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Abstract

Chemical transport models (CTMs) are used to improve our understanding of the complex processes
influencing atmospheric composition, as well as provide operational air quality forecasts and model
potential future air quality scenarios. Numerical tracers in CTMs track the concentration of chemical
species, while operators simulate various physical processes such as advection. One such CTM,
LOTOS-EUROS, uses a volatility basis set (VBS) approach to represent the formation of organic
aerosol (OA) in the atmosphere, which contributes to the concentration of total particulate matter. The
added dimensionality of the VBS tracers in LOTOS-EUROS slowed down computation of the advection
operator by a factor of two, limiting their representation in operational forecasts.

To keep the detailed process representation of OA formation, while reducing the computational costs,
we develop an unsupervised machine learning method to compress the VBS tracers to a set of su-
perspecies for use in advection, and subsequently decompress superspecies back to the tracer space
for OA-relevant calculations. The focus of this machine learning method is physical interpretability,
allowing for operators to resolve equations using the superspecies. This method conserves mass to
machine precision and retains important information like phase (gas or aerosol) on compression. This
data-driven approach reduces the dimensionality of the system more than a second proposed approach
based on partitioning theory. The ML superspecies approach was integrated into LOTOS-EUROS for
online calculations, showing numerical stability over a model simulation time of two weeks under vari-
ous conditions. With the superspecies, the computation time for advection is reduced by 56% to 66%
of the time for advection of the VBS tracers. The results of this approach show potential for use in
accelerating air quality operational forecasts, as well as pathways forward for integration of ML box
models of atmospheric chemistry into CTMs.
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Introduction

1.1. Particulate Matter, Public Health, and Climate Change

The chemical composition of the atmosphere affects human lives and ecosystems directly and indi-
rectly. Pollutants in ambient air, including particulate matter (PM), are a public health concern (Dock-
ery et al., 1994). Of particular concern to public health are fine aerosols that have diameters less
than 2.5 micrometers, called PM, 5 and even more so ultrafine particles, with diameters less than 0.1
micrometers. These very small particles are considered unhealthy for humans due to their ability to
penetrate deep into the lungs (Nel, 2005). PM can be emitted directly or formed in the atmosphere.
Directly emitted PM can come from anthropogenic (human-caused) sources, like combustion products
from vehicles, as well as from natural sources like sea spray causing airborne salt particles. Gases
emitted from biogenic or anthropogenic sources can react in the atmosphere to form secondary organic
aerosols (SOA), increasing total PM (Robinson et al., 2007).

Air quality has improved over the last few decades in some parts of the world, such as Southern Califor-
nia (Parrish et al., 2016) and Europe (Colette et al., 2020; Colette et al., 2017) in response to changes
in emission patterns. However, air pollution remains a global problem, exacerbated by climate change
(Jacob & Winner, 2009). Warmer temperatures in some possible future climate scenarios are projected
to lead to increased biogenic emissions of gases that are SOA precursors, resulting in higher secondary
organic PM concentrations (Heald et al., 2008). Hotter and dryer conditions lead to longer wildfire sea-
sons in some parts of the world, like California (Williams et al., 2019) and Australia (van Oldenborgh
et al., 2021). Longer wildfire season and larger wildfires increase the amount of airborne particulate
matter, and affect regional air quality adversely (Jaffe et al., 2020; Rooney et al., 2020).

In turn, PM also contributes to the total energy budget of the Earth’s atmosphere: higher concentration
of aerosols in the atmosphere have shown to have a non-negligible impact on radiative forcing, influ-
encing the global energy budget. Reflection and absorption of radiation, as well as cloud formation,
ultimately influence global mean temperatures (Forster, 2007; Jacobson, 2001). Understanding and
forecasting atmospheric composition is important for understanding both ambient air quality and the
changing climate of the earth.

1.2. Modeling Atmospheric Composition

The atmosphere is a complex system, and models are important tools for furthering our understanding
of it. Models allow for synthesis of the most recent scientific understanding of atmospheric phenomena.
Atmospheric models also have applications in operational forecasting, and supporting science-informed
environmental policies.

Chemical transport models (CTMs) in particular simulate the chemical composition of the atmosphere,
combining theory from the fields of physics, chemistry, and meteorology with techniques from scientific
computing and data assimilation. Meteorological conditions from numerical weather prediction models
are supplied as input to CTMs, which then numerically solve the continuity equation for all chemical

1



2 1. Introduction

species of interest. In order to run such sophisticated simulations, these models utilize parallelization
techniques from high-performance computing. Recently, machine learning approaches have been used
as surrogate models for the most computationally expensive subroutines. Improving computational
performance of CTMs is an active area of research (Keller & Evans, 2019; Kelp et al., 2020). Another
area of research is improving representation of organic aerosol, as its contribution to PM has been
underestimated in CTMs (Heald et al., 2005; Mircea et al., 2019).

CTMs focus on atmospheric composition and solve the continuity equation (see section 2.1) for chemi-
cal species of interest, called tracers. CTMs do not solve the conservation equations for momentum or
energy in the atmosphere, which is done in general circulation models (GCMs), regional climate mod-
els (RCMs), and the more general earth system models (ESMs) (Brasseur & Jacob, 2017; Golaz et al.,
2019). CTMs are sometimes coupled with these other dynamic atmosphere models, for example, when
assessing the impact of climate change on air quality, or the effect of aerosols or greenhouse gases
on radiative forcing. Coupled meteorology-chemistry models aim to capture the two-way interactions
of weather and chemical composition (Baklanov et al., 2014). These feedback effects aren’t possible
to model when a CTM is given meteorological conditions as input. Further representation of atmo-
spheric chemistry in earth system modeling is viewed as a future research priority for the field (National
Academies of Sciences, Medicine, et al., 2016). Improved computational efficiency of atmospheric
chemistry models will help realize that priority.

1.3. LOTOS-EUROS

LOTOS-EUROS is a CTM originally developed for the European continent that is used for both research
and policy support purposes (Manders et al., 2017). It is the fusion of two independently developed
models. LOTOS (LOng Term Ozone Simulation) was developed by TNO in collaboration with SAI
(Systems Applications Incorporated) and Free University Berlin, based off of predecessors Urban Air-
shed Model and Regional Transport Model. Originally developed to model ozone, LOTOS incorporated
aerosol modeling in 1995. In 2004, LOTOS was combined with EUROS (EURopean Operation Smog
model). Prior to this, EUROS had been independently developed by the Dutch National Institute for
Public Health and the Environment, RIVM, to simulate winter smog.

The current iteration of the model, LOTOS-EUROS (v2.2), is used to inform air quality regulation and
model scenarios that include new energy policies and land use change. As it is relatively computation-
ally efficient fora CTM, LOTOS-EUROS has been used to model longer term scenarios, and has been
coupled with both regional and global climate models to assess long term climate change impacts on
air quality (Manders et al., 2017). In addition, the model has been extended to other areas besides
Europe: LOTOS-EUROS is currently used for operational forecasts for both China and northern Africa.
A development priority for LOTOS-EUROS is inclusion of organic aerosols in its operational forecasts
for air quality.

1.4. Organic aerosols in the atmosphere

Organic aerosol can be directly emitted to the atmosphere by vehicle exhaust, smoke from wildfires, or
residential wood combustion, to name a few sources. These are considered primary organic aerosol
(POA). Bioaerosol like pollen and fungal spores are excluded from the classical definition of POA. Or-
ganic aerosol can also be formed in the atmosphere via gas-phase chemistry forming lower volatility
compounds, that partition to the aerosol phase more readily. Gaseous volatile organic compounds
(VOCs) are emitted by anthropogenic sources, like solvents, refineries and other industrial activity, or
biogenic sources, such as forests. These VOCs subsequently react with oxidants like the hydroxyl
radical and ozone. As these VOCs are oxidized, they tend to become less volatile, becoming semi-
volatile or intermediate volatile organic compounds (siVOCs). Some fraction of the mass of the siVOCs
partitions into the aerosol phase, forming secondary organic aerosol (SOA). This SOA can make a sig-
nificant contribution to total organic aerosol concentration (De Gouw et al., 2005; Heald et al., 2005),
abbreviated in this thesis as TOA. POA has been shown to partially evaporate into siVOC, which can
react and age via gas-phase reactions, subsequently becoming less volatile and forming SOA (Robin-
son et al., 2007). This SOA can be chemically distinct from the POA it came from: for example, it is
often more oxidized (Jimenez et al., 2009). For this reason, it is sometimes treated separately from
POA in models like LOTOS-EUROS, where it is called siSOA (Manders-Groot et al., 2021).
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Organic aerosols are rarely explicitly modeled as speciated molecules, due to the complex nature of
chemical processing of aerosols in the atmosphere and the huge number of distinct organic species.
One method aiming to capture the range of volatilities is by lumping them into distinct volatility bins
(Donahue et al., 2006; Jimenez et al., 2009). This volatility basis set (VBS) modeling approach has
been shown to capture the variability of volatilities, from siVOCs to VOCs, as well as atmospheric
ageing into less volatile compounds with increased partitioning into SOA.

1.5. Organic aerosols in LOTOS-EUROS

LOTOS-EUROS uses 4 volatility basis sets to represent OA. POA, siSOA, and SOA from both an-
thropogenic and biogenic precursors are all handled differently. This is due to the fact that VOCs and
siVOCs from these 4 VBS classes have different gas-phase reaction rates. An added benefit of the four
different VBS classes is that LOTOS-EUROS is able to assess the contribution to TOA from different
sources, for example, urban sources versus forests.

SOA formation improves the description of organic aerosol from treating all OA as primary, which can
lead to underestimations of OA when compared to observations. For this reason, the VBS classes
are important to include in LOTOS-EUROS operational forecasts. However, its implementation leads
to a substantial decrease in computational performance of LOTOS-EUROS, doubling the runtime. A
relevant research question is then how to make this recently implemented, more sophisticated VBS
more computationally efficient.

To illustrate the computational burden of OA modeling, Figure 1.1 shows overall clock time runs with the
VBS module switched on and off. This benchmarking study was performed in both a parallel and se-
quential setting. The domain chosen is used in operational forecasting for the Copernicus Atmosphere
Monitoring Service (CAMS): 0.1 degree resolution, 700x420 cells over Europe, for 1 day. The domain
was split into 24 sub-domains, which were parallelized over 24 central processing unit (CPU) nodes.
The fully sequential run with just one CPU node used 1/24 of the domain used in the implementation.

HEl No VBS
. VBS

12000 A

10000 4

8000 4

6000 +

System clock [seconds]

4000 +

2000 4

24 Subdomain Run Single Domain Run

Figure 1.1: Benchmarking the clock speed effect of the VBS operator. The single domain run was performed on one CPU with
1/24th of the domain. The 24 subdomain run was parallelized on 24 CPUs.

Performance can vary depending on how busy each computing node is. However, the above figure



4 1. Introduction

serves as an illustrative example of the VBS-caused slowdown. It should be noted that the performance
slowdown with VBS was exacerbated by the domain decomposition parallelization strategy, doubling
the system clock time, as opposed to an approximate two-thirds increase for the single domain run.
Detailed reports on the timing of these runs are available in Appendices A.1 through A.4.

1.6. Machine learning for aerosols and atmospheric chemistry

The atmospheric sciences have used statistical and machine learning (ML) methods for decades, in-
cluding for aerosol modeling applications. In the Netherlands, linear regression models PROZON and
PROPART started being used for operational forecasting by RIVM in 1992 and 1998 to predict next-day
maximum ozone and PM;, concentrations respectively, given current concentrations and meteorologi-
cal conditions (Noordijk, 2003). In the 1990s, an unsupervised machine learning method called positive
(non-negative) matrix factorization was developed to find latent factors in aerosol dynamics (Paatero
& Tapper, 1994; Paatero et al., 1991). A few years later, a supervised machine learning method, a
neural network, was used to estimate surface vapor concentrations of inorganic aerosols (Potukuchi &
Wexler, 1997).

Machine learning in atmospheric modeling is still an active area of research and has benefited from
recent advances in the field of machine learning. In atmospheric chemistry, ML surrogate models have
been developed (Keller & Evans, 2019; Kelp et al., 2020; Kelp et al., 2018) in an attempt to replace the
computationally intensive step of the integration of the coupled system of ordinary differential equations
representing production and loss rates of chemical species. Both Keller and Evans, 2019 and Kelp et
al., 2018 reported instability when using ML models for sequential predictions over longer time periods.
ML models do not respect certain symmetries inherent to classical models like conservation of mass,
and can systematically add or remove mass to the model, exiting the solution and input space that they
were optimized to predict values for. Error compounds on recurrent ML predictions without deterministic
constraints from classical models to keep the ML in their solution space, which can lead to runaway
exponential error growth. Keller and Evans, 2019 indicated hybridizing deterministic constraints and
ML as a future research direction, with a specific example of stoichiometric information. Sturm and
Wexler, 2020 provide a framework to incorporate stoichiometric balances into ML surrogate models for
systems of gas-phase reactions, conserving mass to machine precision. This is also generalizable to
other processes that involve fluxes between properties, such as condensation/evaporation in aerosol
microphysics models and radiative energy flux in climate models.

Kelp et al., 2020 fixed the runaway error propagation problem from previous work, with a neural net-
work approach optimized to minimize long-term prediction error. The neural network predicts future
concentrations recurrently in a latent space using a recurrent autoencoder architecture. Though phys-
ical constraints aren’t integrated into this architecture, this is indicated as a future research direction.
Another future research question posed by Kelp et al., 2020 is whether other processes like advection
can be performed in the reduced-order latent space. This thesis explores that research direction.

1.7. Research questions

The computational burden of the VBS discussed in section 1.5 and current state of research inform the
following research questions.

Research question 1: What parts of LOTOS-EUROS are slowed down by inclusion of the volatil-
ity basis set? Can they be accelerated using machine learning?

Research question 2: Can a machine learning approach maintain desired accuracy of total or-
ganic aerosol, as well as volatility distributions, sources, spatial and temporal patterns?

Research question 3: In what ways can physical information be incorporated into machine
learning methods to improve interpretability and/or respect important physical properties?

Research question 4: How does a machine learning parameterization perform when imple-
mented online in LOTOS-EUROS?
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1.8. Overview of report

The research questions detailed in section 1.7 guide the rest of the thesis. Chapter 2 introduces the
governing equations in LOTOS-EURQOS, how organic aerosols are modeled using four volatility basis
sets, and how they interact with different processes, including meteorological phenomena like advec-
tion. A more granular benchmarking analysis gives insight into which parts of LOTOS-EUROS are most
affected by including the four VBS classes and provides an answer to the first part of research question
1. This motivates a parameterization strategy to accelerate parts of LOTOS-EUROS that experience
the largest slowdown. The strategy involves machine learning to find latent patterns in model output
from LOTOS-EUROS runs, and forming a set of superspecies from VBS tracers. With machine learn-
ing (ML) parameterizations in mind, chapter 3 details several different ML approaches appropriate for
this problem, and summarizes some recent exploration of ML in modeling of the atmosphere. Chap-
ter 4 uses a linear ML method to explore research question 2 in depth, laying out a framework of the
approach, including its hyperparameters, capabilities, and limitations. Chapter 5 builds off of the ideas
explored in chapter 4, assessing a complex and nonlinear ML method, a neural network autoencoder
that ensures non-negativity, to see if nonlinear methods are more appropriate for this problem. After
showing that linear methods are sufficient and in fact a more appropriate choice for this problem, the
rest of chapter 5 is dedicated to incorporating physical information into the linear methods. This in-
cludes mass conservation and constraining the methods to conserve phase (aerosol or gas). Chapter
5 concludes with a judgement on the most promising method. This machine learning method is then
integrated into a customized version of LOTOS-EUROS in chapter 6, where its online accuracy, stabil-
ity, robustness, and computational benefit are all assessed. Chapter 7 ends with conclusions gained
from this study, returning to the research questions and outlining several potential directions for future
research.






Organic aerosols in LOTOS-EUROS

2.1. The continuity equation

Chemical transport models (CTMs) numerically model pollutants and other chemical species of interest
in the atmosphere (Brasseur & Jacob, 2017). These species, referred to in the model as tracers, can
exist as gas, liquid, or solids. Tracers can chemically react with other tracers, get blown by the wind
(advection), be emitted by various sources into the atmosphere, drop back out of the atmosphere
(deposition), diffuse along concentration gradients, and move through different vertical layers of the
atmosphere. All of the phenomena mentioned can be combined in the continuity equation, representing
how the concentration C of a tracer changes over time t and space (x,y, z):

aC+v CU—aKaC+aKaC+aKaC+R+ +E-D-W 2.1
at (€U = 55 \Knoy ay\'"ay ) az\"Zoz ¢ 1)

advection

dif fusion

where U is a vector containing the bulk wind velocities in the east-west, north-south, and up-down
direction: this term represents advection. K, and K, are horizontal and vertical diffusion coefficients,
and are used in terms that represent diffusion of € from high concentrations to low concentrations.
The R term represents net formation rate of the chemical species C. Q is the emission rate of that
compound from various sources (for example anthropogenic or biogenic emissions). E represents
entrainment (or detrainment), which is dependent on the atmospheric mixing layer. D and W represent
dry and wet deposition of particles onto surfaces, ultimately decreasing their concentration in the air
(Manders-Groot et al., 2021).

Eq.(2.1) is supplied with boundary and initial conditions. These boundary and initial conditions can be
taken from observations, hypothetical cases, model output on larger domains, or a mixture of all three.
Vertical boundary conditions are generally Neumann type conditions, where flux at the surface of the
Earth is dependent on emissions and deposition rates, and where there is zero flux at the top of the
atmosphere. In a global model, horizontal boundary conditions are periodic (Brasseur & Jacob, 2017).

The R term can generally be described through a net sum of overall production rate P and loss rate L
corresponding to C:

R=P-1L (2.2)

This can also be represented through a net sum of individual reaction rates r:

R=er—2n 2.3)
D 7

7



8 2. Organic aerosols in LOTOS-EUROS

Where p and [ correspond to individual reactions where C is produced or consumed. Each rate r is often
controlled by the concentrations of its reactants and an (often empirically) determined rate constant k.
For example, the rate equation for the bimolecular reaction A + B - C can be expressed as

r =kCyCy (2.4)

This shows that often r, and therefore R, is dependent on chemical species other than the species
represented by tracer C in equation (2.1). This leads to coupling of the continuity equation across
species.

The domain in the continuity equation (2.1) is discretized in time and space so that it can be solved
numerically. With N spatial gridpoints, this results in N coupled equations in space at time t, for the
tracer C. An additional complexity is in the R term, which can be dependent on other chemical species.
Moreover, R is often nonlinear, in the case of multimolecular reactions or more complex rate laws. As
shown by equations (2.3) and (2.4), R couples the single-species Eq.(2.1) for all the chemical tracers.
This complexity can be addressed through a numerical method known as operator splitting.

2.2. Operator splitting

CTMs employ the method of operator splitting, also known as the method of fractional steps, to solve
Eq. (2.1) in pieces for every timestep (Brasseur & Jacob, 2017; Janenko, 1971). Operator splitting
is the practice of separating and solving a differential equation according to its terms, or operators,
solving each operator over a time step in a given order, and passing each previous operator’s solutions
as input to the subsequent operator. When all done using the same timestep, this is called Lie-Trotter
splitting. An introductory example of Lie-Trotter operator splitting can be given by

M du+ B 25
5 = Au u (2.5)

Where A and B are differential operators. The actual solution to Eq. (2.5) over a timestep At is

u(t + At) = eAt(4+5) (2.6)

First solving for the Au operator, we get

uy(t + At) = eAtu(t) (2.7)

where u, is the solution from the Au operator. The next step is solving the Bu operator with u, as an
initial condition. This gives

uy 5 (t + At) = eABuy (t + At). (2.8)

Where the A, B subscript for u indicates the order of the separately solved operators. Combining equa-
tions (2.7) and (2.8), we get

u, 5 (t + At) = eABeltAy () (2.9)

If A and B commute, equation (2.9) is equivalent to equation (2.6). If not, the product of the exponential
factors in u, g can be related to exponential sum of u(t + At) with a first order error term 0(At) via the
Baker-Campbell-Hausdorff formula. This error is called the splitting error.

An alternative splitting with second order error is called Strang splitting (MacNamara & Strang, 2016).
The Strang splitting approach for this example would take timesteps of % once to solve subproblem A4,

one full timestep At to solve subproblem B, then another step of % for subproblem A. It can be shown
with more terms in the Baker-Campbell-Hausdorff formula to have a second order splitting error.
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Operator splitting methods are generalizable to more than two operators, as well as multiple timesteps,
in which case each operator passes output to the next, cyclically. This is utilized in chemical transport
models, which model many complex and coupled phenomena.

2.3. CTM operator splitting

In a chemical transport model, each operator is tasked with solving a portion of equation (2.1) over a
certain time interval At. The common approach is to split up the different physical processes repre-
sented by the terms of the continuity equation. This approach to solve subproblems has computational
benefits. For example, though the chemistry operator R and the advection equation are coupled, ad-
vection of one substance C is not explicitly dependent on other chemical species, and chemistry is not
explicitly dependent on space (at least on the spatial scale of one CTM grid cell — molecular interactions
are represented in the form of rate equations). Chemistry operators without spatial dependence are
called box models. The assumption is that over the operator splitting timestep At, the operators can be
approximated as decoupled. At the cost of a splitting error, the degrees of freedom of both chemistry
and advection operators can be greatly reduced (Brasseur & Jacob, 2017).

For an illustrative example of how this looks in a CTM, assume a simplified example of equation (2.1)
that only accounts for advection and chemistry (though this can be generalized to include diffusion and
other processes). The example problem looks like

ac
—=-Ve(CU)+ R (2.10)

at < .
advection ~Chemistry

The left hand side can be split into two terms that each handle the terms of the right hand side:

ac _[ac] +[6C] 2.11)
ot ot advection ot chemistry
which leads to two subproblems, one for chemistry:
[ ] =R (2.12)
chemistry
and one for advection: ac
[_] =V (CU) (2.13)
at .
advection

Given an initial condition C(t), equation (2.12) is then solved over At. The chemistry operator is often
a nonlinear system of ordinary differential equations; the advection operator a linear system of partial
differential equations.The resulting solution is given as input to equation (2.13), which then is solved
over At to complete the final solution C(t + At).

When elements of U are large (east-west winds, conventionally U, ,are often highest), a numerical
stability requirement places an upper bound on the operator splitting timestep At, as described by
the Cauchy-Friedrichs-Lewy criterion (see section 2.4, equation (2.14)). Strang or other higher order
operator splitting can be used to further decompose the advection operator into the various spatial
dimensions. With this, U, will be solved at a fraction of At several times in a cycle through all the
operators.

