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SOME FAST ALGORITHMS FOR SEQUENTIALLY
SEMISEPARABLE REPRESENTATIONS∗

S. CHANDRASEKARAN† , P. DEWILDE‡ , M. GU§ , T. PALS¶, X. SUN‖,

A.-J. VAN DER VEEN‡ , AND D. WHITE∗∗

Abstract. An extended sequentially semiseparable (SSS) representation derived from time-
varying system theory is used to capture, on the one hand, the low-rank of the off-diagonal blocks
of a matrix for the purposes of efficient computations and, on the other, to provide for sufficient
descriptive richness to allow for backward stability in the computations. We present (i) a fast
algorithm (linear in the number of equations) to solve least squares problems in which the coefficient
matrix is in SSS form, (ii) a fast algorithm to find the SSS form of X such that AX = B, where A
and B are in SSS form, and (iii) a fast model reduction technique to improve the SSS form.
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1. Introduction. In this paper we will present fast backward stable algorithms
for the solution of a large class of least squares problems with structured matrices
which can be either sparse or dense. The structure concerned is called “semiseparable”
and is a matrix analogue of semiseparable integral kernels as described by Kailath in
[33]. This matrix analogue was most likely first described by Gohberg, Kailath, and
Koltracht in [22]. In that paper it is shown that, under further technical restrictions,
an LDU factorization is possible with a complexity p2N , where p is the complexity
of the semiseparable description and N the dimension of the matrix, in effect an
algorithm linear in the size of the matrix, when p is small. In a number of papers
Alpay, Dewilde, and Dym introduce a new formalism for time-varying systems which
provides for a framework closely analogous to the classical time-invariant state space
description and which allows for the generalization of many time-invariant methods to
the time-varying case [1, 2]. When applied to matrices, this formalism generalizes the
formalism used in [22] and allows for more general types of efficient operations. (By
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Table 1

Dimensions of matrices in (1). ki and li are column dimensions of Ui and Pi, respectively.

Matrix Ui Vi Wi Pi Qi Ri

Dimensions mi × ki mi × ki−1 ki−1 × ki mi × li mi × li+1 li+1 × li

“efficient” we mean operations that are linear in the size of the matrix.) In the book
Time-Varying Systems and Computations [16], Dewilde and van der Veen describe the
various operations that are possible on time-varying systems in great detail, including
the efficient application of orthogonal transformations. In particular, they show how a
U RV -type transformation on a general (possibly infinite dimensional) semiseparable
system can be done with an efficient recursive procedure. This procedure is based on
the ideas presented in [40] and then further elaborated by Dewilde and van der Veen
in [17] and by Eidelman and Gohberg in [21]. In the former paper the connection with
Kalman filtering as a special case of the procedures is also discussed. Other related
works include [35, 41].

To be more specific, let A be an N × N (possibly complex) matrix satisfying
the matrix structure. Then there exist n positive integers m1, . . . ,mn with N =
m1 + · · · + mn to block-partition A as

A = (Aij) , where Aij ∈ Cmi×mj satisfies Aij =

⎧⎨⎩
Di if i = j,
UiWi+1 · · ·Wj−1V

H
j if j > i,

PiRi−1 · · ·Rj+1Q
H
j if j < i.

(1)

Here we use the superscript H to denote the Hermitian transpose. The sequences
{Ui}n−1

i=1 , {Vi}ni=2, {Wi}n−1
i=2 , {Pi}ni=2, {Qi}n−1

i=1 , {Ri}n−1
i=2 , and {Di}ni=1 are all matrices

whose dimensions are defined in Table 1. While any matrix can be represented in this
form for large enough ki’s and li’s, our main focus will be on matrices of this special
form that have relatively small values for the ki’s and li’s. In the above equation,
empty products are defined to be the identity matrix. For n = 4, the matrix A has
the form

A =

⎛⎜⎝
D1 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

P2Q
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4

⎞⎟⎠ .

We say that the matrices Di, Ui, Wi, Vi, Pi, Qi, and Ri provide a sequentially
semiseparable (SSS) representation of the matrix A if they satisfy (1).

In the case where all Wi and Ri are identities, A reduces to a block-diagonal
plus semiseparable matrix, which can be handled directly using techniques in Chan-
drasekaran and Gu [8]. It is shown in [16] that this class of matrices is closed under
inversion and includes banded matrices and semiseparable matrices, as well as their
inverses as special cases.

It should be noted that the SSS structure of a given matrix A depends on the
sequence mi. Different sequences will lead to different representations.

In this paper we present a fast backward stable algorithm for solving a linear least
squares problem where the coefficient matrix is a rectangular matrix with a structure
similar to (1). As a consequence, this work effectively shows that the Moore–Penrose
inverses of such matrices have similar structures and can be computed rapidly as
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well. We also present a fast algorithm for computing the SSS representation of X,
such that AX = B, when the SSS representation of both A and B are known. For
both these algorithms we present numerical experiments on timing and accuracy.
Finally, we present a fast model reduction algorithm for improving the efficiency of
the SSS representation when necessary. This latter part of the paper is, in effect, a
generalization of the method presented in [8], which is not repeated here.

A companion technical report [7] is also available and is more comprehensive in
the topics it covers.

2. One-pass solution for the Moore–Penrose inverse of a general sys-
tem. Given a general matrix A in SSS form and a vector b with the same number of
rows as A, we wish to find a vector x of smallest possible magnitude ‖x‖2 =

√∑
‖xi‖2,

which minimizes ‖Ax − b‖2. Our goal is to find a backward stable algorithm that is
one-pass and top-down. As before, we assume that we have a realization consisting of
block matrices {Ui}, {Vi}, etc., with the only restriction being that these realization
matrices must be appropriately sized to fit the products in the representation. In
particular, the diagonal entries {Di} do not have to be square or nonsingular. In [16]
a general algorithm was given to determine the Moore–Penrose inverse of a general
time-varying operator. In this paper, we adapt this algorithm to the matrix case
using the ideas of [6]. This results in a fast one-pass and top-down algorithm for the
structured least squares problem.

The one-pass character is obtained by making judicious use of left and right
multiplications by elementary orthogonal matrices. These matrices then combine
to form semiseparable operators of the same complexity as the original semiseparable
matrix. What makes the Moore–Penrose case more complex than the square invertible
case is the fact that exact solutions of reduced subsystems may not contribute to the
Moore–Penrose solution, except in the special circumstance that all rows in the system
are linearly independent. For example, the system of equations[

1
1

]
x =

[
b1
b2

]
has the least squares solution x = (b1 + b2)/2; that is, the first equation cannot be
solved independently from the rest of the system. Hence care has to be exercised in
converting the system first to a system of row-independent matrices; that is, the left
null-space has to be implicitly determined (see what follows).

The strategy we follow to obtain the reduction to a row-independent form works
in two steps and produces a system of independent rows in block upper triangular
form. To find the Moore–Penrose solution a further step then consists in solving
the resulting row-independent system using the method described in [6] (this time
actually on a simpler system) or just by constructing the inverse directly as is done
in [16]. The resulting complexity will roughly be twice that of the direct inversion
algorithm, in which invertibility of the matrix is assumed. Lazy evaluation allows the
algorithm to proceed from the upper left corner down to the lower right corner as
before. A summary of the procedure is as follows:

1. Using elementary orthogonal (or in case of complex entries unitary) trans-
forms on the columns (on the right of the matrix), we gradually transform
the double-sided representation into a block upper triangular one, that is,
one in which the P -, Q-, and R-type matrices are all zero. The block upper
triangular representation will have the same complexity as the original. The
result is the representation of a block upper triangular matrix A1, related to
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A through

A1 = AQ̂,

where Q̂ assembles the column transformations. (We keep using the symbol
“Q” with a qualification such as a hat or a tilde to indicate unitary trans-
formation matrices. These Q’s should not be confused with the Qi in the
original representation. A similar remark applies to the use of R’s.)

