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Abstract

Super-resolution fluorescence microscopy techniques enable researchers to observe biological
processes at the nanometer scale, surpassing the diffraction limit of light. Among these,
methods that combine illumination patterns with single-molecule localization offer high spa-
tial resolution while maintaining photon efficiency. A leading example is MINFLUX mi-
croscopy, which achieves nanometer-scale localization by positioning a doughnut-shaped ex-
citation beam, with a central intensity minimum, close to the emitter. This configuration
allows for highly precise triangulation of the emitter’s position using only a few detected
photons. However, theoretical models often assume perfect modulation with a zero-intensity
center, whereas in practical implementations, optical aberrations and alignment errors intro-
duce residual intensity at the beam’s center, degrading the localization precision.

To systematically investigate how deviations from ideal modulation affect localization perfor-
mance, we introduce a modulation contrast parameter m ∈ (0, 1], where m = 1 represents
perfect modulation and values below one reflect increasing residual intensity at the excitation
minimum. We extend the Cramér–Rao Lower Bound (CRLB) framework to incorporate this
parameter, allowing us to quantify how imperfect modulation reduces the Fisher information
and consequently increases the theoretical lower bound on localization precision.

We show that decreasing modulation contrast not only worsens achievable precision but also
shifts the optimal illumination spacing L, challenging previously established scaling laws. We
derive and validate a predictive formula for this optimal spacing, Lopt ≈ 1.30 σillum

√
1 − m,

which is experimentally accessible and maintains high precision. This relationship remains
valid as long as the emitter lies within 40% of the pattern diameter. We further extend the
framework to account for uncertainty in emitter position by incorporating prior information,
showing that the optimal spacing increases with prior uncertainty σprior.

In addition, we evaluate iterative MINFLUX and show that under non-ideal conditions m < 1,
the standard multi-step narrowing strategy becomes suboptimal. Instead, performing re-
peated measurements at the optimized spacing Lopt achieves significantly better precision
over 50% improvement at m = 0.95.

Our results could provide a foundation for MINFLUX single-particle tracking, where selecting
Lopt based on system contrast and prior uncertainty can maximize localization precision in
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each frame while minimizing photon budget. Finally, experimental validation under non-ideal
modulation conditions will be crucial to confirm the practical relevance of these predictions
and to further refine theoretical models.
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Preface

When I started my thesis project, I thought: I’ve got this. Just another challenge to tackle
head-on, like I always do. No big deal. But reality turned out to be a bit different. After a
year, I ended up restarting with a completely new project, struggled endlessly with stubborn
coding bugs, and found myself trying to make sense of papers that seemed impossible to
understand. Throughout the project, I took on too many things at once. Saying “no” has
never really been my strong suit, and that didn’t exactly make writing a thesis any easier.

Luckily, I wasn’t in it alone. ir. Sylke van der Kleij, my awesome girlfriend, stood by me
through it all. She supported me every step of the way, lifted me up when I was down, and
reminded me what I was capable of when I lost sight of it myself. I honestly don’t know how
I would’ve made it through without her.

Now, more than two years later, I’m finally wrapping up my master thesis. I’m proud of the
final result, for sure. But even more proud of how I got here. It wasn’t easy. There were
some serious mental hurdles. But I pushed through, and I learned a lot about myself along
the way.

Delft, University of Technology Koen Stapel
August 12, 2025
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Chapter 1

Introduction

Understanding the structure and function of biomolecules within living cells is essential for
advancing our knowledge of health, disease, and drug development [2, 3]. High-resolution
imaging of cellular components enables researchers to study dynamic biological processes
and develop targeted therapies for various medical conditions [4, 5]. However, most bio-
logical structures are inherently transparent and exhibit little contrast under conventional
light microscopy, making it challenging to visualize them with sufficient specificity or spatial
resolution.

Figure 1-1: Comparison of imaging the same biological sample with conventional light microscopy
(a) and fluorescence microscopy (b). Adjusted from source: [6], under the CC BY-SA 3.0 license.

To address these limitations, fluorescence microscopy has become an indispensable tool in
modern biology and medicine. By labeling specific molecules with fluorescent probes, it
enables selective visualization of individual cellular components against an otherwise noisy
background [7, 8]. As illustrated in Figure 1-1, this results in significantly enhanced contrast
and molecular specificity. This allows researchers to identify, track, and quantify biomolecular
processes with high spatial and temporal resolution in both fixed and living cells.
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2 Introduction

This chapter introduces the foundations of fluorescence microscopy and the motivation for this
thesis. Section 1-1 explains the physical mechanisms of fluorescence, followed by Section 1-
2, which describes the key components of a fluorescence microscope. Section 1-3 covers the
point spread function and classical resolution limits. In Section 1-4, we provide an overview of
super-resolution techniques that overcome the diffraction limit, and Section 1-4-1 focuses on
single-molecule localization methods. Finally, Section 1-4-2 discusses modulation-enhanced
strategies such as MINFLUX, and Section 1-5 presents the motivation and research objectives
of this thesis.

1-1 Photon Emission in Fluorescence Microscopy

Fluorescence microscopy relies on the ability of fluorescent molecules, or fluorophores, to
absorb light at one wavelength and emit it at a longer wavelength [7, 8]. This process is
illustrated in Figure 1-2.

Figure 1-2: Schematic representation of the fluorescence process. The left panel shows a Jablon-
ski diagram depicting electronic transitions. A molecule in its ground state (S0) absorbs a photon
from a laser (blue arrow), exciting it to a higher vibrational level of the first excited singlet state
(S1). The molecule rapidly relaxes non-radiatively (gray arrow) to the lowest vibrational level of
S1, followed by radiative relaxation (black arrow) back to a vibrational level of the ground state,
emitting a photon of lower energy (red arrow). The right panel presents an orbital diagram, where
an electron (gray dot) absorbs energy and moves from a lower orbital (1) to a higher orbital (2). It
then returns to a lower orbital (3), releasing a photon. This visualizes fluorescence at the atomic
level. Adjusted from source: [9], licensed under CC BY-SA 4.0.

As shown in the left panel of Figure 1-2, fluorescence begins when a fluorophore absorbs a
photon of light, typically from a laser or another intense light source. The photon’s energy
must match the energy difference between the ground electronic state S0 and one of the higher
excited electronic states, such as S1 [7, 8]. The energy E of the absorbed photon is given by:

Koen Stapel Master of Science Thesis



1-1 Photon Emission in Fluorescence Microscopy 3

Eabsorption = hc

λabsorption
(1-1)

where h is Planck’s constant, c is the speed of light and λabsorption is the wavelength of the
absorbed photon. Upon absorbing the photon, the fluorophore’s electron transitions from the
ground state S0 to an excited state, typically S1.

Once in the excited state S1, the electron undergoes rapid vibrational relaxation, as indicated
by the downward gray arrow. During this process, energy is dissipated through molecular
vibrations without photon emission, reducing the electron’s energy while remaining in the
excited electronic state [7, 8]. This vibrational relaxation typically occurs within picoseconds,
bringing the electron to the lowest vibrational level of S1.

Following vibrational relaxation, the electron returns to the ground state S0 by emitting a
photon, a process known as fluorescence emission [7, 8]. This is represented by the black
downward arrow in the Jablonski diagram, accompanied by the red squiggly arrow showing
the emitted fluorescence. Because of the energy loss during the non-radiative relaxation, the
emitted photon has lower energy (and thus a longer wavelength) than the absorbed photon.

The energy of the emitted photon, λemission, is determined by the energy difference between
the lowest vibrational level of the excited state S1 and a higher vibrational level of the ground
state S0. This relationship is expressed as:

Eemission = hc

λemission
= E(S1) − E(S0) (1-2)

where λemission is the wavelength of the emitted photon, E(S1) represents the energy of the
lowest vibrational level of the first excited electronic singlet state and E(S0) denotes the
energy of the vibrational level in the ground electronic state to which the electron relaxes.
The energy difference between these two levels determines the frequency of the fluorescence
emission.

The right panel of Figure 1-2 presents a view using atomic orbitals. An electron initially
occupies a lower energy orbital (position 1). Upon absorbing a photon (blue arrow), it is
excited to a higher orbital (position 2). After a brief period, the electron returns to a lower-
energy orbital (position 3), releasing a photon in the process (red arrow).

This difference in wavelength is the Stokes shift [7, 8]. The shift in wavelength can be expressed
mathematically as:

∆λStokes = λemission − λabsorption (1-3)

Finally, the cyclical nature of fluorescence is also visible in Figure 1-2, by showing that once
the electron returns to the ground state, the molecule is ready to absorb another photon and
repeat the process [7, 8].
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4 Introduction

1-2 Optical Setup of a Fluorescence Microscope

The optical setup of a fluorescence microscope consists of several components that work
together to selectively excite and detect fluorescence from the specimen. Figure 1-3 illustrates
the entire optical pathway.

Figure 1-3: The fluorescence microscope optical setup. The diagram illustrates the components
involved in fluorescence imaging: Light source: A high-intensity light source such as a mercury
arc lamp, LED, or laser generates a broad spectrum of light. This light is used to excite the
fluorophores in the specimen. Excitation filter: The excitation filter selects a narrowband of
wavelengths that correspond to the excitation spectrum of the fluorophore, ensuring only the
desired excitation light reaches the specimen. Dichroic mirror: The dichroic mirror reflects
the excitation light toward the objective lens while transmitting the longer-wavelength emitted
fluorescence back toward the detector. This wavelength-selective reflection is crucial for separating
the excitation and emission paths. Objective lens: The objective lens focuses the excitation light
onto a precise region of the specimen and collects the emitted fluorescence. The lens also plays a
critical role in determining the resolution of the microscope. Specimen: The fluorophores within
the specimen absorb the excitation light and re-emit light at a longer wavelength, a process known
as fluorescence. Emission filter: The emission filter allows only the fluorescence emission to pass
through, blocking any remaining excitation light. This step ensures that the final detected signal
consists only of the emitted fluorescence. Detector: The fluorescence signal is captured by a
detector, typically a camera or a PMT, which converts the light signal into a digital image. The
detector’s sensitivity and resolution are important for obtaining high-quality fluorescence images.
This optical pathway ensures that the microscope selectively images the fluorescent light emitted
by the sample while minimizing the interference from the excitation light. Source: [10], licensed
under the CC BY 4.0 license.
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1-3 Point Spread Function 5

The process begins with the light source, which provides the excitation light required to
activate the fluorophores in the specimen. A common light source is a laser, capable of
producing a broad spectrum of light [7, 8]. As shown in Figure 1-3, the light emitted by the
source is directed toward the excitation filter.

The excitation filter selects a specific band of wavelengths from the light source. This ensures
that only the wavelengths matching the excitation spectrum of the fluorophores reach the
specimen. The filter blocks all other wavelengths, preventing unwanted excitation or back-
ground noise. In Figure 1-3, this step ensures precise excitation of the targeted fluorophores.

Next, the filtered light passes through the dichroic mirror. The dichroic mirror is a wavelength-
selective component that reflects the excitation light toward the objective lens while allowing
longer-wavelength emitted fluorescence to pass through. This separation of excitation and
emission light ensures that only the desired fluorescence signal is detected [7, 8]. As illustrated
in Figure 1-3, the dichroic mirror is responsible for the directing of the light path.

The reflected excitation light then enters the objective lens. The objective lens focuses the
excitation light onto a precise region of the specimen. It also collects the emitted fluorescence
from the specimen and directs it back through the optical pathway.

The specimen, located at the focal point of the objective lens, contains the fluorophores that
are excited by the incoming light. Upon excitation, these fluorophores emit light at a longer
wavelength. Figure 1-3 shows that the specimen is both the source of fluorescence and the
focal point of excitation.

The emitted fluorescence then passes through the dichroic mirror and is directed toward the
emission filter. The emission filter allows only the emitted fluorescence to pass through while
blocking any remaining excitation light. This step ensures that the detected signal consists
solely of the emitted fluorescence.

Finally, the filtered fluorescence reaches the detector. The detector, which is typically a
camera or a PMT (photomultiplier tube), converts the light signal into a digital image [7, 8]. In
Figure 1-3, the detector is the final component of the optical pathway, where the fluorescence
signal is recorded.

1-3 Point Spread Function

The psf (point spread function) describes how a point source of light is spread by an optical
system. It represents the system’s response to a point source and determines the resolution
limit of the system [7, 8]. The spreading of the point source occurs due to diffraction and
optical aberrations. The primary reason for the spreading of the psf is diffraction, which
is caused by the finite aperture of the optical system. The size of the aperture and the
wavelength of the light affect the extent of the spreading.

The image of an object in an optical system is determined by the psf through a convolution
process. In the Fourier domain, this relationship is expressed as:

I(fx, fy) = O(fx, fy)P (fx, fy) (1-4)

Master of Science Thesis Koen Stapel



6 Introduction

Here, I(fx, fy) is the image, O(fx, fy) is the object, and P (fx, fy) is the psf, all in the Fourier
domain. The variables fx and fy represent spatial frequency coordinates, corresponding to
the rate of intensity variation in the x and y directions. High spatial frequencies correspond
to fine details, while low spatial frequencies represent smooth variations in intensity.

In the spatial domain, the same relationship is represented as:

I(x, y) = O(x, y) ∗ P (x, y) (1-5)

In this equation, I(x, y) is the image, O(x, y) is the object, P (x, y) is the psf, and ∗ denotes
the convolution operation. The variables x and y are spatial coordinates defining the position
of points in the image plane. The convolution process determines how the psf spreads or blurs
the intensity of the object in the resulting image, affecting resolution and quality.

Figure 1-4: Visualization of the psf of a diffraction-limited optical system. The PSF represents
the intensity distribution in the image plane resulting from a single point emitter, modeled here
as an Airy pattern. The coordinates are scaled in nanometers based on a realistic Airy radius
calculated for λ = 650 nm and numerical aperture NA = 1.4.

The Airy disk describes the smallest focused spot of light that a perfect lens with a circular
aperture can produce [7, 8]. It represents the diffraction-limited psf in optical systems. As
shown in Figure 1-4, the intensity is highest at the center and gradually diminishes through
a series of concentric rings due to diffraction.
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1-3 Point Spread Function 7

1-3-1 Diffraction Limit and Resolution

The diffraction limit represents the fundamental resolution limit of an optical system caused
by the wave nature of light [7, 8]. It defines the smallest distance between two points that
can still be resolved as separate entities. When light passes through an aperture, such as a
lens or microscope objective, it diffracts, forming overlapping diffraction patterns that limit
the system’s resolving power.

Figure 1-5: Illustration of the diffraction limit for resolving two closely spaced point sources.
The left panel shows two points that are clearly resolvable, with the central maximum of one
diffraction pattern separated from the other. The middle panel demonstrates the diffraction limit,
where the central maximum of one overlaps with the first minimum of the other, making the
points just resolvable. The right panel shows the points too close together to be resolved, with
their diffraction patterns merging into a single peak.

The diffraction limit depends on two main factors: the wavelength of light (λ) and the nu-
merical aperture (NA) of the imaging system. The wavelength determines how much the
light spreads after diffraction, with shorter wavelengths providing better resolution. The nu-
merical aperture (NA) is a measure of the light-gathering ability of the optical system and is
calculated as:

NA = n sin θ (1-6)

Here, n is the refractive index of the medium between the lens and the sample, and θ is the
half-angle of the maximum cone of light that enters the lens. A higher NA results in a smaller
diffraction limit, allowing for better resolution. The diffraction limit can be defined by either
the Rayleigh or Abbe limit.

Rayleigh Limit

The Rayleigh limit defines the minimum distance at which two point sources can be visually
distinguished, given by:

dR = 1.22 λ

NA (1-7)

Master of Science Thesis Koen Stapel



8 Introduction

This criterion assumes two Airy patterns are just resolvable when the central peak of one
aligns with the first minimum of the other. It is commonly used in classical microscopy to
describe the practical resolution limit [7, 8].

Abbe Limit

The Abbe limit defines the smallest resolvable feature based on spatial frequency, given by:

dA = λ

2NA (1-8)

It reflects the maximum spatial frequency the system can capture and is used in theoretical
modeling and advanced imaging techniques such as super-resolution microscopy [7, 8].

1-4 Super-Resolution Microscopy Techniques

To visualize the nanoscale organization of biological structures, imaging techniques must
overcome the fundamental limitations imposed by diffraction. The diffraction limit is not
simply a technical obstacle but a fundamental limit set by the wave nature of light [7]. It
prevents the precise localization of structures that are closer together than approximately half
the wavelength of the light used for imaging. For instance, individual proteins, organelles, and
even densely packed molecular complexes cannot be clearly resolved because their dimensions
are often below the diffraction limit. Therefore, there is a need for imaging techniques capable
of resolving these structures beyond the diffraction limit, motivating the development of super-
resolution microscopy methods. Super-resolution is a collective term for all techniques that
overcome the diffraction limit [11, 12]. These methods push beyond the diffraction barrier to
achieve a higher spatial resolution.

1-4-1 Single Molecule Localization Microscopy

Emission-based approaches in super-resolution microscopy focus on the precise localization of
individual fluorescent molecules through SMLM (Single-Molecule Localization Microscopy)
[13, 14, 15]. These techniques overcome the diffraction limit by temporally isolating fluores-
cence emissions from overlapping emitters. Figure 1-6 illustrates the process of SMLM in
detail. The "ground truth" represents the actual positions of individual fluorescent emitters
within a sample. However, due to the diffraction limit, these emitters appear as overlap-
ping point spread functions in the "diffraction-limited image" in Figure 1-6, which blurs the
individual emitters into indistinguishable regions.

