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Abstract

A Taxi Dispatch Problem involves assigning taxis to requests of passengers who are waiting at
different locations for a trip. In today’s economy and society, the Taxi Dispatch Problem and
other transport problems can be found everywhere. Not only in transporting people, but also in
food delivery from restaurants and package delivery for all kind of companies. Even though the
applications are different, they still have something in common: serving as much as requests as
possible, because that means the highest income. In this thesis, we consider the problem in the
actual taxi field. A taxi driver often chooses to serve the passenger that is closest, because he
makes no money while the taxi is vacant. However, for companies such as Uber, this is probably
not the best solution. They have an overview of the locations of the taxis and passengers, and
therefore, are able to make an optimal assignment between the taxis and requests. Sometimes,
waiting a little longer for new requests leads to an even better solution.

Trying to optimize the problem for the long-run and predict where passengers appear and where
taxis end up is perfectly suited for Reinforcement Learning (RL), a subfield of Machine Learn-
ing. To be able to solve an optimization problem such as a Taxi Dispatch Problem, there needs
to be a goal. For a company, this is maximizing the income or profit, and a popular way to do
that is by minimizing the travel time. This thesis takes a different approach by looking at the
problem from the passenger’s perspective, as satisfied passengers lead to more passengers.

In this thesis, the goal is to find an optimal policy for assigning taxis to passengers such that
the total waiting time over all passengers is minimized, by using Reinforcement Learning.

In order to do that, we formulate the problem in terms of the elements of an RL problem, with
the RL method @-Learning as the learning algorithm and e-Greedy as policy. Together with
some restrictions and assumptions, we implement this in Java and use this program to make
the agent learn and generate results. The agent is the one that is responsible for assigning
passengers to taxis and needs to learn how to make this assignment such that the total waiting
time is minimized.

We say that the learning algorithm has converged to the optimal policy as soon as it keeps
choosing the same best actions for each state. To check this, we run the program ten times
and compare the best actions per state. If the best actions of the different runs are the same,
this means that the learning algorithm has converged. We start with a simple version of the
problem, from which we build to a version that is much more realistic. In this last version, we
work in an environment in which passenger requests appear at random moments and the agent
can choose to not serve a passenger right away.

Unfortunately, the learning algorithm does not fully converge for all states. It might be that it
still converges when taking high values for the number of episodes and time steps, but so far
these are not found. We still can make conclusions about the optimal policy and see that there
seems to be a sort of pattern. One of the interesting occurrences is when there are two available
taxis and two passengers. The best action is then always to serve only one passenger (the one
that leads to the smallest waiting time) and let the other wait. The agent never chooses to serve



no passengers, even though, at that moment, this results in the smallest waiting time. Also, the
policy does not choose to serve both passengers, and it let one passenger wait a little longer.
The policy seems to take the future into account.

Since the algorithm does not fully converge when using @-Learning, it might be better to use a
different method, such as Model-Based Reinforcement Learning.
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Chapter 1

Introduction

A Taxi Dispatch Problem involves assigning taxis to requests of passengers who are waiting at
different locations for a trip ((Alshamsi, 2009). In today’s economy and society, the Taxi Dis-
patch Problem and other transport problems can be found everywhere. Not only in transporting
people, but also in food delivery from restaurants and package delivery for all kind of companies
(Kuo, 2016). Even though the applications might be different, they still have something in
common: serving as much as requests as possible, because that means the highest income.

In the taxi field, a lot of decisions are made based on experience. Taxi drivers wait at locations
where they had success in finding a passenger in the past. Also, a taxi driver often chooses
to serve the passenger that is closest. This is because the taxi driver makes no money while
the taxi is vacant. If the taxi would drive to a passenger further away, the vacant driving time
would be longer. However, for a company that has an overview of the locations of the taxis
and passengers, such as Uber, assigning taxis to the closest passenger is probably not the best
solution.

Consider the situation in Figure There are two taxis 77 and T», and two passengers P; and
P, who have sent in a request for a trip. The driving time between any two locations is given.
Suppose that taxi 77 would serve passenger P, because P, is the closest, namely only 5 minutes
away. Then, taxi T serves passenger P, who is 25 minutes away. Now, the total driving time
of the taxis is 5 4+ 25 = 30 minutes. However, if taxi T is assigned to passenger P; and taxi
T5 to passenger P», the total driving time is 10 + 15 = 25 minutes. The total driving time of
this second assignment is smaller than the one of the first assignment. This makes the second
assignment therefore better, since the taxis lose less valuable time.

Figure 1.1: A graphical representation of a situation with two taxis 77 and T and
two passengers P; and P», with the driving times in minutes given on the edges.

Of course, for the situation above, it is not that hard to see what the best solution is. However,



companies are working with a large number of taxis and requests, and therefore, they can use
algorithms to solve the problem for them. The algorithm used in the example above is called
Route Optimization (Kuo, 2016).

Even though this algorithm works good to find a solution for every individual time step, another
thing to keep in mind is what is good in a long-run. Where taxis end up after dropping off their
passengers, which is a result of an assignment, might not be optimal to the locations of the new
passengers. This problem of predicting where passengers will show up and where taxis will end
up after an assignment is a problem perfectly suited for Machine Learning |(Zander, 2017). In
this thesis, we use Reinforcement Learning, a subfield of Machine Learning. Section explains
why.

Whatever algorithm or method is used to solve a Taxi Dispatch Problem, there always needs
to be a goal. For example, a company could want to maximize the income or profit, which can
be done by minimizing the total driving time, as we have seen in the example on the previous
page.

A different approach is to look at the problem from the passenger’s perspective, because satisfied
passengers lead to more passengers. Therefore, in this thesis, the goal is to find an optimal policy
for assigning taxis to passengers such that the total waiting time over all passengers is minimized.

1.1 Related work

Quite some research has been done within the taxi world by using Reinforcement Learning.
Many times this is done with the goal to maximize the revenue of a taxi (company). Verma,
et al. (2017) used Reinforcement Learning to learn an agent to maximize the earned revenue
from the driver’s perspective by using current trips of taxis and trips from the past. They used
data from Singapore for the learning process. Wang & Lampert (2014) applied Reinforcement
Learning to New York City taxi data to learn an agent how to maximize the revenue generated
by a single taxi driver. In both cases, historical data was used. In this thesis, we do not make
any use of data, although the problem could also be solved by the use of data.

