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List of Definitions

Term Definition
Axial loading Loading perpendicular to the bearing surface
Axial stiffness Resistance to axial displacement, of either deformation or loss in flight height,

due to axial forces
Bearing load capacity Maximum load a hydrostatic bearing can carry while maintaining a given film

thickness.
Bearing land Bearing material which would make physical contact with the guiding surface if

there would be no hydrostatic film
Bearing recess Enclosure in bearing land much larger than fluid film thickness such that fluid

pressure can equally distribute in the recess
Bearing tilt Change of the in-plane angle with respect to the guiding surface
Deformation factor Axial deformation a single slipper can endure without losing full film lubrication

or risking mechanical failure
Film stiffness Describes the relationship between fluid pressure and film thickness
Flight Height Distance between bearing surfaces, as separated by hydraulic fluid
Full film lubrication The lubrication film fully separates two solid surfaces such that there is no me-

chanical contact possible between them. Therefore friction levels are reduced to
a point dominated by lubricant viscosity

Guiding surface Surface opposing the bearing surface
Guiding surface curvature The inverse of the radius of a circle that would be tangent to a point on a smooth

wavy guiding surface profile
Hydrostatic tilt-stiffness Relationship between tilt of a hydrostatic bearing slipper and applied moment
Hydrostatic bearing slipper Single bearing element with a individual fluid supply
Hydraulic fluid Fluid used for lubrication and separation of bearing surfaces
Large deformation Deformation which is larger than 10% of the element’s length
In-Plane Plane tangent to bearing surfaces
Nominal film thickness Expected average film thickness for a given load capacity
Out-of-Plane Plane perpendicular to bearing surfaces
Relative waviness amplitude Amplitude of sinusoidal wave describing the guiding surface scaled such that the

amplitude has no dimension and is a fraction of wavelength
Rotational stiffness Resistance to change of flexure angle in response to a moment, in this report used

for mechanical stiffness of the structure
Supply Pressure Pressure provided to the hydrostatic bearing by an external pump
Tilt stiffness Resistance to change of slipper angle in response to a moment, in this report used

for stiffness due to hydraulic pressure
Waviness Smooth periodic changes in height of the guiding surface surface
Waviness Amplitude Maximum periodic axial distance of the guiding surface as measured from the

average height
Waviness Profile Sine wave or other periodic function used to describe the waviness
Whiffletree A force distribution mechanism using pivots and linkages
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List of Symbols
Parameter Definition Unit

A Bearing surface area m
A Guiding surface waviness amplitude m

Ao Orifice area m2

Ā Bearing shape factor -
b Bearing width (out-of-plane length) m
B̄ Bearing flow factor -

Co Orifice discharge coefficient -
d Linearised slipper spacing m
η Dynamic viscosity m2 s−1

E Young’s Modulus kgm−1 s−2

φ Bearing angle rad
φ1 Angle of first slipper with x-axis rad
φ12 Angle of first level coupling element rad
φax Angle of highest level coupling element rad

f Bearing footprint as percentage of wavelength -
Fax Axial bearing load N
Fn Normal bearing load N
h0 Nominal film height m
h Film thickness m
I Second moment of Inertia m4

Kθ Rotational stiffness flexure Nmrad−1

Kφ Tilt stiffness slipper Nmrad−1

λ Guiding surface wavelength m
L Slipper length m
Ls Cross-flexure spring element length m
L f Actual slipper spacing m
N Number of slippers -
M Moment on bearing due to tilt Nrad−1

Pa Atmospheric Pressure Nm−2

Ps Supply Pressure Nm−2

Pr Recess Pressure Pa
ρ Density of lubricant kgm−3

r Stroke of bearing mechanism m
R Arm length pivot m
σ Stress level flexure kgm−1 s−2

s Scaling to wavelength factor m−1

θ Flexure angle rad
θ1 Angle of flexure of first slipper rad
θ12 Angle of flexure of first coupling element rad
θax Flexure angle connecting bearing to load rad

t Flexure spring element thickness m
υ Axial deformation factor -

W Work done by bearing kgm2 s−2

x x-position on guiding surface m
x1 x-position of the middle of the first slipper m
x12 the middle x-position between slippers 1 and 2 m
y y-position on guiding surface m
y1 y-position of the middle of the first slipper m
y12 y-position of the middle of the first slipper m
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Preface
Children are always under the impression that their fathers can create and repair anything. I was no different. My
dad taught me about the art of tinkering and was tinkering about for as long as I can remember. This is what has
sparked my interest in engineering, taking things apart and see how they work. this scattered my interest over all
fields of physics. And I consider tinkering an art, the ingenuity of mankind becomes visible and tangible through the
beauty of improvising. Even more important to me, one can help others while doing so. I hope that I too can bring
the impression that everything is create-able or repairable, and most of all be a help for others. Whether that is in
my personal surroundings or on a community-wide scale does not matter to me, as long as I can be of assistance to
others.

This is why I was very interested in this project. The possibility to use my interests of a wide range of physics into
a single element seemed perfect. It would allow new applications and had potential to be used in the wind turbines.
Helping to create cheaper sustainable energy is like a good way to help society. While this project did not end with
these results, others may do so in the future, for me it was another learning experience. My time here in delft helped
me find out what I wanted to do. I am grateful that I had the time to make mistakes here in Delft, the opportunity to
explore what type of person I would like to become and to learn so very much. My choice for mechanical engineering
in Delft was never well grounded, but I am so glad that I chose to study here. I can look back on an amazing time at
this university.

JAN VAN WILLIGEN
DELFT, SEPTEMBER 16, 2019
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Summary
Hydrostatic bearings are a type of fluid bearing that use an external pump to provide a hydraulic film on which
the bearing can slide. This full film lubrication prevents mechanical contact between the guiding surface and the
bearing. Because of this, hydrostatic bearings are well known for having low friction and low wear. The working
principle of the hydrostatic bearing is illustrated in figure 1.

Description Simplified.pdf

Fluid film gap

Fluid supply 

Guiding surface

Bearing land

Bearing load
W

Figure 1: Working principles of single slipper hydrostatic recess bearing.

The load capacity of a hydrostatic bearing is de-
pendent on the pressure in the hydraulic film and
bearing land area. The relation between fluid pres-
sure and film height, and thus load capacity and film
height is referred to as film stiffness. As a high load-
ing capacity is wanted in many hydrostatic bearing
applications the film stiffness is high. The design of
the hydrostatic bearing itself is therefore also very
stiff.

