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SUMMARY

For many years, improvements have been made in hydrologic modelling in catchments. For a
long time, a vast amount of data has been collected, which contributes to the quality of these
hydrologic models. Since the last decades, this has been complemented by various satellite
measurements. This makes way for a new, data-driven generation of models. This research
proposes a non-parametric Bayesian network (NPBN) to model hydrologic processes. The
Bayesian network (BN) is a directed, acyclic graph (DAG), in which the variables are repre-
sented by the nodes and the conditional probability distribution between variable pairs is rep-
resented by the arcs. This graphically models a complex implementing of Bayes’ theorem. BNs
are widely used in complex risk processes, due to the ability to handle complex probabilis-
tic dependencies. More specifically, NPBNs are computationally less expensive than many
conceptual hydrologic models and are flexible to handle different continuous data sources.
Moreover, variables not directly related to either a water flux or quantity, can be implemented
directly into an NPBN. An unsaturated BN with an effective layout, which is the model that is
used in this thesis, can predict other variables than the target as well, keeps probability dis-
tributions although other variables are fixed and models conform physical relations between
variables. Other data-driven methods, among which is the saturated BN, do not have these
advantages. The goal of this thesis is to make an NPBN for a lowland catchment and testing its
performance. This boils down to the following research question:

What is the optimal setup of a Bayesian network hydrologic model in a lowland
catchment, and how does it perform?

The selected case study is the catchment of the Vledder, Wapserveense and Steenwijker Aa,
which is located in the north of The Netherlands. This catchment makes this research the first
one in which an NPBN is comprehensively implemented for (1.) a single catchment in which
the catchment processes are modelled, (2.) in a Dutch catchment and (3.) a lowland, partially
managed, catchment.

For the BN model, the following variables are selected and data is acquired: precipitation,
temperature, solar radiation, soil moisture, NDVI, groundwater levels from a single well and
surface water levels from a single measurement station. The input data combines terrestrial
measurements with satellite measurements. Additionally, the monthly maximum daily aver-
age discharge (MMDAD) are selected as target variable. This target variable is used to optimise
a number of parameters of the BN throughout this research, with the performance parameter
Kling-Gupta efficiency (KGE). The quality of the data is looked into. The data could not be re-
jected on the basis of the Budyko framework. No further decisive tests on the data could be
performed, except for some minor filtering of impossible and implausible values. However,
using imperfect data often reflects real-world application of such a model.

In this thesis, the testing has been done predominantly a posteriori. This is because the
central goals is to make the model predict the MMDAD well and the other goals for the model
are secondary. Therefore, a complete BN is introduced early in the research. This model is

xi
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used to analyse all the parameters in the model, which is mostly done through calculation of
the KGE, a performance indicator that is mostly used in hydrology, of the prediction of the
MMDAD.

The method to use continuous variables in a BN that is used in this thesis, is based on copu-
las. These are multivariate probability space constructed with marginals constructed with the
cumulative distribution functions (CDFs) of the variables. A wide range of copula types exist.
For this thesis, the Gaussian copula was selected to be implemented for all variable combi-
nations, because this type has no tail dependence and allows for the use of the multivariate
normal distribution to calculate a conditioned copula. The correlations that are used, are the
partial, normal rank correlations. This thesis tests the assumption that the Gaussian copula is
sufficient for all variable combinations, in context to the performance of other copulas. The
Gaussian copula is not optimal for all combinations, but does not make for a highly unsatisfy-
ing fit. Moreover, this method is far more convenient than using the alternative method called
vine-copula method and most likely gives a better fit than the other alternative: the combined
probability distributions than the usage of a single Archimedean copula. An exception to the
latter is that the Frank copula gave better fits to several of the variable pairs than the Gaussian
copula.

Three distributions are compared to model the marginal distributions. These are (1.) the
empirical cumulative distribution function (ECDF), which is a step function, (2.) an altered
logistic function, which is introduced in this thesis, and (3.) the Gaussian mixture model. The
latter has been selected as this performed equally well as the ECDF when implemented for all
variables in predicting the MMDAD and has the possibility to predict data points that are not
in the data yet. This turned out to be only marginally the case. Therefore, a novel alteration
function has been proposed to shift the predictions to make the model predict more extrapo-
lated events. In the case of the model proposed in this thesis, a minor shift has been used to
predict peak discharges better.

A threefold of parameters of the BN has been analysed and a favourable setting has been
chosen: first, it was considered using the median or the mean of the predicted variable. Using
the mean was considered slightly more favourable. Then, it was analysed how many samples
to use for a prediction, of which 500 samples were selected. Finally, is was analysed how many
days prior to the MMDAD event to take into account for aggregating the other variables. Here,
8 days were selected.

Additionally, a sensitivity analysis has been performed to understand what influences of ar-
tificial errors would be. Because usually many datapoints are aggregated per variable, random
errors have a marginal influence on the network. Systematic errors do not have any influence
on a BN, except for that a predicted variable is off by that systematic error. New systematic
errors have a bigger influence. For these errors, the sign (plus or minus) of the correlation in
combination with the sign of the new systematic error matters: when this is the same, the error
is generally less.

Criteria for a practical, well-performing BN have been presented and a strategy to create
such a model that satisfies these criteria has been assembled on the basis of the characteristics
of a BN. This strategy left the selection of some connection implementations up for interpre-
tation. Which implementation is chosen, has been decided by looking at which had the best
prediction of a relevant variable within the network.

The final model gave a median, k-fold tested KGE of 0.73 when predicting the MMDAD.
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The larger discharges are slightly underestimated, however, this effect is less due to the shift
function. It is also analysed how well the MMDAD is predicted, if not all other variables are
fixed. Other variables can also be predicted, but not as well as the MMDAD.

Another novelty is that a BN model is benchmarked against a SOBEK model, a neural net-
work, and a multiple linear regression model. The SOBEK model that is in use for flood pre-
diction, performs less than the BN. The Neural Network most likely needs more data than is
provided in this dataset and therefore also does not perform as well as the BN. Using a multiple
linear regression is very easy and quick and performs just a bit less than the BN. However, all
these other models lack some advantages that the unsaturated BN has.
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1
INTRODUCTION

1.1. PROBLEM STATEMENT AND OBJECTIVE
Finding the probability of future events has always been one of humanity’s greatest efforts.
Especially for areas close to rivers, identifying the chance of a flood can be vital. Therefore,
conceptual hydrologic and rainfall-runoff models have been introduced to predict discharges
in rivers from precipitation and other variables in the catchment area. Nowadays, as more and
more people live in deltas and in the close proximity of rivers, these are increasingly impor-
tant. Furthermore, as a consequence of climate change the frequency and intensity of heavy
precipitation events has likely increased in Europe and North America (IPCC, 2014). These
circumstances and developments increase the hazards of flooding.

The Netherlands is a country with many small and several large rivers. Because of its flat
landscape, low elevation, high economic activity and high population, industry and agricul-
ture density, consequences of flooding are big in the Netherlands. This means that reliable,
flexible hydrologic models are of great importance to prevent chances of flooding.

Conventional models in hydrology, such as the HBV model (Bergström, 1976) are based on
time-dependent storages and fluxes. Another range of models, often used for (mostly partially
or fully managed) systems in the Netherlands, combine rainfall-runoff input with the Saint-
Venant equations for modelling the hydrology in an area. For complex systems, both methods
can become computationally heavy, because sufficiently small timesteps are needed to make
the methods numerically stable. Moreover, they can also become difficult to implement for the
user, because he or she has to make assumptions about atmospheric, lithospheric, biospheric
and hydrospheric parameters.

Currently, every year more data is collected in the world than ever before (O’Dea, 2020),
which also holds true for meteorological and hydrological data. This paves the way for novel,
statistical, data-driven models in hydrology.

This research proposes non-parametric Bayesian networks (NPBNs) to model a hydrologic
process. Bayesian networks (BNs) are widely used in complex risk processes, due to the ability
to handle complex probabilistic dependencies. More specifically, NPBNs are computationally
less expensive than conceptual models and are flexible to handle different continuous data

1
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sources. In conceptual models, for example, only water fluxes and storage can be part of the
model. Other variables have to be translated to either a flux or a storage. In a Bayesian network,
variables not directly related to either a water flux or quantity, can be implemented directly.
For example, solar radiation can be used in a Bayesian network, whereas a conceptual model
requires translation and combination to a flux, such as evapotranspiration. On top of that,
BNs require only a simple, straightforward combination of variables with logical relations to
construct a model. The rest of the probabilistic relations is fitted without the need to quantify
more information than that is given with a layout and the order of dependence. In contrast to
conceptual models, a number of variables that are difficult to measure, such as effective soil
porosity and friction parameters over the whole catchment area, do not have to be measured
or induced from a fit to data. Lastly, BNs use probability distributions throughout the network.
By inference of observations, the masses of the other probability distributions are reordered.
This means that it is possible to get a result from the model when not all variables have a known
value, and that the final result (of all variables) is not just a number, but a whole probability
distribution. This makes, for example, an uncertainty analysis possible. Therefore, Bayesian
networks and related methods have slowly been introduced in hydrology over the previous two
decades (e.g. Couasnon, 2017; Favre et al., 2004; Molina et al., 2005; Nasr et al., 2018; Paprotny
and Morales-Nápoles, 2017; Sanjaya, 2018; Torres Alves, 2018; Yang H. et al., 2002).

Another data-driven method is, for example, the (artificial) neural network (NN). This is a
powerful, novel method that is used in e.g. autonomous vehicles and in big data recommen-
dation systems. However, for use as hydrologic models, NNs have some key disadvantages
in comparison to the Bayesian network. With large NNs it is difficult to comprehend the in-
ner workings for users. Unexpected results cannot be clarified and calculations in its hidden
layers do not always make sense physically. In BNs on the other hand, the influence of each
variable on the others can be instantly and easily interpreted with its (partial) correlation co-
efficients. The BN works related to (and therefore gives some insight in) the actual processes
in the catchment. Most notably, for governmental bodies, models that are difficult to compre-
hend, are highly unfavourable, as they usually have to clarify their decision making process to
their inhabitants.

Despite their great potential, BNs have some drawbacks as well. To begin with, BNs often
have a less accurate prediction of a single value (mean or median of a distribution) than which
can generally be expected from common hydrologic models, although specific research into
this subject has not yet been conducted. This research does make a comparison between a BN
and a conventional model, which in this case a is SOBEK model (see Section 9.2.2). Secondly,
BNs can potentially generate very inaccurate results in a number of cases. The reason of this is
not always certain, such as in Sanjaya (2018) and Torres Alves (2018), which makes the usage
of BNs a greater risk. Moreover, NPBNs usually require a significant amount of data for their
quantification. Because of the fact that relations are created solely from the data in these types
of BNs, an extensive dataset that includes the same timesteps for all variables, has to be avail-
able. Lastly, BNs are not time dependent. Therefore, storage in the system has to be explicitly
implemented in the network, if this has a significant impact on the catchment. As it is nearly
impossible to measure the complete storage, or derive runoff from current events, Bayesian
networks usually work with a lower frequency with aggregated values, such that many storage
differences can be neglected.
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The model proposed in this research, deals with all these shortcomings. The target variable
in this research is the monthly maximum daily average discharge (MMDAD) out of a catch-
ment. In the case of the main case study, this catchment is the Vledder, Wapserveense and
Steenwijker Aa (see Chapter 3). The selection of this target variable is an optimum between
having enough datapoints, sufficient data aggregation, and being an interesting variable. High
discharges often result in hindrance of flooding downstream. For more argumentation about
this variable, see Section 3.3.2.

The MMDAD is quantitative data, which calls for a quantitative model. Therefore, a so-
called non-parametric Bayesian network is used. This is a model in which probability distribu-
tions of continuous variables are connected via probabilistic units called copulas.

Concluding, the goal of this research is to create an optimal Bayesian network for a lowland
catchment in the Netherlands, test its performance, and benchmark its performance against a
SOBEK model. This boils down to the following general research question:

What is the optimal setup of a Bayesian network hydrologic model in a lowland
catchment, and how does it perform?

1.2. PREVIOUS RESEARCH INTO BAYESIAN NETWORKS AND SIMILAR

METHODS IN HYDROLOGY
The term Bayesian network, and a description of its characteristics, was first introduced by
Pearl (1985). This only contained discrete variables. Conditional probabilities between con-
nected variables had to be explicitly defined.

Prior to this, copulas, have been introduced by Sklar (1959). Copulas can be used to link
multiple empirical, continuous distributions and are used in this thesis as well. Over time,
multiple types of copulas have been created, of which many are featured in Nelsen (2006), in
an introductory manner.

NPBNs have first been introduced by Kurowicka and Cooke (2005), sampling vines has
been described by Kurowicka and Cooke (2007) and the method has further been improved
upon by Hanea et al. (2015). The main software package to use NPBNs is UniNet. This pro-
gramme can handle NPBNs that work with discrete or continuous variables, or a combination
of both. It was initially developed at the TU Delft by lead developer Dan Ababei and is now
available from the website of his company LightTwist1 with a free academic licence or a paid
professional licence. Cooke et al. (2007) introduces and describes UniNet.

The method of conditioning a BN based on the Gaussian copula with a conditional multi-
variate normal distribution (see Section 2.6), has been introduced by Hanea et al. (2006). The
conditional multivariate normal distribution itself has first been described by Eaton (1983).

Bayesian statistics were first introduced in hydrology by, among others, Krzysztofowicz (2002).
This still had a typical hydrologic model in its core and mainly used Bayesian statistics for
the probability distribution of the precipitation input and the river stage output. In the same
year, Yang H. et al. (2002) has created a Bayesian network to model desertification. This is a
model that also features societal and land use changes, and has discrete states for each of the

1https://lighttwist-software.com/uninet/

https://lighttwist-software.com/uninet/
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variables.

Separately, several scholars have used copulas to model different hydrologic processes.
One of the first to make an interesting contribution were Kelly and Krzysztofowicz (1997), who
used a method related to copulas in hydrology. Actual copulas were introduced, among others,
by Salvadori and De Michele (2002). An early overview of different uses of copulas in hydrology
has been made by Renard and Lang (2007). They only acknowledge field significance determi-
nation, regional risk analysis, Discharge-Duration-Frequency models and regional frequency
analysis, so no complete hydrologic (rainfall-runoff) model. Salvadori and De Michele (2007)
also give an overview in the same year, where they acknowledge the use of copulas for partial
processes in the hydrologic system, such as return periods of bi- and trivariate events, similarly
to work they did before (Salvadori and De Michele, 2004).

Pioneering work in using Bayesian networks as hydrologic models has been done by Molina
et al. (2005), of which the complete emergency decision support model featured a rudimental
hydrologic model. Then, Paprotny and Morales-Nápoles (2017) made a basic Bayesian net-
work as a hydrologic model with data from more than 1800 European catchments and as a
target value the annual maximum discharge per catchment. As input were the maximum pre-
cipitation event and several catchment characteristics, such as the area, steepness and the
number of lakes and marshes used. This research gave some promising results for Bayesian
networks as hydrologic models, but did still not achieve the accuracy of results of purpose-
fully built conventional hydrologic models. The main purpose of the models was to give an
educated estimate for annual runoff maximums. Couasnon (2017); Couasnon et al. (2018)
built upon this research. They performed similar research as Paprotny and Morales-Nápoles
(2017), but then in the contiguous United States. Sanjaya (2018) did a closely related case study
in Java, in which a Bayesian network gave poor results for this specific case, which was equally
true for the case study of Torres Alves (2018) in Ecuador. Nasr et al. (2018) use a similar method,
but more successfully. In this research, the case study was in the Magdalena-Cauca Basin in
Colombia.

1.3. OVERVIEW RESEARCH GOALS AND DESIGN

This thesis builds upon the research presented in the previous section and has as a contri-
bution that the method is for the first time comprehensively implemented for (1.) a single
catchment, (2.) for the first time in a Dutch catchment and (3.) for the first time in a low-
land, partially managed, catchment. For this specific type of catchment, an optimal network
layout is sought after and the different copulas are compared for this case. Furthermore, a
whole new marginal probability distribution is introduced (Section 6.2) and another fit func-
tion for the copula is implemented (Section 6.3). This is done to be able to create a model
that is less directly related to the data it is trained with and is able to extrapolate better, to cre-
ate a model that can predict high discharge peaks. Moreover, to make a more optimal model,
there is still more requirement for extrapolation. This is handled via a new shift function in
Section 6.6. Then, to further optimise the model and determine its performance when pa-
rameters change, a comprehensive parameter sensitivity analysis with several goodness-of-fit
methods is executed for this case study (Chapter 5). Finally, another novelty is that a BN model
is benchmarked against a SOBEK model (Section 9.2.2), a neural network (Section 9.2.3), and a
multiple linear regression model (Section 9.2.4). The majority of the calculations is done with
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the Python package copulabayesnet2, which has been written for this thesis.

In this research, the theory of the method is introduced to start off with because data and case
study decisions are base upon this method. First, the concept of copulas is introduced in Sec-
tion 2.2. These are essential in connecting correlated parameters in non-parametric Bayesian
networks. Several types of copulas are introduced, fit methods are explained and the step to
the Bayesian networks is made in Appendix B.1 and Section 2.6.

Afterwards, the case study is introduced in Chapter 3. The catchment is located in the area
managed by the water board Waterschap Drents Overijsselse Delta (WDODelta), in the Dutch
provinces of Drenthe and Overijssel, adjoined to the province of Friesland. For this research,
WDODelta has kindly made all their data available. This is a very broad and useful dataset,
and this catchment is therefore highly suitable for a case study. Alongside the WDODelta data,
other sources of data are used. The variables are explained in this chapter and the influence on
the hydrologic system is discussed. All of the data is filtered and tested with a water balance,
which is also featured in this chapter. To test parameters to be used, a first model is introduced.
Finally, the metric of performance of any model is introduced in Section 4.2.

To select the optimal type of copulas to use in the model, a number of goodness-of-fit
tests are introduced and implemented in Chapter 5. The performance of the copulas is also
calculated, and possible weak points of the copulas are pointed out.

A copula has uniform marginals, which calls for a function to project the data from its
original shape to uniform values. This is a cumulative distribution function (CDF) type of
equation, of which three types are introduced in Chapter 6: two probability distributions are
fitted to the data and one is a step function directly acquired from the data. All parameters are
optimised and the optimal function for the model is selected.

In Chapter 7, all other parameters within the model are thoroughly tested, and the param-
eter that gives the best fit to predict the MMDAD is chosen. Moreover, an analysis is made of
the variables to use, and how to combine these in the final model, in relationship to what gives
the best performance and the most insight into the hydrologic processes in the catchment.

The results of the final model are presented in Chapter 9. In the same chapter, the SOBEK
model, the neural network and multiple linear regression model, against which the model pro-
posed in this research is benchmarked, are introduced. Afterwards, the results are discussed
and put into context in Chapter 10 and a conclusion of this research is drawn, of which some
recommendations follow, both in Chapter 11.

2pip install copulabayesnet, available on https://github.com/SjoerdGn/copulabayesnet, see also Ap-
pendix G.4.

https://github.com/SjoerdGn/copulabayesnet




2
COPULAS AND NON-PARAMETRIC

BAYESIAN NETWORKS

2.1. BAYESIAN NETWORK
A Bayesian network (BN) is a probabilistic model that is graphically represented in the form of
a directed, acyclic graph (DAG). These are graphs in which the edges also have an orientation
(denoted with an arrow) and in which it is not possible to return to the same node following
the arrows (Hanea et al., 2006). A BN is based around a number of variables (the nodes) and

Figure 2.1: Example of a DAG. The connections have a defined direction and no cycles can be made following the
direction of the arrows. In the case of a BN, the nodes are variables and the arcs are conditional distributions. See also
Appendix A for a more in-depth explanation of the BN layout.

the conditional correlations between them. The method offers great flexibility in handling
variables from different sources and uses probability distributions of variables throughout the
network, also when the network is conditioned (i.e. certain variables are fixed). In this re-
search, it is implemented on a relatively flat, partly managed, lowland catchment. It is exam-
ined how well it performs in predicting the discharge out of this catchment and how well it
models other hydro-meteorological processes.

7
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Most variables that can be measured in a catchment area, are continuous variables. A
type of BN that handles these continuous variables, is the non-parametric Bayesian network
(NPBN). This method accepts any distribution, as long as the continuous variables have in-
vertable distributions (Hanea et al., 2015). This flexibility is the reason why this type of BN is
used in this research. The connections, which are conditional probability distributions, are
represented by multivariate probability distributions with uniform marginals, called copulas,
in an NPBN. These were introduced by Sklar (1959).

2.2. SKLAR’S THEOREM
A model to connect multiple empirical distributions, is the copula. This is first defined by Sklar
(1959), in what is now called Sklar’s theorem. This states that every multivariate distribution
with d variables (v1, . . . , vd ), with the marginals F 1(v1), . . . ,Fd (vd ), can be written as:

F (v1, . . . , vd ) =C (F1(v1), . . . ,Fd (vd )) . (2.1)

The function C (·, . . . , ·) is the cumulative representation of the copula. For the probability den-
sity case, using the chain rule, the distribution is now defined as

f (v1, . . . , vd ) = c1,...,d (F1(v1), . . . ,Fd (vd )) ·
d∏

i=1
fi (vi ), (2.2)

(Aas et al., 2009). Acquiring these uniform marginals from a variable, means that F (·) is the
cumulative distribution function (CDF) of this variable. The uniform1 marginals (u ∈ [0,1] and
equally distributed) are also defined as u:

u = F (v). (2.3)

This gives that the probability density of a value of a variable v is distributed as f (v). Three
types of functions are proposed for F (v) in Chapter 6. An example of the visual representation
copula of a copula, in this case Gaussian or normal copula, can be seen in Figure 2.2.

Copulas have the advantages that any probability distribution can be used to relate vari-
ables, as long as the CDF is defined. This makes for a great method in a complicated system
where not all complex relations between variables are easily expressible in other mathematical
forms. In Figure 2.3, a visual example can be found of the construction of a bivariate copula.

2.3. TYPES OF COPULA
Over the years, many different copula types have been proposed, which are different formulas
that can be used to describe Equations (2.1) and (2.2). In this thesis, the Gaussian copula is
used, which assumes a multivariate normal distribution between the inverse standard normal
function of the marginals. However, there is also the family of Archimedean copulas, of which
many have a different dependence in each opposite corner. This is called tail dependence.

1In this thesis values that originate from the uniform distribution between 0 and 1 are called uniform values. However,
is the case of a conditioned copula, these values do not follow a uniform distribution anymore. But as they have a
similar role in association with a copula, they ware still called uniform values. Any value u that can be converted to
a value of a certain variable with F−1

i (u) is called a uniform value in this thesis.
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(a) Probability density function (PDF) (c(u1,u2)) (b) CDF (C (u1,u2))

Figure 2.2: Examples of a bivariate Gaussian copula. The CDF is plotted in a 2-dimensional colourmap, because this
gives a better comparison between the different copulas. Note that the colour scale is different for the PDF and the
CDF and that the 3-dimensional PDF graph is cutoff at p = 5.

The main purpose of testing these copulas is to test the assumption that the Gaussian cop-
ula is sufficient for all variable combinations. Some variable combinations potentially have
tail dependence. If Archimedean copulas give better fits to these variables, it suggests that the
Gaussian copula is imperfect. Other copula types, such as copulas based on mixture distribu-
tions, will not be analysed in this research.

2.3.1. GAUSSIAN

Gaussian copulas are symmetrical copulas that are based on the Gaussian or normal distribu-
tion. For correlation matrix R (Rd ), which represents the correlation of all variable pairs (see
Section 2.6.2), the CDF of the copula (C ) and the PDF (c) are defined by as

C Ga
R (u) =ΦR

(
Φ−1(u1), . . . ,Φ−1(ud )

)
, (2.4a)

C Ga
R (u) = 1p|R| exp

(
−1

2
QT · (R−1 − I

) ·Q)
, (2.4b)

where
| · | denotes the determinant,
I is the identity matrix,

Q is

Φ
−1(u1)

...
Φ−1(ud )


and Φ−1(·) is the inverse CDF of the standard normal distribution (Arbenz, 2013).
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Figure 2.3: Example two variables, the monthly maximum daily average discharge (MMDAD), see Section 3.3.2, and
the solar radiation (see Section 3.3.3), that are converted to uniform values via Equation (2.3). In this case, the em-
pirical cumulative distribution function (ECDF) is used. In Chapter 6, other versions of the CDF are introduced as
well. Note that for the solar radiation variable, the axes are flipped in comparison to the common display of a CDF
function, to share the axis with the graph above and project the values to the scatter plot (similarly to an exceedance
probability graph). The two sets of uniformly distributed values form the uniform marginals of a copula, of which the
PDF is shown in this figure.

2.3.2. ARCHIMEDEAN COPULAS

Archimedean copulas generally do not have a straightforward multivariate (more than 2 vari-
ables) version. Besides some complicated multivariate extensions, other options respectively
make use of vine-copulas (see Appendix B.1) or meta-elliptical copulas (Aas et al., 2009).