Dietterich (1999) presents in his paper a learning algorithm that does not need data either. The
algorithm is used to learn a taxi how to navigate to a passenger with the shortest route possible
and to pick up and drop off the passenger on the right locations. Since there is always only
one passenger present in the environment, the goal could also be formulated as minimizing the
waiting time of the passenger. However, in this thesis, we learn the agent to do this for multiple
passengers.

Alshamsi et al. (2009) solved a Taxi Dispatch Problem with a multi-agent system. They kept
the waiting time of the passengers in mind as the passenger who was waiting the longest would
get assigned first. However, priority is set on taxis that are vacant the longest rather than
minimizing the total waiting time of the passengers.

Crites and Barto (1998) use multi-agent Reinforcement Learning for a similar problem: Elevator
Group Control. In this problem, passengers are served by multiple elevators such that the total
waiting time of the passengers is minimized. This problem could be seen as a Taxi Dispatch
Problem when replacing the elevators by taxis. However, it is not known in advance which level
the passenger wants to go to. In this thesis, we assume that the destination of the passenger is
known in advance.



1.2 Organisation of thesis

This section describes how this report is organised and what each chapter is about.

Chapter [2| explains what Reinforcement Learning is and introduces all the concepts that are
needed to understand the remainder of the thesis. It gives a background, discusses all the basic
elements of a Reinforcement Learning problem and presents two algorithms that can be used
in the learning process. In Chapter [3} the problem of this project is stated. It explains what a
Taxi Dispatch Problem is, gives a description and formulation of the project’s problem and lists
all the restrictions and assumptions that are made during the project which form three different
versions of the problem. Chapter [4] explains how the experiment is set up, how we make use of a
Java program to make the agent learn, defines the convergence of the learning algorithm by two
different outputs and analyzes these results for each different version of the program. Chapter
summarizes the conclusions and results. Chapter [6] discusses why it might have been better to
solve the project’s problem with model-based Reinforcement Learning as the learning algorithm
does not fully converge in the final version of the program.



Chapter 2

Reinforcement Learning

This chapter explains what Reinforcement Learning (RL) is. Section gives an overview of
Artificial Intelligence, Machine Learning and Reinforcement Learning and how they are related
to each other. Section gives a better understanding of RL by explaining Markov Decision
Processes and the basic elements of an RL problem. Section presents two algorithms that
can be used for value updating and explains what the difference is. Section discusses the
balance between exploration and exploitation. The content of the last three sections is based
on |Sutton & Brato (2018), and |Guldenring (2019). At last, Section gives an example of
an RL problem and shows the difference between SARSA and -Learning.

2.1 Background

Artificial Intelligence (AI) is an area of computer science that encompasses creating intelligent
computers and machines that can imitate human behaviour, thinking and reasoning, such as
solving problems by itself. In the case of a computer, solving problems by itself is learning and
improving from experience without being explicitly told how or any other human help.
Machine Learning (ML) is an area of Artificial Intelligence that focuses on algorithms that use
data to learn. The process of learning is done by adapting to new circumstances and finding
patterns in the provided data to make better decisions in the future |(Russell & Norvig, 2010).
Machine Learning has three main subfields: Supervised
Learning, Unsupervised Learning and Reinforcement

. Machine Learning
Learning. y — N
In Supervised Learning, an algorithm learns from a . _
training data set, which consists of labeled input-output ot M sl

Learning Learning
pairs. The system tries to predict the output for a cer- :
tain input and compares its prediction with the correct | G T e e I
answer to get feedback on how accurate it is. After ; '
sufficient training, the algorithm should give the right '~ Reinforcement
output for new input data. An example of Supervised S
Learning is classification.
In Unsupervised Learning, an algorithm tries to find a """'---...__,f"j‘_'_‘”icia' A
pattern or structure in given data that does not contain ' '

any labels. An example of Unsupervised Learning is Figure 2.1: Schema of the sub-
clustering. The system tries to look for similarities in fields of Artificial Intelligence
the data and uses that to cluster the inputs. (Sharma, 2018).

Reinforcement Learning (RL) has an agent, for example a robot, that learns how to behave



within a dynamic environment by taking actions and getting a (possibly negative) reward for
each action. The reward is a feedback for the agent to know whether the action was good.
This helps the agent to attain its goal. Even though the agent receives feedback, Reinforcement
Learning is different from Supervised Learning, since it is not known what the correct action
would have been. However, Reinforcement Learning is also different from Unsupervised Learn-
ing, where there is no explicit feedback at all (Bugoniu et al., 2010; Sutton & Barto, 2018]). This
is why RL is a separate subfield within Machine Learning.

There is also a challenge that arises in Reinforcement Learning and not in the other subfields:
finding a balance between exploration and exploitation. On the one hand, the agent needs to
use its experience to choose actions that are found to be good, since it wants to attain its goal as
good as possible. This is called exploitation. However, the agent does not have any experience
without discovering which actions are good, so it also needs to try new actions. This is called
exploration. The agent needs both to achieve its goal. In Section we discuss ways to find a
balance between exploration and exploitation.

2.2 Markov Decision Processes

Markov Decision Processes (MDPs) frame the problem of learning to attain a goal from inter-
action. An RL problem can almost always be formalized as an MDP |(Van Otterlo & Wiering,
2012). Understanding MDPs makes it easier to understand Reinforcement Learning. This sec-
tion explains the main elements of MDPs and RL, such as the environment, rewards and policy.