If the guiding surface is not parallel to the bear-
ing land, the hydraulic film would not be well de-
fined. Large gaps could cause a large pressure drops
and contact might occur, thus resulting in a loss of
full film lubrication, causing wear. Since the bearing
is very stiff, it is unable to deform to take the shape
of the guiding surface. Thus, well defined film thick-
ness is lost where the guiding surface is not parallel
with the bearing land. This can be due to machining imperfections, however there are applications where the guid-
ing surface has a large waviness; a varying curvature in the direction of the guiding surface. Because of the potential
loss of full film lubrication hydrostatic bearings are not considered a feasible option for these applications. If a hy-
drostatic bearings would be able to deform to take the shape of the guiding surface the film would remain parallel
and full film lubrication would be maintained. This would make hydrostatic bearing a feasible option in applications
with a wavy guiding surface.

Figure 2: Four positions of a slipper hydrostatic bearing deforming to wavy guiding surface. It is seen at the point of maximum concave and
convex curvature as-well as two asymmetrically deformation modes.
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Summary vi

This is the focus of this thesis; to design and model a hydrostatic bearing capable of deforming to a wavy guiding
surface, such that full film lubrication is maintained for all variations of the curvature of the guiding surface. Aiming
to design a hydrostatic bearing that is able to deform to a guiding surface with varying curvature, while having similar
loading conditions than a stiff hydrostatic bearing.

Figure 3: Impression of a whiffletree based distribution of four slippers.

This is achieved through the use of a compliant whiffletree to distribute the loads of multiple deformable hydro-
static slippers. These hydrostatic slippers are capable of deforming on their own, but are limited as their deformation
is not sufficient to account for the complete deformation required to take the shape of the guiding surface. The same
pivots used in the whiffletree will allow for tilt of the hydrostatic slippers. This will result in a lower maximum defor-
mation required by the hydrostatic slipper. The maximum deformation of a hydrostatic slipper is limited by internal
stresses, caused by the compressive forces and strain on the material.

The kinematics are set up to model the motion of the whiffletree in order to make predictions on maximum
angles the slippers, and thus the pivots, will have to make. The model of slipper deformation in combinations with
whiffletree kinematics gives a design tool for how many slippers are required for certain wavy guiding surface under
given loading conditions.

The research includes a collection of models describing the deformation of the slipper, whiffletree kinematics,
tilt of a hydrostatic bearing and a linear flexure. These models can be used as a design tool for a concept of a large
deforming hydrostatic bearing using a whiffletree based compliant force distribution mechanism.
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Figure 4: Visual overview of models and relationships used in this research, each of the colored blocks represents a model.

In this case study cross flexures are used as pivot points and multi-recess orifice bearings for the individual slip-
pers. These implementations result in constraints on the model and introduce failure criteria, such that in the end a
trade-off must be made between loading capacity and deformability of the hydrostatic bearing model.
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Introduction

Background information
Global energy demands are ever growing. The effects of anthropogenic carbon emissions drive the need for sus-
tainable energy sources. Offshore wind energy poses a solution[11]. High installation and maintenance cost reduce
commercial viability. Delft Offshore Turbines is one of many looking for a feasible option in the offshore wind energy,
they propose to connect a cluster of wind turbines to a single centralised generator through fluid power transmis-
sion. Removing the need for a generator in each turbine will decrease structural, installation and maintenance costs
and therefore increase commercial feasibility[17].

In this project a hydraulic radial pump would be connected to the turbine rotor to generate a high pressure
flow[18]. In this pump the bearing on the interface between the plunger and running track has stress levels that
would be to high for which conventional roller bearings[45]. Hydrostatic bearings are proposed as an alternative,
due to their low wear, low friction and high loading capacity. However, hydrostatic bearings on a running track with
varying curvature, such as required in this type of radial pump, introduces new problems.

This application was the initial spark which ignited the interest in deforming hydrostatic bearings for these type
of application.

The potential of hydrostatic bearings
The interest in hydrostatic bearings comes from the ability to fully separate two solid surfaces, referred to as full film
lubrication[26]. The full film lubrication of a hydrostatic bearing is what gives the hydrostatic bearing its characteris-
tics. Low wear, low friction and high loading capacity are key aspects to grant precision and long lifetime to machine
tools. For these reasons they are attractive to implement in various applications. Figure 1.1 shows an example of two
surfaces separated by a full film.

Figure 1.1: Two bearing surfaces separated by full film lubrication. The film thickness is large in respect to the surface roughness of the bearing
surfaces. Assuring that solid-to-solid contact does not occur, allowing for minimal wear and low friction.

Hydrostatic bearing fundamentals
The hydraulic fluid is pumped in between the bearing land and the guiding surface through an external pump. Sep-
arating two surfaces of one-another through full film lubrication using an external pump is the working principle of
a hydrostatic bearing. This principle can be seen in figure 1.2.

The load capacity of a hydrostatic bearing is dependent on the pressure in the hydraulic film and bearing land
area. The film pressure depends on the supply pressure and film thickness. As load increases the film thickness
becomes thinner, in turn increasing the pressure in the fluid. This continues until an equilibrium between the load
and film pressure has been established. The relation between fluid pressure and film height, and thus load capacity
and film height, is referred to as film stiffness. This relationship is typically depicted by a specific curve, an example
of such a curve can be seen in figure 1.3.

The film pressure can be calculated for a specific bearing type with known geometry and for a given film height.
This results from solving the Reynolds’s equation, the mass balance for inlet and outlet flows [54]. For a parallel
bearing the supply pressure decreases to atmospheric pressure, and the rate of change is determined by the film
height. For a recess bearing as seen in figure 1.2, the recess pressure is inversely proportional to the film thickness,
h.
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1.3. Hydrostatic bearing fundamentals 3

Figure 1.2: Working principles of single slipper hydrostatic recess bearing. The hydraulic pressure is well defined as the bearing land and guiding
surface are parallel. The hydraulic pressure counteracts the axial load W the bearing carries. The pressure within the recess chamber is constant

and pressure linearly decreases to atmospheric pressure throughout the fluid film gap.