Operator splitting allows for a modular approach to CTMs, which is beneficial to both model develop-
ment and flexibility. Decomposing the continuity equation into different operators reveals that certain
processes consume the majority of computing resources. Acceleration of the more computationally
intensive operators is therefore both an established and active area of research, for example aerosol
microphysics and thermodynamics (Potukuchi & Wexler, 1997; Silva et al., 2020; Zaveri et al., 2008),
gas-phase chemistry (Keller & Evans, 2019; Lowe & Tomlin, 2000; Whitehouse et al., 2004), as well
as full mechanisms for aerosol and gas-phase chemistry (Kelp et al., 2020; Santillana et al., 2010).
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2.4. LOTOS-EUROS operators

LOTOS-EUROS solves the continuity equation in equation (2.1). Each term is treated in separate oper-
ators. Advection, emissions, diffusion and entrainment, dry deposition, wet deposition, and chemistry
(including treatment of organic aerosol partitioning) are all resolved within the time splitting step At.
Strang splitting is utilized to give a second order splitting error. Figure 2.1 illustrates the Strang splitting
strategy in LOTOS-EUROS: resolve advection, vertical diffusion (vdif in the figure) and other operators
on half of an operator splitting timestep until chemistry or emission. After resolving chemistry or emis-
sions on the full operator time splitting step, the previous operators are called over half of a timestep in
reverse order.

...................................................... O s
( adv ] { adv | adv ] ( adv
| J ( J ( A J ( e
[ wdif ]
| chem || chem || chem |

e ————————— ->
Operator splitting half-step

Figure 2.1: A visual of the splitting scheme for various operators in LOTOS-EUROS. Reproduced from the LOTOS-EUROS
reference guide (Manders-Groot et al., 2021) with permission.

The advection operator generally limits the length of At as governed by the Courant-Friedrichs-Lewy
(CFL) condition. The CFL condition puts an upper limit Co,,4, on the Courant number Co in order to
ensure numerical stability:

U
C0=At<

x Uy U,
et o | < Comax (2.14)

el

Ay Az

Where U = [Ux, Uy, UZ] from Eq. (2.1) is shown in each spatial direction and the denominators are
the sizes of the corresponding discretizations. The Courant number is a dimensionless quantity used
often in discretizing fluid flows: in our case, the physical interpretation of the CFL condition is that an air
"puff” carried by bulk transport should not be able to cross a full grid cell within At. Though the winds
[Uy, Uy] in advection require a minimum At, the advection operator is actually chosen in the current
version of LOTOS-EUROS to be computed for a half timestep to allow for longer At for the chemistry
and emission processes while still satisfying (2.14).
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2.5. Organic aerosol representation in LOTOS-EUROS

2.5.1. The volatility basis set

The volatility basis set as originally introduced by Donahue et al., 2006 models the partitioning of semi-
volatile and intermediate volatility organic compounds (sometimes lumped together in the acronym
S/IVOCs) between the aerosol and gas phases. This is determined for each compound by their satu-
ration vapor concentration — the atmospheric concentration at which evaporation rate from a particle is
equal to its condensation rate. Donahue et al., 2006 define S/IVOCs as compounds that have satura-
tion vapor concentrations in between 0.01 and 100,000 ug m~3 at 300 K. The VBS approach organizes
S/IVOCs into a basis set of logarithmically distributed saturation concentrations, where each S/IVOC
is assigned the closest effective saturation concentration C;. This results in a mass loading distributed
over volatility bins (Donahue et al., 2006).

It is useful when formulating the volatility basis set approach to define a partitioning coefficient ¢; for
a substance i. This can be used to relate the concentration of a certain organic component C; in all
phases with the total organic aerosol concentration Cg,,:

Caer = ) &C; (2.15)

The partitioning coefficient can be calculated using the effective saturation concentration C;:

c\ !
€i=(1+ ) (2.16)

Caer

The set of effective concentrations C* is called the volatility basis set. In order to cover the wide range
of volatility of organic compounds, each element of C* represents a different order of magnitude of
saturation vapor concentration defined as:

C* = {0.01,0.1,1,10,100, 1000, 10%, 105} (2.17)

where the values within the basis set are in units of ug m™3 and defined at 300 K.

The VBS approach can model oxidative ageing as well as volatility. More specifically, the relationship
between SOA oxidation level and volatility is modeled as monotonically decreasing, leading to a "zom-
bie” effect of all bins marching to the lowest volatility bin (Bergstréom et al., 2012). This behavior can
be expressed via the general reaction

CG, + OH - CGy_, (2.18)

forx = 2,..,dim(C*), where CG, represents the amount of condensable gas-phase material in bin x of
C*. A frequent assumption is that the reactions in (2.18) have a uniform rate constant k for all x, for
example k = 4 x 10! ¢m3 molecule™! s~ (Robinson et al., 2007). For a 9-bin volatility basis set, this
leads to the system of coupled ordinary differential equations:

d

aCGg = —kCOHCGg

d

&CGS = kCOHCGg - kCOHCGB

d
ECGZ = kCOHCG3 - kCOHCGZ

d
—CGy =kCoyuCG
Pt ontlz
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(2.19)

where Cyy is the concentration of the hydroxyl radical.

The volatility basis set approach was implemented in a CTM over the United States soon after its
introduction. Shrivastava et al., 2008 implemented the VBS scheme in PMCAMX, accounting for gas-
particle partitioning of primary organic aerosol (POA). Prior to this, primary emissions were modeled
as nonvolatile and did not evaporate. Considering only aerosol phase primary emissions neglects
a substantial amount of material that evaporates quickly (Robinson et al., 2007). This material only
becomes detectable after ageing and becoming more volatile. The approach used by Robinson et al.,
2007 and Shrivastava et al., 2008 is distributing the POA emissions across the lowest 4 volatility bins,
and additional material from a fit factor over the highest 5 volatility bins to represent the evaporated
fraction. This factor was fit from data to be 1.5 times the original emissions, ultimately multiplying
condensable primary emissions by a factor of 2.5. One important conclusion of Shrivastava et al.,
2008 was that improved representation of SVOC emissions, including allowing evaporation of POA,
could increase predictions of total organic aerosol concentration (C,, from the previous section), up to
50% in an urban summertime setting (Shrivastava et al., 2008).

The above result was an important conclusion, in light of the systematic underestimation of organic
aerosols by CTMs (Mircea et al., 2019). The ability of the volatility basis set to better capture organic
PM led to its implementation in other CTMs and regions, for example Mexico City (Tsimpidi et al.,
2010) and Europe (Bergstrom et al., 2012). The work of Bergstrém et al., 2012 was influential to the
current VBS implementation in LOTOS-EUROQOS. Bergstrom et al., 2012 conducted a comparison study
with four different VBS classes, implemented into the EMEP (European Monitoring and Evaluation
Programme) chemical transport model in long-term simulations over Europe, modeling years 2002-
2007. This study included comparisons to measurements and other models. The four different basis set
approaches differ in how they treat partitioning of POA, aging of primary semi-volatile and intermediate
volatility organic compounds (together siVOC), and production of SOA. No judgement on best model
configuration was made. One conclusion was that that bSOA is a major contributor to TOA in the
summer, even if ageing reactions are turned off for that VBS class. However, uncertainty in bVOC
emissions was large, and this study concluded that more data on bVOC emission rates is required for
meaningful summertime SOA modeling by CTMs.
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2.5.2. Four VBS classes in LOTOS-EUROS

LOTOS-EUROS uses several 1D volatility basis sets to model different sources of organic aerosols
(OA), including secondary organic aerosols (SOA) from gaseous precursors, primary organic aerosols
(POA), and SOA from volatile POA emissions (Manders-Groot et al., 2021). Volatile organic com-
pounds such as xylene (XYL), toluene (TOL), paraffins (PAR), and olefins (OLE) are considered to be
anthropogenic precursors of secondary organic aerosols, though they themselves are too volatile to
partition to the aerosol phase appreciably. Formation of SOA from anthropogenic VOCs (aVOC) is
represented with a 6-bin VBS defined from 1072 to 103 ug m™3 at 298 K. An analogous 6-bin VBS is
used to model SOA formation from biogenic VOC precursors (bVOC), namely monoterpenes (TERP)
and isoprene (1ISO).

Figure 2.2 shows examples of mass distributions over volatility bins for the 4 VBS classes. Primary
organic material (POM) emissions are modeled using a 9-bin VBS approach, logarithmically distributed
from 1072 to 10° ug m=2 at 298 K. The reported mass is distributed over the lower 4 volatility bins. An
additional 1.5 times this mass is distributed over the higher 5 volatility bins, representing non-reported
semi and intermediate volatility organic compounds (S/IVOCs) that will age to form siSOA. Only a
fraction remains in the aerosol phase — the fraction that evaporates is assumed to be semi-volatile
VOC, 1 < C* < 103ug m™3 or intermediate volatility VOC, 103 < C* < 10° ug m™3, defined at 298
K. These S/IVOCs are treated separately from POA in LOTOS-EUROS, as they undergo secondary
oxidation and form SOA, denoted as siSOA for semi/intermediate volatility. Subsequent oxidation leads
to siSOA represented by lower volatility bins, down to 10~2ug m=3 . The total siSOA is represented
by an 8-bin VBS from 1072 to 103 ug m~3 (defined at 298 K). POA and siSOA are represented using
different volatility basis sets, but as they originate from the same sources, show similar spatial patterns
in comparison to the other basis sets. However, as siSOA is aged, it has more time to be transported
in the LOTOS-EUROQOS, spreading out from the emission source.
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0.40
B Cos =5.589e+00 ugm—3 ] == Cos=3.380e-01 ugm™3

[ Cgas =6.235e+00 ugm=3 0.351 [ Cgas =2.662e-01 ugm™3

2.0

0.30 4

1519 0.25 4

Organic mass [ug m~3]
Organic mass [ug m~3]
o
N
o

1.04
0.15 4
054 0.10 1
0.05 ] ':l
ool I e e s
le-02 le-01 le+001le+011le+02 1e+03 1e+04le+05 le+06 le- 02 le-01 1e+00 1e+01 1e+02 le+03 le+04 1e+05
Saturation vapor pressure, C* [ug m~3] Saturation vapor pressure, C* [ug m—3]
(a) POA VBS (b) siSOA VBS
aVOC VBS bVOC VBS
[ Coa=7.064e-03 ugm™3 B Con=8.213e+00 ugm™3
254
0.059 — Cyus=2251€-01 ugm=3 [ Cgas=4.273e+01ugm=>

o
o
R
N
S}
!

e
=)
@
-
«
L

o
o
]
=
o
!

Organic mass [ug m~3]
Organic mass [ug m~3]

g
o
=4
w

T T T T T T 0- T
le-02 le-01 le+00 le+01 le+02 le+03 1le-02 le-01 1le+00 le+01 le+02 le+03
Saturation vapor pressure, C* [ugm™3] Saturation vapor pressure, C* [ug m~3]

(c) avoC VBS (d) bVOC VBS

Figure 2.2: Representative examples from a LOTOS-EUROS run of mass distribution over the volatility bins, and phase par-
titioning within each bin, for all 4 VBS classes. The POA example in 2.2a is in the surface gridcell containing the Cabauw
Experimental Site for Atmospheric Research in the Netherlands, on February 26 at 21:00. The other three VBS classes are for
a surface gridcell over a forest in southern Germany, Schonbuch Nature Reserve, on July 30 at 04:00.
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The tables below provide a summary of the VBS classes and their tracers, as detailed in the LOTOS-
EUROS reference guide (Manders-Groot et al., 2021).

Table 2.1: List of VBS aerosol tracers in LOTOS-EUROS.

¢ 102 10t 1 10 102 10%  10* 105  10°

aVOC | asoal asoa2 asoa3 asoa4 asoab asoab - - -
bVOC | bsoal bsoa2 bsoa3 bsoad bsoa5 bsoab - - -
POA poa1 poa2 poa3 poa4 poab poab poa7 poa8 poa9
siSOA | sisoal sisoa2 sisoa3 sisoa4 sisoab sisoa6 sisoa7 sisoa8 -

Table 2.2: List of VBS gas tracers in LOTOS-EUROS.

C; \ 1072 1071 1 10 102 103 10* 10° 106
aVOC | asog1 asog2 asog3 asog4 asogb asogb - - -
bVOC | bsog1 bsog2 bsog3 bsog4d bsog5 bsogb - - -
POA pog1 pog2 pog3 pog4 pog5 pog6 pog7 pog8 pog9
siSOA | sisog1 sisog2 sisog3 sisog4 sisogb sisog6 sisog7 sisog8 -

On top of tracers for the SOA species, there are also tracers required for the secondary organic gases
(SOG). This results in 12 tracers required to model SOA formation from aVOC: 6 aerosol phase tracers
(aSOA) and 6 aerosol phase tracers (aSOG). Similarly, bVOC formation of SOA requires 12 tracers for
bSOA/bSOG. The 9-bin POA/POG VBS requires 18 tracers, and the 8-bin siSOA/siSOG VBS requires
16 tracers. In total, this adds 58 VBS-specific tracers to the 64 non-VBS tracers in LOTOS-EUROS.

2.5.3. VBS tracers in other operators

The VBS module falls within the chemistry operator in LOTOS-EUROS. The module calculates the
saturation vapor pressures of the volatility bins via the Clausius-Clapeyron equation. It then calculates
the new partitioning for each bin in each VBS class via equations (2.15) and (2.16) (Manders-Groot
etal., 2021).

Also within the chemistry operator is gas-phase reactions of the condensable gas tracers: asog;,pog;,
and sisog,, wherei=1, ... ,6,j=1,..,9, and k = 1,...,8. These reactons shift material to lower volatility
bins in the form of equation (2.19). Gaseous precursors to aSOA (OLE, PAR, TOL, and XYL) and
bSOA (ISO and TERP) react to form aSOG and bSOG in the upper four volatility bins for those classes,
from saturation concentrations of 10 ug m™3 to 1000 ug m~3. The yields of each bin from the VOC
precursors is parameterized into two cases, high and low NO, conditions, as suggested by Lane et al.,
2008 (Manders-Groot et al., 2021). Note that ageing between bins in the biogenic VBS is currently off in
LOTOS-EUROQOS, so all contributions to the biogenic VBS bins come from biogenic gaseous precursors.
As a result the lowest 2 volatility bins do not recieve any material and are effectively off, though they
are still passed between processes.

The emissions operator directly interacts with only the POA VBS tracers. Different emission inventories
can be used, which determine how POA is distributed over the bins. The base inventory for emissions
is the TNO-MACC Il inventory (Kuenen et al., 2014). Deposition handles gases and aerosols differently,
but works with each tracer individually. Transport processes, like advection and vertical diffusion, act on
each tracer individually (unless explicitly turned off — extremely quickly reacting radicals, for example,
are not advected). All non-chemistry operators treat tracers as being independent of each other, as
described in the section on CTM operator splitting. However, all must resolve their equations for each
tracer: the high-level structure is therefore a for loop over all tracers, unless the tracers are specifically
turned off. For example, the advection operator still needs to calculate the concentration gradient for
each relevant tracer as shown by (2.13). The computation time for all other operators is therefore
expected to increase linearly with number of tracers to be advected: 0(n) where n is the number of
overall tracers.
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2.6. Diagnosing the source of slowdown

In the introductory chapter, Figure 1.1 showed that slowdown from a VBS operator is amplified when
using domain parallelization: VBS inclusion in the parallel run doubled computation time, compared
to about a 2/3 increase in computation time for the sequential run. This is striking because the VBS
operator is a box model process, where adjacent gridcells don'’t interact. Domain parallelization splits
up processes in space, and section 2.3 describes how chemistry operators (of which VBS is considered
one of) are treated as spatially independent within the operator splitting timestep. The VBS operator
is not spatially dependent and does not require concentrations from domains on other CPUs, so why
does its inclusion slow down a parallelized run more than a sequential run?

The above question motivates a more granular benchmarking analysis to find the source of the slow-
down. Figures 2.3 and 2.4 report the proportion of clock time within the inner time loop of LOTOS-
EUROS of sequential and parallelized runs.

Sequential Run
No VBS: ~2500 seconds VBS: ~3900 seconds

mm Timestep Setup
Chemistry

mm Vertical Diffusion

. Advection

Emm Emissions and Other < 1%

mm Sedimentation and Deposition

Figure 2.3: A sequential run benchmarking the various operators in LOTOS-EUROS on 1/24th of the CAMS domain, for 1 day.
The typical resolution and domain is 0.1 degrees for 700x420 cells over Europe.

The sequential run shows that the relative time of the overall chemistry operator decreases. Computa-
tions from OA tracers in the overall chemistry operator include partitioning of vbs tracers and gas-phase
reaction with hydroxyl radical. With the VBS tracers, overall time spent on chemistry increased from
~830 seconds to ~1122 seconds. This 35% slowdown in the time loop is disproportionate to the overall
slowdown from ~2396 to ~3914 seconds: a proportional slowdown of 63%. Advection, on the other
hand, goes from (.215x2500 seconds) ~ 538 seconds to (.206x2900 seconds) ~ 803 seconds: nearly
a 50% increase in wall time. Similarly, and yet more extreme, the wall-times for deposition operators
increase from ~378 seconds to ~1084 seconds, corresponding to a 187% increase in wall time. Both
advection and dry deposition perform for loops over all tracers. The takeaway from the sequential run
is that addition of organic aerosol tracers via the volatility basis set adds minimal computation time for
partitioning and organic chemistry, but rather slows down other processes such as transport.



16 2. Organic aerosols in LOTOS-EUROS

Parallel Run
No VBS: ~7000 seconds VBS: ~13100 seconds

H Timestep Setup
Chemistry

mm Vertical Diffusion

mm Advection

B Emissions and Other < 1%

mm Sedimentation and Deposition

Figure 2.4: A parallel run benchmarking the various operators in LOTOS-EUROS using 24 CPUs on the CAMS domain, using
the standard operational settings: 0.1 degree resolution, 700x420 cells over Europe.

Comparing the proportion of advection (green) of Figure 2.4 with that of 2.3, it can be seen that ad-
vection becomes the dominant operator in terms of computation time. Inclusion of the VBS nearly
doubles the total amount of tracers, and this is reflected in the timing for the advection operator: Fig-
ures 2.3 and 2.4 show that advection costs increase by up to 2 times when the VBS is implemented.
This problem is exacerbated by the parallelization. The time required to communicate data between
computing nodes is known as overhead. This overhead is often represented by a communication time
function. This communication time function is linearly dependent on message size m in bytes of data
to be communicated

teom = @ + fm (2.20)

where « is a setup/startup time of communication, and g is the transmission speed in seconds per
byte. When a << fm, t.,, can be regarded as only dependent on the size of the data. However,
when «a is not negligible, the amount of communication instances becomes a factor. This is the case
for TNO’s home system running LOTOS-EUROS. In the current advection scheme, the row of the whole
domain is first scanned for minima and maxima. Advection is then resolved left-right and then right-left
over the row of gridcells for the whole domain. When the domain is decomposed into subdomains for
processors to solve in parallel, each processor has to communicate data to other computing nodes.
The advection operator resolves equation (2.13) for each species, so this process must be repeated
for every chemical species.
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2.7. Motivation for reduced-order modeling

Inclusion of the VBS tracers slows down processing time for the advection operator, which does not
perform calculations specific to OA chemistry and partitioning. In fact, advection is a bulk process that
doesn’t require tracer-specific parameters. This problem motivates investigation of whether the high
dimensional VBS tracer space could be represented by a lower-dimensional manifold for use in other
processes. Underlying equations of these processes could be solved for a latent space representation
of the tracers rather than the tracers themselves. This latent space representation could be interpreted
as a set of superspecies that are formed from combinations the original tracers. If there is a mapping
from tracers to superspecies and superspecies back to the tracers, then the most computationally
expensive operators can resolve their equations using the superspecies, while VBS-specific operators
such as emissions and chemistry can be resolved in the full VBS tracer space.

o ©

Figure 2.5: We seek a mapping from the original VBS tracers to lower dimensional set of superspecies, and vice versa.

The following subsections build towards the approach focused on for the rest of the thesis: a data driven
machine learning approach to find a representative set of superspecies for the VBS tracers. This super-
species set might not be specific to any one process but rather inferred from the large amount of model
output for VBS tracers that can be obtained from LOTOS-EUROS runs. Section 2.7.1 briefly sum-
marizes previous work in reduced-complexity techniques in atmospheric science, including collapsing
reactions, lumping species, and finding lower-dimensional manifolds of chemical systems. Section
2.7.2 proposes a non-data driven technique that takes advantage of partitioning theory to combine
tracers, but could only halve the number of tracers and would not be compatible with phase-specific
processes like dry deposition. Section 2.7.3 motivates a data-driven approach to find a representative
set of superspecies from the large amount of model output.

2.7.1. Model order reduction in the atmospheric sciences

Reduced complexity approaches have been developed for other atmospheric modeling applications.
Chemical mechanisms in CTMs often lump species together, such as larger alkanes: a result of this
assumption is that mass is not balanced in chemical reactions (Heald & Kroll, 2020). A well known ap-
proximation to reduce the complexity of chemical kinetics (the nonlinear system of differential equation
representing chemistry) is the quasi-steady state assumption. The quasi-steady state assumption is
applied to chemical species that react on much faster timescales than the reactions of other species,
or the timescales of advective transport. Assuming that these fast-reacting species are in equilibrium
(or quasi steady-state) implies zero net rates of formation which allows for their concentrations to be
represented by algebraic expressions of slower-reacting species and other parameters (Turanyi et al.,
1993). This reduces the complexity of the nonlinear ordinary differential chemistry operator, as well as
removes their direct dependence on transport. For this reason, some radical tracers in LOTOS-EUROS
are skipped in the advection for loop.

There can be more fast reactions than those dictated by the deliberate selection of fast-reacting species
in the quasi-steady state approximation. Chemical kinetics can be further simplified using a geometric-
based technique called intrinsic low-dimensional manifolds (ILDM), introduced by Maas and Pope, 1992
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for combustion applications. This manifold is a lower-dimension surface approximating the reaction
space and is determined by the slower timescales of the reactions, neglecting fast timescales. Inter-
est in of low-dimensional manifolds or “slow manifolds” in the atmospheric sciences was first raised
for reduced-order modeling of atmospheric flows (Lorenz & Krishnamurthy, 1987). Lowe and Tom-
lin, 2000 adapted the ILDM approach from combustion chemistry for tropospheric chemistry simu-
lations. Calculations were done via a repro-modeling approach, representing concentrations of the
important variables via polynomial functions of previous concentration and other kinetic parameters,
rather than a lookup table for manifold values. In this application, the dimension of manifold showed
temporal variation, with day and night modes. Whitehouse et al., 2004 lumped species with similar
lifetimes/timescales together, an approach distinct from lumping species by their reactivity or bond

types.