Archimedean copulas are characterised by the generator that each copula type has and
that they have a straightforward closed form for the bivariate case. Nelsen (2006) recognises
22 types of (1-parameter) Archimedean copulas, wich are all initially defined for the bivariate
case. The parameter that defines the shape of the copula is denoted with θ. In this research,
only a selection of these copulas are considered for the case study model.

GUMBEL-HOUGAARD COPULA

Gumbel-Hougaard copulas have upper tail dependence: this means they have a higher depen-
dence in the north east corner in contrast to the south west corner. See Figure 2.4.
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(a) PDF (c(u1,u2)) (b) CDF (C (u1,u2))

Figure 2.4: Examples of a bivariate Gumbel-Hougaard copula.

(a) PDF (c(u1,u2)) (b) CDF (C (u1,u2))

Figure 2.5: Examples a bivariate Clayton copula.

C GH
θ (u1,u2) = exp

(
−

[
(− lnu1)θ+ (− lnu2)θ

]1/θ
)
, for θ ∈ [1,∞). (2.5)

CLAYTON COPULA

Clayton copulas have a high tail dependence in the south west corner. See Figure 2.5.

C Cl
θ =

[
max

(
u−θ

1 +u−θ
2 −1,0

)]−1/θ
, for θ ∈ [−1,∞)\{0}. (2.6)
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FRANK COPULA

Frank copulas are similar to their Gaussian counterpart and have no tail dependence (Em-
brechts et al., 2001). See Figure 2.6.

(a) PDF (c(u1,u2)) (b) CDF (C (u1,u2))

Figure 2.6: Examples of a bivariate Frank copula.

C Fr
θ =− 1

θ
ln

(
1+ (e−θu1 −1)(e−θu2 −1)

e−θ−1

)
, for θ ∈ (−∞,∞)\{0}. (2.7)

JOE COPULA

Joe copulas have a high tail dependence in the north east corner. See Figure 2.7.

(a) PDF (c(u1,u2)) (b) CDF (C (u1,u2))

Figure 2.7: Examples of a bivariate Joe copula.
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C J
θ
= 1−

(
(1−u1)θ+ (1−u2)θ− (1−u1)θ · (1−u2)θ

)1/θ
, for θ ∈ [1,∞). (2.8)

NEGATIVELY CORRELATED VARIABLES

For a number of Archimedean copulas, it is not possible to create a copula with a negative
correlation. Therefore, in this thesis, in the case of negative correlation, one of the variables is
rotated around 0 (times -1, this is equal to ur = 1−u). It does matter, of course, which of the
variables is rotated. However, as the main goal of Chapter 5 is to test for the assumption that
Gaussian copulas are optimal to use for this case study, only one of the variables is rotated. This
is sufficient for this research because Clayton and Joe copulas are almost the opposite of each
other. In addition, the Gumbel and Clayton copula also model an opposite tail dependence.
Therefore, the effect of determining whether the Gaussian copula is the optimal, is already
achieved by rotating one variable.

2.4. FIT A COPULA TO DATA
In order to have the copula describe the multivariate distribution of a number of variables
well, the copula has to be fitted to the data. A number of methods is available to do so. The
preferred method depends on preference and the type of copula which is used. This section
discusses two methods and argues which method needs to be used in what occasion.

2.4.1. MAXIMUM LIKELIHOOD ESTIMATION
A likelihood function is intuitively defined as follows: the likelihood of drawing this empirical
combination, given the copula of choice with its parameter ϑ. This is a useful function as it
takes all values of the variable into consideration.

CANONICAL MAXIMUM LIKELIHOOD ESTIMATION

The Canonical Maximum Likelihood Estimation (CMLE) is the maximum likelihood function
that is made for copulas, and is therefore used as the preferred function to fit most of the cop-
ulas. In this research, the log-likelihood is taken. This means that the logarithm of the copula
values is taken. The maximum likely parameter ϑ (ϑ̂) is defined as follows (SAS Institute, 2017):

ϑ̂= argmax
ϑ∈Θ

m∑
i=1

logcϑ(ui ,1, . . . ,ui ,d ), (2.9)

where m is the number of variables in the training set.

2.4.2. DIRECTLY FROM CORRELATION
For Gaussian copulas, the parameter that has to be fitted is the correlation coefficient, or a
correlation matrix R (see Equation (2.4)). This coefficient can be fitted to the data directly with
one of the previous two methods. However, it is also possible to calculate the correlation co-
efficient directly. Three different types of correlation coefficients are discussed in this thesis.
An example of a likelihood function for a copula is to calculate the probability of each combi-
nation of uniform values in the PDF of the copula and sum this. When the logarithm of each
of these numbers is taken, the method tempers the high peaks that a copula can have, such
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that the fit is not dominated by the errors in the corners. To find the maximum likelihood, a
Nelder-Mead algorithm can be implemented, for example.

PEARSON CORRELATION COEFFICIENT

Pearson correlation is based upon how much the variables show linear correlation and is the
most widely used. Its coefficient is defined according to Equation (2.10).

ρp(V ′
1,V ′

2) = cov(V ′
1,V ′

2)

σV ′
1σV ′

2

, (2.10)

where cov(V ′
1,V ′

2) is the covariance between V ′
1 and V ′

2 and σ denotes the standard devi-
ation of a variable. A Pearson correlation of 1 is defined as when parameter V ′

2 is a direct
positive linear translation of parameter V ′

1.

SPEARMAN’S RANK CORRELATION COEFFICIENT

Spearman’s rank correlation coefficient is defined according to Equation (2.11).

rs(V ′
1,V ′

2) = ρp(rgV ′
1 , rgV ′

2
) = cov(rgV ′

1 , rgV ′
2
)

σrgV ′
1
σrgV ′

2

, (2.11)

where the only difference with Equation (2.10) is that the covariance is not taken from the
values that make up the variable, but from the rank of the values (rg). The rank is the number
of the value in the list, if all values would have been order from low to high. This has as an
advantage that any two variables that are not correlated linearly, but still strictly increasing,
still have a correlation coefficient of 1. This is exactly what is done by creating a copula, as the
CDF F (·) also orders all values in a rank.

NORMAL RANK CORRELATION

Thirdly, there is the normal rank correlation, which is defined as follows (Hanea and Harring-
ton, 2009):

rs,norm(U ′
1,U ′

2) = 6

π
arcsin

(
ρp

(
Φ−1(U ′

1),Φ−1(U ′
2)

)
2

)
, (2.12)

where U ′ is the vector of the uniform variables (also defined in Equation (2.13b)). The normal
rank correlation is the rank correlation between variables V ′

1 and V ′
2 if its relation were per-

fectly defined by the Gaussian copula. Therefore, this is the correlation coefficient that is used
for Gaussian copula models. However, the R-matrix for a Bayesian network is not necessarily
constructed of the rs,norm for each variable pair. This topic is covered in Section 2.6.2.

2.5. APPLICATION OF COPULAS IN NON-PARAMETRIC BAYESIAN NET-
WORKS

In a NPBN, the multivariate probability distribution is modelled by a copula or copulas. There
is a number of approaches to apply these copulas in a BN, such that the network can be con-
ditioned. In this section, three of these are discussed and the preferred method is selected for
this thesis:
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• Model the network as a single Gaussian copula. The Gaussian copula has a clear def-
inition for multivariate (more than 2 variables) usage. Because its parameter (R) is a
matrix with all the variable combinations, it is possible to implement different param-
eters per combination (see Equation (2.4)). Moreover, the Gaussian copula also offers
the possibility to use the multivariate normal method, which offers great flexibility in
conditioning (see Section 2.6). Therefore, this method is chosen for this research. The
assumption that this type of copula fits the data sufficiently well, is verified in Chapter 5.

• Model the BN as one single Archimedean multivariate copula. This is unfavourable as
Archimedean copulas are not all defined straightforward in the multivariate form and
many have specific tail dependence, which is likely to not perform well for all variable
combinations. Moreover, using a single Archimedean copula requires a single fit param-
eter θ to be used for all variable pairs, which highly likely will not suit all combinations.

• To make the implementation of different Archimedean copulas possible in a BN, com-
plex conjunction of copulas must be implemented. The principal method to do this, is
the vine-copula. This method combines bivariate copulas with so-called vines. How-
ever, when using for example 8 variables, such as proposed in Table 4.1, this method
requires 20160 different vines that have to be calculated (see Equation (B.3) in the ap-
pendix). This is highly unfavourable. See Appendix B.1 for a more in-depth coverage of
vine-copulas.

2.6. MULTIVARIATE NORMAL METHOD
The (multidimensional) Gaussian copula is defined by the multivariate CDF of the inverse
standard normal CDFs of the variables (see Equation (2.4a)). Conditioning of this copula can
therefore be done by using the multivariate normal (MVN) distribution (ΦR ) directly. This
makes it more straightforward to calculate a network which is not conditioned on all variables
(Hanea et al., 2006).

2.6.1. PROCESS

For a set of values (one value per variable) V = [v1, . . . , vd ]T , U = [u1, . . . ,ud ]T is defined as a
vector with the uniform values u of the corresponding values v of these parameters:

ui = F i (vi ), (2.13a)

U = [F 1(v1), . . . ,Fd (vd )]T . (2.13b)

These uniform values are then transformed to standard normal values2 with the inverse cu-
mulative distribution function of the standard normal distribution, Φ (i.e. N (0,1)):

si =Φ−1(ui ), (2.14a)

S =Φ−1(U ). (2.14b)

2As a similar generalised term as uniform values, standard normal values are any values s which can be converted to
uniform values with Φ−1(u).
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Now a conditional value vk given the conditioning (fixed) values Vc = [vc,1, . . . , vc,z ]T is dis-
tributed according to Gk :

vk |Vc ∼Gk (Sc ) = F−1
k (Φ(sk |Sc )), (2.15)

where Sc is defined by Equation (2.14b), si ,...,z are the values of the z conditioning variables, sk

follows from Equation (2.14a) and the conditioning is done with:

si |Sc ∼N (µ̄(Uc ), R̄(Uc )). (2.16)

In this equation, µ̄(Uc ) is defined according to Equation (2.18) and R̄(Uc ) according to Equa-
tion (2.19) in Section 2.6.3 (Hanea et al., 2006). Figure 2.8 contains a visual overview of the
multivariate normal method.

2.6.2. CORRELATION MATRIX
The correlation matrix R of the BN is based on the partial correlations between all variables
(Hanea et al., 2006). For each position in the correlation matrix, the generic correlation coeffi-
cient r for the variables V ′

1 and V ′
2, given by the other variables (denoted in the subscripts),

is defined as:

r 12;3,...,d = r12;4,...,d − r13;4,...,d · r23;4,...,d√
(1− r 2

13;4,...,d ) · (1− r 2
23;4,...,d )

. (2.17)

In this case, the correlation coefficient r that is used is the normal rank correlation rs,norm

(Equation (2.12)). Now, because the correlation is dependent on other partial correlations co-
efficients, this becomes a recursive formula, for which the order of correlations between pa-
rameters matters. In practical terms, the rank order of arrows in the BN matters to the values
in this matrix, and therefore the outcome of this model. In this research, the matrix R is ac-
quired by putting the model into the commercially available software Uninet. Uninet enables
ordering the variables manually.

2.6.3. CONDITIONAL MVN PARAMETERS
As Gaussian copulas are used, the uniform marginals can be rewritten as a Gaussian distribu-
tion with mean µ = 0 and standard deviation σ = 1, that is Φ−1(u). The conditional multidi-
mensional Gaussian distribution is then defined with mean µ̄, as follows:

µ̄=µk +Rkc R−1
cc

(
A−µc

)
, (2.18)

and as correlation matrix R̄:

R̄ = Rkk −Rkc R−1
cc Rck , (2.19)

where µk = [
0. . .0

]T
with length (d −z), where d is the number of variables in the multivariate

distribution and the number of nodes in the BN, and z is the number of variables which are
fixed, such that (d − z) is equal to the number of unfixed, conditional variables, µc =

[
0. . .0

]T

with length z, as the means of the initial distribution are 0, and A = [
a1, . . . , az

]T
is made up of

the z standard normal values of the conditioning variables:

ai =Φ−1(Fi (vc,i )) =Φ−1(uc,i ). (2.20)
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Figure 2.8: Example two variables, the MMDAD (see Section 3.3.2) and the solar radiation (see Section 3.3.3), that are
converted to uniform values via Equation (2.3) and then converted into standard normal values via the CDF of the
standard normal distribution. In this case, the empirical CDF is used. In Chapter 6, other versions of the CDF are
introduced as well. The dark grey striped line represents an example timestep with vM MD AD = 8.0 and vSR = 1.0,
which is plotted on the multivariate normal space as (1.17, -0.93) (in the plot visible as (-0.93, 1.17) because the axes
flip). The combination of the standard values of both variables is modelled by the multivariate normal distribution, of
which the PDF is shown in this figure.

Furthermore, the subsets of R are defined as follows:

R =
[

Rkk Rkc

Rck Rcc

]
with sizes

[
(d − z)× (d − z) (d − z)× z

z × (d − z) z × z

]
, (2.21)
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where R is the correlation matrix of the network. The sub matrices Rkk , . . . ,Rcc consist of the
indices of the fixed variables when a size z is given and the corresponding subscript is k, and
of the indices of the variable with a conditioned distribution when a size (d − z) is given and
the corresponding subscript is c (Helwig, 2017). Thus, the locations of the subsets of R are not
necessarily in the same position as shown in Equation (2.21) . This way, a network can be con-
ditioned with the R of the network (see Section 2.4.2) and any number of conditioning values.

2.7. RANDOM SAMPLING
For the verification of the copula (Section 5.3) and the conditioning of a copula (Section 2.8),
the copula has to be sampled randomly. According to Embrechts et al. (2001), n random sam-
ples of a Gaussian copula [u1, . . . ,un]T ∼CGa

R can be generated as follows:

1. Find the lower triangular matrix L of the Cholesky decomposition of the correlation ma-
trix R.

2. Draw n independent random values W = [w1, . . . , wn]T from N (0,1).

3. Set S = LW , with S = s1, . . . , sn

4. Now u =Φ(S) with i = 1, . . . ,n.

Calculating n random samples of a multivariate normal distribution is very similar (Gentle,
2009):

1. Find the lower triangular matrix L of the Cholesky decomposition of the conditioned
correlation matrix R̄.

2. Draw n independent random values W = [w1, . . . , wn]T from N (0,1).

3. Set S = LW + µ̄, with S = s1, . . . , sn

Sampling from an Archimedean copula is done by using its generators and its Laplace-Stieltjes
transform, see for example Hofert (2008).

2.8. CALCULATING CONDITIONAL DISTRIBUTIONS
To use information that is known in a catchment to update the probability distribution of other
variables, the copula has to be conditioned. Unconditioned, v is distributed as follows:

vu = F−1(uu) with uu ∼U (0,1), (2.22)

where the subscript u denotes that it is unconditioned and U (0,1) is the uniform distribution
between 0 and 1. However, when a copula is conditioned, u is no longer distributed by the
PDF definition of the copula U (0,1), but by c(u1, . . . ,uc , . . .un), where uc is the conditioned
variables on all of the other variables: these are now represented by a single number.

vc = F−1(uc ) with uc ∼ c(u1, . . . ,uc , . . .un). (2.23)
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In this section, a closer look is taken at the bivariate case, as an illustration. The two-dimensional
copula function is defined as follows from Equation (2.2):

f (v1, v2) = c(u1,u2) · f (v1) · f (v2), (2.24)

which results in, given Bayes’ theorem:

f (v1|v2) = f (v1, v2)

f (v2)
= c(u1,u2) · f (v1), (2.25)

in which c(u1,u2) is the PDF of the copula function (for example the Gaussian copula as given
by (2.4b)), and f1 and f2 are the PDFs of the marginals. As f (v1) is not defined well, this func-
tion cannot be calculated directly. If, for example, an expected value is required, a stepwise
approach needs to be taken. This can be done in two ways:

2.8.1. BY SAMPLING REGULARLY
To directly take values from the copula function, the uniform marginal needs to be sampled
regularly, as taking the variable regularly gives an irregular sample at the copula, which distorts
the probability distribution within the copula. The method uses the copula probability as a
factor of the values v . The following formulas calculate the expected value with this method.
Take n values of u with a regular interval: Ug = [u(1,1), . . . ,u(1,n)]T = [0,1/n,2/n, . . . , (n−1)/n,1]T .
Now, the updated distribution becomes:

E f (v1|v2) ≈ 1

n
F−1

1 (Ug )T c(U ,u2) = 1

n

n∑
i=1

F−1(u(1,i )) · c(u(1,i ),u2). (2.26)

For the multivariate normal method, the following holds, when 0 and 1 are removed from U .

E f (v1|v2) ≈ 1

n
F−1

1 (Ug )T (
r̄ ·ϕ(Φ−1(U ))+ µ̄

)= 1

n

n∑
i=1

F−1(u(1,i )) ·
(
r̄ ·ϕ(Φ−1(u(1,i ))+ µ̄

)
, (2.27)

where µ̄ follows from Equation (2.18) and r̄ is the corresponding correlation coefficient for that
variable pair from Equation (2.19).

2.8.2. BY SAMPLING RANDOMLY
It is also possible to sample the copula randomly, via Section 2.7. If all the the values from the
random sampled values from the copula are taken that are between u2−ϵ and u2+ϵ, with ϵ as a
small value, only values are used that are approximately on the line of the conditioned variable
v2 → u2. These values are denoted as Ur = [u(r,1), . . . ,u(r,n)]T . Here, F−1

1 (Ur ) can be used as a
approximation of the conditional distribution.

E f (v1|v2) ≈ 1

n

n∑
i=1

F−1
1 (ur,i ). (2.28)

For the multivariate normal case, the final conditional distribution can be sampled as well, as
it is just another normal distribution (Section 2.7 with the updated R matrix). Therefore, no ϵ

is needed. The sampled the values are Sr = [sr,1, . . . , sr,n]T .

E f (v1|v2) ≈ 1

n

n∑
i=1

F−1
1 (Φ(sr,i )). (2.29)
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When no summation is made, this method allows for easily calculation a median and quantiles
of the data, to be used in a confidence interval, for example. That is why this method is used
in the rest of this thesis.



3
CASE STUDY

3.1. SELECTING CASE STUDY
This research focuses on a single catchment, as the goal of this research is predominantly cre-
ating an optimal model. For this single catchment, all of the data is examined and the pro-
cesses are described extensively, to thoroughly study the model and its workings in the catch-
ment. To do research that is also partly applicable in other lowland catchments, the catchment
used in this thesis should be representative for lowland catchments. Furthermore, in order to
be able to construct a useful Bayesian network (BN), data that is available in this catchment,
should have high enough temporal frequencies, as for every month the data is subset on sev-
eral days, and should be spatially representative for the whole catchment. The data for this
catchment should also cover a long temporal range, to have enough training timesteps, and
have a relatively low amount of errors. Furthermore, data of various variables should be avail-
able, to be able to model different catchment processes.

However, the data that is available for the case study, should not have a extraordinarily
better quality (i.e. high temporal, spatial density, long timespan, low amount of errors) than in
most other lowland catchments. The reason for this, is that this will cause this research not to
be representative anymore of similar catchments. Based upon this reasoning, the catchment
of the Vledder, Wapserveense and Steenwijker Aa1 is chosen.

3.2. VLEDDER, WAPSERVEENSE AND STEENWIJKER AA
The catchment to which the method is tested, is that of the Vledder and Wapserveense Aa,
flowing into the Steenwijker Aa. Another important tributary is the managed canal called Ni-
jensleker Schipsloot.

It is a partly managed river system of approximately 180 km2 with a nature reserve in the
north. Furthermore, the catchment consists of mostly agriculture and discharges into the town
of Steenwijk. An overview of the catchment can be found in Figure 3.2 and Figure D.1 in the
appendix, for an overview with a clear digital elevation map.

1The main rivers are Vledder Aa, Wapserveense Aa and Steenwijker Aa, as ’Vledder’, ’Wapserveense’ and ’Steenwijker’
are adjectives with the location.
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Figure 3.1: Location of the catchment in The Netherlands and in the area under management by Waterschap Drents
Overijsselse Delta (WDODelta).

3.2.1. HISTORY

The larger, upstream section of the catchment, the Vledder and Wapserveense Aa coped with
many floods, prior to the 1950s. Therefore, a water board called De Vledder en Wapserveense
Aa, was erected in 1950 (Nieuwsblad van het Noorden, 1950). This implemented many canali-
sation works to make the river flow less naturally (Friese Koerier, 1953), which proved success-
ful in battling floods (Friese Koerier, 1965). During this time, agriculture area and volume was
increased in the catchment.

3.2.2. RECENT WORKS IN THE CATCHMENT

In 2002 and 2003, some of the agricultural area in the northern part of the catchment was
converted to nature and the upstream section of the Vledder Aa was reshaped to meander
again (Langendijk et al., 2014). During this time, also the Moordstuw2 was removed, because
the river now experienced higher resistance (RTV Drenthe, 2014).

The middle section of the Vledder Aa was remodeled to have a more natural flow regime in
2014, by adding artificial meanders. On top of that, the cross section of the river is made more
natural, which causes more friction in the system (Langendijk et al., 2014). At the same time,
200.000 m3 of area was created to harvest rainwater for dry spells (Zandstra, 2016). To establish

2Murder weir in English, named after an attempted murder in 1964 (RTV Drenthe, 2014)
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more fish migration, several fish ladders over the whole catchment have been created, of which
the biggest were instated in the period 2014-2016.

As additional research, it would be interesting to look at the influences of the works in the
catchment on the discharge in relation to various variables in the catchment. In order to iden-
tify these influences, a model has to be made before and after one of these changes, that both
have an abundantly high data quantity to create a representative model. This amount of data
is relatively large in comparison with conceptual hydrologic models, as the non-parametric
Bayesian network (NPBN) is entirely data driven. As there have been a multitude of works in
the catchment, of which the implementation also took a significant time period, it is not pos-
sible to select a number of time periods between different works in the catchment that can
form the basis of a reliable model. As a result, any research into influences of works in the
catchment is not possible with the data used in this thesis.

3.2.3. CATCHMENT DELINEATION

METHOD

It is essential to make a good approximation of the location of the catchment border, for a
number of reasons. Firstly, in order to make a water balance (see Section 3.4), the area of the
catchment needs to be known. This is because some of the variables in the water balances are
volumes (discharge for example) and others are lengths (such as precipitation). To compare
the variables in the same units, the catchment area is required. Furthermore, it is also useful
to know what variables might come into play in the catchment; for both the water balance
(for example drinking water wells) as well as the BN (for example, if there are large surface
water areas in the catchment, the surface water variable might play a more central role in the
BN layout). Finally, of some of these variables, the location of the catchment is needed to see
which measurements influences the studied catchment directly (for example, the location of
soil moisture measurements inside or outside the catchment area).

The catchment has been delineated with a combination of two approaches: (i) the water
level zones of the water board3 and (ii) a watershed delineation in GRASS, an open-source
software package with a broad range of hydrology tools.

i: The water level zones in The Netherlands are zones with a legal status that are put in
place to give inhabitants, most importantly farmers, a degree of certainty over water levels.
This is mainly useful for (partly) managed catchments with low elevations. In most cases, as
also applies to the water level zones of the case study, these zones drain into one point at the
edge of the zone. Therefore, it is possible to make an initial delineation out of the water level
zones with these water level zones.

ii: Far upstream in the catchment in the Vledder Aa and the Tilgrup, the flow is mostly
natural and freely discharging. Therefore, water levels are hardly managed and exact locations
of water level zones are not so clear. This is because the exact border is not considered to
be very relevant for the water board. Therefore, the choice is made to shift the border of the
catchment to the border generated with GRASS in these specific areas.

VERLENGDE NIJENSLEKER SCHIPSLOOT

In the north-west of the catchment, the canal called the Verlengde Nijensleker Schipsloot is
positioned close to and across the catchment boundary. This is a section that has a low ele-

3Peilgebieden in Dutch
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Figure 3.2: Catchment map of Vledder, Wapserveense and Steenwijker Aa, with the names of waterways and other
notable items.

vation and is fairly flat, and is therefore discharging to the catchment north of the catchment
of this case study. To accomplish this, there are culverts underneath this canal (conversations
with Zwannie Visser (2020) and Waterschap Drents Overijsselse Delta (2019)). A small seepage
discharge can be expected out of this Verlengde Nijensleker Schipsloot.

3.2.4. WATERWAYS

The catchment consists of a partly natural river system and some agricultural canals. These
are the main streams, as can be found in Figure 3.2:

• Vledder Aa. This is the river that branches out almost to the north-north-eastern border,
passing the measurement weir and the former Moordstuw.

• Tilgrup. This is a highly natural tributary to the Vledder Aa that branches out to the
pumping station Bosweg, where it becomes an argicultural canal upstream of the catch-
ment.

• Wapserveense Aa. This is the largest tributary of the Vledder Aa, which is connected to
the inlets at Dieverbrug and Wittelte.
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• Steenwijker Aa. Somewhere downstream of the merge between the Vledder Aa and the
Wapserveense Aa, the Vledder Aa changes name to the Steenwijker Aa.