To resolve this, SMLM activates a sparse subset of emitters at any given time. This is
illustrated in the "single-molecule image stack" in Figure 1-6, where emitters are stochastically
turned on and imaged across multiple frames. At each time point, the sparse activation
ensures that the emitters are spatially separated, allowing their positions to be localized with
sub-diffraction precision. This is achieved by fitting a Gaussian profile to the fluorescence
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1-4 Super-Resolution Microscopy Techniques 9

Figure 1-6: Principle of single-molecule localization microscopy (SMLM). The ground truth
shows the true positions of individual fluorescent emitters. The diffraction-limited image demon-
strates the overlap of point spread functions, limiting resolution due to the diffraction barrier.
SMLM overcomes this limitation by activating a sparse subset of emitters in each frame, shown
as the single-molecule image stack. The emitters are localized with sub-diffraction precision (in-
dicated by blue crosses), and their positions are iteratively reconstructed across multiple frames
to generate the super-resolved image. Source: [16], licensed under the CC BY 4.0 license.

signal from each emitter, with the localization marked by blue crosses, as shown in Figure 1-
6. Once the positions of emitters are determined for each frame, these positions are combined
iteratively over thousands of frames.
The localization precision σSMLM of an individual emitter follows a scaling law under the
conditions that photon detection follows Poisson statistics and the psf is well-approximated
by a Gaussian. Background noise (b) is treated as constant, and finite pixel size effects are
incorporated. The lower bound of the precision can be estimated by the equation [17]:

σSMLM = σa√
N

√
16
9 + 8πσ2

ab2

Na2 , (1-9)

where σ2
a = σ2 + a2

12 accounts for the combined effects of the psf width σ and pixelation due
to the detector with pixel size a. Here, N represents the number of detected photons, and b
represents the background noise per pixel.
The emitter’s fluorescence intensity is modeled by the psf, with pixelation effects accounted for
by the term a2

12 . Localization precision improves with higher photon counts (N) due to reduced
photon noise, as reflected by the term σa√

N
. Background noise (b > 0) introduces additional

uncertainty, described by 8πσ2
ab2

Na2 , which becomes significant under low photon counts or high
noise levels, emphasizing the importance of minimizing b.
In the ideal case (b = 0), localization precision depends only on photon count, psf width and
pixel size [17]:
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10 Introduction

σSMLM ∝ σa√
N

, (1-10)

Several SMLM techniques achieve nanometer-scale resolution by sparsely activating fluo-
rophores and localizing them over time. STORM and dSTORM use stochastic switching of
fluorophores and achieve resolutions of 10–20 nm [14, 18]. PALM, which uses photoactivatable
fluorescent proteins, reaches similar resolutions of 20–30 nm and is particularly well-suited
for live-cell imaging [13, 19]. PAINT and DNA-PAINT rely on transient binding and achieve
5–10 nm resolution with high multiplexing capabilities [20, 15]. RESI builds on this with re-
versible switching and also reaches 5–10 nm resolution while reducing photodamage, making
it ideal for long-term and live imaging applications [21].

1-4-2 Modulation-Enhanced Single Molecule Localization Microscopy

meSMLM (modulation enhanced SMLM) methods combine illumination-based and emission-
based strategies to achieve unparalleled localization precision [22, 23]. These methods leverage
excitation patterns, such as doughnut-shaped or sinusoidal illumination, and exploit the prop-
erties of emitted fluorescence to encode high-resolution spatial information. By integrating
information from both the excitation and emission pathways.

Doughnut Pattern

In MINFLUX [22], the doughnut-shaped intensity minimum serves as the focal point for pre-
cise localization. Figure 1-7a shows how the intensity minimum is sequentially positioned
at four locations (n0, n1, n2, n3) around a circular region (dashed line) that contains the flu-
orophore (red star). The spacing between the excitation positions is denoted by L, which
determines the scale of the initial localization region. Figure 1-7b shows the corresponding
photon counts measured for each excitation pattern.

The power of MINFLUX lies in its ability to combine two sources of information. First, the
excitation pattern provides spatial resolution by creating a predictable relationship between
the fluorophore’s position and the recorded photon counts. Second, the photon counts them-
selves encode information about the fluorophore’s location, as the fluorescence signal decreases
when the fluorophore is closer to the intensity minimum. By analyzing these photon counts
relative to the known positions of the intensity minimum, MINFLUX determines the location
of the fluorophore with nanometer-scale precision, even with relatively low photon numbers
[22].

The scaling law for the localization precision is given by [22]:

σMINFLUX ∝ L√
N

(1-11)

where L is the spacing between excitation positions, and N is the number of detected photons.
This precision surpasses traditional SMLM methods because the localization depends on the
position of the intensity minimum rather than the centroid of a diffraction-limited spot.
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1-4 Super-Resolution Microscopy Techniques 11

Figure 1-7: Explanation of MINFLUX and iterative MINFLUX; image heavily inspired by [22]
and [24]. (a) Four excitation patterns n0–n3 around an unknown emitter (red star), with current
estimate (green dot) and four colored null-centers (gray, blue, yellow, green) on a dashed ring of
diameter L over a green-white gradient; only bottom/left spines are shown, top/right hidden. (b)
Photon-count bar plot for n0–n3 (bars colored green, yellow, gray, blue), with x-axis labels n0–n3
and y-axis labeled “photons” , bottom/left spines visible. (c) Iterative refinement schematic: the
dashed ring shrinks toward the red star, and the green-dot estimate converges . (d) Iterations
1–3, each showing a smaller dashed ring and updated green estimate relative to the red star;
spines as in (a). (e) Photon-count bar plots for each iteration, with four colored bars (n0–n3).

Iterative MINFLUX [24] builds upon the original MINFLUX approach by introducing an
iterative refinement process that progressively narrows the localization area. This method is
shown in Figure 1-7.

Figure 1-7c shows the iterative refinement process in MINFLUX, beginning with an initial
localization within a relatively large circular region. The doughnut-shaped excitation pattern
is positioned at four locations to collect fluorescence data (Iteration 1). Based on the detected
photon counts, the emitter’s position is estimated and the region is narrowed. In the second
and third iterations, the excitation points are placed within progressively smaller regions,
using decreasing spacings L between the doughnut positions, thereby refining the emitter’s
estimated location. Figure 1-7d illustrates the excitation patterns applied at each iteration,
showing how the localization region becomes smaller over time. Figure 1-7e presents the
corresponding photon counts detected at each position for the three iterations, which are
used to iteratively improve the emitter’s localization.

This stepwise zooming technique achieves exponential improvements in localization precision
with each iteration, as described by the scaling law [24]:
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12 Introduction

σiMINFLUX ∝ 1(√
N

)k
(1-12)

Here, σiMINFLUX is the localization precision, N is the number of detected photons, and
k is the number of iterations. The iterative approach ensures that the precision improves
exponentially with the number of refinement steps.

Sinusoidal Pattern

SIMFLUX [23] is a super-resolution technique that improves the precision of single-molecule
localization by introducing sinusoidal excitation patterns that vary spatially across the sample.
The intensity of the excitation field at the emitter’s position determines how many photons
are detected in each frame. Because the sinusoidal pattern is inherently one-dimensional,
it is sequentially applied along both the x- and y-directions to enable full two-dimensional
localization. By acquiring multiple images with the pattern shifted in phase, the method
captures how the detected signal modulates with respect to the known illumination structure
[23].

Because SIMFLUX combines both centroid estimation and pattern-based modulation, it can
achieve higher localization precision than standard SMLM methods, often with fewer photons
[23]. The technique is compatible with wide-field microscope setup and can be implemented
using diffraction gratings or spatial light modulators to generate the required illumination
patterns.

1-5 Thesis Motivation

Modern biology demands tools capable of visualizing structures and processes far below the
diffraction limit of light. Fundamental mechanisms such as protein interactions, intracellular
signaling, and molecular organization occur on nanometer scales [7]. Yet conventional fluo-
rescence microscopy is fundamentally limited in resolution to approximately 200–250 nm due
to the wave nature of light [7]. To overcome this, a diverse range of super-resolution tech-
niques have been developed [11], enabling researchers to resolve subcellular structures with
nanometer precision.

Among these, Single-Molecule Localization Microscopy (SMLM) has become a cornerstone
by stochastically activating fluorescent emitters and localizing them with high precision
[13, 14, 15]. However, its resolution is ultimately limited by the number of detected photons
[17]. Modulation-enhanced approaches such as MINFLUX [22] and SIMFLUX [23] improve
upon this by using illumination patterns to encode additional spatial information, achieving
higher precision with fewer photons. The MINFLUX technique and its iterative variants rep-
resent some of the most photon-efficient approaches in super-resolution microscopy, enabling
localization with nanometer precision using remarkably few photons [22, 24]. These methods
use the Cramér–Rao Lower Bound (CRLB) to quantify the theoretical limits of localization
precision based on the Fisher information content in photon detections [25, 26, 27].
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Despite these advances, a crucial aspect of real-world implementation is often overlooked.
Ideal MINFLUX assumes a perfect zero-intensity minimum in the center of the doughnut-
shaped excitation beam, but such a condition is practically unachievable due to optical aberra-
tions, imperfect interference, and system instabilities [28, 29, 30]. These imperfections result
in residual intensity at the beam center and can be captured using a modulation contrast
parameter m ∈ (0, 1] [31]. Deviation from ideal modulation limits the spatial variation in
excitation and reduces the Fisher information, thus impairing localization precision.

While the consequences of imperfect modulation have been studied in SIMFLUX [31], their
impact on MINFLUX and iterative MINFLUX performance remains unexplored. In this
thesis, we extend the CRLB framework to MINFLUX under realistic (m < 1) illumination
conditions by incorporating modulation contrast as a variable. We aim to quantify how im-
perfect modulation affects localization precision, determine how this influences the optimal
pattern spacing strategy, and evaluate the impact on iterative MINFLUX scaling. By inte-
grating modulation contrast into theoretical analysis and simulation, we provide insight into
the real-world performance limits of MINFLUX and propose guidelines for optimal system
design under imperfect conditions.

This thesis is structured as follows. Chapter 2 introduces the estimation theory underpinning
localization precision in single-molecule microscopy, including maximum likelihood estimation
and the Cramér–Rao Lower Bound. Chapter 3 presents the main research contribution in the
form of a manuscript titled Optimal Pattern Location in Modulation Enhanced Microscopy,
which explores how imperfect modulation contrast affects localization performance in MIN-
FLUX and iterative MINFLUX. A mathematical model incorporating arbitrary modulation
contrast is developed, and the Fisher Information Matrix and CRLB are derived to inves-
tigate how these imperfections shift optimal pattern spacing and influence scaling behavior.
Chapter 4 concludes the thesis with a discussion of key findings and possible extensions.
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Chapter 2

Estimation of Parameters

Fluorescence microscopy detects individual photons emitted by fluorescent molecules and
uses these measurements to infer the molecules positions over time. The randomness in
photon emission and detection introduces variability in the measured positions of fluorescent
molecules [17, 26]. Estimating molecular positions from photon counts requires statistical
inference. Localization-based techniques, including SMLM and MINFLUX, infer emitter
coordinates from photon detection events. The spatial resolution of these methods depends
on the accuracy of parameter estimation from finite, noisy data [32, 33].

This chapter reviews estimation theory in the context of fluorescence microscopy. Section 2-1
defines estimands, estimators, and estimates. Section 2-2 formulates the likelihood function
and the maximum likelihood estimator. Section 2-3 introduces the Cramér-Rao lower bound
and its implications for localization precision.

2-1 Estimation

In statistical inference, the aim is to estimate an unknown parameter that characterizes the
data-generating process. This parameter, called the estimand, is denoted by θ [25, 34]. It
represents a fixed but generally unknown quantity, such as the mean, median, or variance
of the data. To estimate θ, a random sample X1, X2, . . . , Xn is collected, where each Xi is
a random variable representing an observation from the underlying distribution. Once the
sample is observed, the realizations of these random variables are denoted as x1, x2, . . . , xn,
and these observed values provide the basis for inferring θ.

Definition 1. The estimand is the fixed but unknown parameter of a distribution, denoted
by θ, that characterizes the data-generating process. It is the quantity of interest we aim to
estimate using a random sample X1, X2, . . . , Xn. The observed sample values x1, x2, . . . , xn

are realizations of these random variables and form the data used for estimation.

To estimate an unknown parameter, we use an estimator, which is a rule or function that
provides an estimate based on the observed sample [25, 34].

Master of Science Thesis Koen Stapel



16 Estimation of Parameters

Definition 2. An estimator, denoted by θ̂(X1, X2, . . . , Xn) (or simply θ̂), is a function of the
random variables X1, X2, . . . , Xn, expressed as:

θ̂ = g(X1, X2, . . . , Xn) , (2-1)

where g is a mapping from the sample space to the parameter space. The estimator is used
to infer the value of an unknown parameter θ that characterizes the underlying distribution
of the data. Since the estimator is defined in terms of random variables, it is itself a random
variable.

Once we have an estimator, applying it to a given dataset produces an estimate, which is the
specific value of the estimator for that dataset. An estimate is the realization of the estimator,
obtained after observing the sample data [25, 34].

Definition 3. An estimate is the numerical value produced by an estimator when applied to a
particular sample. It is the actual result or outcome based on the observed data. The estimator,
denoted θ̂, is a function of the random variables X1, X2, . . . , Xn, and when evaluated at the
observed sample values x1, x2, . . . , xn, it produces the estimate, denoted θ̂(x1, x2, . . . , xn).

An important property of estimators is unbiasedness. An estimator θ̂ is said to be unbiased
if its expected value is equal to the true value of the estimand θ [25, 34]. In other words, an
unbiased estimator does not systematically overestimate or underestimate the true parameter.

Definition 4. An estimator θ̂ is said to be unbiased if its expected value is equal to the true
value of the parameter being estimated. Formally, θ̂ is unbiased if

E[θ̂] = θ , (2-2)

where E[θ̂] denotes the expected value of the estimator θ̂, and θ represents the true value
of the unknown parameter. Unbiasedness ensures that the estimator does not systematically
overestimate or underestimate the parameter across repeated samples.

While unbiasedness ensures that an estimator is centered around the true parameter, it does
not quantify the variability of the estimator across different samples. This variability is
captured by the variance of the estimator [25, 34]. Variance indicates the consistency of an
estimator: lower variance implies more stable estimates across different samples.

Definition 5. The variance of an estimator θ̂ is the expected squared deviation of the esti-
mator from its expected value. It is formally defined as:

Var(θ̂) = E
[
(θ̂ − E[θ̂])2

]
. (2-3)

2-2 Likelihood Functions

The likelihood function represents the probability of observing the given sample data as a
function of the unknown parameter. Suppose a random sample X1, X2, . . . , Xn is drawn from
a distribution characterized by an unknown parameter θ. The likelihood function expresses
how likely the observed data x1, x2, . . . , xn are, given different possible values of θ [25, 34].
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2-2 Likelihood Functions 17

Definition 6. The likelihood function, denoted by L(θ | X1, X2, . . . , Xn), is the joint probabil-
ity (or probability density) of the random sample X1, X2, . . . , Xn as a function of the unknown
parameter θ. It represents how plausible different values of θ are, given the observed data.

Lemma 1. If the observations X1, X2, . . . , Xn are i.i.d., the likelihood function can be ex-
pressed as:

L(θ | X1, X2, . . . , Xn) =
n∏

i=1
f(Xi | θ) , (2-4)

where f(Xi | θ) is the probability density function of Xi given θ.

Understanding the relationship between the likelihood function and the joint probability of
the observed data is essential in parameter estimation [25, 34]. This connection allows the
likelihood function to be derived directly from the data-generating process.

Lemma 2. The likelihood function L(θ | X1, X2, . . . , Xn) is equivalent to the joint probability
of the observed data X1, X2, . . . , Xn given the parameter θ, provided that the probabilistic
model is correctly specified. Formally:

L(θ | X1, X2, . . . , Xn) = f(X1, X2, . . . , Xn | θ) , (2-5)

where f(X1, X2, . . . , Xn | θ) is the joint probability (or density) of the data given θ. This
equivalence assumes that the model is correctly specified and that probabilities are well-defined
for the observed data.

The likelihood function quantifies how plausible different parameter values θ are, given the
observed data [25, 34]. Maximizing the likelihood function identifies the value of θ that makes
the observed data most probable under the assumed statistical model. This value is known
as the maximum likelihood estimate (MLE) of θ, and it represents the parameter value that
best explains the observed data within the framework of the given model.

It is important to distinguish between the maximum likelihood estimator and the maximum
likelihood estimate. The maximum likelihood estimator is a function of the random sample
X1, X2, . . . , Xn that produces an estimate of θ. In contrast, the maximum likelihood estimate
(MLE) is the specific numerical value of θ obtained when the estimator is applied to the
observed data x1, x2, . . . , xn.