2. Using elementary orthogonal transformations on the rows (i.e., on the left)
we gradually (lazily) determine the left null-space and range of A1:

A1 = [ Q̃(1) Q̃(2) ]

[
0
Ao

]
,

in which Ao has linearly independent rows. The columns of Q̃(2) then form
an orthonormal basis for the range of A1 and the columns of Q̃(1) for its left
null-space (i.e., the kernel of AH

1 ).
3. The combination of the two previous steps has produced

A = [ Q̃(1) Q̃(2) ]

[
0
Ao

]
Q̂.

With y = Q̂x and [
b
(1)
0

b
(2)
o

] = [
Q̃(1)Hb

Q̃(2)Hb
] we find that the Moore–Penrose solution

satisfies

Aoy = b(2)o ,

which is now a system with linearly independent rows that can be solved

exactly with the techniques of [6, 7], leaving an irreducible residue b
(1)
o . Hence

the least squares error will be ‖b(1)o ‖.
We use the following 4 × 4-block SSS matrix as an example to illustrate the

procedure:

A =

⎡⎢⎣
D1 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

P2Q
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4

⎤⎥⎦ .(2)

2.1. Right multiplication—Converting to a block upper triangular ma-
trix.

Step 1.
1. Compute Q1 = [ Q̂11 Q̂12 ][ 0

R̂2
] via QL factorization. R̂2 is a square matrix.

2. Right multiply [ Q̂11 Q̂12 ] to the first block column of A and obtain⎡⎢⎣
D1Q̂11 D1Q̂12 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

0 P2R̂
H
2 D2 U2V

H
3 U2W3V

H
4

0 P3R2R̂
H
2 P3Q

H
2 D3 U3V

H
4

0 P4R3R2R̂
H
2 P4R3Q

H
2 P4Q

H
3 D4

⎤⎥⎦

=

⎡⎢⎣A
(1)
1

⎡⎢⎣
D1Q̂12 U1V

H
2

P2R̂
H
2 D2

P3R2R̂
H
2 P3Q

H
2

P4R3R2R̂
H
2 P4R3Q

H
2

⎤⎥⎦ Ã
(1)
1

⎤⎥⎦ .(3)
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Step 2.

1. Compute [ R̂2R
H
2

Q2
] = [

Q̂
(1)
21

Q̂
(2)
21

Q̂
(1)
22

Q̂
(2)
22

][ 0
R̂3

] via QL factorization. R̂3 is a square matrix.

2. Right multiply [
Q̂

(1)
21

Q̂
(2)
21

Q̂
(1)
22

Q̂
(2)
22

] to the 2nd and 3rd block columns of A after Step

1, and we obtain⎡⎢⎣A
(1)
1

⎡⎢⎣
[D1Q̂12 U1V

H
2 ] Q̂21 [D1Q̂12 U1V

H
2 ] Q̂22

[P2R̂
H
2 D2 ] Q̂21 [P2R̂

H
2 D2 ] Q̂22

0 P3R̂
H
3

0 P4R3R̂
H
3

⎤⎥⎦ Ã
(1)
1

⎤⎥⎦

=

⎡⎢⎣A
(2)
1

⎡⎢⎣
[D1Q̂12 U1V

H
2 ] Q̂22 U1W2V

H
3

[P2R̂
H
2 D2 ] Q̂22 U2V

H
3

P3R̂
H
3 D3

P4R3R̂
H
3 P4Q

H
3

⎤⎥⎦ Ã
(2)
1

⎤⎥⎦ .(4)

Step 3.

1. Compute [ R̂3R
H
3

Q3
] = [

Q̂
(1)
31

Q̂
(2)
31

Q̂
(1)
32

Q̂
(2)
32

][ 0
R̂4

] via QL factorization. R̂4 is a square matrix.

2. Right multiply [
Q̂

(1)
31

Q̂
(2)
31

Q̂
(1)
32

Q̂
(2)
32

] to the 3rd and 4th block columns of A after Step 2,

and we obtain⎡⎢⎣A
(3)
1

⎡⎢⎣
[ [D1Q̂12 U1V

H
2 ] Q̂22 U1W2V

H
3 ] Q̂32 U1W2W3V

H
4

[ [P2R̂
H
2 D2 ] Q̂22 U2V

H
3 ] Q̂32 U2W3V

H
4

[P3R̂
H
3 D3 ] Q̂32 U3V

H
4

P4R̂
H
4 D4

⎤⎥⎦
⎤⎥⎦ ,(5)

where

A
(3)
1 =

⎡⎢⎣A
(2)
1

⎡⎢⎣
[ [D1Q̂12 U1V

H
2 ] Q̂22 U1W2V

H
3 ] Q̂31

[ [P2R̂
H
2 D2 ] Q̂22 U2V

H
3 ] Q̂31

[P3R̂
H
3 D3 ] Q̂31

0

⎤⎥⎦
⎤⎥⎦ .(6)

2.2. Time-varying system notation representation. We will use the fol-
lowing time-varying system notations to preserve and represent the SSS structure for
the reduction procedure described above. If A is a block upper triangular matrix with
an SSS representation, we use

〈A〉i =

[
Wi V H

i

Ui Di

]
,

collecting the ith components of the SSS representation in a single block 2 × 2 ma-
trix. In the above notation, some of the block rows or columns may disappear. The
dimensions of the blocks have to be congruent, of course. The entry Ai,j for i < j is
given by Ai,j = UiWi+1 · · ·Wj−1Vj and Ai,i = Di.

We use the terms “realization” and “representation” indiscriminately to indicate
the matrices used in diverse semiseparable representations. In the next sections we
assume that all the given representations are of minimal dimensions. (They will be if
the construction procedures of [6] have been used.)

With these notations, we rewrite the right multiplication procedure as follows.
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Step 1.

1. Compute Q1 = [ Q̂11 Q̂12 ][ 0
R̂2

] via QL.

2. 〈Q̂〉1

=

[
· ·

Q̂12 Q̂11

]
,

where “·” denotes a 0-dimension matrix.
3. 〈A1〉1

=

[
· ·

[D1Q̂12 U1 ] D1Q̂11

]
.

Step 2.

1. Compute [ R̂2R
H
2

Q2
] = [

Q̂
(1)
21

Q̂
(2)
21

Q̂
(1)
22

Q̂
(2)
22

][ 0
R̂3

] via QL.

2. 〈[Q̂〉2

=

[
Q̂

(1)
22 Q̂

(1)
21

Q̂
(2)
22 Q̂

(2)
21

]
.

3. 〈A1〉2

=

⎡⎢⎣
[

Q̂
(1)
22 0

V H
2 Q̂

(2)
22 W2

] [
Q̂

(1)
21

V H
2 Q̂

(2)
21

]
[
P2R̂

H
2 Q̂

(1)
22 + D2Q̂

(2)
22 U2

]
P2R̂

H
2 Q̂

(1)
21 + D2Q̂

(2)
21

⎤⎥⎦ .