• Nijensleeker Schipsloot. One of the largest canals in the area and the most managed
part of the catchment. The canal passes three small pumping stations in a row and the
surface water level station. It continues near the catchment border as the ’Verlengde
(Elongated) Nijensleeker Schipsloot’.

Along and close to the south-eastern border of the catchment at the inlets of Dieverbrug
and Wittelte is a large canal, that splits up the original larger catchment (see Figure D.2 in
the appendix). It is possible that water is seeping into the catchment from a slightly higher
elevated canal.

3.2.5. GEOLOGY
The catchment is relatively flat in comparison with European catchments, with elevations
ranging between 0 and 25 m to NAP (approx. mean sea level) in the west, and upstream in the
north east, up to 13 m NAP (Actueel Hoogtebestand Nederland, 2019). For Dutch catchment,
this is actually moderately flat, as there are also catchments that have almost no inclination.
The top soil consists of a wide range of soil types, but the most important ones are hummusy
sand, highly mineral sand, podzolic soil and loamy soils (Wageningen UR, 2019).

3.2.6. LAND USE
The land use is divided as follows:

• Nature, small (production) forests and wastelands: approximately 35-40% of the total
catchment area. Of this percentage, approx. 30% is a nature reserve (10.7% of the total
area (Ministerie van Economische Zaken, 2019)). These areas are usually managed less
and have different groundwater levels. Actual evaporation4 is relatively low.

• Agriculture: approximately 43% of the catchment area (Ministerie van Economische Za-
ken, 2019). The water in the vicinity of agriculture is usually managed more and has
a higher actual evaporation rate because of sprinkling and the vegetation. The most
prominent crops are:

– Pasture/grasslands (approx. 68% of the agricultural area and 29% of the total area)

– Maïs (approx. 15% of the agricultural area and 6.5% of the total area)

– Potatoes (approx 10% of the agricultural area and 4% of the total area)

• Buildup area: approximately 7 to 8% (Kadaster, 2019). A proportion of this area dis-
charges to the sewer system instead of the catchment.

• Open water: 1.36% of the catchment area (Kadaster, 2019). The actual evaporation is
higher in open water than on land.

4In this research, actual evaporation contains the actual evaporation as well as the actual transpiration that is hap-
pening.
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• Other: 8-12%. These contain, among others, a military training ground, several holiday
resorts and campsites, farms buildings and other housing outside built up areas and a
small zoo.

3.2.7. CLIMATE

Together with the rest of The Netherlands, the catchment lies within a region with a marine
climate. For its latitude, it has a relatively mild winter, as well as a mild summer. It rains year-
round and seasonal differences in precipitation are low.

3.2.8. ARTIFICIAL STRUCTURES AND WATER FLUXES

The usage of copulas presumes that the variables are independent and identically distributed
(IID). Artificial structures and management of water flows has the potential to make this as-
sumption less valid. The following artifical structures are implemented in the catchment.

WEIRS

There are 22 weirs in the catchment (Zandstra, 2016). Most of these lie in the smaller tributaries
and are not managed regularly or just fixed. Therefore, most of these weirs do not alter the
assumption of the data being IID. However, there are five weirs that are larger and situated in
the main streams. These control the water level, and therefore also the discharge to a certain
extent. Because of this, the water level and also the discharge, behave less like IID variables.

PUMPING STATIONS

There are some minor, automatic pumping stations inside the catchment that are run by WDO-
Delta. As they work automatically, they are regarded as not changing the presumption of IID
discharge values in this thesis. Moreover, the total discharge that they contribute is relatively
low. They can be found in Figure 3.2. There is a possibility that some farmers have their own
pumps, but these are also presumed to be neglectable.

At one of the northern edges of the catchment, one of the tributaries to the Vledder Aa,
the Tilgrup, stretches all the way to the edge of the catchment and actually continues as a
canal further upstream, which connects to other canals as well. The area upstream is another
(narrow) flat area where the water is managed at the border of the catchment by the pumping
station Bosweg. This pumping station pumps water into the catchment, but the exact area in
which water is discharged to the Tilgrup depends on water levels in that upstream subcatch-
ment. This makes that the catchment will always be imperfectly delineated. However, data
is available on the amount of water flowing into the catchment, so it is decided to position
the catchment border just downstream of the pumping station and note the water flowing in.
Since 2018, a larger area upstream of the catchment drains into the Vledder Aa, supported by
the pumping station Bosweg (Langendijk et al., 2014).

INLETS

There are two inlets from the Drentse Hoofdvaart to the catchment that are used to make up
for water shortages upstream at the east side of the catchment. The inlets are near to the
villages of Dieverbrug and Wittelte respectively. See Figure 3.2 for this location. According to
J. de Jong of the water board WDODelta (personal communication, December 19, 2019), these
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inlets are manually operated, causing a non-randomly distributed parameter in the mode. The
discharge Q is calculated with the horizontal weir formula:

Q = 1.7 · cmbh3/2
w , (3.1)

where cm is a friction factor, in this case it is fitted by WDODelta 1.00588, b is the width of
the weir and hw is the water level above the weir. The inlet of Dieverbrug is used in the water
balance, but the one of Wittelte is not, as this inlet gave too many implausible values. Both
inlets are not featured in the BN as their total contribution to the network is less than 1% and
according to WDODelta, all the water is used upstream to sprinkle crops. In the water bal-
ance, however, it makes a small difference in the actual evaporation, so to be complete, it is
implemented there.

SEWERAGE

The sewer system is neglected as the part of the catchment that is connected to the sewer is low
and a lot ends up in the waste water treatment plant (WWTP) at Steenwijk, which discharges
the water again into the Steenwijker Aa just upstream of the measurement location. A small
portion ends up in in WWTP Dieverbrug, which does leave the catchment. See Figure 3.2 for
the locations.

GROUNDWATER EXTRACTION

A short distance north of the catchment lies the groundwater extraction well Terwisscha. This
well extracts approximately 6·106 m3 water per year. Due to the extraction, the water level
has declined up to 30 cm in some places (AdviesCommissie Schade Grondwater, 2015). This
causes harm to the nature reserve, which is why it will be reduced in the future (Leeuwarder
Courant, 2016).

As the groundwater extraction is a local difference and not known per month, this number
is only used in the water balance. The extraction well is situated outside of the catchment.
Therefore, the amount that is extracted is arbitrarily chosen as 45% of the total extraction.

There are also minor, privately owned groundwater pumping stations. The most important
use is sprinkling agricultural fields. The amount of pumping is not known and as most of the
water does not leave the catchment except for discharge and evaporation locally, influences of
this pumping are not implemented in the model nor in the water balance.

3.3. DATA

3.3.1. OVERVIEW
For this research, two main categories of data are used: (1.) Data to use in the BN, and (2.)
Data to close the water balance to verify the data in category 1 as much as possible.

It is preferred that the data has a high spatial resolution, or has a low spatial difference for
the whole catchment.

3.3.2. DISCHARGE

TARGET VARIABLE

The target variable of this research is the monthly maximum daily average discharge (MM-
DAD). This is an interesting variable since water boards need to make sure the land in their
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area does not inundate often (Rijksoverheid et al., 2003). Therefore, they should know how
often floods and high discharges are to be expected, especially given the observed increase
of heavy precipitation events (IPCC, 2014). The reason this variable is chosen, instead of the
maximum monthly value, is that the discharge measurements fluctuate a lot. Therefore, the
random error is assumed to be large. To make the influence of these errors smaller, daily av-
erage values are taken. Moreover, using this variable choice makes the studied variable more
likely to be IID, which is needed for a probabilistic method, in contrast to the use of monthly
averages. This can be seen in Figure 3.3, where the autocorrelation is significantly less for the
MMDAD. On top of that, the correlation coefficient with one of the most important variables
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Figure 3.3: Comparison autocorrelation monthly average vs monthly maximum daily average

also improves: precipitation. For the correlation with the monthly average discharge, the Pear-
sons correlation coefficient is 0.31, whereas it is 0.42 when the MMDAD is used. As variables
make for better predictors when the correlation between them is higher, this is favourable.

SELECTION BASED UPON DATE MAXIMUM

As it does not make sense to use data that happened after the MMDAD event (this cannot
have influenced the discharge), all the other datasets have to be subset on a period before that
event.

For the first model, this period is chosen as 8 days, but it is a parameter that is optimised in
Section 7.3. Over this period, the mean or the sum of the values is taken, depending on the type
of variable. In essence, it does not matter if the mean or sum is chosen as the subset period
is constant. It is considered to implement a formula that gives data from different days ago
different weights, to get a dataset with data that influences the MMDAD the most. However,
this requires knowledge about the delay time in the system and similar hydrologic parameters,
which is not the purpose of this model. However, when the accuracy of the model has to be
perfected more, using a function for this subset period, could be subject of further research.

All other datasets should have at least one datapoint in this period, but preferably many
more, such that non-bias errors get filtered out and a good average over the time period can
be obtained.

It is possible that some of these periods overlap, which is negative for the IID presumption.
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DISCHARGE MEASUREMENTS

The discharge measurement is taken from a measurement station just downstream of the town
of Steenwijk. The discharge is measured by multiplying the average flow velocity and the cross
section times a factor (see Equations (C.1) to (C.3) in the appendix for the equation that is
used by the water board). The velocities are measured with side looking doppler (SLD) mea-
surement devices.

VERIFICATION

The method is verified with an acoustic doppler current profiler (ADCP). However, this is not
done regularly and for all discharge amounts. It is likely that there are errors in the discharge
measurements, but these are unknown. Therefore, it is useful to take a look at the quality of
the measurements, solely from the data.

Creating a histogram out of the individual measurements (per quarter of an hour), showed
an approximate distribution of the measurements (Figures D.4 and D.5 in the appendix). It
was decided that any discharge below -5 m3/s (so upstream) was an outlier and was removed.
The exact point of cutting these measurements does not matter so much as there was a low
number of recordings below -5 m3/s and the goal of this research is to look for the high peaks
in discharges, not low values.

Moreover, there is also data available on a weir approximately 7 km upstream of the mea-
surement location. As the discharge at this weir is solely based on a Q-h relation, which can
cause large discharge measurement errors for weirs, and it is unclear whether the water over
the weir is free flowing or has submerged flow, which can also cause errors in the measure-
ments. Additionally, not all of the flow passes this weir. Therefore, this cannot be regarded as
more trustworthy. The water that enters the system after this spot mostly originates from more
managed sources. In spite of its untrustworthiness, the weir data has been used to point out
potential measurement errors. See Figure D.6 in the appendix for the corresponding plot. The
general flow at the weir is slightly lower, which is logical because it is farther upstream. More-
over, the highest peaks are significantly lower. It is possible that either of these measurements
is bad at predicting these high discharges. Lastly, in the winter of 2016-2017, the discharge at
the weir drops well below the measurements downstream. The only conclusion that can be
drawn from this, is that this is a period of attention.

3.3.3. KNMI DATA
The Koninklijk Nederlands Meteorologisch Instituut (KNMI) is the Royal Dutch Meteorological
Institute, which has over 100 weather stations in the Netherlands and offshore in Dutch wa-
ters. These stations are often similar to each other and measure a wide variety of atmospheric
parameters. For this research, the following are used:

TEMPERATURE

The KNMI dataset contains hourly temperature measurements at 1.5 m above the ground in
degrees Celcius.

SOLAR RADIATION

The KNMI stations hourly measure global radiation: the short-wave radiation falling onto a
horizontal surface (PIK, 2020). The measurements are in J/cm2. Together with the temper-
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ature, the solar radiation can serve as a proxy for the evaporation and transpiration in the
catchment.

POTENTIAL EVAPORATION

The KNMI stations calculate the potential evaporation from a number of values that they mea-
sure, daily. The Makkink equation is used to acquire this number.

PRECIPITATION

The KNMI precipitation data is featured in Section 3.3.4.

SPATIALLY COMBINING KNMI DATA

The KNMI data is combined by using Thiessen polygons (Luxemburg and Coenders, 2017).
These polygons are based on the Voronoi diagram. This method is chosen over the inverse
distance weighting as this has an ambiguous β factor, which is not fitted for this catchment,
as well as the open question of how many stations to take into account. In the case of the
Vledder and Wapserveense Aa catchment, this results in two KNMI stations that are used for
the measurements, that lie about 16 and 19 km outside of the catchment. For the BN and the
water balance, one value is taken into account for the whole catchment: a combination of each
measurement of the stations scaled by the percentage of the catchment each polygon covers.
Using Thiessen Polygons, only KNMI stations 273 (Marknesse) and 279 (Hoogeveen) have any
influence in the catchment, with rounded contribution factors of 0.5 and 0.5 (see Figure D.2 in
the appendix).

3.3.4. PRECIPITATION
In this research, two sources of precipitation data are used.

• 2 stations of the Dutch Meteorogical Institute KNMI, which lie between 16 and 19 km
outside of the catchment. However, for verification, 4 stations are used that lie up to 26
km outside of the catchment.

• 2 stations of the Water Board WDODelta, of which one lies in the centre of the catchment
and the other lies close to the catchment.

The data of the KNMI is heavily verified and is therefore assumed to contain only little errors.
Moreover, it was stated from WDODelta that a multitude of their stations in the northern part
of the area that they manage are placed on inadequate locations, such that more or less pre-
cipitation could fall into their rain gauges than should be the case. If the errors only arise from
a constant bias, the BN’s accuracy would not be affected. The stations of WDODelta, however,
are located closer to the catchment. Therefore, those are the preferred measuring stations if
the quality is sufficiently high. To test this quality, a cumulative plot has been made with all
of the stations (see Figure 3.4). Here, it can be clearly seen that the WDODelta stations mea-
sure higher rainfall numbers. The assumption is that this relatively flat area in the Netherlands
should not display regional differences when averages over multiple years are taken from sta-
tions so close to one another. The chance that the types of cumulative precipitations from
WDODelta are drawn out of the statistical distribution that can model the precipitation of
KNMI stations as a normal distribution, is tested with a Student t-test5. Here, for both stations

5See The Editors of Encyclopaedia Britannica (2019) for an explanation of the Student t-test



3.3. DATA

3

31

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Date

0

2500

5000

7500

10000

12500

15000

17500

C
um

ul
at

iv
e 

pr
ec

ip
ita

tio
n 

(m
m

)
Comparision cumulative precipitation

WDODelta station Appelscha
WDODelta station Frederiksoord
KNMI station 273
KNMI station 278
KNMI station 279
KNMI station 280

Figure 3.4: Cumulative precipitation of different rain gauge stations since February 2001.

of WDODelta, the null hypothesis H0: a value from the WDODelta station is taken from the
Normal distribution of the KNMI data, is tested. Or in other words: the station of WDODelta
measures the same rainfall intensities as KNMI over longer periods. The cumulative values
from February 1 2001 to June 6 2018 are used and the t-values where 13.88 for the station at
Appelscha and 5.59 for the station at Frederiksoord. With n = 4 and α = 0.01, tα,n = 3.747, so
H0 can be rejected. Therefore, the KNMI data is used instead of the WDODelta data.

As an additional test, the precipitation data has also been used to create a water balance in
the Budyko framework. Both sets of precipitation data give plausible results (see Figure 3.7),
although the position of the one with KNMI data is more likely.

The fluxes have been averaged per month of the year to create a water balance over an
average year, which can be found in Figure 3.5. In general, in months with a higher potential
evaporation than precipitation, the groundwater is depleted, whereas in the other months, the
groundwater is resupplied.

It is possible that in the months with groundwater depletion, the water board is using arti-
ficial inflow to compensate for the water shortage. If that is the case, a higher discharge than
expected, is possible during these months. Moreover, in the same months, many fields are
sprinkled such that the actual evaporation is higher than could be expected and the open wa-
ter levels are depleted, if no measures are taken.
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Figure 3.5: Precipitation and evaporation fluxes over an average the year

3.3.5. GROUNDWATER LEVEL
There are 1000s of groundwater measurement stations in the catchment, from both WDO-
Delta, as well as the website DINOloket6 from the Dutch scientific organisation TNO. These
are groundwater wells from a wide range of sources. However, the data from these groundwa-
ter observation wells should meet three requirements, for it to be usable in a BN:

1. High temporal frequency (at least one measurement per subset period, see Section 3.3.2,
but preferably over 100 per subset period)

2. Spanning the temporal range of the other parameters

3. Small number of errors

All, except for one, stations failed to meet these three requirements. Most had highly irregular
data, or would only be available for a short period of time, and many had highly unlikely val-
ues. The one station that did meet all of the requirements was a water pressure station from
WDODelta and can be seen in Figure 3.2. The fact that only one well met the requirements
is highly unfavourable for the model, as water levels, and changes in water level, can differ
heavily spatially. However, combining insufficient records has as an implication that different
forces work on the model for different timesteps, which interferes with the IID assumption
that is needed for a BN. In the water balance, however, many imbalances may arise from the
fact that only one station is used.

As the goal for the water balance is to see water differences, the pressure should be trans-
lated to a water level, which can be done as follows:

hw = pw −pa

g
, (3.2)

6https://www.dinoloket.nl/

https://www.dinoloket.nl/
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where hw is the water level, pw is the water pressure and pa is the atmospheric pressure.
The latter is taken from KNMI station 279 as this was the only station in the close proxim-
ity that measures this data. Now, only an effective porosity factor is needed, which is chosen
as 0.18, because it is an area with a fairly large amount of sand and hummus rich soils (see
Section 3.2.5). The range of the effective porosity number is quite wide. The number 0.18 is
arbitrarily chosen as one of the median numbers.

As BNs are able to use any number directly, the water pressure pw is used directly in the
BN model.

3.3.6. SURFACE WATER LEVEL
Surface water levels are water levels in rivers, canals, lakes etc. Levels measured near discharge
measurement stations are highly correlated with the discharge. In a sense, they not so much
predict discharges, but merely provide an early measurement. As the goal of this research is to
make a predictive model, these kinds of surface water levels are not used in the model.

However, there is also a more managed region in the catchment. This is located in the
(north-)western part of the catchment (see Figure 3.2). The surface water in this region is
managed based on the desired groundwater level in that area. The management of the water
level with weirs and some small pumping stations, potentially has a large influence on the
discharge from that area as well. This region has one water level measurement station that
had abundant frequent and longevity of recordings. This measurement location can be used
in the BN, because BNs often also handle measurements that do not cover the whole area.
This means that the water level is not representative for the whole catchment, but still adds an
additional partial correlation - and therefore predictive power - to the model.

As this water level showed a lot of seasonality, it was regarded to implement a moving av-
erage filter. However, this was not implemented as deviations from this moving average can
imply that there was an extreme event during that time. Only clear outliers that showed higher
and lower levels than the measurement device can measure, have been removed.

3.3.7. SOIL MOISTURE
Soil moisture is an important hydrologic parameter, as it tells a lot about recent rainfall, evap-
oration and crop suction. In the catchment, no terrestrial measured, frequently sampled soil
moisture datasets are available, that are representative of a large area of the catchment. There-
fore, satellite data is used. As these satellites only measure the top part of the soil, the data
mainly consists of water contents in the unsaturated zone. Due to its high frequent fluctu-
ations, but limited volume, the soil moisture content is neglectable on a monthly timescale
compared to other water fluxes and storage, and is therefore not included in the water balance
(Section 3.4). However, soil moisture measurements can potentially give an indication of the
discharge downstream. Therefore, soil moisture measurements are collected to be used in the
BN.

There are a range of soil moisture satellite data products, but there is only one useful set
that goes back to 2009: the Soil Moisture and Ocean Salinity (SMOS) satellite of by the Euro-
pean Space Agency (ESA) (European Space Agency, 2020). SMOS measures L-band brightness
temperatures with a radiometer, which it uses to derive an estimate for the Soil Moisture (Eu-
ropean Space Agency, 2017).

SMOS uses an Icosahedral Snyder Equal Area Earth grid, which consists of imperfect hexagons,



3

34 3. CASE STUDY

with equally spaced cell centres at approximately 15 km distance (González-Zamora et al.,
2015). Just two pixels cover more than 95 percent of the catchment area. These hexagons are
irregular in nature and a detailed decomposition of this shape in relationship to the catchment
shape is not assumed to deliver significant differences compared to just taking the average of
these two points. Therefore, the latter approach is used in this research.

Due to its sun-synchronous orbit (European Space Agency, 2017), SMOS has an irregu-
lar temporal distribution, with sometimes multiple values per day, but also gaps of up to 10
days. This can cause problems when subsetting shorter time periods and therefore demands
temporal averaging. For the first model made in this research, all the subsets did contain soil
moisture data, but some were more frequent than others. Using a more frequent soil mois-
ture product would be an important improvement to the model in the future. For now, adding
the soil moisture only gives an indication of whether this could be useful in a model, and its
contribution may not always be useful for each timestep.

3.3.8. NORMALISED DIFFERENCE VEGETATION INDEX (NDVI)
The NDVI is an indicative value for the so-called "greenness" of the vegetation in that area,
with theoretical values between -1 and 1. It is defined as follows:

NDVI = N I R −V I S

N I R +V I S
, (3.3)

where N I R stands for near infrared light and V I S for visible light. Chlorophyll, the pigment
in plant leaves greatly absorbs visible light but the cell structure on the leaves strongly reflects
near infrared light (NASA, 2000), resulting in a high NDVI when there is a lot of leaf activity.
That is why NDVI is a great indicator of the condition of the fields and plant’s need and avail-
ability of water. However, in common hydrologic models, the NDVI is not of use as it does
not represent a water flux or storage. The BN, however, can deal with these kind of parame-
ters. On the otherhand, the parameter is not nondescript to the user of the model, as it shows
something in the network directly, in contrast to, e.g. only using a single band of radiation.
Therefore, this has the potential to be an excellent parameter for a hydrologic model based on
a BN.

Parameter Band Wavelength (nm)
N I R Band 2 841876
N I R Band 1 620670

Table 3.1: Wavelenghts used to construct NDVI in MODerate resolution Imaging Spectroradiometer (MODIS) (Didan
et al., 2015; Earth Observing System, 2013)

In this research, MODIS from the National Aeronautics and Space Administration (NASA) is
used as the source of NDVI, as this has a high density, assumed accuracy and is collecting data
since 2000. MODIS’ product MOD13A1 (Didan, 2015) is chosen, which has 16-day averages on
a square grid of 500m (Didan et al., 2015). This is abundantly dense, as there are hundreds of
pixels in the catchment, and the time average merely provides practical support as temporal
subsetting becomes easier. Because NASA already averaged the raw data, some information
has been lost here.
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MODIS also has an advanced vegetation product, the so-called enhanced vegetation index
(EVI). This has as an advantage that NDVI extremes are better projected. In this research, this
is assumed to be futile because no extremes are expected in the case study area.

3.3.9. PROCESSING AND FILTERING

The data sources have been combined in Python, to be used for the BN and the water balance.
To remove errors, the following operations have been performed:

1. The data has been summed/averaged as much as possible to remove non-bias errors.
For the water balance, monthly averages were taken. As for the BN: for the discharge
this meant that the maximum runoff was based on the MMDAD. The other variables
were subset and averaged on a period before this event. In the initial model, this was 8
days plus the first half of the day of the MMDAD event. This number of days has been
optimised in Section 7.3.

2. From the discharge data, values that had a larger negative discharge than -5 m3/s were
removed, as these did not fit in the distribution that followed from the other parameters.

3. Impossible values (often values that actually represent a NaN value) have been removed,
such as negative precipitation depth (KNMI records precipitation below the detection
limit as negative values or very low positive values).

4. Data has been spatially combined, as mentioned before.

It was out of the scope of this thesis to manually check for biases, so they were not removed.
This does not matter for the BN, but it does matter for the water balance. Any other potential
errors were also not removed, as it was not as clear as with the other cases that the observed
effects were indeed due to errors.

For usage, all the parameters were converted to mm to use in the water balance. Where
water fluxes were concerned, this meant that the catchment area was used to calculate the
mm values. The precipitation was also changed to mm in the BN, because that is the widely
used value for precipitation measurements.

3.4. WATER BALANCE
Creating a water balance is a useful method to verify the data, as well as to give insight into the
climatology of the catchment. For the water balance, the fluxes that will be implemented in
the BN will be used, supplemented with data that closes the balance as much as possible. For
variables that will be included in the BN, such as the groundwater level, it can be considered
to adding additional stations to create a more spatially frequent dataset, which can make for a
more complete, less erroneous water balance. This has been disregarded because the focus of
the water balance is to test the data and not to make a perfect balance as possible. See Table 3.2
for all of the fluxes. Other water fluxes have been neglected, such as seepage and infiltration
(as these are difficult to measure), and data sources such as the NDVI or solar radiation that
are no water flux are not included.

As the actual evaporation is not known, the potential evaporation is used initially.
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Flux In or out Source
Discharge Out WDODelta
Precipitation In KNMI
Potential evaporation Out KNMI
Groundwater level difference Out WDODelta
Inlet Dieverbrug In WDODelta
Pumping station Bosweg In WDODelta
Groundwater extraction well Terwisscha Out AdviesCommissie Schade

Grondwater

Table 3.2: Fluxes and storage in the water balance.