Definition 7. The maximum likelihood estimate (MLE) of θ is the value of θ that maximizes
the likelihood function L(θ | x1, x2, . . . , xn). In notation,

θ̂MLE = arg max
θ

L(θ | x1, x2, . . . , xn) . (2-6)

Maximizing the likelihood function directly can sometimes be computationally challenging
due to the product form of the likelihood, especially for large sample sizes [25, 34]. To
simplify the optimization, the log-likelihood function is often used. Taking the logarithm of
the likelihood (which does not change the location of the maximum) transforms the product
of probabilities into a sum of log-probabilities, which reduces computational complexity. This
transformation also improves numerical stability, as multiplying many small probabilities can
lead to underflow, an issue mitigated by summing their logarithms. Additionally, the log-
likelihood makes differentiation easier, aiding analytical or numerical optimization.
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18 Estimation of Parameters

Definition 8. The log-likelihood function, denoted by ℓ(θ | x1, x2, . . . , xn), is the natural
logarithm of the likelihood function L(θ | x1, x2, . . . , xn). Thus,

ℓ(θ | x1, x2, . . . , xn) = log L(θ | x1, x2, . . . , xn) . (2-7)

For i.i.d. observations, the log-likelihood is the sum of the log of the individual densities:

ℓ(θ | x1, x2, . . . , xn) = log f(x1 | θ) + log f(x2 | θ) + · · · + log f(xn | θ) . (2-8)

2-3 Cramér–Rao Lower Bound

In estimation theory, a key objective is to minimize the variance of an estimator while keeping
it unbiased. The Cramér–Rao lower bound (CRLB) provides a theoretical lower bound on
the variance of any unbiased estimator for a given parameter [25, 34].

Definition 9. The Fisher information, denoted by I(θ), quantifies the amount of information
that the observed data carry about an unknown parameter θ. For a random variable X with
probability density function f(x | θ), the Fisher information is defined as:

I(θ) = E
[(

∂ ln f(X | θ)
∂θ

)2]
, (2-9)

where the expectation is taken with respect to the distribution of X under the parameter value
θ.

Lemma 3. The Fisher information I(θ) can alternatively be expressed as the negative expec-
tation of the second derivative of the log-likelihood:

I(θ) = −E
[

∂2 ln f(X | θ)
∂θ2

]
. (2-10)

Theorem 1. Let θ̂ be an unbiased estimator of a scalar parameter θ, based on a random sam-
ple X1, X2, . . . , Xn with probability density function f(x | θ). If certain regularity conditions
are satisfied, the variance of θ̂ is bounded below by the inverse of the Fisher information:

Var(θ̂) ≥ 1
I(θ) , (2-11)

where I(θ) is the Fisher information.

The multivariate extension of the CRLB provides a lower bound on the covariance matrix of
any unbiased estimator for a vector of parameters.

Theorem 2. Consider θ̂, an unbiased estimator for a parameter vector θ = (θ1, θ2, . . . , θp)⊤,
obtained from a random sample x = (x1, x2, . . . , xn)⊤. This sample is a realization of in-
dependent and identically distributed random variables X = (X1, X2, . . . , Xn)⊤ with joint
probability density pθ(x) that depends on θ. Assume the log-likelihood ℓ(θ | x) = ln pθ(x) is
continuously differentiable with respect to θ.
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The entries of the Fisher information matrix I(θ) are given by

[I(θ)]i,j = −E
[

∂2ℓ(θ | x)
∂θi ∂θj

]
, (2-12)

where the derivatives are evaluated at the true parameter value θ, and the expectation is taken
with respect to the distribution of x at θ. If I(θ) is invertible, then the covariance matrix Cθ̂

of any unbiased estimator θ̂ satisfies:

Cθ̂ ⪰ I(θ)−1 , (2-13)

where Cθ̂ = E
[
(θ̂ − θ)(θ̂ − θ)⊤]

, and the notation ⪰ indicates that Cθ̂ − I(θ)−1 is positive
semi-definite.

In fluorescence microscopy, estimation theory underpins the localization of single emitters.
In single-molecule localization microscopy (SMLM) and MINFLUX, the goal is to estimate
emitter positions—typically x and y coordinates—from photon counts measured across cam-
era pixels or detector bins. Given a known point spread function or illumination profile, the
likelihood function for emitter position can be constructed. The Cramér–Rao lower bound
(CRLB) sets a theoretical lower limit on the variance of any unbiased estimator under a given
noise model [26]. Under shot-noise-limited conditions, this bound predicts that localization
precision scales with the inverse square root of the detected photon count [27]. In MINFLUX,
which achieves high precision with few photons, the CRLB is used to quantify the trade-off
between photon budget and spatial resolution [22].
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Chapter 3

Optimal Pattern Location in
MINFLUX

This chapter is written in the form of a standalone manuscript prepared for publication. It
presents the theoretical modeling, simulation results, and analysis concerning the optimal
placement of illumination patterns in MINFLUX and iterative MINFLUX microscopy, with
a specific focus on the influence of imperfect modulation contrast.
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Abstract

MINFLUX (minimal fluorescence photon fluxes) achieves nanometer-scale preci-
sion by probing single emitters with a donut excitation beam using the central
intensity minimum. This principle enables localization that, for small displace-
ments, becomes independent of the emission wavelength, further enhancing
resolution. A critical yet underexamined parameter in this method is the pattern
placement radius L, which governs how spatial information is extracted from
photon counts. Here, we show that optimizing L is essential for maximizing local-
ization precision under realistic conditions where the illumination minimum is
imperfect (m < 1). Using Cramér–Rao lower bound simulations, we find that
localization precision reaches a global optimum at a finite radius Lopt, and that
misplacing this radius leads to substantial performance losses. For modulation
contrast m = 0.95, tuning L to 34 nm improves localization precision by a
factor of 1.6 relative to standard fixed-radius schemes. We derive a predictive
relationship, Lopt ≈ 1.30σillum

√
1 − m, valid for 0.8 ≤ m ≤ 0.99. We incor-

porated a Gaussian prior on emitter position, to handle uncertainty in initial
emitter position that is used to place the patterns on the emitter. We found
the optimal spacing Lopt for a given σprior. We further show that, in itera-
tive MINFLUX, repeatedly applying this optimal L in each cycle outperforms
conventional sequential shrinking strategies, improving precision by over 50% at
m = 0.95. These findings establish pattern placement as a decisive factor in
modulation enhanced microscopy and provide a framework for extracting max-
imal information from minimal photon budgets. Experimental validation under
biological imaging conditions will be critical to assess practical gains.

Keywords: MINFLUX, Single-Molecule Localization Microscopy (SMLM),
Modulation, Cramér–Rao Lower Bound (CRLB), Imperfect Illumination, Modulation
Contrast, Iterative Localization, Localization Precision
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1 Introduction

Single-molecule localization microscopy (SMLM) has revolutionized optical imag-
ing by enabling fluorescent molecules to be localized far beyond the diffraction
limit of conventional microscopes [1]. Techniques such as photoactivated localiza-
tion microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)
achieve nanometer-scale resolution by sequentially activating and localizing individ-
ual emitters, reconstructing super-resolved images molecule-by-molecule [1–3]. Further
improvements in resolution have been realized through modulation enhancing strate-
gies, notably exemplified by methods like MINFLUX (minimal emission flux), iterative
MINFLUX, MINSTED, and SIMFLUX [4–7]. Figure S1 provides a schematic overview
of (Iterative) MINFLUX. MINFLUX uses a targeted doughnut-shaped excitation pat-
tern with a central intensity null to localize a single emitter, and iterative MINFLUX
builds on this by repeatedly narrowing the illumination pattern around the refined
position estimate [4, 5].

MINFLUX operates by centering a dark focal spot (intensity minimum) on the
emitter’s location, so that any slight displacement of the emitter from the null yields
an imbalance in detected photon counts across multiple illumination positions [4]. By
strategically positioning a set of doughnut illumination patterns around the molecule,
MINFLUX extracts localization information more efficiently per photon than tradi-
tional Gaussian PSF localization approaching sub-nanometer precision [4, 8, 9]. This
principle enables localization that, for small displacements, becomes independent of
the emission wavelength, further enhancing resolution. Recent demonstrations using
high-order vortex beams and two-photon excitation confirm the remarkable potential
of MINFLUX, achieving localization precisions well below 1 nm under ideal condi-
tions [8, 9]. The iterative MINFLUX technique extends the basic MINFLUX approach
by successively zooming in on the emitter. After an initial coarse localization, the
doughnut excitation pattern is re-centered and scaled to a smaller radius, and this
process is repeated to further refine the position estimate [5]. Under perfect imaging
conditions, each iteration of MINFLUX can improve localization precision by con-
centrating illumination where it yields the most information [5]. Beyond MINFLUX,
related advances like MINSTED combine a coordinate-targeted STED depletion focus
with MINFLUX-like readout, enabling real-time single-molecule tracking at nanometer
spatial resolution and millisecond temporal resolution [6, 10].

In practice, optical aberrations mean that a real doughnut beam never features
a perfectly zero-intensity center [11, 12]. Even with state-of-the-art optics, a residual
light intensity remains at the nominal “dark” center of the focal spot, reducing the
modulation contrast m of the illumination pattern from its ideal value of 1 [13, 14].
m (ranging from 0 to 1) quantifies how well the excitation is modulated: m = 1
corresponds to a perfect doughnut with zero central intensity, whereas m < 1 indicates
a partially filled minimum [15]. An ideal doughnut pattern exhibits a deep null at the
center, while an imperfect doughnut (low m) has a shallower intensity dip. Reduced
modulation contrast directly diminishes the photon count differences that MINFLUX
relies on, thus degrading the Fisher information available for localization [11, 13].

2



Under imperfect modulation (m < 1), the optimal illumination pattern spacing
L in SIMFLUX is not the smallest possible; instead, localization precision is maxi-
mized at a finite, non-zero L [15]. Similar contrast-aware optimization remains largely
unexplored for MINFLUX and its iterative implementations. Previous studies have
optimized MINFLUX parameters under experimental imperfections [16] and improved
iterative MINFLUX tracking by tuning dwell time, photon thresholds, and laser power
[17]. However, neither of these studies investigated how imperfect modulation con-
trast (m < 1) impacts the choice of illumination pattern geometry in MINFLUX or
iterative MINFLUX. In contrast, this work explicitly incorporates imperfect modu-
lation conditions into the theoretical framework and optimizes pattern placement to
maximize localization precision under m.

Motivated by this gap, this work optimizes the pattern locations in MINFLUX
and iterative MINFLUX with a non-ideal modulation conditions. We incorporate a
modulation contrast parameter into the MINFLUX theoretical framework and use
Fisher-information-based analysis to calculate the Cramér–Rao lower bound (CRLB)
for localization precision as a function of pattern placement. By optimizing the pattern
locations for a given measured contrast m, we identify the strategies that maximize
localization information. We determine how the optimal pattern spacing evolves as
m deviates from 1, and we examine whether and when iterative MINFLUX provides
additional benefit under these optimized conditions.

2 Method

2.1 Image Formation Model

We calculate the lower bound on localization precision by modeling image formation
and deriving the Fisher information matrix and CRLB [18, 19]. The parameter vector
is θ = [θx, θy, θI , θb]

T. Here, θx and θy are emitter coordinates. θI is the expected
signal photon count. θb is the expected background photon count per pattern [20].
The image formation model combines previous models [15, 20, 21].

The expected photon count at pixel (xi, yi) is

µi(xi, yi,θ) = θIP (θx, θy)Ex(xi, θx)Ey(yi, θy) + θb, (1)

where P is the illumination pattern at the emitter position. Ex and Ey are marginal
PSFs [20]. Details are in Supplementary Note 1 [15, 21].

The Fisher information matrix is

Ip,q(θ) =
N∑

i=1

1

µi

∂µi

∂θp

∂µi

∂θq
, (2)

where N is the number of pixels summed over patterns. Partial derivatives are
in Supplementary Note 2 [21].

Photon detection in MINFLUX can be modeled either as a set of independent
Poisson processes—one for each illumination pattern—or using a multinomial model
in which the total number of detected photons θI is fixed [4]. The Poisson model
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allows for variability in both the total photon count and the pattern-specific counts,
whereas the multinomial model assumes a known θI and focuses only on the relative
distribution of photons across patterns. In our simulations, we use a Poisson detection
model but normalize to a constant total photon count.

We chose the Cramér–Rao lower bound (CRLB) over the Van Trees inequality
(VTI) because the CRLB yields a deterministic, smooth objective function that is
computable and suits efficient optimization [18, 22]. In contrast, the VTI (the Bayesian
Cramér–Rao bound) entails integrating over a prior distribution of the emitter position
[23, 24], often lacking closed-form expressions and requiring computationally intensive
methods such as Monte Carlo integration [22, 25]. This introduces stochastic variability
that can hinder optimization convergence. While the VTI provides a global uncertainty
measure by averaging Fisher information over a prior [23, 26]. It is only applicable
in scenarios where such a prior is explicitly defined, such as in iterative localization
with prior knowledge of the emitter position. Since our focus lies on optimizing the
precision for a fixed emitter position, the local CRLB is more appropriate. It quantifies
the best-case variance at a specific parameter estimate and aligns with our goal of
refining a single localization [18, 25]. Furthermore, literature demonstrates that Fisher-
information-based objectives are effective in driving successive localization refinements
[27].

2.1.1 Modulation Contrast

MINFLUX localizes emitters by sequentially illuminating with four doughnut patterns
n0 through n3 ad in Figure S1, placed on a circle of diameter L [28]. The center pattern
n0 is at (0, 0); the others are spaced 120° apart on this circle. Adjusting L controls the
spatial sampling region and is key to iterative localization refinement. The excitation
pattern in MINFLUX is modeled as a two-dimensional doughnut beam centered at
(xp, yp) with width parameter σillum [21]. The doughnut pattern is

Pdonut(x, y) =
(x− xp)

2 + (y − yp)
2

2σ2
illum

exp

(
− (x− xp)

2 + (y − yp)
2

2σ2
illum

)
, (3)

Pattern position Coordinates (xp, yp)
n0 (center) (0, 0)

n1

(
L
2
, 0

)

n2

(
−L

4
,+

√
3L
4

)

n3

(
−L

4
,−

√
3L
4

)

Table 1 Coordinates (xp, yp) of patterns n0–n3 with
pattern separation L.
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Fig. 1 (a) Two-dimensional simulated doughnut-shaped excitation patterns under perfect modula-
tion (m = 1.00, left) and imperfect modulation (m = 0.50, right). Green indicates highest excitation
intensity; white indicates zero. Insets show a single horizontal cross-section (colored line) at the verti-
cal center of each donut. The perfect-modulation pattern (m = 1.00) has a deep central null, whereas
the imperfect-modulation pattern (m = 0.50) retains a residual central intensity, reducing the con-
trast of the zero-node. (b) Horizontal cross-sections through these two doughnut patterns (same
colored lines as in panel a), replotted on a 1D axis in units of σillum. The blue curve (m = 1.00)
dips to zero at the center (emitter position), while the orange curve (m = 0.50) remains elevated.
Overlayed red stars mark four predefined “pattern positions” n0, n1, n2, n3 (vertical dashed lines) at
which the emitter is interrogated. Here, n0 is the donut with its central minimum directly over the
emitter (center pattern), and n1–n3 are three donut patterns shifted radially outward (outside pat-
terns). Because the emitter’s absolute coordinate changes relative to each donut pattern, the four red
stars lie at different points on each cross-section. (c) Corresponding photon counts expected at each
pattern position ni, for both m = 1.00 (blue bars) and m = 0.50 (orange bars). These bar graphs
are the four red-star corresponding photoncount from panel (b). (d) Eight simulated single-molecule
detection images reflecting the summed photon counts under each combination of modulation con-
trast (m = 1.00 top row, m = 0.50 bottom row) and pattern position n0–n3.
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Modulation contrast m quantifies how strongly an illumination pattern oscillates
between its maximum and minimum intensity values and is defined as

m =
Imax − Imin

Imax + Imin
. (4)

In an ideal MINFLUX doughnut with a perfectly dark center, Imin = 0 and thus
m = 1. However, experiments in biological tissue show that optical scattering and
aberrations lead to a nonzero doughnut minimum. For instance, residual intensity at
the doughnut center of 3%, indicating degradation in doughnut contrast [13]. Optical
aberrations fill in the doughnut’s dark center [11]. Similar effects are seen in structured
illumination microscopy (SIM), where aberrations reduce pattern contrast [29, 30].
Rather than modeling each aberration or scattering mechanism individually, using a
finite m < 1 effectively aggregates these imperfections into a single, experimentally
measurable parameter [15]. It should be noted, however, that modulation contrast
only reflects illumination-forming imperfections. It does not account for photon shot
noise, detector readout noise, point spread function mismatches [11].

Figure 1a shows that reducing the modulation contrast from m = 1.0 to m = 0.5
results in a partially filled doughnut minimum. In Figure 1b, this reduced contrast
directly translates to shallower modulation of intensity across the pattern positions.
The differences between maxima and minima flatten, meaning emitter displacement
causes smaller changes in detected signal. Consequently, Figure 1c demonstrates how
the photon count differences between pattern positions decrease with lower m, which
reduces the Fisher information available for localization. Finally, Figure 1d shows that
with imperfect modulation m = 0.5, the images become more similar across pattern
positions.

2.2 Optimization

The objective is to optimize the illumination spacing parameter L > 0 to minimize
the average localization uncertainty of the emitter. To obtain a single measure of
localization uncertainty, we chose the root-mean-square average [4]. The cost function
is defined as

min
L>0

σx,y(L), with σx,y(L) =

√
σx(L)2 + σy(L)2

2
. (5)

The values σx(L) and σy(L) are obtained from the diagonal entries of the Cramér–Rao
lower bound (CRLB) covariance matrix. This matrix is computed by inverting the
Fisher Information Matrix (FIM), which is numerically constructed for each candidate
value of L [18].

The function σx,y(L) is evaluated only for L > 0. While negative values of L would
yield valid Fisher information and precision values, they correspond to a geometric
reflection of the illumination pattern around the emitter. Because the physical setup
assumes a fixed relative arrangement of illumination positions, only the magnitude
of the spacing is optimized. The sign is not considered relevant, and the domain is
restricted.
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Figure S2 shows the CRLB-derived localization precision σx,y(L) as a function of
spacing L for modulation contrast values m ∈ {0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99}.
Each curve corresponds to a fixedm. The results show that for eachm, σx,y(L) reaches
a unique global minimum at a finite L = Lopt(m).