More recently, Kelp et al., 2020 used machine learning, specifically a recurrent neural network autoen-
coder, to find a low-dimensional manifold to model time evolution of a chemical system. Unlike previous
attempts to use machine learning approaches for the atmospheric chemical system, this technique did
not exhibit exponential error growth upon recurrent calculations over longer-term timescales than opti-
mized for. The training procedure minimized error of recurrent predictions, rather than predictions after
after a single timestep. This model, like the LOTOS-EUROS chemistry operator, is a box-model: it is
zero dimensional in space, and can be applied to each gridcell individually in a 3-dimensional CTM.
Incorporation of this machine learning technique into a CTM was indicated as a future direction of re-
search, including how the compressed features in the hidden layers of the neural network could be
used in other operators, like advection.

2.7.2. Zero-order compression technique

The more granular benchmarking in 2.6 concluded that operators like advection and dry deposition are
slowed down proportionally more by VBS tracers than the chemistry operator. The chemistry operator
includes gas-phase reactions of VOC precursors to OA as well as VBS-specific partitioning calculations.
An appropriate reduced order modeling technique would find a set of superspecies that could be used
by multiple processes that do not need the full detail of all VBS tracers. This method should provide
a mapping back to the original tracer space for processes specific to the organic aerosols: emissions
of POA, VBS partitioning, and gas-phase reactions of aVOC and bVOC to the top four volatility bins of
the anthropogenic and biogenic VBS classes.

An immmediate parameterization that would reduce the number of tracers to be advected could be
realized without losing information (not lossy compression). The minimum information for the VBS to
calculate the OA gas/aerosol partitioning is the total concentration, or mixing ratio, of material in every
bin, along with the concentration of total organic aerosol (TOA). Using these values would require about
half of the information carried by all 4 VBS classes. Instead of the 58 tracers organized by phase, VBS
class, and bin, this parameterization would require 30 tracers in total: 29 superspecies corresponding to
total concentration (gas and aerosol) in the volatility bins of all classes, as well as a tracer corresponding
to TOA.

This can be regarded as a zero-order compression technique, with no information lost on compression
and decompression. However, this would only halve the number of tracers added by the VBS. More-
over, superspecies representing total bin concentration would be limited in the processes they could
be used in: for example, the dry deposition operator handles aerosol and gas tracers differently.
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2.7.3. Machine learning superspecies

In search of a set of superspecies to represent the VBS tracers with a compression factor of more
than 2, we turn to unsupervised machine learning methods. The focus of the rest of this thesis is
machine learning methods that find patterns in the large amount of concentration data for VBS tracers
generated by LOTOS-EUROS simulations. Whenever possible, we will hybridize scientific knowledge
of aerosols with machine learning results for physical interpretability. This thesis will aim to develop a
machine learned parameterization that can represent the VBS tracers in a lower dimensional space,
while assessing:

* accuracy on reconstruction (decompression) to the original tracer space
+ physical interpretability of the superspecies and their decompressed tracers

« stability of the ML parameterization when implemented in LOTOS-EUROS, when applied recur-
rently in longer term simulations on the order of weeks

Chapter 3 explores the main concepts of several unsupervised machine learning methods in the litera-
ture of the fields of computer science, applied math, and atmospheric modeling, including non-negative
matrix factorization (NMF) and neural network autoencoders. Chapter 4 develops a linear method for
the specific application of fast online superspecies compression (and decompression), assessing its
accuracy and limitations. Chapter 5 compares a class of linear methods, matrix factorization, to a
neural network autoencoder, a nonlinear approach that aims to represent the tracers in a lower di-
mensional nonlinear manifold. Chapter 5 also explores ways of bringing physical consistency to the
data-driven machine learning methods, such as guaranteeing non-negative concentrations, conserving
mass, and keeping track of the phase of the superspecies. Chapter 6 assesses accuracy, stability, and
robustness of the machine learning superspecies when replacing VBS tracers in the advection oper-
ator, implemented online in LOTOS-EUROS. In every operator-splitting timestep before the advection
process, the VBS tracers are compressed to superspecies. The advection operator is then applied to
the superspecies and relevant non-VBS tracers. After advection, superspecies are decompressed to
tracers.






Machine Learning

3.1. Overview and applications

The expansive field of machine learning (ML) can be broken down into two broad categories: super-
vised and unsupervised learning. Supervised ML is a broad category of predicting known targets or
labels from corresponding data: examples in this category include linear regression, K-nearest neigh-
bor, random forests, and neural networks. Neural network regression is often used for its ability to
emulate nonlinear input-output relationships, for example, how atmospheric concentration of pollutants
depends on previous concentrations and meteorological parameters. Creation of surrogate models to
accelerate computationally intensive classical models using supervised machine learning is an active
field of research in atmospheric science (Keller & Evans, 2019; Kelp et al., 2020). Unsupervised ML
aims to glean patterns from data without targets — rather than memorize an input-output relationship,
instead determine some structure of the data. Examples in this category include projection methods
like principle component analysis (PCA), locality preserving projections (He & Niyogi, 2004), and non-
negative matrix factorization (NMF) (D. D. Lee & Seung, 1999; Paatero & Tapper, 1994), clustering
methods like K-means, and specific types of neural networks like self organizing maps and autoen-
coders (Marsland, 2014). While unsupervised learning can be used only to find patterns in data, it is
also an essential part of data-driven reduced order models, which aim to represent high dimensional
systems by a latent space with fewer dimensions. A reduced order model can still resolve the original
model’s fundamental equations, but in the latent space.

Optimizing machine learning approaches on large datasets, often referred to as training, has become
more and more accessible. Some of this is due to increased processor speed, though processor
speeds have largely stabilized over the last decade due to heat dissipation problems (Keyes, 2001).
A related but distinct advancement is alternative computing frameworks: for example, exploitation of
easily parallelizable operations like matrix multiplication over distributed memory CPU clusters, or the
SIMT (single instruction multiple thread) computing paradigm of modern graphics processing units
(GPUs). Increased accessibility and speed have led to widespread application of machine learning
methods.

Machine learning applications in the atmospheric sciences have existed for decades. The use of mul-
tilayer perceptrons in atmospheric modeling to predict the behavior of nonlinear systems emerged in
1990s (Gardner & Dorling, 1998; Potukuchi & Wexler, 1997). Around that time, an unsupervised lin-
ear machine learning method called positive matrix factorization was invented by aerosol researchers
in Finland (Paatero & Tapper, 1994; Paatero et al., 1991). This technique was later used in image
compression, and became widely known in the machine learning community as non-negative matrix
factorization, or NMF (D. D. Lee & Seung, 1999). Recent atmospheric modeling applications of ma-
chine learning include bias correction to improve model accuracy (Cho et al., 2020; Xu et al., 2021),
dimensionality reduction (Drosatou et al., 2019; Kelp et al., 2020), and surrogate modeling of compu-
tationally expensive operators (Kelp et al., 2020).
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3.2. Matrix factorization methods

This section discusses a linear unsupervised machine learning method and how it can be used to find
superspecies that are a linear combination of VBS tracers.

3.2.1. Non-negative Matrix Factorization

Non-negative matrix factorization (NMF), known in some fields as positive matrix factorization, is a form
of unsupervised learning used for dimension reduction (D. D. Lee & Seung, 1999; Paatero & Tapper,
1994). Unlike another well known related linear method for dimensionality reduction, principal compo-
nent analysis (PCA), which is mean centered and can give negative values in principle components,
NMF returns only positive values in its reduced dimensions. For this reason, NMF is often chosen in ap-
plications where both the lower dimension representation and reconstructed data must stay positive, for
example in image compression (D. D. Lee & Seung, 1999), or many mathematical physics problems.
NMF has been been used in environmental and atmospheric modeling applications for this reason,
where negative values are nonphysical, for example concentration (Paatero & Tapper, 1994). NMF is
frequently used in the aerosol community to attribute contributions of source sectors using data from
aerosol mass spectrometers (Drosatou et al., 2019). Given a matrix of non-negative data V € R™*"
with m dimensions and n data points, NMF aims to approximate VV with two non-negative factors:

V~WH (3.1)

where W € RIY*" is a mapping from the d dimensional space to a lower dimensional latent space with
features, and H € RI;"™ is a representation of each data point in the latent space representation. Though
the conventions for matrix shapes and names are inconsistent across the literature, the definitions here
have been chosen to be consistent with the seminal paper on NMF for image compression by D. D. Lee
and Seung, 1999. D. D. Lee and Seung, 1999 interpret the positive nature of W and H, showing that
NMF creates a parts-based representation, where different parts are combined through purely additive
operations. W and H are optimized to approximate IV based on the minimization of an objective function.
One common objective function (called a cost function or loss function) £ measuring the error between
WH and V is the square of the Frobenius norm:

n

L=V =WHIE =) (- WH),)? (3.2)

i=1j=1

W and H that minimize equation (3.2) are preferred. Sometimes, regularization terms are included in
the loss function to prevent either W or H from getting too large. This extends equation 3.2 to

Lyeg = IV —WHIE + a(IIWIIF + |HIIF) (3.3)

where « is a hyperparameter controlling the relative weight of the regularization terms. However, the
problem

argmin ||V —WH|?  st. W,H>0 (3.4)
W,H

is NP-hard and ill-posed due to the non-negative constraints (Gillis, 2014). For this reason, local mini-
mization approaches like gradient descent of £ with respect to W and H are often chosen to minimize
the difference between X and WH in the Frobenius norm. Gradient descent is an iterative process
where, each iteration, W is updated as

oL
“W—-—n— )
Wew 3 (3.5)

where the learning rate n is some positive real-valued scalar. H is updated analogously, alternating
with the updates for W. An adaptive n often helps with convergence of gradient descent.
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Figure 3.1: Schematic of non-negative matrix factorization.

3.2.2. Pseudoinverse approach

NMF is a matrix factorization method and for that reason operates on batches of data, often using local
optimization methods like gradient descent to minimize V — W H in the Frobenius norm, as in equation
(3.4). For the purpose of speeding computations, it might be counterproductive to optimize W and H
for every new online data point v, or synchronize W between different computing nodes when running
in parallel.

Assuming that W was optimized on representative data, it can be fixed for subsequent observations,
rather than requiring NMF to find new factors every time. This fixed W is a decompression matrix
mapping the latent space, which can be thought of a collection of superspecies composed of different
amounts of tracers, to original tracer space. However, finding a way to get h without using gradient
descent also requires a fixed compression matrix B. The compression step becomes

h=Bv (3.6)

where v € RZ}, is a new vector of tracer concentrations and h € RL, is the latent space representation,
a vector of superspecies concentrations. The decompression step is

Viec = Wh (3.7)

where v, € RT, is the decompressed vector of tracer concentrations, ideally as close of an approxi-
mation to v as possible.

— ® | n

Vdec

Figure 3.2: Schematic of online decompression from a latent space h to decompressed vector v, using a fixed W.

Given that W has independent columns (and if it didn’t, we could simply remove a column and have
one less latent dimension), WTW is invertible and a left pseudoinverse W* can be calculated:

w* = wrw)-twT (3.8)

which, applied to equation (3.7), gives the desired latent space representation

h=Wwtv (3.9)
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Provided that W is a suitable mapping, W* can be calculated once, requiring only a single matrix-
vector multiplication for every h. Online NMF updating is also a field of research, and if W needs to be
updated in an online fashion, this route could be further explored (Kim et al., 2014) as an extension of
the methods developed in this thesis.

3.2.3. Non-negative compression

If tracers are compressed to a single superspecies, W is a vector, and WTW is a scalar that will be
at least zero, with equality only when W is zero (which wouldn’t be very useful in our application).
The inverse of positive scalar WTW will also be positive. However, this does not generalize to larger
matrices with more latent features. It is possible that some elements of (W"W)~! are negative, which
would lead to negative elements in the Moore-Penrose inverse W, and potentially h. It must be seen if
the pseudoinverse approach leads to negative values for either the superspecies or the decompressed
tracers, and if such negative values are large enough in magnitude to cause problems in the model,
like systematic removal of mass.

The NMF approach can be adapted to give a non-negative compression matrix B. First, NMF can
be applied to find a decompression matrix W mapping superspecies to decompressed tracers and a
matrix of data H corresponding to the latent space representation of the original data X. Then, the
compression matrix B can be gained from the objective function

argmin||H —BV|2 st. B=0 (3.10)
B

where V is given, and H is found in the first step. These two steps together result in a compression
matrix B optimized to transform V to an approximation of H, and a decompression matrix W optimized
to transform H to an approximation of V. Expression (3.10) is a less common objective than the normal
NMF goal (3.4), but fixing VV and H is possible within the scikit-learn Python package for non-negative
factorization (Pedregosa et al., 2011). It should be noted that scikit-learn uses different shapes and
definitions for the matrices, but is equivalent.

The two steps could be combined to yield a single objective function
argmin ||V —WBV|2 st. BBW=>=0 (3.11)
B.W

although this objective is not readily found in the literature, and not possible to do with the widespread
scikit-learn NMF package. This objective has similarities to a technique known as archetypal analysis
(Cutler & Breiman, 1994). Archetypal analysis combines data points in each dimension rather than
dimensions of each data point, and has additional constraints on B and W.
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3.3. Neural Networks

There exist many sources detailing neural networks: Chapter 4 from Marsland, 2014 is used to inform
the summary below. Artificial neural networks are comprised of interconnected perceptrons, or nodes.
These nodes are arranged in layers — layers that are in between the input and output are called hidden
layers. In a fully connected feed forward neural network, each node receives as input a vector which
is the collection of outputs from all the nodes in the previous layer.
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Figure 3.3: A sketch of a fully connected feedforward neural network predicting an m-dimensional output from n-dimensional
input. Nodes are represented by circles. The hidden layers output vectors of dimensions j,k and h to all the nodes of the
subsequent layers. This figure was in part developed using the tool from LeNail, 2020.

Within each node, an inner product between weight parameter vector w and input x is calculated. Then
another weight parameter b known as the bias is added. Finally, this scalar s = w’x + b is given to
some activation function a(s). An expression for the full transformation of the data in a single node
therefore looks like:

a(w'x + b) (3.12)

The activation function a can be identity, but is often chosen to be a non-linear function. One common
class of functions chosen is the sigmoid or "S”-shaped functions, for example, the logistic function:

a(s) = (3.13)

1+eS

ranging from 0 to 1. Another frequently used sigmoid function is hyperbolic tangent, which ranges from
-1 to 1. Sigmoid functions in this context were originally chosen to mimic action potentials in brains that
govern whether neurons fire. The scalar values of all the nodes in one layer are fed to the next layer
of nodes, with new weights.

The values of weight parameters w and b can be varied to minimize a loss function £, which is a
measure of the error between the NN output y and a target Typical loss functions are mean
squared error:

ytrue )
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or regularized mean squared error (used in ridge regression), where a term A||w|| is added to equation
(3.14) with some norm || - || and positive-valued scalar 4, that aims to constrain the weight parameters
w.

Parameter adjustment is usually done through gradient descent methods, though other minimization
functions exist. Stochastic gradient descent updates all weights for a single data point, rather than for
all of the training data, and is often chosen. Mini-batch gradient descent updates weights for a set of
the training data at a time. As mentioned in the previous section, adaptive learning rates have been
shown to improve convergence, such as the Adam algorithm (Kingma & Ba, 2014). The process of
performing gradient descent from the output layer backwards through the hidden layers, adjusting the
parameters along the way, is known as backpropagation (Marsland, 2014).

Neural networks’ useful property of being able to approximate any non-linear smooth function with
an unrestricted amount of nodes in a single hidden layer is known as the Universal Approximation
Theorem. Cybenko, 1989 showed this property using sigmoid activation functions, and it was later
shown to hold true for general non-polynomial activation functions (Leshno et al., 1993).
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3.4. Autoencoders and latent space representation

A neural network can be trained to reproduce the input it receives, in a process called auto-associative
learning (Marsland, 2014). This class of neural network is called an autoencoder. As an autoencoder
does not require learning targets beyond its input data, it is considered an unsupervised learning algo-
rithm.

The architecture of an autoencoder is often chosen to perform compression in a hidden layer. This
hidden layer has fewer nodes than the input and output layer. If the neural network in Figure 3.4
were an autoencoder with hidden layer compression, then the output layer size m would be equal to
input layer size n, and at least one hidden layer size j, k, h would be less than m; more concisely,
min(j, k, h) < m. An example of autoencoding a vector of length 9 into a latent space representation
with only four elements is shown below.
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Figure 3.4: A sketch of an autoencoder encoding a vector with 9 elements into a reduced dimension representation with only
four elements. This figure was developed using the tool from LeNail, 2020.

Though the autoencoder approximates the identity function, it does so through compression then de-
compression. The first set of hidden layers transform the input to a smaller vector, representing the
data in a smaller latent space. The second set of hidden layers reconstructs the original data. Both
layers have weight parameters that are trained (often via gradient descent methods) to reconstruct the
original data in a way that minimizes some cost function (often mean square error). These layers are
called the encoder, and decoder, respectively: the latent space representation is called the code. Ac-
tivation functions in the hidden layers autoencoder can be chosen to be nonlinear, making the output
nonlinear with respect to the weights w. This allows the latent space to be something other than a
linear combination of the original variables, unlike NMF.

Autoencoders have been used in reduced-order models in fluid mechanics applications, where advec-
tion calculations are the computational bottleneck (K. Lee & Carlberg, 2020; Maulik et al., 2021). More
specifically, K. Lee and Carlberg, 2020 introduced a convolutional autoencoder to create a lower di-
mension nonlinear manifold on which to solve general governing equations. An example given was
advection-dominated problems, where linear subspace methods like proper orthogonal decomposition
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Figure 3.5: The parts of an autoencoder: encoder, code, and decoder.

(POD, equivalent to PCA) are often insufficient. Maulik et al., 2021 used a similar convolutional au-
toencoder, but within a recurrent neural network to step a nonlinear latent space forward in time, rather
than solving the governing equations in the latent space. This approach was found to be more suitable
for advection-dominated systems than a linear subspace approach like POD: examples given were the
viscous Burgers equation with an advecting shock, and the shallow water equations.

In chemical transport models, literature on using autoencoders for reduced order modeling for advec-
tion dominated systems is sparse. A recent PhD thesis focusing on reduced order methods for data
assimilation in an urban air quality model only briefly mentions neural networks — however, concludes
similarly to K. Lee and Carlberg, 2020 and Maulik et al., 2021 that projection-based model order reduc-
tion methods have limited efficacy in advection dominated cases (Hammond, 2017).

Kelp et al., 2020 use a combination somewhat analogous to the Maulik et al., 2021 approach, using
autoencoding layers within a recurrent neural network, in a surrogate model for a paired box model of
gas-phase chemistry and aerosol microphysics, MOSAIC/CBM-Z (Zaveri et al., 2008). They applied
this approach to estimate the computationally intensive time integration step. The surrogate model is
orders of magnitude faster, and remains stable even when running on longer timescales than it was
optimized for. In order to incorporate a surrogate model of this architecture ina CTM or ESM, Kelp et al.,
2020 point to a future research direction: assessing how other processes, like advection, handle the
compressed latent space tracers. Methods developed in chapters 4 and 5 will be applied in chapter 6 to
answer a related question: can NMF or a neural network autoencoder find a latent space representation
of volatility basis set tracers to be advected? Is the chosen linear or nonlinear method accurate, over
longer simulation times of several weeks?



Offline Machine Learning:
NMF/Pseudoinverse Reconstruction

Non-negative matrix factorization (NMF) as detailed in chapter 3 was performed on winter data over the
default LOTOS-EUROS domain for 4 volatility basis sets. This resulted in a mapping from original trac-
ers to a lower dimensional latent space, which can be physically interpreted as a set of superspecies.
From the NMF, the mapping W and its Moore-Penrose left pseudoinverse W* are used to transform
between the volatility basis set and the superspecies on new test data without performing NMF. This
chapter develops the approach for one superspecies, then evaluates it on differing amounts of super-
species, making a preliminary judgement on a reasonable extent of compression. This chapter goes
on to explore the limitations of this approach both quantitatively and qualitatively.

4.1. Model settings and data

The online NMF approach was tested on a LOTOS-EUROS run from February 15th through 28th,
2018. Hourly surface concentrations for 58 tracers from the four volatility basis sets were reported on
the Monitoring Atmospheric Composition and Climate (MACC) domain, at a resolution of 0.50 degrees
by 0.25 degrees, which is about 36 km by 25 degrees at 50 degrees North (Manders-Groot et al., 2021).

LOTOS-EUROS February 25-28, 2018

v ’,:3“"'

Average TOA (ug/m3)

Figure 4.1: Total organic aerosol simulated in LOTOS-EUROS for the test days February 25-28, 2018.
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The days of February 15th through 19th were used as model spin-up: data from these days was
disregarded, leaving 9 days for training and validation. With 216 hours, 100 latitudinal gridlines, and 140
longitudinal gridlines, there are about 3 million data points for each volatility basis set. The data points
range from 12-dimensional (from anthropogenic and biogenic gaseous precursors) to 18-dimensional,
in the case of primary organic emissions. Data over the domain from February 20th through 24th,
approximately 1.7 million data points, were used as training data to generate an optimal W for each
VBS. The subsequent four days February 25th through 28th, approximately 1.3 million data points,
were used for testing how well the tracers-to-features mapping matrices W and their Moore-Penrose
left pseudoinverses W* work on data that was not used in their optimization.

Figure 4.1 shows the LOTOS-EUROS run, and will be taken as ground truth for the sake of this thesis:
all methods will be judged on how well they replicate the LOTOS-EUROS data.

4.2. Recap of non-negative matrix factorization

NMF is an unsupervised machine learning approach used in this application on data V € RI{™ with
m rows corresponding to VBS tracers and n columns corresponding to data points. Two optimal, non-
negative factors, W € RI5" and H € RI;™ are found via gradient descent methods, to approximate V
via the product WH. On a high level, W can be thought of intuitively as a mapping from the original
tracer space in m dimensions into a lower dimensional latent space with r dimensions. The latent space
can further be interpreted of as some sort of superspecies space, where each dimension is some sort
of combination of the original tracers. H is each data point represented in the superspecies space.

4.3. Pseudoinverse approach

One ultimate goal is to be able to perform the compression to a set of superspecies online, with new
predictions. Using gradient descent methods to find an optimal W and H might be too time-consuming
to do for each data point v, where v is the set of tracers for a specific VBS class at a gridcell at a
given time. Online optimization of W would bring an added complication of when to communicate
different W across gridcells. Instead, we can use representative training data to find an optimal W. A
Moore-Penrose left pseudoinverse W, defined as

wt = WwWTw)-twT (4.1)
can be used to calculate a latent space data point h from a data point v as follows:
h=Wwtv (4.2)

The latent vector h, which can be thought of as a superspecies, is a lower dimensional represen-
tation of v, that can be computationally more efficient to perform other operations on (e.g. parallel
communication between processing nodes in domain decomposition, advection, deposition). Finally,
a decompressed data point v,,. can be obtained via

Vaec = Wh (4.3)
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4.4. A single superspecies

4.4.1. Spatial patterns

NMF is considered lossy compression, meaning information is lost during the linear transformation to
the latent space and back again. To get an estimate for a lower bound of accuracy in compression,
NMF with one single latent feature (one superspecies) was performed on each of the volatility basis
sets. This approach is extremely limited as it compresses the volatility basis set into a characteristic
vector of rank one. The following results quantify and visualize the extent to which all the partitioning
distributions over 4 days and an entire domain can be represented with one direction. Table 4.1 shows
error metrics on the test data from February 25th through 28th. Mean value for each test set, as well
as total organic aerosol (TOA) and total organic material (TOM) are reported to give a sense of the
magnitudes of error. It can be seen that error values of decompression from a single superspecies,
especially RMSE, are quite high relative to average values.