3.4.1. MONTHLY SCALE
By averaging all of the fluxes per month, and by neglecting soil moisture differences, a clear
overview of the fluxes can be obtained for an entire year. Moreover, in a truly freely discharg-
ing system, the difference between incoming and outgoing fluxes should be approximately
zero for each month. Large deviations from zero suggest measurement errors or incomplete
information about the catchment. Moreover, as the actual evaporation is not known, the po-
tential evaporation is used, which gives a outflow out of the catchment that can be too high.
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Figure 3.6: Water balance in the Vledder, Wapserveense and Steenwijker Aa over an average year.

In Figure 3.6, the average yearly water balance is shown. Upon consideration of the scale of
this catchment, the fluxes of the pumping stations and inlets are deemed to be insignificant.
Moreover, the balance between the fluxes is reasonably well recorded in the biggest part of
the year, except for the winter months December to February. This implies that there is more
water added to the storage, or discharged during the winter, than can be expected from the
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other fluxes. The reason that this happens is unclear.

3.4.2. COMPLETE TIMEFRAME - BUDYKO FRAMEWORK
In hydrology, two indices have been constructed to get a sense of the climatology and hy-
drology of a catchment. The aridity index is constructed as the ratio between the potential
evaporation and the precipitation in a catchment (Ep /P ). It gives an indication of how dry the
region is in which the catchment is situated. The evaporation index is the ratio between the
actual evaporation and the precipitation (Ea/P ). This gives a sense of how much of the water
that comes into the catchment, leaves the catchment by means of evaporation. For a natu-
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Figure 3.7: Catchment plotted for the aridity index versus the evaporation index, with different precipitation measure-
ment sources. It can be seen that the WDODelta data plots just underneath the energy limit, which is possible but not
common. Additionaly, the Budyko curve of Equation (3.5) is also plotted.

ral catchment, there are two limits for both of these indices. As the influence of the artificial
influxes is neglectable (see Figure 3.6), the assumption is that these limits should hold true:

1. The actual evaporation cannot be higher than the potential evaporation, because no
more energy is available. The limit is Ea ≤ Ep , which gives the limit Ea/P ≤ Ep /P . This is
the so-called ’energy limit’.

2. The actual evaporation cannot be higher than the amount of precipitation, because not
more water is available. The limit is then Ea ≤ P , which gives the limit Ea/P ≤ 1.

The Budyko framework is created for the whole time period of the data, rounded down on
whole years. The difference in storage over this range can be neglected. The actual evaporation
is calculated with the water balance, from the difference in the fluxes of Table 3.2, leaving the
potential evaporation out of the equation and neglecting storage differences:

Ea = P −Q +∑
Fadd ,i , (3.4)
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where Q is the discharge and Fadd ,i are the additional fluxes, with their appropriate sign. In
Figure 3.7, the aridity index of the catchment has been plotted against the evaporation index,
for two different precipitation measurements: the KNMI and WDODelta (see Section 3.3.4).
Both measurements meet the energy limit, so cannot be rejected. Therefore, continuing to use
the KNMI data because this would be more accurate, is still a assumption.

When many catchments are plotted in the same graph as Figure 3.7, these catchments
seem to loosely follow a curve. At least six curves have been made to describe this curve (Arora,
2002). These are called Budyko curves. One example of such a curve, is the one proposed by
Budyko and Miller (1974), which is the geometric mean between two other Budyko curves:

Ea

P
=

[
Ep

P
tanh(

P

Ep
)(1−e−

Ep
P )

]1/2

. (3.5)

This function has also been plotted in Figure 3.7. It is clear that the KNMI precipitation dataset
gives as a result that the catchment is a lot more average for its climatology, than position on
the Budyko framework when the WDODelta precipitation dataset is used. This supports the
preference for using the KNMI data over the WDODelta data to a small degree. A possible
reason why the catchment has a higher actual evaporation than is expected form the Budyko
curve, may be due to the high amount of agricultural fields and sprinkling of the fields. This
should be visible in open water and groundwater levels.



4
INITIAL MODEL AND PERFORMANCE

4.1. INITIAL MODEL
In this research, many model parameters are analysed, to find the optimal model for this catch-
ment and test whether copulas used are in agreement with the data. A first Bayesian network
(BN) layout has been constructed to be used this optimisation. The data shown in Table 4.1
has been implemented in the first model, which looks like Figure 4.1. A correlation diagram
can be found in Figure D.7 in the appendix. After this optimisation, in Chapter 8, a number of
steps will be made to optimise the BN layout1.

Variable Source Frequency Usage Unit
MMDAD WDODelta 1/15 min. Average m3/s
Precipitation KNMI 1/hour Sum mm
Temperature KNMI 1/hour Average C
Solar radiation KNMI 1/hour Average J/cm3/h
Soil moisture SMOS (ESA) irregular Average m3/m3

NDVI MODIS (NASA) irregular Average -
Groundwater levels WDODelta irregular Average kPa
Surface water levels WDODelta irregular Average m

Table 4.1: Variables used in BN models

Finally, here are some other, arbitrarily chosen parameters of the first model, which are
tested in Sections 7.1 to 7.3:

• When sampling a conditioned copula, the expected value is taken as the mean of the
sampled values, instead of the median

1Another order of methods is to first perform the initial steps of Chapter 8, which has some advantages in comparison
to this order. However, this order is the one that has been used throughout the process of making the thesis. The
model proposed in this section does not fully comply with these criteria, albeit not by much. It is assumed, however,
that for most of the parameters, no significant changes in the results of the optimisation can be expected because of
this discrepancy, as the initial and the final BN layout overlap considerably.
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Figure 4.1: Initial BN model it-0 that is used in this research, in Uninet. The numbers on the arrrows denote the
correlation coefficients. See Appendix A for an explanation of the BN layout.

• The copulas are sampled 5000 times

• The other parameters use data from the 8 days before the highest discharge date

4.2. DETERMINING PERFORMANCE
In order to test whether parameters increase, or decrease the model performance, the defini-
tion of model performance needs to be determined. As the target variable of this research is the
monthly maximum daily average discharge (MMDAD), the performance indicator evaluates
the error between the prediction and the observations, in most of the cases in this research.

Two similar performance coefficients are discussed, to be used to connect a number to the
performance of the model. This ensures that a great number of parameters can easily be fitted
on the basis of the model performance, without ambiguity about what it means to have a good
performing model.

4.2.1. NASH-SUTCLIFFE EFFICIENCY (NSE)
In hydrology, the NSE, is usually used to determine the performance of the model. The NSE is
defined as follows (Nash and Sutcliffe, 1970):

N SE = 1−
∑te

t=1

(
Q t

si m −Q t
obs

)2

∑te
t=1

(
Q t

obs −Qobs

)2 , (4.1)

where Qobs is the observed discharge, Qsi m is the simulated discharge, the overlined Qobs is
the mean of the observed values and te is the final timestep of the data. The NSE has an upper
limit of 1 (which is a perfect fit) and no lower limit. It highly depends on the purpose of the
model and the quality of the data, but in general an NSE greater than 0.9 is regarded as a very
good model, greater than 0.8 as a good model, and greater than 0.7 as a decent model.
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4.2.2. KLING-GUPTA EFFICIENCY
An improved version of the NSE has been constructed by Gupta et al. (2009). This method
contains separate elements for the difference in correlation (ρp), a measure to check the dif-
ference in volatility (α), and a measure to check the bias (β). The aggregated Kling-Gupta
efficiency (KGE) is a useful way to get a quick overview of the model performance, but the sep-
arate building blocks give a more holistic view of the model performance and give room for
a more purpose-dependent validation (Knoben et al., 2019). Therefore, this is the preferred
test method in this research. A KGE score cannot be one-to-one compared with an NSE score
(Knoben et al., 2019), however, the score limits are equal and the performance ranges are sim-
ilar. The KGE is defined as follows:

KGE = 1−
√

(ρp −1)2 + (α−1)2 + (β−1)2, (4.2)

with ρp is the Pearson correlation coefficient (Equation (2.10)) and

α= σsi m

σobs
, (4.3a)

β= µsim

µobs
, (4.3b)

where σ are the standard deviations of the simulations and observations, and µ is the mean
(Knoben et al., 2019). In the case of validating discharges, µobs of Equation (4.3b) is equal to
Qobs of Equation (4.1).

4.3. k-FOLD CROSS-VALIDATION
In order to prevent overfitting, and similarly, to test whether the method can predict with data
that it was not trained with, a k-fold cross validation is used in almost all of the tests.

In the method proposed in Section 2.6, there are two functions that have to be fitted:

1. The cumulative distribution function (CDF) fit function F (v) for each v1, . . . , vn as de-
fined in Equation (2.3).

2. The correlation matrix R, as defined in Section 2.6.2.

The CDF can easily be fitted differently per fold. However, the correlation matrix is fitted
via the recursive Equation (2.17), which is done in Uninet. Constructing a new correlation
matrix requires a whole new model in Uninet. Because of this, it is too time-consuming to
create a new correlation matrix per fold. Therefore, the k-fold cross-validation is done only
partially: on step 1. In Section 9.1, there is a single k-fold test for both the fitted items.

Another method to do cross validation could be Monte Carlo cross validation. This method
consists of randomly selecting a test and a training set, running the test and repeating this
process n number of times. However, as the correlation matrix R is determined from all of the
data in the range, it is more consistent to take all of the timesteps into account. This is not
certain with the Monte Carlos method. Moreover, not all the timesteps are weighted equal in
this test. Therefore, initially the k-fold cross validation is used in this research.

In many cases, just a single k-fold test does not suffice, because having random folds gives
less certainty over the median performance. That is why, in many cases in this research, a 5-
fold test is combined with a 10 or 20 times Monte Carlo repetition, in order to get repeatable
results.
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4.4. PERFORMANCE PER OBSERVATION
In several cases, it is useful to not only look at a single error number, for example when a
clear differentiation can be made in predictions of high observations and low observations.
In Section 6.6, the error is also plotted against the corresponding observation. This gives an
overall image of the performance of the model over the observations.



5
TESTING THE COPULA ASSUMPTION

5.1. INTRODUCTION
In Chapter 2, it is determined that for this case study, the Gaussian copula modelled through
the multivariate normal (MVN) method, it the likely the most useful method implement cop-
ulas in the Bayesian network (BN). The assumption that the data of the case is usable in a
BN and that the Gaussian copula suits the joined probability distributions of variable pairs, is
tested in this chapter. The following tests are performed:

(i) Autocorrelation test: The purpose of the BN is to model the complete joined depen-
dence structure of the variables. This means that the parent variables that are no child should
behave like independent variables. The marginal distributions of these variables should be in-
dependent and identically distributed (IID), as these are all uniformly distributed. The notion
of independence also holds that the variables should be independent in time. This assump-
tion is flawed, as the variables show a degree of seasonal influence, such as for example the
solar radiation. Moreover, for the child variables, it means that they should be independent
given its parents Paprotny and Morales-Nápoles (2017).

As the target of the variable selection in Section 3.3 was to select all significant influences
on the catchment, the only other dependence should come from the other variables. If there
is no influence from other parameters than those that are used in the BN or from itself, the
variable is regarded as conditionally independent. This assumption is challenged because the
values come from time series, which often show serial correlation. This is already counteracted
to a degree by taking the monthly maximum and subsetting the data, see Figure 3.3. How
much of the self-dependence still remains is tested with an autocorrelation test in Section 5.2.
Moreover, for the monthly maximum daily average discharge (MMDAD), it is also tested how
much autocorrelation remains after the effect of its parent variables is removed, through a
partial autocorrelation test.

Testing whether other variables, of which data is known, also have an influence a certain
variable is tested by calculating the correlation coefficients between these parameters. For ex-
ample, air pressure had an absolute correlation of less than 0.1 with the discharge, and there-
fore it is regarded to not influence the model. Other parameters, such as a discharge close

43



5

44 5. TESTING THE COPULA ASSUMPTION

upstream of the measurement station, were regarded as having too much predictive power
and therefore being more an additional measurement than a useful variable for the BN. An
exhaustive analysis about this theme is outside the scope of thesis.

(ii) Test fit of copula and show indications of tail dependence: Secondly, in this research,
the Gaussian copula is used. It is tested whether this is one of the copulas that fit the data best
in Section 5.3 and which positions the copula over- and underestimates the correlation in Sec-
tion 5.4. Lastly, it is tested whether there is tail dependence in the copulas, since the employed
Gaussian copulas do not model this. If there is tail dependence, which type of copula would
have modelled this better, is explored. This is featured in Section 5.5.

Testing copulas requires the usage of uniform marginals that can be deducted from the
variables with a cumulative distribution function (CDF) (see Equation (2.3)). In Chapter 6 the
best probability distribution is selected. In this chapter, the empirical cumulative distribution
function (ECDF) is used (see Equation (6.1)). All the tests are conducted on pair-copulas.

5.2. AUTOCORRELATION TEST

5.2.1. UNCONDITIONAL AUTOCORRELATION
The autocorrelation ρauto,l of a variable is the correlation between a value and the value that
happened l timesteps before that, for all values. These l timesteps are called the lag.

ρauto(l ) = 1

n − l

n∑
i=1+l

ρp(v i , vi−l ), (5.1)

where n is the number of values of a variable and ρp(x, y) is Pearson’s correlation coefficient
between two variables x and y (see Equation (2.10)). In the Figure 5.1 the autocorrelation test
is done for all variables that are used in the initial model. Three lags have been plotted. A lag
of 1 month usually yields the highest autocorrelation coefficient and this lag shows a lot about
the general volatility of the variable. Lags of 6 and 12 months denote the seasonal influence of
parameters.

Concluding from Figure 5.1, the variables Soil Moisture, MMDAD and especially the pre-
cipitation have a low autocorrelation and can be used as virtually temporally independent val-
ues. However, most of the other parameters show a large seasonal effect. This means there is
less information that can be extrapolated from the dataset than without a seasonal effect. This
potentially makes the correlation between the variables stronger then its actual influence is.
However, it can also be argued that the season is well taken into account when conditioning,
and because the main forcing factors on the model of the season (temperature, solar radia-
tion, water levels) are all implemented in the BN. The groundwater level has a slightly lower
seasonal effect and can therefore be regarded as being approximately unconditionally inde-
pendent in time.

5.2.2. PARTIAL AUTOCORRELATION
The assumption of the BN is that the data is conditional independent to the previous values,
given its parents (Paprotny and Morales-Nápoles, 2017). Therefore, it is also important to look
at autocorrelation of a variable with the effect of its parents removed. For the target variable
of the MMDAD, the partial Pearson’s correlation has been calculated with Equation (2.17), to
show this effect. Pearson’s correlation coefficient is used, instead of for example Spearman’s
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Figure 5.1: Autocorrelation for the variables used as processed in model 1, for the delays of 1 month, usually the highest
autocorrelation and an important factor in showing volatility, and for 6 and 12 months, to see seasonality effects.

correlation, because this makes it more comparable to the previous question and is more
widely used. The conditional variables were the precipitation, surface water level, groundwa-
ter level and solar radiation, as can be seen in Figure 4.1. The results of the test can be found
in Table 5.1. This table shows that the autocorrelation for the long periods of half a year and a

Lag (months) Pearson’s corr.
coeff. (ρp)

1 0.204
6 0.066

12 0.092

Table 5.1: Partial autocorrelation for the MMDAD.

whole year have become very low and these are effectively independent to the measurement
with lag 0. This means that the seasonality has been carried by the other variables. Moreover,
the partial correlation for the a single month has been marginalised and only plays a small role.
Therefore, it can be concluded that the way the MMDAD variable is set up, makes it effectively
conditionally independent.

5.3. MULTIDIMENSIONAL CRAMÉR-VON MISES TEST

5.3.1. THEORY

To check if a copula fits well to the data the goodness of fit test proposed by Wang and Wells
(2000) is implemented. They propose a multidimensional Cramér-von Mises statistic Sn :

Sn = n
∫ n

1

(
Cemp (u)−C (u)

)2 dC (u), (5.2)
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where n is the number of samples, C (u) is the CDF of the d-dimensional copula to test against
and u ∈ [0,1]d to call the copula. Lastly, Cemp (u) is the empirical CDF copula and is defined as
follows (Genest and Remillard, 2008):

Cemp (u) = 1

n

n∑
i=1

1
(

Ri

n +1
≤ u

)
, (5.3)

where R is the rank vector, with size d , of each data point and 1(·) is the indicator function.
Genest and Remillard (2008) propose a solution for Equation (5.2):

Sn =
n∑

i=1

(
Cemp (u)−C (u)

)2 . (5.4)

In this report, an alteration of the Cramér-von Mises statistic is presented, which is based on
the root-mean-squared deviation (RMSD):

SRMSD =
√

1

n

n∑
i=1

(
Cemp (u)−C (u)

)2. (5.5)

It is important to note that it is a mean over the data points, not over the XY-plane of the copula.
It is, in a sense, scaled, by the chances of occurring from the data: more differences are taken
into account where there are more data points.

Furthermore, (Genest and Remillard, 2008) also proposes a bootstrapped method to test
H0, that the combined data follows a Gaussian copula. In this research, the one-level bootstrap
method posed in this paper, is used with Equation (5.5) instead of Equation (5.4). The one-
level method is sufficient, as it performs equally well as the two-level method. This method is
defined as follows:

1. Create an empirical copula Cemp (u) with the data.

2. Calculate SRMSD via Equation (5.5).

3. Pick a large N and repeat the following steps for every i ∈ {1,2, . . . , N }.

(a) Generate a random sample u∗
1,i , . . . ,u∗

n,i (u∗ ∈ [0,1]d ) from the copula C (u)

(b) Calculate the empirical copula of this random sample C∗
emp,i (u) via Equation (5.3).

(c) Generate a copula C∗
i (u) with the same method as the original copula.

(d) ComputeS∗
RMSD,i via Equation (5.5), with C∗

emp,i (u) and C∗
i (u) as respective Cemp (u)

and C (u).

4. An approximation for the p value, the probability of finding at least SRMSD , assuming
that the H0 is correct, is then defined as follows:

p ≈ 1

N

N∑
i=1

1
(
S∗

RMSD,k >SRMSD

)
. (5.6)

Note that the results for p are equal when using Equation (5.4) in comparison to Equation (5.5).
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5.3.2. RESULTS

The measure proposed in Equation (5.5) is calculated for all of the presented copulas in Sec-
tion 2.3. For the marginals, the empirical CDF is used. In Chapter 6, two other methods are
proposed for the marginal distributions. The average of the values of SRMSD per type of cop-
ula is presented in Figure 5.2. See Table F.1 in the appendix for the results per connection.
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Figure 5.2: Results of the 2-dimensional CvM test for all connections in the BN of model 1. The SRMSD value for each
variable combination and all copulas can be found in Table F.1 in the appendix.

It is clear that the Frank copula has the best fit in general, for this test, but a close second is
the Gaussian copula. This is logical, as they have a similar configuration, see Figure 2.2 and
Figure 2.6. Both of these copulas fit about twice as well as the other three copulas.

For all variable pairs, the p-value has been calculated with N = 500. It is decided that for
H0 that the empirical copula follows a similar joined distribution as the copula, α= 0.05. The
p-value has been calculated for all copulas described in Section 2.3. Sampling (step 3a) has
been done in the Python module pycopula in a way described by Hofert (2008), for all types
of copula except for the Joe copula. This has been done because results for SRMSD already
showed bad fits, and on top of that, because sampling from the Joe copula is not defined in
pycopula. In Figure 5.3 the number of rejected bivariate copulas is shown out of the 24 com-
binations that are in Model 1. It is clear that the most bivariate distributions could follow the
Frank copula, whereas for the Gaussian and the Gumbel-Hougaard copula, many fits can be
rejected. The Clayton copula seems to make hardly any plausible fit. The complete values can
be found in Table F.2, in the appendix.

5.4. ABSOLUTE DIFFERENCES
A visual tool to determine the consequence of the suboptimal fit of the copula is to calculate

∆C =Cemp (u)−C (u), (5.7)

for each of the values of u1 and u2 in the dataset. This is similar to the multidimensional
Cramér-von Mises test (Section 5.3). An example plot between the empirical copula of the
NDVI variable and the Solar radiation variable of model 1, and a fitted Gaussian copula, can
be found in Figure 5.4.
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Figure 5.3: Number of bivariate copulas that can be rejected based upon the p-value method proposed by Genest and
Remillard (2008) stated in this section, per type of copula tested on all combinations in model 1. The p-value for each
of the variable combinations and all copulas can be found in Table F.2 in the appendix.

Figure 5.4 shows that, based on the data, in the north west and south east corners, the
copula underestimates the chances of occurrence, whereas in the middle, the copula overes-
timates these chances. This tool is not conclusive in what copula to use, but based on the
copula, it shows where errors might arise.

5.5. QUADRANT PEARSON CORRELATION

5.5.1. TAIL DEPENDENCE IN DATA

The assumption that the parameters follow the Gaussian copula, can be verified with another
method: the investigation of its tail behaviour. Copulas show different type of tail behaviour,
for example Archimedean copulas have different correlations close to one corner of the model
in comparison to the opposite corner. Tail dependence can intuitively be defined as the proba-
bility that U1 reaches extremely large values, given that random variable U2 obtains extremely
large values. The closer to a corner of the copula, the larger the chance of the other variable
reaching an extreme value as well. The Gaussian copula does not have tail dependence (Pa-
protny, 2017). To test this for each combination of variables, the data is converted via the
uniform values, to a standard normal distribution for both variables. Then, the data is di-
vided into quadrants, with the dividers at the x- and y-axes. Next, the Pearsons correlation
coefficient is calculated for all of these quadrants, as well as for the whole dataset. When the
absolute correlation coefficient for one of these quadrants is higher than the total quadrants,
a tail dependence can be expected. (Joe, 2015).

Of all the combinations tested, 16.7% of the quadrants had a higher correlation coefficient
than the overall correlation. This suggest that many quadrants had no significant tail depen-
dence. However, 11 of the 24 combinations had at least one quadrant that showed tail depen-
dence. This implies that using the Gaussian copula for these combinations is imperfect. See
Table F.3 in the appendix for the complete results.
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Figure 5.4: Absolute differences for the empirical copula of the variables NDVI and Solar radiation of model 1 in
comparison with a fitted Gaussian copula.

5.5.2. TAIL DEPENDENCE FOR COPULA TYPES
Calculating the correlation coefficient of quadrants is also a way to see whether copulas fit the
data well regarding tail dependence (Morales Nápoles, 2019). The test works by comparing
the quadrant correlations for the dataset with quadrant correlations with samples from a fitted
copula. It is performed as follows:

1. Calculate the quadrant correlations for the two variables.

2. Fit a copula of a certain family to the two variables.

3. Generate n samples from this copula

4. Use the same method to normalise the n sample variables

5. Calculate the difference in correlation coefficient per quadrant

In Figure 5.5 the average result per copula type can be found. It is clear that again, the Frank
copula performs best, closely followed by the Gaussian copula. The Clayton copula performs
better in this test than in the Cramér-von Mises test (see Section 5.3). The relatively lower
correlation in the NW, NE and SE quadrants were similar to some of the data combinations.
See Table F.4 in the appendix for the complete results.
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Figure 5.5: Average absolute difference in correlation coefficient per quadrant, per copula type.



6
SELECTION AND IMPLEMENTATION OF

THE MARGINAL DISTRIBUTION

The marginal distribution, used in the copula with Equation (2.3), can be implemented in sev-
eral ways, empirically from the data or theoretically, with a fitted function. The advantage of
fitting a function is that it can smoothen out the empirical function, when it does not have
abundant data, and it has the possibility to predict values smaller or larger than ever recorded.
Essential is that the function that is used to convert the variables to uniform marginals, is ac-
tually a probability distribution function, of which the cumulative distribution function (CDF)
is used. Otherwise, it is possible that it will predict wrongly outside of the bounds of the previ-
ous data or that it’s non-invertable, which makes that calculation the value from the respective
uniform marginal has become ambiguous for some values.

A small exploratory study has been conducted in implementing conventional probability
distributions, such as the beta, gamma, gumbel, rayleigh and normal distributions, as CDF
for the marginal variables. This often gave poor fits and the prediction of the monthly maxi-
mum daily average discharge (MMDAD) became significantly worse than using the empirical
CDF (see Section 6.1). Therefore, it was presumed that a more volatile CDF was needed for the
marginals. As these volatile CDFs follow the empirical distribution very closely, it is also as-
sumed that selecting different CDFs for the different variables does not make a large improve-
ment to the model. Therefore, all variables are applied with the same probability distribution
in each of the tests. Moreover, as the central target of this research is for the Bayesian network
(BN) to predict the MMDAD well, all the testing is done a posteriori by optimising the Kling-
Gupta efficiency (KGE) of predicting the MMDAD with the BN that is introduced in Section 4.1
for each of the parameters.