Derivatives of the CRLB with respect to L require differentiating through the
Fisher Information Matrix (FIM), denoted by I, which is a symmetric matrix-valued
function of L. Since the CRLB involves the inverse of I, the gradient includes terms of
the form−I−1(∂I/∂L)I−1 [31]. These terms are computationally expensive to evaluate
and not readily available in closed form.

The optimization of σx,y(L) is performed using the Nelder–Mead simplex
method [32]. This derivative-free algorithm is appropriate because the objective func-
tion involves matrix inversion and numerical integration, making analytical derivatives
with respect to L computationally costly to obtain [31]. The Nelder–Mead method
requires only pointwise evaluations of σx,y(L), making it well-suited to scenarios
where gradients are unavailable. Additionally, numerical evaluations show that σx,y(L)
is unimodal for fixed modulation contrast m, allowing local search methods like
Nelder–Mead to reliably converge to the global minimum without requiring gradi-
ent information. The complete Nelder–Mead algorithm, including all design choices,
is specified and justified in Supplementary Note 3. All parameter values appear in
Table S1.

2.2.1 Prior Regularization

To determine the optimal illumination radius L in practical conditions where the
emitter’s position is not known exactly, we incorporate prior uncertainty into the opti-
mization. We define the emitter offset vector as δ = (xoffset, yoffset), representing the
displacement from the center of the illumination pattern. This uncertainty is mod-
eled as a two-dimensional Gaussian distribution centered at the origin: pσprior(δ) =
N (0, σ2

prior I), where σprior denotes the standard deviation of the prior estimate.
This formulation introduces a form of distributional regularization [33], in which the
optimization accounts for variability in the emitter location rather than minimizing
precision at a single fixed position.

To compute the expected localization precision under this prior, we define:

E[σx,y(L)] =

∫∫

R2

σx,y(L, δ) pσprior
(δ) dδ ≈ 1

N

N∑

i=1

σx,y(L, δi), (6)

where σx,y(L, δ) is the localization uncertainty for a specific offset, and δi ∼ pσprior

are sampled offsets. The integral is approximated by a Monte Carlo average over N
stratified samples.

The goal is then to find the illumination radius L that minimizes the expected
localization uncertainty:

min
L>0

E[σx,y(L)]. (7)

Figure S6 shows that the resulting objective landscape is nearly convex and chas a
single global minimum. However, non-convexity may appear for small values of L with
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insufficient sampling. In our implementation, we found that using 500 stratified 2D
samples yielded a global minimum optimization surface. Due to the unimodal structure
and the lack of gradient information, we again employ the Nelder–Mead algorithm for
minimizing the expected uncertainty. The complete optimization routine is described
in Supplementary Note 4.

2.2.2 Iterative MINFLUX Optimization

The objective in iterative MINFLUX is to optimize a sequence of illumination spac-
ings (L1, L2, . . . , Lk) ∈ Rk

>0 across k iterations to minimize the average localization
uncertainty of the emitter. The cost function is defined as

min
L1,...,Lk>0

σx,y(L1, . . . , Lk), with σx,y(L1, . . . , Lk) =

√
σx(L1, . . . , Lk)2 + σy(L1, . . . , Lk)2

2
.

(8)
The total Fisher Information Matrix is computed by summing the Fisher Infor-

mation Matrices from each iteration [18]. Each term in the sum corresponds to one
illumination pattern spacing Li, such that the cumulative information reflects all k
steps in the sequence.

Figure S3 and S4 visualize the optimization landscape of σx,y(L1, L2) and
σx,y(L1, L2, L3), respectively. These plots show smooth and structured objective
surfaces with a clear minimum, suggesting that the function is amenable to local opti-
mization [31]. However, global optimality cannot be guaranteed in higher dimensions,
and the possibility of local minima increases with the number of parameters [34].

Although the optimization landscape appears amenable to local optimization, ver-
ifying whether a local solver can reliably reach the global minimum is essential. To
assess this, we compared the results of a local optimization algorithm (Nelder–Mead)
with a global method (Differential Evolution) [35]. As shown in Figure S5, the max-
imum observed difference in Lk between the two methods is only 0.08 nm. This
small discrepancy suggests that both methods consistently converge to the same
solution, indicating that the optimization landscape likely features a unique global
minimum [31].

Given that the Nelder–Mead algorithm converged approximately 20 times faster
in our simulations, it was selected for use in all subsequent optimization tasks. The
full algorithm and all parameter settings are described in Supplementary Note 5.

3 Results

The expected localization precision in MINFLUX scales as σx,y ∝ L/
√
N [4]. Figure S7

confirms this: precision improves with
√
N and grows linearly with L with m = 1.

Figure 2a illustrates how the optimal choice of illumination spacing L depends on
the modulation contrast m. For perfect modulation (m = 1), the localization precision
σx,y continues to improve as L approaches zero, in line with the ideal theoretical
prediction [4]. However, for imperfect modulation (m < 1), this scaling no longer
holds. Instead, σx,y reaches a minimum at a finite, nonzero Loptimal, and this optimum
shifts to larger values as m decreases. For example, at m = 0.95, the optimal L is
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approximately 34.38 nm. The optimal L is no longer as small as possible, but instead
depends on m. These findings are consistent with those observed in SIMFLUX [15].

This behavior can be explained by considering the photon emission profile near the
center of the illumination pattern. For perfect modulation (m = 1), the central region
of the donut-shaped pattern emits no photons. As a result, even a small displacement
of the emitter leads to a noticeable change in detected photon counts, since the emit-
ter transitions from a dark region into a brighter region. This sharp contrast produces
a high localization sensitivity. However, when m < 1, the central intensity is no longer
zero. Although the spatial derivative of the illumination remains shallow near the
center, the emitter now receives a nonzero photon count even without displacement.
Consequently, the relative change in detected photons due to small displacements is
reduced, lowering the available localization information. This effect favors larger illu-
mination spacings, where the emitter samples regions with higher intensity gradients
Lopt > 0.

The MINFLUX localization precision to the choice of L is quantified in Figure 2b.
This panel shows the relative increase in localization uncertainty when L deviates from
Loptimal, for variousm values. For allm < 1, selecting a suboptimal L can substantially
degrade localization precision. For instance, using a fixed small spacing such as L =
5 nm results in a localization precision that is at most 60% of the optimum for all values
of m shown in the figure. For a modulation contrast of m = 0.95, using L = 50nm
and L = 70nm (values originally suggested in the MINFLUX implementation [4])
results in localization precisions of 95.7% and 79.3% of the minimum achievable σx,y,
respectively. For m = 0.99, the corresponding values are 56.6% and 42.8%.

Figure 2c shows that σx and σy exhibit symmetry about the y-axes. This follows
from the pattern placement being symmetrical in the y-axis. The combined precision
σx,y displays a threefold rotational symmetry, consistent with three off-center illumi-
nation positions spaced 120° apart. The highest localization precision is achieved at
the center, where information from all patterns overlaps maximally.

Figure 2a suggests a relation between the optimal L and the modulation contrast
m, which is quantified in Figure 2d. The plot displays Loptimal as a function of 1−m in
log–log scale. The data approximately follow a power law with slope 0.5, corresponding
to

Loptimal ∝
√
1−m. (9)

From Figure 2d, the goal is to directly express Lopt as a function of m. A dimen-
sional analysis was performed. The quantity Lopt has units of nanometers (nm), while√
1−m is dimensionless. Therefore, the proportionality constant must also have units

of nm. The initial hypothesis was that this constant depends on the illumination width
σillum, which has units of nm. Figure 2e confirms this hypothesis. The data supports
the following relation:

Lopt = A · σillum

√
1−m (10)

9



Fig. 2 (a) Localization precision σx,y as a function of pattern separation L for various modulation
contrasts m. Red dots indicate the optimal values Lopt that minimize the localization uncertainty.
Imperfect modulation significantly shifts the optimal L. All simulations use an emitter photon count
of θI = 1000 and background photon count θb = 0. (b) Relative increase in localization uncertainty
σx,y as a function of pattern separation L, normalized to the optimal value Lopt for each modulation
contrastm. The y-axis shows the ratio σx,y(L)/σx,y(Lopt), expressed as a percentage. A value of 100%
corresponds to the minimum localization uncertainty, i.e., when L = Lopt. Each curve corresponds to
a different m from (a), except m = 1, which is excluded because it has no optimum. (c) Spatial maps
of localization precision with m = 0.95 and L = Lopt, visualizing precision over a grid of emitter
positions. The three subpanels show σx, σy , and σx,y . (d) Optimal pattern spacing Lopt as a function
of 1 − m in log–log scale. The fitted line confirms the relationship Lopt ∝ √

1−m, with a slope of
0.50. (e) Fitted scaling relationship Lopt = A · σillum

√
1−m for multiple modulation contrasts m.

Each pair of data and fit lines corresponds to a different m value.

This relation is dimensionally consistent. The proportionality constantA was deter-
mined to be 1.30. This value was obtained by fitting all data points corresponding to
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four values of σillum, using only modulation contrasts m ∈ [0.8, 0.99]. A linear regres-
sion was performed on the transformed data. The fit yielded an R2 score of 0.99998.
Lower values of m were excluded due to optical setups being able to achieve these
values m [36]. This results in the following predictive expression:

Lopt = 1.30 · σillum

√
1−m (11)

The parameters σillum and m in Equation 11 can be determined experimentally
by scanning the illumination pattern over a single emitter and recording the detected
intensity, converted to photon counts. The modulation contrast m is then calculated
asm = Imax−Imin

Imax+Imin
, where Imax and Imin are the maximum and minimum detected

intensities, respectively. The illumination width σillum can be estimated from the dis-
tance between the two intensity maxima in the scan profile. Alternatively, using the
conversion in [14], the relation can be written as:

Lopt = 0.36 · λ

NA

√
1−m (12)

We evaluate the domain in which Equation 11 remains accurate. Figures S8a
and S8b show the absolute and relative difference between predicted and optimized
Lopt over a domain of m ∈ [0.8, 0.99] and σillum ∈ [80, 150] nm. Within this range,
the maximum absolute error in Lopt was 0.166 nm, and the maximum relative error
was 0.239%. The impact of this deviation on localization precision σxy is shown
in Figure S8c and S8d. The maximum deviation in σxy within this domain was
0.0000026 nm. A broader parameter range was also evaluated, with m ∈ [0.1, 0.99] and
σillum ∈ [20, 500] nm. Here, the largest error in Lopt was 4.810 nm or 1.267%, and the
largest deviation in σxy was 0.00016 nm. Outside this domain, particularly for low m
and small σillum, the prediction error increased rapidly. Therefore, the validity domain
of Equation 11 is:

0.1 ≤ m ≤ 0.99, 20 nm ≤ σillum ≤ 10000 nm (13)

The predictive relation in Equation 11 is derived under the assumption that
the illumination pattern is centered on the emitter. This condition ensures that
the optimization yields the smallest achievable localization uncertainty. In practice,
this assumption does not always hold. During measurements, the emitter position is
not known, and the illumination pattern may be offset from the true emitter loca-
tion [4, 17]. Figure S9 shows how lateral emitter offsets affect the optimal illumination
spacing. As the displacement increases, the optimal L grows and deviates from the
prediction in Equation 11, consistent with prior observations [4, 17]. Figure S10 high-
lights that this deviation scales with the relative emitter–pattern offset. Figure S11
shows that to limit localization precision degradation to under 10%, the radial offset
must satisfy roffset ≤ 0.2 · L. Since L is the pattern diameter, this means the emit-
ter must stay within 40% of the pattern radius to maintain high precision. However,
Figure S11 also shows that localization precision degrades sharply once the emitter lies
outside this diameter. This indicates that the relation in Equation 11 no longer holds
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when the emitter is offset from the center. It is therefore more appropriate to inter-
pret this relation as a lower bound (minimum), rather than a true optimum, which
depends on the emitter’s position relative to the pattern.

Fig. 3 (a) Optimal illumination spacing Lopt as a function of emitter offset along the y-axis, com-
puted by minimizing the localization uncertainty for each fixed offset. (b) Corresponding localization
precision σx,y for each optimized spacing in panel (a). (c) Optimal illumination spacing Lopt as a
function of prior uncertainty σprior, where the emitter position is assumed to follow a 2D Gaussian
distribution. (d) Mean localization precision σx,y evaluateqd at the optimal spacing from panel (c).

To find the pattern placement when Equation 11 does not hold, the effect of emit-
ter displacement relative to the center of the illumination pattern on both the optimal
spacing Lopt and the resulting localization precision is shown in Figures 3a and 3b.
The value of Lopt increases monotonically with the emitter offset for all tested modu-
lation contrasts. Equivalent results for offsets along the x-axis and along the diagonal
direction r = − x√

2
− y√

2
are provided in Figure S12 and exhibit the same trend.

In practice, pattern placement is based on a prior estimate of the emitter posi-
tion [4]. Therefore, Figures 3a and 3b, which assume a known offset, are not directly

12



applicable for determining the optimal L. If the emitter’s offset is known precisely,
no further localization would be required. To address this, we introduce the prior

uncertainty σprior, defined such that the emitter position is modeled as

[
xoffset

yoffset

]
∼

N (0, σ2
prior I). Here, σprior represents the standard deviation of the initial estimate,

which may be derived from the measurement variance [18], an CRLB [20], or existing
analytical approximations [37–39].

Figures 3c and 3d show the optimal spacing Lopt and the resulting average localiza-
tion precision σx,y as a function of σprior, respectively. For all values of m, the optimal
spacing increases with increasing prior uncertainty, and the resulting localization pre-
cision degrades accordingly. These plots can be used to select Lopt in a practical setting
by evaluating σprior from an initial localization and then choosing the corresponding
spacing. At m = 0.99 in Figure 3a, the optimal spacing Lopt increases from approxi-
mately 40 nm to over 100 nm when the offset increases from 0 to 50 nm, while under a
Gaussian prior in Figure 3c with σprior = 50 nm, Lopt reaches only about 90 nm. These
differences arise because the prior-based optimization averages over emitter positions,
yielding more stable and conservative spacing values suitable for practical use.

To enable a rapid estimation of the optimal spacing Lopt based on a known prior
uncertainty σprior, we fitted a fourth-order polynomial model to the data in Figure 3c.
The resulting model is visualized in Figure S13. The fitted model is defined as follows:

Lopt(σprior,m, σillum) = 1.30σillum

√
1−m

+m1.991
(
1.852σprior + 0.08362σ2

prior

− 0.003163σ3
prior + 3.124× 10−5 σ4

prior

)
. (14)

with a coefficient of determination of R2 = 0.98853. This expression offers a con-
venient and computationally inexpensive way to approximate Lopt, which is useful for
real-time decision-making in experimental workflows. An alternative approach is to
use the look-up tables (Tables S2-S8). However, the optimal spacing also depends on
additional system parameters such as pixel size, wavelength, and numerical aperture,
which are not explicitly included in either the polynomial model or the tables. There-
fore, the most accurate values of Lopt should ideally be obtained by re-running the full
optimization procedure for the specific experimental configuration. This is not feasible
in real-time due to the computational cost of the Monte Carlo integration, making the
polynomial fit and the tables useful proxies for fast estimation. However, by running
the code with the specific parameters of a given microscope setup, a custom table of
accurate optimal L values can be generated and used for real-time decision-making.

Figure S14 shows that the localization precision σx,y increases as the total photon
count θI increases, for all values of L. The figure also demonstrates that the effect of
photon count on the optimal L is minimal, with the maximum change in Lopt being
less than 0.0025 nm across all tested modulation contrasts. Furthermore, Figure S14

confirms that the scaling relation σx,y ∝ θ
−1/2
I holds even for imperfect modulation

contrast. This scaling behavior is consistent with the result shown in Figure S7a for
perfect illumination [4]. This shows the photon count will only affect the absolute size
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of the information landscape and does not change the shape of the landscape, because
the Fisher information in x and y scales with θI .

Figure S15a shows that the localization precision σx,y increases as the total
background-photon count σb increases for all values of L. Figure S15b demonstrates
that the effect of background photons on the optimal L is minimal, with the maxi-
mum change in Lopt being less than 0.0025 nm across all tested modulation contrasts
and signal photon counts. Figure S15c confirms that increasing background leads to
an increase in localization uncertainty, regardless of the modulation contrast, and that

the scaling relation σx,y ∝ θ
−1/2
I remains valid even in the presence of background.

In the Cramér–Rao lower bound (CRLB) expression, background photons act as an
additive noise term, raising the uncertainty but not affecting the spatial derivatives in
the Fisher information. In contrast, decreasing modulation contrast directly reduces
the derivatives of the intensity profile with respect to position, which lowers the Fisher
information, especially at the zero-intensity center where precise localization depends
on steep gradients. As a result, while background photons degrade overall precision,
they do not diminish the localization advantage provided by the central minimum
in MINFLUX, whereas reduced modulation broadens and flattens the intensity pat-
tern, weakening the signal gradient at the center and directly diminishing localization
performance.

