)
are of order 𝒪(Σ2(𝑇𝑖 , 𝑇𝑖+1)).

Proof. The proof of this statement is technically involved and requires detailed insight into perturbation
analysis, which is beyond the scope of the thesis. Therefore, herewith we sketch the steps of the proof
of the pricing kernel approach for caplets on compounded rates under the BlackKarasinski model. It is
assumed that all perturbations are of sufficient accuracy. However, we do not validate or challenge the
accuracy of the approximations. In the below, we follow Turfus, 2021, Chapter 13 and refer for further
details therein.

It is more convenient to work with an alternative representation of the pricing kernel that is obtained
as a byproduct of (D.8), see Turfus, 2021, p. 173. This alternative representation is given by:

�̃�(𝑥, 𝑧, 𝑡; 𝜉, 𝜁, 𝑇) = 𝐷(𝑡, 𝑇)𝑒−𝐹1(𝑥,𝑡,𝑇)(1−𝜕𝑧)�̃�0(𝑥, 𝑧, 𝑟; 𝜉, 𝜁, 𝑇) (D.11)

+𝐷(𝑡, 𝑇)
∞

∑
𝑛=1
(−1)𝑛(1 − 𝜕𝑧)𝑛∫

𝑇

𝑡
∫
𝑡𝑛

𝑡
…∫

𝑡2

𝑡
(∏(𝑅(𝑥, 𝑡, 𝑡𝑖)ℳ(𝑡, 𝑡𝑖) − �̄�(𝑡𝑖))

−
𝑛

∏
𝑖=1
(𝑅(𝑥, 𝑡, 𝑡𝑖) − �̄�(𝑡𝑖)))𝑑𝑡1…𝑑𝑡𝑛�̃�0(𝑥, 𝑧, 𝑡; 𝜉, 𝜁, 𝑇),
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where the operatorℳ(𝑡, 𝑡1) is given in Equation (D.5) and we define:

𝑅(𝑥, 𝑡, 𝑡1) ∶= �̃�(𝑡1)𝑒𝜃(𝑥,𝑡,𝑡1),

𝐹1(𝑥, 𝑇𝑖 , 𝑇𝑖+1) ∶= ∫
𝑇𝑖+1

𝑇1
𝑅(𝑥, 𝑇𝑖 , 𝑡1) − �̄�(𝑡1))𝑑𝑡1,

𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖+1) ∶= ∫
𝑇𝑖+1

𝑇𝑖
𝑅(𝑥, 𝑇𝑖 , 𝑡2)∫

𝑡2

𝑇𝑖
𝑅(𝑥, 𝑇𝑖 , 𝑡1) (𝑒𝜙(𝑡1 ,𝑡2)Σ(𝑇𝑖 ,𝑡1) − 1)𝑑𝑡1𝑑𝑡2. (D.12)

Analogously to Section 3.3.1.2, the time 𝑡value of a caplet on compounded rates is obtained in two
steps. First, the time 𝑇𝑖value is determined by applying the pricing kernel to the payoff of the caplet.
Second, the pricing kernel is applied again, but then to the 𝑇𝑖value of the caplet, to derive the time
𝑡value of the caplet.

Using the above alternative representation of the pricing kernel given in (D.11), the 𝑇𝑖value of the
caplet can be calculated by applying the kernel approach. Similar to the HullWhite model case, the
payoff of caplets on compounded rates is given by Equation (3.15) with 𝑧(𝑡) as in Equation (4.3).
Notice that this payoff is independent of 𝜉. Therefore, the integral over the kernel (D.11) with respect
to 𝜉 can be calculated separately to obtain the 𝑇𝑖value of the caplet. Notice, in the ∗=steps below,
the Taylor expansion of an exponential function is used. Recall, 𝜕𝑧 and 𝜕2𝑧 denote the first and second
order partial derivative operators with respect to 𝑧, respectively. Furthermore, the following exponential
representations of differential operators acting on a Gaussion distribution function are used:

𝑒𝑎𝜕𝑧 𝑙(𝑧) = 𝑙(𝑎 + 𝑧),

𝑒𝑎𝜕2𝑧 𝑙(𝑧) = 1 1
√4𝜋

∫
∞

−∞
𝑙(𝑧 − 𝑦√𝑎)𝑒−

1
4𝑦

2𝑑𝑦.