With the hydraulic film pressure known, normal load on the bearing can be calculated. For the bearing seen
within the figure the load capacity of the bearing is given by equation (1.1).

Fn = Pr Ā A (1.1)

Where A is the total bearing surface area and Ā is the shape factor, a geometry dependent parameter, equal to
the fraction of effective area. The normal load should be transferred independent on the shape or position of the
guiding surface.

Figure 1.3: An example of a film stiffness curve for a hydrostatic bearing.

When the load on bearing becomes so large that the film thickness becomes smaller than surface roughness
full film lubrication can not be maintained. The bearing transfers the load normal to the guiding surface while the
bearing translates over the guiding surface. This is done with low friction and minimal wear, hydrostatic bearings
are therefore further investigated for their implementation in applications with wavy guiding surfaces.



State of the Art
The performance of a hydrostatic bearing depends on its ability to maintain a lubrication film separation between
two solid surfaces. Current applications of hydrostatic bearing are often as planar bearings for linear guiding as seen
in figure 2.1a or annular bearing as in figure 2.1b. Fully hydrostatic turning machines have been available since the
80’s [6]. These involve surfaces with a constant curvature, like planes in linear guide or circles in shafts. For any
point of on these surfaces the bearing surface can be parallel to the guiding surface without deforming. As loading
conditions do not become excessive the film thickness will remain well above the range of any surface imperfections.
The full film lubrication can then be well developed and the hydrostatic potential can be fully utilized.

(a) A hydrostatic linear guide system [7] (b) Hydrostatic spindle for machining lathes [8]

Figure 2.1: Examples of off-the-shelf hydrostatic bearing products as found in product catalogs

However, if the guiding surface is not parallel to the hydrostatic bearing it might be possible that full film lubri-
cation can not be maintained as the fluid supply can not indefinitely pressurize a larger and larger flow required to
separate the two surfaces. This non-parallel guiding surface might be due to imperfections in machining of the guid-
ing surface, by excessive deformation of either the guiding surface or the hydrostatic bearing, or by design. A radial
hydraulic pump would be an example of a system where a guiding surface with varying curvature, the background
information introduces the need for a hydrostatic bearing for this application. A typical hydrostatic bearing is not
capable of following these wavy guiding surfaces. As it requires a different shape of the bearing in order for it to have
a parallel film for every position of the hydrostatic bearing on the guiding surface. From the wide range of literature
available on hydrostatic bearings, the literature study focuses on deformable hydrostatic bearings, a list of the main
keywords used to investigate these is found in table 2.1.

Deformable hydrostatic bearings in literature
Since the idea of hydrostatic bearings appeared in 1852[23] they have found their way into precision machines. They
have been investigated to implement in cryogenic turbo-pumps in rocket engines [52], large pads in hydro power
units [35], and have increasing growth in precision machining tools [54]. This is a potential explanation for increasing
interest in literature in recent years [36].

However, while scientific interest in hydrostatic bearings has been growing in the past decades, no literature is
found on hydrostatic able to follow a large wavy guiding surface. Also no research has been found on hydrostatic
bearings used to follow surfaces with a specifically designed waviness or irregularities much larger than the film
height. Therefore, the scope of the literature study widened in the search for deformable bearings. Bearings that
aim to maintain full film lubrication using deformations have been found [65][20], even though these bearings only
undergo small deformations they grant insight for larger deforming concepts. Therefore, small deforming bearing
are taken into account in the literature overview, as found in appendix D. The literature papers are organized by the
cause which introduced the change in film height for their application.

In figure 2.2 an example of a hydrostatic thrust bearing with a nominal flight height of 100µm while surface
waviness is measured at 300µm. It is used on a surface with irregularities larger than it’s nominal flight height and
full film lubrication can not be maintained[66]. It has a rubber support to account for tilting of the bearing and in
order to follow the surface waviness of the running track. The bearing can deform and the bearing can maintain full
film lubrication. Under nominal loading conditions this rubber is compressed 50µm.
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2.1. Deformable hydrostatic bearings in literature 5

Figure 2.2: Hydro-foot with rubber support used in the prince Willem-Alexander lock gates

A tilting pad bearing is seen in figure 2.3, the bearing pad is lubricated through a oil inlet however it is not a
hydrostatic bearing[35]. This particular bearing is a hydrodynamic bearing, meaning the fluid film is pressurized
by the high speed of the journal as it forms a wedge between the bearing surfaces[29]. Hydrodynamic bearings
have no full film lubrication during start up and even with spring supports to compensate for tilt and oil lubrication
for cooling there still is friction and wear, eventually leading to mechanical failure[33]. The pressure development
can be seen in figure 2.4. Thrust bearings using spring supports do not tilt on a pivot, but tilt due to deflection of
the springs[47][10]. Like the rubber support from figure 2.2 the bearing has an elastic support behind the bearing
surface, even though this is not a continuous deforming elastic media it still allows for deformations.

Figure 2.3: A tilting pad thrust bearing, with hydrostatic recess. Hydrostatic lubrication is used to decrease temperature and friction however no
full film lubrication is achieved [29]

Figure 2.5 shows a gas lubricated compliant bearing developed for oil-free high-performance turbo-machinery. It
uses a combination of centered flexures for radial stiffness and flexure pivots to allow for rotational compliance[20].



2.1. Deformable hydrostatic bearings in literature 6

Figure 2.4: Schematic drawing of tilting pad bearings and accompanying pressure distributions

It is described as a hybrid bearing, meaning it utilizes the principle of hydrostatic pressurization of the fluid film as
well as pressurization due to wedging of the fluid film. It also uses flexures instead of a rolling contact pivot as seen in
figure 2.4 this removes a hertz contact point. As this is not affected by wear, it might be a more suitable pivot for long
term use. This specific bearing has been designed to maximize load carrying capacity while maintaining compliance
to compensate for misalignment and variations in rotor geometry.

Figure 2.5: Compliant hybrid journal bearing with a integral wire mass damper using flexures, compliant pivots and integral springs.