Figure S16 shows that adding more off-center patterns improves localization pre-
cision when the modulation contrast is imperfect (m < 1), but not when m = 1. As
shown in Figure S17a, this is because for m = 1 the central pattern dominates the
Fisher information, whereas for m < 1 it contributes little due to the loss of the zero-
intensity point. Figure S17b further shows that at large L, the central pattern is the
sole contributor for m = 1, while for m < 1, all patterns contribute equally but weakly.
Figure S16c shows that increasing the number of illumination patterns changes the
symmetry of the spatial precision map. For example, using five patterns introduces
a fourfold symmetry, while six patterns yield a fivefold symmetry, and so on. This
reflects the rotational symmetry imposed by the pattern geometry around the emit-
ter. Figure S17c demonstrates that removing the central pattern reduces precision for
m = 1, but improves it for m < 1, as expected from Figure S16.

Figure S18 compares two photon allocation strategies: pattern normalization (fixed
photons per pattern) and global normalization (fixed total photons). The latter, used
in MINFLUX [4] and in all other results in this study, allows photon counts to vary
based on excitation intensity. As shown in Figure S18a, both approaches yield similar
localization precision σx,y as a function of L, and Figures S18b–c show that optimal L
values differ by less than 5 nm across modulation contrasts. Figure S18d confirms that
the resulting precision maps differ slightly but share the same threefold symmetry.
In Figure S19, we compare two metrics for localization precision: the average-based
CRLB σx,y and the determinant-based CRLB σdet. While Figure S19a shows that σdet

can attain lower minima for high m, Figures S19b and S19c show that both metrics
produce nearly identical optimal L values and similar spatial precision maps.
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3.1 Iterative MINFLUX

Figure S20 shows the localization precision σx,y as a function of iteration number k for
different values of α, using perfect modulation contrast (m = 1). The data reproduce

the scaling law reported in [5], where the localization precision scales as σx,y ∝ 1/
√
θI

k
.

This relation predicts that, under ideal conditions, localization precision improves
exponentially with the number of iterations.

Fig. 4 Optimization of the pattern spacing L over four iterations of the iterative MINFLUX pro-
cedure. Each panel (Iteration 1–4) shows σ(x,y) versus L for four different modulation contrasts
(m = 0.8, 0.9, 0.95, 0.99), with red markers indicating the optimal L that minimizes σ(x,y). The
identical optimal L observed in each iteration demonstrates convergence to the same spacing across
successive iterations.

After observing in Figure 2 that the optimal L for imperfect modulation contrast
(m < 1) is no longer the smallest possible value, we questioned how this would affect
localization precision in iterative MINFLUX. If decreasing L no longer always yields
better precision, the typical iterative approach of successively reducing L may not
be optimal. To investigate this, we optimized L at each iteration, as illustrated in
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Figure 4. In this figure, each panel (Iterations 1–4) shows the localization precision
σx,y as a function of L. The optimal L remains the same at each iteration, regardless of
k. This means that for imperfect modulation, the best result is obtained by repeating
the same measurement multiple times with L fixed at its optimal value, rather than by
shrinking L over successive iterations. In other words, the optimal iterative MINFLUX
procedure converges to performing k identical MINFLUXmeasurements at the optimal
L for that m.

We now compare against the iterative MINFLUX approach [5], where the illu-
mination radius Lk at each iteration k is set according to the estimated localization

precision from the previous step using Lk = α·σ(k−1)
x,y , with α defining how aggressively

the illumination contracts around the estimated emitter position.

Fig. 5 Iterative MINFLUX simulation with L1 = 150 and α = 5 [5]. (a) The localization preci-
sion achieved in the simulation for different modulation contrasts m. For reference, the dashed lines
indicate the precision attainable with optimal MINFLUX for each m. At iteration 1, the full photon
budget is used in a single step; at iteration 2, the photon budget is divided evenly over two iterations,
and so forth. (b) The ratio of the localization precision of optimal MINFLUX to that of iterative
MINFLUX, quantifying the improvement achieved by MINFLUX. (c) The evolution of the illumina-
tion parameter L throughout the iterative simulation, starting from L1 and updating according to

Lk = α · σ(k−1)
x,y at each iteration. (d) The contribution of each pattern to the total Fisher informa-

tion

√
I2
Fx,x

+I2
Fy,y

2
at each iteration. The Fisher information contribution peaks when L is closest to

the optimal value found in (c).
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Figure 5 presents a direct comparison with iterative MINFLUX [5]. Figure 5a shows
that, for varying modulation contrasts, iterative MINFLUX yields worse localization
precision compared to the optimal single-step strategy. Figure 5b quantifies this dif-
ference by plotting the ratio between the optimal and iterative precision: notably, for
m = 0.95, the gain exceeds 1.5 (over 50% improvement) (L1 = 150 nm, α = 5).
Figure 5c reveals how L adapts over iterations, while Figure 5d shows the Fisher infor-
mation contributions from each pattern at every iteration. The Fisher information
peaks when L approaches its optimal value, highlighting that spending more itera-
tions near this optimal L maximizes localization precision. These results emphasize
that iterative MINFLUX is intrinsically limited by its sequential adaptation process,
especially under imperfect modulation conditions.

The same experiment is done with (L1 = 100 nm and α = 15) in Figure S21. This
is to see the effect of how the precision will differ when getting closer or farther away
from the optimal L, since in Figure 5 it will already past the optimal L after one
update.

4 Conclusion

Our analysis demonstrates that optimizing the MINFLUX pattern radius L for a given
modulation contrast m can improve localization performance under imperfect mod-
ulation. In particular, we find a finite optimal spacing Lopt(m) exists for m < 1, in
contrast to the ideal m = 1 case where decreasing L indefinitely improves precision
[4]. At high contrast (m = 0.95), the optimal radius is 34 nm, which yields a localiza-
tion uncertainty 50% lower than that achieved with a fixed small-radius illumination
scheme of 5 nm. For example, using a suboptimal fixed spacing of L = 70 nm (as
in the original MINFLUX implementation [4]) at m = 0.95 attains only 79% of the
achievable precision, whereas tuning to Lopt recovers the full performance. We also
established a predictive formula relating the optimal pattern radius to modulation
contrast. Fitting the simulation data yields a scaling law for the optimal illumination
spacing Lopt ∝

√
1−m, refined to Lopt ≈ 1.30, σillum

√
, 1−m,. Both σillum and m

can be determined experimentally by scanning the excitation pattern over an emit-
ter and recording the resulting intensity. The modulation contrast is then computed
as m = (Imax − Imin)/(Imax + Imin), and σillum can be estimated from the spacing
between the two maxima in the intensity profile. This expression for Lopt is valid over
the practical range (0.8 ≤ m ≤ 0.99) with a relative error below 0.3%. However, this
relation assumes the emitter lies under the central pattern and retains over 90% of the
optimal localization precision when the emitter is within 40% of the pattern diame-
ter. For larger emitter offsets, the localization uncertainty increases rapidly, and the
analytical prediction no longer holds.

To extend this framework to practical applications where the emitter location is
uncertain, we incorporated prior information in the form of a Gaussian position distri-
bution. By modeling the emitter offset as a random variable with standard deviation
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σprior. The resulting optimal spacing Lopt(σprior) increases with increasing prior uncer-
tainty. These results provide a practical strategy for pattern placement, with an esti-
mation σprior from an initial localization. σprior can be derived from the measurement
variance [18], an CRLB [20], or existing analytical approximations [37–39].

When optimizing Iterative MINFLUX a single iteration of optimized MINFLUX
already realizes the best possible precision, outperforming the standard multi-iteration
procedure. The optimal illumination radius identified in the first measurement remains
the same for subsequent iterations (for a given m < 1). In other words, the optimal
iterative strategy simply converges to performing k identical exposures at Lopt rather
than progressively contracting the pattern. Consequently, the conventional iterative
MINFLUX approach [5] cannot achieve the same localization precision as our opti-
mized single-step method. At m = 0.95, a single optimized MINFLUX measurement
provides over a 1.5-fold improvement in precision, > 50% reduction in localization
uncertainty, relative to the iterative scheme. However, iterative MINFLUX remains
useful when the prior uncertainty σprior is large, provided that the illumination radius
is never reduced below the optimal L predicted by our model.

These findings are relevant for single-particle tracking, where emitters are localized
repeatedly across time. By adapting the illumination radius based on the evolving
prior uncertainty, optimal precision can be maintained throughout the trajectory.

Experimental validation under realistic imaging conditions m < 1 will be essential
to evaluate the practical accuracy of these predictions. Direct comparison between sim-
ulations and systematic measurements will determine whether the theoretical trends
persist in practice.

Code and Data Availability

The code and Data used for the optimization in this work is available by contacting
the authors.
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Supplementary Note 1 Image Formation Model

To quantify localization precision in (iterative) MINFLUX, we model the photon detec-
tion process on the basis of a parametric image formation model. This framework
enables the derivation of the Cramér-Rao Lower Bound (CRLB) precision bound. The
parameter vector of the image formation model includes both the x and y coordinates
of the emitter:

θ =
[
θx θy θI θb

]T
, (S1)

where θx and θy are the position of the emitter in the x- and y-directions, θI is
the expected photon count emitted by the emitter, and θb is the expected background
count per unit area.

The image formation model is governed by a 2D psf, h(x, y), which represents the
spread of light from a point source in both the x and y directions. The image g(x, y)
of the object f(x, y) is formed through a 2D convolution with the psf:

g(x, y) = h(x, y) ∗ f(x, y), (S2)

where ∗ denotes the two-dimensional convolution operator. The conservation of
energy condition requires that the total area under the psf equals one:

∫ ∫

R2

h(x, y)dxdy = 1. (S3)

The object function f(x, y) is then given by:

f(x, y) = P (x, y) (θIδ(x− θx, y − θy) + θb) , (S4)

where P (x, y) is the illumination pattern, and δ(x− θx, y − θy) represents a point
emitter located at (θx, θy). This function incorporates both the signal from the emitter
and the background noise. For the model to be valid, the illumination pattern P (x, y)
must be non-negative, accurately measurable, and constant during the imaging process
to ensure reliable parameterization and reconstruction of the emitter’s position.

To find an expression for the expected photon count on a pixel i, we integrate the
image function g(x, y) over the pixel area Ai, which has center coordinates (xi, yi).
The result is:

µi(xi, yi) = θIP (θx, θy)

∫ xi+
∆x
2

xi−∆x
2

∫ yi+
∆y
2

yi−∆y
2

h(x− θx, y − θy)dxdy + θbBi, (S5)

where Bi is given by:

Bi =

∫ xi+
∆x
2

xi−∆x
2

∫ yi+
∆y
2

yi−∆y
2

(∫ ∫

R2

h(τ, γ)P (x− τ, y − γ)dτdγ

)
dxdy. (S6)

Since the experiments are assumed to be performed under total internal reflection
fluorescence (TIRF) illumination, the background is considered spatially and pattern
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independent. Therefore, we model the background contribution as a constant term
across all patterns, i.e., Bi = 1 for all i [40].

Assuming a Gaussian psf model:

h(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (S7)

the expected photon count µi can be decomposed into the product of two separate
integrals, Ex and Ey, which represent the contributions of the psf in the x and y
directions, respectively:

µi(xi, yi) = θIP (θx, θy)Ex(xi, θx)Ey(yi, θy) + θbBi. (S8)

The integrals Ex(xi, θx) and Ey(yi, θy) can be expressed in terms of the error
function erf:

Ex(xi, θx) =
1

2

[
erf

(
xi − θx + ∆x

2

σ
√
2

)
− erf

(
xi − θx − ∆x

2

σ
√
2

)]
, (S9)

Ey(yi, θy) =
1

2

[
erf

(
yi − θy +

∆y
2

σ
√
2

)
− erf

(
yi − θy − ∆y

2

σ
√
2

)]
. (S10)

The error function erf(z) is defined as:

erf(z) =
2√
π

∫ z

0

e−t2 dt, (S11)

where erf(z) represents the probability of a random variable with a normal
distribution and zero mean falling within the range [−z, z].

These integrals take into account the finite pixel size and provide a more accurate
model for the distribution of photon counts over the pixel area.

Substituting the expressions for Ex and Ey into the equation for µi:

µi(xi, yi) = θIP (θx, θy)Ex(xi, θx)Ey(yi, θy) + θbBi. (S12)

Donut-shaped illumination introduces spatial modulation with a zero-intensity
minimum at the center. The illumination pattern in 2D is defined as:

Pdonut(x, y) = e
(x− xp)

2 + (y − yp)
2

2σ2
illum

exp

(
− (x− xp)

2 + (y − yp)
2

2σ2
illum

)
, (S13)

where σillum is the standard deviation describing the spatial spread of the Gaus-
sian envelope, and (xp, yp) is the center of the donut pattern. The quadratic term[
(x− xp)

2 + (y − yp)
2
]
creates the characteristic zero-intensity minimum at the center

of the illumination.
The locations of xp and yp for iterative MINFLUX are dependent on the location

estimate of the previous iteration. For our simulation with the MINFLUX and iterative
MINFLUX case θx,k−1 and θy,k−1 are 0. They are defined in the table below:
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Name Location on the circle with diameter L xp yp
Pcenter(x, y) center θx,k−1 θy,k−1

Pϕ=0(x, y) ϕ = 0 θx,k−1 + 1
2
L θy,k−1

Pϕ= 2

3
π(x, y) ϕ = 2

3
π θx,k−1 − 1

4
L θy,k−1 +

√
3

4
L

Pϕ= 4

3
π(x, y) ϕ = 4

3
π θx,k−1 − 1

4
L θy,k−1 −

√
3

4
L

Supplementary Note 2 Cramér–Rao Lower Bound
(CRLB)

To quantify the achievable localization precision for an unbiased estimator in MIN-
FLUX and its iterative variants, we compute the Cramér–Rao Lower Bound (CRLB).
The CRLB provides a lower bound on the variance of any unbiased estimator, given
the statistical model of the imaging process. It is derived from the Fisher information
matrix (FIM), which quantifies the sensitivity of the expected photon counts with
respect to the parameters of interest.

The expected photon count at camera pixel (xi, yi) under an illumination pattern
is given by:

µi(xi, yi, θ) = θIP (θx, θy)Ex(xi, θx)Ey(yi, θy) + θb, (S14)

where θ = [θx, θy, θI , θb]
T , P (θx, θy) is the illumination intensity at the emitter loca-

tion, and Ex(xi, θx), Ey(yi, θy) are the integrals of the Gaussian PSF over the pixel
area in the x and y directions, respectively.

To compute the Fisher Information Matrix (FIM), we use the definition:

IF (θ)p,q = E
[
∂ logL(θ)

∂θp
· ∂ logL(θ)

∂θq

]
, (S15)

where p, q ∈ {1, . . . , d} index the parameters in θ, and the expectation is taken over
the distribution of the observed data.

In our imaging context, each camera pixel detects photons following a Poisson
distribution. The probability of observing gi photons at pixel i, given expected photon
count µi(θ), is:

P (gi | θ) =
µi(θ)

gie−µi(θ)

gi!
. (S16)

The log-likelihood of observing a full image g = (g1, g2, . . . , gN ) is then:

logL(θ) =
N∑

i=1

[gi logµi(θ)− µi(θ)− log(gi!)] . (S17)

Taking the partial derivative with respect to parameter θp, we get:

∂ logL(θ)

∂θp
=

N∑

i=1

(
gi

µi(θ)
− 1

)
∂µi(θ)

∂θp
. (S18)
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Now applying the expectation over all possible observations (i.e., over the Poisson
distribution of gi), we use the identity:

E[gi] = µi(θ),

so that:

E
[(

gi
µi(θ)

− 1

)]
= 0.

However, when computing the expected product of derivatives for the FIM, we get:

IF (θ)p,q = E




N∑

i=1

(
gi

µi(θ)
− 1

)
∂µi(θ)

∂θp
·

N∑

j=1

(
gj

µj(θ)
− 1

)
∂µj(θ)

∂θq


 (S19)

=

N∑

i=1

E

[(
gi

µi(θ)
− 1

)2
]
∂µi(θ)

∂θp

∂µi(θ)

∂θq
, (S20)

since gi and gj are independent for i ̸= j, and the cross terms vanish. For a Poisson
distribution:

E

[(
gi

µi(θ)
− 1

)2
]
=

1

µi(θ)
.

This gives the final result [23]:

IF (θ)p,q =

N∑

i=1

1

µi(θ)

∂µi(θ)

∂θp

∂µi(θ)

∂θq
, (S21)

which is the expression used to compute the Fisher Information Matrix in localization
microscopy models such as MINFLUX.

The CRLB then provides a bound on the covariance matrix of any unbiased
estimator θ̂:

Cov(θ̂) ⪰ IF (θ)
−1, (S22)

from which the localization precision is computed as:

σx =
√

[IF (θ)−1]x,x, σy =
√

[IF (θ)−1]y,y. (S23)

We now provide the derivatives required for computing the FIM [21].