Three different methods are introduced to fit the marginals in this chapter. For each of
these methods, its parameters are optimised. Afterwards, the implementation of the inverse
of these function (F−1(·)) is discussed. In Section 6.5, the optimal method for this thesis is
chosen.
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6.1. EMPIRICAL CUMULATIVE DENSITY FUNCTION
The marginal distribution can be implemented as a step function CDF:

Femp(v) = 1

n

n∑
i=1

1
( vi

n +1
≤ v

)
, (6.1)

where n is the number of samples in the dataset, v1, . . . , vn are all the values in the dataset and
1(x) is the indicator function. This is the one-dimensional case of Equation (5.3).

6.2. ALTERED LOGISTIC FUNCTION
The logistic function is an S-shaped (sigmoid) function which functions as a cumulative den-
sity function. It is defined as follows:

F (v) = α0

1+e−α1(v−α2)
, (6.2)

with α0, α1 and α2 as constants. To be used as a CDF, α0 should be 1. This leaves the function
with only two more constants, which is too little to make a close fit to the data. Therefore, a
polynomial is added to the function:

Flogi(v) = 1

1+eα1(P(v)−α0)
, (6.3)

where P is a K -parameter (2K +1-degree) odd polynomial:

P(v) =
K∑

i=0
αi+3 · (v −α2)2i+1, (6.4)

andα0 . . .αK+3 are the constants. As Flogi(v) represents a cumulative density function, it should
be ever increasing. Therefore, F ′

logi = flogi(v) ≥ 0 for v ∈ (−∞,+∞), which gives1:

flogi(v) = d

d v
Flogi(v)

= −α1 ·P′(v) ·eα1(P(v)−α0)(
eα1(P(v)−α0) +1

)2 ≥ 0 for all v ∈ (−∞,+∞).
(6.5)

As eα1(P(v)−α0) ≥ 0, now the condition is that −α1 ·P′(v) ≥ 0. Since P(v) only consists of odd
powers, P′(v) is made of even powers. Now, there are two solutions which make −α1 ·P′(v) > 0:

α1 ≤ 0, α3 . . .αn+3 ≥ 0, (6.6a)

α1 ≥ 0, α3 . . .αn+3 ≤ 0, (6.6b)

which are equal to each other because of the way Equation (6.3) is constructed. In this thesis,
the condition of Equation (6.6b) is used. Furthermore, the formula should be asymptotic on 0
and 1, which is the case using the conditions of Equation (6.6):

lim
v→+∞Flogi =

1

1+e−∞
= 1

1+0
= 1, (6.7a)

1See Equation (C.4) in the appendix for the derivation
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lim
v→−∞Flogi(v) = 1

1+e+∞
= 1

1+∞ = 0. (6.7b)

Therefore, this can be used as a cumulative distribution function.

6.2.1. INITIAL VALUES FOR FITTING THE CDF
In order to get a stable curve fit algorithm as described in Section 6.4.1, which always finds an
optimum, the initial values should be determined well. By testing configurations that made a
very globally similar distribution for each of the variables, it was determined that the following
parameters deliver a stable fit in almost all cases.

α0 = 0.2 ·min(V )
B

2
,

α1 = 0.07

B
,

α2 = min(V )
B

2
,

α3 =−80 ·B−0.5,

α4 =−1 ·B−0.5,

α5 =−0.01 ·B−2,

(6.8)

where B is defined as max(V )−min(V ), and max(V ),min(V ) respectively the maximum and
minimum value of the variable V . Using 7 parameters (up to α6) was not implemented as
this delivered a power of 7 in the odd polynomial Equation (6.4), which proved to be highly
unstable.

6.2.2. OPTIMAL NUMBER OF FIT PARAMETERS
The optimal number of parameters is determined a posteriori by calculating the KGE for each
number of parameters with a k-fold cross validation, in contrast to determining the optimal
number of parameters a priori via, for example, either AIC or BIC. This is the case because the
central objective is to find the optimal BN, not the optimal F (v) fit. It was outside the scope of
this research to test whether a better performance could be acquired by using diffent numbers
of parameters per variable.

For each number of parameters, the model was tested with 5 folds and the experiment was
repeated 10 times. Therefore, in total 50 KGEs were calculated. A boxplot has been made of
the KGE per fold in Figure 6.1. It is clear that at least five parameters are needed to acquire a
good model performance. However, using six parameters does not add anything to the model
performance. Therefore is it decided to use five parameters for the altered logistic function.

6.3. GAUSSIAN MIXTURE MODEL
The Gaussian mixture model is a combination of multiple Gaussian distributions. It has the
ability to fit well to various empirical distributions. It also has an straightforward description
of a probability density function (PDF) as well as a CDF. The PDF of the function for K normal
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Figure 6.1: Boxplot of KGE per fold, per number of normal distributions for the Gaussian mixture model

distributions is defined as follows:

fgm(v) =
K∑
i

αi

σi
φ

(
v −µi

σi

)
, (6.9)

where φ(·) is the PDF of the standard normal distribution (N (0,1)), µi the optimal mean, and
σi is the optimal standard deviation of that gaussian. Now the CDF is determined as:

Fgm(v) =
K∑
i

αi

σi
Φ

(
v −µi

σi

)
, (6.10)

with Φ(·) as the integral (CDF) of φ(·). The conditions are that:

K∑
i
αi = 1, (6.11a)

α1, . . . ,αK ≥ 0. (6.11b)

Now, because φ(·) > 0 and Equation (6.11b), fg m(v) > 0 for for all v ∈ (−∞,+∞). Hence,
the first condition of being a proper probability distribution is met. This also implies that
Fg m(v) is ever increasing. Moreover, as

∫ +∞
−∞ φ(·) = 1, or symmetrically, limv→−∞Φ(v) = 0 and

limv→+∞Φ(v) = 1, the total probability is 1, which satisfies the second condition to be a prob-
ability distribution.

As an additional advantage, in selected cases, the different normal distributions could be
descriptive of an underlying process in the data. These cases consist mostly of m independent,
underlying processes that follow a more or less normal distribution, which corresponds to the
number of normal distributions that is selected.
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6.3.1. INITIAL VALUES FOR FITTING THE CDF
Similarly to the altered logistic model, empirically, it was determined that the following initial
values give stable fits in all cases:

µi = B
i +1.1

1.008K
+min(V ),

σi = i +3

0.15K ·B
,

αi = i +5

6
,

(6.12)

where K is the number of Gaussians, B is max(V )−min(V ), and max(V ),min(V ) respectively
the maximum and minimum value of the variable. In the code, Equation (6.11a) is acquired
by dividing between the sum of the αs.

6.3.2. OPTIMAL NUMBER OF NORMAL DISTRIBUTIONS
With a similar method as described in Section 6.2.1, the Gaussian mixture model was calcu-
lated for one to five normal distributions. As each normal distributions has three parameters
(αi , µi and σi ), this was a total of 3 to 15 parameters.
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Figure 6.2: Boxplot of KGE per fold, per number of normal distributions for the Gaussian mixture model

In Figure 6.2 a boxplot is made of the average KGE per number of normal distributions.
Upon observing this figure, using only one normal distribution is too low, but, using two does
already perform really well. In this research, it is chosen to use three normal distributions, as
the median is higher than with two distributions, and the performance seems to improve less
noticeably from this number of parameters onwards.
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6.4. INVERSE CUMULATIVE FUNCTION
For both theoretical distribution functions, the altered logistic function (Section 6.2) and the
Gaussian mixture model (Section 6.3), the inverse function (F−1(·)) is not defined for all pa-
rametersα. Therefore, the model is first sampled regularly with 1,000,000 points over the x-axis
and then linearly interpolated. To be able to extrapolate, the minimal value of the points over
the x-axis is 20% times the difference between the lowest and the highest value, lower than the
lowest measured value, and goes up to 20% times this range higher than the highest measured
value. This interpolation has an especially good resolution in the margins, as the derivative
here is close to 0. For the empirical cumulative distribution function (ECDF) (Section 6.1) the
value with the uniform value closest to the sought after value is chosen.

6.4.1. FITTING THE CDFS TO THE DATA

In the case of unlimited parameters, fitting of the constants α0 . . .αn+3 is done in Python with
a trust region reflective (TRF) algorithm, because it is a bounded problem (Branch et al., 1999).

6.5. PREFERRED CDF
6.5.1. OPTIMAL FIT

A k-fold test with 5 folds has been performed for model 1 with the ECDF, the altered logistic
CDF and the mixed Gaussian CDF, as fit function for all parameters. This process was repeated
20 times, such that there were 100 test results for each of the fit functions. The results can be
found in the boxplot in Figure 6.3.
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Figure 6.3: Boxplot of KGE per fold, per type of cumulative density function described in this chapter.
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It can be seen from the graph that the ECDF and mixed Gaussian perform similarly, whereas
the altered logistic function performs slightly worse. The range of the results from the mixed
Gaussian CDF is a little wider than than from the empirical CDF, but not significantly.

STABILITY RESULTS

All probability distributions had some folds that performed poorly, but the number of folds
that did was not significantly different between these distributions. However, the altered lo-
gistic CDF had three folds in which one of the variables could not be fitted to the function. This
makes this distributions less stable.

6.5.2. EXTRAPOLATION

The functions that mimic the empirical distributions have the possibility to extrapolate data.
Therefore, it is possible that they can calculate higher discharges than have ever been mea-
sured before. However, it is not known how well they do this.

6.5.3. COMPUTATIONAL DURATION

For all of the methods, the time to fit all of the CDFs and test one fifth of the model (k = 5 for
all tests), was less than 10 seconds2. This is a lot shorter than for example running a SOBEK
model (which can take from hours up to days, and fitting has to be done partly manually), and
is therefore regarded as an insignificant amount of time. However, when larger models with
more parameters than proposed in this thesis are used, the difference in time of fitting can be
of importance. Performing a run as mentioned in this section took on average 3.5 seconds for
the ECDF, 2.4 seconds for the altered logistic CDF, and 5 seconds for the mixed Gaussian CDF.

6.5.4. CONCLUSION

As the ECDF and the mixed Gaussian CDF performed similar when used to predict the MM-
DAD with the BN proposed in Section 4.1, but the mixed Gaussian has the potential to extrap-
olate, this is the one that is chosen for the rest of this research.

6.6. SHIFTING THE CDFS TO INCREASE EXTRAPOLATION
The ECDF’s lowest value is exactly 0 and its highest value is exactly 1. This causes the fitted
CDFs to fit very close to 0 and 1. Despite these values never actually touching the limits 0 and
1, and thus being able to extrapolate, this extrapolation is very rarely happening. The reason
for this, is that the curve fit moves the function as close to 0 as possible on the lowest value of
the ECDF and as close to 1 as possible for the highest value. Suppose that, in a fitted CDF, the
uniform value of the maximum value, is 0.999. Then there is only 0.1% of the uniform space
left for extrapolation on the high end. For predicting relatively high MMDADs, for example, it
can be useful to be able to get more samples from extrapolations.

As a consequence, the method underestimates the high discharges (see the blue dots in
Figure 6.7). In general, high discharges are most prone to cause floods. Therefore, under-
estimating these is unfavourable. It would be beneficial for these regions, therefore, for the
method to extrapolate more.

2See Appendix G.2 for the hardware used for these calculations
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6.6.1. SHIFT SAMPLES OUTWARDS
This research poses a shift of the uniform variables in the fitted CDF, after a CDF is fit to the
variable. The shift should make values in the extremes of the range [0,1], a little bit less ex-
treme: for example, an extrapolation range of [0.99,1) could better be shifted to [0.97,1). This
way, three times more samples can be drawn out of the extrapolated areas. This makes the
model more likely to extrapolate, but it also makes the CDF less directly based on the data.

This shift is only based on the uniform value and prior uniform values of 0 should also
be 0 in the shifted value, and similarly for 1, as otherwise not all uniform values (u) can be
translated to a value (v). The tangens is a function that enlarges these ranges, when scaled
correctly. When applied to the uniform space of a copula marginal distribution, the way to set
up a tangens-based shift for the uniform value ut f is the following:

ut f =
tan(g(upr e −0.5))

2 · tan(g/2)
+ 1

2
, (6.13)

where upr e is the initially calculated uniform value u and g is a scale factor.
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(a) Equation (6.13) for different values of g .
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(b) Equation (6.14) for different values of g .

Figure 6.4: Shift functions

In Figure 6.4a, an example can be found of the shift function, for different values of the
scaling factor g . This alters the middle section as well, and as this does not involve the part
which can be extrapolated, this is unfavourable.

6.6.2. LIMIT SHIFTED RANGE
To solve this, a balance between no translation and Figure 6.4a is implemented. To focus
largely on the edges, the factor is taken to the quadratic:

usd = ut f (upr e −0.5)2 +upr e (1− (upr e −0.5)2). (6.14)

In Figure 6.4b, Equation (6.14) is plotted for different values of g . The shift happens almost
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only at the edges, increases closer to the end and comes back to the points (0,0) and (1,1) to
make a range that accepts all inputs. The total difference is also way less pronounced.

6.6.3. DIFFERENTIATE IN EXTRAPOLATION SIDES
For some variables, mostly an extrapolation from the upper limit is needed, or the other way
around. For example, when the method keep underestimating high discharge peaks. In this
thesis, this is the case (see Figure 6.7). Therefore, a shift can be made, to focus the change more
on one half of the CDF. To do this, the 0.5 to get the shift of the CDF in the middle between 0
and 1, can be parameterised:

usd ,h = ut f (upr e −h)2 +upr e (1− (upr e −h)2), (6.15)

with h as the parameter.
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Figure 6.5: Equation (6.15) for different values of h.

An example of different values of h can be found in Figure 6.5. It shows that a bigger shift in
one side holds a smaller shift on the other side, when done with h. Figure 6.6 shows a possible
effect on the soil moisture CDF, as an example. h is 0.4, so there was an emphasis on the
higher level. The figure shows clearly that the changes of high soil moisture levels are higher.
For example, the chance of a soil moisture higher than 0.40 m3/m3, was initially about 0.02,
but after applying Equation (6.15), it was approximately 0.10. However, the real extremes (>
0.45 m3/m3) still very rarely happen, as the function changes its slope to come back to (1,1)
at the very end. This way, almost no highly implausible events (> 0.6 m3/m3 for example) are
drawn.

6.6.4. IMPLEMENTATION
For the model used up to here, Equation (6.15) was implemented on all of the variables, to get
better extrapolation results. For all of the variables, the was g = 2.65, as higher values distort
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Figure 6.6: ECDF, fitted mixed Gaussian CDF and an example of a shifted CDF by Equation (6.15), of the soil moisture
variable.

the distributions too much, and equal on both sides with h = 0.5, except for the MMDAD, as
relatively high MMDADs were often predicted as too low, but these have the highest chance of
creating a flood. Therefore, a h of 0.4 was used for this variable.

In Figure 6.7, the effect is shown on the error per discharge amount. The figure shows that
the method shows less underestimation for the observations in the range higher than 9 m3/s.
For the middle section (5 to 9 m3/s), the error increases, as the method overestimates more, on
average. For the lowest discharges, the errors do not change significantly. There was a slight
increase in median KGE for the model by using this shift: it increased from 0.72 to 0.733. The
decision on using the shift proposed, is therefore a choice between two alternatives that have
an advantage and a disadvantage. As this research is interested in discharge extremes, it is
chosen to implement this the shift as mentioned in this section.

3Tested with a 5-fold test, repeated 20 times for both implementing the shift and not using it.
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Figure 6.7: Error for different observations, prior and after applying Equation (6.15) with g = 2.65 and h = 0.5, except
for the MMDAD variable, where h = 0.4. The shift does not make the model perform considerably better in general,
but it differentiates in where the errors are: for higher discharges, the error decreases, whereas for median discharges
(5 to 9 m3/s), the error increases.





7
MODEL PARAMETERS AND ERROR

SENSITIVITY

Next to the optimal copulas to use and the optimal cumulative distribution function (CDF),
there is a variety of other parameters that can be tested and changed for the Bayesian network
(BN) model, to make the model perform better. This chapter tests these parameters one after
the other, in which the model of the next parameter test uses the preferred results of all the
previous tests. Testing all parameters at once through a Monte Carlo method would create cal-
culating times in the order of days and is therefore out of the scope of this thesis. The tests are
conducted by calculating the Kling-Gupta efficiency (KGE) for the BN predicting the monthly
maximum daily average discharge (MMDAD), through a repeated k-fold test.

7.1. MOST LIKELY VALUE FROM SAMPLED VALUES
The target variable is sampled n times (see Section 7.2 for the optimal value of n) to see what
potential outcomes might be. This gives a probability distribution. However, for the ease of
testing a parameter or model, practical use of the model, and communication of model results,
a single value of the most likely outcome is useful. There are two easy ways to do this:

(i): Using the mean of the values. This is the most common method to calculate an ex-
pected value in the model. This has as an implication that, for example, when really high peaks
are possible, the mean also shifts upwards and vice versa. Therefore, this might say more about
the whole distribution than a single high possibility outcome. This is also the method that has
been used up to this point in the research.

(ii): Using the median of the values. This means that there are exactly as many values that
are higher, as there are lower than this number. This makes practical sense: this value has
an equal chance of being too low as being too high. Moreover, when plotted with confidence
intervals (see for example the figure in Section 9.1), this is a consistent, as both the confidence
interval and the median are in a sense quantiles of the dataset. For example, the boxplots in
Chapters 6 and 7 also use the medians as single value to show the most likely KGE per fold.

As both show advantages, it is also interesting to see which method delivers the best fit to
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Figure 7.1: A comparison between the KGEs of using the mean versus the median of the samples. In general, using the
mean gives results that are slightly closer to the actual values.

the measured values. Therefore, the model that is acquired from the optimal CDF in Chapter 6,
is tested for both of these methods. It is tested with k-fold with k = 5, and repeated 20 times
with other random folds to get a good average. This sums up to 100 folds and KGEs per method.
These results can be found in Figure 7.1. The plot shows that using a mean of the samples
delivers a slightly better fit to the data. Moreover, the results from using the median are a little
less stable, with two folds being outliers and the range of 50% of the data (the dented box)
being a little wider. For this research, this is the decisive argument to use the mean. However,
it is possible to use the median when the arguments posed in (ii) are more important, as this
does not deliver dramatically worse results.

7.2. NUMBER OF SAMPLES TO USE
The copula is sampled according to Section 2.6. It is interesting to see how many samples are
needed to acquire sufficient predictive values. There are three conditions discussed in this
research for the number of samples to use.

7.2.1. GOOD FIT OF THE TARGET VARIABLE

To test how many samples are sufficient to get a good fit of the target variable, the model is
tested 5-fold with 10 repetitions of random folds, so 50 folds and KGEs in total per number
of samples. The results can be found in Figure 7.2. The figure suggests that using 20 samples
would already be sufficient to get results that are similar to results from using a higher number
of samples.
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Figure 7.2: Boxplot of the KGE per number of samples used to predict the target variable from the Gaussian copula.
The performance seems to level around 20 samples onwards.

7.2.2. CONFIDENCE INTERVALS

When confidence intervals are required to get a sense of the certainty of the calculated value,
the number of samples should be sufficient to calculate stable quantiles. For example, when of
100 samples, a confidence of 90% is used, it leaves 5 values of the data on each side. As variable
usually have a low probability towards the edges of the distributions, especially since they have
been sampled from a Gaussian copula, these 5 values have a higher volatility than the values
in the centre. That is why this does not deliver a stable number of samples. The rule-of-thumb
that is followed in this research, is to use at least 50 samples in each of the margins outside of
the confidence interval. As the confidence interval used in Section 9.1 is 80%, at least 50

0.1 = 500
samples are necessary.

7.2.3. COMPUTATIONAL TIME

In the testing of the model, most of the time running the model goes into fitting the CDFs.
The computation time only increases noticeably when testing with more than 10,000 values
in the Python code written for this research. Below this number, the calculating time was in
the order of 7 to 9 seconds per run but for more than 10,000 samples it increased to more than
10 seconds for most of the folds. From Sections 7.2.1 and 7.2.2 it follows that this number
of sample values is not necessary to acquire good results. Therefore, as the computational
time is no limiting factor for the rest of this research, no lower number of samples needs to be
used, and the number of 500 samples is used from this section onwards. However, when only
getting results from a model that has a wide confidence interval, many predicting datasteps,
and potentially intermediate results, computational speed might be a limiting factor.
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7.3. SUBSET PERIOD DATA

The data for the model has been aggregated from the days before the MMDAD event, see Sec-
tion 3.3.9, step 1. As the model is almost solely data driven, it is unclear at the start which
period to take into account. Therefore, a Monte Carlo test has been done with a 10 time, ran-
domly repeated 5-fold test of the model for 9 different periods before the maximum event. For
example, when this subset period was 4 for a MMDAD on June 8, the data was taken from June
4, 5, 6 and 7 and the first 12 hours of June 8.
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Figure 7.3: The amount of data days before the discharge event of which the data is aggregated to construct the model.

It is clear from Figure 7.3 that it does not matter greatly what subset period to use. 8, 9
and 10 days back seem to perform the best, but they do not significantly outperform using
anywhere between 6 to 10 days as a subset period. Therefore, in this thesis, a subset time of 8
days was taken.

7.4. SENSITIVITY INPUT ERROR

It is common to recognise two types of errors, systematic and random errors. For this research,
it is also interesting to look into whether the error is in the conditioning variables, or in the
conditioned variable(s).
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7.4.1. SYSTEMATIC ERRORS OR BIAS
A continuous systematic error, or even an error that is a direct monotonically increasing func-
tion of the actual values, does not influence the BN results. This is because of the translation to
the uniform margins for the copulas. What is interesting, however, is to test what the influence
of a new systematic error is.

MULTIVARIATE NORMAL FUNCTION

When a variable changes by a parameter, the vector A from Equation (2.18) is shifted with ∆A,
which is the shift in standard normal values per conditioning variable. This means that the
new mean of the conditional normal distribution subject to an error, µ̂e is defined as:

µ̂e = R12R−1
22 (A+∆A) . (7.1)

The shift in mean is then given by:

∆µ̂e = R12R−1
22 ∆A. (7.2)

However, the implication on the predicted variable depends on both µ̂ and ∆µ̂e , as F (v) from
Equation (2.3), as well as Equation (2.20) are non-linear functions. This also holds for ∆A.
Therefore, to see the shift in the prediction for this research, a simulation with artificial sys-
tematic errors is conducted.

SIMULATION ARTIFICIAL ERRORS

There are 7 conditioning variables that could have any or no systematic error. Each of the
variables has been tested with an artificial systematic error, one after the other, for its influence
on the prediction of the MMDAD. The error is a factor times the difference between the highest
and the lowest value. This factor is called the relative error (ϵr ), and is added to the values of a
variable. There is no k-fold test done, as the test set is already altered by the error. The results
can be found in Figure 7.4.

The results show that an error in variables that are not directly correlated to the MMDAD,
has no significant impact on the final results, as they have very little influence whatsoever
when the child variable’s value is known. However, for the other variables, the impact can be
greater. From an absolute, relative error of 0.5 times the range of the values for a single variable,
the results start to become unsatisfiably worse. However, all of the direct variables also have
a region in which the prediction actually gets better. For the negatively correlated variables of
surface water level and solar radiation, this happens when small values are subtracted from
the measurements, and for the positively correlated variables this is the other way around. A
possible explanation for this, is that the variables are averaged too much in the BN, such that
insufficient extremes are predicted.

7.4.2. RANDOM ERRORS

THEORY

In this research, a continuous standard error is assumed to influence the measurements (σm).
The influence of these errors on the the network, can first be studied by looking at the error on
the standard error of the subset values. In mathematical terms this is called the standard error
of the means, and is defined as follows:
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Figure 7.4: The loss/gain in KGE for different artificial errors. Note that both axes are logarithmic divided by 10, both
for the positive value and the negative. This is why between -0.1 and 0.1 for the x-axis and -0.2 and 0.2 a shift in scale
is made by applying a linear axis (symlog axis).

σv = σmp
n

, (7.3)

where n is the number of measurements in the subset period. For the subset period of 8 days,
the standard error of the value is calculated with an artificial standard error for the measure-
ments 0.2B , where B is the range between the highest and lowest measured value of a variable.
The results can be found in Table 7.1.

Variable Avg. number of measurements
in subset period (n)

Standard error of means with
σm = 0.2B (×B)

MMDAD 96 0.0204
Precipitation 204 0.0140
Temperature 204 0.0140
Solar radiation 204 0.0140
Soil moisture 9 0.0667
NDVI 1.4951 0.1641

Groundwater levels 119 0.0183
Surface water levels 1080 0.00609

Table 7.1: Standard error factorisation of means

1NDVI data is already aggregated by NASA, so a σm of 0.2 would be way more significant for these measurement. It is
to be expected that the standard error of this measurement is lower than that of real individual measurement.
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It is clear that the error of the subset periods increases significantly, as most variables have
many values. For the soil moisture, however, the error remains significant. The data of the
NDVI is already aggregated by NASA, so it does not compare proportionately.