With these examples the main principles in state of the art deformable hydrostatic bearings have been presented.
To summarize these are; elastic continua as bearing support to compensate for guiding surface waviness, pivots
and compliant flexure elements that allow pad tilting and spring supports providing radial, normal or tilt stiffness.
As the bearings that undergo small deformations use either elastic deforming bearing slippers or elastic bearing
supports and mechanical structures, to allow the bearing to deform, these principles are further investigated. The

(a) Whiffletree based mirror support from
1835[15]

(b) Schematic of a whiffletree like primary mirror support
system[50]

Figure 2.6: Examples of off-the-shelf hydrostatic bearing products as found in product catalogs
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literature overview can be defined by the keywords found in tables 2.1 and 2.2, while the actual overview is found in
the appendix D.

Table 2.1: Keywords used to investigate deforming hydrostatic bearings, combinations of these keywords have also been used

Keywords related to large deformation
Elastic Deforming Flexible Deformable

Bearing stiffness Bending Flexures Compliant
Tilting Compliance Controllable Compensating

Keywords related to hydrostatic bearings
Fluid bearing Hybrid bearing Hydrostatic Hydrodynamic

Keywords related to variations in guiding surface
Eccentricity Misalignment Geometric imperfections Surface roughness

Keywords related to bearing geometry
Multi-recess Bearing pad Shape variation Bearing geometry

Bearing support Pad support Number of recess Tilt-compensation

Researchers additionally investigated
B.H. Ertas A.H. Slocum W.B. Rowe R.A.J. van Ostayen

Elastic bearing slippers could be combined with linkage mechanisms like a rocker-bogie to distribute loads
and/or increase range of motion. The combination of deforming bearings and force distribution mechanisms is
also investigated. As support structures are available in an abundance of fields, a separate literature review has been
done in the field of support structures, of which the keywords can be found in the table 2.2. Figures 2.6a and 2.6b
show whiffletrees as a force distribution mechanism. Whiffletrees have been used since ancient times in agricultural
societies but have made their way into telescopes as a good way to control load acting upon the mirrors[15]. They
are still being developed for telescopes today [50][4].

Table 2.2: Keywords used to investigate large deforming mechanical mechanisms

Keywords related to elasticity
Elastic Deforming Flexible Adjustable

Stiffness Bending Flexures Compliant
Yielding Compliance Controllable Compensating
Linkage Four-bar linkage Five-bar linkage Pivots

Keywords related to mechanical support mechanisms
Rocker-Bogie Suspension Whipple-tree Parallel robots
Passive robots Passive linkage system Robotic mechanisms Force balance

Keywords related to kinematics
Kinematic supports Passive motion following Kinematic synthesis Passive kinematics

Motion analysis Body-guidance synthesis Rigid body synthesis Suspension analysis

Books additionally investigated
Compliant Mechanisms [37] Flexures [63] Handbook for Compliant Mechanisms [32]

Conclusion
From literature it can be concluded that a large deforming hydrostatic bearing does not yet exist. As proposed in the
introduction there is a range of applications will be available for deformable hydrostatic bearings, as they would be
competitors to ball bearings. Therefore, it will be an challenging research topic as the possibilities and limitations
are not yet known. The existing principles of small deforming elastic hydrostatic slippers and whiffletree force dis-
tribution mechanism are taken as inspiration to model the concept of largely deforming hydrostatic bearing upon.
Using the principle of pivoting flexure elements to compensate for tilting and using multiple hydrostatic slippers to
distribute loads.



Problem definition
When the guiding surface has a varying curvature, the bearing must deform to have a similar shape. This will allow
the film to maintain parallel. In order for the bearing to deform it must be compliant, however if it were to be
compliant the bearing could deform under loading conditions where the guiding surface has a constant curvature.
High axial loading capacity is often a criteria why hydrostatic bearings are proposed, therefor this property must be
safeguarded.

This is the design challenge. To design a hydrostatic bearing able to deform to a wavy guiding surface, this means
it has a varying curvature in the direction of the running track, while maintaining high axial loading conditions.

Now it has been established that the design must be stiff in axial direction and rotationally compliant. However,
how stiff and how compliant must the structure be? As the full film lubrication can be achieved if the bearing and
guiding surface are the same shape, this is part of the design objective. To keep the bearing land and guiding track
parallel. An example of a deformable hydrostatic bearing that deforms to have it’s bearing surface parallel to a wavy
guiding surface can be seen in figure 3.1.

Figure 3.1: A single hydrostatic slipper deforming to a guiding surface with varying curvature in the direction of the running track.

The pressure profile of a hydrostatic bearing will generate a force normal to the guiding surface. If small defor-
mations are compensated for by the deformation of the bearing land through an elastic deformable continuum than
a curvature might be simplified to a straight path under an angle. The resultant force for each bearing pad can thus
be related to this angle and the size of the bearing pad.

The amount of deformation needed depends on the curvature of the guiding surface and on the size of the bear-
ing pad. A smaller bearing pad covers a smaller portion of the guiding surface as it resembles a straight line more
closely and therefor requires less deformation of the bearing pad.

Research Objective
The goal of this thesis is to gather knowledge through modeling in order to make decisions on design choices. This
will be the foundation from which large deformable hydrostatic bearings can be designed. To investigate the feasi-
bility of large deformable hydrostatic bearings. To explore multiple concepts and model the motion of a deformable
bearing on a wavy guiding surface.

This is all encapsulated by the goal to;

Design and model a hydrostatic bearing for large deformations and high loading conditions using a me-
chanical support structure

8
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In order to achieve this goal the following research questions have been set-up;

• How large of a waviness can be followed using elastic hydrostatic slippers?

• Can compliant mechanisms be combined with elastic slippers to improve overall compliance?

• What are the kinematics of a whiffletree-like structure on a wavy guiding surface

• Can multiple deformable hydrostatic slippers be combined in a force distribution mechanism to improve
waviness following capabilities?

Organization of this thesis
Figure 3.2 gives an overview on how the chapters are connected. Chapter 4.1 is written in a paper style format and
can be read as a stand alone document. However, it is recommended to first read first four chapters as they are
introductory to those unfamiliar to hydrostatic bearings and introduce a modeling principle used later on. The
modeling of this problem is started in chapter 4. With this one should have a proper understanding such that the
paper can be read, which expands on the modeling principles. After the paper, chapter 6 elaborates the models
and explains it’s further use and limitations. While the actual scripts and user manuals for the model can be found
in appendix C. These will lead to the answers to the research questions in chapter 8, where they are evaluated and
discussed. Following this some recommendations are given for future research and this thesis closes with a general
conclusion.