Derivatives of µi(xi, yi, θ)

With respect to θx:

∂µi(xi, yi, θ)

∂θx
= θI

∂P (θx, θy)

∂θx
Ex(xi, θx)Ey(yi, θy) + θIP (θx, θy)

∂Ex(xi, θx)

∂θx
Ey(yi, θy)

(S24)
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Derivative of P (θx, θy) with respect to θx:

∂P (θx, θy)

∂θx
= e

[
θx − xp

σ2
illum

− (θx − xp)
2 + (θy − yp)

2

2σ4
illum

(θx − xp)

]
exp

(
− (θx − xp)

2 + (θy − yp)
2

2σ2
illum

)

(S25)
Derivative of Ex(xi, θx):

∂Ex(xi, θx)

∂θx
=

1√
πσ
√
2


exp


−

(
xi − θx − ∆x

2

σ
√
2

)2

− exp


−

(
xi − θx + ∆x

2

σ
√
2

)2





(S26)
With respect to θy:

∂µi(xi, yi, θ)

∂θy
= θI

∂P (θx, θy)

∂θy
Ex(xi, θx)Ey(yi, θy) + θIP (θx, θy)Ex(xi, θx)

∂Ey(yi, θy)

∂θy
(S27)

Derivative of P (θx, θy) with respect to θy:

∂P (θx, θy)

∂θy
= e

[
θy − yp
σ2
illum

− (θx − xp)
2 + (θy − yp)

2

2σ4
illum

(θy − yp)

]
exp

(
− (θx − xp)

2 + (θy − yp)
2

2σ2
illum

)

(S28)
Derivative of Ey(yi, θy):

∂Ey(yi, θy)

∂θy
=

1√
πσ
√
2


exp


−

(
yi − θy − ∆y

2

σ
√
2

)2

− exp


−

(
yi − θy +

∆y
2

σ
√
2

)2





(S29)
With respect to θI :

∂µi(xi, yi, θ)

∂θI
= P (θx, θy)Ex(xi, θx)Ey(yi, θy) (S30)

With respect to θb:
∂µi(xi, yi, θ)

∂θb
= Bi = 1 (S31)

These expressions can be substituted into Equation S21 to evaluate the Fisher
information matrix. Inverting this matrix yields the Cramér–Rao lower bounds on the
localization precision for each parameter.
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Supplementary Note 3 MINFLUX Optimization

To enforce the constraint L > 0, a penalty term M is added to the objective function.
This ensures that the optimizer avoids unphysical solutions where the illumination
pattern would be reflected around the emitter due to negative spacing. The penalty is
applied only outside the feasible region and does not affect the optimization landscape
within the valid domain. The resulting cost function is defined as:

min
L∈R

σx,y(L), with σx,y(L) =

√
σx(L)2 + σy(L)2

2
+M. (S32)

The penalty term M is given by:

M =

{
0 if L > 0,

106 if L ≤ 0.
(S33)

This approach guarantees that the optimization remains numerically stable and does
not interfere with the optimal solution when L remains in the valid physical range.

The Nelder–Mead algorithm is a direct search method used for unconstrained opti-
mization of nonlinear functions [32]. It is derivative-free and operates solely based on
function evaluations [41]. The algorithm maintains a simplex, which in one dimen-
sion is simply a line segment defined by two points. At each iteration, the algorithm
evaluates the objective function at the vertices of the simplex and replaces one of the
points based on a set of geometric operations: reflection, expansion, contraction, or
shrinkage [41]. These operations are used to explore the domain and move the simplex
toward a region with lower function values [41].

The algorithm begins from an initial guess x0, which determines the starting posi-
tion of the simplex. In one dimension, this simplex consists of x0 and a second point
offset from it. The choice of x0 = 50nm is based on the approximate location of the
minimum as observed in Supplementary Figure S2.
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Algorithm 1 Nelder–Mead Algorithm (1D Case)

1: Input: Initial point x0, objective function f(x), tolerance xatol
2: Initialize second point x1 = x0 + δ, for small δ > 0
3: Let xl, xh be the points with f(xl) ≤ f(xh)
4: while |xh − xl| > xatol do
5: Reflection: xr = xl + α(xl − xh)
6: if f(xr) < f(xl) then
7: Expansion: xe = xl + γ(xr − xl)
8: Replace xh ← xe if f(xe) < f(xr), else xh ← xr

9: else if f(xr) < f(xh) then
10: Replace xh ← xr

11: else
12: Contraction: xc = xl + ρ(xh − xl)
13: if f(xc) < f(xh) then
14: Replace xh ← xc

15: else
16: Shrink: xh ← xl + σ(xh − xl)
17: end if
18: end if
19: Reorder: update xl, xh so that f(xl) ≤ f(xh)
20: end while
21: Output: Approximate minimum xl

The Nelder–Mead algorithm is used with fixed parameters: reflection coefficient
α = 1, expansion coefficient γ = 2, contraction coefficient ρ = 0.5, and shrinkage
coefficient σ = 0.5 [41]. The stopping criterion is based solely on the simplex width,
which must fall below a threshold xatol = 10−6 nm [41].
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Supplementary Note 4 Prior Location MINFLUX
Optimization

The offset δ = (xoffset, yoffset) between the emitter and the illumination pattern is
unknown. If it were known, the experimenter would not need to measure the position
of the parameter. We now model the emitter position as a random variable drawn
from a 2D Gaussian distribution centered at the illumination pattern origin.

pσprior(δ) = N
(
0,

[
σ2
prior 0
0 σ2

prior

])
, (S34)

Given this probabilistic model, we aim to select the pattern spacing L that mini-
mizes the expected localization uncertainty over the distribution of emitter positions.
Let σxy(L, δ) denote the achievable localization precision for a given spacing L and
emitter offset δ. The expected localization precision is then defined as:

E[σx,y(L)] =

∫∫

R2

σx,y(L, δ) pσprior(δ) dδ, (S35)

where pσprior(δ) is a 2D Gaussian distribution as defined in Equation (S34). This
expression represents a Bayesian average over the prior uncertainty in emitter location,
where σx,y(L, δ) denotes the CRLB-based localization uncertainty for a given offset
and pattern spacing.

To compute this expectation numerically, we use a Monte Carlo approximation:

E[σx,y(L)] ≈
1

N

N∑

i=1

σx,y(L, δi), (S36)

where δi are random samples drawn from the prior pσprior(δ). This method is justified

by the law of large numbers, and its error converges as O(1/
√
N), independent of the

problem’s dimensionality [42, 43].
To improve accuracy and reduce variance, we use stratified sampling rather than

random sampling. In this approach, each axis is divided into N equal-probability
intervals, and one sample is drawn from each, leading to a more uniform and rep-
resentative coverage of the 2D Gaussian distribution [44]. This makes the resulting
estimate smoother and more suitable for optimization. Specifically, we generate fixed
stratified samples once per σprior, and reuse them across all evaluations of L. This
allows the optimizer to reliably minimize the expected precision without introducing
sampling noise into the objective function. This technique is known as sample average
approximation.

The optimal pattern spacing is then given by:

Lopt = argmin
L

E[σx,y(L)] (S37)
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which defines the value of L that minimizes the expected localization error across the
prior distribution of emitter positions.

Figure S6 shows that the objective landscape is nearly convex, except for small
values of L, where some non-convexity appears. Nonetheless, the function exhibits a
well-defined single optimum. A smooth landscape with a single well-defined minimum
only emerges when the number of prior samples is sufficiently large. In our implemen-
tation, using 500 stratified 2D samples was necessary. Owing to the unimodal shape
and lack of derivative information, we again use the Nelder–Mead algorithm to perform
the optimization. The same algorithm from Supplementary Note 3 is used.
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Supplementary Note 5 Iterative MINFLUX
Optimization

As in the non-iterative case, a penalty term M is added to enforce the constraint
Li > 0 for all illumination spacings Li in the sequence. The same justification applies,
and the penalty does not affect the optimization within the feasible domain. The cost
function becomes:

min
L1,...,Lk∈R

σx,y(L1, . . . , Lk), with σx,y(L1, . . . , Lk) =

√
σx(L1, . . . , Lk)2 + σy(L1, . . . , Lk)2

2
+M.

(S38)
where

M =

{
0 if Li > 0 for all i,

106 otherwise.
(S39)

In the multidimensional case, the Nelder–Mead algorithm generalizes the simplex
from a line segment to a (d + 1)-vertex polytope in d dimensions. For example, in
k-dimensional iterative MINFLUX optimization, the simplex consists of k + 1 dis-
tinct vectors Li ∈ Rk. Each vector encodes a complete set of illumination spacings
(L1, . . . , Lk), and all geometric operations (reflection, expansion, contraction, and
shrinkage) are applied to these vectors as a whole [41].

The same update rules apply component-wise, and the algorithm evaluates the cost
function σx,y(L1, . . . , Lk) at each vertex. The stopping criterion is again based on the
diameter of the simplex, i.e., the maximum distance between any pair of vertices, which
must fall below the threshold xatol. All parameter values and logic are preserved
from the 1D case.

Supplementary Note 5.1 Differential Evolution

To verify that the local optimization converges to the global optimum, we compare
it against the Differential Evolution (DE) algorithm [35]. DE is a population-based
global optimization method suitable for nonlinear and non-differentiable functions. It
maintains a population of candidate solutions and iteratively improves them using
mutation, crossover, and selection operations.

At each generation, a new candidate is generated by adding the scaled difference
between two population vectors to a third, and potentially combining it with the cur-
rent candidate through crossover. If the resulting trial solution yields a lower objective
function value, it replaces the current candidate. This mechanism promotes global
exploration and avoids premature convergence [45].

In this work, the DE algorithm is implemented via the differential evolution

function from the SciPy library [46]. The strategy was set to ’best1bin’, where the
best solution in the population serves as the base vector for mutation. A population size
of popsize = 10 was used to ensure adequate exploration. The convergence tolerance
tol was set to 10−6, and the mutation factor was sampled uniformly from the interval
(0.5, 1.0). The crossover probability, given by recombination = 0.7, controlled the
proportion of parameters inherited from the mutant vector. These settings provide a
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balance between global exploration and precise convergence, making DE a suitable
baseline for validating local optimization results.
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Supplementary Note 6 Simulation Parameters

The simulations in this work were performed using a consistent set of imaging and
system parameters, as listed in Table S1. These parameters were selected to match
typical conditions in high-resolution MINFLUX experiments and to isolate the effects
of modulation contrast and illumination pattern placement. All simulations assumed
a total photon budget of 1000 photons per measurement, with no background signal.
The emitter was placed at the origin, and the central illumination pattern was offset
slightly to avoid singularities in the CRLB calculation.

Table S1 Simulation parameters used in all results.

Parameter Value
Wavelength λ 640 nm
Numerical Aperture (NA) 1.4
PSF width σpsf 0.21 · λ/NA = 96 nm [37]
Donut peak-to-peak spacing 0.78 · λ/NA ≈ 357 nm [14]
Central pattern offset (x, y) 0.001 nm, 0.001 nm
Pixel size (object space) 65 nm
Pixel size (image space) 6.5 µm
Magnification 100
Image size 16× 16 pixels
Emitter position (x, y, z) 0 nm, 0 nm, 0 nm
Initial ring radius L0 150 nm
Total photon budget 1000 photons
Background intensity 0 photons/pixel
Initial guess (L1) 50 nm
L-tolerance 10−6

Penalty M for L < 0 106
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Supplementary Note 7 Figures

Fig. S1 Explanation of MINFLUX and iterative MINFLUX; image heavily inspired by [4] and [5].
(a) Four excitation patterns n0–n3 around an unknown emitter (red star), with current estimate
(green dot) and four colored null-centers (gray, blue, yellow, green) on a dashed ring of diameter L
over a green-white gradient; only bottom/left spines are shown, top/right hidden. (b) Photon-count
bar plot for n0–n3 (bars colored green, yellow, gray, blue), with x-axis labels n0–n3 and y-axis labeled
“photons” , bottom/left spines visible. (c) Iterative refinement schematic: the dashed ring shrinks
toward the red star, and the green-dot estimate converges . (d) Iterations 1–3, each showing a smaller
dashed ring and updated green estimate relative to the red star; spines as in (a). (e) Photon-count
bar plots for each iteration, with four colored bars (n0–n3).
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Fig. S2 Localization precision σx,y as a function L for various modulation contrasts m. Each curve
represents the optimization landscape for a specificm, showing how precision improves with increasing
L up to an optimal value, beyond which performance degrades.

Fig. S3 Localization precision σx,y as a function of two illumination pattern spacings L1 and L2.
The colormap indicates the value of σx,y , with lower values shown in darker shades. The grid covers
the range L1, L2 ∈ [10, 100] nm.

36



Fig. S4 Localization precision σx,y as a function of two spacing parameters L1 and L2 across
varying values of a third parameter L3. Each panel corresponds to a different fixed value of L3,
showing the structure of the objective function in a 2D subspace for each setting.
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Fig. S5 Absolute difference in optimal illumination spacings Lk between local (Nelder–Mead) and
global (Differential Evolution) optimization methods, plotted across iteration index k for various
modulation contrasts m ∈ {0.80, 0.90, 0.95, 0.99}. The small differences across all k suggest that the
optimization landscape is relatively well-behaved, and that local optimization is sufficient to reach
near-global solutions in practice.
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Fig. S6 Expected localization precision E[σxy ] as a function of illumination spacing L for dif-
ferent modulation contrasts m ∈ {0.8, 0.9, 0.95, 0.99} and prior standard deviations σprior ∈
{10, 20, 30, 40} nm (top-left to bottom-right). Each curve corresponds to a different m, and the red
dots indicate the optimal L that minimizes the expected precision. The convex shape of the curves
illustrates that the objective function is well-behaved and amenable to numerical optimization.
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Fig. S7 (a) Theoretical scaling of localization precision σx,y as a function of detected photon
number N , demonstrating the expected N−1/2 behavior for perfect modulation contrast (m = 1) at
fixed L = 200 nm. (b) Theoretical scaling of localization precision σx,y as a function of L, illustrating
the linear dependence σx,y ∝ L for perfect modulation contrast (m = 1) at fixed photon budget
N = 1000, as predicted by [4].

40



Fig. S8 Comparison between predicted and actual optimal parameters across the illumination
domain defined by modulation contrast m and illumination width σillum. The predicted optimal spac-
ing is given by Lopt = 1.30σillum

√
1−m. (a) Absolute difference in optimal spacing: Lactual−Lpred.

(b) Percentage difference in optimal spacing: (Lactual − Lpred)/Lpred. (c) Absolute difference
in localization precision: σxy,actual − σxy,pred. (d) Percentage difference in localization precision:
(σxy,actual − σxy,pred)/σxy,actual. Color indicates the magnitude of each difference, highlighting sys-
tematic prediction errors over the parameter space.
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Fig. S9 The predictive model Lopt = 1.30σillum

√
1−m across different lateral offsets of the emitter

relative to the illumination pattern. The coefficient A is fitted using data at xoffset = 0nm and
held fixed in all subplots. (a)–(d) show the optimal pattern spacing Lopt as a function of (1 − m),
for emitter offsets xoffset = 0, 2, 4, 8 nm, respectively. Data points represent CRLB-optimized values,
while solid lines show the fitted scaling law for each illumination width σillum ∈ {50, 100, 150, 200} nm.
Despite increasing misalignment, the model remains predictive, particularly for larger σillum.
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Fig. S10 Deviation between the numerically optimized and predicted illumination pattern spacing
Loptimal as a function of relative emitter displacement. The predicted value is given by Lpred =

1.30σillum

√
1−m, and deviations are shown as Loptimal−Lpred. (a)–(b): Influence of lateral offsets

along the x-axis for σillum = 100 nm and 150 nm, respectively. (c)–(d): Same as above, but for
lateral offsets along the y-axis. Each point corresponds to a different modulation contrast m, and
the horizontal axis represents the emitter offset normalized by the corresponding Loptimal. For small
offsets, the prediction remains accurate; larger misalignments cause a systematic increase in optimal
spacing beyond the predicted value.
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Fig. S11 Relative error in predicted localization precision due to lateral emitter misalignment.
The predicted illumination spacing is given by Lpred = 1.3σillum

√
1−m. Each point compares

the localization precision obtained using Lpred with the true optimum Lopt, computed via CRLB
minimization. The vertical axis shows the relative precision error (σxy,pred − σxy,opt)/σxy,opt, while
the horizontal axis expresses the normalized offset xoffset/Lopt or yoffset/Lopt. (a)–(b) show errors for
increasing x-offsets, and (c)–(d) for increasing y-offsets, at σillum = 100 nm and 150 nm, respectively.
The results indicate that the analytical prediction remains accurate (error < 10%) for moderate
misalignments relative to the pattern spacing.
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Fig. S12 (a) Optimal illumination spacing Lopt as a function of emitter offset along the x-axis,
computed by minimizing the localization uncertainty for each fixed offset. (b) Corresponding local-
ization precision σxy evaluated at the optimized spacing in panel (a). (c) Same as (a), but for emitter
offsets along the y-axis. (d) Same as (b), but for offsets along the y-axis. (e) Same as (a), but for
emitter offsets along the diagonal direction r = − x√

2
− y√

2
. (f) Same as (b), but for diagonal emitter

offsets as in (e).
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Fig. S13 Optimal illumination spacing Lopt as a function of prior localization uncertainty σprior

for four illumination widths σillum ∈ {80, 100, 120, 140} nm. Data points (circles) are shown alongside
an analytical fit (solid lines) for modulation contrasts m ∈ {0.8, 0.85, 0.9, 0.95, 0.99}. The fit is based
on a fourth-order polynomial model of the form: Lopt = 1.3σillum