2.2.1 Agent and environment

As well in Reinforcement Learning as in Markov Decision Processes, there is an agent that
interacts with an environment. The agent is the one that makes decisions and learns from them.
Everything outside the agent is called the environment. The agent and environment interact
with each other over a sequence of discrete time steps ¢t = 0,1,2,.... At each time step t, the
agent receives a representation of the environment at that moment, called the state s;. Based
on that state, the agent decides what action a; to select from the possible actions. This brings
the environment in a new state s,y and the agent receives, in time step t + 1, its reward ryy1.
Repeating this, gives the following sequence: s, ag, r1, 1, a1,72,.... Figure[2.2]gives a schematic

representation.
’J Agent ||
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Figure 2.2: A schematic representation of the interaction between the agent and
the environment. The agent selects an action based on the current state and
received reward. The environment returns the new state and the reward based on
the selected action |(Sutton & Barto, 2018).

What the next state will be, is decided by the state transition function T(s,a,s’) = P(s|s,a).
This is the probability of ending up in state s’ from state s after taking action a.



2.2.2 Goals, rewards and expected return

The goal of the agent is formalized in terms of the reward. To train an effective agent, the goal
should be to maximize the total amount of reward received. That is, maximizing the reward
in the long run instead of the immediate reward. Therefore, we seek to maximize the expected
return G, which is in the simplest case equal to the sum of the rewards since time step ¢:

Gt:’l”t+1+’l”t+2+...+TT, (21)

where T is the final time step.

To better understand why, consider the environment of Figure The agent is in room one
and needs to end up in room five. The reward is the negative distance between the agent and
room five. So for example, when the agent is in room one, the reward is —2, since the distance
between room one and room five is 2. If the agent would try to maximize the immediate reward,
it would go to room three. The reward is then —1, which is higher than the reward of going
to room two, which is —3 or the reward of staying in room one, which is —2. However, the
agent will now always stay in room three, since it maximizes the immediate reward, and thus
it will never reach room five. If the agent would try to maximize the expected return, it would
got to room two, and then room four, six and five. It now reached the goal and maximized the
expected return. Namely, when the agent goes directly to room 2 from its start position, the
expected return is Gy—g =71+ 10+ 1r3+74 = -3 —-2—14+0 = —6. If the agent had first
gone to room three, the rewards would have been better, but after a while staying in room three
the expected return would be worse, since the agent did not reach its goal yet. So the expected
return would become Gy—g =71 +7r90+...+16+...=—1—-1—...—1—...=—6—.... So for
the agent to reach its goal, it still has to leave room three and eventually go to room two.

] Y

2 4 6

Figure 2.3: An environment with the agent in room one and the end goal in
room five. The agent needs to maximize the expected return rather than the
intermediate reward to reach its goal |(Giildenring, 2019)!

When the rewards that will be received in the future are less important than the immediate
reward, the agent can try to select actions to maximize the discounted expected return:

[e.e]
Gr=rip1 + 2 + Vs + . = Z’Ykrt+k+1a (2.2)
k=0

where v € [0, 1] is a parameter called the discount rate. When ~ < 1, it makes a future reward
worth less than what it would be worth if it was received immediately. In time step ¢, the reward
received in time step t + k is worth only v**! times its original value. If v = 0, then only the
immediate reward remains, and thus, Gy = ryyq. If v = 1, all future rewards are considered of



same importance. Now the discounted expected reward is equal to ([2.1).

The (discounted) expected return makes sense in problems that have a natural final time step
T. This is when the agent reaches a terminal state. The period of time steps from the beginning
till the final time step is called an episode. A terminal state resets the scene and brings the
agent back to its start state. Now the next episode can start. This way, the training process
consists of multiple episodes. On the other hand, in many cases, the problem does not naturally
break into episodes, but is a continuous ongoing problem. That means that T' = co, and thus
the expected return G, that we try to maximize is also infinite. Only if we truncate the series
when ~* is smaller than a given value, the sum is finite.

It looks like that the rewards must be provided in such a way that when maximizing them or the
expected return, the agent achieves its goal. However, the reward is not used to let the agent
know how to reach its goal. For this, it is better to use the policy and the value function.

2.2.3 Policy and value function

A policy tells the agent how to behave in the environment at a certain time step. It decides
what action should be taken given the current state of the environment. Formally, the policy =
is a probability distribution over the number of possible actions for each state. Then, 7(als) is
the probability that action a is selected when the current state is s.

A walue function is a function from a state to a value that specifies how good it is for the agent
to be in a certain state and how good this is in the long-run. The value function of state s under
policy 7, denoted by Vi (s), is the expected return when the start state is s and the agent uses
policy 7 to select actions. Then, Vz(s) is defined by:

Va(s) =E, [Gt|s] =E, [i'ykrt+k+1‘8:|, (2.3)
k=0

where ¢ is any time step and E[-] is the expected value of a variable under policy m. The value
of a terminal state is always zero, because there is no expected return after that.

The action-value function for policy 7 is similar to the value function. The only difference is
that it is now a function from a state-action pair to a action-value. The action-values are also
often called Q-values. The action-value function specifies how good it is for the agent to take a
specific action from a certain state. The Q-value of selecting action a in state s under policy T,
denoted by Qr(s,a), is the expected return when the start state is s, the agent selects action a
and the agent uses policy 7 to select actions after that. Then Qr(s,a) is defined by:

(o)
s, a] =E, [Z 'ykrt+k+1
k=0

QW(Sa Cl) - Eﬂ [Gt

s,a], (2.4)
where t is any time step.

In Reinforcement Learning, the goal is to try to find an optimal policy 7*. A policy 7 is better
than another policy #’, that is m > 7/, if the action-value function of the one is better than the
other for all state-action pairs, thus Qr(s,a) > Q. (s,a) for all state-action pairs (s,a). If the
action-value function is optimal, then the policy that was used must have been optimal. It is
possible for two optimal policies to have the same optimal action-value function. The optimal
action-value function for state s and selected action a, denoted by Q*(s,a), is defined by:

Q*(s,a) = max Qr(s,a). (2.5)

10



2.3 Learning algorithms

To use the @-values in the learning process, most of the times, they are stored in a ()-table that
keeps track of the @)-value for each possible state-action pair. The number of rows is therefore
equal to the number of possible states, and the number of columns is equal to the number of
possible actions per state. Of course, there are also other ways to store the -values, such as a
HashMap.