Introduction
Gives the background information to the project and a basic
understanding of hydrostatic bearings. 

Appendix

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Large deforming hydrostatic bearing
Presents in a stand alone paper format; the concept, modeling 
principles and implementations of a deformable bearing.

Model Interface 
An indepth look at implementations in the model and 
the resulting GUI as deformable bearing design tool. 

Conclusion, Discussion and Future research
Reviews and discusses topics investigated in this thesis as it 
discusses the main results. And proposes topics for futher research.   

Kinematic derivations

Matlab script manuals

Literature Overview
Bibliography

State of the Art
States applications that at this time utilize hydro-
static bearings and investigate the state of the art. 

Problem definition
Combines the introduction, state of the art and the 
design challange into a research objective.  

Model fundamentals
Introduces asumptions and kinematics to allow a 
deformable bearing model to be set up.  

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Eleboration on kinematic models
Expands the modeling principles with mathematical 
derivations of functions used within the model. 

 

Summary of Assumptions

Figure 3.2: Visual representation of contents presented in this work.



Model Fundamentals
For a description of a deformable bearing, the model starts with a description of the guiding surface. Figure 3.1
shows a single slipper over a wavy guiding surface. This figure has implemented the idea that the curvature can be
described by a periodic sinus wave. This has been chosen to model the guiding surface as the deforming hydrostatic
bearing aims to be used in applications with a guiding surface with periodic varying curvature. While some are linear
wavy sinusoidal running tracks others are more complex. Examples of such systems can be seen in figure 4.1.

(a) Generic cam and cam-follower (b) Hägglunds hydraulic drive[5]

Figure 4.1: Example applications with solid-to-solid contact surfaces with roller bearings and varying curvature of the guiding surface.

Looking at the guiding surface from the perspective of the bearing, the guiding surface has a periodic change
in curvature. A waviness amplitude, stroke or curvature function can be set up as a function changing over time,
position or rotation of the guiding surface. The result will always be a continuous periodic function, figure 4.2 shows
one way to set up a function on the guiding surface. As a periodic function it could then be deconstructed into a sum
of sinusoids, using Fourier series. Therefore even if the guiding surface is not a linear sine wave, a sin wave can be
used to model the guiding surface, as seen in figure 3.1.

Kinematic set-up
Using a sine wave as description for the guiding surface a model of the deformable slipper can be set up. First
a single slipper is placed on the guiding surface, as a pivot has been introduced it can be placed tangent to the
guiding surface. Separated by a hydraulic film of tens to hundreds of micrometres thick. It has been assumed that
the dimensions of the guiding surface are much larger than this fluid film gap. And as the bearing is relatively small
compared to the wavelength, the angle of the slipper with the horizontal, φ, is equal to the tangent with the guiding

α

α

A A
y

x

Guiding surface

Bearing surface

Figure 4.2: Describing the guiding surface as a function of the cam lift for a arbitrary guiding surface with varying curvature
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φ
dx

dy

y

x
Film gap

Bearing slipper

Guiding surface

Figure 4.3: Hydrostatic slipper placed on a guiding surface. Tangent line with the guiding surface defines slipper angle φ.

surface. And as the guiding surface was described by a sine wave, equation (4.4) defines this angle. This definition
can be seen in figure 4.3.

φ= arctan

(
d y

d x

)
(4.1)

s = 2π

λ
(4.2)

y = s A sin(sx) (4.3)

φ= arctan(s A cos(sx)) (4.4)

Here, x is denoted the position of the guiding surface, normalized by a scaling factor to 2π. This scaling factor,
s, is defined in equation (4.2). It is introduced to have universal equations independent of guiding surface length.
This gives us the equation for y, as given by equation (4.3). The amplitude of the sinus, A is defined as the waviness
amplitude of the guiding surface, as seen in figure 4.4. Scaling A with the factor s will make it dimensionless and
therefore if it is scaled with this factor s, A is called the Relative Waviness Amplitude. The bearing is expected to have
an elastic support structure able to deform a fraction of it’s length as seen in figure 4.4. This fraction will from now on
be called the axial deformation factor or noted as υ. From literature it was concluded that an elastic bearing support
is possible to achieve with to maintain full film lubrication υ = 1

1000 [65]. Meaning the deformation of a bearing
slipper with length L in axial direction is 1

1000 L.

Wavelength, λ [m]

Amplitude, A [m]

Slipper Length, L [m]

Axial deformation, υL [m]

Figure 4.4: Elaboration on variables and dimensions used to describe slipper and the corresponding wavy guiding surface.



Whiffletree-based deforming hydrostatic bearing
Modeling and design of a compliant force distribution mechanism
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Abstract—Hydrostatic bearings are well known for having low
friction and low wear in combination with high loading capacity.
Traditionally, the running surfaces for a hydrostatic bearing are
plane, rigid and smooth, ensuring a parallel lubricating film in the
full range of movement. In this paper, we consider a new type
of compliant, hydrostatic bearing where the running surfaces
have a surface waviness with a large amplitude resulting in a
varying curvature for the hydrostatic bearing to follow in its
range of movement. Design choices and subsequent modeling of
these types of bearings are presented in this work. The introduced
bearing concept is based on a compliant whiffletree mechanism
able to distribute load over multiple hydrostatic slippers. This
increases deformability of the complete bearing system. In a case
study the limitations of a large deforming hydrostatic bearing
are modeled to understand the impacts on performance and
implications.

Index Terms—Hydrostatic bearings, Compliant Mechanism,
Deformable slipper, Flexures, Whiffletree.

I. INTRODUCTION

Hydrostatic bearings are accepted as good candidates to
replace rolling bearings due to their minimal wear and
friction[1]. Hydrostatic bearings are typically designed with
rigid, non-compliant bearing surfaces in order to obtain a
high load carrying capacity, which is often required for their
applications. This causes current hydrostatic bearings to lose
functionality when used on a guiding surface with varying
curvature or large waviness. As the high stiffness prevents
the hydrostatic bearing to deform and follow the shape of
the guiding surface. If rigid hydrostatic bearings are present
in these kind of systems, this results in loss of full film
lubrication, leading to mechanical contact. State of the art
hydrostatic bearings only consider small guiding surface ir-
regularities, in the order of magnitude of surface roughness
or anomalies caused by eccentricity[2][3], if considered at all.
Over the past decades there has been an increasing interest in
hydrostatic bearings. However, little research has been done in
the field of large deformable hydrostatic bearings[4]. Where
large deforming hydrostatic bearing are defined as bearing
used on the running track with continuous variations which
are orders of magnitude larger than surface roughness and
the nominal lubrication film thickness. To compensate for
these variations a few consider an elastic bearing support
within the bearing[2][5]. However, these are used to for small
deformations. Therefore, hydrostatic bearings are currently
not considered as design alternatives to roller bearings in
applications where waviness of the guiding surface is involved.