On completing this step, we are able to construct the first two block columns of A1:

A1 =

⎡⎢⎢⎢⎢⎣
D1Q̂11 [D1Q̂12 U1 ]

[
Q̂

(1)
21

V H
2 Q̂

(2)
21

]
? ?

0 P2R̂
H
2 Q̂

(1)
21 + D2Q̂

(2)
21 ? ?

0 0 ? ?
0 0 ? ?

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎣A
(2)
1

⎡⎢⎣
? ?
? ?
? ?
? ?

⎤⎥⎦
⎤⎥⎦ .(7)

Step 3.

1. Compute [ R̂3R
H
3

Q3
] = [

Q̂
(1)
31

Q̂
(2)
31

Q̂
(1)
32

Q̂
(2)
32

][ 0
R̂4

] via QL.

2. 〈Q̂〉3

=

[
Q̂

(1)
32 Q̂

(1)
31

Q̂
(2)
32 Q̂

(2)
31

]
.

3. 〈A1〉3

=

⎡⎢⎣
[

Q̂
(1)
32 0

V H
3 Q̂

(2)
32 W3

] [
Q̂

(1)
31

V H
3 Q̂

(2)
31

]
[
P3R̂

H
3 Q̂

(1)
32 + D3Q̂

(2)
32 U3

]
P3R̂

H
3 Q̂

(1)
31 + D3Q̂

(2)
31

⎤⎥⎦ .
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On completing this step, we are able to construct the first three block columns of A1:

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A

(2)
1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
[D1Q̂12 U1 ]

[
Q̂

(1)
21 0

V H
2 Q̂

(2)
21 W2

] [
Q̂

(1)
32

V H
3 Q̂

(2)
32

]
?

[
P2R̂

H
2 Q̂

(1)
22 + D2Q̂

(2)
22 U2

] [ Q̂
(1)
32

V H
3 Q̂

(2)
32

]
?

P3R̂
H
3 Q̂

(1)
31 + D3Q̂

(2)
31 ?

0 ?

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎣A
(3)
1

⎡⎢⎣
?
?
?
?

⎤⎥⎦
⎤⎥⎦ .

(8)
Step 4. This is the last step for our 4× 4-block example, and there is nothing left

to be done except the calculation of the last block column:

〈A1〉4 =

⎡⎣ ·
[
I 0
0 V H

4

]
· [P4R̂

H
4 D4 ]

⎤⎦ .

And, finally, we have the complete block upper triangular matrix A1:

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A

(3)
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[D1Q̂12 U1 ]

[
Q̂

(1)
22 0

V H
2 Q̂

(2)
22 W2

] [
Q̂

(1)
32 0

V H
3 Q̂

(2)
32 W3

] [
I 0
0 V H

4

]
[
P2R̂

H
2 Q̂

(1)
22 + D2Q̂

(2)
22 U2

] [ Q̂
(1)
32 0

V H
3 Q̂

(2)
32 W3

] [
I 0
0 V H

4

]
[
P3R̂

H
3 Q̂

(1)
32 + D3Q̂

(2)
32 U3

] [ I 0
0 V H

4

]
[P4R̂

H
4 D4 ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(9)

For the simplicity of notation in the following steps, we denote the component
matrices as follows:

Ûi =
[
PiR̂

H
i Q̂

(1)
i2 + DiQ̂

(2)
i2 Ui

]
,

V̂ H
i =

[
Q̂

(1)
i2

V H
i Q̂

(2)
i2

]
, except for V̂ H

4 =

[
I 0
0 V H

4

]
,

Ŵi =

[
Q̂

(1)
i2 0

V H
i Q̂

(2)
i2 Wi

]
,

and

D̂i = PiR̂
H
i Q̂

(1)
i1 + DiQ̂

(2)
i1 , except for D̂4 = [P4R̂

H
4 D4 ] .

With these notations,

A1 = AQ̂ =

⎡⎢⎢⎣
D̂1 Û1V̂

H
2 Û1Ŵ2V̂

H
3 Û1Ŵ2Ŵ3V̂

H
4

0 D̂2 Û2V̂
H
3 Û2Ŵ3V̂

H
4

0 0 D̂3 Û3V̂
H
4

0 0 0 D̂4

⎤⎥⎥⎦ .
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2.3. Left multiplication—Converting to linearly independent rows.

Step 1. QR decomposition on [ D̂1 Û1 ]:

[
Q̃

(1)
1 Q̃

(2)
1 Q̃

(3)
1

]H
[ D̂1 Û1 ] =

⎡⎣ 0 0

D̂o1 Ûo1

0 Y2

⎤⎦ ,

where Q̃1 = [ Q̃
(1)
1 Q̃

(2)
1 Q̃

(3)
1

] is the “Q” matrix of the QR decomposition (for
later convenience and consistency we have put the bottom row of zeros in the “R”
factor on top), and D̂o1 and Y2 have linearly independent rows by construction. (They
can be in echelon form.) The result of Step 1 applied to the whole matrix A1 by left
multiplying the elementary transformation Q̃H

1 is⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

D̂o1 Ûo1V̂
H
2 Ûo1Ŵ2V̂

H
3 Ûo1Ŵ2Ŵ3V̂

H
4

0 Y2V̂
H
2 Y2Ŵ2V̂

H
3 Y2Ŵ2Ŵ3V̂

H
4

0 D̂2 Û2V̂
H
3 Û2Ŵ3V̂

H
4

0 0 D̂3 Û3V̂
H
4

0 0 0 D̂4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and the block row containing Y2 goes to the next stage while the first two block rows
will remain untouched in the next steps.

Step 2. This step consists again in finding a QR factorization,

Q̃H
2

[
Y2V̂

H
2 Y2Ŵ2

D̂2 Û2

]
=

⎡⎣ 0 0

D̂o2 Ûo2

0 Y3

⎤⎦ ,

in which Q̃2 has the block decomposition

Q̃2 =

[
Q̃

(1)
21 Q̃

(2)
21 Q̃

(3)
21

Q̃
(1)
22 Q̃

(2)
22 Q̃

(3)
22

]
.

Left multiplying Q̃H
2 produces a result for the second step:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

D̂o1 Ûo1V̂
H
2 Ûo1Ŵ2V̂

H
3 Ûo1Ŵ2Ŵ3V̂

H
4

0 0 0 0

0 D̂o2 Ûo2V̂
H
3 Ûo2Ŵ3V̂

H
4

0 0 Y3V̂
H
3 Y3Ŵ3V̂

H
4

0 0 D̂3 Û3V̂
H
4

0 0 0 D̂4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Step 3. Again, we perform a QR factorization,

Q̃H
3

[
Y3V̂

H
3 Y3Ŵ3

D̂3 Û3

]
=

⎡⎣ 0 0

D̂o3 Ûo3

0 Y4

⎤⎦ ,
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in which Q̃3 has the block decomposition

Q̃2 =

[
Q̃

(1)
31 Q̃

(2)
31 Q̃

(3)
31

Q̃
(1)
32 Q̃

(2)
32 Q̃

(3)
32

]
.