The reason that the ()-values need to be stored is because this way they are easily retrievable
and can be updated again. The updating is done by a learning algorithm. After the learning
process, the learned @)-values indicate how good each state-value pair is and what is the best
action is to select per state.

In this section, the two most-used learning algorithms are discussed: SARSA and Q-Learning.

2.3.1 SARSA

SARSA is an on-policy algorithm and stands for s;, a;, 741, Si+1, @i+1. On-policy means
that the action as11 is selected by the policy m. The most-used policy in both SARSA and
()-Learning is the e-Greedy policy, and is explained is Section SARSA is characterized by
the following equation:

Q(st,ar) = Q(se, ar) + i1 + ¥YQ(se41, ar1) — Q(se, ar)] (2.6)

Here, s; is the state in the current time step ¢ and a; is the action selected by the policy 7. The
immediate reward that follows is .41, and the environments transitions into the new state s;11
after executing the action. At last, the policy 7 is used to determine action a;y1 from the new
state. The expected return G; gets approximated by the part

Ti+1 + YQ(St41, t41),

where 7 is the discount factor.
The parameter a € (0, 1] from equation (2.6) is the learning rate and determines to what extend
new information overrides old information.

2.3.2 Q-Learning

Q-Learning is an off-policy algorithm. This means that the policy 7 is not used for updating
the @Q-values, and thus, the policy is only used for selecting the action from the current state.
Q-Learning is characterized by the following equation:

Q(st,ar) = Q(st, ar) + efrer +ymax Q(se41, a) — Q(st, ar)] (2.7)

The equation of the @-Learning algorithm is very similar to the one of the SARSA algorithm.
However, the difference is that instead of using the @Q-value Q(s¢+1,a¢+1), now the maximum
@-value over all possible actions at state s;;1 is used. This way, the action-value function @
directly approximates the optimal function @* |(Taylor, 2004). The rest of the parameters are
the same as described in Section 2.3.11

The pseudo-code of the @-Learning algorithm is given on the next page.

11



Algorithm 1: Q-Learning

1 Initialize @-values Q(s,a) for all state-action pairs and set Q(s,a) < 0
2 for each episode do

3 Initialize s;

4 for each time step in episode do

5 if s; is not a terminal state then

6 at + action given by policy 7 for sy

7 Take action ay, observe ry;1 and s¢yq

8 Q(st,at) < Q(s4,at) + OZ[T'tJrl +ymaxg Q(si41,a) — Q(s¢, at)]
9

St < St41
10 else
11 L break

2.4 Exploration vs. exploitation

Section introduced policies and Section [2.3[section discussed on-policy and off-policy learn-
ing algorithms. Yet, there is nothing said about which policy is actually used in the learning
process of the agent. The simplest way of action selection is called Greedy. The Greedy policy,
as the name suggest, selects an action in a greedy way: the one with the highest @-value. We
can write the Greedy policy as:

= ) 9y 2.8
ay argaréljxé)Q(s a) (2.8)

where argmax, denotes the action a for which the action value Q(s,a) is maximized. When
there are multiple actions with the highest ()-value, then one of them is chosen randomly. The
Greedy action selection exploits the available information and knowledge, and it is possible that
the agent ends up in a non-optimal policy. This is because it might happen that earlier selected
actions are always chosen over actions that lead to undiscovered states and that are actually
better in long-term.

There needs to be a balance between exploration of new actions and exploitation of actions that
turned out to work good. An often-used policy that handles this problem is called e-Greedy.
The e-Greedy policy selects actions according to the Greedy policy with probability 1 —e. With
small probability €, it takes a random action. This way the agent explores new actions. The
value of € lies between 0 and 1, and is the trade-off between exploration and exploitation.

Choosing € right makes the learning algorithm converge to the optimal policy 7*. In the first
episodes, the agent should explore new actions. As soon as the agent has more knowledge about
the environment, we let € gradually reduce, so the knowledge is used for selecting actions.

2.5 Example

In this section, we discuss an example of Reinforcement Learning called the “Cliff Walking” from
the book Reinforcement Learning: An Introduction by [Sutton and Barto, 2018, It highlights
the difference between the learning algorithms SARSA and @-Learning.

This example considers the gridworld environment shown in Figure The agent needs to go
from the start state S to the goal state GG, in such a way that the total reward is as high as

12



possible. The actions that the agent can take are up, down, left and right. For every action, the
agent gets a reward of —1. If the agent falls off the cliff, it gets a reward of —100, and the agent
is relocated to the start state S. Since the agent needs to maximize the total reward, it has
the urge to walk right next to the cliff, since that is the route leading to the smallest negative
reward. However, in this case, the chance of falling off the cliff is high, and thus the chance of
receiving a reward of —100 is also high. This urges the agent to not walk right next to the cliff,
but this might not always give the optimal solution in terms of maximizing the reward. What
the agent will do, all depends on the policy and learning algorithm. The blue safer path will
eventually be chosen when using SARSA, the red optimal path continues to be chosen when
using ()-Learning.

R=-1
Safer path
Optimal path | 1
|
S The Cliff G

\Z§

R=-100

Figure 2.4: The environment of the Cliff Walking example (Sutton & Barto, 2018),

In this example, the policy that is used is the e-Greedy policy, with € = 0.1. Thus, there is
a 10% chance that a random action gets selected. The graph shown in Figure [2.5| gives the
performances of the SARSA and @-Learning algorithms. In the first episodes, the performance
is pretty much the same. However, the ()-Learning algorithm learns values for the optimal
policy, which leads to falling off the cliff. This is visible in the graph, as the total reward is
much lower for @)-Learning than SARSA. This is because SARSA learns the agent after enough
episodes to take the longer but safer path. Of course, both algorithms would converge to the
optimal policy if € would gradually reduce. For example, the Q-Learning algorithm would also
stop falling of the cliff if less random actions would be taken, which leads to a higher total
reward.