At present, on the running track of large doors, cranes
and conveyors, rolling or sliding bearings are primarily used.

Fig. 1: Working principles of single slipper hydrostatic recess bearing. The
hydraulic pressure is uniformly defined as the bearing land and guiding surface
are parallel. The hydraulic pressure counteracts the axial load W the bearing
carries. The hydraulic pressure is visualized below the bearing, with the
pressure decreasing to atmospheric pressure throughout the fluid film gap.

The same goes for machining; only a few manufactures
consider hydrostatic bearings an option for guiding tracks of
lathes, cutting and milling machines. The guiding surfaces
of these applications are often not wavy by design but by
machining imperfections[6]. For these applications hydrostatic
bearing guiding surfaces already provide higher accuracy in
components with relatively low machining accuracy due to
the error averaging effect of the support film. Also, the elastic
deformations of the guiding surfaces due to high loading can
lead to a varying curvature[2]. Thus the guiding surface can
not always be assumed to be infinitely stiff. The existence of
a deformable hydrostatic bearing could allow for less wear in
these application and thus longer lifetime, lowering the need
for maintenance.

In addition, full film lubricated systems offer even more
advantages in submerged applications. An example of such a
wet application environment is the use of hydrostatic bearings
in a hydraulic pump as the interface between the running
surface and the plunger[7]. Certain pumps, such as radial
pumps or axial piston pumps, could be designed to have a
running surface with a varying curvature. If the bearings were
made compliant they would be able to follow this shape.
However, deformation in the normal direction would occur
due to the load. Mechanical failure of the bearing due to this
compression limits the load capacity of the bearing.

Therefore, a hydrostatic bearing needs to be developed that
is able to follow the curvature of the guiding surface, while
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maintaining high normal stiffness. The development of such
a bearing would increase the number of possible applications
significantly.

This paper will present the concept and modeling of a large
deforming hydrostatic bearing concept. This bearing concept
maintains high loading capacity in the presence of waviness
in the direction of the running track using a compliant force
distribution mechanism.

Section II describes the principle of a deformable hy-
drostatic bearing slipper. ection III presents a concept of a
large deforming hydrostatic bearing by connecting multiple
deformable slippers. For this whiffletree-based concept the
kinematics are set up as well. Section IV concludes the
modeling part by introducing additional constraints as a result
of physical limitations. Sections V and VI present available
implementations of the bearing slippers and joints respectively.
Finally, a complete case study is discussed in section VII. To
conclude, the limitations of this design are presented.

II. DEFORMABLE HYDROSTATIC BEARINGS

The working principle of a hydrostatic bearing has been
illustrated in figure 1. In this figure a single slipper (or hydro-
foot) is seen. This work considers the variation in curvature
is only the direction of motion of the bearing, this allows the
hydrostatic bearings to be simplified to 2D for now. In figure
1 the pressure drop over the bearing land is described as a
linear decrease, this assumption holds if the guiding surface
and bearing land are parallel [8]. So for a given load, a uniform
film with height h, is present between the track surface and
bearing land area. This film transfers the axial load on the
bearing to the guiding surface while allowing the motion of
the bearing as translates over the guiding surface. The normal
load on a recess bearing is given by equation (1), which holds
if if the bearing and guiding surface are parallel [1].

Fn “ PrĀA (1)

Where A is the total bearing surface area and Ā is the shape
factor, a geometry dependent parameter, equal to the fraction
of effective area. The recess pressure, Pr is dependent on the
fluid film-thickness and bearing geometry parameters. With
variations in curvature or waviness of the running track much
larger than the fluid film-thickness and the surface roughness
the bearing land surface will have to adjust to the profile of the
guiding surface for all positions on the track. If this does not
happen, the film thickness must compensate for this to prevent
mechanical contact and a parallel film can not be maintained,
such that the loading capacity can not be well defined. As
the normal load acting upon the bearing should be transferred
independent on the shape or position of the guiding surface.

The bearing slipper should deform to match the shape of
the guiding surface, as seen in figure 2. The normal pressure
forms the slipper towards the shape of the guiding surface
through elastic deformation. The elastic compression of the
guiding surface due to the load the bearing is applying upon
it, is not taken into account. The running track is considered to

Fig. 2: Representation of single slipper hydrostatic bearing deforming to
prevent contact and achieve a parallel film while following a guiding surface
with large waviness.

be a rigid wavy guiding surface which is very stiff compared
to the bearing. In order for the slipper to be able to follow
guiding surfaces with larger variations in curvature, the slipper
compliance must be increased. However, more compliance will
introduce more strain on the slipper, increasing the risk of
mechanical failure. To reduce internal stresses, the bearing
slipper design and support structure can be altered. Research
is being done on the design of bearing slippers such that these
can allow large deformations while maintaining high loading
capacity[7][9][10]. The deformable slipper is a key part in the
design of large deformable hydrostatic bearings.

In this work, large deformation is defined as the deformation
corresponding to the deformation required to follow a valley-
to-peak waviness magnitude of the guiding track equal to
ten percent or more of the track length. This, is a compa-
rable metric to the one used in large deforming compliant
mechanisms[11].

Fig. 3: Two bearings parallel to their guiding surfaces, this visualization shows
that the smaller slipper on the right can maintain parallel on a guiding surface
with larger waviness, than the larger slipper on the left.

For slippers with in-plane length much smaller than half
a wavelength of the waviness of the guiding surface, the
maximum required axial displacement will be smaller on this
point of maximum curvature. Because the deformation on the
point of maximum curvature requires symmetrical deformation
of the bearings, the absolute deformation is lower. In order to
determine the magnitude of axial displacement required by a
single slipper, placed on the location of maximum curvature,
the compliance of a single slipper must be investigated.