√
1−m+mf

∑4
i=1 ai σ

i
prior where

the fitted coefficients are a1 = 1.852, a2 = 8.362×10−2, a3 = −3.163×10−3, a4 = 3.124×10−5, and
exponent f = 1.991. The model achieves a coefficient of determination of R2 = 0.98853, indicating
excellent agreement between the model and simulation data.
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Fig. S14 (a) Precision curves σx,y(L) for varying total signal-photon counts. Each curve shows the
root-mean-square localization precision σx,y (in nm) as a function of the pattern side length L (nm)
for four total-photon budgets: N = 200 (blue), N = 500 (orange), N = 1000 (green), and N = 2000
(red). The curves are generated by sampling L uniformly between 5nm and 150nm, computing the
two-dimensional Cramér–Rao lower bound (CRLB) at each L, and plotting σx,y versus L. Solid circles
mark the optimal side length Lopt(N) that minimizes σx,y for each photon budget. As expected, σx,y

decreases with increasing N , and Lopt shifts slightly toward smaller values as N grows. (b) Shift in
optimal pattern side length ∆L = Lopt(N)−Lopt(N = 100) versus total signal photons N . For four
modulation contrasts m = 0.80 (blue), m = 0.90 (orange), m = 0.95 (green), and m = 0.99 (red),
we plot ∆L (in nm) against N (photons) on a logarithmic scale. It can be seen that the difference in
Lopt is smaller than 0.0025 nm. (c) Log–log plot of σx,y versus total signal photons N for multiple
modulation contrasts. For m = 0.80 (blue), m = 0.90 (orange), m = 0.95 (green), and m = 0.99 (red),
the optimal Lopt(N) is first determined via the procedure in panel (a). Using those Lopt values, we
compute σx,y at each N and plot it on a double-logarithmic axis. Each nearly straight line confirms
the asymptotic scaling σx,y ∝ N−1/2. Higher modulation contrast yields lower σx,y at fixed N , as
evidenced by the vertical separation of the lines.
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Fig. S15 (a) Precision curves σx,y(L) for varying total background-photon counts. Each curve
shows the root-mean-square localization precision σx,y (in nm) as a function of the length L (nm)
for four backgrounds: σb = 0 (blue), σb = 4 (orange), σb = 8 (green), and σb = 16 (red). The curves
are generated by sampling L uniformly between 5 nm and 150 nm, computing the two-dimensional
Cramér–Rao lower bound (CRLB) at each L, and plotting σx,y versus L. Solid circles mark the opti-
mal side length Lopt(σb) that minimizes σx,y for each background level. As expected, σx,y increases
with larger σb, and Lopt shifts slightly toward larger values as background grows. (b) Shift in opti-
mal pattern side length ∆L = Lopt(θb) − Lopt(θb = 0) versus total signal photons N for different
modulation contrasts. For m = 0.80 (blue), m = 0.90 (orange), m = 0.95 (green), and m = 0.99
(red), we plot ∆L (in nm) against N (photons) on a logarithmic scale, using σb values from panel
(a) to compute each Lopt(σb). It can be seen that the difference in Lopt is smaller than 0.0025 nm.
(c) Localization precision σx,y versus total background photons θb for multiple modulation contrasts
at fixed N = 1000. For m = 0.80 (blue), m = 0.90 (orange), m = 0.95 (green), and m = 0.99 (red),
we first determine the optimal side length Lopt(σb) as in panel (a), then compute σx,y at each σb

and plot it on a linear axis. Each curve rises monotonically, confirming that increasing background
degrades precision.
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Fig. S16 (a) Precision versus number of patterns for a fixed length L = 50nm. When m = 1
(perfect modulation), adding off-center patterns decreases precision, whereas for m < 1 (imperfect
modulation) precision increases as more patterns are added. Note that the optimal L for m = 1 is 0,
so only the central pattern remains, so would not be a fair comparison. (b) Same as (a) but using the
optimized length L for each modulation m. Again, adding patterns improves precision for m < 1. (c)
Two-dimensional precision maps for different numbers of patterns, using m = 0.95 and the optimal L.
The location of each pattern corresponds to regions of altered precision, illustrating how the pattern
count influences spatial precision.
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Fig. S17 (a) Sum of the Fisher information entries Fxx + Fyy contributed by the central (middle)
pattern, normalized by the total contribution of the non-center patterns, as a function of L. At L = 0,
all patterns coincide and each contributes 25% of the total information. For perfect illumination
(m = 1), the middle pattern dominates, whereas for imperfect illumination (m < 1) it contributes
almost nothing for larger L. (b) Same quantity as in (a), but plotted for larger values of L. As large L
, the relative contribution of the middle pattern becomes 100% for m = 1, due to the other patterns
not being able to illuminate the emitter at this distance. For m < 1it becomes 25% due to each pattern
having very small derivatives and becoming just wide field illumination. (c) Localization precision
σx,y versus L with all four patterns (solid lines) and with the central pattern removed (dashed lines).
Removing the middle pattern lowers the precision for perfect illumination (since the central pattern
would otherwise provide infinite information), but for imperfect illumination the precision actually
improves when the center is omitted.
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Fig. S18 (a) Localization precision σx,y as a function of L for pattern normalization (dashed lines)
and global normalization (solid lines) at modulation contrasts m = 0.80, 0.90, 0.95, 0.99, 1.00.
Colored markers indicate the optimal L (excluding m = 1). (b) Optimal σx,y versus m for both
pattern-norm and global-norm methods, illustrating how precision degrades as modulation decreases.
(c) Optimal L versus 1m for pattern-norm and global-norm methods. (d) Two-dimensional maps of
σx,y across emitter positions (x, y) at fixed m = 0.95, using the optimal Lopt determined at (0, 0).
Left panel shows the pattern-norm map, and right panel shows the global-norm map. In both maps,
the dashed circle marks the radius Lopt at the center.
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Fig. S19 (a) Comparison of average- and determinant-based CRLB curves σx,y(L) (solid) and
σdet(L) (dashed) as a function of the length L for modulation contrasts m = 0.80 (purple), 0.90

(blue), 0.95 (teal), 0.99 (green), and 1.00 (yellow). Red circles mark the minima L
(x,y)
opt where σx,y(L)

is smallest. (b) Difference ∆L = L
(x,y)
opt − L

(det)
opt versus modulation contrast m. A positive ∆L

indicates that the average-based optimum exceeds the determinant-based optimum. The curve rises
monotonically with m, showing greater divergence of the two optima at high contrast. However, the
difference is smaller than 0.1 nm. (c) Two-dimensional precision maps over the camera field of view

(positions xemit, yemit). Left: σx,y evaluated at L
(x,y)
opt , with a dashed circle indicating the locus of

emitter positions at that optimum side length. Right: σdet evaluated at L
(det)
opt , with its corresponding

dashed circle.

52



Fig. S20 Localization precision σx,y of Iterative MINFLUX as a function of iteration number k

for different aggression parameters α, where each illumination radius is set by Lk = α · σ(k−1)
x,y . This

result assumes perfect modulation contrast (m = 1) and reproduces the scaling behavior described

in [5], where σx,y ∝ 1/
√
N

k
.
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Fig. S21 Iterative MINFLUX simulation with L1 = 100 and α = 15. (a) The localization preci-
sion achieved in the simulation for different modulation contrasts m. For reference, the dashed lines
indicate the precision attainable with optimal MINFLUX for each m. At iteration 1, the full photon
budget is used in a single step; at iteration 2, the photon budget is divided evenly over two iterations,
and so forth. (b) The ratio of the localization precision of optimal MINFLUX to that of iterative
MINFLUX, quantifying the improvement achieved by MINFLUX. (c) The evolution of the illumina-
tion parameter L throughout the iterative simulation, starting from L1 and updating according to

Lk = α · σ(k−1)
x,y at each iteration. (d) The contribution of each pattern to the total Fisher informa-

tion

√
I2
Fx,x

+I2
Fy,y

2
at each iteration. The Fisher information contribution peaks when L is closest to

the optimal value found in (c).
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Supplementary Note 8 Look Up Tables

Table S2 Optimale L (nm) for m = 0.80

σprior (nm) \ σillum (nm) 80 90 100 110 120 130 140 150
2.0 47.0 52.8 58.5 64.3 70.1 75.9 81.6 87.4
4.0 49.1 54.5 60.2 65.7 71.4 77.0 82.7 88.4
6.0 52.5 57.6 62.7 68.1 73.5 79.1 84.6 90.2
8.0 57.0 61.6 66.4 71.4 76.5 81.8 87.1 92.5
10.0 61.6 66.0 70.5 75.2 80.2 85.1 90.2 95.5
12.0 66.1 70.5 74.9 79.5 84.1 88.9 93.8 98.8
14.0 70.2 74.7 79.1 83.6 88.1 92.8 97.6 102.4
16.0 73.9 78.6 83.1 87.7 92.2 96.7 101.4 106.1
18.0 77.3 82.2 86.9 91.5 96.0 100.5 105.2 109.8
20.0 80.5 85.6 90.4 95.1 99.7 104.3 108.9 113.5
22.0 83.4 88.8 93.8 98.5 103.2 107.9 112.5 117.1
24.0 86.2 91.7 96.9 101.8 106.6 111.2 115.9 120.6
26.0 88.6 94.4 99.8 104.8 109.8 114.5 119.3 124.0
28.0 91.0 97.0 102.5 107.8 112.8 117.7 122.5 127.3
30.0 93.5 99.3 105.1 110.5 115.7 120.7 125.5 130.4
32.0 96.0 101.7 107.5 113.0 118.4 123.5 128.5 133.4
34.0 98.5 104.1 109.8 115.5 120.9 126.2 131.3 136.3
36.0 101.1 106.6 112.2 117.8 123.4 128.8 134.0 139.1
38.0 103.7 109.1 114.6 120.2 125.7 131.2 136.6 141.7
40.0 106.2 111.6 117.0 122.5 128.0 133.6 139.0 144.3
42.0 108.7 114.0 119.4 124.8 130.4 135.9 141.3 146.7
44.0 111.2 116.4 121.8 127.2 132.7 138.1 143.7 149.1
46.0 113.6 118.8 124.1 129.5 134.9 140.4 145.9 151.3
48.0 116.1 121.2 126.6 131.9 137.3 142.7 148.1 153.6
50.0 118.5 123.7 128.9 134.2 139.5 144.9 150.4 155.9
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Table S3 Optimale L (nm) for m = 0.85

σprior (nm) \ σillum (nm) 80 90 100 110 120 130 140 150
2.0 41.0 45.9 50.9 55.9 60.9 65.9 70.9 75.9
4.0 43.6 48.2 52.9 57.7 62.5 67.3 72.3 77.2
6.0 47.9 52.0 56.2 60.7 65.2 69.8 74.5 79.3
8.0 53.1 56.9 60.7 64.8 68.9 73.3 77.7 82.2
10.0 58.4 62.0 65.6 69.5 73.4 77.3 81.6 85.8
12.0 63.0 66.8 70.5 74.2 78.0 81.8 85.8 89.8
14.0 67.3 71.2 75.0 78.8 82.5 86.3 90.2 94.1
16.0 71.0 75.2 79.2 83.0 86.9 90.6 94.5 98.3
18.0 74.5 78.9 83.1 87.1 90.9 94.8 98.6 102.4
20.0 77.7 82.3 86.7 90.9 94.8 98.8 102.6 106.4
22.0 80.5 85.5 90.1 94.4 98.4 102.4 106.4 110.2
24.0 83.0 88.4 93.2 97.7 101.9 105.9 110.0 113.9
26.0 85.5 90.9 96.0 100.7 105.1 109.3 113.4 117.4
28.0 88.0 93.4 98.6 103.5 108.1 112.5 116.7 120.8
30.0 90.6 95.8 101.0 106.1 110.9 115.5 119.8 124.0
32.0 93.2 98.3 103.4 108.5 113.5 118.2 122.7 127.0
34.0 95.9 100.8 105.9 110.9 115.9 120.8 125.4 129.9
36.0 98.5 103.4 108.3 113.3 118.3 123.2 128.0 132.6
38.0 101.1 105.9 110.8 115.7 120.7 125.6 130.5 135.2
40.0 103.7 108.4 113.3 118.1 123.0 128.0 132.8 137.6
42.0 106.2 110.9 115.7 120.5 125.4 130.2 135.2 139.9
44.0 108.7 113.4 118.1 122.9 127.7 132.6 137.4 142.3
46.0 111.2 115.8 120.5 125.3 130.1 134.9 139.7 144.5
48.0 113.7 118.2 122.9 127.7 132.4 137.2 142.0 146.8
50.0 116.2 120.5 125.2 129.9 134.7 139.5 144.2 149.1
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Table S4 Optimale L (nm) for m = 0.90

σprior (nm) \ σillum (nm) 80 90 100 110 120 130 140 150
2.0 34.0 38.0 42.0 46.0 50.0 54.1 58.1 62.2
4.0 37.3 40.9 44.6 48.4 52.2 56.1 60.0 63.9
6.0 43.0 45.9 49.1 52.4 55.9 59.4 63.0 66.7
8.0 49.1 51.9 54.7 57.7 60.7 63.9 67.2 70.6
10.0 54.5 57.5 60.4 63.2 66.1 69.1 72.1 75.3
12.0 59.4 62.6 65.6 68.5 71.4 74.3 77.3 80.2
14.0 63.7 67.1 70.4 73.4 76.4 79.3 82.2 85.2
16.0 67.5 71.2 74.7 77.9 81.0 84.0 87.0 89.9
18.0 71.1 75.0 78.6 82.0 85.2 88.4 91.4 94.4
20.0 74.1 78.4 82.3 85.9 89.2 92.4 95.5 98.7
22.0 76.6 81.4 85.6 89.4 92.9 96.2 99.5 102.7
24.0 79.1 84.0 88.5 92.7 96.4 99.8 103.2 106.5
26.0 81.8 86.4 91.1 95.5 99.5 103.2 106.7 110.1
28.0 84.6 89.0 93.5 98.0 102.3 106.2 109.9 113.4
30.0 87.4 91.6 96.0 100.5 104.9 109.1 112.9 116.6
32.0 90.2 94.4 98.7 103.0 107.3 111.6 115.6 119.5
34.0 93.0 97.1 101.2 105.5 109.8 114.1 118.2 122.2
36.0 95.7 99.8 103.9 108.0 112.3 116.5 120.6 124.7
38.0 98.4 102.4 106.5 110.6 114.8 118.9 123.0 127.1
40.0 100.9 104.9 109.1 113.2 117.3 121.3 125.5 129.5
42.0 103.4 107.4 111.6 115.6 119.8 123.8 127.8 131.9
44.0 105.9 109.8 114.0 118.0 122.2 126.2 130.2 134.3
46.0 108.4 112.2 116.2 120.4 124.5 128.6 132.7 136.6
48.0 111.1 114.6 118.6 122.7 126.8 130.9 134.9 139.0
50.0 113.8 117.1 120.9 124.9 129.1 133.2 137.3 141.2
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Table S5 Optimale L (nm) for m = 0.925

σprior (nm) \ σillum (nm) 80 90 100 110 120 130 140 150
2.0 29.8 33.2 36.6 40.1 43.6 47.1 50.5 54.1
4.0 34.0 36.9 39.8 43.0 46.2 49.5 52.8 56.2
6.0 40.4 42.7 45.2 47.9 50.6 53.5 56.5 59.6
8.0 46.7 49.1 51.5 53.9 56.3 58.9 61.5 64.3
10.0 52.3 54.9 57.4 59.8 62.3 64.7 67.1 69.6
12.0 57.1 60.1 62.7 65.3 67.7 70.2 72.7 75.1
14.0 61.4 64.6 67.6 70.3 72.9 75.4 77.9 80.3
16.0 65.4 68.8 71.9 74.8 77.6 80.2 82.7 85.2
18.0 68.8 72.6 75.9 79.0 81.9 84.6 87.3 89.9
20.0 71.6 75.9 79.6 82.8 85.9 88.8 91.6 94.2
22.0 74.1 78.6 82.7 86.3 89.6 92.7 95.5 98.3
24.0 76.8 81.1 85.4 89.4 93.0 96.2 99.2 102.1
26.0 79.7 83.7 87.9 92.0 95.9 99.5 102.7 105.7
28.0 82.7 86.5 90.5 94.5 98.5 102.3 105.8 109.1
30.0 85.6 89.4 93.1 97.0 101.0 104.9 108.6 112.0
32.0 88.5 92.3 95.9 99.7 103.5 107.3 111.2 114.8
34.0 91.4 95.0 98.8 102.4 106.1 109.8 113.6 117.3
36.0 94.1 97.8 101.5 105.1 108.8 112.4 116.1 119.8
38.0 96.8 100.4 104.1 107.7 111.4 115.0 118.6 122.2
40.0 99.2 103.0 106.6 110.3 114.0 117.6 121.1 124.7
42.0 101.7 105.4 109.1 112.8 116.5 120.1 123.7 127.2
44.0 104.3 107.7 111.5 115.2 118.9 122.6 126.1 129.6
46.0 107.0 110.1 113.8 117.5 121.2 124.9 128.5 132.1
48.0 109.8 112.7 116.0 119.8 123.5 127.3 130.9 134.5
50.0 112.6 115.2 118.4 122.0 125.7 129.5 133.1 136.7
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Table S6 Optimale L (nm) for m = 0.95