Sarsa
254

Sum of 50

rewards Q-learning

during

episode |

-100 T T T T 1
0 100 200 300 400 500

Episodes

Figure 2.5: A graph of the performance of the SARSA and @-Learning algorithms
in the Cliff Walking example. The total reward per episode is plotted against the
episodes |(Sutton & Barto, 2018).
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Chapter 3

Project

This project focuses on solving a Taxi Dispatch Problem. In a Taxi Dispatch Problem, taxis are
assigned to trip requests of passengers who are waiting at different locations. In this project, the
goal is to solve this problem such that the total waiting time of the passengers is minimized. In
this chapter, we discuss how this can be done with @-Learning. Section gives a description
of the project’s problem in terms of the environment and agent. Section discusses the
restrictions and assumptions that are made in this project. Section gives a formulation
of the problem in terms of the elements of a Reinforcement Learning problem as defined in

Chapter

3.1 Problem description

The environment consists of an undirected connected graph G(V, E) with V' the sets of nodes
and E the set of edges. The nodes represent the locations. The number of locations is given by
n = |V|]. The distance between two nodes z and y is equal to the travel time between location
x € V and y € V and is denoted by t;,. The travel time is symmetric, so t;, = t,;. For the
travel time from a location to itself, it holds that ¢,, = 0. Furthermore, the number of available
taxis m is given and the start locations of the taxis, which are the locations where the taxis are
located at the beginning of every episode of the learning process. At last, p denotes the number
of passengers that are present at the beginning of every episode, and the origin and destination
of these passengers are also given.

In this project, we have only one agent who is responsible for assigning taxis to passengers.
Therefore, this agent needs to learn how to make this assignment such that the total waiting
time over all passengers is minimized. Every passenger needs to get assigned to a taxi, and it
does not matter which taxi. One could say that we look at the problem from the passenger’s
perspective. We care about how long the passenger has to wait, and thus, we care about how
long it takes for the taxi to reach the passenger. Therefore, only the location of the taxi matters,
since the travel time between that location and the location of the passenger is given. For ex-
ample, if the passenger is coupled to a taxi that is at a location five minutes from the passenger,
the passenger has to wait five minutes before it is picked up.
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3.2 Restrictions and assumptions

Since there exist multiple extensions for the problem, we need to make some assumptions and
restrictions. The following assumptions apply to every extension that is made during this project:

(1) The travel time between the locations is given. Since the rewards depend on the travel
time from the taxi location to the passenger, we need to know how long this takes.

(2) The location and the destination of a passenger are known. This is because this information
is used for learning.

(3) When a taxi is assigned to a passenger, it is unavailable until the passenger is dropped off.
This means that the taxi cannot be assigned to any other passenger while it is driving to
its assigned passenger, even when the other passenger is at that moment closer.

(4) The destination of a passenger differs from its starting location. This way the taxi always
has to go to a different location than where the passenger is picked up.

(5) A passenger can only place a request when a taxi is available. This means that requests
coming in when all taxis are busy are lost.

For the initial version, there are two additional restrictions:

(6a) There are no more than p passengers at the same time in the system, where p denotes the
number of passengers that is present at the beginning of every episode. This includes the
passengers that are assigned to and served by a taxi.

(7a) When a taxi drops off a passenger, and thus becomes available again, a new passenger
directly appears in the system.

(8a) When there is a new passenger, it is always assigned to a taxi in the next time step.

Replacing restriction (6a) and (7a) by the following assumptions creates an extension on the
previous version:

(6b) There can be more than p passengers, but restriction (5) ensures that there will be no
more passengers than taxis.

(7b) From the moment a taxi becomes available, a new passenger can be added at a random
time step. Remember that restriction (5) still holds, so a new passenger can appear as
long as there is a taxi available.

Another extension can be made to the extension above by replacing restriction (8a) by the

following assumption:

(8b) A taxi can choose to not serve a passenger instead of directly serving it.
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3.3 Problem formulation

An action is an assignment of passengers to taxis. With taxi, we mean the location of the taxi,
since, as stated before, only the location of the taxi matters. If there are for example two taxis
with taxi locations 77 and T5 and two passenger locations P; and P, then one of the actions
is {(P1,T1), (P, T»)}, which means that passenger P; is assigned to the taxi location 77 and
passenger P» is assigned to the taxi location Ts. The other possible action is {(P1,T2), (P2, T1)}.
An extension would be to let the taxi be able to choose not to serve a passenger, since there
might appear a new passenger closer to the taxi’s current location, and so it is better in terms
of total waiting time to let another taxi help the first passenger.

A state is the current state of the environment. It consists of the number of taxis per location
and the passengers that are present at that moment. The number of taxis per location are stored
in an array of size n, with n the number of locations. The value of the entry is the number of
taxis that are available at that location. For example, when there is one taxi at location 0 and
one taxi at location 2, then the array looks like: [1,0, 1].

Passengers are represented by their origin and destination, The origins of the passengers are
needed to decide what the possible actions are for that state. To determine what location the
taxi ends up in after dropping off the passenger, the state is also dependent on the destination
of the passenger. We assume that we always know where the passenger is and where it wants
to go. A passenger i, with i € {1,...,p}, can be denoted by (o;, d;), where o; is the passenger’s
origin and d; its destination, with o; # d;. The value of the origin and destination is the ID of
the location. For example, when a passenger is at location 2 and wants to go to location 1, it
looks like (2,1).

Now, consider a state corresponding to the examples above. So, there is one taxi at location 0,
one taxi at location 2, and there is a passenger that wants from location 2 to location 1. Then,
the state is represented by: ([1, 0,1]; (2, 1))

The rewards are the negative waiting times of the passengers. The reward is given when a
passenger is assigned to a taxi. For example, suppose that there are two passengers assigned to
two different taxis: one with a waiting time of five time steps and one with a waiting time of 3
time steps. Then, the reward is —(5+3) = —8. If a passenger is not served, it is counted as one
time step waiting time, and thus, it gives a reward of —1.