Table 4.1: Evaluation data set metrics when compressing to a single latent feature

| RMSE [ug m™3] Bias [ugm™] Mean [ug m™3]

avOC | 0.0021 —-3.9x%x107° 0.0043
bvOC | 0.0061 29x107* 0.0262
POA | 0.0441 -0.0021 0.0558
siSOA | 0.0205 6.4 x 107> 0.0153
TOA 0.266 0.094 0.386
TOM | 0.0978 -0.0328 1.61

Figure 4.1 visualizes organic aerosol (TOA) over the domain averaged over the 4 test days. Figure
4.2a shows the corresponding reconstruction using the optimal W from the training data, and Figure
4.2b the relative bias between the two. The compression and decompression with a single vector for W
is able to visually reproduce areas of average higher concentrations on the regional scale, for example
the Po Basin in northern ltaly.

NMF/Pseudoinverse with one superspecies Normalized bias compared to LE

-100 =75 -50 =25 0 25
Average TOA (ug/m3) Normalized Bias of average TOA

(a) NMF/Pseudoinverse with one superspecies (b) Relative bias compared to LOTOS-EUROS test data (Figure 4.1)

Figure 4.2: Average TOA (a) for the test days Febraury 25-28, 2018, via compression with a pseudoinverse W* and decom-
pression with NMF matrix W. It can be seen that this image has higher amounts of average TOA compared to Figure 4.1. This
difference is illustrated in figure (b) by the relative bias between (a) and Figure 4.1

Figures 4.1 and 4.2a are visually similar, especially in areas where there is appreciable TOA. Figure
4.2b shows large relative errors only occurring in places with negligible (near zero) organic aerosol in
LOTOS-EUROS. Though the color bar scale is 1 to 100, relative error near the Arctic (north border) and
Atlantic (western border) is sometimes much larger, but since the concentrations are so small, this might
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not be an issue in terms of model prediction. However, it could be problematic if the NMF approach
artificially introduces a significant amount of mass into the system near the edge of the domain. This
reconstruction of time-averaged TOA for the test days indicates that a single superspecies is able,
albeit somewhat limitedly, to capture spatial variability over much of continental Europe.

4.4.2. Temporal patterns

Figure 4.3 investigates the temporal behavior of TOA, which is quite periodic, at two stations: the
Cabauw Experimental Site for Atmospheric Research in the Netherlands, and Mace Head Atmospheric
Research Station in Ireland. In green (dots before the test days begin) are the sum of the concentrations
of VBS aerosol tracers of the training days using an NMF reconstruction. The red dots after the test
days begin are reconstructions using the left inverse to project each VBS into a one-dimensional space,
then multiplication by the vector W to get an approximation of each VBS. The total organic aerosol
concentration is then summed up and compared to the LOTOS-EUROS predictions, the solid black
line. Total organic aerosol seems to be quite well predicted for Cabauw. This was also the case for
other areas in the domain including Melplitz, Helsinki, and Barcelona. Mace Head, which is regarded as
a more pristine station (O’Dowd et al., 2014), shows systematic overestimation of TOA using 1 feature
to represent each bin. However, the TOA estimated using decompressed aerosols manages to capture
the diurnal pattern of TOA for both stations.
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Figure 4.3: Simulated TOA over the training and test period, after compressing each VBS class to a single superspecies using
W* and subsequent decompression via W for Cabauw and Mace Head. Note that TOA is about an order of magnitude higher
at Cabauw than Mace Head.

4.4.3. Mass distribution over volatility bins

The ability of a single characteristic vector W per VBS to model TOA is not necessarily indicative of
accurate VBS reconstructions. Using a single characteristic vector will fix the shape of the distribution,
and a single latent point h will scale the distribution. W is of rank one, so the VBS reconstructed from
the projection via W* into a 1D latent dimension (one single superspecies) will always be one shape.
Put another way, each NMF feature, which can be thought of as a representative superspecies, has
a certain composition of each original tracer. If we only use one single feature, the relative composi-
tions will not change, only the magnitude of the distribution (which can be thought of as increasing or
decreasing the concentration of the single superspecies).



4.4. A single superspecies 33

Cabauw POA, Feb 26, 20:00, LOTOS EUROS Mace Head POA, Feb 26, 20:00, LOTOS EUROS
2.00 B Con=4.984e+00 ugm™3 B Con=3.193e-02 ugm=3
[ Cgas=6.121e+00 ugm=3 [ Cgas =2.329e-01 ugm™3
1.75 0.04 1
—. 1501 —
TE TE ]
| 0.03
g 125 3 -
7 — 7
£ 1.00 A g
2 2 0.021
5 0.75 S
o o
0.50 -
0.01 4
0.25 A
T T T T y T T T T T
le-02 1le-01 1e+00 1le+01 1e+02 1e+03 le+04 le+05 1le+06 1le-02 1le-01 1e+00 le+01 1e+02 1e+03 1le+04 1le+05 le+06
Saturation vapor pressure, C* [ugm~3] Saturation vapor pressure, C* [ugm~3]
Cabauw NMF/Pseudoinverse, one superspecies Mace Head NMF/Pseudoinverse, one superspecies
2.00 1 B Cou=4.478e+00 ugm™3 B Con=8.591e-02 ugm™
[ Cgas=6.913e+00 ugm=3 0.035 4 [ Cgas=1.326e-01 ugm3
1.75 4
0.030 4
1.50 A 1 ]
TE TE
€ 125 € 00251
2 2
g £ 0.020
© 4 c U b
e 1.00 e
i) i)
c c
S 0.75 1 g 00151
[¢) o
0.50 0.010
0.25 0.005 A
0.00 - y T T T 0.000 - y T T T
le-02 1le-01 1e+00 le+01 le+02 1e+03 1e+04 1le+05 le+06 le-02 1le-01 1e+00 1e+01 le+02 1e+03 1e+04 1le+05 1le+06
Saturation vapor pressure, C* [ugm~3] Saturation vapor pressure, C* [ugm~3]
(a) Cabauw (b) Mace Head

Figure 4.4: Plots of the POA volatility basis set at (a) Cabauw and (b) Mace Head at 20:00 on February 26th. The upper row
in green is the VBS distribution from LOTOS-EURQOS, and the bottom row in maroon is the reconstruction after compression
into one superspecies and subsequent decompression. Note that this method, when using a single superspecies, is limited to
reconstructing the VBS with one fixed shape as determined by the characteristic vector W. This results in the decompressed
POA VBS having the same shape for both Mace Head and Cabauw, despite very different magnitudes and target shapes.

The bottom row of Figure 4.4 shows the limitation of using a single superspecies in a linear approach, in
that decompression is locked into a single shape. Cabauw and Mace Head show different proportions
of Cp4 to total concentration in the POA VBS tracers, as well as different relative amounts of semivolatile
gas phase tracers. The use of a single superspecies manages to capture magnitude: this information
is communicated by its concentration. However, its decompression is limited to a single characteristic
vector, resulting in the same shape per class of VBS. This will fail in capturing the spatio-temporal
variability of the shape of the VBS across the whole domain and time period.

While a single superspecies per VBS can somewhat capture surface TOA, this is very limited in cap-
turing the distribution. This implies that offline reconstruction of total organic aerosol is fairly robust
to the unsupervised machine learning approach, and alone not the best metric in which to evaluate
methods for compressing the volatility basis sets. Using a single shape for reconstruction might not be
completely meaningless, especially for the POA VBS: primary emissions are distributed in an invariant
shape over the volatility bins, and a single superspecies captures this to a certain extent. Figure 4.5
shows that the shape of the superspecies is quite similar to the fractions that determine how primary
emissions are distributed over the bins of the POA VBS. This indicates that NMF, which starts with a
randomly initialized W, is able to learn a realistic and physically interpretable pattern from the data and
include that in the superspecies shape.
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Figure 4.5: Mass fractions of primary emissions distributed over the volatility bins. Note that partitioning is not considered here,
just the relative amounts to each bin, summing to a total of 2.5 as introduced in section 2.5.1.

The single basis direction of 1 superspecies might work well in areas dominated by primary emissions,
but will not be able to capture variations of distributions after subsequent ageing. Offline error metrics of
compressing to a single species are not able to provide insight into possible effects of fixing the shape
of the distribution recurrently online in LOTOS-EUROS. This is expected to counteract the model's aim
to capture oxidative aging of organic aerosol and its tendency to become less volatile, by redistributing
material in the exact same way upon each decompression. The desire to allow for different shapes in
a VBS motivates the use of multiple superspecies: NMF with more than 1 latent dimension. Section

4.5 explores the effect of increasing number of superspecies (and thus characteristic vectors) on the
RMSE and bias accuracy metrics.
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4.5. Compression factor and accuracy

The number of NMF features was varied to explore effect of compression on accuracy. NMF for 1
through 6 features was performed for each of the volatility basis sets. Bias and RMSE were calculated
for the tracers from each VBS class, as well as total organic aerosol. An overview of these results can
be found in Figure 4.6.
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Figure 4.6: Plots of RMSE and bias for the 4 VBS classes, as well as TOA.

These results are dependent on the (seeded) randomly initialized weights. For a confidence interval
of accuracy, this experiment could be run several times for each amount of superspecies and then
averages of RMSE and bias metrics reported. However, analyzing results from a single run, the steep
improvement between 1 and 3 is visually apparent. RMSE monotonically decreases with increasing
number of superspecies, though there are some diminishing returns to accuracy when increasing the
number of superspecies after 3. However, more superspecies mean more compressed tracers to
advect, which will affect online performance (computational speed) in LOTOS-EURQOS. This inevitable
tradeoff between accuracy and computational speed is a canonical problem not only in atmospheric
chemistry modeling, but more generally in simulation of complex systems. In this case, 3 superspecies
seems to strike a good balance, ranging from a compression factor of 4 (aVOC and bVOC basis sets)
to 6 (POA basis set) with a significant improvement from 2 superspecies and minimal improvement
when using 4 or more superspecies.

4.6. Three superspecies

The analysis in section 4.4 was repeated for the NMF/pseudoinverse approach using 3 superspecies.
Additionally, the condition numbers k(WTW) for the symmetric WTW matrix for each VBS are given.
This is an important thing to check as poorly conditioned matrices can lead to numerical instability in
inversion and creation of the pseudoinverse W*. This was not reported when using 1 feature, as W™W
was a scalar, and its inverse therefore its reciprocal.

It can be seen that the symmetric matrix WTW is well conditioned for all VBS classes, and is not ex-
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Table 4.2: Evaluation data set metrics when compressing to 3 latent features

| RMSE [ug m™3] Bias [ugm™3] «x(W'W)

avoC | 44 x 1074 26x107° 43.5
bvOC | 0.0026 -1.6x107* 48.2
POA 0.0109 —42x107* 16.9
siSOA | 0.0050 -9.9x107° 20.9
TOA 0.0173 0.0015 -
TOM 0.0547 -0.00763 -

pected to cause issues with numerical stability. It should be noted that the exact values are sensitive
to differences in the random initialization of W and H in NMF, a general issue with gradient descent
optimization and stochastic methods. For reproducibility, random seed values were specified in the
code, but more informative would be conducting multiple different runs with different seed values to ob-
tain a confidence interval for the metrics. However, a single arbitrarily seeded run can already provide
some insight. Bias values of some of the volatility basis sets are reduced by a factor of approximately
5. RMSE for TOA is reduced by a factor of 15 and bias by a factor of 60 from using a single super-
species. This improvement in accuracy can be seen in the timeseries for both Cabauw and Mace Head
in Figure 4.7, where Mace Head shows a significant decrease in overestimation of TOA and Cabauw’s
decompressed TOA is visually indistinguishable from the LOTOS-EUROS predictions of TOA.
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Figure 4.7: Simulated TOA over the training and test period, after compressing each VBS class to 3 superspecies using W+ and
subsequent decompression via W for Cabauw and Mace Head. This shows improved predictions of TOA over using just one
single superspecies in Figure 4.3.

The improvement in accuracy can be attributed to increased degrees of freedom: the distribution for
each VBS class can be reconstructed by 3 characteristic vectors, whose magnitudes are determined by
the value of their corresponding superspecies. The more superspecies, the more degrees of freedom.
Figure 4.8 in section 4.7 shows the three characteristic shapes, in the context of developing physical
intuition for the results of this unsupervised machine learning approach.

4.7. Towards physical interpretability

The improvement in some of the VBS metrics when using 3 superspecies is likely due to the addi-
tional degrees of freedom available to reconstruct the distributions. Rather than fixing the shape of
the distribution, and using the scalar concentration of a single superspecies to scale the distribution,
a combination of 3 several superspecies of different compositions is added. The relative amount of
each superspecies determines the shape of the final distribution. Figure 4.8 plots the three columns of
the decompression matrices W optimized for the POA VBS and siSOA VBS. Each column is scaled by
its sum. Upon normalization, each column can be interpreted as the composition of 1 superspecies in
terms of the original tracers. The concentration of each superspecies is then given by the corresponding
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element in the superspecies vector h = [hy, hy, h3]"

Degrees of freedom added by superspecies allow modeling of specific sources, or regimes that have
specific distributions. Freshly emitted aerosol will have a different mass distribution over volatility bins
than aged aerosol. Use of multiple superspecies allows the distribution to be a linear combination of
the specific regimes.
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Figure 4.8: Plots of the 3 columns of W for the POA and siSOA VBS, each normalized by their column sum, when using NMF
with three features. These vectors are physically interpretable as the relative composition the three superspecies.

The legends in Figure 4.8 indicate the fraction of each superspecies (column of W) that is in the aerosol
phase, X4, and gas phase X44;. It can be seen that the first superspecies (column W[:,0]) is composed
primarily of aerosol phase material in the semivolatile bins, and the third superspecies contains most
of the gas phase material, and is mostly gaseous. The physical intuition here is that W and B become
matrices of composition. Each column of W is the tracer composition of a superspecies. Similarly,
for W, each tracer is fully distributed over each superspecies, no more and no less. One potential
drawback is the manipulation of columns in W™, which might detract from the optimal directions found
in NMF by gradient descent. Another limitation of this strategy is that if W* has negative values, which
is a potential issue raised in section 3.2.3, we lose the physical intuition of composition matrices.

If instead of the pseudoinverse W* with a positive compression matrix B is used with the same con-
straint on the columns, then mass would be conserved. This strategy, as well as other mass-conserving
approaches, is explored in Chapter 5.

4.8. Negative concentrations

Section 3.2.3 raised the theoretical possibility of the pseudoinverse compression approach leading to
negative values, even when the decompression matrix W from NMF contains all non-negative ele-
ments. This problem is valid when compressing to more than one superspecies, which may be desired
if we want to represent the VBS distribution with more than one characteristic vector. Returning to this
theoretical problem, it is seen that in practice negative values are indeed created from this method.
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Figure 4.9: Negative values of POA VBS tracers after decompression. The gridcell containing Bergamo in northern Italy was
chosen as a representative example, at 8 am EST, February 26, 2018. Outside the scope of this thesis, but relevant in the
intersection of air quality and public health: the city of Bergamo has the second highest mortality burden from PM, ; exceedances
in all of Europe (Khomenko et al., 2021).

Negative concentrations that are extremely small in magnitude can be approximated as zero. This
tolerance can of course be set, for example 1 x 108 ug m~3. However, over the entire test data, there
are over 4.7 million cases in the test data where a POA VBS tracer is below —1 x 1078 ug m™=3, more
than 19% of the 24 million values in the test data for the POA VBS.

A more relative tolerance can be chosen: for instance, all concentrations that are more negative than
the bias for each VBS. These ”significantly negative” concentrations would be negative even after
an additive bias correction. For the POA VBS, there were 855083 such concentrations, about 3.5%
of the total test data. The other VBS classes showed similar proportions of "significantly negative”
concentrations: 4.2%, 5.6%, and 7.0% respectively for the siVOC, aVOC, and bVOC VBS classes (for
the anthropogenic VBS and siVOC VBS, which had positive biases, the tolerance was chosen to be
the negative absolute value of the bias). Since a bias correction would not make such concentrations
positive, they could be set to zero. However, these aren’t near-zero negative concentrations. In the
example in Figure 4.9, the minimum value is -0.58 ug m=3. Atrtificial reassignment of significantly
negative values removes material from the model systematically. Moreover, this would occur at least
once every operator splitting timestep, as tracers are compressed for advection, deposition, or other
processes. This recurrent behavior may compound on itself in an online setting. Additionally, negative
values for superspecies (before decompression) have potential to cause numerical problems when
passed to other processes.

The spatio-temporal variability of negative concentrations from this method could be analyzed. Some
information could already be gained from looking at the elements of W* and W, seeing which trac-
ers correspond to the most negative elements of W*, and to which superspecies that corresponds
to. Such interpretability is an advantage of the linear method. The spatio-temporal behavior of said
tracers could be explored on the domain and time period, and perhaps give insight into failure modes
of the NMF/pseudoinverse approach: under what conditions the parameterization should not be used.
Rather than further exploring the limitations of the NMF/pseudoinverse approach, we choose instead
to develop methods that allow for multiple superspecies while preventing negative values entirely. The
following chapter explores methods that restrict both the superspecies and the decompressed tracers
to their non-negative half spaces. The introduction of more physical knowledge into the machine learn-
ing approaches are explored, including mass conservation and phase-specific compression into purely
gas and purely aerosol species for improved online integration into LOTOS-EUROS.



Offline machine learning: Incorporating
physical constraints

This chapter extends the methods developed in the last chapter, exploring machine learning approaches
for physically consistent reduced order modeling of the tracers from the four volatility basis sets. An
emphasis is placed on creating a hybrid machine learning method that finds latent patterns in a large
amount of data while adhering to important physical properties, such as non-negative concentrations,
conservation of mass, and phase (in this application, condensed or gaseous).

5.1. Preventing Negative Concentrations

The previous chapter showed that using the pseudoinverse of the decompression matrix W when com-
pressing tracers for specific VBS classes could lead to negative concentrations for both superspecies
and the decompressed tracers. These negative values are non-negligible in magnitude, exceeding
the magnitude of the bias values for each VBS class about 1 in 20 times. This is a critical flaw in the
pseudoinverse/NMF approach, which otherwise showed promise in a) recreating total organic aerosol,
and b) reproducing distribution of the masses across volatility bins. The methods and perspectives
developed in the last chapter serve as a basis for developing the following modifications, that have
non-negativity built into them. One modification uses the same NMF algorithm with gradient descent
to find a positive valued compression matrix to replace the pseudoinverse W*. The second modifi-
cation involves connecting a series of matrix multiplications together, followed by addition of a scalar
and element-wise application of non-linear functions, chosen to output only non-negative values. This
structure is a neural network autoencoder. Autoencoders have shown promise in many fields, including
image compression, reduced order modeling in fluids, and a recent atmospheric chemistry modeling
application (Kelp et al., 2020).

5.1.1. Non-negative compression and decompression

Non-negative matrix factorization results in a superspecies-to-tracer mapping W, which can decom-
press the latent superspecies space H to the original tracer data V. A limitation of NMF for this appli-
cation is that the superspecies H are also found by gradient descent, and the standard NMF algorithm
does not give an optimized compression matrix for transformation from V to H. Online methods for
NMF do exist (Cao et al., 2007; Guan et al., 2012) that can find an optimal superspecies vector h for
each sequential data point v. Note that online in this context doesn’t mean coupling CTMs with meteo-
rological or climate models, but rather in a machine learning context, parameter optimization performed
as new training data comes in. However, with the ultimate goal of maximizing performance improve-
ment, it would be better to develop a fully trained method offline that doesn’t require online optimization.
For this reason, the Moore-Penrose left pseudoinverse approach was investigated in the last chapter,
with the finding that it caused a large number of significantly negative values for both the superspecies
concentration vector and decompressed tracer concentrations.

39
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Using a same approach as NMF, A positive compression matrix B can be found that best approximates

H=~BV (5.1)

Analogously to the relation of V, W, and H in equation 3.1. In this case, both V and H are given. While
V is the tracer data, H can be found in a prior step using a standard NMF approach. The full approach
on a high level then looks like

1. Given V, find H, W that minimizes V — WH
2. Given V, and using H from the previous step, find B that minimizes H — BV.

3. Use B to compress new observations v to a non-negative vector of superspecies h, and W to
decompress h to the original tracer space v .

Both the NMF/pseudoinverse and the non-negative compression approaches limit the superspecies
to a linear combination of the original tracers. This is not necessarily a weakness, as linear combina-
tions have several advantages, including commutativity and easy interpretation. However, nonlinear
methods such as a neural network autoencoder are also worth exploring in this application.

5.1.2. Neural network autoencoder

Unlike matrix factorization methods, a neural network autoencoder can represent its input layer by a
nonlinear manifold in a hidden layer. In this application the first half of an autoencoder creates super-
species from tracers using nonlinear transformations. The first half uses nonlinear transformations to
reconstruct the original tracers as closely as possible.

Analogously to the compression/decompression matrices, one autoencoder was designed for each
VBS class. Figure 5.1 illustrates the structure for the bVOC and aVOC VBS classes: an input layer is
fed to a 10-dimensional hidden layer, that is fed to a 3-dimensional hidden "superspecies” layer. The
superspecies layer is fed back to a 10-dimensional hidden layer that subsequently is fed to the output
layer in tracer space. In the case of aVOC and bVOC VBS classes, this tracer space is 12-dimensional;
for siSOA and POA the input/output layers are 16-dimensional and 18-dimensional, respectively. The
activation function of the first hidden layer is chosen to be hyperbolic tangent, to allow for nonlinearity
that is not piece-wise linear. The activation function of the superspecies layer is chosen to be a rectified
linear unit (ReLU). This choice was purposeful and acts as a non-negative filter, setting all negative
values resulting from linear combinations of the previous layer to zero. This constrains the output of
the superspecies layer to be non-negative. Unlike the logistic function, which also restricts its output
to positive real numbers between 0 and 1, the ReLU has no upper limit. The ReLU function is linear,
and in fact identity, for all nonzero input, not constraining superspecies values by an upper bound. The
10-dimensional layer after the superspecies layer has a hyperbolic tangent activation function. The
output from that layer is fed to the output layer, which has a ReLU activation function to constrain the
decompressed output to non-negative values in tracer space.