The largest required displacement of the bearing slipper is
when the bearing is located on the point of smallest curvature
of the guiding surface. On this point curvature goes from
positive to negative and as seen in figure 2, the slippers will
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also undergo asymmetrical deformation to follow this guiding
surface. A pivot that would allow for rotation of slipper
will move the point of maximum displacement to the point
where the absolute curvature is largest. This pivot would be
able to account for the deformation of the tilt and therefore
decrease the maximum required deformation. Slipper length is
defined as the in-plane length of an un-deformed slipper. And
wavelength is defined as the distance between two extremities
on the guiding surface. These definitions can be seen in figure
4.

Fig. 4: Elaboration on variables and dimensions used to describe slipper and
the corresponding wavy guiding surface

Using smaller bearing slippers would allow the bearing to
follow tracks with a higher waviness amplitude, which can be
seen in figure 3. This reduces load capacity, as equation (1)
notes load capacity is proportional to bearing land area. To
compensate for the lose of load capacity multiple individual
slippers could be linked together to form one larger hydrostatic
bearing. Using the previously introduced pivots it could tilt
the individual slippers similar to a hydrostatic bearing with
multiple recess chambers. As the forces would have to be
distributed equal as in a whiffletree, this is the basis for
the bearing mechanism presented in the next section, and is
visualised in figure 6.

As a pivot on a slipper will significantly decrease the need of
individual deformation of a single slipper, pivots are attached
to the slippers. Pivots with a rotational stiffness much smaller
than the tilt stiffness of the slippers are desired. Low rotational
stiffness for the pivots is therefore presented in more detail in
section V.

Bearing slippers have been modeled in the past as elastic
bending elements that bend a fraction of their length in the
axial direction, as elastic supports helped to achieve this. Theo-
retical modeling of elasto-hydrodynamic lubrication have been
analysed in-depth[2][10][12]. Slipper deformation is modeled
it is done through deformation as a fraction of the bearing
length [9][13]. This modeling principle is applied in this paper;
the maximum bearing deformation is given as a fraction of
the slipper length. The amount of bending of the bearing
should be at least equal to the axial curving of the guiding
surface in order to maintain parallel film. This is referred
to the deformation criteria. Failing this criteria would result
in the loss of a parallel hydraulic film. Using a sine wave
to describe the continuous varying curvature of the guiding

surface. This models the convex and concave curving of the
guiding surface, for which the respective deformation criteria
are given by equations (2) and (3).

A´ υL ď A sinpx` 1

2
Lq (2)

´A` υL ě A sinpx` 1

2
Lq (3)

Here A is the relative waviness amplitude, υ the relative
deformation factor and L is the individual slipper length. An
assumption on υ is made based on previous research on elastic
supports[9]. The factor chosen, 1

1000L, will allow the bearing
slipper to deform without making mechanical contact. The
horizontal position of the deforming slipper on the guiding
surface is given by x. Note that the waviness is relative to a
2π wavelength, thus slipper length, waviness and the position
on the guiding surface are fractions of the wavelength.

Due to equations (2) and (3) being symmetric, if one is
satisfied, the other is as well. This allows us to combine
the equations for convex and concave into one equation. The
deformation criteria is therefore given by equation (4).

A sinpxq ¯ υL ď ˘A sinpx` 1

2
Lq (4)

Following this criteria it can be seen what the maximum
amplitude is that can be followed by a slipper of specific length
and deformation fraction. This can be seen in figure 5.

Fig. 5: Contour plot with varying slipper compliance. It shows the maximum
running track waviness a slipper can follow for a given slipper length and
slipper deformation factor. The waviness and slipper length are expressed
relative to guiding surface wavelength. The contour lines give the axial
deformation factor, the fraction of a slipper’s length it can deform.

The contour plot in figure 5 shows it is possible to follow
more wavy running tracks when the slipper is smaller. This is
what was expected from figure 3. As was also expected, more
compliant slippers are able follow guiding tracks with larger
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waviness. Thus all slippers must be very complaint. However,
the deformation factor, υ, can not simply be increased. As
mechanical failure, due to compression, must be investigated
for more compliant slippers.

The effect of bearing compression can be complex but the
main issue is the internal stress due to strain. A material with
a lower Young’s Modulus will be able to deform easier and
therefore allow for a more compliant slipper. The possibility to
increase compliance of a slipper without leading to mechanical
failure is a research topic worked upon[10]. The focus of this
paper is not investigating slipper deformation or development
of compliant slippers. Therefore υ is used for axial deforma-
tion as in input parameter in the model.

III. COMPLIANT DISTRIBUTION MECHANISM

Slipper size can be decreased to allow for wavier guiding
tracks to be followed in exchange for lower load capacity. If
multiple slippers are connected the load capacity is increased.
This requires a mechanism that allows all slippers to follow the
guiding surface while transferring the load. Thus a mechanism
is wanted that can deform and distribute loads with high
axial stiffness. These prerequisites are met by a whiffletree; a
classical mechanism to distribute loads over multiple elements.

In a whiffletree the critical components are the pivot points,
which have to transfer the axial load. If the pivot points
are contact bearings, these will be subjugated to wear. The
large deformable hydrostatic bearing is interesting because
of its low wear, therefore introducing contact bearings is
unwanted. Compliant pivots such as flexures are investigated
as an alternative, since they do not experience wear through
contact.

Fig. 6: Four slippers connected through a whiffletree-based mechanism. For
illustrative purposes the pivot points are on the bottom of the connecting
elements. The angles θ define the pivot angles. φ describe the angle of the
slipper relative to the horizontal. Higher levels of φ, as φ12, define the angle
of the transverse connecting elements. The angles depend on the position
of bearing on the curve, the amplitude of guiding surface and the distance
between two slippers.

A geometric symmetrical whiffletree is used to model
the behaviour of the individual elements and the pivots. A
symmetrical whiffletree has been chosen as it would require
less unique elements, making it easier to design and to be un-
derstood. An example of such a whiffletree based mechanism

can be seen in figure 6. The position of one slipper to the next
is fixed by the mechanism, so its position in space is given by
equation (5).