The agent executes the selected action and creates the new state. Now the passengers are as-
signed to the taxis as stated by the action. The taxis are unavailable while they are driving to
a passenger and while they are driving a passenger to its destination. To keep track of this, we
create a job for every assignment between passenger and taxi. A job keeps track of how many
time steps a taxi is already unavailable and what the destination is. Every time step, the job is
updated. When a new job is created, the number of taxis at the taxi location is reduced by 1
and the passenger gets removed from the passenger list of the state. Furthermore, the reward
is calculated as explained as above. From the already existing jobs, when a taxi reached the
destination of the passenger, the taxi is added to that location in the new state. The agent keeps
doing this until the episode is ended. Then, the agent is reset. All remaining jobs are deleted.
In the new episode, the state of the agent is again the same as the start state.

The learning algorithm that is used is @-Learning, because the @-Learning algorithm learns the
values of the optimal policy. In contrast to the example in Section there is no need to take
safer paths in this Taxi Dispatch Problem. Since all the future rewards are considered of same
importance, the discount factor is v = 1. Furthermore, the learning rate is a = 0.7.

The policy that is used to select actions is e-Greedy.
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Chapter 4

Results

In this chapter, we consider each of the different versions that are given by the restrictions
in Chapter 3] and discuss the results we obtain from our experiment. Section gives the
experiment setup and defines the convergence of the learning algorithm by two different outputs.
In Section we analyze these results for each different version of the program and discuss the
results and optimal policies.

4.1 Experiment setup

As stated in Section the @-Learning algorithm is used to solve the project’s problem. This
is, together with the restrictions and assumptions of Section [3.2] implemented in Java. The
Java program is coded and run on a laptop with Intel Core i7 6700HQ 2.60 gigahertz with 8
gigabytes RAM.

In the program, we use the policy e-Greedy, which will most of the time select actions based on
the @-values. It chooses the action with the highest -value, which means this is the best action
to take in that certain state. Of course, this can change during the time the program is running
as the agent is gaining new information from the environment. However, at a certain time, the
learning algorithm has learned enough and the policy will keep choosing the same actions over
and over again. At this point, we say that the learning algorithm has converged to the optimal
policy.

To check whether the learning algorithm converges, we run the program ten times and compare
the best action per state. By best action, we mean the action with the highest Q-value. If
the best actions of the different runs are the same, this means that the learning algorithm has
converged. We define convergence by two different outputs:

A. The percentage of states for which the best actions are the same over the 10 runs.

B. The average percentage of runs for which the best action is the same over the states.

The first result, which is output A, can be expressed by the following equation:

number of states for which the best actions over 10 runs are equal

output A = -100%

total number of states

The equation that expresses the second result, which is output B, is the following:

> percentage of runs for which the best actions of state s are equal

output B =
P total number of states
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If the results are both equal to 100%, the learning algorithm has converged for all states. To get
a better understanding, we consider a case in which the learning algorithm is not done learning.
Assume that there are 10 states, and for one of them, the best actions are not the same over all

the runs, say for only nine of the ten runs. Then, we have output A = 1% -100% = 90% and

90 9-100
output B = % +1 & = 99%. With output A, it is easy to see that the program should

have run a little longer to make the learning algorithm fully converge. However, output B shows
us that learning process went quite well, as the learning algorithm must have converged for most
of the runs, and even did well in the run where it did not converge.

In Section [3.2] multiple extensions are given. We consider each of the different versions and
discuss the results. For every version, we can play with the number of locations n, taxis m and
passengers p, the number of episodes e and time steps T' per episode and the value of €, which
results in different values for the outputs.

4.2 Different versions

In this section, we consider all the different versions of the program, state what the impact
is on the number of states and state-action pairs, and analyze the results. Each version is an
extension of the preceding version, where version 1 is the initial version.

There are a lot of different situations when considering the parameters listed above, at the end
of the previous section. Therefore, we work with the simplest situation that still gives taxis the
option to move between more than two locations: we begin with three locations, one passenger
and two taxis, thus, n = 3, p = 1 and m = 2. As stated in assumption (1) of Section the
travel time between the locations also needs to be given. The figure below shows the graphical
representation of the environment that we work with, where the numbers in the nodes are the
index of the locations and the length of the edges is the travel time between the locations.

Figure 4.1: A graphical representation of the experiment environment with the
location index in the nodes and the travel times between the locations on the
edges.

4.2.1 Version 1

The first version, which is the version that forms the base for the extensions, is characterized
by restriction (6a), (7a) and (8a) from Section So, when a taxi drops off a passenger, a
new passenger directly appears in the environment, which again is directly served by a taxi in
the next time step. By restriction (6a), this means that there is always one or zero passengers
present in the environment. This gives us a total of 39 states. Namely: there are 6 ways to divide
the 2 taxis over the 3 locations, where it is allowed to have 2 taxis on the same location. When
two taxis are available, there can only be 1 passenger request because of the restriction. Since
there are 6 different possibilities for a passenger request, this gives us 6 different states. When
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one taxi is available, this means that one taxi is already serving a passenger, and therefore, it
is not possible to have another passenger request by restriction (6a). There are three options
for the location of the taxi, and there is no new passenger in each of the cases, which gives
us 3 different states. As the one taxi left is not able to serve a new passenger while the other
taxi is assigned, the case that all taxis are occupied will never occur. This gives us a total of
6-6+3-1=239 states.

With the episodes and time steps per episode set to e =150 and T = 2000, and € = 0.1, we
get the following result: output A = 100% and output B = 100%. So the learning algorithm
converges.

Nevertheless, this version of the program is not so interesting. As a new passenger always di-
rectly appears when a taxi becomes available, and no other passenger appears since there is a
limit, there is nothing unpredictable. The best action is always to serve the passenger and the
immediate reward is optimized. In other words, the optimal policy always selects the action
that gives the smallest immediate reward, which is equal to the smallest travel time between
taxi and passenger.

4.2.2 Version 2

The second version given in Section [3.2]is more unpredictable, as it is characterized by restric-
tions (6b) and (7b). So, when a taxi drops off a passenger, a new passenger does not necessarily
appear directly in the environment. New passengers are however still directly served by a taxi
in the next time step. Also, as long as there is a taxi available, there is a chance that a passenger
request appears. Just as in the previous version, we still have p = 1, since there is still only one
passenger in the environment at the beginning of each episode. The difference is that there is no
limit during the episode anymore. This is because we replaced restriction (6a) by (6b). When

there are my,q;; taxis available, then there are myqyq + 1 different possibilities for the number

1

of passengers that appear. And each can happen with a chance of T For example,
Mavail

if there are two taxis available, then there either appear two passengers, one passenger or no

passengers, each with a chance of %

The setting for episodes and time steps of the first version gives output A = 95.26% and
output B = 97.79%, and thus, the learning algorithm has not converged. Changing the settings
to e =300 and T = 4000, does make the algorithm converge, as the outputs are both 100%.