σprior (nm) \ σillum (nm) 80 90 100 110 120 130 140 150
2.0 24.9 27.7 30.4 33.2 36.0 38.8 41.6 44.5
4.0 30.3 32.4 34.6 37.0 39.4 42.0 44.5 47.1
6.0 37.5 39.4 41.2 43.0 45.1 47.2 49.4 51.6
8.0 43.8 45.9 47.9 49.8 51.6 53.5 55.5 57.4
10.0 49.5 51.8 53.9 55.9 57.9 59.8 61.7 63.6
12.0 54.3 56.9 59.3 61.5 63.5 65.5 67.5 69.5
14.0 58.8 61.5 64.1 66.5 68.8 70.9 72.9 74.8
16.0 62.7 65.9 68.5 71.0 73.4 75.7 77.9 79.9
18.0 65.7 69.5 72.7 75.3 77.8 80.2 82.4 84.6
20.0 68.2 72.3 76.0 79.1 81.9 84.4 86.7 89.0
22.0 71.1 74.8 78.8 82.3 85.5 88.3 90.8 93.1
24.0 74.2 77.6 81.2 85.0 88.5 91.6 94.4 97.0
26.0 77.5 80.7 84.0 87.4 91.0 94.5 97.6 100.4
28.0 80.6 83.8 87.0 90.2 93.6 97.0 100.3 103.4
30.0 83.8 86.9 90.0 93.1 96.2 99.5 102.8 106.1
32.0 86.7 89.8 93.0 96.0 99.1 102.2 105.4 108.6
34.0 89.7 92.7 95.9 99.0 102.0 105.0 108.0 111.2
36.0 92.4 95.5 98.7 101.8 104.8 107.8 110.8 113.8
38.0 94.9 98.2 101.4 104.5 107.6 110.6 113.5 116.5
40.0 97.3 100.5 103.9 107.1 110.2 113.3 116.2 119.1
42.0 99.9 102.8 106.2 109.6 112.7 115.9 118.8 121.8
44.0 102.7 105.2 108.4 111.8 115.2 118.3 121.4 124.4
46.0 105.5 107.8 110.7 114.0 117.3 120.6 123.8 126.8
48.0 108.4 110.5 113.1 116.1 119.5 122.8 126.0 129.1
50.0 111.3 113.4 115.7 118.4 121.6 124.8 128.2 131.3
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Table S7 Optimale L (nm) for m = 0.975

σprior (nm) \ σillum (nm) 80 90 100 110 120 130 140 150
2.0 19.0 20.8 22.6 24.5 26.3 28.3 30.2 32.2
4.0 26.4 27.5 28.8 30.2 31.6 33.0 34.6 36.2
6.0 33.6 35.1 36.4 37.7 39.0 40.2 41.4 42.7
8.0 40.1 41.6 43.0 44.5 45.9 47.3 48.5 49.8
10.0 45.4 47.3 49.1 50.8 52.2 53.6 55.0 56.3
12.0 50.7 52.6 54.4 56.2 57.9 59.5 60.9 62.3
14.0 55.2 57.6 59.5 61.2 63.0 64.6 66.2 67.8
16.0 58.2 61.6 64.1 66.2 68.0 69.6 71.2 72.8
18.0 60.5 64.1 67.5 70.2 72.4 74.3 76.0 77.7
20.0 64.1 66.7 69.8 73.2 76.0 78.4 80.4 82.2
22.0 67.9 70.2 72.7 75.5 78.6 81.5 84.0 86.1
24.0 71.5 73.8 76.1 78.4 81.1 83.9 86.8 89.3
26.0 74.9 77.3 79.6 81.9 84.1 86.6 89.2 91.9
28.0 78.3 80.7 83.0 85.3 87.5 89.7 92.0 94.5
30.0 81.6 83.9 86.3 88.6 90.9 93.0 95.2 97.3
32.0 84.9 87.2 89.5 91.8 94.1 96.2 98.4 100.5
34.0 87.8 90.3 92.6 94.9 97.2 99.4 101.6 103.6
36.0 90.1 93.0 95.5 97.9 100.2 102.4 104.6 106.7
38.0 92.5 95.1 98.1 100.7 103.0 105.3 107.5 109.7
40.0 95.3 97.2 100.0 103.1 105.7 108.0 110.3 112.5
42.0 98.3 99.8 102.0 104.9 108.0 110.6 113.0 115.2
44.0 101.2 102.7 104.5 106.9 109.8 112.7 115.4 117.7
46.0 104.1 105.6 107.3 109.2 111.6 114.5 117.4 120.0
48.0 107.0 108.6 110.2 112.0 114.0 116.4 119.1 122.0
50.0 109.9 111.5 113.1 114.8 116.6 118.6 121.0 123.8
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Table S8 Optimale L (nm) for m = 0.99

σprior (nm) \ σillum (nm) 80 90 100 110 120 130 140 150
2.0 14.7 15.5 16.4 17.3 18.4 19.5 20.5 21.6
4.0 22.7 23.8 24.6 25.4 26.1 26.8 27.6 28.4
6.0 30.0 31.0 31.9 32.7 33.6 34.5 35.4 36.2
8.0 36.0 37.1 38.4 39.6 40.6 41.6 42.4 43.2
10.0 42.3 43.4 44.5 45.5 46.6 47.7 48.8 49.8
12.0 47.3 49.1 50.5 51.6 52.5 53.5 54.5 55.5
14.0 49.7 53.1 55.3 57.0 58.2 59.3 60.3 61.2
16.0 53.0 54.8 58.1 60.9 62.8 64.4 65.6 66.7
18.0 57.5 58.9 60.4 62.6 65.6 68.0 69.8 71.4
20.0 61.6 63.2 64.6 66.0 67.7 69.8 72.5 74.7
22.0 65.6 67.3 68.8 70.2 71.6 73.0 74.6 76.7
24.0 69.4 71.2 72.8 74.3 75.6 77.0 78.3 79.7
26.0 72.9 74.8 76.6 78.1 79.6 80.9 82.3 83.5
28.0 76.6 78.3 80.1 81.8 83.4 84.8 86.1 87.3
30.0 80.5 82.0 83.5 85.2 86.9 88.4 89.8 91.1
32.0 84.0 85.6 87.1 88.6 90.2 91.8 93.3 94.7
34.0 86.1 88.9 90.6 92.2 93.6 95.1 96.6 98.0
36.0 88.2 89.9 93.5 95.5 97.0 98.4 99.8 101.3
38.0 91.5 92.3 93.9 97.7 100.0 101.6 103.0 104.5
40.0 94.9 95.5 96.5 98.0 101.2 104.2 106.0 107.6
42.0 97.9 98.8 99.6 100.7 102.1 104.6 108.0 110.2
44.0 100.2 101.6 102.7 103.8 104.8 106.2 108.3 111.2
46.0 102.8 104.3 105.6 106.8 107.9 109.0 110.4 112.1
48.0 105.8 107.1 108.4 109.7 110.9 112.0 113.1 114.5
50.0 108.8 110.1 111.4 112.6 113.8 114.9 116.0 117.2

61



Chapter 4

Conclusion

This chapter concludes the thesis by summarizing the main findings in Section 4-1 and outlin-
ing future directions in Section 4-2. The focus lies on understanding how imperfect modulation
contrast affects the theoretical limits of localization precision in MINFLUX-based techniques
and on proposing further steps to refine these insights and validate them experimentally.

4-1 Summary

In this thesis, we investigated the impact of imperfect modulation contrast on the localization
precision of two super-resolution microscopy techniques: MINFLUX [22] and iterative MIN-
FLUX [24]. MINFLUX uses a doughnut-shaped excitation beam with a zero-intensity center
to triangulate the position of fluorophores with nanometer precision. Iterative MINFLUX ex-
tends this approach by progressively narrowing the illumination pattern in successive steps,
further improving localization precision.

Conventional theoretical models assume ideal conditions where the doughnut-shaped beam
exhibits a perfect zero-intensity minimum at its center. However, in practical implementa-
tions, this assumption does not hold. Optical aberrations, imperfect interference, and system
misalignment often lead to residual intensity at the beam center [28, 29, 30]. To address
this discrepancy, we introduced a modulation contrast parameter m ∈ (0, 1], where m = 1
corresponds to perfect modulation and lower values reflect increasing degrees of imperfection.

We extended the Cramér–Rao Lower Bound (CRLB) model to incorporate modulation con-
trast. This allowed us to quantify how imperfections in the excitation pattern degrade the
Fisher information and, in turn, the theoretical lower bound on localization precision. This
generalization enables the CRLB to reflect the reduced spatial information content in the
fluorescence signal caused by residual intensity at the center of the excitation pattern. Our
study demonstrates that optimizing the illumination spacing L in MINFLUX microscopy sig-
nificantly improves localization performance under non-ideal modulation conditions (m < 1).
While in the ideal case (m = 1) localization precision improves indefinitely with smaller L
[22], we show that for realistic values of m, there exists a finite optimal spacing Lopt(m) that
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minimizes localization uncertainty. For example, at m = 0.95, setting L = 34 nm improves
precision by over 50% compared to using a small fixed radius of 5 nm. Using suboptimal spac-
ings, such as the originally implemented L = 70 nm [22], recovers only 79% of the achievable
precision.

We derived and validated a predictive formula, Lopt ≈ 1.30 σillum
√

1 − m, which enables
experimental determination of Lopt through measurements of the illumination profile and
modulation contrast. This relation holds with 90% precision across practical values of m and
as the emitter lies within 40% of the pattern diameter.

To extend this optimization framework to more realistic scenarios where the emitter loca-
tion is uncertain, we modeled prior information as a Gaussian distribution with standard
deviation σprior. Our results show that the optimal spacing Lopt(σprior) increases with the un-
certainty of the prior, offering a practical method for adaptive pattern placement. σprior can
be estimated using the measurement variance [25], the Cramér–Rao bound [27], or analytical
approximations [17].

In iterative MINFLUX, we found that using the same optimized spacing Lopt across iterations
yields superior performance compared to the standard approach that progressively shrinks
the pattern radius [24]. This optimized single-step strategy outperforms the conventional
iterative scheme by over 50% in localization precision at m = 0.95, and converges to simply
performing k identical exposures at the optimal L. Although iterative refinement remains
beneficial when the prior uncertainty σprior is large, it is crucial not to reduce L below the
optimal value, as doing so propagates information loss across iterations.

4-2 Future Outlook

While this thesis has advanced our theoretical understanding of how imperfect modulation
contrast affects localization precision in (iterative) MINFLUX, several important directions
remain open for further investigation.

These results directly inform the design of optimized illumination strategies for single particle
tracking using MINFLUX. By selecting the optimal pattern spacing Lopt based on modula-
tion contrast and prior uncertainty, one can maximize localization precision at each frame.
Furthermore, avoiding suboptimal spacing prevents error accumulation over time, making
real time tracking of dynamic processes more reliable, even under realistic imaging conditions
m < 1 or variable emitter positions. This could enable higher precision tracking with fewer
photons, which is especially valuable in live cell imaging where phototoxicity and speed are
limiting factors.

Furthermore, all results presented here were derived using the Cramér–Rao lower bound
(CRLB), which assumes no prior knowledge about the emitter’s position. In iterative MIN-
FLUX, however, each localization step benefits from previous estimates. The Van Trees
inequality (VTI) provides a framework that incorporates prior information and could offer a
more accurate theoretical lower bound in this iterative context. Applying the VTI to iterative
MINFLUX would clarify how information accumulates over steps and whether current scaling
laws remain valid when prior knowledge is accounted for.
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Experimental validation under realistic imaging conditions m < 1 will be essential to evalu-
ate the practical accuracy of these predictions. Direct comparison between simulations and
systematic measurements will determine whether the theoretical trends persist in practice.
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Appendix A

Proof VTI with a Gaussian prior

This result was derived during my master’s thesis but was not utilized in the current project.

Proof. We aim to derive the expression for the prior information matrix using a Gaussian
prior used in the Van Trees Inequality (VTI), which provides a Bayesian lower bound on
the variance of any estimator. Specifically, we are interested in evaluating the achievable
localization precision at a given iteration k, denoted by σx,k and σy,k, based on both the prior
knowledge and the observed data. The VTI is given by:

Var(θ̂k) ≥ (IP,k + ID,k)−1 , (A-1)

where θ̂k is the vector of parameters estimated at iteration k, IP,k is the prior information
matrix, and ID,k is the Fisher information matrix associated with the data likelihood at
iteration k.

The prior information matrix can be found using:

[IP,k]i,j =
∫
Rn

∂ log(λ(θk))
∂θi

∂ log(λ(θk))
∂θj

λ(θk) dθk (A-2)

Here i, j is the i-th and j-th entry of the matrix or vector. So [IP,k]i,j is just one scalar entry
of the prior information matrix.

We assume a Gaussian distribution as the prior:

λ(θk) = 1
(2π)n/2|Σ|1/2 exp

(
−1

2(θk − θk−1)T Σ−1(θk − θk−1)
)

(A-3)

With θk−1 being the mean of our prior, chosen as the estimation in the previous iteration
k − 1. The covariance matrix Σ can be any matrix that is symmetric and positive definite.

Now we are taking the logarithm of the prior:
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log(λ(θk)) = −n

2 log(2π) − 1
2 log |Σ| − 1

2(θk − θk−1)T Σ−1(θk − θk−1) (A-4)

Since the covariance matrix Σ is symmetric and positive definite, we can compute the deriva-
tives. The derivative of logarithm of the prior will result into:

∂ log(λ(θk))
∂θi,k

= −1
2

∂

∂θi,k
(θk − θk−1)T Σ−1(θk − θk−1) (A-5)

Since we are working with matrixes, we can deconstruct this into summations of derivatives.
We remove all the terms where the derivative will become zero, so the terms without θi,k.
This will result in the following three terms:

∂ log(λ(θk))
∂θi,k

= −1
2

∂

∂θi,k
(θi,k − θi,k−1)Σ−1

i,i (θi,k − θi,k−1)

− 1
2

ñ∑
m=1
m ̸=i

∂

∂θi,k
(θi,k − θi,k−1)Σ−1

i,m(θm,k − θm,k−1)

− 1
2

ñ∑
m=1
m ̸=i

∂

∂θi,k
(θm,k − θm,k−1)Σ−1

i,m(θi,k − θi,k−1) (A-6)

We will result with three terms, the term of both the i-th row and i-th column, the term for
the whole i-th row, and the term for the whole i-th column. In the summation, ñ is the total
length of the vector θi,k.

We will now calculate the derivatives of all the three separate terms:

∂

∂θi,k
(θi,k − θi,k−1)Σ−1

i,i (θi,k − θi,k−1) = ∂

∂θi,k
Σ−1

i,i (θi,k − θi,k−1)2

= 2Σ−1
i,i (θi,k − θi,k−1) (A-7)

∂

∂θi,k
(θi,k − θi,k−1)Σ−1

i,m(θm,k − θm,k−1) = Σ−1
i,m(θm,k − θm,k−1) (A-8)

∂

∂θi,k
(θm,k − θm,k−1)Σ−1

i,m(θi,k − θi,k−1) = Σ−1
i,m(θm,k − θm,k−1) (A-9)

Now that we have the derivative of all the three terms, we can add them back up together.
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∂ log(λ(θk))
∂θi,k

= −1
2 · 2Σ−1

i,i (θi,k − θi,k−1)

− 1
2

ñ∑
m=1
m̸=i

Σ−1
i,m(θm,k − θm,k−1)

− 1
2

ñ∑
m=1
m̸=i

Σ−1
i,m(θm,k − θm,k−1)

= −
ñ∑

m=1
Σ−1

i,m(θm,k − θm,k−1) (A-10)

The same will be done for the derivative with respect to θj,k

∂ log(λ(θk))
∂θj,k

= −
ñ∑

n=1
Σ−1

j,n(θn,k − θn,k−1) (A-11)

Now that we have both derivatives, we can fill them into the Prior information integral.

[IP,k]i,j =
∫
Rn

∂ log(λ(θk))
∂θi,k

∂ log(λ(θk))
∂θj,k

λ(θk) dθk

=
ñ∑

m=1

ñ∑
n=1

Σ−1
i,mΣ−1

j,n

∫
Rn

(θm,k − θm,k−1)(θn,k − θn,k−1)λ(θk) dθk (A-12)

The summations can be taken out of the integral. The integral will now represent the expec-
tation property of Gaussian distributions for the covariance matrix. So we can rewrite the
integral into the following:

∫
Rn

(θm,k − θm,k−1)(θn,k − θn,k−1)λ(θk) dθk = E [(θm,k − θm,k−1)(θn,k − θn,k−1)]

= Σm,n (A-13)

This will then result into:

[IP,k]i,j =
ñ∑

m=1

ñ∑
n=1

Σ−1
imΣ−1

jn Σmn (A-14)

This can be interpreted as the element-wise definition for a matrix product involving three
matrices:

• Σ−1 with elements Σ−1
im and Σ−1

jn ,
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• Σ with elements Σmn.

Since the matrixes are symetric we can first look at the inner Sum Over n First, consider the
inner sum:

n∑
n=1

Σ−1
jn Σmn. (A-15)

This part computes the row-column multiplication between the row of Σ indexed by m and
the column of Σ−1 indexed by j. By definition of matrix inversion, this sum equals the
Kronecker delta:

n∑
n=1

Σ−1
jn Σmn = δmj (A-16)

where δmj is the Kronecker delta:

δmj =
{

1 if m = j,

0 if m ̸= j
(A-17)

Now we will take the outer sum over m with the substituted result back into the outer sum:

[IP,k]i,j =
n∑

m=1
Σ−1

imδmj (A-18)

Since δmj = 1 only when m = j, the sum collapses to a single term:

[IP,k]i,j = Σ−1
ij (A-19)

This is because the covariance matrix and its inverse combine to form the identity matrix,
and the identity matrix leaves only the elements of the inverse matrix Σ−1.

Since this is the case for every entry of the prior information matrix the full prior information
amtrix will result into:

IP,k = Σ−1 (A-20)

We will be able to choose any symmetric positive definitive covariance matrix as a prior.
For our case the optimal prior would be the Bayesian information matrix from the previous
iteration. This would result into:

IP,k = IP,k−1 + ID,k−1 (A-21)

With ID,k−1 being the data information matrix in iteration k − 1. Since IP,k−1 will be
determined the same way as IP,k, we can rewrite this into:
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IP,k = ID,k−1 + ID,k−2 + .... + ID,1 + IP,1 (A-22)

So this results into the prior information only being dependent on the the data information
from previous iterations and the first prior. The first prior will come from the CRLB data
information. So the prior information matrix successfully incorporates the all the prior data
information available.
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