A canonical theme in machine learning is the bias-variance tradeoff when increasing model complexity.
ML models that are simple often show high bias to approximate the range of their target output. They
are not too sensitive to changes in their input, showing little variance. Models that are too complex for
their problem often show very high variance in their solution surface when their input has been shifted
slightly, for instance when the test data is slightly different from the training data. This is often a sign of
overfitting, when an overly complex model learns irrelevant features of the data at the cost of being a
good approximator of the surface of the underlying function that generated the original data.

There exist several ways to prevent overfitting in neural networks. One is using dropout layers, which
selectively turn off randomized nodes in the layers, reducing complexity. A dropout layer is applied
after every feed-forward layer, besides the 3-node superspecies layer. Validation data is also used to
assess whether the neural network is overfitting on the training data. The autoencoders are given 100
epochs to converge, with an early stopping criterion if the validation loss error does not improve after a
certain amount of iterations (10 iterations were chosen). These two strategies are used to prevent the
autoencoders from overfitting on the training data.
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Figure 5.1: Autoencoder architecture for the anthropogenic and biogenic VBS, compressing 12 tracers to 3 superspecies and
back again. The autoencoders for the other VBS classes have analogous architectures, differing only in the number of input and
output nodes: 18 for POA and 16 for siSOA. Figure generated using the tool from LeNail, 2020.

No automated hyperparameter tuning was conducted for the neural network approach, for several
reasons. One reason is that some hyperparameters were purposeful design choices, such as RelLU
activation functions for non-negativity and the choice of 3 nodes in the hidden middle layer for compar-
ison to the linear methods, where 3 latent features were chosen. The second is that it is not clear if a
more complex model than linear non-negative compression and decompression matrices is needed: if
it shows promise, hyperparameter tuning to find the most appropriate neural network model would help
decide on the best autoencoder configuration.

Without trying these methods, is not clear whether a linear or nonlinear compression technique is
most appropriate for the VBS tracers. A nonlinear method might be able to better handle the diverse
conditions found across the LOTOS-EUROS domain, while linear method is simpler to implement and
is easily interpretable. The next section compares the accuracy of the two approaches on winter test
data from February 25th through 28th.

5.1.3. Comparison of the linear and nonlinear method

Figure 5.2 shows the normalized bias of average TOA from Febraury 25th through 28th, compared to
the test data from LOTOS-EUROS. The autoencoder shows a negative bias for TOA in many parts of the
domain, whereas the non-negative linear compression method shows positive bias. The average TOA
bias for the autoencoder is -0.0346 ugm™=3, compared to 0.0657 ugm™3 for non-negative compression.
The autoencoder also showed somewhat lower RMSE values for TOA, 0.101 ug m~3 compared to
0.133 ug m=3. However, RMSE values for all individual VBS classes, which as an absolute metric
indicates error in the shape of the volatility distribution, is higher for the autoencoder than the linear
method. Moreover, the autoencoder showed higher RMSE for total organic mass (TOM), meaning its
compression and decompression did not conserve mass as well as the linear method. RMSE and bias
values for both approaches are summarized in Table 5.4 and 5.5 at the end of the chapter.
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Non-negative compression with 3 superspecies

Autoencoder with 3 superspecies
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(a) Non-negative compression/decompression (b) Autoencoder predictions

Figure 5.2: Normalized bias of the two non-negative compression techniques.

Since non-negative compression and decompression using the W from NMF was not outperformed by
a neural network model of much higher complexity, it can be concluded that a linear method is indeed
adequate for this problem. Design attempts were made to prevent overfitting of the more complex
autoencoders, including dropout layers and early stopping. The neural networks all reached the early
stopping criterion fairly early on, after fewer than 30 epochs. Future research, especially in a more com-
plex problem, may want to revisit the potential of autoencoders to find a superspecies representation.
More tests could also be run on the sensitivity of convergence of these models on parameter initial-
ization. However, for the VBS tracers, there is no clear benefit to using a much more complex model.
One advantage of the current linear compression/decompression method is that only two matrix-vector
multiplications are required to transform a data point of tracer values to a data point of superspecies
and back again. Another advantage of the linear method is that an entire latent space data point can be
scaled without changing relative amounts of decompressed tracers. This means that this method can
be augmented with correction factors, for example to make sure that the sum of superspecies is equal
to the sum of original tracers. The following section develops several ways to conserve properties, like
total concentration of tracers or total concentration of aerosol tracers.
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5.2. Mass conservation

The bias values from the previous sections show that there is potential for a small amount of mass
to be removed or introduced upon compression. This removed/introduced mass is nonphysical and
simply an artifact of the compression strategy. Systematic removal or addition of mass may become
problematic in the overall model, especially with a compression/decompression routine done once
or more every time step. Buildup or removal of mass has potential to create instability for longer-
term forecasting as shown in previous work (Keller & Evans, 2019; Kelp et al., 2018). The potential
instability of a machine learning method that recurrently adds or subtracts mass cannot be assessed
offline, and would only become apparent when doing recurrent predictions online in LOTOS-EUROS.
With the above problem anticipated, this section explores several strategies that conserve properties
such as total organic matter (TOM) and total organic aerosol (TOA), and aim to improve both physical
interpretability and online stability.

5.2.1. Strategy 1: Conserve total organic material (TOM)

In this section, total organic material (TOM) is used to only refer to the VBS-specific tracers which
are compressed, and doesn’t include other gas-phase organic tracers, even those that are precursors
to SOA. With this definition in mind, total organic material (TOM) for VBS is simply the sum of all
tracers for each VBS. This quantity can be preserved with some rescaling of the superspecies vector
h, when projecting the tracer space onto the latent space via W*, and rescaling of the tracers upon
decompression. After creating h using W, h can be scaled by a scaling factor for compression, s.,m,
given by the ratio of the total mass of the tracers and the total mass of the compressed superspecies

ISE
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where m is the dimensionality of the tracer space and r the dimensinoality of the superspecies space.
Scaling of h by s, ensures that the sum of concentrations in the latent space is equal to the sum of
concentrations in the tracer space. A similar strategy can be in decompression to the tracer space, with
the decompressed set of tracers v,... The scaling factor for v, let’s call it s;.., can be calculated by
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The use of these two scaling factors adds minimal computations, and allows communication of physi-
cally relevant information without adding additional tracers.

5.2.2. Strategy 2: Conserve total organic aerosol (TOA)

In assessing LOTOS-EUROS, often measurements of surface TOA are taken as a ground truth. If TOA
is the most important metric, perhaps its conservation should be prioritized. Adding another tracer to
keep track of TOA would limit the effectiveness of compression, because it would add another variable.
However, the approach from strategy 1 can be augmented to scale h by the sum of all the aerosol trac-
ers. This adds information without adding another variable. The scaling factor for compression, s.om
is then

Scom = (5.4)
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(5.5)

where T is the set of tracer indices corresponding to aerosol tracers. If s;.. is applied to the entire
VBS, then the relative amount of aerosol to gas is maintained. Though TOA will be conserved in this
approach, it may not conserve total mass of the VBS tracers, and has potential to add or remove
material in every compression and decompression step.

5.2.3. Strategy 3: Composition matrices

This idea was inspired by the methods used to generate Figure 4.8 and the corresponding discussion
of physical interpretability. The strategy scales each column of W by its sum. The physical intuition
here is that W becomes a matrix of composition. For a given column of W corresponding to a given
superspecies, each element represents the percentage of a corresponding tracer found in the super-
species.

Interpreting the columns of this scaled W as a sulfficiently representative set of superspecies, a com-
pression matrix B can be created from normalizing the columns of W7 analogously to the column
normalization of W, so that 100% of each tracer is distributed across the superspecies — no more, and
no less.

5.2.4. Comparison of mass-conserving strategies

Strategy 1 is not error free, but shows near-zero bias for every VBS in Table 5.2. This is because
each set of tracers and superspecies conserve mass. Despite not introducing mass to the system,
this approach still overestimates TOA, which is the only standout in bias in the Strategy 1 column.
Oppositely, strategy 2 only performs well for TOA, showing zero bias. Though TOA is conserved, mass
is also removed from the system as shown by the negative bias for TOM. Strategy 3 performs in a
similar manner to strategy 1, though shows higher RMSE for all VBS. It does conserve overall mass of
each volatility basis set to machine precision.

Table 5.1: RMSE of every VBS, TOA and TOM for several mass conservation strategies. All values reported in ug m=3.

\ Non-negative compression Strategy 1  Strategy 2  Strategy 3
aVOC VBS | 4.4 x 107 8.2x10"* 0.0056 0.0017
bVOC VBS | 0.0026 0.0043 0.0427 0.0106
POA 0.0109 0.0228 0.0340 0.0348
siSOA 0.0050 0.0086 0.0108 0.0132
TOA 0.0173 0.123 45x107° 0.220
TOM 0.0547 1.6 x 1077 0.537 3.9 x 10716

Table 5.2: Bias of every VBS, TOA and TOM for several mass conservation strategies. All values reported in ug m=3.

\ Non-negative compression Strategy 1 Strategy 2 Strategy 3
aVOC VBS | 2.6 x 1075 5.7 x 10720 -0.0020 -3.5x1071°
bVOC VBS | —1.6 x 107 -1.2x107'® -0.0131 —6.0 x 10716
POA 42 x107% -1.9x 1071  -0.0075 1.7 x 10”17
siSOA -9.9 x 107° -1.6 x107*° 0.0023 -1.2x 10718
TOA 0.0015 0.038 -8.2x10712 0.117
TOM -0.0076 —-3.4x10710 _0.352 —-3.0x 10718
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Figure 5.3 shows the reconstruction error of the POA VBS when using the 3 different mass conserving
strategies. The sum of legend entries for Strategies 1 and 3 are equal to the sum of legend entries
from the LOTOS-EUROS distributions, conserving TOM. Strategy 2, on the other hand, reproduces the
Co 4 (specific total aerosol of the VBS class) to machine precision upon compression, and thus TOA
when summing Cy4 of all the VBS classes. Strategy 1 does not conserve TOA. However, this is not a
necessary compromise. The following section designs a method that conserves both TOM and TOA,
further refining the mass conservation techniques by adding additional information about the phase of
the superspecies.
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Figure 5.3: Comparison of the volatility basis set distribution for POA near (a) Cabauw and (b) Mace Head on February 26th,
which have very different conditions and magnitudes of POA. The top row in green shows the distributions as modeled by
LOTOS-EUROS. The second row in maroon shows the distributions after the non-negative compression/decompression outlined
in Strategy 1, using 3 superspecies to represent aerosol and gas tracers. The third row in orange shows the decompressed
distribution after the TOA conservation, strategy 2. The bottom row in red shows the compressed/decompressed distribution
using the composition matrices constructed using strategy 3.
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5.3. Phase-specific Compression

An assumption made so far is that a superspecies can be a mixture of tracers from both gas and aerosol
phases. This is a result of superspecies being created by linear (NMF compression and decompres-
sion matrices) or non-linear (NN autoencoder) combinations of tracers from both the gas and aerosol
phases. However, some processes in LOTOS-EUROS, like dry deposition, handle gases and aerosols
differently. This limits the usefulness of mixed-phase superspecies, as they either need to be assumed
as only being in one phase for these processes, or not be used at all.

An alternative approach is to instead repeat methods explored above to gas tracers and aerosol tracers
separately. This has additional benefits. One immediate result is that either of the TOM-conserving
methods explored in the previous section can be used to conserve both TOA and TOM. It is also
expected that this will generalize to dilute conditions with very low TOA, by decoupling aerosol and
gas relative compositions in the superspecies. The linear mixed phase superspecies explored so far
have fixed relative values of aerosol to gas tracers, and their shapes form a basis for the reconstructed
distribution. High gas concentrations could increase the concentration of superspecies, which would
then redistribute that mass across the other tracers upon decompression. If there are regions in the
domain with high siVOC content but little OA, that will be reflected in the concentrations of the pure
aerosol/gas superspecies.

Adding another cross-section, phase, splits the tracers of each VBS class in half based on their phase.
Using 3 superspecies per class per phase thus halves the compression factor; in the case of the avVOC
and bVOC classes, this would be a factor of 2, e.g. compressing 6 bSOA tracers to 3 superspecies.
This compression factor is about as beneficial as the compression factor technique proposed in section
2.7. In that case, the zero-order compression technique might be a better option, as it theorized to be
non-lossy compression: it takes advantage of the partitioning equation to decompress total mass of
each bin into equilibrium partitions, as long as an additional superspecies tracks TOA. Fewer than 3
superspecies per class should be used for a desirable compression factor, but as demonstrated in
section 4.4, 1 superspecies per class is also extremely limited. A single superspecies is only 1 degree
of freedom as dictated by its concentration. This fixes the distribution of decompressed tracers to a
single shape and cannot capture any variability in volatility distribution. For this reason, 2 superspecies
finds a middle ground between compression factor and flexibility. The total reduced dimensionality is
then 2 superspecies for each of the 2 phases, for each of the 4 VBS classes leading to 16 superspecies
for 58 tracers, a compression factor of approximately 3.6.

Figure 5.4 shows the reconstruction as in Figure 5.3, but with the 2-superspecies, phase-specific ap-
proach. The legends showing C,, (total POA in this case) and C,,; demonstrate that mass is conserved
completely within phase. This contrasts with the mixed phase approach used in Figure 5.3, which was
capable of either conserving TOM (mass conserving strategies 1 and 3) or conserving TOA (strategy
2). With phase-specific superspecies, this compromise is no longer necessary, and strategy 1 can be
used for each VBS class and phase to conserve TOA and TOM.

The compression/decompression matrices in phase-specific compression become smaller. For exam-
ple, the bSOA decompression matrix W is 6 rows and 2 columns, compared to the bVOC VBS W in
the previous section of 12 rows and 3 columns. Adding the phase constraint results in many simple
models, which have disadvantages and advantages. Two disadvantages is that each model has fewer
degrees of freedom, and the overall system has a lower compression factor of 3.6, compared to 4.8
when using 3 mixed-phase superspecies. However there are also advantages. One advantage is di-
rectly related to compression extent, in that the single-phase superspecies approach has more overall
degrees of freedom (16) than the approach with mixed-phase superspecies (12). Another benefit is
that small matrices allow for easy scanning and interpretation of the superspecies components. TOA
and TOM can be conserved simultaneously, using the same scaling factor approach from strategy 1.
Finally, this approach was designed to create superspecies that are compatible with phase-specific
processes, like dry deposition. This opens a door for future use of superspecies by more operators in
LOTOS-EUROS than just advection.
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Figure 5.4: Comparison of the volatility basis set distribution for POA near (a) Cabauw and (b) Mace Head on February 26.
The top row in green shows the distributions as modeled by LOTOS-EUROS. The middle row in maroon shows the distributions
after the non-negative compression/decompression outlined in Strategy 1, using 2 superspecies to represent aerosol tracers and
2 to represent gas tracers. The bottom row in red shows the distribution after compression/decompression using composition

matrices.

Phase-specific superspecies are able reproduce the mass distribution over volatility bins for Cabauw
and Mace Head, stations with very different conditions, as shown in Figure 5.4. An absolute metric,
RMSE, can give insight in their ability to reproduce mass distribution over volatility bins across the whole
domain. The following section compares metrics for the phase-specific, 2 superspecies approach using
mass conserving strategy 1, with several other approaches that were developed and tested so far.
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5.4. Comparison of Selected Approaches

Tables 5.3 and 5.4 provide an overview of some methods explored so far: the NMF/Pseudoinverse ap-
proach from the previous chapter, the non-negative compression and autoencoder methods compared
in section 5.1.3. Finally, the phase-specific approach using mass conserving strategy 1 developed in
the last section is shown.

Table 5.3: Evaluation RMSE of selected approaches. All values reported in ug m=3.

3 feature NMF/ 3 feature non- 3 feature NN 2 feature, single phase
pseudoinverse negative compression autoencoder non-negative compression

aVOC VBS | 4.4 x107* 0.0010 0.0021 0.0011

bVOC VBS | 0.0026 0.0078 0.0181 0.0042

POA 0.0109 0.0285 0.0306 0.0142

siSOA 0.0050 0.0086 0.0094 0.0057

TOA 0.0173 0.133 0.101 6.9 x 10713

TOM 0.0547 0.240 0.328 1.0 x 10712

Table 5.4: Evaluation bias of selected approaches. All values reported in ug m=3.

3 feature NMF/ 3 feature non- 3 feature NN 2 feature, single phase
pseudoinverse negative compression autoencoder non-negative compression

aVOC VBS | 2.6 x 1075 1.2 x107* -39x107* 28x1072°

bVOC VBS | —1.6 x 107* 3.8x107* -0.0051 —1.6 x 10716

POA —4.2x107* 0.0050 -0.0075 -8.8x 10718

siSOA -9.9x107° 7.7 x 1074 -0.0022 1.2x1071°

TOA 0.0015 0.0657 -0.0346 -1.3x 10715

TOM -0.00763 0.108 -0.237 —-2.1x10715

It can be seen that phase-specific compression using strategy 1 is able to conserve TOM and TOA,
as well as total mass in each individual VBS class and each phase, to machine precision upon de-
compression. However, it also shows higher accuracy of RMSE for all the VBS classes compared to
both the (not conservative) non-negative compression and neural network autoencoder developed at
the beginning of this chapter. As RMSE values are absolute metrics, they are indicative of distribution
error, showing that phase-specific mass conserving compression is able to reproduce the distributions
most accurately.

Studying reconstruction accuracy offline is not able to fully capture how useful these methods will be
online in LOTOS-EUROS. The machine learning methods take the VBS tracers away from equilibrium
— differences in total mass for each bin, as well as TOA, will ultimately cause different partitioning when
the VBS module is called, changing TOA. It must be assessed if this machine learning method can
remain stable and accurate when this compression is done recurrently every operator splitting timestep.
Chapter 6 implements the phase-specific, mass conserving superspecies into LOTOS-EUROS.

So far, much effort has been spent in developing a machine learning method that does not require
online optimization. However, another question is how robust this method is to different conditions.
If it needs to be changed/updated to handle different conditions, for example in different parts of the
year, or for different areas, how often should this be done? The phase-specific superspecies are tested
for summer conditions to see how well they can represent very different TOA composition and spatial
patterns.



Online Implementation

Phase-specific and VBS class-specific matrices generated by using non-negative compression were
chosen to be implemented in LOTOS-EUROS using a scaling factor to conserve mass on compression
and decompression (strategy 1). These were demonstrated in the previous chapter to conserve mass
within each volatility class and phase (aerosol or gas). This method reproduced the mass distribution
across volatility bins better than other methods, including the other mass balancing approach, strategy
3, of creating composition matrices from W. Given that non-negative, mass-conserving, phase-specific
linear compression is the most appropriate approach for transforming the VBS tracers into superspecies
and back again, this chapter does not continue comparing machine learning methods. Instead the focus
is on investigating how the phase-specific, mass conserving method performs online in LOTOS-EUROS
when used to accelerate advection calculations.

6.1. Implementing superspecies into LOTOS-EUROS

The unsupervised machine learning approach developed in previous chapters was optimized (trained)
and evaluated (tested) on model output from LOTOS-EUROS. The ultimate goal of the superspecies
parameterization is use online in LOTOS-EUROS to reduce model dimensionality of several operators.
This is a research challenge, but also a development challenge: integration of superspecies into the
LOTOS-EUROS source code requires restructuring of various elements. This section very briefly sum-
marizes a) the scheme to use superspecies for advection and b) some other adjustments required to
make the minimal ML superspecies extension of LOTOS-EUROS.

To advect superspecies, the scheme in the LOTOS-EUROS driver program was adjusted. Initialization,
compression, and decompression subroutines were added to the VBS module. These subroutines are
then called in the driver program:

1. The initialization subroutine to load offline-optimized compression and decompression matrices
is called during operator initialization early in the LOTOS-EURQOS driver program, before the time
loop starts.

2. Within the time loop, the compression subroutine is called right before advection to transform VBS
tracers into superspecies, overwriting the current superspecies values. The advection operator
then acts on these superspecies instead of the VBS tracers.

3. Also within the time loop, directly after advection, the decompression routine is called to transform
superspecies into VBS tracers, overwriting the VBS tracer values.

Many other adjustments need to be made in order to make this work, only several important ones are
mentioned here. First, the set of 16 superspecies were added to the LOTOS-EUROS tracer list (su-
perspecies tracers to be added to ultimately reduce total tracers in advection). The superspecies were
assigned similar tracer groups to their VBS counterparts: vbs, and soa, poa, cg (condensable gas), and
fine mode (aerosol) when applicable. They were additionally designated as a new group, superspecies.
With those group definitions, the for loop over tracers in the advection operator could be adjusted to
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skip all tracers belonging to the vbs group that did not also belong to the superspecies group. It should
be noted that some other operators have analogous loops over all tracers (though sometimes the struc-
ture is different), like vertical diffusion and dry deposition, but no adjustments were made to them. For
that reason, these processes in fact had to deal with both VBS tracers and superspecies, performing
meaningless operations on superspecies that would be overwritten in the compression step, and slow-
ing down more than if there were only VBS tracers. There is a nontrivial amount of development work
required to adjust all operators and processes to disregard certain groups of tracers. Future code opti-
mization will have to make decisions on which processes handle superspecies, and which processes
handle the VBS tracers, at minimum the emissions operator and the chemistry operator (which includes
the VBS module).

The superspecies extension of LOTOS-EUROS was used to perform various experiments comparing
"superspecies runs” to a control run with the VBS tracers. The rest of this chapter investigates the be-
havior of VBS tracers when their superspecies representation is advected. Main focuses are accuracy
and limitations of using the superspecies for advection under a variety of conditions, as well as the
speedup benefit resulting from reduced order modeling.

Specific questions explored are
* Is this method stable when running recurrently?
» How does advecting superspecies perform under conditions it hasn’t been optimized for?

» Does this parameterization yield a speed-up in LOTOS-EUROS runs?

6.2. Accuracy of online implementation in winter

After offline training of the compression and decompression matrices on data from February 20th
through 24th, the superspecies parameterization was implemented into LOTOS-EUROS, and used
in the advection operator for a run from February 15th through 28th. In the offline training regime, the
days of February 15th through 19th were used for model spin up time, data from February 20th through
24th used for training, and data from February 25th through 28th used for model evaluation. In an
online setting, it can be argued that even small errors caused by advecting superspecies changes the
VBS tracer concentrations so that the time period February 20th through 24th becomes new data, and
should not be regarded as "previously seen” data that the superspecies parameterization was trained
on. That being said, meteorological conditions and other processes independent of the VBS and su-
perspecies parameterization are identical to that of the offline training data. To maximize comparability,
the superspecies run and control run are still evaluated on the same time period as the offline methods
in chapters 4 and 5, February 25th through 28th, even though the superspecies run has the chance
to accumulate error since the begin of the simulation. As in previous chapters, model output from
February 15th through 19th is regarded as model spin-up time and disregarded.