∫
ℝ
�̃�(𝑥, 𝑧, 𝑇𝑖; 𝜉, 𝜁, 𝑇𝑖+1)𝑑𝜉

= 𝐷(𝑇𝑖 , 𝑇𝑖+1) (𝑒−𝐹1(𝑥,𝑇𝑖 ,𝑇𝑖+1)(1−𝜕𝑧) + 𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖+1)(1 + 𝜕𝑧)2 + 𝒪(𝜖3))∫
ℝ
�̃�0(𝑥, 𝑧, 𝑇𝑖; 𝜉, 𝜁, 𝑇𝑖+1)𝑑𝜉

∗= 𝐷(𝑇𝑖 , 𝑇𝑖+1)(1 − 𝐹1(𝑥, 𝑇𝑖 , 𝑇𝑖+1)(1 − 𝜕𝑧) + 𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖+1)(1 + 𝜕𝑧)2+

𝒪((−𝐹1(𝑥, 𝑇𝑖 , 𝑇𝑖+1)(1 − 𝜕𝑧))2) + 𝒪(𝜖3))∫
ℝ
�̃�0(𝑥, 𝑧, 𝑇𝑖; 𝜉, 𝜁, 𝑇𝑖+1)𝑑𝜉

∗= 𝐷(𝑇𝑖 , 𝑇𝑖+1)𝑒−𝐹1(𝑥,𝑇𝑖 ,𝑇𝑖+1)(1−𝜕𝑧)+𝐹2(𝑥,𝑇𝑖 ,𝑇𝑖+1)(1+𝜕𝑧)
2 ∫
ℝ
�̃�0(𝑥, 𝑧, 𝑇𝑖; 𝜉, 𝜁, 𝑇𝑖+1)𝑑𝜉 + 𝒪(𝜖3)

= 𝑃(𝑇𝑖 , 𝑇𝑖+1, 𝑥)𝑒𝐹2(𝑥,𝑇𝑖 ,𝑇𝑖+1)𝜕
2𝑧 ∫
ℝ
�̃�0(𝑥, 𝑧 + 𝐹1(𝑥, 𝑇𝑖 , 𝑇𝑖+1) − 2𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖+1), 𝑇𝑖; 𝜉, 𝜁, 𝑇𝑖+1)𝑑𝜉 + 𝒪(𝜖3).

With this observation, the 𝑇𝑖value of the caplet on compounded rates is given by:

𝑉𝐶𝐶𝑅(𝑇𝑖 , 𝑥) = Φ(−�̃�2(𝑥, 𝑇𝑖 , 𝑇𝑖+1)) − 𝜅𝑃(𝑥, 𝑇𝑖 , 𝑇𝑖+1)Φ(−�̃�1(𝑥, 𝑇𝑖 , 𝑇𝑖+1)), (D.13)

where �̃�1 and �̃�2 are defined as:

�̃�1(𝑥, 𝑇𝑖 , 𝑇𝑖+1) ∶= 𝑥∗ − 𝑥 − 𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖+1)
√2𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖+1)

, (D.14)

�̃�2(𝑥, 𝑇𝑖 , 𝑇𝑖+1) ∶= �̃�1(𝑥, 𝑇𝑖 , 𝑇𝑖+1) + √2𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖+1), (D.15)

with 𝑥∗ as defined in (D.7). Further to this, in the expression of 𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖+1), see Equation (D.12),
𝑅(𝑥, 𝑇𝑖 , 𝑡1) and 𝑅(𝑥, 𝑇𝑖 , 𝑡2) can be replaced by 𝑅1(𝑥, 𝑇𝑖 , 𝑡1) and 𝑅1(𝑥, 𝑇𝑖 , 𝑡2), as defined in Equation (D.3),
while keeping secondorder accuracy. The calculation of the convexity correction term 𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖1),
corresponding to the compounding period, is complex as it depends on value of 𝑥. However, one
1Weierstrass transform, for more information we refer to Zayed, 2019.
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would prefer this to be analytically tractable. Therefore, we freeze 𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖+1) in Equations (D.14)
and (D.15) at the representative value �̂�(𝑇𝑖 , 𝑇𝑖+1) defined in (D.10) which gives:

�̄�1(𝑥, 𝑇𝑖 , 𝑇𝑖+1) ∶= 𝑥∗ − 𝑥 − �̂�(𝑇𝑖 , 𝑇𝑖+1)

√2�̂�(𝑇𝑖 , 𝑇𝑖+1)
,

�̄�2(𝑥, 𝑇𝑖 , 𝑇𝑖+1) ∶= �̄�1(𝑥, 𝑇𝑖 , 𝑇𝑖+1) + √2�̂�(𝑇𝑖 , 𝑇𝑖+1).