Left multiplying Q̃H
3 we obtain⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

D̂o1 Ûo1V̂
H
2 Ûo1Ŵ2V̂

H
3 Ûo1Ŵ2Ŵ3V̂

H
4

0 0 0 0

0 D̂o2 Ûo2V̂
H
3 Ûo2Ŵ3V̂

H
4

0 0 0 0

0 0 D̂o3 Ûo3V̂
H
4

0 0 0 Y4V̂
H
4

0 0 0 D̂4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Step 4. In this final step, we QR factorize [
Y4V̂

H
4

D̂4
]:

Q̃H
4

[
Y4V̂

H
4

D̂4

]
=

[
0

D̂o4

]
,

in which the last block consists of linearly independent rows to yield the final result:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

D̂o1 Ûo1V̂
H
2 Ûo1Ŵ2V̂

H
3 Ûo1Ŵ2Ŵ3V̂

H
4

0 0 0 0

0 D̂o2 Ûo2V̂
H
3 Ûo2Ŵ3V̂

H
4

0 0 0 0

0 0 D̂o3 Ûo3V̂
H
4

0 0 0 0

0 0 0 D̂o4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If we left multiply the Q̃H
i ’s to b also, we will have

Q̃H
4 Q̃H

3 Q̃H
2 Q̃H

1

⎡⎢⎣
b1
b2
b3
b4

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
(1)
o1

b
(2)
o1

b
(1)
o2

b
(2)
o2

b
(1)
o3

b
(2)
o3

b
(1)
o4

b
(2)
o4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence, the quantities b
(1)
oi ’s remain to produce the Moore–Penrose square error:

ε2MPI = ‖b(1)o1 ‖2 + ‖b(1)o3 ‖2 + ‖b(1)o3 ‖2 + ‖b(1)o4 ‖2,
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Table 2

The dimensions of the component matrices used in the reduction procedure.

Matrix Di Ui Vi Wi Pi Qi Ri

Dimensions mi × ni mi × ki+1 ni × ki ki × ki+1 mi × li ni × li+1 li+1 × li

Matrix R̂i Q̂
(1)
i1 Q̂

(2)
i1 Q̂

(1)
i2 Q̂

(2)
i2

Dimensions li × li li × (ni + li − li+1) ni × (ni + li − li+1) li × li+1 ni × li+1

while Yi’s will now be uniquely determined by solving a unilateral semiseparable
system given by⎡⎢⎢⎣

D̂o1 Ûo1V̂
H
2 Ûo1Ŵ2V̂

H
3 Ûo1Ŵ2Ŵ3V̂

H
4

0 D̂o2 Ûo2V̂
H
3 Ûo2Ŵ3V̂

H
4

0 0 D̂o3 Ûo3V̂
H
4

0 0 0 D̂o4

⎤⎥⎥⎦
⎡⎢⎣
Y1

Y2

Y3

Y4

⎤⎥⎦ =

⎡⎢⎢⎢⎣
b
(2)
o1

b
(2)
o2

b
(2)
o3

b
(2)
o4

⎤⎥⎥⎥⎦ ,

and this system can now be solved by the direct method of [6].
It should now be clear that the two steps of the algorithm just described can

be done in a top-down, left-right fashion with “lazy” execution, and only the time-
varying state space description has to be handled, of course. In fact, one can say,
alternatively, that the state space descriptions are treated in increasing index order.

2.4. Flop counts. We list the dimensions of each component matrix in Table 2.
We have

∑K
i=1 mi = M and

∑K
i=1 ni = N .

In each step of the one-pass, top-down algorithm, the following tasks must be
performed, and the flops required for each task are listed:

1. Multiply a triangular matrix to a general matrix R̂iR
H
i : l2i li+1 flops required.

2. QR factorize a general matrix [ R̂iR
H
i

Qi
] via Householder triangularization:

2l2i+1(li + ni) − 2
3 l

3
i+1 flops required.

3. Left multiply a triangular matrix to a general matrix PiR̂i: mil
2
i flops.

4. Right multiply Q̂i generated in the above step to⎡⎣ I 0
0 V H

i

Pi Di

⎤⎦ ,

using the elementary reflectors: [4(li + ni)li+1 − 2l2i+1](li + ki + mi) flops.
5. Left multiply a triangular matrix to a general matrix Yi[ V̂

H
i Ŵi ]:

(li + ki)
2(li + ni + ki+1) flops.

6. QR factorize a general matrix [
YiV̂

H
i

D̂i

Ŵi

Ûi
] via Householder triangularization:

2(li + ni + ki+1)
2(li + ki + mi) − 2

3 (li + ni + ki+1)
3 flops.

Assuming mi = m = M/K, ni = n/K, and li = ki = p for all i = 1, 2, . . . ,K,1

we have the approximate total flops

25p3K + 22p2N + 11p2M + 12pM/K + 2N2M/K − 2

3
N2/K2.(10)

We now approximately estimate an optimal number of blocks K, which gives an
upper bound of the minimal flops needed, under two conditions:

1There is an underlying assumption that M and N have a common divider K with moderate
size.
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1. M ≈ N . (10) is approximated by

f1(K) = 25p3K + 33p2M + 12pM2/K +
4

3
M3/K2.

Take the derivative with respect to K and set the derivative to 0:

25p3 − 12pM2/K2 − 8

3
M3/K3 = 0.

fopt
1 < (33 + 25

9 + 12
√

3)p2M ≈ 56.56p2M , with Kopt ≈ 2
√

3M
5p ≈ 0.6928M/p.

2. α = N
M � 1. Then (10) is approximated by

f2(K) = 25p3K + 11p2M + 12αpM2/K + 2α2M3/K2.

fopt
2 < (11 + 12 3

√
25α)p2M , with Kopt ≈ 3

√
α2

25
M
p ≈ 0.3420

3
√
α2M/p.

2.5. Experimental run-times. We have written a Fortran 90 program to im-
plement our fast solver for the least squares problem. Our experiments were run on
a Sun Fire v880 Server with four 900 MHz UltraSPARC-III processors, 8 gigabytes
of memory, and the Solaris 2.8 operating system. The code was compiled using Sun
WorkShop Fortran 95 compiler and the Sun Performance Library, with options “-fast
-dalign.” The machine precision is ε = 2−54 ≈ 1.1× 10−16. We compared our method
with the LAPACK routine DGELS [3], which solves the problem as a general least
squares problem.

We used the results in [26] to measure the backward errors in the solutions pro-
duced by both methods. Let x̂ be any approximate solution to the least squares
problem; and let A = Q(D0 ) WT be the SVD of A. Rewrite

b = Q

(
b1
b2

)
and r = b−A x̂ = Q

(
r1
r2

)
.

We compute the backward error in x̂ as

E ≡

⎧⎨⎩
‖D r1‖2

‖r‖2
if x̂ = 0,

min (η, σ̃) otherwise,

where η = ‖r‖2

‖x̂‖2

, γ = ‖A x̂− b‖2, and

σ̃ =

√
rT1 D2 (D2 + η2I)

−1
r1

γ2/η2 + η2 rT1 (D2 + η2I)
−2

r1
.

It is known that this backward error is within a factor of 2 from the smallest possible
backward error [26].

In our experiments, we let the number of blocks increase but keep the block sizes
and off-diagonal block ranks constant. We tested the following types of matrices:

• Type I: Well-conditioned random matrices with m = 30, n = 20, and k = l = 5.
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• Type II: Well-conditioned random matrices with m = 30, n = 20, and k =
l = 10.