The ML parameterization remains stable throughout the entire superspecies run, showing low error
even after 14 days. Figure 6.1 shows average TOA of the control run and the superspecies run, from
February 25 through February 28. This test time period is well into the model run, 10 days after the
begin of the simulation. During this time period and over the entire domain, average bias of TOA of
the superspecies run compared to the control run is small and slightly negative, -0.0095 pg m™3. Small
average bias is not in itself indicative of low error, as positive and negative bias cancellations throughout
the domain and time period are possible. RMSE, an absolute metric, was larger at 0.217 ug m=3.
However, relatively low error metrics show that the recurrent use of a machine learning technique was
stable, in any case not causing exponential error accumulation even after 14 days: more than twice the
length of the period used for training data. Superspecies advection on higher vertical levels that they
were not optimized for did not appear to cause problems in surface data, even after allowing enough
time for mixing. At higher vertical levels, conditions tend to be more dilute, and different temperature
and pressure regimes impact partitioning.

There are a few potential reasons for the ease of generalization to higher vertical levels. One is that
concentrations are highest near the surface anyway. Another is the large amount of dilute conditions
in the surface training data on the MACC domain. The use of scaling factors to conserve total aerosol
and gas upon compression and decompression might be important for this successful generalization,
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preventing material from being introduced unrealistically in these dilute conditions. More experiments
involving training on other layers, as well as not enforcing mass conservation, would be necessary
before drawing conclusions about whether only surface data is indeed sufficient training data, or if
more vertical levels are needed in the training set. Preliminary experiments using a different vertical
level scheme suggest that training data should match the vertical level scheme chosen, but future
experiments will have to investigate this in more detail before conclusions can be made. The following
section explores how the superspecies, optimized on training data from winter conditions, perform in a
summer run.

LE Winter Control Run, February 25-28 2018 LE Winter Superspecies Run, February 25-28 2018
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Figure 6.1: Average TOA for February 25th through 28th using superspecies matrices optimized offline on winter conditions from
February 20th through 24th.
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6.3. Generalizing to summer conditions

Advecting superspecies was shown to run stably in winter, in a time period different from the time period
the machine learning approach was trained on. The test time period from February 25th through 28th
was directly after the training test period February 20 through 24th, and had relatively similar conditions
to what the superspecies transformation matrices were optimized for.

A run in summer from July 20th through August 1st was chosen to assess the robustness of this method
to very different conditions. Summer conditions differ from winter conditions for several reasons. One,
biogenic precursor gases make a larger contribution to formation of secondary organic aerosol in the
summer, partially due to emissions from forests. Two, average temperatures in Europe are higher,
affecting the partitioning of the VBS by changing the saturation pressure values C* over volatility bins.
Three, due to increased heat flux there is more vertical mixing, increasing exchange of material between
the surface and higher altitudes, which tend to be more dilute than the surface concentrations (which
the superspecies ML approach was trained on). The different conditions lead to different modeled
compositions of total organic aerosol (TOA). Table 6.1 shows the modeled average composition of
TOA for February 25th through 28th with TOA composition for July 29th through August 1st.

OA Type February July

aSOA 0.8% 9.5%
bSOA 4.5% 34.8%
POA 61.2% 12.5%

siSOA 33.5% 43.2%

Table 6.1: Average TOA composition for the LOTOS-EUROS runs for February 25-28 and July 29-August 1.

Though siSOA is on average the largest component of TOA in the run from July 29th through August
1st this is not the full picture, and underscores the importance of bSOA under some conditions. The
maximum concentration of surface siSOA over the entire domain over the entire period from July 29th
through August 1st was 15.0 ug m=3, and 99th percentile 1.3 ug m=3 compared to the maximum bSOA
concentration of 100.3 ugm™=3 and 99th percentile 9.4 ugm=3. This indicates that although siSOA may
dominate in background conditions and when TOA is low, bSOA is the dominant component of TOA in
other conditions.

Figure 6.2 shows average surface TOA, as predicted by the control run (Figure 6.2a), the run with su-
perspecies advected (Figure 6.2b), and the bias and relative bias of the superspecies run with regards
to the control (Figures 6.2c and 6.2d). When compared to Figure 6.1, it is clear that the spatial pattern
of TOA is very different in the summer than the winter. Primary organic emissions (POA) are often
the largest contributor to winter TOA, and for this time period TOA is most concentrated the Po Valley,
Czechia, and Poland. The winter superspecies run is able to recreate these large regions of high TOA,
as well as other smaller but distinct pockets of TOA, such as Madrid (the most populous city in Spain)
and northwest Portugal, a region with a lot of industrial activity. In contrast, summer TOA is concen-
trated around southern Germany, Switzerland and Austria. Many places in this region are forested, and
contribute to TOA via biogenic precursors of SOA. Biogenic SOA is a significant contributor to TOA in
summer conditions, while bSOA is only a minor contributor to the winter TOA. The superspecies run
shown in Figure 6.2b is able to capture these spatial patterns, but with a strong bias. For this reason,
other areas with high biogenic emissions emerge in Figure 6.2b, such as Slovenia, southern Sweden,
and Finland Proper, as well as northwestern Russia, which is more than 50% forested. These highly
forested areas are modeled in LOTOS-EUROS via land use maps, with corresponding emissions the
type of forest (Manders-Groot et al., 2021).
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Figure 6.2: Average TOA on the MACC domain for July 29th through August 1st using superspecies matrices that were optimized
for winter conditions.

Despite reproducing the general spatial pattern of TOA in the domain, the superspecies, optimized for
winter conditions and evaluated on summer conditions, show a large positive bias over the areas with
high average TOA, especially heavily forested regions. RMSE for TOA over the whole domain and time
period is 2.12 ug m~3, with an average bias of 0.321 ug m~3. RMSE of the tracers from the biogenic
VBS for all times and gridcells is 0.66 pgm™3, an order of magnitude higher than tracers from the other
VBS classes: the class of tracers with the next highest RMSE value is the siSOA VBS class, at 0.062
ug m~3. The average bSOA bias (neglecting gaseous tracers) is 0.068 ug m~3, 3 orders of magnitude
smaller than the maximum bSOA bias of 82.9 ug m=3. Overestimation of bSOA in the superspecies
run under some conditions is likely due to errors in decompression, artificially shifting mass to lower
volatility bins. However, the large large positive bias in parts of the domain (Figures 6.2b and 6.2c)
indicate that this tendency to overestimate bSOA only happens in certain conditions: namely, forested
regions. The following section analyzes one gridcell in a forested region, and finds additional temporal
patterns where bSOA is significantly overestimated, leading to overestimation of TOA.
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6.4. Case study: Summer night in Schonbuch

The superspecies optimized on winter conditions show high bias in the night-time summer conditions
over forests. This section is a case study to illustrate the limitations of the winter-optimized superspecies
in such conditions. The LOTOS-EUROS gridcell containing Schénbuch Natural Reserve in southwest
Germany, which is 156 square kilometers and 85% forested, was chosen. Figure 6.3 shows temporal
variation of TOA from July 29th through August 1st. This overestimation is systematic, with the night
of July 30th to July 31st a particularly high TOA event showing the highest bias.

Schdénbuch with Winter Superspecies, July 29 - August 1
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Figure 6.3: Temporal variation of TOA over Schénbuch. The maroon points of TOA as predicted with the online run using
winter-optimized superspecies are compared to the green line of TOA as modeled by the LE control run.

Given that TOA is overestimated in the summer run when using winter-optimized superspecies, and
the main contributor to TOA in the summertime is bSOA, it is good to compare the biogenic VBS
distributions of the control run and the superspecies run. An episode of overnight high bSOA between
July 30th and July 31st is shown in Figure 6.4. This night showed the highest overestimation of bSOA,
Co4, Over the entire summer test period. Note that C,, is used to refer to total concentration over
all bins within the VBS class, in this case bSOA, whereas TOA is used for the total organic aerosol
concentration over all VBS classes.

Figure 6.4a shows only a slight bias in Cy4 at 20:00 on July 30th. In this nightly episode, Cy, begins
increasing at 21:00 in both the superspecies run and the control run, but at a faster rate in the su-
perspecies run, culminating at 05:00 July 31st in Figure 6.4b and overestimating total bSOA with a
factor between 2 and 2.5 times that of the control. The superspecies run bSOA concentration is 32.9
ug m=3, 99% of total TOA for the superspecies at that gridcell and time. The control run concentration
of bSOA is 14.1 ug m™3, about 95% of TOA. By 09:00, Figure 6.4c shows that both runs return to total
bSOA of less than 3.5 ug m~3. This night episode of high bSOA contains the largest overpredictions
for that particular gridcell in the whole time period. However, it is illustrative of a failure mode of the
winter-optimized superspecies to capture the volatility distribution and total concentration (Cy4 in the
figures) of bSOA, and ultimately TOA due to the importance of bSOA contributions in this example. The
spatial patterns and temporal patterns of the superspecies run compared to the control run show that
the superspecies are limited in their ability to model conditions over forested areas on summer nights.
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Figure 6.4: Case study of a high night-time bSOA event over a forest in southern Germany. The superspecies run captured the
temporal variability in terms of magnitudes, but overpredicted total bSOA and mass in lower volatility bins.
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6.5. Superspecies optimized on summer conditions

6.5.1. Summer-optimized superspecies in summer runs

Given that winter-optimized superspecies showed limitations in capturing high bSOA events over forested
areas, a followup question is: can superspecies optimized on summer conditions and implemented on-
line reproduce high bSOA conditions from the LOTOS-EUROS control run with higher accuracy?

The mass balancing strategies 1 and 3 from the previous chapter (sections 5.2.1 and 5.2.3) were
repeated to get compression and decompression matrices, using data from July 23rd through 28th,
2018. The reconstruction of the VBS sets using these matrices was assessed using test data from July
29th through August 1st. As both strategies conserve mass within class and phase upon compression,
average bias for each reconstructed volatility basis set was near zero. However, online error arises
from inaccurate reconstruction of the mass distribution across volatility bins. An absolute metric like
RMSE can capture error in the reconstructed distribution. Using strategy 1, RMSE for the biogenic
VBS tracers after decompression was 0.099 ug m™3, an order of magnitude higher than that of the
other VBS classes. Using strategy 3, RMSE for the biogenic VBS tracers was 0.307 ug m™3, also an
order of magnitude higher than RMSE of other VBS classes using the same approach.

The matrices from strategy 1 were then used in online runs to generate superspecies to be advected.
The same winter and summer periods from sections 6.2 and 6.3 were respectively used, with the only
difference being that the compression and decompression matrices have been optimized on summer
conditions.
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Figure 6.5: Average TOA on the MACC domain for July 29th through August 1st using superspecies matrices that were optimized
for summer conditions.

Figure 6.5 shows that using summer-optimized superspecies can reduce overall bias across the do-
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main. Interestingly, bSOA (neglecting the gaseous tracers) demonstrates a slightly negative average
bias over the domain and time period of -0.023 ug m™3. However, peaks of high TOA bias up to a
maximum of around 10 ug m~3 can be seen in some parts of the domain. These pockets of TOA
overestimation occur in the same conditions noted in the previous section, over highly forested areas.
For example, some of the highest positive bias is shown in Slovenia, where over half of the land area
is forested. Quantitatively, the superspecies optimized on summer conditions result in more accurate
runs. The RMSE over the whole domain of time-averaged average TOA was 0.98 ug m~3 when us-
ing summer-optimized superspecies, reduced by over a factor of 2 when compared to the 2.12 ugm=3
when using winter-optimized superspecies. RMSE of the tracers from the biogenic VBS for all times and
gridcells is also reduced by a factor of 2, at 0.32 ug m~2 compared to 0.66 ug m~3. However, as in the
run using winter-optimized superspecies, the biogenic VBS tracers show significantly higher error than
the tracers of the other VBS classes, with the siSOA VBS class having the next highest RMSE value at
0.050 ug m=3. The temporal pattern of nightly TOA overestimation is diminished as can be seen when
comparing Figure 6.6 to 6.3, though still shows a strong overestimation on the night of August 30th to
31st. However, this is the only incidence of significant overestimation from February 20th-28th in that
gridcell, on a night of particularly high TOA, whereas the winter-optimized superspecies run systemat-
ically showed nightly overestimations. The results of this case study indicate that summer-optimized
superspecies are better suited in handling night-time conditions over forests in the the summer. More
generally, seasonal-specific superspecies might result in higher accuracy.
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Figure 6.6: Temporal variation of TOA over Schénbuch. The maroon points of TOA as predicted with the online run using
summer-optimized superspecies are compared to the green line of TOA as modeled by the LE control run.

6.5.2. Summer-optimized superspecies in winter runs

The spatial patterns of time-averaged TOA in Figure 6.5 show that summer-optimized superspecies
still result in high average TOA bias in forested areas in the summer. However, summer-optimized
superspecies can be used stably and with little error in winter runs. In the test period of February 25th
through 28th, TOA from the superspecies run (Figure 6.7b) shows the same spatial pattern as that of
the control run (Figure 6.7a). Quantitatively, there is little average bias (Figure 6.7c, with a maximum
of around 0.6 ug m~3 average TOA bias. There is only high relative bias as in areas with extremely
low (near zero) concentrations, as can be seen when comparing the relative bias in Figure 6.7d with
the the control run or the superspecies run. RMSE of TOA over the whole domain and time period
is 0.15 ug m=3. The siSOA VBS tracers show the highest RMSE of 0.040 ug m™3. The tracers with
the next highest error are the POA VBS tracers, with an RMSE of 0.024 ug m=3. The biogenic VBS
tracers show a much smaller error, but are a significantly smaller contributor to TOA during wintertime
conditions, as seen in Table 6.1.
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LE Winter Control Run, February 25-28 2018 LE February Run with Summer Superspecies, February 25-28 2018
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Figure 6.7: Average TOA for February 25th through 28th using superspecies matrices optimized on summer conditions.

Winter-optimized superspecies perform well in winter conditions, but generalize poorly to summer con-
ditions, whereas summer-optimized superspecies generalize well to winter conditions while performing
significantly better than winter-optimized super species in summer. This asymmetric inability to gen-
eralize to other seasonal conditions encourages use of summer-optimized superspecies if a choice
has to be made about a general year long superspecies approach, rather than season-specific super-
species. The underlying cause of this asymmetry could be that winter conditions are governed by a
simpler model: POA is the main contributor to winter TOA. Primary organic emissions are of a con-
stant shape, as introduced in section 2.5.2, and ageing of the primary VBS gas phase tracers only
removes material from the VBS rather than shifting it to bins within the VBS. This contrasts with the
biogenic VBS, whose yields are dependent on concentration of NOX, linearly interpolated between two
extremes of high and low NOx. Moreover, POA emissions in LOTOS-EUROS have a prescribed shape
in emissions year round, though amount may vary. Primary VBS superspecies optimized on summer
conditions are therefore optimized to capture the same emissions effects as in winter.
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6.5.3. Biogenic SOA in the summer

Online runs, performing the compression-advection-decompression step recurrently multiple times per
hour, for several weeks, are stable and fairly accurate for modeling winter conditions. This approach for
winter runs is robust to the conditions the superspecies (specifically the compression and decompres-
sion matrices for each VBS class) were trained on. Accuracy does not change much if the compres-
sion/decompression matrices are optimized for summer conditions and ran for the winter. However,
this method is less accurate for summer conditions. The error for summer conditions is systematic, with
the highest overestimation occuring over forested areas at night. Superspecies optimized for summer
conditions can reduce the spatial pattern of bias over forests, but cannot remove it. For a case study
over a southern Germany forest, optimizing superspecies on summer data removed the temporal pat-
tern of overnight bias when implemented online, for the entire period except one night with a high TOA
event.

In the summer runs, tracers from the biogenic VBS showed the highest error, which is in line with
the spatial patterns of highest error in TOA occuring over forests. Given the relative ease of super-
species optimized on either winter or summer conditions to model winter conditions accurately, it can
be concluded that the bSOA is the hardest OA type to model using the superspecies for the test periods.
However, it can not yet be concluded exactly why. One underlying reason could be that the bVOC VBS
has more complex chemistry than siSOA and POA, resulting in more variation in the mass distribution
across volatility bins than 4 superspecies (2 aerosol and 2 gas superspecies) can capture. Gaseous
tracers in the POA VBS react only with hydroxyl radical to form siSOA VBS tracers, and gaseous tracers
in the siSOA VBS react to form material in lower volatility siSOA bins. The biogenic gaseous precursors
have more complex chemistry, including dependence on NO for the branching ratio that determines
the yields of each precursor onto the top 4 volatility bins. However, there are effectively only 4 bins (8
tracers) in the biogenic VBS, whereas the siSOA and POA basis sets have higher dimensionality: 8
and 9 bins (16 and 18 tracers) respectively. The anthropogenic VBS also has similar chemistry of its
gaseous precursors. Though the aSOA contribution to TOA is usually small, its normalized bias can
be compared with that of bSOA. The normalized bias of aSOA is in fact larger in magnitude than that
of bSOA: -0.46 to -0.21. This might indicate that if aSOA was a more significant contributor to TOA
in the time periods studied, it might contribute detrimentally to accuracy. However, the negative bias
values for bSOA contrast with the spatial and temporal patterns of high bSOA overestimation under
some conditions. This indicates that the bSOA overestimation using superspecies is specific to cer-
tain conditions, and that domain-wide and time period error metrics fail to capture this phenomenon.
Future experiments will have further explore bSOA overestimation with the superspecies under these
conditions in order to understand the underlying causes. This might provide general insight into the lim-
itations of the superspecies approach, and when a different approach (like the zero-order compression
proposed in section 2.7.2) might be more appropriate.

Despite showing high bias, the superspecies approach did not accumulate error exponentially, staying
in the realm of realistic concentrations. The machine learning step remains stable even after being run
independently from the control run for 14 days (July 19th through August 1st), about 288 hours. Given
that the compression/advection/decompression step was done around 6 times per hour, this is after
more than 2000 sequential compression/decompression steps (including the matrix multiplications for
aerosol and gas vectors as one step) for that grid cell alone. However, grid cells influence each other
via transport between grid cells, via vertical diffusion and advection. Over all grid cells for 12 days,
dividing up the longitude by 100 gridpoints, and latitude by 140, with 5 vertical layers, the compres-
sion/decompression step is done over 140 million times on the biogenic VBS alone, without leading to
runaway error.
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6.6. Speedup on the MACC domain

The advection operator has an outer for loop over all tracers that are transported. Advecting super-
species that represent combinations of tracers reduces the overall amount of variables in the outer
for loop. With the superspecies approach, SOA modeling requires 16 superspecies (two gas and two
aerosol superspecies for each of the four VBS classes) rather than the 58 VBS tracers that would be
advected.

Timing output files are contained in Appendix A, and summarized in the following sections. Wall times
for various processes and subprocesses are reported in seconds for consistency with the .prf files in
the appendix, though hours are also given to aid in interpretation. Relative timing factors are also given
in the following discussion.

The winter simulation on the MACC domain used in the previous analysis ran for 14 days, from midnight
on February 15th through February 28th 2018, ending on March 1st, 2018. The first 5 days were used
as model spin-up, the next 5 for training the ML approach, and the last 4 for evaluating its accuracy.

The total time taken was 40140 seconds, of which 99.7% was spent in the time loop: 40031 seconds,
just over 11 hours. Further analysis of the time loop gives insight into which processes take significant
amounts of wall time. For this reason, Figure 6.8 includes the time loop duration, and subsequent
discussion focuses on time loop duration. Without the VBS tracers, an otherwise identical simulation
ran for 22985 seconds, about 6.4 hours. Advection also takes a larger proportion of the timeloop when
using the VBS ftracers, 30.2% compared to 20.2% without using VBS tracers. This corresponds to
12073 seconds to advect all tracers compared to 4639 seconds to advect only the non-VBS tracers,
taking a factor of 2.6 more time in calculations. This is larger than the slowdown factor for chemistry,
5766 seconds to 11256 seconds, a slowdown of slightly less than 2.

Advecting superspecies that represent combinations of tracers yields a significant speedup. Total time
for the advection operator when advecting superspecies rather than VBS tracers was 6790 seconds,
1.8 times faster than the 12073 seconds to advect all tracers. 6790 seconds is slower than the run
without any VBS tracers by a factor of approximately 1.46, which can be attributed to the addition of 16
superspecies that need to be advected.

Sequential Run on MACC Domain
No VBS: ~22985 seconds VBS: ~40031 seconds Superspecies: ~34192 seconds
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Figure 6.8: Benchmarking of various processes in the time loop of a LOTOS-EUROS run from February 15 through 28 on the
MACC grid. The domain is not decomposed, this run was performed fully sequentially on one computing node.
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6.7. Towards operational forecasting: CAMS Domain

The domain used in CAMS operational forecasts has a much higher resolution than the domain used
by MACC: 0.1 degrees for 420 by 700 gridcells compared to the 0.50 by 0.25 degrees used in the
MACC domain on previous experiments. The change of resolution and domain increases the number
of gridcells by a factor of 20. One result of this, beyond much more data, is that the operator splitting
timestep At needs to decrease in order to satisfy the Courant-Friedrichs-Lewy criterion in equation
(2.14), as the gridcell distance is smaller. Advection is therefore done more times per hour, as well as
the compression of tracers into superspecies and decompression of superspecies back into tracers.

Due to the increased requirement in computing power, no sequential run is performed using the CAMS
operational forecasting domain. The following CAMS runs for both the control and superspecies runs
are performed using domain decomposition over 24 computing nodes with each node computing a
subdomain of 175 by 70 gridcells. The compression and decompression matrices optimized on the
MACC February run were used in the run on the CAMS domain. This tests not only timing differences
in the operational configuration of the CAMS domain, but also how the superspecies optimized on
a coarse grid can do on a finer resolution. Moreover, the CAMS domain is over a wider area than
the MACC grid, extending past Moscow, Russia. This experiment tests the limitations of using the
superspecies on areas not included in the training data.

6.7.1. Accuracy on the CAMS domain
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Figure 6.9: Time averaged TOA for the period of February 25th through 28th on the CAMS domain used in operational forecasting,
from control and superspecies runs, as well as bias and relative bias.