By such replacement an error is made. A correction of this error can be derived by considering a
Taylor expansion of the 𝑇𝑖value of a caplet with respect to 𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖+1) − �̂�(𝑇𝑖 , 𝑇𝑖+1), resulting in an
approximation of the 𝑇𝑖value of the caplet:

𝑉𝐶𝐶𝑅(𝑇𝑖 , 𝑥) ≈ Φ(−�̄�2(𝑥, 𝑇𝑖 , 𝑇𝑖+1)) − 𝜅𝑃(𝑥, 𝑇𝑖 , 𝑇𝑖+1)Φ(−�̄�1(𝑥, 𝑇𝑖 , 𝑇𝑖+1))

−𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖+1) − �̂�(𝑇𝑖 , 𝑇𝑖+1)2�̂�(𝑇𝑖 , 𝑇𝑖+1)
(�̄�1(𝑥, 𝑇𝑖 , 𝑇𝑖+1)𝜑 (−�̄�2(𝑥, 𝑇𝑖 , 𝑇 + 𝑖 + 1))

+𝜅𝐷(𝑇𝑖 , 𝑇𝑖+1)�̄�2(𝑥, 𝑇𝑖 , 𝑇𝑖+1)𝜑 (−�̄�1(𝑥, 𝑇𝑖 , 𝑇𝑖+1)))

≈ Φ(−�̄�2(𝑥, 𝑇𝑖 , 𝑇𝑖+1)) − 𝜅𝑃(𝑥, 𝑇𝑖 , 𝑇𝑖+1)Φ(−�̄�1(𝑥, 𝑇𝑖 , 𝑇𝑖+1)) (D.16)

+𝐹2(𝑥, 𝑇𝑖 , 𝑇𝑖+1) − �̂�(𝑇𝑖 , 𝑇𝑖+1)�̂�(𝑇𝑖 , 𝑇𝑖+1)
𝑥 − 𝑥∗

√2�̂�(𝑇𝑖 , 𝑇𝑖+1)
𝜑(−�̄�2(𝑥, 𝑇𝑖 , 𝑇𝑖+1)),

where the fact that 𝜑(−�̄�2) = 𝜅𝐷(𝑇𝑖 , 𝑇𝑖+1)𝜑(−�̄�1) is used. The final step to obtain the 𝑡value of the
caplet, is applying the pricing kernel to the expression given in Equation (D.16). This results in:

𝑉𝐶𝐶𝑅(0, 0) ≈ 𝑉𝐶(0, 0) + Δ𝑉𝐶𝐶𝑅(0, 0),
where 𝑉𝐶(0, 0) is given by setting 𝑡 = 0 and 𝑥 = 0 in Equation (D.17) and Δ𝑉𝐶𝐶𝑅(0, 0) is given in Equation
(D.18).

𝑉𝐶(𝑥, 𝑡) = (𝐷(𝑡, 𝑇𝑖) − 𝜅𝐷(𝑡, 𝑇𝑖+1))Φ(−𝑑1(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖)) (D.17)

−𝐷(𝑡, 𝑇𝑖)∫
𝑇𝑖

𝑡
𝑅1(𝑥, 𝑡, 𝑡1)Φ(−�̄�2(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖 , 𝑡1)) − �̄�(𝑡1)Φ(−𝑑1(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖))𝑑𝑡1

+𝜅𝐷(𝑡, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑡
𝑅1(𝑥, 𝑡, 𝑡1)Φ(−𝑑2(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖 , 𝑡1)) − �̄�(𝑡1)Φ(−𝑑1(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖))𝑑𝑡1

−𝜅𝐷(𝑡, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
𝑅1(𝑥, 𝑡, 𝑡2)∫

𝑡2

𝑡
𝑒𝜙(𝑡1 ,𝑡2)Σ(𝑡,𝑡1)𝑅1(𝑥, 𝑡, 𝑡1)Φ(−𝑑∗2(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖 , 𝑡1, 𝑡2))

−�̄�(𝑡1)Φ(−𝑑∗1(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖 , 𝑡1))𝑑𝑡1𝑑𝑡2