• Type III: Ill-conditioned random matrices with m = 30, n = 20, and k = l = 5.
• Type IV: Ill-conditioned random matrices with m = 30, n = 20, and k = l =

10.

Table 3 summarizes our numerical experiments. Our scheme (NEW) was con-
sistently and significantly faster than LAPACK (DGELS), sometimes by factors ex-
ceeding 5000. On the other hand, it produced backward errors that are as small as
those of DGELS.

3. Superfast solution of AX = B. We now consider the fast solution of the
linear system of equations AX = B, where A and B are given in SSS form, and we
desire to find the SSS form of X. One possible approach to the problem is to first
compute explicitly the SSS form of U , L, and V in the decomposition A = ULV H

and then use the fast multiplication algorithm for matrices in SSS form. Such an
approach has already been described in [16]. Here we show how to extend the implicit
decomposition ideas [6] in the same direction.

We will assume that A, X, and B are conformally partitioned. It is useful to allow
B and X to be nonsquare matrices. To facilitate this description we will assume
that the row and column partitions of the matrix A are indexed from 1 to n. So
the SSS representation of A is given by {Di(A)}ni=1, {Ui(A)}ni=1, and so on. We
will assume that the row partitions of both X and B are also indexed from 1 to n.
However, we will assume that the column partitions of X and B are indexed from m
to r. Hence the SSS representation for B, for example, will be given by {Di(B)}ni=1,
{Ui(B)}ni=1, {Wi(B)}ri=1, {Vi(B)}ri=1, {Pi(B)}ni=1, {Ri(B)}ni=m, and {Qi(B)}ni=m.
Similar considerations hold for X. Throughout this presentation we will pretend that
m ≤ 1 ≤ n ≤ r. However, these assumptions can be removed.

To ease the presentation we will assume that the initial equation AX = B is
modified to read

AX = B−

⎛⎜⎜⎜⎜⎝
0

P2(A)
P3(A)R2(A)

...
Pn(A)Rn−1(A) · · ·R2(A)

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qm(B)RH
m+1(B) · · ·RH

0 (B)PH
1 (τ)

...
Q0(B)PH

1 (τ)
DH

1 (τ)
V2(B)UH

1 (τ)
...

Vr(B)WH
r−1(B) · · ·WH

2 (B)UH
1 (τ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H

,

(11)

where D1(τ) = 0, P1(τ) = 0, and U1(τ) = 0. The reason for this peculiar form will
become clear shortly.

This fast solver is essentially of the same form as the fast solver presented in [6].
This fast solver can also be presented in a recursive fashion, which we proceed to do.

3.1. Case of n > 1 and k1(A) < m1: Elimination. First we perform
orthogonal eliminations by computing QL and LQ factorizations

U1(A) = q1

(
0

Û1(A)

)
m1 − k1(A)
k1(A)
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Table 3

Execution times and scaled backward errors.

Number of blocks

10 20 40 80 160

Execution time (seconds)

TYPE I 1.0 × 10−2 1.6 × 10−2 2.7 × 10−2 5.3 × 10−2 1.2 × 10−1

TYPE II 1.5 × 10−2 2.3 × 10−2 4.5 × 10−2 9.9 × 10−2 2.2 × 10−1

NEW TYPE III 1.1 × 10−2 1.7 × 10−2 3.2 × 10−2 5.3 × 10−2 9.4 × 10−2

TYPE IV 1.4 × 10−2 2.4 × 10−2 4.4 × 10−2 8.6 × 10−2 1.8 × 10−1

TYPE I 3.8 × 10−2 4.8 × 10−1 2.3 × 100 7.2 × 101 5.7 × 102

TYPE II 5.3 × 10−2 3.3 × 10−1 2.4 × 100 5.2 × 101 6.2 × 102

DGELS TYPE III 3.9 × 10−2 2.5 × 10−1 2.5 × 100 4.4 × 101 4.9 × 102

TYPE IV 3.8 × 10−2 2.8 × 10−1 2.1 × 100 3.9 × 101 5.2 × 102

Scaled backward errors
E

‖A‖2 ε

TYPE I 4.0 × 10−2 4.3 × 10−2 5.4 × 10−2 2.8 × 10−2 1.6 × 10−2

TYPE II 3.6 × 10−2 5.1 × 10−2 4.1 × 10−2 2.9 × 10−2 3.1 × 10−2

NEW TYPE III 2.4 × 10−2 5.4 × 10−2 2.4 × 10−2 1.2 × 10−2 2.4 × 10−2

TYPE IV 5.5 × 10−2 4.8 × 10−2 3.3 × 10−2 3.1 × 10−2 1.7 × 10−2

TYPE I 5.3 × 10−2 3.4 × 10−2 2.7 × 10−2 1.7 × 10−2 1.3 × 10−2

TYPE II 5.3 × 10−2 3.3 × 10−2 2.9 × 10−2 2.6 × 10−2 1.8 × 10−2

DGELS TYPE III 3.9 × 10−2 2.2 × 10−2 2.3 × 10−2 1.7 × 10−2 1.2 × 10−2

TYPE IV 5.1 × 10−2 3.3 × 10−2 2.3 × 10−2 2.0 × 10−2 1.3 × 10−2
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and

(
qH1 D1(A)

)
=

(m1 − k1(A) k1(A)

m1 − k1(A) D11(A) 0
k1(A) D21(A) D22(A)

)
w1,

where q1 and w1 are unitary matrices. We now need to apply qH1 to the first m1 rows
of (11). Nothing needs to be done for A, X, and the second term involving τ on the
right-hand side. Applying qH1 to the first m1 rows of B we modify P1(B), D1(B), and
U1(B) as follows:

qH1 P1(B) =

(
m1 − k1(A) P̃1(B)
k1(A) P̂1(B)

)
,

qH1 D1(B) =

(
m1 − k1(A) D̃1(B)
k1(A) D̃2(B)

)
,

qH1 U1(B) =

(
m1 − k1(A) Ũ1(B)
k1(A) Û1(B)

)
.

Next we need to apply w1 to the first m1 rows of X. Of course this is a purely formal
process since the first m1 rows of X are unknown at this stage. Here are the quantities
that are modified:

w1P1(X) =

(
m1 − k1(A) P̃1(X) 0
k1(A) P̂11(X) P̂12(X)

)
,

w1D1(X) =

(
m1 − k1(A) D̃1(X)
k1(A) D̂1(X)

)
,

w1U1(X) =

(
m1 − k1(A) Ũ1(X) 0
k1(A) Û11(X) Û12(X)

)
.

The zeros in the modified w1U1(X) and wP1(X) are not a restriction since the number
of columns in either of these matrices has not been fixed yet.

We also need to apply wH
1 to the first m1 columns of the coefficient matrix. Since

it has already been applied to D1(A), we need only to compute

w1Q1(A) =

(
m1 − k1(A) Q̃1(A)
k1(A) Q̂1(A)

)
.

We now observe that the first m1 − k1(A) equations of the transformed system
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are of the form

D11(A)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

QH
m(X)RH

m+1(X) · · ·RH
0 (X) ( P̃1(X) 0 )

H

...
QH

0 (X) ( P̃1(X) 0 )
H

D̃H
1 (X)

V2(X) ( Ũ1(X) 0 )
H

...
Vr(X)WH

r−1(X) · · ·WH
2 (X) ( Ũ1(X) 0 )

H

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

QH
m(B)RH

m+1(B) · · ·RH
0 (B)P̃H

1 (B)
...