Figure 6.9a shows the time-averaged TOA values for the CAMS run with VBS tracers advected, and
Figure 6.9b the time-averaged TOA values for the CAMS run with the superspecies advected. The
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superspecies run has a positive bias for TOA of 0.019 ug m™=3, with visible overestimation in the area
near Moscow, which is not in the MACC grid used to optimize the compression/decompression matri-
ces. Though this indicates that the superspecies approach might perform better on areas it has been
trained on, further experiments would have to verify this, including applying the approach to a com-
pletely different area than the one it was trained on. The colorbar limits of Figures 6.9a, 6.9b, and
6.9c were adjusted for visual comparison with Figure 6.1. For this reason, colors at the upper or lower
limits should be interpreted as greater or equal to the limit. Though the maximum of time-averaged
TOA from both the superspecies run and the control run was 28.2 ug m=3, 99.85% of the gridcells had
a time-averaged TOA under 7.6 ug m~3, which was chosen as the upper limit of the colorbar. This
means that only 0.15% of the gridcells in Figures 6.9a and 6.9b exceed the limit shown in the colorbar.
Neglecting the highest 0.15% of average TOA, the spatial patterns of the that the CAMS superspecies
run become apparent and look very similar to the spatial patterns to the CAMS control run. Both exhibit
spatial patterns similar to the simulations performed on the MACC grid for the same time period, in Fig-
ure 6.1. Analogously, the maximum absolute error of time-averaged TOA between the superspecies
run and the control run was 8.9 ug m=3, but 99.2% of all gridcells had an absolute error of less than
0.70 ug m=3. Less than 1% of the gridcells in Figure 6.9c exceed the colorbar limit. Biases on the
CAMS domain superspecies run are larger in magnitude than the those on MACC domain in Figure
6.1c, but only a few gridcells exceed the maximum error of time-averaged TOA on the MACC grid.

The largest bias for TOA over all cells and the entire test time period (not time averaged) was 89
ug m~3, corresponding to a gridcell in northwestern Spain, near Ponferrada. This gridcell also showed
the highest time-averaged TOA concentration of 32.0 ug m™~3 for the superspecies run, compared to
19.4 ug m=3 for the control run. This difference corresponds to the highest overestimation for time-
averaged TOA of any gridcell of 12.6 ug m™3, which dictates the colorbar range of Figure 6.9c. The
overestimation peak occurred simultaneously with a high TOA event on February 25th at 19:00 . At the
highest bias of 89 ug m=3, TOA concentration as modeled by the superspecies run is 206.4 ug m=3
and the control run predicts a TOA concentration of 117.4 ug m~3. TOA during this event is composed
almost wholly of primary material: the superspecies run models a POA concentration of 205.9 ug m=3
(99.78% of TOA concentration) while the control run POA concentration is 117.1 ug m=3 (99.75 %).
Figure 6.10 shows the timeseries behavior of TOA for both the runs during the high event and sub-
sequent days. Rather than error compounding and leading to divergence from the control run, the
superspecies run restabilized for the rest of the simulation. This indicates that in an online context,
other processes in LOTOS-EUROS can correct temporary overpredictions from the superspecies as
the simulation progresses.

Gridcell with highest single TOA overestimate, Feb 25 - 28
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Figure 6.10: Temporal variation of TOA at the gridcell with the highest TOA overestimate in the entire CAMS domain from
February 25th through 28th.
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Failure modes of the superspecies approach will have to be further assessed to gain a better under-
standing of how such a high overestimation of TOA can occur when advecting superspecies instead of
VBS tracers. However, this extreme overestimation is a rare occurrence, with 99% of bias values under
0.94 ugm=3 and 95% of bias values under 0.33 ugm™3. This provides an argument that in most cases,
the superspecies approach is stable when integrated online in LOTOS-EURQOS, even when running on
finer grid resolutions than it was optimized for.

Figure 6.11 returns to the two atmospheric research stations, Cabauw and Mace Head, used in offline

evaluations in chapter 4. Here, the timeseries of TOA predictions when advecting winter-optimized
superspecies online is compared to the control run, for both the MACC domain and the CAMS domain.
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Figure 6.11: Timeseries of TOA at Cabauw and Mace Head, on the MACC grid and CAMS grid.

Mace Head, a remote station, shows TOA concentrations an order of magnitude lower than Cabauw.
Though both stations show error, especially Mace Head about halfway through the run, this is not too
surprising, especially given the dilute conditions at Mace Head. What is actually more striking is when
TOA from the superspecies run tracks TOA of the control run, at some points following the curve for
hours, even after advecting the superspecies for over a week. This happens in the middle of day 6 and
7 at Cabauw for both the MACC and CAMS domains. For Mace Head, periods of high accuracy are day
2 and parts of day 5, visibly tracking the control TOA despite the small scale of the concentration axis.
Another point of interest for Mace Head is that after a period of high overestimation around February
24th and 25th in both the MACC and CAMS runs, TOA restabilizes, even tracking the control TOA
again. This is qualitatively similar to the restabilization shown in Figure 6.10, though several orders of
magnitude more dilute. The existence of both cases indicates the existence of a phenomenon or mul-
tiple phenomena that act to dampen error caused by the superspecies parameterization of advection,
preventing runaway error and divergence of results when using the superspecies parameterization.
This also suggests that superspecies formed by mass-conserving combinations of tracers might be-
have physically similar in processes. The ability of the LOTOS-EUROS superspecies configuration to
correct its error over subsequent timesteps, in different conditions and over many magnitudes, suggests
that this is a robust approach.
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6.7.2. Speedup on the CAMS domain

Figure 6.12 shows the breakdown of different processes within the time loop for different experiments
on the CAMS domain. With the VBS, overall wall time nearly doubles, and advection time more than
doubles from 34959 seconds to 74762 seconds. With superspecies advected instead of VBS tracers,
wall time for the advection operator is 49473 seconds. The run advecting superspecies takes about
40% more time than with all the VBS tracers switched off, but is able to model secondary organic
aerosol, decompressing to the VBS tracer space after every advection time step, and taking about
66% of the time that it would with all the VBS tracers advected.

Parallel Run on CAMS Domain
No VBS: ~75055 seconds VBS: ~140691 seconds Superspecies: ~119251 seconds

mm Timestep Setup
Chemistry
mm \ertical Diffusion
m Advection
Emm Emissions and Other < 2%
B Sedimentation and Deposition

Figure 6.12: Timing of various processes in the time loop of a LOTOS-EUROS run from February 15 through 28 on the CAMS
grid. The parallelization technique involved domain decomposition into 24 subdomains, parallelized on 24 computing nodes.

The full potential speedup benefit of superspecies is not yet realized in the currentimplementation. The
time loop of the LOTOS-EURQOS superspecies run takes approximately 85% of the time that the control
run does. This is because other processes actually have an increase in time, handling both tracers and
superspecies, though the superspecies values are subsequently overwritten in the compression step
right before advection. The decision of which processes should use superspecies, and subsequent
implementation, is a future development goal outlined in the conclusion. The purpose of this experiment
was to demonstrate a significant reduction in the runtime of the advection operator when handling
superspecies instead of VBS tracers: this reduction varies between slightly over half to two thirds.

This chapter assessed the accuracy and speedup benefit of replacing VBS tracers with machine learn-
ing superspecies in the advection operator. An implementation of LOTOS-EUROS that includes these
superspecies was developed and shortly summarized in section 6.1. This is the first instance of a ma-
chine learning parameterization running online in LOTOS-EUROS. The strategy of advecting super-
species was found to run stably for a model simulation of 2 weeks under various seasonal conditions,
for example in sections 6.3 and 6.5. Superspecies optimized on winter conditions showed systematic
spatial and temporal bias during summer simulations in section 6.3. However, optimizing superspecies
on summer conditions in section 6.5 significantly reduced this systematic error. Machine learning su-
perspecies optimized on the coarse MACC domain show potential to generalize to the finer CAMS
domain used in operational forecasting without experiencing runaway error. Timing experiments in
sections 6.6 and 6.7.2 found that the advection operator using superspecies took 56% to 66% of the
time that it took when using VBS tracers.



Conclusions

This thesis developed a machine-learning parameterization to reduce the number of tracers to be ad-
vected in LOTOS-EUROS. This technique creates a set of 16 superspecies with linear combinations of
58 tracers from the 4 volatility basis set (VBS) classes. After advecting the superspecies instead of the
original tracers, the superspecies can be decompressed to determine new concentrations of the VBS
tracers.

A phase-specific superspecies approach was chosen to represent the tracers from each VBS class
with 2 aerosol and 2 gas superspecies. Use of scaling factors allowed for mass conservation when
compressing and decompressing tracers. This superspecies approach was trained on 4 days of data
and then implemented into LOTOS-EUROS for online calculations. Results using this superspecies
implementation are stable on model simulations of 2 weeks. The advection operator using superspecies
takes 56% to 66% of the time it would take using original VBS tracers. This approach shows potential
to generalize to other conditions and finer grid-sizes than it was trained on.

Section 7.1 returns to the research questions formulated in section 1.7 using the results of this research
to make some conclusions about the limitations and potential of advecting a superspecies represen-
tation of tracers. Future research questions in section 7.2 suggest possible directions for application
and exploration of the approach introduced in this thesis. Section 7.2.1 discusses next steps for inte-
gration of the superspecies in LOTOS-EUROS operational forcasting, and limitations of this approach
found in some conditions. Section 7.2.2 broadens the scope to other applications beyond the LOTOS-
EUROS community, relating the machine learning superspecies approach to other current research
and discussing its potential to be generalized beyond the development goal it was designed for.

7.1. Return to the research questions

The four core research questions introduced in section 1.7 informed the experiments and results through-
out this thesis. This section summarizes key results related to each.

Research question 1: What parts of LOTOS-EUROS are slowed down by inclusion of the volatil-
ity basis set? Can they be accelerated using machine learning parameterizations? Section 1.5
shows that the volatility basis set approach which can double the runtime of LOTOS-EUROS simula-
tions under certain conditions.The inclusion of the 4 volatility basis sets requires 58 additional tracers
on top of the 64 default tracers. A more granular benchmarking in section 2.6 found that other pro-
cesses slowed down, most notably advection, sometimes by a factor of 2. One underlying cause is
not VBS-specific computations, such as calculating partitioning, but modeling advection of the 58 VBS
tracers. The advection operator is one of the more computationally intensive processes in LOTOS-
EUROS. Its computation time depends linearly on number of tracers due to an outer for loop over all
tracers. VBS inclusion approximately doubles the tracers and therefore should be expected to double
the computation time of the advection operator.

Though the tracer slowdown was identified relatively early on in the project, this discovery itself should
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not be taken for granted. In fact, the goal at the outset of this project was a machine learning surrogate
model for the VBS gas-phase reactions and partitioning. The benchmarking in 2.6 showed that this
would have saved minimal time and not addressed the problem, as calculating the partitioning is not
a significant source of slowdown. ldentifying the additional tracers as the source of slowdown in 2.6
motivated reduced order modeling. Though a zero-order compression technique advecting total bin
concentration and TOA was proposed, this would require 30 superspecies, a compression factor of
around 2. The desire for a larger compression factor led to the proposition of unsupervised machine
learning techniques, which have shown success in atmospheric modeling applications, to find lower
dimensional, latent patterns in the large amount of model output.

Chapters 3, 4, and 5 developed a machine learning approach to combine VBS tracers into super-
species, which can replace the tracers in bulk processes like advection. These superspecies can then
be decompressed into original tracers for VBS-specific calculations. Chapter 6 evaluated the speedup
of this method when integrated into LOTOS-EUROS. On the MACC domain that the method was trained
on, advection took approximately 56% of the time that it would without the superspecies parameteri-
zation. In a run using the CAMS domain used in operational forecasting, advection with superspecies
took approximately 66% of the time that it would with all 58 VBS tracers. These speed improvements
are in agreement with the expected linear dependence of advection time on number of superspecies.
The set of 16 superspecies is slightly less than a quarter the size of the 58 VBS tracers. The VBS
tracers are about half of the advected tracers (some of the 64 tracers, like radicals, aren’t advected),
so the theoretical estimate of speedup is 63% when using 16 superspecies.

Research question 2: Can a machine learning approach maintain desired accuracy of total or-
ganic aerosol, as well as mass distributions over volatility bins, sources, spatial and temporal
patterns?

A linear unsupervised machine learning approach using non-negative matrix factorization (NMF) was
introduced in chapter 3. Through a series of experiments and comparisons in chapters 4 and 5, the
NMF approach was refined to create optimized compression and decompression matrices that did not
require additional optimization for new data points. Bias, a standard metric, was used to give insight
into potential under or overestimation resulting from compression and decompression. Root mean
squared error (RMSE) was used as a second key metric. RMSE is an absolute metric of error between
decompressed tracers and target tracers and gives insight into reconstruction error of the mass distri-
bution over volatility bins, even if overall bias is low. Chapters 4 demonstrated that this approach can
reconstruct the mass distribution across the volatility bins to an acceptable extent, outperforming more
complex methods like a nonlinear neural network autoencoder in chapter 5. This compression and de-
compression technique is able to reproduce spatial patterns of average TOA over the LOTOS-EUROS
domain on test data it was not optimized for (trained on). Temporal variation of TOA at two atmospheric
research stations, Cabauw and Mace Head, was studied to find that the compression technique is able
to track the variation in conditions over time. Section 4.5 tested the lossy reconstruction error of this
method as a function of compression extent. Three superspecies per class were chosen as a reason-
able trade-off between accuracy and compression extent. With three superspecies, the approach in
chapter 4, showed an average bias for TOA across the whole evaluation data was 0.0015 ug m™3,
and RMSE 0.0173 ug m™3. Little marginal improvement of these accuracy metrics was shown with
subsequent increase of the latent dimension.

Research question 3: In what ways can classic modeling approaches and machine learning be
hybridized to improve physical interpretability and/or respect important physical properties?

The unsupervised learning strategy finds a lower dimensional latent space to represent the original
tracer space. The latent space representation found using non-negative matrix factorization (NMF)
can be physically interpreted as a set of superspecies, formed by linear combinations of tracers. Su-
perspecies can represent different OA regimes, like freshly emitted aerosol or aged aerosol, which
have different mass distributions across volatility classes. Subsequent combinations of these super-
species can create distributions that are linear combinations of different regimes. The non-negativity
of both the compression and decompression matrices ensures non-negative concentrations of both
superspecies and tracers. An advantage of a linear method is the invariance of the distribution shape
in tracer space to scaling of the superspecies space. Mass conserving strategy 1 in section 5.2.1 uses
scaling factors after compression and decompression to conserve total organic concentration to ma-
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chine precision. Superspecies are specific to VBS class, so material is conserved within the class.
Additionally, total mass is conserved for each phase (gas or aerosol), as well as the two cross-sections
together: VBS class and phase. Here, two superspecies per class and phase were chosen, rather
than 3 or 1, to maintain a desired compression factor while allowing for different distribution shapes
upon decompression, as determined by the concentrations of the 2 superspecies. With this approach,
both total organic aerosol and total organic matter are conserved to machine precision on compression
and decompression. On an evaluation dataset, RMSE for TOA was 6.9 x 10713 yg m™3, and TOM
1.0 X 10712 yg m=3.

Strategy 3 in section 5.2.3 extended the physical interpretation of superspecies by constraining the
columns of the compression and decompression matrices to sum to 1. Each column of the superspecies
to-tracers matrix W can be interpreted as the composition of a superspecies, with each element cor-
responding to the fractional contribution of a tracer in forming that superspecies. With that in mind,
analogous column normalization of W7 could be interpreted as how each tracer is distributed over the
superspecies. Another result of these composition matrices is that total mass is conserved to machine
precision upon both compression and decompression.

Research question 4: How does a machine learning parameterization perform when imple-
mented online in LOTOS-EUROS?

Results in chapter 6 show that the machine learning species optimized to reconstruct model output
offline can run stably online, without accumulating error. The compression/advection/decompression
step was run recurrently online in LOTOS-EUROS for a simulated 2 weeks from February 15th through
28th on the MACC domain. Error did not compound or propagate, and was relatively low (time aver-
aged bias below 10%) even after simulating 14 days of online superspecies, completely independent
from the control run. Superspecies were advected at all other levels, despite the ML method only being
optimized on surface data.

However, superspecies optimized on winter data did not capture TOA as accurately for summer condi-
tions, simulated on the MACC domain for July 19th through August 1st. A case study over a forest where
bSOA was the dominant component of TOA showed that the winter-optimized superspecies did not cap-
ture the variability of the mass distribution over the bVOC volatility basis set, overestimating bSOA. A
case study over a forest in southern Germany found that winter-optimized superspecies consistently
overestimated high bSOA events during summer nights. Heavily forested regions of the domain showed
a strong positive bias of time-averaged TOA when advecting winter-optimized superspecies. Overes-
timation of biogenic SOA brought up a secondary question: under what conditions matrices should
be updated. A different set of superspecies were trained on data from July 25th through 29th, and
assessed for the same summer dates as the winter-optimized superspecies. With summer-optimized
superspecies the biogenic VBS still showed the highest RMSE of the superspecies approach, in the
summer, despite having the fewest tracers (8) with non-negligible concentrations. The spatial patterns
of error for time-averaged TOA remained, with large bias over highly forested areas in the domain.
Preliminary experiments to optimize superspecies on selected spatial data over forests did not improve
results, but more analysis is needed for a definitive assessment. However, superspecies optimized
on summer conditions captured temporal variation much better than winter-optimized superspecies. A
case study of a forest over southern Germany found that using summer-optimized superspecies re-
moved the nightly overestimation shown when using winter-optimized superspecies. The limitations
of the machine learned superspecies to model biogenic SOA indicate that the superspecies approach
might be suitable for only the other three VBS classes. However, the biogenic VBS class is smaller
and therefore has less speedup potential from compression. The biogenic VBS uses 6 volatility bins
(12 tracers), and only the 4 highest volatility bins in the model have nonzero concentrations from for-
mation via gas-phase isoprene reactions, as ageing between bins is currently off for the biogenic VBS
in LOTOS-EUROS. Removing the unused two volatility bins of the biogenic VBS from advection and
other processes would reduce the number of tracers from 12 to 8. The zero-order approach proposed
in section 2.7 of advecting TOA and total mass of each bin across phase, with decompression done via
partitioning, could further reduce 8 tracers to 5 superspecies (4 bin totals and then either TOA or total
biogenic SOA). Improved accuracy is expected from such an approach, as it is not lossy compression:
no information will be lost. However, this is a limited compression factor that will limit the speedup
potential.
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A simulation on the finer-resolution CAMS domain assessed how this method might perform in an
operational setting. Winter-optimized superspecies optimized on the MACC domain were used in a run
from February 15th through 28th on the CAMS domain. Though an instance of extreme error of TOA
predictions from the control run was observed with a positive error of 89 ug m™2 at a high POA event in
the superspecies run, this was not representative of the majority of predicted TOA across the domain
in this time period: the 99th percentile of TOA error was less than 1 ug m=3 over the whole domain and
time period, with an average bias of 0.019 ug m~3 and RMSE of 0.43 ug m~3. Additionally, the gridcell
with the highest overestimation event restabilized as the superspecies run continued, converging to
values of TOA more similar to that of the control run. The ability of the LOTOS-EUROS superspecies
configuration to dampen error and converge back to the behavior of the control configuration indicates
that the superspecies approach may be robust to temporary inaccuracies.

7.2. Future directions

The method of machine-learned superspecies for dimension reduction of tracers shows potential, but
much remains to explore. One category of future directions is inward looking: exploring VBS super-
species in LOTOS-EUROS in further depth. A second, more outward-looking category broadens the
scope to other models and applications, perhaps requiring different unsupervised machine learning
algorithms to find an appropriate lower dimensional manifold.

7.2.1. Looking inward

This study developed a parameterization based on machine learning superspecies and took steps
towards its practical implementation, including the first extension of LOTOS-EUROS that includes ma-
chine learning parameterizations. This LOTOS-EURQOS superspecies implementation was tested on
the domain used in CAMS operational forecasting and found to remain stable in model simulations
of 2 weeks. However, there remain steps in between the results presented in this thesis and use
of machine learning parameterizations in LOTOS-EUROS operational forecasts. One of the last and
essential steps would be longer simulation periods using the superspecies parameterization, and sub-
sequent comparison of model output to the control simulation for a full validation year.

The failure modes of the superspecies parameterization must be further explored and better under-
stood. This includes continued investigation of the limitations of summer conditions, including the high
overestimation of bSOA, in particular over forested areas at night. The biogenic VBS has effectively
the smallest number of tracers: though it technically has 6 bins, only the 4 highest volatility bins (8
tracers) can receive material. It cannot yet be concluded that bSOA should not be modeled using su-
perspecies, but it has the least benefit from compression to 4 superspecies via machine learning. The
zero-order compression technique proposed in section 2.7 might be worth exploring. At the very least,
it is recommended to remove the lowest volatility bins for the biogenic VBS, whose tracers are passed
around the model despite never having any mass.

Another path of interest is exploring how other operators in LOTOS-EUROS handle superspecies. All
processes besides advection currently deal with both the superspecies and the VBS tracers: this in
fact adds the burden of even more extra tracers to most of the model. For this reason, overall runtime
in the superspecies version was not as low as it could be, with some processes like vertical diffusion
and dry deposition taking more time than the control run just with VBS tracers. Moreover, dealing with
superspecies outside of the compression/decompression steps is meaningless and unnecessary, as
superspecies concentrations will be overwritten at these steps according to the values of their corre-
sponding tracers. This is in part a development problem and not just a research problem. The timing
experiments in chapter 6 should be repeated after this model optimization to give a more realistic
idea of the benefit of using superspecies. Decisions should be made on which process should handle
the original tracers (at minimum emissions and chemistry) and which processes can use superspecies.
Possible contenders are dry deposition and vertical transport. The superspecies approach in this thesis
has been designed to be phase specific for future compatibility with dry deposition, another operator
that shows significant slowdown with addition of VBS tracers. The unsupervised machine learning
method is a process-independent, learning latent characteristics of the VBS tracers themselves. Using
the same superspecies in other operators shows promise for this reason.
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7.2.2. Looking outward

The previous section points to using this approach for a superspecies representation of VBS tracers in
other processes of LOTOS-EUROS, for example, dry deposition and vertical diffusion. However, other
models may not have such a large tracer space dedicated to SOA modeling, and may benefit from a
superspecies representation of other types of tracers. One potential class of tracers could be inorganic
aerosols, especially when modeled by a sectional approach with many size bins.

Future applications of a superspecies approach might want to give consideration to the choice of un-
supervised machine learning algorithm. The linear method in this thesis uses non-negative matrix
factorization to obtain compression and decompression matrices, and outperformed a nonlinear neural
network autoencoder for VBS tracers. Other sets of tracers may be more appropriately modeled by the
nonlinear manifold in the hidden layer of an autoencoder. Further refinement of the linear approach is a
future direction itself. The objective function and parameters can be adjusted to optimize compression
matrix B and decompression matrix W simultaneously, which has similarities to the objective function of
archetypal analysis (Cutler & Breiman, 1994). Constraints like column normalization for the composi-
tion in strategy 3 could also be imposed during optimization, rather than transforming the matrices after
convergence, potentially compromising optimality. Though out of scope for this thesis, dependence of
the superspecies on randomly initialized parameters before training should be assessed.