The reason that the algorithm does not converge in the same number of episodes and time steps
as in the previous version, is because the number of states is now higher. Therefore, the states
are not visited as many times as needed to obtain enough information about the environment.
The number of states in this version is 190. When two taxis are available, there can be 2 pas-
senger requests. There are Z?:li = 21 combinations of passengers, as there are 6 different
possibilities for a passenger request. Of course, it is also possible to have only one passenger
request, which gives 6 possibilities, or no passengers, which is also a possibility. When there is
only one available taxi, there is also either one or no passengers, and thus, 6 + 1 possibilities of
passengers. When there is no available taxi, the only option is having no passenger requests.
The total number of states is therefore: 6-(214+6+1)+3-(6+ 1) + 1 = 190 states.

Since the passengers are directly served in the next time step, when there is only one taxi and one
passenger, there is only one possible action, which is therefore of course the best action. This is
the same for every resulting policy. Also when there are two taxis at the same location, the one
passenger is assigned to a location of one of those taxis, which is in either cases the same. That
is, there is only one possible action. This is the same for when the two taxis are not at the same
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location, but two passengers have the same origin. When the passengers’ origins are different
and the two taxis are at different locations, the optimal policy mostly selects the action that
gives the minimum total waiting time. There are sometimes some exceptions, but there is no
clear reason why this is the case for these states. An example is the state ([1, 1,0];(1,2; 2, 1))
The action with the highest @-value is assigning the taxi at location 0 to the first passenger,
whose origin is location 1, and the taxi at location 1 to the second passenger, whose origin is
2. This gives a total waiting time of 4 4+ 2 = 6, while the waiting time could also be 0 +5 = 5.
When there is only one passenger, it is assigned to the taxi that is closest, and thus, gives the
smallest waiting time.

We see that, even though it is now arbitrary when the passengers appear, the optimal pol-
icy most of the time selects the actions that result in minimum (total) waiting time. It does
sometimes choose the assignment that does not immediately give the smallest waiting time, but
not often. It might be because the origin (and destination) of a new passenger are completely
random, and so, the chance that a new passenger appears at a certain location is for every
location the same. Besides that, the moment that the passenger appears is also random, so it
does not become clear for the agent when and where to expect new passengers. This might
change when some locations are set as more popular for new passengers to appear. This could
be a nice extension. However, with version 3, we first make the picking up process more realistic.

4.2.3 Version 3

In reality, taxis might want to wait a while before serving a passenger, as there is a chance that
another passenger request appears and causes a better solution than when the first passenger
was directly served. This brings us to a third and last version of the program in this thesis,
which is characterized by restriction (8b) of Section So, it is exactly the same as the previous
version, with the addition that a taxi can ‘choose’ to not serve a passenger instead of directly
serving it.

Again, using the setting for episodes and time steps of the previous version gives output A =
90.53% and output B = 97.74%, and thus, the learning algorithm has not converged. This
time, it is not because of the number of states, as there are still 190 states, but probably because
of the number of state-action pairs, which is increased from 352 to 1666 pairs. Again, there is
more time needed to select the possible actions of each state multiple times before the agent has
enough knowledge about the environment.

Increasing the episodes and time steps also increases the outputs a little bit. For example when
e =400 and T = 10000, one of the highest results that are found is output A = 92.11% and
output B = 98.26%. Unfortunately, it often happens that the outputs are some closer to 90%.
Of course there are a lot of different combinations possible, but even the setting of e = 1500
and T = 100,000 does not give outputs much closer to 100%. Reducing € over time might help,
as the agent will make more use of its knowledge. For example, starting with € = 0.1 from the
beginning of the run, then reduce it to € = 0.05 from episode = 175 and further, and at last
e = 0.025 from episode = 275 till 400. One of highest results found is output A = 93.68% and
output B = 98.84%, which is a little higher, but again, another 10 runs can give lower values for
the output. Even though there is a small increment in the highest results found, the outputs are
still not equal to 100%. We can conclude from output B that the percentage of runs for which
the best actions are the same for most states are 100%, but from output A we know that this is
not the case for approximately 8% of the 190 states. It might be that there is a combination of
episodes, time steps and e that results in 100% for both outputs, but so far it is not found. The
number of episodes and time steps is then probably really high, which makes that the program
has to run for a really long time, but so far there is no clear difference between high and low
values.
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Of course, we can still make conclusions about what the optimal policy is, since output A tells us
that for approximately 92% of the states the best actions are the same for all runs. When there
is only one available taxi, the best action is to help the present passenger instead of waiting.
When there are two available taxis and two passengers, only one taxi is assigned to a passenger,
and the other passenger is not served. The assignment that is made, is the one that gives the
smallest waiting time. However, when there are two taxis and only one passenger, the passenger
is still assigned to a taxi, but mostly the one that is the furthest away (except for when the taxi
is on the passenger’s origin). The states for which the percentage of runs is not 100% are always
of the category of two taxis and one passenger.

We see that @-Learning does work for the first two versions of the program, in which the future
is still kind of predictable. However, when the choices really depend on what might happen in
the future and the agent tries to learn what is most likely to happen, the learning algorithm does
not converge fully. This is maybe because the future is completely random as all probabilities
are equal, but there still seems to be a pattern in the optimal policy. As said before, the program
might have to run for a really long time to get 100% for both output A and output B. Therefore,
Q-Learning is maybe not the best method to use.