QH
0 (B)P̃H

1 (B)
D̃H

1 (B)
V2(B)ŨH

1 (B)
...

Vr(B)WH
r−1(B) · · ·WH

2 (B)ŨH
1 (B)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H

.

Solving this we obtain

D̃1(X) = D−1
11 (A)D̃1(B),

P̃1(X) = D−1
11 (A)P̃1(B),

Qi(X) =
(
Qi(B) �Qi

)
,

Ri(X) =

(
Ri(B) 0

(�Ri)1 (�Ri)2

)
,

Ũ1(X) = D−1
11 (A)Ũ1(B),

Vi(X) =
(
Vi(B) �Vi

)
,

Wi(X) =

(
Wi(B) 0

( �Wi)1 ( �Wi)2

)
.

Notice that all Qi(X), Vi(X), Ri(X), and Wi(X) have constrained forms for their
solutions for all i. These forms will be maintained consistently throughout the algo-
rithm.

We now need to subtract from the right-hand side the first m1 − k1(A) columns
of the coefficient matrix multiplied by the first m1 − k1(A) rows of the transformed
unknowns. We first subtract D21(A) times the first m1−k1(A) rows of the unknowns
from the corresponding rows of B. We observe that it leads to the following changes:

D̂1(B) = D̃2(B) −D21(A)D̃1(X),

Û1(B) = Ũ2(B) −D21(A)Ũ1(X),

P̂1(B) = P̃2(B) −D21(A)P̃1(X).

To subtract the remaining rows of the first m1 − k1(A) columns of the coefficient
matrix from the right-hand side, we observe that it can be merged with the τ terms
as follows:

D̂1(τ) = D1(τ) + Q̃H
1 (A)D̃1(X),

P̂1(τ) = P1(τ) + Q̃H
1 (A)P̃1(X),

Û1(τ) = U1(τ) + Q̃H
1 (A)Ũ1(X).
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If we now discard the first m1 − k1(A) rows and columns, we are left with a
set of equations that are identical in structure to the system (11) that we started
with. In particular we replace in the SSS form for A, X, and B all terms with their
corresponding hatted forms. The resulting hatted system ÂX̂ = B̂ − (τ terms) looks
exactly like the (11) we started with and can be solved recursively for X̂. Once we
have X̂ we need to recover X. The right formulas are

D1(X) = wH
1

(
D̃1(X)
D̂1(X)

)
,

Û1(X) = ( Û11(X) Û12(X) ) ,

U1(X) = wH
1

(
Ũ1(X) 0
Û11(X) Û12(X)

)
,

P̂1(X) = ( P̂11(X) P̂12(X) ) ,

P1(X) = wH
1

(
P̃1(X) 0
P̂11(X) P̂12(X)

)
.

These formulas can be verified only by looking at the next two cases.

3.2. Case for n > 1 and k1(A) ≥ m1: Merge. The second possibility is
that k1(A) is not large enough to permit efficient elimination. In this case we merge
the first two block rows of the equation. We also merge the first two block columns of
A. However, for X and B we do not merge any block columns. Rather we move the
diagonal block over by one position to the right. To merge the first two block rows
and columns of A, we can use the formulas in section 3.6.

Next we need to merge the first two block rows of B and move the diagonal block
one position over to the right:

D̃1(B) =

(
U1(B)V H

2 (B)
D2(B)

)
,

D̂i(B) = Di+1(B), i = 2, . . . , n− 1,⎛⎝ P̃1(B)
R̂1(B)
P̃1(τ)

⎞⎠ ( R̂0(B) Q̂H
0 (B) ) =

⎛⎜⎜⎝
(

P1(B)
P2(B)R1(B)

) (
D1(B)

P2(B)QH
1 (B)

)
R2(B)R1(B) R2(B)QH

1 (B)
P1(τ) D1(τ)

⎞⎟⎟⎠ ,

P̂i(B) = Pi+1(B), n = 2, . . . , n− 1,

R̂i(B) = Ri+1(B), i = m− 1, . . . ,−1, 2, . . . , r − 1,

Q̂i(B) = Qi+1(B), n = m− 1, . . . ,−1, 1, . . . , r − 1,

Ũ1(B) =

(
U1(B)W2(B)

U2(B)

)
,

Ûi(B) = Ui+1(B), i = 2, . . . , n− 1,

Ŵi(B) = Wi+1(B), i = 2, . . . , r − 1,

V̂i(B) = Vi+1(B), i = 2, . . . , r − 1.

The implied factorization in the above formulas must be carried out as follows:

P̃1(B) =

(
0 I 0

P2(B) 0 0

)
,
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R̂1(B) = (R2(B) 0 0 ) ,

P̃1(τ) = ( 0 0 I ) ,

R̂0(B) =

⎛⎝R1(B)
P1(B)
P1(τ)

⎞⎠ ,

Q̂0(B) = (Q1(B) DH
1 (B) DH

1 (τ) ) .

The formal expressions for X are similar to B, so we skip them.
Some quantities in the SSS representation for B still do not wear hats since we

still need to subtract the second block row of the τ terms from B. To do that we must
first move the diagonal τ block one position over to the right. Observe that P̃1(τ) has
already been defined. The remaining changes are

D̃1(τ) = U1(τ)V H
2 (B),

Ũ1(τ) = U1(τ)W2(B).

Now we can subtract the second block row of the τ terms from the new first block of
B. The corresponding changes to B are

P̂1(B) = P̃1(B) −
(

0
P2(A)

)
P̃1(τ),

Û1(B) = Ũ1(B) −
(

0
P2(A)

)
Ũ1(τ),

D̂1(B) = D̃1(B) −
(

0
P2(A)

)
D̃1(τ).

We must now return the τ terms to canonical form with the first two block rows being
merged to zero. The changes are

P̂1(τ) = R2(A)P̃1(τ),

D̂1(τ) = R2(A)D̃1(τ),

Û1(τ) = R2(A)Ũ1(τ).

Now the hatted sequences represent an SSS system with n− 1 block rows. This can
be solved recursively for the hatted SSS representation for X. From that we must
recover the original SSS representation for X involving n row partitions. To do that
we observe that we need to split the first block row of the hatted representation and
shift the first diagonal block one position to the left. We begin by first splitting the
first block row:

D̂1(X) =

(
D̃1(X)
D2(X)

)
,

Û1(X) =

(
Ũ1(X)
U2(X)

)
,

P̂1(X) =

(
P̃1(X)
P2(X)

)
.

The rest of the changes to X are

D1(X) = P̃1(X)Q̂H
0 (X),
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P1(X) = P̃1(X)R̂0(X),

Pi(X) = P̂i−1(X), i = 3, . . . , n,

Ri(X) = R̂i−1(X), i = m, . . . , n,

Qi(X) = Q̂i−1(X), i = m, . . . , n,

U1(X) (W2(X) V H
2 (X) ) = ( Ũ1(X) D̃1(X) ) ,

Wi(X) = Ŵi−1(X), i = 3, . . . , n,

Vi(X) = V̂i−1(X), i = 3, . . . , n,

where the implied factorization must be solved as follows:

U1(X) = ( 0 I ) ,

Ũ1(X) = ( Ũ11(X) Ũ12(X) ) ,

W2(X) =

(
W2(B) 0
Ũ11(X) Ũ12(X)

)
,

V2(X) = (V2(B) D̃H
1 (X) ) .