The mass conservation strategy will have to be altered for a nonlinear approach like the autoencoder
explored briefly in Chapter 5. This is because the shape of the decompressed tracer distribution is no
longer invariant to the two scaling factors introduced in strategy 1. A potential pathway for ensuring
mass conservation lies in the activation function of the superspecies layer. One possibility is an acti-
vation function that divides the linear combination of the layer before it by the sum of the input layer. If
the input to the superspecies layer is non-negative, then the only additional constraint to the the layer
weights is non-negativity (purely additive) and this compression step can be viewed as analogous to
the compression and scaling step in strategy 1. Decompression and scaling could be done with an
activation function that divides the linear combination of the layer input by the sum of the superspecies.
Though linear in the superspecies layer, an autoencoder can achieve nonlinear transformations with
respect to its input with other layers in its architecture. One result of nonlinearity is dependence on
scaling — but a neural network trained with such an activation function and weight constraints would
still have parameters optimized to minimize reconstruction error, while conserving mass on compres-
sion and decompression. The effect of such an architecture on convergence and stability of long-term
predictions would have to be assessed.

A related research question posed by Kelp et al., 2020 is how the latent space of the recurrent au-
toencoder surrogate model of MOSAIC/CBM-Z, that includes gas-phase and inorganic aerosol tracers,
could be configured to interact with processes such as advection. The autoencoder is a surrogate model
of computationally intensive chemistry integration, where timestepping is done in the latent space. This
thesis focused on advecting a lower dimension, latent space representation of tracers, and could illumi-
nate a path forward for integrating the recurrent autoencoder surrogate model into a chemical transport
model or a larger earth system model. The neural network autoencoder might need to change some
hyperparameters, such as moving from linear activation functions in the hidden recurrent layer to an ac-
tivation function and weight parameters that constrain the latent space to non-negative, real numbers.
Interpretation of the recurrent autoencoder latent space as a superspecies representation of tracers
is important for their use in other processes. Incorporating mass conservation with the autoencoder
is made difficult not by the autoencoder, but by the nature of the tracers. The VBS tracers were not
speciated, but rather concentration of organic material lumped into volatility bins, a modeling approach
developed because of large uncertainty in the chemical makeup of organic aerosol. Tracers in a chem-
ical mechanism, on the other hand, are defined by their unique atomic makeup, and conserving mass
would involve conserving atoms. Though some total metric could be conserved with an activation func-
tion with a scaling factor, it is not clear if this is an essential or relevant property, or even possible, as
chemical mechanisms are not necessarily designed to conserve mass (Heald & Kroll, 2020). However,
the recurrent autoencoder explored by Kelp et al., 2020 showed long-term stability without explicit mass
conservation in hidden layers. A potential direction for further research could be whether lack of mass
conservation can lead to runaway error when superspecies interact with other processes, and if so,
ways to maintain stability while interacting with other processes.
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This study developed machine learning methods to represent organic aerosol tracers with a smaller
number of superspecies, reducing the computational burden of advection in LOTOS-EUROS. Applying
the advection operator on superspecies took approximately 56% through 66% of the time it took using
the original tracers. The firstimplementation of a machine learning parameterization in LOTOS-EUROS
was developed, which ran stably on model simulations of 2 weeks without experiencing runaway error.
Future directions for this work include further development of the superspecies parameterization in
LOTOS EUROS, and broadening the scope to other potential uses of the superspecies to accelerate
3D atmospheric models.



Timing

Every LOTOS-EUROS run that finishes successfully writes a file "lotos-euros.prf” as part of its output,
which includes information on timing of various parts of the model. Excerpts of these .prf files used in
the experiments in the thesis are included to supplement the figures shown in timing.

A.1. 1/24 of the CAMS domain, sequential run without VBS

# _______________________________________________________________
# timer system clock (%)
# _______________________________________________________________
#

# root 2497 .41

# model init 99.30 ( 4.0 %)
# model time loop 2396.09 ( 95.9 %)
# model done 0.75 ( 0.0 %)
# time step first 1.27 ( 0.1 %)
# other 0.00 ( 0.0 %)
#

# model init 99.30

#

# model time loop 2396.09

# time step output 11.96 ( 0.5 %)
# time step save 2.10 ( 0.1 %)
# time step setup 453.43 ( 18.9 %)
# particle update 1.49 ( 0.1 %)
# chemistry 831.32 ( 34.7 %)
# vertical diffusion 213.00 ( 8.9 %)
# sedimentation 48.43 ( 2.0 %)
# dry deposition 151.09 ( 6.3 %)
# wet deposition 315.60 ( 13.2 %)
# advection 360.90 ( 15.1 %)
# emission 2.73 ( 0.1 %)
# dry deposition velocities 1.10 ( 0.0 %)
# other 2.95 ( 0.1 %)
#

# model done 0.75

# _______________________________________________________________
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A.4. Entire CAMS domain, parallel run, with VBS

# advection 3501.89 ( 50.2 %)
# emission 7.42 ( 0.1 %)
# dry deposition velocities 0.68 ( 0.0 %)
# other 8.04 ( 0.1 %)
#
# model done 9.86
# _______________________________________________________________
A.4. Entire CAMS domain, parallel run, with VBS

# _______________________________________________________________
# timer system clock (%)
# _______________________________________________________________
#
# root 13095.98
# model init 37.73 ( 0.3 %)
# model time loop 13046.01 ( 99.6 %)
# model done 8.54 ( 0.1 %)
# time step first 3.68 ( 0.0 %)
# other 0.02 ( 0.0 %)
#
# model init 37.73
#
# model time loop 13046.01
# time step output 198.88 ( 1.5 %)
# time step save 61.59 ( 0.5 %)
# time step setup 784.02 ( 6.0 %)
# particle update 3.64 ( 0.0 %)
# chemistry 1906.46 ( 14.6 %)
# vertical diffusion 1253.76 ( 9.6 %)
# sedimentation 194.76 ( 1.5 %)
# dry deposition 702.60 ( 5.4 %)
# wet deposition 404.38 ( 3.1 %)
# advection 7434.81 ( 57.0 %)
# emission 15.71 ( 0.1 %)
# dry deposition velocities 0.70 ( 0.0 %)
# other 84.68 ( 0.6 %)
#
# model done 8.54
# gas-phase chemistry 1185.36
# vbs chemistry 36.03 ( 3.0 %)
#  other 1149.32 ( 97.0 %)
# _______________________________________________________________
A.5. MACC domain without VBS
# _______________________________________________________________
# timer system clock (%)
# _______________________________________________________________
#
# root 23093.64
# model init 107.49 ( 0.5 %)
# model time loop 22984.23 ( 99.5 %)
# model done 0.53 ( 0.0 %)
# time step first 1.39 ( 0.0 %)
# other 0.00 ( 0.0 %)
#
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A.6. MACC domain with VBS
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A.7. MACC domain with superspecies

Note the breakdown of advection timing into "vbs machine learning”, which includes the compression
and decompression, takes about 9% of the total time required for the advection operator.

# _______________________________________________________________
# timer system clock (%)
# _______________________________________________________________
#

# root 34287.40

# model init 91.28 ( 0.3 %)
# model time loop 34191.84 ( 99.7 %)
# model done 0.29 ( 0.0 %)
# time step first 3.98 ( 0.0 %)
# other 0.01 ( 0.0 %)
#

# model init 91.28

#

# model time loop 34191.84

# time step output 102.24 ( 0.3 %)
# time step save 16.27 ( 0.0 %)
# time step setup 7071.29 ( 20.7 %)
# adjust 332.61 ( 1.0 %)
# particle update 27.89 ( 0.1 %)
# chemistry 10215.30 ( 29.9 %)
# vertical diffusion 2123.27 ( 6.2 %)
# sedimentation 276.60 ( 0.8 %)
# dry deposition 6193.60 ( 18.1 %)
# wet deposition 827.09 ( 2.4 %)
# advection 6789.65 ( 19.9 %)
# emission 21.72 ( 0.1 %)
# dry deposition velocities 51.29 ( 0.2 %)
# other 143.04 ( 0.4 %)
#

# model done 0.29

#

# advection 6789.65

# vbs machine learning 604.37 ( 8.9 %)
# other 6185.28 ( 91.1 %)

=+

A.8. CAMS domain without VBS

Below is an excerpt of the .prf file for the LOTOS-EUROS run from February 15th through 28th, using
the CAMS domain without the VBS tracers.

# _______________________________________________________________
# timer system clock (%)
# _______________________________________________________________
#

# root 76124.10

# model init 62.40 ( 0.1 %)
# model time loop 76055.44 ( 99.9 %)
# model done 4.21 ( 0.0 %)
# time step first 2.05 ( 0.0 %)
# other 0.01 ( 0.0 %)
#

# model init 62.40
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#

# model time loop 76055.44

# time step output 870.41 ( 1.1 %)
# time step save 111.83 ( 0.1 %)
# time step setup 9458.12 ( 12.4 %)
# adjust 152.46 ( 0.2 %)
# particle update 9.93 ( 0.0 %)
# chemistry 15844.97 ( 20.8 %)
# vertical diffusion 4264.43 ( 5.6 %)
# sedimentation 797.35 ( 1.0 %)
# dry deposition 7484.25 ( 9.8 %)
# wet deposition 1901.20 ( 2.5 %)
# advection 34958.76 ( 46.0 %)
# emission 40.74 ( 0.1 %)
# dry deposition velocities 57.87 ( 0.1 %)
# other 103.10 ( 0.1 %)
#

# model done 4.21

# _______________________________________________________________

A.9. CAMS domain with VBS

Below is an excerpt of the .prf timing file for the LOTOS-EUROS control run from February 15th through
28th, using the CAMS domain with the VBS tracers.

# _______________________________________________________________
# timer system clock (%)
# _______________________________________________________________
#

# root 140733.18

# model init 36.69 ( 0.0 %)
# model time loop 140690.83 (100.0 %)
# model done 1.10 ( 0.0 %)
# time step first 4.55 ( 0.0 %)
# other 0.01 ( 0.0 %)
#

# model init 36.69

#

# model time loop 140690.83

# time step output 806.73 ( 0.6 %)
# time step save 298.29 ( 0.2 %)
# time step setup 8868.14 ( 6.3 %)
# adjust 304.12 ( 0.2 %)
# particle update 22.06 ( 0.0 %)
# chemistry 23727.95 ( 16.9 %)
# vertical diffusion 7891.11 ( 5.6 %)
# sedimentation 1036.56 ( 0.7 %)
# dry deposition 18710.86 ( 13.3 %)
# wet deposition 3905.99 ( 2.8 %)
# advection 74762.33 ( 53.1 %)
# emission 85.60 ( 0.1 %)
# dry deposition velocities 54.89 ( 0.0 %)
# other 216.21 ( 0.2 %)
#

# model done 1.10
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A.10. CAMS domain with superspecies

Below is an excerpt of the .prf timing file for the LOTOS-EUROS control run from February 15th through
28th, using the CAMS domain with the superspecies advected. Note the breakdown of advection timing
into "vbs machine learning”, which includes the compression and decompression, takes about 5% of
the total time required for the advection operator

# _______________________________________________________________
# timer system clock (%)
# _______________________________________________________________
#

# root 119300.65

# model init 43.27 ( 0.0 %)
# model time loop 119251.07 (100.0 %)
# model done 1.59 ( 0.0 %)
# time step first 4.72 ( 0.0 %)
# other 0.00 ( 0.0 %)
#

# model init 43.27

#

# model time loop 119251.07

# time step output 974.53 ( 0.8 %)
# time step save 121.95 ( 0.1 %)
# time step setup 6818.19 ( 5.7 %)
# adjust 345.05 ( 0.3 %)
# particle update 26.53 ( 0.0 %)
# chemistry 23848.70 ( 20.0 %)
# vertical diffusion 9266.85 ( 7.8 %)
# sedimentation 1144.30 ( 1.0 %)
# dry deposition 20101.16 ( 16.9 %)
# wet deposition 6735.99 ( 5.6 %)
# advection 49472 .83 ( 41.5 %)
# emission 90.80 ( 0.1 %)
# dry deposition velocities 52.26 ( 0.0 %)
# other 251.94 ( 0.2 %)
#

# model done 1.59

#

# advection 49472 .83

# vbs machine learning 2633.92 ( 5.3 %)
# other 46838.91 ( 94.7 %)

=+






Superspecies Matrices

B.1. Winter Superspecies

This section reports the aerosol and gas phase compression matrices B, and B, as well as aerosol
and gas phase decompression matrices W, and Wy, using 2 phase-specific superspecies per phase
per class, optimized on winter conditions. They were developed in chapter 5 and used with mass
balancing strategy 1 from section 5.2.1. Their performance was assessed offline in chapter 5 and
online in chapter 6.

The results shown here can be adjusted to become composition matrices for mass balancing strategy
3 from section 5.2.3. To get compression matrices for this method, set By, and By, to the respective
transposes of W, and Wy, then scale each column to sum to 1. For decompression matrices, just
scale each column of W, and W4, to sum to 1.

B.1.1. Anthropogenic matrices

0.00e + 00 0.00e +00 0.00e+00 591e—01 3.83e—02 9.39¢+ 00 ]

Baer = [ 6.29¢ —01 1.90e —01 6.21e —01 0.00e+00 0.00e + 00 0.00e + 00 (B.1)

0.00e + 00 5.26e—01 2.31e—01 0.00e+00 0.00e+00 0.00e+ 00 ] (B.2)

Bgas = [ 0.00e + 00 0.00e +00 0.00e+00 0.00e+00 0.00e+00 2.34e—01

[ 0.00e + 00 9.24e — 02 ]
0.00e + 00 2.40e —01
2.06e — 01 1.27e+ 00
1.12e + 00 2.97e — 01
2.40e — 01 0.00e + 00
| 1.62e — 02 0.00e + 00 |

Waer = (B.3)

[ 4.44e — 01 0.00e + 00 ]
8.40e — 01 0.00e + 00
2.00e + 00 2.37e-—-01
3.30e + 00 2.01e + 00
3.14e + 00 3.06e + 00
| 1.63e + 00 3.75e + 00 |

Wyas = (B.4)
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B.1.2. Biogenic matrices
Note that the lowest two volatility bins do not recieve material in LOTOS-EUROS, though they are not
turned off by default in many processes, including advection.

Baer = [

Bgas = [

0.00e + 00
0.00e + 00

0.00e + 00
1.05e + 02

0.00e + 00
0.00e + 00

0.00e + 00
7.36e + 01

Waer =

Wyas

1.99e - 01
0.00e + 00

0.00e + 00
0.00e + 00

[ 1.54e — 10
7.77e — 11
4.79e + 00
1.94e + 00
1.57e — 01
| 0.00e + 00

[ 5.04e — 07
5.04e — 07
4.73e — 01
7.99¢ — 01
3.29¢ 4+ 00
| 5.86e + 00

1.25e — 02
3.05e — 02

0.00e + 00
3.23e—-01

0.00e + 00
1.97e — 01

2.89e — 01
0.00e + 00

0.00e + 00 T
0.00e + 00
0.00e + 00
2.63e + 00
3.79e + 00
9.64e — 01 |

4.27¢ — 06 ]
4.26e — 06
1.74e — 02
1.17e + 00
0.00e + 00
2.53e + 00 |

0.00e + 00

1.09¢ — 01 ] (8-5)

6.85¢ — 03

0.00e + 00 ] (8.6)
(B.7)
(B.8)
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B.1.3. POA matrices

Note that for this VBS class the transposes of the compression matrices B, and By, are given for

ease of printing.

T
Baer -

T —
Bgas =

Waer =

Wgas =

[ 0.00e + 00
0.00e + 00
3.14e — 03
1.98e — 01
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
| 0.00e + 00

[ 0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
4.78e — 02
4.60e — 01
4.49e — 02
4.94e — 03
| 3.95e — 04

[ 1.28e + 00
2.65e + 00
4.29e + 00
4.95e + 00
2.24e —01
6.07e — 02
1.48e — 02
2.01e — 03
| 2.60e — 04

[ 0.00e + 00
0.00e + 00
1.54e — 02
9.14e — 01
7.41e — 01
1.73e + 00
2.65e + 00
3.54e + 00
| 4.43e + 00

3.10e — 01 T
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00 |

3.11e — 03 T
0.00e + 00
2.88¢ — 01
4.16e — 02
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00 |

1.54e + 00 1
2.99¢e + 00
2.79e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00 |

8.32e — 01 ]
1.11e + 00
2.49¢e + 00
3.90e + 00
3.31e—-01
1.78e — 01
1.63e — 01
1.95e — 01

2.41e — 01 |

(B.9)

(B.10)

(B.11)

(B.12)
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B.1.4. siSOA matrices

Note that for this VBS class the transposes of the compression matrices B, and By, are given for

ease of printing.

T
Baer -

T —
Bgas =

Waer =

vaas =

[ 1.45e — 01
4,18e — 02
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00

| 0.00e + 00

[ 0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
1.03e — 01

| 1.61e — 01

[ 5.31e + 00
3.72e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
| 0.00e + 00

[ 9.26e — 01
1.41e + 00
1.85e + 00
1.00e + 00
2.13e + 00
3.15e + 00
3.81e + 00

| 3.40e + 00

0.00e + 00 T

3.96e — 02
1.87¢ — 01
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00

0.00e + 00 |

1.81e — 01 ]

0.00e + 00
0.00e + 00
1.79e — 01
0.00e + 00
0.00e + 00
0.00e + 00

0.00e + 00 |

0.00e + 00 T

3.15e + 00
3.37e + 00
3.01le - 01
5.58e — 02
4.43e — 03
9.35e — 04

4.52e — 05 |

1.73e + 00 7]

1.76e + 00
2.32e + 00
1.93e + 00
1.79¢e + 00
1.39¢ + 00
7.13e — 01

0.00e + 00 |

(B.13)

(B.14)

(B.15)

(B.16)
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B.2. Summer Superspecies
This section reports the aerosol and gas phase compression matrices By, and By, as well as aerosol
and gas phase decompression matrices W, and Wy, using 2 phase-specific superspecies per phase
per class, optimized on summer conditions. They were used with mass balancing strategy 1 from sec-
tion 5.2.1. They were created in chapter 6 to assess whether superspecies optimized on the seasonal
conditions they are evaluated on increases accuracy.

B.2.1. Anthropogenic matrices

Bger =

Bgas

[ 0.00e +00 1.59¢ —01 0.00e + 00
| 2.05e —01 0.00e+00 3.60e —02

[ 1.53¢ — 01 2.62e — 02 4.12e — 03
| 0.00e +00 0.00e+00 0.00e+ 00

Waer =

Waer =

[ 2.19e — 01
6.21e + 00
1.18¢e — 01
0.00e + 00
0.00e + 00

| 0.00e + 00

[ 6.03e + 00
1.60e + 00
1.67e + 00
9.08e — 01
1.47e — 01
| 0.00e + 00

0.00e + 00
1.34e — 01

0.00e + 00
6.73e — 02

3.86e + 00 T
3.72e — 01
1.03e + 00
1.51e — 01
8.27e — 03
2.31e — 04 |

0.00e + 00 T
9.60e — 01
1.97e + 00
3.33e + 00
3.34e + 00
2.57e + 00 |

0.00e + 00
0.00e + 00

0.00e + 00
1.83e — 01

0.00e + 00 |
0.00e + 00 |

0.00e + 00 |
4.00e — 02 |

(B.17)

(B.18)

(B.19)

(B.20)
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B.2.2. Biogenic matrices

Note that the NMF approach converged to a very high value for the second tracer for the second su-
perspecies of B,.,. A common limitation of machine learning algorithms is their sensitivity to randomly
initialized parameters, which sometimes can lead to poor convergence. In light of negligible concentra-
tions for the lowest 2 volatility bins of the biogenic VBS, perhaps adjusting this to zero would improve
results. As these matrices are small, they can be checked by hand before online implementation, to
correct values arising from poor convergence

[ 0.00e +00 0.00e+00 0.00e+00 2.87e—02 1.17e—01

Baer | 0.00e +00 1.35e+07 1.61e—01 0.00e+00 0.00e+ 00

[ 0.00e +00 0.00e +00 0.00e+00 0.00e+00 0.00e+ 00

Bgas = | 0.00e +00 0.00e+00 2.18¢—01 3.30e—01 5.39¢—03

Waer =

VVgas =

[ 0.00e + 00
0.00e + 00
2.37e + 00
4.79e + 00
4.87e + 00
| 1.19e + 00

[ 0.00e + 00
0.00e + 00
0.00e + 00
6.35e — 02
2.98e + 00

| 7.08e + 00

1.23e — 11 7]
1.28e — 11
4.58e + 00
2.47e + 00
8.34e — 02
0.00e + 00 |

6.69¢ — 07
6.69¢ — 07
5.40e — 01
2.40e + 00
1.96e + 00
1.93e + 00 |

1.77e — 01 |
0.00e + 00 |

1.26e — 01 |
0.00e + 00 |

(B.21)

(B.22)

(B.23)

(B.24)
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B.2.3. POA matrices

Note that for this VBS class the transposes of the compression matrices B, and By, are given for

ease of printing.

T
Baer -

T —
Bgas =

Waer =

Wgas =

[ 0.00e + 00
0.00e + 00
2.32e — 02
1.63e — 01
4.41e — 02
0.00e + 00
0.00e + 00
0.00e + 00
| 0.00e + 00

[ 0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
2.86e — 01
1.75e — 01
1.57e — 02
| 1.31e — 03

[ 9.48e — 01
1.62e + 00
3.50e + 00
5.36e + 00
5.26e — 01
2.62e — 01
5.08e — 02
7.20e — 03
| 1.08e — 03

[ 8.31e — 02
1.11e — 01
1.71e — 01
5.04e — 01
5.89¢ — 01
1.61e + 00
2.59e 4+ 00
3.49¢ + 00
| 4.37e 4+ 00

0.00e + 00 T
1.52e — 01
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00 |

4.05e — 02 T
0.00e + 00
1.54e — 01
7.38e — 02
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00 |

1.19e + 00 7]
3.43e + 00
2.22e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00 |

1.39¢ + 00 7]
1.24e + 00
3.10e + 00
4.45e + 00
4.85e — 01
2.43e—-01
4.58e — 02
4.63e — 03

0.00e + 00 |

(B.25)

(B.26)

(B.27)

(B.28)
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B.2.4. siSOA matrices

Note that for this VBS class the transposes of the compression matrices B, and By, are given for

ease of printing.

T
Baer -

T —
Bgas =

Waer =

VVgas =

[ 1.50e — 01
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00

| 0.00e + 00

[ 1.56e — 01
1.66e — 02
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
| 0.00e + 00

[ 6.52e + 00
6.64e — 02
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00
0.00e + 00

| 0.00e + 00

[ 6.18e + 00
1.26e + 00
8.64e — 01
4.69e — 01
2.51e - 01
4.00e — 02
0.00e + 00

| 0.00e + 00
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