+𝜅𝐷(𝑡, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
𝑅1(𝑥, 𝑡, 𝑡2)∫

𝑡2

𝑡
𝑅1(𝑥, 𝑡, 𝑡1)Φ(−𝑑2(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖 , 𝑡1))

−�̄�(𝑡1)Φ(−𝑑1(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖))𝑑𝑡1𝑑𝑡2

+𝜅𝐷(𝑡, 𝑇𝑖+1)∫
𝑇𝑖+1

𝑇𝑖
𝑅2(𝑥, 𝑡, 𝑡1)Φ(−𝑑2(𝑥∗ − 𝜙(𝑡, 𝑇𝑖)𝑥, 𝑡, 𝑇𝑖 , 𝑡1))𝑑𝑡1

Δ𝑉𝐶𝐶𝑅(0, 0) = 𝐷(0, 𝑇𝑖)∫∫
ℝ2
𝐺0(0, 0, 0; 𝜉, 𝜁, 𝑇𝑖)Δ𝑉𝑐𝑎𝑝𝑙𝑒𝑡(𝜉, 𝑇𝑖)𝑑𝜁𝑑𝜉 (D.18)

= 𝐷(0, 𝑇𝑖)
𝐾(𝑇𝑖 , 𝑇𝑖+1)

∫
ℝ
𝜑( 𝜉

√Σ(0, 𝑇𝑖)
) (𝐹2(𝜉, 𝑇𝑖 , 𝑇𝑖+1)𝐾(𝑇𝑖 , 𝑇𝑖+1)

− 1) 𝜉 − 𝑥∗

√2𝐾(𝑇𝑖 , 𝑇𝑖+1)
𝜑(−�̄�2(𝜉, 𝑇𝑖 , 𝑇𝑖+1))𝑑𝜉

= 𝐷(0, 𝑇𝑖)
𝐾(𝑇𝑖 , 𝑇𝑖+1)

∫
𝑇𝑖+1

𝑇𝑖
�̄�(𝑡2)∫

𝑡2

𝑇𝑖
�̄�(𝑡1)𝑒Δ𝑥

∗(𝑇𝑖 ,𝑡1 ,𝑡2) (𝑒𝜙(𝑡1 ,𝑡2)Σ(𝑇𝑖 ,𝑡1) − 1) ⋅

(𝜑(−𝑑2(𝑥∗ − Δ𝑥∗(𝑇𝑖 , 𝑡1, 𝑡2), 0, 𝑇𝑖)) − 𝜑(−𝑑2(𝑥∗, 0, 𝑇𝑖))) 𝑑𝑡1𝑑𝑡2.



82 D. Derivation of caplet and floorlet prices with the BlackKarasinski pricing kernel



E
Results comparative study

Maturity HW imp vol BK imp vol Diff imp vol HW price BK price Diff price
1𝑌 13,4 14,5 1,04 2, 23 ⋅ 10−3 0,01 3, 34 ⋅ 10−3
2𝑌 18,7 18,7 0,02 0,65 0,64 3, 31 ⋅ 10−3
3𝑌 29,5 27,7 1,73 7,71 6,77 0,94
4𝑌 42,3 40,9 1,41 26,09 25,00 1,10
5𝑌 47,9 50,2 2,33 45,77 47,81 2,04
6𝑌 53,5 56,1 2,58 65,86 68,28 2,42
7𝑌 59,5 57,0 2,45 83,79 81,38 2,42
8𝑌 61,8 58,3 3,51 96,50 92,89 3,61
9𝑌 60,2 61,0 0,83 104,39 105,27 0,88
10𝑌 59,3 61,8 2,50 111,92 114,65 2,73
11𝑌 58,0 59,6 1,65 116,14 117,99 1,85
12𝑌 57,2 57,8 0,51 113,38 113,98 0,60
13𝑌 54,8 53,9 0,91 112,98 111,90 1,09
14𝑌 53,9 53,6 0,24 115,10 114,82 0,29
15𝑌 52,5 51,6 0,86 113,57 112,50 1,07