3.3. Case for n = 1: Base. In this case the equations can be solved directly
to determine the SSS form for X as follows:

D1(X) = D−1
1 (A)D1(B),

P1(X) = D−1
1 (A)P1(B),

Ri(X) = Ri(B),

Qi(X) = Qi(B),

U1(X) = D−1
1 (A)U1(B),

Wi(X) = Wi(B),

Vi(X) = Vi(B).

Note that the τ terms are just zeros.

3.4. Experimental run-times. We now report on the CPU run-times of the
superfast solver on a PowerBook 400 MHz G4 computer with 1 MB of L2 cache, 1
GB of RAM, and a 100 MHz bus. The CPU run-times in seconds are reported in
Table 4. We assume that we are solving systems of the form AX = B, with B a
square matrix. Tests were done on systems where the number of columns of B ranged
from 256 to 32,768. This is the size column in Table 4. For the matrix A we chose
SSS representations such that mi(A) = li(A) = ki(A), and mi(A) was either 16 or
32. For the SSS representation of B we chose li(B) = ki(B), and ki(B) was either 1
or 4. Of course we chose mi(B) = mi(A).

For comparison we also report in Table 4 the CPU run-times of the fast solver
of [6] for the same system of equations. Of course the fast solver does not exploit the
SSS representation of the right-hand side matrix B, so it is just passed a standard
dense matrix representation.

As can be seen the fast solver behaves like an O(n2) algorithm, where n is the
order of the system. While this is an order of magnitude better than the standard
Gaussian elimination solvers, it is an order of magnitude slower than the superfast
solver. We also observe that the superfast solver is reasonably insensitive to the ranks
of the off-diagonal blocks of B.
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Table 4

CPU run-times in seconds for the superfast solver. Numbers prefixed with an asterisk denote
estimated run-times.

Size
mi(A)/li(A)/ki(A) ki(B)/li(B) 256 512 1024 2048 4096 8192 16,384 32,768
16 1 0.16 0.30 0.60 1.24 2.52 5.52 11.10 24.22
16 4 0.17 0.32 0.64 1.30 2.69 5.57 11.68 25.42
32 1 0.35 0.72 1.56 3.27 6.74 14.13 30.21 69.97
32 4 0.35 0.75 1.63 3.33 6.93 14.41 30.99 70.88

16 fast solver 0.33 1.92 7.87 31.19 136.24 544.46 ∗2.2E3 ∗8.7E3
32 fast solver 0.49 2.39 9.79 38.65 163.36 659.58 ∗2.6E3 ∗1.1E4

Table 5

One-norm normalized residual errors ‖AX −B‖1/(εmach(‖A‖1‖X‖1 + ‖B‖1)) of the superfast
solver in double precision for stable SSS representations ‖Wi(A)‖1 = ‖Ri(A)‖1 = 1 = ‖Wi(B)‖1 =
‖Ri(B)‖1. Entries much larger than one indicate potential lack of stability.

Size
mi(A)/li(A)/ki(A) ki(B)/li(B) 256 512 1024 2048 4096

16 1 1.67 1.07 1.56 3.67 3.43
16 4 0.87 3.66 4.10 3.49 3.01
32 1 1.10 1.04 7.56 6.94 3.82
32 4 1.78 2.96 5.30 9.27 7.83
64 1 0.64 1.21 1.59 5.43 9.25
64 4 0.60 0.89 2.11 3.80 4.30
128 1 0.36 0.58 1.12 1.65 5.32
128 4 0.36 0.60 2.06 2.00 9.45

3.5. Stability. An unstable superfast solver is not very useful. However, even
the standard slow solvers are not technically backward stable when there are multiple
right-hand sides. For that matter, there is no proof that even ordinary matrix-matrix
multiplication is backward stable [23]. Numerical analysts generally attribute this
phenomenon to an insufficient number of degrees of freedom in the problem for at-
taching the backward error when there is more than one right-hand side. Hence there
is no simple way to measure how stable such solvers are. What we have found use-
ful is to use the standard normalized measure of backward error [23] for the single
right-hand side case, with a straightforward modification:

‖AX −B‖1

εmach(‖A‖1‖X‖1 + ‖B‖1)
.

This is not equivalent to measuring the backward error column by column. In fact it
is weaker. The justification is that it can be viewed as a normalized residual.

In Table 5 we present the normalized residual error for a series of random ex-
periments where we used the superfast solver to solve systems of the form AX = B,
where both A and B were chosen to be random stable SSS forms. As can be seen
from the table, the superfast solver seems to behave well from a numerical point of
view. However, a more thorough error analysis is needed. This is outside the scope
of this paper, so it will be reported separately.

3.6. Merging and splitting SSS blocks. In the presentation of the superfast
solver for AX = B, we assumed that A and B had SSS representations that were
conformally partitioned. If that is not the case, the situation can be remedied by
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suitable merging and/or splitting partitions in A and B. For that purpose we present
some simple formulas in this section.

We first consider block merging. In the following example, we have merged the
second and third blocks in a 4 × 4 SSS matrix into one single block:

A =

⎛⎜⎝
D1 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

P2Q
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4

⎞⎟⎠

=

⎛⎜⎜⎝
D1 U1

(
V H

2 W2V
H
3

)
U1 (W2W3)V

H
4(

P2

P3R2

)
QH

1

(
D2 U2V

H
3

P3Q
H
2 D3

) (
U2W3

U3

)
V H

4

P4 (R3R2)Q
H
1 P4

(
R3Q

H
2 QH

3

)
D4

⎞⎟⎟⎠ .

In general, to merge blocks i and i+1 in a given SSS representation, we keep all other
blocks unchanged and use the following matrices to represent the new ith block:

Dnew
i =

(
Di UiV

H
i+1

Pi+1Q
H
i Di+1

)
, Unew

i =

(
UiWi+1

Ui+1

)
, Pnew

i =

(
Pi

Pi+1Ri

)
,

(V new
i )

H
=

(
V H
i WiV

H
i+1

)
, Wnew

i = WiWi+1,

Rnew
i = Ri+1Ri, (Qnew

i )
H

=
(
Ri+1Q

H
i QH

i+1

)
.

Now we consider the issue of splitting one block into two. To split block i into two
blocks for a given SSS representation, we can simply keep all other blocks unchanged
and use the above merging formulas reversely to get the equations for the new i and
i + 1 blocks:(

Dnew
i Unew

i

(
V new
i+1

)H
Pnew
i+1 (Qnew

i )
H
Dnew

i+1

)
= Di,

(
Unew
i Wnew

i+1

Unew
i+1

)
= Ui,

(Pnew
i Pnew

i+1 Rnew
i ) = Pi,

(
(V new

i )
H

Wnew
i

(
V new
i+1

)H)
= V H

i , Wnew
i Wnew

i+1 = Wi,

Rnew
i+1 Rnew

i = Ri,
(
Rnew

i+1 (Qnew
i )

H (
Qnew

i+1

)H)
= QH

i .