This last version is based on reality the most, and therefore, we would like to continue working
with this version of the program or make more extensions on it. Unfortunately, there was not
enough time left for this project. An interesting extension would be to let passengers appear
even when there are no taxis available, since this makes the program even closer to reality. We
could also look at more situations for the number of locations, taxis and passengers for these
versions, as there are a lot more locations, taxis and passengers in real life. However, the number
of states and state-action pairs would only increase and make it even harder to fully converge,
but with the right methods, it would be an interesting extension to look at.

21



Chapter 5

Conclusion

This thesis focuses on solving a Taxi Dispatch Problem, in which taxis are assigned to trip
requests of passengers who are waiting at different locations. In this project, the goal is to solve
this problem such that the total waiting time of the passengers is minimized. We tried this with
@-Learning. Together with some restrictions and assumptions, this is implemented in Java, and
is used to make an agent learn and generate results.

Since the chosen policy mostly selects the actions with the highest @-values, also called the best
actions, we say that the learning algorithm has converged to the optimal policy as soon as it
keeps choosing these best actions. To check this, we run the program ten times and compared
the best actions per state. If the best actions of the different runs are the same, this means that
the learning algorithm has converged. We define convergence by two different outputs:

A. The percentage of states for which the best actions are the same over the 10 runs.

B. The average percentage of runs for which the best action is the same over the states.

If the results are both 100%, the learning algorithm has converged for all states. The equations
that can be used to express these outputs, can be found on page With output A it is easy
to see whether or not the algorithm has converged for all states. If not, Qutput B shows us how
badly the algorithm did not converge.

As the number of states and state-action pairs increase rapidly when increasing the number of
locations, taxis and passengers, we looked at the simplest nontrivial situation: three locations,
one passenger and two taxis. For this situation, we worked though the three different versions of
the program. The initial version is characterized by restriction (6a), (7a) and (8a) of Section [3.2}
when a taxi drops off a passenger, a new passenger directly appears in the environment, which
again is directly served by a taxi in the next time step. Also, there will always be only one or no
passengers waiting. The second version is characterized by restrictions (6b) and (7b): when a
taxi drops off a passenger, not necessarily directly a new passenger appears in the environment.
New passengers are however still directly served by a taxi in the next time step. Also, as long
as there is a taxi available, there is a chance that another passenger request appears. The last
version is an extension of the second version, which makes the program more realistic: a taxi
can ‘choose’ to not serve a passenger instead of directly serving it.

For each of the versions, the number of episodes and time steps per episode are chosen differently,
as later versions have more states and/or state-actions pairs. Therefore, the agent needs more
time to visit all the states enough times to gain the right information about the environment

and actions.

The outputs are shown in the table below.

22



Version 1 Version 2 Version 3
Output A 100% 100% 93.68%
Output B 100% 100% 98.84%

Table 5.1: Results.

For the first two versions, both output A and B are 100%, which means that the learning al-
gorithm has fully converged. In the first version, because passengers are directly served in the
next time step, the optimal policy always selects the action that gives the smallest waiting time.
The optimal policy of the second method also almost always select the actions that give the
smallest (total) waiting time. There are some exceptions, but there is no clear reason why this
happens for certain states. The optimal policy therefore seems a little random, but this might
be because the appearance of the passengers is completely random. For the third version, there
is no combination of values for the number of episodes, time steps per episode and e found
that made the algorithm fully converge. It might be that there is a combination that results
in 100% for both outputs, but these are probably really high, which makes that the program
has to run for a really long time. However, so far there is no clear difference between high
and low values, as the outputs are not constant and do not really increase when the number of
episodes and/or time steps increase. By Output B, we know that for approximately 92% of the
states the percentage of runs for which the best actions are the same must be 100%, so we can
still make conclusions about the optimal policy. The most interesting occurrences are for the
situations with two available taxis present. When there are two taxis and two passengers, only
one passenger gets assigned to the closest taxi, and the other one is not served at all. However,
when there are two taxis and only one passenger, the passenger is still assigned to a taxi, but
mostly the one that is the furthest away (except for when the taxi is on the passenger’s origin).

We see that @-Learning does work for the first two versions. However, when the agent tries
to learn what is most likely to happen in the future, the learning algorithm does not converge
fully. This also might be because the future is completely random, as all the probabilities in
the environment are equal. It would be interesting to extend the program even more to make
it more like reality, by for example work with higher numbers of locations and taxis. However,
the number of states and state-action pairs would only increase and make it even harder to fully
converge. Therefore, )-Learning might be not the best method to use and it is maybe better
to use a different method.
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Chapter 6

Discussion

In this thesis, the learning algorithm @-Learning is used. This is a model-free algorithm, but it
was probably better to use a model-based algorithm for the problem of the project.

A model-based algorithm constructs a model while learning. A model is an element of model-
based Reinforcement Learning that simulates the environment and makes predictions about the
dynamics of the environment. This way, it is possible to try out possible future sequences of
actions without actually performing them in the real environment and see what the outcome
would be. Model-based algorithms are mostly used for a planning or prediction problem |(inte-
grate.ai, 2018)|

A model-free algorithm does not use a model and emphasizes learning rather than planning (in-
tegrate.ai, 2018). The algorithms are explicitly trial-and-error learners |(Sutton & Barto, 2018)l,
and solve control problems |(Taylor, 2004). A common control problem is the one with a grid-
world in which the agent learns to find its way through a maze. The agent learns what the best
action is for each state to reach its goal by trying lots of times.

The Taxi Dispatch Problem in this thesis is much more a prediction problem. The environment
is dynamic as the passengers origin and destination are chosen random, and in an extension,
even when the passengers appear is arbitrary. By constructing a model, different situations
could be simulated and choices could be made on what most likely would happen. Even though
trial-and-error works too, the approach of model-based Reinforcement Learning would make
more sense.

We can also see this in the results. In the last version of the program, the taxis have the option
to not serve a passenger, with the idea that waiting a little longer might give a better assignment
and would not increase the waiting time too much. We saw that the learning algorithm got quite
close, as both outputs A and B were always between 90 and 100%, but yet, it did not succeed
in fully converging so far. It might be that it does when the number of episodes and time steps
are set really high, but that would make the program to have to run a long time. Therefore,
as the agent tries to learn what is most likely to happen, a model-based method might help to
speedup the learning process.
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