SIMULATION ARTIFICIAL ERRORS

To test the influence of an additional random error, the model has been tested with an artifi-
cial random error. This is composed as follows: per variable, for each of the timesteps, there
is a random normal error added to the value. The errors are assumed to follow a Gaussian
distribution, so this random error is drawn out of N (0,σv ), where σv is defined according
to Equation (7.3). In this function, for n the average number of measurements is used (see
Table 7.1), and σm is expanded as:

σm = ϵr,r B , (7.4)

where B is the largest value of the variable minus the lowest value (max(V )-min(V )), and ϵr,r

is called the relative error, a factor that is changed in this method. This procedure is done 20
times per variable per ϵr,r to get a good average. The results can be found in Figure 7.5.
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Figure 7.5: Artificial random error and the influence on the influence in performance in predicting the MMDAD. The
factor ϵr,r is defined as σm /y , or in other words, the standard error is the factor ϵr,r times the range between the
highest and the lowest value of a variable (B).

According to the test, for almost none of the variables, a random error has any significant
impact on the results. A relative error of 4, which is already very high, makes no impact on the
variables that are not directly correlated and very little in the results of the surface water level,
solar radiation and groundwater levels. As for the surface water level and solar radiation, an
increase was even visible, which is remarkable and suggests that these variables maybe not be
optimal predictors. Only the precipitation already has a large decrease in KGE from an ϵr,r of 4
onward. In conclusion, the model is very robust against random errors in the data.
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7.4.3. SYSTEMATIC ERRORS IN THE DISCHARGE MEASUREMENTS
If the discharge measurements were to have systematic errors, the model is fitted wrongly.
However, the predicted discharges would be the same as if the model would have been trained
by the correct measurements, shifted by the the systematic error in the discharge measure-
ments. For the KGE, this means that the factors r and α do not change in Equation (4.2). The
µobs could be redefined as follows:

µobs =µact +ϵs,M MD AD , (7.5)

where µact is the mean of the actual measurements and ϵs,M MD AD is the systematic error in
the observations.

If the actual discharges would be known, it would be possible to calculate the KGE with
µact instead of µobs. This gives a sense of the sensitivites in the KGE in the case of potential
systematic errors.

In the BN proposed in this research, the mean of the simulations are almost equal to the
mean of the observations (see Section 9.1.2). This means that the factor β (Equation (4.3b))
in the KGE formula (Equation (4.2)) is almost 1. In this section, this factor is presumed to be
exactly 1, yielding the following difference in KGE (∆KGE):

∆KGE = 1−
√

(r −1)2 + (α−1)2 +
(

µsi m

µobs −ϵs,M MD AD
−1

)2

−KGEpre

= 0.28−
√

0.282 +
(

ϵs,M MD AD

ϵs,M MD AD −4.24

)2

,

(7.6)

where r,α and µsi m are the usual KGE variables, µobs in β has been substituted for µact , with
the latter defined in Equation (7.5), and KGEpre is the original KGE. The second line of Equa-
tion (7.6) is obtained by assuming that βpr e = 1, and noting that KGEpre was 0.72 on average.
The full derivation can be found in Equation (C.5) in the appendix. Equation (7.6) has been
plotted in Figure 7.6.

From the graph it follows that, in general, positive systematic discharge errors are worse
for the KGE than negative systematic discharge errors of the same magnitude. The reason for
this is that in Equation (7.6), the magnitude of the delimiter becomes smaller when ϵs,M MD AD

is larger than 0. This does not mean that it is in all cases better for the model to have underesti-
mations in comparison to overestimations, as the KGE is just a measurement of performance.
The users’ view on the performance, is more related to the goal of the model. If, for example,
the model is made for flood safety, it might actually be better to measure a higher discharge
than which is actually happening.
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Figure 7.6: The result on the KGE if the discharge measurements where to have a systematic error and the model was
benchmarked against the actual discharge.





8
BAYESIAN NETWORK LAYOUT

Up to this point in the research, sensitivity analyses and optimisation steps, where only of
the parameters and settings related to the copulas. For the user of the model, the visible part
of a Bayesian network (BN) is the most intuitive and comes closest to reality. Furthermore,
the layout of the BN has considerable impact on what can be conditioned and how well some
variables can be predicted. It also can influence whether influences of a certain variable can be
distinguished correctly. For example, if it is known that on a certain date, the temperature will
be higher, you might want to see what the influence on the network of this variable is. If this
mostly influences the precipitation, which influences the rest of the variables, the influence of
the effect of the precipitation is mostly seen. This chapter goes into the creation of a BN layout,
that suits the catchment best and achieves the the modelling goal of this research.

To come up with the preferred layout for this research, first the criteria what make a layout
superior to others, have to be drawn up. Afterwards, a strategy is composed to acquire these
criteria, based on the criteria and the characteristics of non-parametric Bayesian networks
(NPBNs). When applying the strategy, some implementations are ambiguous: implementing
a section in a certain way or another way, explains the catchment workings differently. As the
model is no perfect representation of reality, neither argumentation is wrong. In this research,
the choice what implementations to take, is solely based on performance of certain predic-
tions in the model, as no other method can be used to make an unambiguous decision.

8.1. CRITERIA
In this research, the following criteria are used to assess the BN layout1.

1. Physical relations: the model layout should adhere to logical cause-effect relations. This
makes the model physically relevant and better interpretable.

2. No useless variables: the model should not contain variables that do not add any pre-
dictive power to any of the other variables. This keeps the model relevant and orderly.

1See Appendix A in the appendix for an explanation of the terminology used in this section.
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3. Accurate predictions and no overfitting: the model should perform well, even when
tested on data that is not in the training data.

4. Understandable model: the model should be understandable for anyone that has a de-
cent amount of proficiency in hydrology and has rudimentary knowledge about BNs.

5. Variables predictable from other variable when not known: in case the value of a vari-
able is not known at a certain timestep, the other variables should update the distribu-
tion of that variable in line with other datapoints. The updated distribution should also
help make the update of other variables - such as the target variable - better comply with
observations.

An additional condition is that the configuration cannot have circular relations (that the
same point in the graph can be reached by following arcs in their direction) as BNs are directed,
acyclic graphs (DAGs).

8.2. STRATEGY
The following strategy to create a BN layout that complies with these criteria has been estab-
lished:

1. Select potential variables to use in the model.

2. Calculate normal rank correlations for all combinations and remove variables that do
not hold normal rank correlations higher than 0.3 with any of the other variables and are
therefore not of use to make predictions.

3. Use physical relations to create a model.

4. Determine order of dependencies to child variables.

5. Remove connections with low partial normal rank correlations from the BN (<0.1). Usu-
ally, these connections do not make a significant influence on the update of distributions
of other variables. An exception can be made to this rule if the the connection does make
a noticeable difference in the update of variable which is regarded as important.

The normal rank correlations of the variables used in this research can be found in Fig-
ure D.8 in the appendix. None of the variables first introduced have to be removed. Despite
this, the low correlation of the precipitation measurements is noteworthy.

8.3. CONNECTIONS IN THE MODEL BASED ON INFLUENCES ON THE

VARIABLES
To solve Items 3 and 4 of Section 8.2, a look is taken at which variables could potentially in-
fluence other variables in the actual catchment. The former variables will be te parents of the
latter variables. The following list goes through all of the variables and determines which vari-
ables could have influenced that variable. Then, it discusses the order of dependencies per
variable. For some of the arcs, multiple interpretations of the system are possible. Therefore, it
is merely a choice of which setup to implement. In this research, the corresponding decisions
are solely based on accuracy of the model, see Section 8.4.
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• Solar radiation: The solar radiation is determined by the solar incidence angle, cloudi-
ness, and other minor atmospheric parameters. These other atmospheric parameter are
not known, so they cannot be implemented. The cloud cover could be correlated to the
precipitation. Therefore, this variable has a small potential to be a parent. However, the
normal rank correlation between precipitation and solar radiation is only -0.14 (see Fig-
ure D.8), which is very low. Therefore, the solar radiation does not have any parents in
the model.

• Precipitation: Due to the climate in The Netherlands, the precipitation pattern is very
similar throughout the year (see Figure 3.6). Therefore, a season-based variable, such as
solar radiation or temperature, is not a good candidate as a parent variable. Moreover,
rain clouds originate almost fully from outside the catchment area (in contrast with large
rainforest catchments), which gives an indication that the precipitation is likely not in-
fluenced by any other variable. Therefore, precipitation is also regarded as a top-level
variable.

• Temperature: The temperature is influenced by solar radiation, weather factors, and
local solar radiation reflection and cooling effects. As the area of this catchment is rela-
tively small for local weather influences, and the terrain is relatively flat, local effects are
presumed to be insignificant. Solar radiation influences the temperature directly and
is therefore implemented this way. The feedback mechanism through evaporation and
cloud formation is regarded as insignificant to this direction.The same could be said for
using NDVI, because of the cooling effect of plant transpiration. This is choice (1).

When the NDVI is a parent of the temperature, its correlation is conditional to that
of the solar radiation and the NDVI, because the solar radiation influences the plant
activity as well.

• NDVI: This vegetation index is a proxy for leaves cover and plant activity in the catch-
ment. As plants need solar radiation to grow, this is the first parent for the NDVI. Regard-
ing the connection with temperature: plants also fare better with a high temperature,
thus the arrow between the NDVI and temperature could also be the other way around
in choice (1). Finally, soil moisture availability also influences the amount plants can
grow. This function is physically not monotonic, as there is a strict margin (field capacity
and wilting point) within which the plants can grow. Therefore, the NDVI is influenced
by the soil moisture rate.

Unconditionally influencing the NDVI is the solar radiation. If implemented in this
fashion, the temperature comes second, and is only conditional to the solar radiation.
The soil moisture, if used as such, is dependent on the other two variables to remove the
seasonal effect from it and let the soil moisture explain the relative water availability at
that moment.

• Soil moisture: As the soil moisture measurements are of the top soil, this consists mostly
of unsaturated soil moisture. This quantity is mostly influenced by the precipitation,
suction of plants, capillary rise from groundwater, or just directly from groundwater rise
(because of seepage or saturation effects) if this reaches the top level of the soil. More-
over, evaporation forces (temperature, solar radiation) can also influence soil moisture.
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The first parent variable is the precipitation, as this is presumed to be very directly
causing soil moisture differences. Secondly, arguments can be made for connecting
groundwater to the soil moisture in either direction: this depends on whether capillary
rise or percolation is the dominant process. This is choice (2). Lastly, it is debatable how
much evaporation happens in the catchment in relation to transpiration. This is choice
(3).

Whether to select the groundwater or the precipitation as first variable for the par-
tial correlation, is also a choice (4). After this come the solar radiation and the tempera-
ture, in that order, if they are used.

• Groundwater level: As mentioned above, soil moisture has one of the largest effects the
groundwater level, to be selected in choice (2). Groundwater is depleted again via the
surface water, and is afterwards discharged at the downstream end of the catchment.
However, arguments can also be made that the surface water actually influences the
groundwater level. This is because the surface water level is located in a managed area
(see Figure 3.2), in which the surface water level is artificially raised to create a higher
groundwater level. However, as can be seen from the same map, the measurement sta-
tions are also relatively far away from each other, which can also be an argument for
there not being an arc in the BN. This is choice (5).

If surface water level is a parent variable to the groundwater, this will have the un-
conditional correlation to the groundwater, as they are very closely related in managed
areas. The influence of the soil moisture is then used indirectly: given the surface water
level.

• Surface water level: As mentioned in Section 3.2.6, the area of surface water is only
1.36% of the catchment. This means that the influence on direct precipitation on the
surface water is low in comparison to the groundwater, which is the main contributor.
Therefore, choice (4) determines what to do with the surface water levels. No other vari-
ables are connected. This means that the surface water level will never have multiple
parent variables, so no choice is to be made in order of partial correlations.

• Monthly maximum daily average discharge (MMDAD): The discharge does not influ-
ence anything in the catchment, as it (almost always) flows out of the catchment. What
influences the discharge is, on the other hand, up for interpretation. This is choice
(6). Directly, it is only the downstream surface water level that influences the discharge.
However, the measurement station is only in a small tributary, and using a single variable
does not make for a good prediction. That is why, in this research, also the groundwater
level, precipitation and the soil moisture (that are more directly possible to relate vari-
ables than others) are used to predict the discharge directly. Lastly, also a variable with a
strong predictive power of the season is added: the solar radiation.

The order of dependence between the surface water and groundwater levels is de-
termined for choice (5). As the direct relation of some of the other variables is more or
less imaginary, no strong arguments can be made for the partial correlation order of the
other variables. In this research, the order is: surface water level, groundwater level,
precipitation, soil moisture, and solar radiation.



8.4. SELECTED IMPLEMENTATIONS

8

77

8.4. SELECTED IMPLEMENTATIONS
It is not possible to make a completely satisfying decision on the BN layout, because choices
have to be made between implementations that both have positive and negative aspects. In
this research, we will therefore decide upon these choices solely based on the performance of
predicting a variable in the model. Users of similar models can make other decisions, based
on their preferences and other leading processes in catchments.

All the choices with a small number of variables (choices (1) to (5)) are recapitulated in Ta-
ble 8.1. Selecting a certain implementation in choice (6) is very arbitrary, and (given that the
surface water level is connected to the MMDAD) still has 26 = 64 different options. However,
all of the different options in models (1) to (6) still have 3·3·2·3·2·3 = 324 different implemen-
tations, which is too time-consuming and labour-intensive for this research.

Choice Implementations

Num. Connection A B C
1 NDVI - Temperature No connection NDVI → Tempera-

ture
NDVI ← Tempera-
ture

2 Groundwater - Soil
moisture

Groundwater → Soil
moisture

Groundwater ←
Soil moisture

3 Solar radiation &
Temperature - Soil
moisture

No connection Solar radiation →
Soil moisture

Solar radiation &
Temperature → Soil
moisture

4 Groundwater &
Precipitation - Soil
moisture

Groundwater de-
pendent: ρPr ec ,SM ,
ρGW,SM |ρPr ec,SM

Precipitation de-
pendent: ρGW,SM ,
ρPr ec,SM |ρGW,SM

5 Surface water level -
Groundwater level

No connection Surface water level
→ Groundwater
level

Surface water level
← Groundwater
level

Table 8.1: Overview choices model. In bold are the implementations that are used in the intermediate models to solve
the choices before this choice.

Therefore, each of the choices is regarded one after the other, from (1) to (6). For each of
these choices, a test is constructed to test the performance of the model in a specific section
of the model. The model is only conditioned on the variables that are of interest for the choice
at hand. The reason that this method is chosen, instead of conditioning the whole model and
testing the accuracy of the MMDAD prediction (in Kling-Gupta efficiency (KGE)), is because
no high differentiation in performance is expected, especially for variables that are not direcly
connected to the MMDAD. Moreover, the model should also perform well in predicting other
variables.

Each of the different implementations was tested 5-fold, with a 20 times random repetition,
hence providing a total of 100 results per implementation. For each of the implementations,
the median of the KGEs was taken by comparing the target variable predictions and observa-
tions. This is done because in very few cases, the model gave very inaccurate results and gave
KGEs in the order of -10 to -60, which has a big influence on the mean of the KGEs. The optimal
implementation was chosen as the one with the highest KGE and this setup was used in the
testing of the other choices from here. The results of these tests can be found in Table 8.2.
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Choice Model layout Median KGE per impl. Sel. impl.

Target Conditioned A B C
1 Soil moisture NDVI, Temperature 0.26 0.23 0.24 A
2 MMDAD Soil moisture, Groundwater

level
0.34 0.38 - B

3 NDVI Solar radiation, Temperature,
Soil moisture

0.37 0.38 0.41 C2

4 - - - - - - 3

5 MMDAD Groundwater level, Surface
water level

0.41 0.42 0.39 B

Table 8.2: Outcome testing all of the choices an selected implementations.

Table 8.2 shows that the KGEs of the different implementations do not differ a lot. There-
fore, the selected implementations should not be regarded as the overall optimal setup, but
just the optimal model - by a small margin - for the KGE of a part of the model. Implemen-
tation C for choice 4 delivers a connection with a partial normal rank correlation of -0.089, so
slightly less than absolute 0.1. This is in conflict with Item 5 of Section 8.2. However, as this ar-
row does add something to the prediction of the NDVI, the connection is kept in. As the result
from choice (2) is an arrow from soil moisture to groundwater, the choice of what the order of
dependencies between the groundwater and precipitation is, choice (4), is redundant.

Regarding the final choice (6), the variables surface water level, groundwater level, soil
moisture, solar radiation and precipitation have been selected to be connected to the MM-
DAD.

8.5. FINAL MODEL
The final model is shown in Figure 8.1. See Appendix A for an explanation how a BN layout
works.

2This keeps an seemingly redundant connection in (ρs,nor m < 0.1), however, this does make a better prediction. See
explanation in text Section 8.4.

3Because of the implementation of choice (2), this choice has become redundant.



8.5. FINAL MODEL

8

79

Figure 8.1: Final model layout. The numbers at the bottom of the boxes are the mean and the standard deviation
of the values, in their respective units: NDVI (-), temperature (◦C), solar radiation (J/cm2), groundwater level (hPa),
soil moisture (m3/m3), precipitation (mm, cumulative over the whole subset period), surface water level (m). The
numbers on the arcs are the (conditional) normal rank correlations between variable pairs, defined by Equations (2.12)
and (2.17). See also Appendix A for a more extensive description of a BN layout.





9
RESULTS BAYESIAN NETWORK AND

BENCHMARK MODELS

In this section, the results of the final model, that has been optimised in the previous chapters,
are discussed. Afterwards, a number of other models is introduced and tested with the data,
to be able to benchmark the results of the Bayesian network.

9.1. GENERAL RESULTS BAYESIAN NETWORK
The median performance of the final model was a Kling-Gupta efficiency (KGE) 0.73 per fold.

In Figure 9.1 a model is made on all of the data in the dataset (and is therefore not k-fold
tested). It can be seen from the model that most of the observations are within the 80% error
bar. The absolute error is usually the highest for the highest peaks. This is common. However,
as high peaks usually deliver the worst floods, it is also not favourable.

9.1.1. COMPLETE k-FOLD TEST
In Section 4.3, it is discussed how only the fitting of the CDFs can be performed automatically
in the Python code written for this thesis, via k-fold cross validation. As a final evaluation,
a complete k-fold test has been executed, where also the matrix R (see Section 2.4.2) is cre-
ated from the data in the training set via Uninet. The results of the 5-fold test that has been
executed can be found in Figure 9.2. Evidently, the separate R-matrices do not lower the KGE
significantly. The average difference between the maximum correlation and the minimum dif-
ference of the 5 folds, per connection, was 0.06. Additionally, the maximum of these numbers
was 0.14. This was the connection between the monthly maximum daily average discharge
(MMDAD) and the surface water level.

9.1.2. FACTORS KGE
As was mentioned in the previous section, the average KGE was 0.73. However, since the KGE
is used, it is known how different KGE parameters have influenced this number. First of all,
the correlation coefficient ρ between the predicted values and the observations was 0.85 on

81



9

82 9. RESULTS BAYESIAN NETWORK AND BENCHMARK MODELS

2012 2013 2014 2015 2016 2017 2018 2019
Year

0

2

4

6

8

10

12

14
M

M
D

A
D

 (m
3 /s

)
Prediction and observations MMDAD at Heerenslagen, KGE = 0.79

Observations
Prediction
80% confidence interval

Figure 9.1: Prediction and measured observations at Heerenslagen. This specific model is not k-fold tested. cumu-
lative distribution function (CDF): mixed Gaussian with 3 normal distributions, most likely value: mean (see Sec-
tion 7.1), number of samples: 500, shifted CDF as mentioned in Section 6.6.4.
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Figure 9.2: Result of a 5-fold test where also the matrix R has been calculated per fold. See Section 4.3.

average. This is one of the reasons for the small KGE. Secondly, the factor α, the difference
between the two standard deviations, was on average 0.83. It can also be seen from Figure 9.1
that the volatility of the model is slightly lower than the observations. One of the reasons for
the reduced volatility of the model, is the underestimations of the high peaks. Lastly, the factor
β was on average 0.9997. This means that the mean of the predictions is about the same as
the mean of the observations. This can be explained by the fact that a probability distribution
is made from the observations. The mean of this distribution is also drawn out of the ran-
dom samples, and the factor has about an equal chance of being higher than 1 as being lower.
However, it is still remarkably close to 1 most of the times.
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Additionally, the median Nash-Sutcliffe efficiency (NSE) of the final model was 0.66, when
5-fold tested for 20 times. Optimising the model for the KGE, might have not given the optimal
model for the NSE. Both determine performance with a slightly different philosophy, which
makes that the optimal model is optimised for the KGE philosophy.

9.1.3. ERROR PER OBSERVED VALUES

For 20-times 5-fold testing, the results have been plotted for the observed discharge versus
the error (predictions minus observations) in Figure 9.3. It is clear that in general, for the low
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Figure 9.3: Model results for the final model, plotted for error versus the observed MMDAD.

discharges, the error is often small, but many folds overestimate the discharge significantly.
For the median discharges (5 to 8 m3/s), the general error is higher, but this is still an over-
estimation. Finally, for the highest discharges (8+ m3/s), the model tends underestimates the
discharge slightly. Two observations in the high range are never really estimated well.

9.1.4. NOT FIXING ALL VARIABLES

For almost all of the tests in this thesis, the target was the prediction of the MMDAD based
on fixing all of the other variables. However, Bayesian networks are also able to condition the
distribution of the target variable if not all other variables are fixed. If this is used, the non-
fixed variables are also conditioned by the fixed variables, what works through in the network.
In this section, the MMDAD is predicted by fixing a number of variables in the network. As
there are 7 variables in the model except for the MMDAD, there are 27 = 128 combinations.
Testing all of these combinations, will give very little overview in the results. Therefore, in this
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thesis, 1, respectively, 2 variables are fixed. This gives a total of:

ncomb =
(

7

2

)
+

(
7

1

)
= 21+7 = 28 (9.1)

combinations. For each of variables or variable combinations, a 5-fold test is repeated 10 times
with different folds with the final model. In Figure 9.4, the median KGE can be found of the
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Figure 9.4: Median KGE for 5-fold test, repeated 10 times, predicting the MMDAD by fixing one or two variables. On
left top to right bottom axis are the results where only one variable was fixed.

test. In general, the precipitation, groundwater level and surface water level are the best pre-
dictors in this model. However, combining precipitation with one of these water levels gives
a significant better result than combining the groundwater level with the surface water level.
After these variables, the soil moisture is a decent predictor. The NDVI and temperature on it-
self are useless predictors. However, combined with for example, precipitation, the combined
prediction becomes significantly better.

9.1.5. PREDICTING ALL VARIABLES
As mentioned in Section 9.1.4, the Bayesian network update probability distributions of other
variables (than solely the target of this research) as well. How well these other variables can
be predicted, is tested with a 5-fold test, which has been repeated 20 times with different di-
visions. All of the other variables are fixed in this test. The results can be found in Figure 9.5.
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Figure 9.5: KGE per variable when all other variables are fixed. Tested 5-fold with 20 random repetitions per variable.

As can be expected, the MMDAD can be predicted best. The model is optimised for this vari-
able and also has the most connections to other variables. The solar radiation is also relatively
well predictable. A likely reason for this is the fact that the solar radiation variable has three
connections in the model and has a high seasonal dependency, which makes a prediction in
general relatively easy. The precipitation, which was able to predict the discharge the best of
the variables (see Section 9.1.4), is averagely predictable. The NDVI is not so useful to predict
the MMDAD, as well as difficult to predict itself. This makes NDVI in the prediction sense a
lesser useful variable in the model.

9.1.6. PREDICTING ALL DAYS

SAME MODEL, TESTING ALL DAYS

In this thesis, the modelling has been focused on the monthly maximum discharge days. How-
ever, in practice, when an extreme event has to be predicted, it is likely that this day is unclear.
Therefore, a number of tests has been conducted to determine the predictions when the data
is tested on all days.

The first test is testing the model on all of the days. This means that the subset periods
heavily overlap. The KGE that resulted from this test was 0.04. This is mainly due to the vari-
ance and mean parts of the KGE, which were 1.45 and 1.82 respectively. Especially the too high
mean has a have a high influence on the KGE, as has been determined in Section 7.4.3. This
poor performance is very logical, as the model’s goal was to model monthly maximums. As
only maximums were fed into the training set, the model is likely to predict high values as well.

Therefore, it is more relevant to look a the predictions of the monthly maximums. The KGE
that came out of this test, was 0.72. So, the model still performs about equal when also other
days are tested. However, only 16% of the dates on which this event happened was correct.
This is still higher than the fully random 3%. The average distance between the days that the
actual event was and the predicted, was 6.5. Furthermore, 61% of the predicted days were



9

86 9. RESULTS BAYESIAN NETWORK AND BENCHMARK MODELS

within 4 days of the actual event, whereas a random distance would be approximately 10 days.
Thus, when the date of the event is predicted wrongly, the model still predicts a date within
the same weather pattern. Lastly, in 62% of the cases, the model predicted the date too late in
the month.