To solve these equations, we partition the matrices for the old ith block conformally
with the two new blocks as

Di =

(
D11

i D12
i

D21
i D22

i

)
, Ui =

(
U1
i

U2
i

)
, Pi =

(
P 1
i

P 2
i

)
,

V H
i =

((
V 1
i

)H (
V 2
i

)H)
, QH

i =
((

Q1
i

)H (
Q2

i

)H)
.

These equations allow us to identify

Dnew
i = D11

i , Dnew
i+1 = D22

i , Unew
i+1 = U2

i , P
new
i = P 1

i , V
new
i = V 1

i , Q
new
i+1 = Q2

i .

The remaining matrices satisfy((
V 2
i

)H
Wi

D12
i U1

i

)
=

(
Wnew

i

Unew
i

)( (
V new
i+1

)H
Wnew

i+1

)
,(

P 2
i D21

i

Ri (Qi)
H

)
=

(
Pnew
i+1

Rnew
i+1

)(
Rnew

i (Qnew
i )

H
)
.

By factorizing the left-hand side matrices using numerical tools such as the SVD and
rank-revealing QR factorizations [13, 27], these two equations allow us to compute an
effective representation of those remaining matrices for the new blocks.
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3.7. Fast model reduction. As became evident in the presentation of the su-
perfast solver, sometimes we produce SSS representations that are not as compact
as possible (to some specified tolerance τ). Dewilde and van der Veen [16] present
a technique to find the optimal reduced-order model. Here we present a simple, ef-
ficient, and numerically stable method to compress a given SSS representation to a
prespecified tolerance τ . This method is closely related to the algorithms presented
in [16] for computing minimal realizations in input and output normal forms.

We will present the technique using SVDs. In particular we will call the SVD from
which all singular values that are less than τ have been discarded as a τ -accurate SVD.
It is a simple matter to replace the SVD in these calculations with rank-revealing QR
factorizations, or rank-revealing LU factorizations, or even LU factorization with
complete pivoting. It is likely that this will lead to considerable speedup for a small
loss in compression.

Our algorithm for model reduction can be viewed as a natural extension of the
algorithm presented in [6] for constructing SSS representations. More formally, sup-
pose we have a nominal SSS representation for the matrix A. Given a tolerance τ , we
would like to compute a new SSS representation for A, accurate to this new tolerance,
but more rapidly than the algorithm presented in [6].

First, we observe that it is enough to specify the method for Ui, Wi, and Vi, since
the same technique can then be applied to Pi, Ri, and Qi. We split the method into
two stages. In the first stage we convert the representation into left proper form. By
left proper form we mean that all the column bases Ci of the Hankel-blocks,2 where

C1 = U1,

Ci =

(
Ci−1Wi

Ui

)
,

should have orthonormal columns. In the second stage we convert the representation
into right proper form; that is, now all the row bases Gi of the Hankel-blocks, where

Gn = Vn,

Gi =

(
Vi

Gi+1W
H
i

)
,

will have orthonormal columns. The second stage recursions will essentially be first-
stage recursions in the opposite order. Note that Hi = CiG

H
i+1.

Note that the method of [6] already produces SSS representations in left proper
form. However, it is likely that updating operations will destroy proper form. So
we begin by indicating how the left proper form can be restored efficiently. For
convenience, we use hats to denote the representation in left proper form.

Consider the following recursions:(
W̃i

Ui

)
≈

(
Ŵi

Ûi

)
ΣiF

H
i , τ -accurate SVD factorization,

W̃i+1 = ΣiF
H
i Wi+1,

V̂i+1 = Vi+1FiΣ
H
i ,

2The term Hankel-block is taken from [16]. It denotes the off-diagonal blocks that extend from
the diagonal to the northeast corner (for the upper case) or to the southwest corner (for the lower
case).
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with the understanding that W̃1 and Ŵ1 are empty matrices. Then it is easy to check
that the new column bases

Ĉ1 = Û1,

Ĉi =

(
Ĉi−1Ŵi

Ûi

)
have orthonormal columns and that the hatted sequences form a valid SSS represen-
tation for the given matrix. The hatted SSS representation will be accurate to τ ,
provided we assume that the two-norm of the Gi’s is bounded by a small multiple of
the norm of the original matrix. We will call such SSS representations stable. Also
note that the recursions depend only linearly on the matrix size. If by some chance
the SSS representation is unstable, then τ must be set to zero in the first stage. It
should then be restored to its proper value in the second stage.

In the next stage we take an SSS representation in left proper form and further
compress it to the given tolerance τ efficiently by converting it into right proper
form. For simplicity we assume that the given SSS representation is already in left
proper form and denote it using unhatted quantities. We use hatted quantities to
denote terms in the compressed right proper form representation. In the second stage
it is sufficient to concentrate on the row bases Gi since Hi = CiG

H
i+1, and Ci has

orthonormal columns by our assumption of left proper form.
However, this time we must run the recursions backward in time. Here they are(

Vi

W̃H
i

)
≈

(
V̂i

ŴH
i

)
ΣiF

H
i , τ -accurate SVD factorization,

W̃i−1 = Wi−1FiΣ
H
i ,

Ûi−1 = Ui−1FiΣ
H
i ,

with the understanding that W̃n and Ŵn are empty matrices. It can be seen that the
hatted sequences form a valid SSS representation in right proper form and that the
approximations are τ accurate. We draw attention to the fact that in each stage the
Wi matrices are transformed twice, first to W̃ and then to Ŵi.

4. Related and future work. The algebraic formalism of the structure that is
used in this paper appears in work of Dewilde and van der Veen [16] and Eidelman
and Gohberg [18, 19, 20, 21]. Other structures that would work just as well appear
in the works of Starr [38], Starr and Rokhlin [39], Hackbusch [29], Hackbusch and
Khoromskij [30, 31], Hackbusch, Khoromskij, and Sauter [32], and Chandrasekaran
and Gu [9]. Fast, direct, but not necessarily stable algorithms for such matrices were
first presented in Starr’s thesis [38, 39]. They also appear in the works of Eidelman
and Gohberg [18, 19] and Hackbusch [29] and Hackbusch and Khoromskij [30, 31].
Fast and stable direct solvers appeared first in the works of Dewilde and van der
Veen [16] and independently later in the work of Chandrasekaran and Gu [8]. Various
generalizations have been carried out by various authors, including us. Here is a brief
list of such works: [10, 11, 12, 30, 31, 32, 34, 36].

The computational electromagnetics literature has also looked at this problem
independently. Relevant work includes that of Gurel and Chew [28], Canning and
Rogovin [4], and Gope and Jandhyala [24].

In this paper we presented a fast and stable direct method for solving a linear
least squares problem whose coefficient matrix satisfies the SSS matrix structure as
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defined in (1). We also presented a fast solver for handling multiple right-hand sides
that are also—in addition to the coefficient matrix—in SSS form.

The fast multipole method (FMM) of Carrier, Greengard, and Rokhlin [5], Green-
gard and Rokhlin [25], and Rokhlin [37] has evolved into a major workhorse for many
computationally intensive problems in a wide area of applications. It turns out that
the matrix structure exploited by the FMM to speed up the computation is closely
related to the SSS structure exploited in this paper. Future work includes developing
fast direct solvers for linear systems of equations where the coefficient matrix has the
FMM matrix structure.

We will also explore the applications of the fast SSS algorithms to speed up
Kress’s global discretization technique for solving the integral equations of scattering
theory [14, 15].
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