(a) Results for the 0.5% strike model

Table E.1: The forward Bachelier implied volatilities, in bps, from the HullWhite and BlackKarasinksi model with corresponding
model prices. The forward implied volatilities correspond to caplets with a tenor of 1𝑌 and notional of 10.000. (Continues on
next page)
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Maturity HW imp vol BK imp vol Diff imp vol HW price BK price Diff price
1𝑌 24,4 27,9 3,44 3, 81 ⋅ 10−4 2, 94 ⋅ 10−3 2, 56 ⋅ 10−3
2𝑌 34,1 34,1 0,03 0,52 0,52 2, 58 ⋅ 10−3
3𝑌 39,9 40,0 0,07 3,75 3,77 0,02
4𝑌 46,6 45,5 1,15 13,01 12,31 0,70
5𝑌 49,8 50,7 0,83 25,91 26,58 0,68
6𝑌 53,0 54,0 1,03 40,49 41,47 0,97
7𝑌 56,4 55,4 0,95 54,17 53,20 0,97
8𝑌 58,2 57,0 1,19 65,32 64,03 1,29
9𝑌 58,5 58,8 0,34 74,37 74,76 0,39
10𝑌 58,8 59,6 0,77 82,80 83,70 0,90
11𝑌 58,9 60,3 1,31 88,64 90,23 1,59
12𝑌 59,8 60,1 0,34 88,91 89,34 0,43
13𝑌 59,1 59,3 0,18 90,98 91,21 0,23
14𝑌 59,3 59,0 0,29 94,82 94,43 0,38
15𝑌 58,9 57,5 1,38 95,32 93,46 1,86

(b) Results for the 1% strike model

Maturity HW imp vol BK imp vol Diff imp vol HW price BK price Diff price
1𝑌 30,1 32,8 2,75 5, 40 ⋅ 10−6 4, 28 ⋅ 10−5 3, 73 ⋅ 10−5
2𝑌 41,9 41,9 0,00 0,16 0,16 1, 03 ⋅ 10−5
3𝑌 47,3 48,1 0,76 1,74 1,88 0,14
4𝑌 52,8 52,1 0,73 7,19 6,88 0,31
5𝑌 55,4 55,7 0,26 16,06 16,23 0,17
6𝑌 56,8 56,9 0,16 26,08 26,21 0,13
7𝑌 56,8 56,7 0,14 34,51 34,38 0,13
8𝑌 57,3 57,0 0,31 42,74 42,42 0,32
9𝑌 58,2 58,3 0,07 51,35 51,43 0,08
10𝑌 59,0 59,2 0,20 59,41 59,65 0,24
11𝑌 59,2 59,7 0,52 64,98 65,61 0,63
12𝑌 59,3 58,9 0,31 65,15 64,75 0,39
13𝑌 58,3 58,2 0,16 66,98 66,78 0,21
14𝑌 58,0 58,2 0,18 70,22 70,46 0,24
15𝑌 57,4 57,2 0,20 70,73 70,46 0,28

(c) Results for the 1.5% strike model

Maturity HW imp vol BK imp vol Diff imp vol HW price BK price Diff price
1𝑌 34,1 1, 09 ⋅ 10−2 34,06 3, 89 ⋅ 10−8 0,00 3, 89 ⋅ 10−8
2𝑌 47,5 47,5 1, 86 ⋅ 10−3 0,04 0,04 1, 34 ⋅ 10−5
3𝑌 53,4 54,0 0,69 0,80 0,87 0,07
4𝑌 59,2 58,1 1,08 4,27 3,96 0,31
5𝑌 62,0 62,5 0,47 10,73 10,97 0,25
6𝑌 62,4 62,6 0,18 18,00 18,13 0,13
7𝑌 60,5 60,3 0,16 23,24 23,11 0,13
8𝑌 59,6 59,0 0,62 28,89 28,33 0,57
9𝑌 60,1 60,1 0,06 35,68 35,73 0,06
10𝑌 60,4 60,8 0,46 42,23 42,74 0,51
11𝑌 60,3 61,4 1,09 47,02 48,28 1,26
12𝑌 60,3 59,7 0,56 47,66 46,99 0,67
13𝑌 59,5 59,4 0,02 49,65 49,63 0,02
14𝑌 59,1 59,3 0,12 52,68 52,83 0,15
15𝑌 58,6 58,0 0,56 53,50 52,78 0,72

(d) Results for the 2% strike model

Table E.1: (Continue) The forward Bachelier implied volatilities, in bps, from the HullWhite and BlackKarasinksi model with
corresponding model prices. The forward implied volatilities correspond to caplets with a tenor of 1𝑌 and notional of 10.000.
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