MODEL BASED ON ALL DAYS

It is also possible to set up the model itself for all days in the dataset. This completely ignores
the conditional independence assumption, as all subset periods of data now highly overlap.
The KGE that was acquired when testing this model was 0.73, when 5-fold tested with 20 ran-
dom repetitions. This suggests that the conditional independence assumption is not needed
for predictions for these kind of models. However, as approximately 30 times more data is
used for this model, it can be expected that the model based on all days should perform bet-
ter. As this is not the case, this might be an indication that there is a negative effect of the
non-independent dataset.

9.2. BENCHMARK MODELS
It is interesting to see how well other models would perform in this catchment. That is why,
four different kind of models were selected to see how well they perform on the same target
variable, the MMDAD, as well as (as much as possible) the same input values.

9.2.1. SATURATED BAYESIAN NETWORK
Creating a model that has all the connections, has a number of advantages. First of all, it elimi-
nates the need of having knowledge about the catchment in order to create a physically-based
Bayesian network (BN) layout. Of course, this also has the disadvantage that the model is less
intuitive and features inconsistent physical relations. Therefore, not all conditioning makes
sense. Secondly, there is no need to use the recursive correlation equation (Equation (2.17)),
which can be complicated to implement. In this thesis, Uninet is used to acquire these cor-
relation coefficients. The correlation matrix R used for a saturated BN has the normal rank
correlation rr,norm (Equation (2.12)) on all indices. Lastly, because this model uses all infor-
mation available, the model has a marginally better accuracy in predicting the target variable
MMDAD.

Using the same BN parameters as the unsaturated model, except for the layout, the average
KGE became on average 0.74 per fold, compared to 0.73 for the unsaturated BN.

9.2.2. SOBEK MODEL
SOBEK is a software suite that has been created by Deltares, which offers water system calcu-
lations that follow the Saint-Venants equations1. It is widely used in the Dutch water sector,
and many water boards use it for multiple purposes, among which as their official peak flow
modelling. This is done to check whether they comply with the agreement Nationaal Bestuur-
sakkoord Water (National Governmental Agreement Water), which states several inundation
limits (Rijksoverheid et al., 2003). Waterschap Drents Overijsselse Delta (WDODelta) also uses
a SOBEK model for their water flows, for example, to check the effect of any alterations that
they might implement in their system. Other SOBEK models are constructed for a multitude

1See https://www.deltares.nl/nl/software/sobek-suite/

https://www.deltares.nl/nl/software/sobek-suite/
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Figure 9.6: Daily average results for the SOBEK model as well as the discharge observations at the measurement station
Heerenslagen. The values at the MMDAD events are marked as well.

of goals: among others monitoring effects on discharge and water level extremes, checking
the water quality, water balance and predicting aridity. The model used in this thesis is made
for predicting discharge peaks in a quick fashion, a so-called decision supporting system. It is
maintained by the company Deltares, and changes are added regularly. The model calculates
solutions in a numerical fashion, with timesteps in the order of 1 minute to 1 hour.

A slightly altered version of this model is used to benchmark the results against (no al-
terations were made in or closely surrounding the catchment). The same precipitation and
potential evaporation values were taken as those that are used in Section 3.4. Wind and water
temperature were not defined because these are not acquired for this research. The discharge
is taken from the same stretch as where the main measurement station is situated. The pa-
rameters have been fitted beforehand, but despite this, the running of a model evaluation still
takes 25 hours, when timesteps of 10 minutes are used over 8 years of data.

RESULTS

The general model results can be found in Figure 9.6. The model seems to be predicting a
similar base flow as the measurements. However, the volatility seems to be far off and some
peaks and periods of higher discharge, such as the winter of 2012-2013 are underestimated.
The KGE for all dates was only 0.576, and the α factor of the volatility was 0.700, which is
very low for such a model. Moreover, for the monthly maximums, the model performed even
worse: it acquired only a KGE of 0.400, as all peaks except for two, were (sometimes highly)
underestimated. The following reasons for this low value are:

• The model has been made for the whole network of the water board. Therefore, it is
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possible that the fitting of this section was made worse, because it had to comply with
other measurements downstream of the catchment.

• The fitting of the discharge at the Steenwijker Aa did not deliver as good results as that
of other catchments (De Graaf and Rusticus, 2013).

• There were only two months of data used in fitting the network (De Graaf and Rusticus,
2013). This can cause the model to overfit that event, thus producing worse fits in other
events (for example in a different season).

• Weir level differences were not implemented in the model. To store water for dry peri-
ods, the water level is artificially raised in spring and summer. This parameter is imple-
mented in the BN (surface water level, Section 3.3.6), but not in de SOBEK model.

However, this is the model that is used right now to predict high discharges at the water board.
A BN provides a simple tool in which extreme events can be predicted in a computationally
inexpensive and with a better perfomance than the SOBEK model.

9.2.3. NEURAL NETWORK
The data of model 1 has been used in an (artificial) neural network (NN). This is a model that
is rooted on the working of the brain. Via simple switch-like functions in a great number of
neurons, the model is able to make predictions of various phenomena. It is usually not trace-
able what the exact reasoning is behind the choices for the parameters, but for the target value,
the method is capable of calculating a wide range of types of predictions. These types can be
highly abstract, such as predicting an image either containing a cat or a dog. This means that
the method is often called ’black box’: the reasoning behind the model’s ’choice’ cannot be ex-
plained easily. This can be unfavourable for governments because they often have to explain
their reasoning.

Figure 9.7: Layout of the Tensorflow artificial neural network that is used. It has two dense layers with 64 neurons and
to get the target value, a single dense layer of 1 neuron.

The model that is used is shown in Figure 9.7 and consists of two hidden, deep layers of
64 neurons. This is the type of model that is advised by Google’s NN package Tensorflow, in
a tutorial for similar regression models by Chollet (2017). The core of this model consists of
Keras elements.
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The average KGE for the model shown in Figure 9.7 was 0.58, and fitting and predicting
once with the model took on average 18.4 seconds. A possible explanation for the low per-
formance is the relatively small number of data points. NNs typically need a large training
dataset.

9.2.4. MULTIPLE LINEAR REGRESSION
A basic method to predict a variable from another variable is linear regression (y =αx +β). It
is also possible to predict values V sim for any number of variables with the formula

V sim = X A, (9.2)

with X defined as

X =


1 v1

1 . . . vd
1

...
...

. . .
...

1 v1
n . . . vd

n

 ,

where v1
1 , . . . , vn

m are the values of the first variable and so forth. The parameters A=α1, . . . ,αn

can be calculated with the normal equation:

A= (X T X )−1X T Vtarget, (9.3)

where Vtarget are the target values (m ×1). It is not possible to return a whole probability dis-
tribution for any of the prediction variables or the target variable (Ng, 2011). The 1s in com-
bination with an additional α represent the offset of the origin, or symmetrically, the factor β
in the bivariate linear regression formula. The method has been tested in Python with k-fold
cross validation (see Section 4.3). In this case, the X in Equation (9.2) is different than the X
from Equation (9.3). The average KGE was 0.70. The average time of a model evaluation takes
0.003 seconds.

9.3. COMPARISON MODELS
In Table 9.1, the different models discussed in this section can be compared. This table shows
that, for the modelling goal of this thesis, the unsaturated Bayesian network is optimal. This
offers advantages in modelling time, computational time and keeps physical relations. More-
over, other variables can also be predicted from fixed variables. Meanwhile, the methods keeps
returning complete (conditioned) probability distributions. In comparison with the multiple
linear regression, the unsaturated Bayesian network performs only slightly better in predic-
tions. As the multiple linear regression is easier to set up, this might be an alternative in certain
cases, where the other advantages of the unsatured Bayesian network are not of importance.
The same holds true for a saturated Bayesian network, which results in even higher KGEs.
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Method Avg. KGE (-) Avg. duration per
run (s)

Probability distribu-
tion returned

Bayesian network 0.73 5 Yes
Saturated BN 0.74 5 Yes
SOBEK 0.40 45 hours No
Neural network 0.58 18.4 No
Mult. linear regr. 0.70 0.03 No

Method Conditioning Black box Preparation effort
Bayesian network Physically valid rela-

tions
No Low

Saturated BN All, including impos-
sible relations

No Very low

SOBEK Only spatially No High
Neural network No Yes Low
Mult. linear regr. No No Very low

Table 9.1: Comparison between different models tested in this research.
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DISCUSSION

In this chapter, the methodology, acquired results and determination of the optimal model
will be put into context. This is done by looking at multiple topics: a general evaluation and
interpretation of the research, potential limitations in the study, and a comparison with similar
research. As the application of the method proposed in this thesis as a hydrologic model is still
very novel, there are not many sources to compare the research against.

10.1. MODEL PRINCIPLES
In this research, the focus is completely on a single catchment and creating the best as pos-
sible model for the prediction of the monthly maximum daily average discharge (MMDAD)
for this catchment. This is fundamentally different than for example Paprotny and Morales-
Nápoles (2017), that use many catchments and strive to make a single model that can estimate
the annual maximum runoff of catchments. The variables of this model are mainly catchment
parameters such as the area and average slope of the catchment. At the other end, the work by
Couasnon et al. (2018) focuses on very directly related variables: discharges predicted by the
discharge upstream. This means that the case study proposed in this research is the first catch-
ment in which a Bayesian network is made that is predominantly based on meteo-hydrological
variables.

This means that the catchment variables have a different role in this thesis in contrast to
Paprotny and Morales-Nápoles (2017). In this thesis, the workings of the meteo-hydrological
variables are modelled by the Bayesian network (BN) nodes, which is expressed through its
cumulative distribution function (CDF), whereas in Paprotny and Morales-Nápoles (2017),
these are modelled by the arcs, and therefore the copulas. The opposite is true for the catch-
ment parameters (i.e. slope, area etc.), which is inexplicitly modelled by the copulas in this
thesis, whereas these are used as nodes in Paprotny and Morales-Nápoles (2017). Couasnon
et al. (2018) takes a similar approach, although instead of the meteo-hydrological variables, it
mostly uses discharges, which are more directly correlated to the downstream discharge than
the meteorological variables.

This approach also means that the model is based on time-dependent variables. This has
as a consequence that the variables are likely to being also dependent of itself, i.e. show au-
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tocorrelation. This means that an additional factor influences the variable, which cannot be
modelled easily in the BN: the previous values of the same variable. As mentioned in Sec-
tion 3.3.2, in this thesis, this phenomenon is minimised by using maximum monthly values
(MMDAD). Couasnon et al. (2018) uses a way more frequent interval, using mean daily dis-
charges. They assume that because of fact that the autocorrelation for their case drops rapidly,
no issues can be expected from this. However, a lag of 1 still produces significant correlations
in their research. It is interesting to see the influence of autocorrelation on the predictions
in future research. Paprotny and Morales-Nápoles (2017), on the other hand, uses a spatial
dataset and only one row per catchment, predicting the mean of the yearly maximum dis-
charges. Influences of potential spatial correlation are not tackled in this paper, which is also
an interesting subject for future research.

10.2. CASE STUDY
The goal of this research is to make a model of a single catchment, as a case study, such that
several techniques and methods can be analysed in depth. This is in contrast with research
by Paprotny and Morales-Nápoles (2017); Sanjaya (2018); Torres Alves (2018), which tested a
multitude of catchments. These researches did not attempt to create an optimal discharge
model per single catchment, but merely an overarching model for all these catchments.

In order to do research on a case study which is also useful for various other catchments,
a very typical Dutch catchment has been chosen. This means that many Dutch catchments
should be able to be comparable to this catchment, and conclusions made in this thesis are
more likely also applicable to these other catchments. In order for this to be true, the chosen
catchment should be representative of other lowland, partially managed, catchments.

However, no research has been put into verifying whether it is indeed representative. This
is a vulnerability to the research, as it is possible that other catchments give different accura-
cies when tested on a similar model. However, the data used for this research is available for
many catchments in The Netherlands and other regions, such that a performance test of the
BN should not be difficult in other catchments.

Another reason for the selection of this catchment, is that the data availability was well.
Moreover, an outline of the catchment boundary could be made such that the data could be
verified with a water balance (see Section 3.4).

To exclude additional influences to the catchment, the case study could is preferred to not
be predominantly managed. In this case, the discharge is too much dependent on the view of
the manager, instead of the other variables.

10.3. DATA
The data that has been used for this research is acquired from different sources, which not all
have been scientifically quality-checked, in contrast to the data used in for example Paprotny
and Morales-Nápoles (2017). Therefore, in this research, the data has been examined for its
quality. As the model should and does still work in circumstances in which the measurements
record a bias, the data is not meticulously tested. This is in contrast with highly fundamental
research, in which the data needs to be highly accurate.

This means that it is possible that there are some errors in the measurements, which have
gone unnoticed. To exclude errors as much as possible, different sources of data have been
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compared and the final dataset has been verified as much as possible in the Budyko framewerk
Section 3.4. On top of that, in Section 7.4, a comprehensive analysis is done in what the effect
of error could be, which is not large in the case of most of the variables.

During the timespan of which the data is used, a number of changes have been made to
the river stream. Most of these changes represented a minor section of the catchment, but
changes in the outflow pattern cannot be ruled out.

10.4. COPULA ASSUMPTION AND MULTIVARIATE NORMAL METHOD
In Chapter 5, the assumption of combined probability distributions of the variables follow-
ing a Gaussian copula is tested. Especially noticeable is the fact that for a small majority of
the variable pairs, the Gaussian copula does not satisfy the one-level bootstrapped test. This
shows that the Gaussian copula is not a perfect description of the combined probability distri-
butions, for 13 of the variable pairs. However, finding a single copula that can model all of the
pairs perfectly is not the goal of this research.

What Chapter 2 does show, is that in general, the Frank copula would have been a better fit
to variable pairs. The Frank copula is more complicated to implement than the multivariate
normal method, and therefore not strictly a better (user-friendly) model than the Gaussian
copula.

What is clear from Chapter 2, is that 11 variable pairs showed some kind of tail dependence,
which Gaussian copulas fail to model. However, this leaves a majority of variable pairs in which
the Gaussian copula does model the lack of tail dependence well. This also shows in the fact
that the Frank copula, which also has no tail dependence, fits the best for many variable pairs.

All in all, the Gaussian copula turned out to be not strictly optimal, but still has a good basis
to be used. Moreover, the goal was to make a good overall model, not making every element
perfect.

One of the reasons for the usage of the multivariate Gaussian copula, is that it prevents
need for using the highly complicated vine-copula structure. No similar hydrologic models as
proposed in this thesis have been made using vine-copulas. There are other calculations done
in hydrology that do use vine-copulas, such as Gräler et al. (2013). However, these use signifi-
cantly less nodes, such that the number of vines, which can be calculated by Equation (B.3), is
significantly less.

10.5. MARGINAL DISTRIBUTION
In Chapter 6, the choice has been made to opt for volatile marginal distributions which fit
the empirical distributions very closely, and implement the same type of distribution for all
variables. The Gaussian mixture model is selected in contrast to the empirical cumulative dis-
tribution function (ECDF) as this allows for extreme uniform values to be translated to values
that have not been measured before. Paprotny and Morales-Nápoles (2017) use the ECDFs for
all of the non-target variables. Their study included as many European catchments with mea-
surements that suit these methods as possible. This means that their dataset provides a wide
range of measurements, from 1841 stations. Therefore, it is likely that for any new catchments
that are tested, the variables are included within the minimal and maximal value in the ECDF.
In this thesis, it is likely that, as only about 8 years of data are used, it is likely that in the future
new extremes will be measured.
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The Gaussian mixture model, which is used, has been implemented before by Couasnon
et al. (2018). In this paper, the rest of the variables is fitted with a generalised extreme value
(GEV) distribution. Paprotny and Morales-Nápoles (2017) also use this distribution for their
discharge measurements. This thesis proposes a shift function of the uniform variables, to
make the model underestimate the extreme discharges less. This happens because the closely
fitting marginal distributions predict very little values in its extremes. The marginals that use
the GEV distribution does not have this problem, as it’s CDF is smoother and approaches 1
relatively more gradually. The shift function still benefits from the use of a theoretical distribu-
tion, as the shift function only exaggerates what is happening in the fringes. When the input in
these edges is highly unfavourable, the output of the shift function cannot be highly favourable
behaviour. This boils down to two disadvantages: (1.) the step function, which is the ECDF,
make that only a small number of steps is actually shifted and the shift is highly dependent on
the location of the step and even more importantly (2.) as the ECDF has a fixed point at the
highest value where u = 1, the complete top step cannot be shifted whatsoever.

10.6. ORDER OF PARAMETER OPTIMISATION
The optimisation of the BN has been done through consecutively finding the best-fitting pa-
rameters. However, this leaves out certain parameter combinations that have not been tested.

The reason for this lack of thoroughly testing all combinations is that the computational
time would have been increased a lot if a 20 times randomly repeated 5-fold test would have
been conducted for all the combinations. Especially parameters that have been tested on a
large number of values, such as the number of samples, would make this method very slow.
Moreover, testing each parameter consecutively allows for a more clear visualisation of the test
results.

It is assumed that, because the differences between various parameters were low, it is not
likely that an untested combination of variables performs significantly better than the final
model does.

10.7. TESTING OPTIMISATIONS
Except for the copula assumption, most of the testing has been conducted a posteriori with
as goal variable the MMDAD. There is a number of reasons why this is done: firstly, in this
thesis, the main target was predicting the MMDAD. The copulas modelling the multivariate
distribution perfectly was also important, but were ranked secondary. Moreover, these kinds
of optimisations are often more understandable for users as they often also want to predict
such a target variable. Functions like the Akaike information criterion (AIC) are often regarded
as less intuitive.

On this point, the work from Paprotny and Morales-Nápoles (2017) looks at this differently.
For example, when fitting a marginal distribution for the discharge (the target variable in this
paper), the AIC is used on the fit of the CDF to the data. This means, the optimal function is
determined a priori.

The main test method used throughout this research is the Kling-Gupta efficiency (KGE).
This coefficient gives an overall score based on the difference between the predicted outcome
and the observations, based on three submetrics. However, how hard more extreme inaccu-
racies should be penalised in the score, is always up for debate. The KGE uses the Pearson
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correlation coefficient, but other methods (mean squared error for example) could also be
possible, depending on the preferred relative penalty for high inaccuracies.

If the scores of this model should be compared to other research, the Nash-Sutcliffe effi-
ciency (NSE) is a more common metric. The main reason for this, is that the NSE is an older
metric. Therefore, it is likely that in the future, a higher share of research uses the KGE.

The KGE is, in most of the cases, used for the target variable MMDAD. As a goal of the
model is to also being able to predict other variables as well, this might in some cases have
given a different result. However, as the MMDAD is regarded as the most important variable
to predict and a single answer was required, testing on this variable only was chosen in most
of the cases.

These tests are almost all conducted with a k-fold test, where 5-folds were used. This was
generally repeated 10 or 20 times with new random folds. The performance between using
different parameters was compared with boxplots of these outcomes. Differences between
these boxplots were often small. Therefore, no always a clear optimum could be selected.
Repeating the k-fold test more often, would have probably not helped, as a repetition of the
test of 50 to 100 times was already a lot.

10.8. BAYESIAN NETWORK LAYOUT
In this thesis, the configuration of the BN is made based on catchment processes in a single
catchment. Every step is thoroughly analysed based the strategy that followed from the criteria
(see Section 8.1) and if no decisive argument could be made about two contradicting local con-
figurations, predictions within the model decided upon the implementation. Other research,
such as Couasnon et al. (2018) is more spatially based, or has executed the configuration less
descriptive, such as Paprotny and Morales-Nápoles (2017).

As the implementation of these criteria was often multi-interpretable. Moreover, not all
tests gave significant differences in results. Therefore, the final model setup cannot be re-
garded as the overall best, for any user or any purpose. However, with this two-step method,
anyone who repeats this test, will likely end up with the same model.
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CONCLUSIONS AND

RECOMMENDATIONS

For many years, improvements have been made in hydrologic modelling in catchments. For a
long time, a vast amount of data has been collected, which contributes to the accuracy of these
hydrologic models. Since the last decades, this has been complemented by various satellite
measurements. This makes way for a new generation of models, which relies heavily on the
availability of data over the last decades.

This removes the need for modelling based on the physical structure of the catchment.
For conceptual models the area, storage and runoff parameters have to be determined for
a catchment. In lumped and semi-distributed models, this is inherently flawed because of
the heterogeneity of catchments. Moreover, these models can show equifinality, in which sig-
nificantly different parameter sets perform equally optimal. These problems are not present
many data driven methods, such as the non-parametric Bayesian network (NPBN). This sta-
tistical method is implemented in this thesis to describe hydrologic processes in a lowland
catchment in The Netherlands. This thesis posed a twofold research objective.

(i) Firstly, the goal was to create a hydrologic model that is formed by a Bayesian network
(BN) which is easily usable by managers and researchers of the catchment and delivers a high
accuracy in predicting variables for the catchment of the Vledder, Wapserveense and Steen-
wijker Aa. More specifically, as the main target variable, the monthly maximum daily average
discharge (MMDAD) has been selected.

(ii) Secondly, the goal of this thesis was to analyse the performance of the model that was
constructed during the completion of objective (i) and benchmark this against other model
types that predict the discharge in a catchment. Combined, the objectives form the research
question:

What is the optimal setup of a Bayesian network hydrologic model in a lowland
catchment, and how does it perform?

The first objective has been addressed in several subproblems. First of all, the most favourable
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method to construct a NPBN was chosen in Chapter 2. This has not been an exhaustive re-
search where all methods have been made into a model and the most suitable has been cho-
sen. However, in Chapter 5, the method has been compared to other copulas and has been
proved to be sufficiently fitting to the data.

There are various other methods to approach a BN. These differ also in to what degree they
are related to the NPBN with the multivariate normal (MVN) approach. Future work can com-
pare different approaches to a hydrologic model BN to the one proposed in this thesis.

Secondly, the variables to be used in a model have been determined in Chapter 3. This has
been done on the basis of availability of data, presumed relation to other relevant variables
and its actual correlation between themselves. This thesis provides an arrange of variables that
meet the minimal frequency and time frame, and are highly relevant for users and discharge
predictions. Of these variables, an initial model has been made for the tests that followed.

It is recommended that users of similar models look critically at their own case: the cre-
ation of such a model is dependent on the availability of good quality data sources in their
catchment. It might be possible that not all variables that are used in the model of this thesis,
are also available (with sufficient longevity, frequency and quality) in that catchment. The op-
posite is also possible: additional variables such as seepage, or other measurement locations
in different subcatchments can also be added in models of other catchments.

In the future, other sources for the same type of data can be used when they have have
acquired enough longevity. Examples of these are Soil Moisture Active Passive (SMAP) for soil
moisture data and other groundwater level stations. Additionally, using the exact model for a
longer time might result in higher accurate predictions. The data used in this thesis consists
of 91 rows (timesteps). If the model is recreated in a number of years, this number increases
significantly, which has the potential of increasing the accuracy of the model.

The data is aggregated per month because this of the this forms an optimum between
on one hand, having variables that a certain degree of temporal independence, and having
enough rows. If for example, a week was taken as the interval between variables, the number
of rows increased to approximately 390, whereas the temporal independence is significantly
reduced. The consequences of this can be research in future work.

The third step answering the first research objective was to create a cumulative distribution
function (CDF) that fits the data well and lets the model perform well predicting the MMDAD.
This has been covered in Chapter 6. Three different CDF functions have been proposed. The
first is a strictly empirical one and is expressed as a step function based directly on the data.
This means that this is the model with the least effort to make. However, unaltered, it is not
possible to extrapolate with this function. The second is a novel function, based on the lo-
gistic function. The final model was the Gaussian mixture model, which was selected as the
best function. The latter two models found very similar fitted functions as they had a relatively
high variance. It is likely there is no CDF that is used for all variables, that performs signif-
icantly better than these the Gaussian mixture model. It was apparent Chapter 6 that CDFs
with less variance resulted in worse Kling-Gupta efficiencys (KGEs). A very high variance CDF,
with many parameters, did not improve the results compared to one with a relatively mod-
erate number. Therefore, it can be argued that the optimal CDF has been found for similar
cases as this one. However, the CDF has not been optimised per individual variable but the
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same optimal number of parameters and type is used on all variables. Additionally, the shift
function that is produced in Section 6.6 is up to the user’s preference. Therefore, the chosen
implementation of the CDFs cannot unambiguously be regarded as the optimal implementa-
tion all purposes of this model.

As fourth step, three parameters of the model have been optimised in Chapter 7. This resulted
in using the mean of 500 samples sampled from copulas that have been fitted by making vari-
ables of aggregated samples of 8.5 days before the MMDAD event. These were additional steps
in answering the research question of creating an optimal model.

It is recommended to verify these parameters in similar models of other catchments. This
can rule out whether these parameters are generally optimal for these kinds of models, or just
for this specific case.

Lastly, the layout of the nodes and connections in the BN (see Appendix A) has been discussed
in Chapter 8. This gave rise to a range of layouts that comply with the criteria posed in the
same chapter, which all fulfilled the first objective of this thesis. A single optimal model had
to be selected by testing the predictions that a certain layout could produce. This layout in
combination with the parameters and settings determined before, makes up the model is the
model that answers the first part of the research question (see Chapter 11).

It is recommended for creators of similar models to first make physical-based decisions for
their specific BN, based on leading processes in their catchment. If ambiguities arise, they can
also resort to performance-based choices.

Due to several subproblems mentioned above that have not been tested exhaustively and a
number of ambiguities in the determination of the most favourable model, it cannot be un-
conditionally determined that the model proposed in this thesis, is in fact the optimal model
for the catchment of the Vledder, Wapserveense and Steenwijker Aa. However, on all levels of
the NPBN, this thesis has striven to create the best as possible model, both performance-wise,
physical-wise and usability-wise. Therefore, in the effort-sense of the word ’optimal’, an opti-
mal NPBN model (that uses the MVN method) has indeed been constructed.

The second objective, the analysis of the model performance and benchmarking it against
other models, has been addressed on multiple levels as well. The first level is the testing of
the assumption that the Gaussian copula fits the variable pairs sufficiently in Chapter 5. This
assumption has been thoroughly examined and it can be concluded that the Gaussian copula
fits many variable pairs well, in spite it was not always the best fitting copula for all pairs. The
methods used in this chapter have been very thorough and therefore it cannot be expected
that using other tests gives significantly different results.

Indirectly related to this objective, is the analysis of how errors in the data would influence
model performance. As it is not possible to determine the actual errors that were in the data,
an approach has been taken that evaluates the sensibility to changes in the variables, which
can be seen as ’adding new errors in to data’. These tests helped putting the performance
of the model in relation to the data quality. It showed that changes to variables not directly
connected with the MMDAD did not have a significant influence on predictions of the MM-
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DAD. Moreover, the influence of artificial random errors was very low. The influence of bias
was higher and also depended on the sign of the correlation: negatively correlated variables
showed actually improvement in predicting the MMDAD in cases with low underestimations.

It is recommended, if a more precise prediction is expected, to quantify actual errors in the
data. This can be done by in situ measurements of the same variable. An example of this are
the discharge measurements with several side looking doppler measurements devices, which
can be verified by executing more acoustic doppler current profiler (ADCP) measurements to
verify or improve regular measurements.

Thirdly, the KGE, a metric that determines the accuracy a model, has been calculated for the
final model in Section 8.5. This indicated that the model performed reasonably. As an addi-
tional check, a complete k-fold cross validation has been performed, over all fitted parts of the
model. A k-fold test divides the data into k folds and fits the data using k-1 folds and tests
the last fold. This test It gave a similar result to other (randomly repeated k-fold) tests. The
k-fold test can be regarded as one of the definitive answer to the second part of the research
question. To give a more in-depth review of the model performance, a number other analyses
have been performed on the prediction of the model. The relationship between the predic-
tion error and the observed MMDAD has been calculated in this section as well. This makes it
possible to analyse what discharge magnitudes likely give raise to what error magnitudes and
whether this is an under- or overestimation. The research objective of analysing the model
performance has become more detailed with Figure 9.3. In the same section, two more analy-
ses have been done: the prediction of the target variable MMDAD when not all other variables
are fixed, and the prediction of other variables than the target variable. This gives a broader
overview of the general model performance, instead of just looking at the primary function of
the model.

Lastly, four different models have been introduced to benchmark the model performance. The
reason for this, is that a model performance is assess to regard on its own. When compared to
other models, the context in relation to what is possible with this data, becomes more clear.
The production of these other methods, has not been an exhaustive effort, such as has been
done with the BN in this research. Therefore, the result that the BN performs better and sim-
ilarly to other models, cannot be taken as a definitive result. However, it does give a more
contextual indication how well the model is performing.

It is recommended for Waterschap Drents Overijsselse Delta (WDODelta) to improve their
SOBEK model if they want to keep using this for modelling the discharge at station Heerensla-
gen, as the model performs dissatisfactory now. Possible reasons for this are that the model is
overarching multiple catchment and it is fitted better to the other catchments. Moreover, it is
likely that it is better fitted to baseflow than peaks, although these are often more important for
floods and pump capacities. Another recommendation is to benchmark the model proposed
in this thesis against other models (such as the neural network (NN)) if they are optimised in a
similar fashion as in this research. This will give a fairer comparison between the (near) opti-
mal performance of models.

Based on these conclusions, managers of the catchment of the Vledder, Wapserveense and
Steenwijker Aa could use the model proposed in this thesis. The model has proven to pre-
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dict the target variable, the MMDAD, decently and has other benefits, such as that it also pro-
vides a probability distribution of the predicted variable(s) and is able to predict when not all
other variables are known. This might happen when a measurement station stops function-
ing or when reliable predictions can only be made for a number of variables, if the discharge
needs to be predicted further in the future than a single day. The method is ready to be used
through a combination of the commercially available software Uninet1, in combination with
the Python package copulabayesnet2. It is recommended that a Equation (2.17) is added
to copulabayesnet, or that the prediction and testing capabilities of copulabayesnet are
added to Uninet, such that everything can be run from a single platform. The rudimentary
application this thesis proposes, is the prediction of the monthly discharge peak. However,
this thesis does not make a detailed description about the precise practical applications of
the model. Examples could be, flood protection, pump capacity prediction, determining what
catchment processes influence high discharges to what extend. Therefore, the first approach
for authors and operators of this model and similar models in other catchments, could be de-
termining its professional application or applications.

In order to create a similar model in a different catchment, first of all, the recommendations
mentioned above could be helpful to create and verify such a model. These are: checking the
data availability (and potentially also quality), finding the optimal parameters, finding out the
core catchment processes for the best BN layout.

Additionally, using models that have very similar settings to the model proposed in this
thesis, can solve some interesting research questions. First of all, it can further verify the
method proposed in this thesis. If the model also performs similarly in a significant num-
ber of other catchments, it can be believed that the method functions well in general, not just
in the Vledder, Wapserveense and Steenwijk Aa catchment.

It is helpful to know the influence of the amount of data. For a BN model, the catchment
used had a low amount of data with only eight years of data in the dataset, which was resam-
pled to monthly data. It is interesting to see how similar catchments with a lot more data - or
even - less data perform.

Testing other catchments could also be a method to see the influence of the part of the
catchment that is managed. As this is a statistical method, the assumption is that variables
(that is, the monthly aggregated values) behave randomly only affected by other variables, only
being influenced by other variables. This is not the case for managed systems, as a person or
system ’decides’ upon a measure. When the share of water that is managed is low enough, the
catchment as a whole can still be regarded sufficiently random. However, to find the maxi-
mum share of managed area, more catchments with different portions of management should
be tested. Some management of water flows, such as the water level, happens automatically
because a certain condition. This automation can in a way be regarded as only influenced by
other variables that are already included in the BN, and therefore quasi random. Therefore, it
would be interesting to see if it matters whether management happens automatically or man-
ually.

In addition to the recommendations and potential for future work already given, there are

1Available on https://lighttwist-software.com/uninet/
2See Appendix G.4.

https://lighttwist-software.com/uninet/
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some research subjects not directly in line with this research, that are also very interesting.
First of all, instead of predicting the MMDAD, a range of other target variables can also be
used. Examples of this are different values in the set, such as the monthly minimum discharge
or monthly average discharge, and different timeframes, such as weekly or yearly maximums,
or a combination of these.

Moreover, research can be done in the creation of models that centre around other target
variables, such as water level, or that try to maximise the prediction of all variables.

So all in all, in this research, a hydrologic model Bayesian network has been created for the
catchment of the Vledder, Wapserveense and Steenwijker Aa, which has been optimised on
several levels to predict the monthly maximum daily average discharge out of the catchment,
and on other levels has been suited to fit the implementation and usage best. The accuracy
of this model is decent and outperforms several other models. Although the method is readily
applicable, there are some parts that can still be researched further.
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ACRONYMS

ADCP acoustic doppler current profiler 29, 100

AIC Akaike information criterion 94

BN Bayesian network xi, xii, xiii, 1, 2, 3, 4, 7, 8, 14, 15, 16, 21, 23, 27, 30, 32, 33, 34, 35, 39, 40,
43, 44, 47, 51, 53, 57, 63, 67, 70, 73, 74, 76, 77, 78, 79, 86, 88, 90, 91, 92, 94, 95, 97, 98, 99,
100, 101, 117, 118, 119, 120

CDF cumulative distribution function viii, ix, xii, 5, 8, 9, 10, 11, 12, 14, 15, 17, 41, 44, 46, 47, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 81, 82, 91, 94, 98, 99, 113, 114, 115

DAG directed, acyclic graph xi, 7, 74

ECDF empirical cumulative distribution function xii, 10, 44, 56, 57, 60, 93, 94, 129

ESA European Space Agency 33

GEV generalised extreme value 94

IID independent and identically distributed 26, 28, 32, 43

KGE Kling-Gupta efficiency ix, xi, xii, 41, 51, 53, 54, 55, 56, 60, 63, 64, 65, 68, 69, 70, 71, 77, 78,
81, 82, 83, 84, 85, 86, 87, 89, 94, 95, 98, 100

KNMI Koninklijk Nederlands Meteorologisch Instituut 29, 30, 31, 33, 35, 36, 38

MMDAD monthly maximum daily average discharge xi, xii, xiii, 3, 5, 10, 17, 27, 28, 35, 40, 43,
44, 45, 51, 57, 60, 61, 63, 66, 67, 68, 69, 76, 77, 78, 81, 83, 84, 85, 86, 87, 91, 92, 94, 95, 97,
98, 99, 100, 101, 102, 118

MODIS MODerate resolution Imaging Spectroradiometer 34, 35

MVN multivariate normal vii, 15, 16, 43, 98, 99

NASA National Aeronautics and Space Administration 34

NDVI normalised difference vegetation index viii, 34

NN neural network 2, 88, 89, 100

NPBN non-parametric Bayesian network xi, 1, 2, 3, 8, 14, 23, 73, 97, 98, 99

NSE Nash-Sutcliffe efficiency viii, 40, 41, 83, 95

PDF probability density function 9, 10, 11, 12, 13, 17, 18, 19, 53, 54, 113, 114
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SMAP Soil Moisture Active Passive 98

SMOS Soil Moisture and Ocean Salinity 33, 34

WDODelta Waterschap Drents Overijsselse Delta 5, 22, 26, 27, 30, 31, 32, 36, 37, 38, 86, 100



SYMBOLS

1 Indicator function. 46, 52

A Conditioning (fixed) standard normal values. 16, 67

α Volatility factor. 41

α cumulative distribution function (CDF) parameter. 52, 53, 54, 55, 56, 89

A Parameters of multiple linear regression. 89

b Width of a weir. 27

B max(V )−min(V ) 53, 55, 68, 69

β Bias factor. 41

c Copula function in its probability density function (PDF) form. 8, 9, 19

C Copula function in its CDF form. 8, 9, 45, 47

Cemp Empirical copula. 45, 46, 47

cm Fitted friction factor weir formula. 27

µ̄ Conditional mean of the normal distribution. 16, 18

r̄ Conditional correlation coefficient. 19

R̄ Conditional correlation matrix of Gaussian copulas. 16, 18

C Cl
θ

Clayton copula in its CDF form. 11

C Fr
θ

Frank copula in its CDF form. 12

C Ga
R Gaussian copula in its CDF form. 9

C GH
θ

Gumbel-Hougaard copula in its CDF form. 11

C J
θ

Joe copula in its CDF form. 13

cov Covariance. 14

d Number of variables. 8, 9, 13, 15, 16, 17, 89

E Expected value. 19
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Ea Actual evaporation (i.e. evaporation and transpiration). 37, 38

Ep Potential evaporation (i.e. evaporation and transpiration). 37, 38

ϵ Error in the data. 67, 69, 70

f PDF of a variable. 8, 19

F Cumulative density function ∼ converts values to uniform values. 8, 14, 15, 19, 41, 56, 114,
116

F Generic water flux. 37, 38

Femp Empirical CDF. 52

fgm PDF of the Gaussian mixture model. 54

Fgm CDF of the Gaussian mixture model. 54

Flogi CDF of the altered logistic function. 52, 53

g Scale factor shift function 58, 59

h Water level. 27, 32

H0 Null hypothesis. 31

h Offset factor shift function 59, 60, 116

I Identity matrix. 9

Φ−1 Inverse CDF of the standard normal distribution. 9, 14, 15, 16

k Number of folds in k-fold testing. ix, xii, 41, 53, 56, 57, 63, 64, 67, 81, 82, 89, 100

K Number of parameters in F (·) fit function. 52, 53, 54, 55

l Lag. 44

L Lower triangular matrix of the Cholesky decomposition. 18

m Number of values in the dataset/variable. 13

µ Mean of the normal distribution. 16, 55, 114

µact Actual mean. 70

µ̂e µ subject to error. 67

µobs Mean of the observation values. 41, 70

µsim Mean of the simulation values. 41

n Number of samples. 18, 44, 46, 52, 89
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N Normal distribution 16

N Repetition number. 46

N I R Near-infrared radiation. 34

ϑ̂ Copula parameter with the optimal fit. 13

p p-value. 46

P Precipitation. 37, 38

P Odd polynomial 52

ϕ PDF of the standard normal distribution. 19

Φ CDF of the standard normal distribution. 19

ΦR Multivariate CDF of the standard normal distribution. 9, 15

Q Discharge. 27, 37, 40

r Generic correlation coefficient. 16

R Correlation matrix of Gaussian copulas. 9, 13, 14, 16, 18, 41, 67, 81, 82, 86

rg Rank vector of a variable. 14

ρauto (Pearson) autocorrelation. 44

rs,norm Normal rank correlation coefficient. 14, 16

ρp Pearson’s correlation coefficient. 14, 41, 44, 45

rs Spearman’s rank correlation coefficient. 14

R Rank vector. 46

s Standard normal value 15, 16, 18, 19

S Vector with standard normal values 15, 16, 18

SRMSD Altered Cramér-von Mises statistic. 46, 47

Sn Cramér-von Mises statistic. 45, 46

σ Standard deviation. 14, 41, 55, 68, 69

t Time/event. 40

te Last event in the data. 40

θ Archimedean copula parameter. 10, 11, 12, 13, 15

Θ Set of all (tested) valid copula parameters. 13



116 SYMBOLS

u Single value of a variable converted to a uniform value through F (v). 8, 11, 12, 13, 15, 18, 19,
45, 46, 47, 58, 59, 94

U A set of uniform values (one value per variable). 15, 16

usd ,h Shifted uniform value. 59

U ′ Vector of the values converted to a uniform values through F (v), of a variable. 14

v Single value of a variable. 8, 15, 18, 19, 41, 44, 52, 53, 89

V A set of values (one value per variable). 15, 16, 89

ϑ Generic copula parameter. 13

U Uniform distribution. 18

V I S Visible light. 34

V ′ Vector of the values of a single variable. 14, 16

w Independent random standard normal value. 18

W Independent random standard normal vector. 18

z Number of conditioning (fixed) variables. 16, 17, 18
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ANATOMY OF A BAYESIAN NETWORK
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Figure A.1: Anatomy of a Bayesian network (BN). This model is made in Uninet.

This appendix serves as a synopsis of the layout and terminology of a BN. The following items
correspond with the numbers in Figure A.1.

1. Variable: a variable that has influence on the network, such as NDVI. Also a node in the
BN. The bars in the node form a histogram of the values; the first number is the mean,
and the number after the ’±’ is the standard deviation of the values. The unit of the
variables is not mentioned in Uninet. For the inner workings of a BN, the unit does not
matter.
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2. Target (variable): the variable that is predicted in a test setup. Despite the fact that
the probability distribution of all other variables is updated if one or more variables get
conditioned, there is often one variable that is the final goal of a model; the variable for
which the KGE is calculated. In this research the target variable in most of the tests is the
monthly maximum daily average discharge (MMDAD).

3. Connection: also called a (directed) edge, an arc, an arrow or a link in this thesis. The
number on the arrow denotes the (conditional) normal rank correlation (see Equa-
tion (2.12)). The direction of the arrow determines the inference between the variables
in the model: the parent influences the child. This does not mean that a parent dis-
tribution cannot be updated from the child variable. This can be explained as follows:
rain causes discharge, but when it is known that there is a high discharge, it can also
be assumed that there was statistically more rain. The BN updates in both ways of the
connection.

4. Parent (variable): for a variable, a parent is another variable on the tail end of the arrow
which points to this variable. In this case the temperature is one of the parent variables
of the soil moisture.

5. Child (variable): for a variable, a child is another variable on the head end of an arrow
that starts at this variable. In this case the MMDAD is the child variable of the soil mois-
ture. A parent variable is regarded as influencing the child variable in a BN.

6. Order of dependencies: this is the order of calculating the partial correlations in Equa-
tion (2.17). For the top variable, the correlation is just the normal rank correlation be-
tween the variables. For the variables lower in the order, this is the correlation of this
variable and the child variable, given the correlation of all of the variables that are higher
in this list and the child variable. In other words, it is the correlation of any information
that is not already given by the variables higher in the order. This order changes the
correlation of the connections and therefore the model workings. In this research, a
mostly physically-based approach is taken to determine this order. The variables that
are physically most directly related to the child variable are highest in the order. Other
approaches would be a a solely performance-based order or a random order (such that
model is easier to implement for the user).

7. Fixing: fixing one or more variables means setting this variable to a single known value.
In Figure A.1 only the precipitation is fixed. This updates the distribution of the other
variables via Equation (2.18). This is visible in the other nodes: the grey histograms
are of the unconditioned histograms, the conditioned, updated distribution is shown in
black.
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OTHER METHODS TO MODEL A

BAYESIAN NETWORK WITH COPULAS

B.1. VINE-COPULAS
Copulas are a model that represents the combined probability of multiple variables. For Archimedean
copulas, all the variables, all variables are connected with the same parameter. Gaussian cop-
ulas, in contrast, can have multiple parameters. In a Bayesian network (BN), variables can
have different correlations and dependencies. Therefore, a complex handling of copulas must
be used to use Archimedean copulas in a BN. One of these methods is using vine-copulas
(Appendix B.1) and another is using only one type of copula, which is split into using one
Archimedean copula (Appendix B.2) or using one Gaussian copula with the conditional multi-
variate normal distribution (Section 2.6).

Vines were introduced by Bedford and Cooke (2001). The two most important ones are the
Canonical (C-) vine and the D-vine. The C-vine is for variables that are connected in series and
is defined as follows (Aas et al., 2009):

f (v1, . . . , vn) =
n∏

k=1
f (vk )

n−1∏
j=1

n− j∏
i=1

ci ,(i+ j )|(1,..., j−1)(
F (v j |(vi+1, . . . , v j−1)),F (vi+ j |(vi+1, . . . , v j−1))

)
.

(B.1)

D-vines are constructed for variables connected in parallel from a single common variable
and are defined as follows (Aas et al., 2009):

f (v1, . . . , vn) =
n∏

k=1
f (vk )

n−1∏
j=1

n− j∏
i=1

ci ,(i+ j )|(i+1,...,i+ j−1)(
F (vi |(vi+1, . . . , vi+ j−1)),F (vi+ j |(vi+1, . . . , vi+ j−1))

)
.

(B.2)

The number of vines per number of nodes n (variables) is

n!

2
, (B.3)
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(Aas et al., 2009). For 8 variables, such as proposed in Table 4.1, this means that there are 20160
vines that have to be calculated, which is highly undesirable.

B.2. MULTIVARIATE ARCHIMEDEAN COPULAS
To avoid having to use copula-vines, it is also possible to use one multivariate copula for the
whole BN. This is unfavourable because Archimedean copulas are not all defined easily in the
multivariate form, and many have a tail dependence, which is likely to not perform well for all
relations.



C
DERIVATIONS AND ADDITIONAL

EQUATIONS

FROM SECTION 3.3.2:

The discharge Q is measured by multiplying the average flow velocity Vav g and the cross sec-
tion times a factor (c A):

Q = c A ·Vav g . (C.1)

The cross section multiplied by the factor is defined as follows from the four factors c0 . . .c3:

c A = c0 + c1h + c2h2 + c3h3, (C.2)

where h is the water level. The average velocity Vav g is defined from n multiple velocity mea-
surements that are evenly divided over the width of the stream:

Vav g = 1

n

n∑
i=1

vn . (C.3)
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FROM EQUATION (6.5):

f f i t ,un(v) = d

d v
F f i t ,un(v)

= d

dea1(P (v)−a0)

(
1

1+ea1(P (v)−a0)

)
· d

d a1(P (v)−a0)

(
ea1(P (v)−a0))

· d

dP (v)
(a1(P (v)−a0))

· d

d v
(P (v)) [chain rule]

= −1(
ea1(P (v)−a0) +1

)2 ·ea1(P (v)−a0) ·a1 ·P ′(v)

= −a1 ·P ′(v) ·ea1(P (v)−a0)(
ea1(P (v)−a0) +1

)2 ≥ 0 for all v ∈ (−∞,+∞)

(C.4)

FROM EQUATION (7.6):

KGE = 1−
√

(r −1)2 + (α−1)2 + (β−1)2

β= 1,KGE = 0.72

0.72 = 1−
√

(r −1)2 + (α−1)2 + (1−1)2 = 1−
√

(r −1)2 + (α−1)2√
(r −1)2 + (α−1)2 = 0.28

(r −1)2 + (α−1)2 = 0.282

(C.5)
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Figure D.1: Hillshaded catchment Vledder, Wapserveense and Steenwijker Aa
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Figure D.3: Crest of the former Water Board "De Vledder en Wapserveense Aa", since 1959. The clover is a symbol for
the newly planted agriculture. Source: Hoge Raad voor de Adel (1959)
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Figure D.4: Histogram of all the individual discharge measurements at Heerenslagen. Note the the y-axis is logarith-
mic.
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Figure D.5: Histogram of all the individual discharge measurements at Heerenslagen with a limited x-axis around the
actual discharges. Note the the y-axis is logarithmic.
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Figure D.6: Discharge measurements compared: measurement station Heerenslagen and weir Wulpen, which is 7 km
upstream of the measurement station.
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Figure D.7: Correlation diagram of data used in this research. This diagram uses Pearson’s correlation coefficient (see
Section 2.4.2).
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E
SO..., IS A BAYESIAN NETWORK

MACHINE LEARNING?

According to Cambridge English Dictionary (2020), machine learning is defined as:

The process of computers changing the way they carry out tasks by learning from
new data, without a human being needing to give instructions in the form of a
program

So, is a Bayesian network machine learning?
Yes, it is, because at least in the method proposed in this thesis, the computer changes the

way it carries out tasks by learning from data, without human interference. In BNs, this hap-
pens with the construction of the correlation matrix and the empirical cumulative distribution
function (ECDF), either fitted or not fitted. However, an argument could also be made for the
opposite:

No, it is not, because BNs do not fit into the category of models that are generally (for
example in scientific literature) regarded as machine learning models, such as naive Bayes, K
nearest neighbours, K means, support vector machines and neural networks.

So, in my opinion, a sound argument could be made for Bayesian networks being machine
learning or not. In general, I would advice a BN to be called a statistical method to scientist,
because calling it machine learning raises wrong expectations, but do call it machine learning
when you have to sell or promote the method, because this is not incorrect and it is highly
popular and still gaining popularity (Google Trends, 2020).
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G.1. LANGUAGE REPORT
British English

G.2. HARDWARE USED
PC HP Probook 650 G2
Processor IntelR CoreTM i5-6200U CPU @2.30 GHz 2.40 GHz
RAM 16.0 GB (15.9 GB usable)

G.3. SOFTWARE USED

G.3.1. GENERAL SOFTWARE

Operating system Windows 10 Professional
Programming Python 3.6 and Python 3.7 (Anaconda release)
Python editor Anaconda Spyder 3.3.5 and Spyder 4.0.1
Bayesian network Uninet1

GIS QGIS 3.81 with GRASS 7.6.1
LATEXeditor Overleaf
LATEXcompiler X ELATEX
SOBEK SOBEK 213
Additional text editor Atom 1.46

G.3.2. PYTHON MODULES USED
• copulabayesnet (see Appendix G.4)

• numpy

• pandas
1Available on https://lighttwist-software.com/uninet/
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• matplotlib

• pycopula

• scipy

• datetime

• rasterio

• statsmodels

• sklearn.metrics

• geopandas

• pingouin

• easygui

• biokit

• sys

• os

• mpl_toolkits

G.4. PROGRAMMES WRITTEN FOR THIS THESIS
For this thesis, a Python package called copulabayesnet, has been developed.
It is distributed with the MIT licence and can be accessed through https://github.com/
SjoerdGn/copulabayesnet or https://pypi.org/project/copulabayesnet/ and can be
directly installed by entering pip install copulabayesnet in the command prompt. The
Python package contains all methods of the copula testing and the full multivariate normal
method, including methods to test it k-fold over a whole dataset, as well as methods to plot
copulas and results. For access to the data, please contact Waterschap Drents Overijsselse
Delta and the author, for the supporting code, please contact Witteveen+Bos and the author.

https://github.com/SjoerdGn/copulabayesnet
https://github.com/SjoerdGn/copulabayesnet
https://pypi.org/project/copulabayesnet/
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