L2
f “ px2 ´ x1q2 ` py2 ´ y1q2
“ px2 ´ x1q2 `A2psinpx2q ´ sinpx1qq2 (5)

Here, Lf is the length between the two slippers and xi, yi
respectively the x and y position of a slipper on the guiding
surface, normalized to a single wavelength. The slipper follows
the guiding track yi “ A sinpxiq, where A is the relative
waviness of the running track. Index i notes the slipper
number. Equation (5) shows that the relation for the position
of two connected slippers is non-linear. There is therefore
no explicit solution for the position of the second slipper
relative to the first. If we make a simplification that the relative
waviness amplitude between the two slippers is small, then the
position of x2 van be defined as x2 “ x1`L. This introduces
an error but allows for a kinematic description.

Fig. 7: Two slippers connected to each other through perpendicular rigid beam
elements. The pivot points are found in the middle of the vertical elements.
This is one cell (or branch) of a symmetrical whiffletree

A single cell (or branch) of this whiffletree is seen in
figure 7. From this geometry the kinematic description is
further defined. The angles of connecting elements are directly
coupled to the position the two slippers and influencing the
angles of the pivot points. The assumption has been made that
the length of the transverse connecting elements are equal
to the length of an individual slipper. The axial connecting
elements are equal to half this length. These are design
parameters which later be optimized and depend on the type
of pivot joint. The angles are thus defined as:

φ1 “ arctanpA cospx1qq (6)

φ12 “ arctan
x1 ´ L

4 sinpφ1q ´ x2 ´ L
4 sinpφ2q

y2 ` L
4 cospφ2q ´ y1 ` L

4 cospφ1q (7)

θ1 “ φ1 ´ φ12 (8)

The position of the slipper is used to define the slipper
angle. The slipper must be under this angle to remain parallel
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to the guiding surface. This angle is then used to calculate
the angle of the pivot points. These pivot angles are the
difference between the angle of the slipper and the angle of
the connecting element. This can later be expanded to other
slippers and to all whiffletree branches, as all cells can be
connected like the two slipper cell from figure 7. This cell
will be connected to a second cell with two other slippers.
The pivot connecting the element that connects the entire
mechanism to the axial load should provide the remaining
angular rotation.

Fig. 8: Angles of intermediate bodies as a function of waviness amplitude
and distance between the slippers for an eight slipper whiffletree mechanism.

As seen in figure 6, for all positions of the bearing system
on the guiding surface, the angles of the slippers and the
connecting elements are defined. While a description of all
angles is known, interest lies only in the maximum angles.
To understand the relationship between slipper length, wavi-
ness and the maximum angles an eight slipper whiffletree
is modeled. This number has been chosen as it can clearly
show the effects of having a large number of slippers while
remaining easily interpreted. In figure 8 a contour plot shows
the maximum angles of φ.

The angles of the level connected to the slipper is given by
φ1 analog to figure 6 and 7. For small distances between the
bearings, the angles of all intermediate bodies φi are equal to
A. Similarly, it can be seen that for a small bearing all angles
of the intermediate bodies are equal to one another. Finally,
the maximum angle grows to be as large as the maximum
waviness and only decreases if the distance between slippers
increases.

The angles of the intermediate bodies are dummy variables.
Only used to calculate the pivot angles and to give insight on
where the underlying structure and patterns of pivot angles
come from. Figure 9 shows the pivot angles are clearly the
difference between multiple whiffletree levels, which can only

be seen seeing it side by side with figure 8. In the first level the
pivot of this cell is denoted as θ1, that connects two bearing
slippers to one intermediate body as seen in figure 7. The
uppermost level connects the entire bearing to the axial load,
therefore it must provide for remaining rotation. This angles
is denoted as θax. The maximum angle of this last level pivot
clearly shows a decrease when the maximum angles of the
lower level pivot angles increases.

Fig. 9: The maximum pivot angles as function of waviness amplitude and
distance between the slippers for an eight slipper whiffletree mechanism.

IV. CONSTRAINTS AND LIMITATIONS

The complete model consists of multiple models of physical
behaviour which cannot be altered. Only the input values
and the constraints can be changed. The collection of models
that combine into a description of the deforming hydrostatic
bearing can be seen in figure 10. Each of these coloured blocks
is either a piece of modeled physics presented before, or a
model constraint.

The purple block represents the deformation criteria model
as defined in section II. The input variables of relative wavi-
ness amplitude and axial bearing deformation give us the
maximum bearing slipper size that can be placed on a certain
guiding surface. This maximum length is used as input for
other models.

The hydrostatic bearing model for a single slipper relates
load capacity and bearing tilt stiffness to film height, which
is the input. Film thickness influences recess pressure, and
slipper length is determined by the deformation criteria, for
which relative waviness amplitude and deformation factor are
required.

And slipper length leads to the maximum pivot angles for
a whiffletree on a wavy guide surface. This is given by the
kinematics described in equations (6)-(8).

So within the model all parameters are connected and
influence each other. With the input parameters known, the
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Fig. 10: Overview of models and relationships used, each of the colored blocks are a model explained in a section of this paper.

system requires constraints and limitations. The final step in
the model is to check the stress levels. These are dependent on
the type of pivot and slipper implementation. Therefore a case
study for a large deforming hydrostatic bearing, implementing
cross flexures and multi-recess orifice bearings system, will be
presented.

The complete model can be seen as an optimization where
e.g. the axial load can be maximized, while having the
following constraints:

1) Rotational stiffness joints much lower than tilt stiffness
of single slipper to maintain parallel film

2) Deformation criteria must be met in order to to maintain
parallel film between slipper and guiding surface

3q Pivot stress levels under endurance limit of pivot mate-
rial to prevent mechanical failure

4q Footprint of bearing must be constraint

A. Footprint Constraint

The footprint relation is the only constraint that is not
within any of the aforementioned models.This is caused by the
dependancy on the application. A large footprint increases load
capacity. A small footprint however increases axial displace-
ment, which is desired in for example pumps. This constraint
is thus dependent on the designer and the desired application.

For a bearing perfectly following the guiding surface, its
stroke could be determined through equations (9)-(11). As-
suming a symmetric guiding surface, the stroke is given the
following set of equations:

rStroke “ ymax,tot ´ ymin,tot (9)

ymax,tot “ 1

pπ2 ` f
2 q ´ pπ2 ´ f

2 q
ż π

2´ f2
π
2` f2

A sinpxqdx (10)

“ A

f
sinpf

2
q (11)

This can give an extra constraint on the footprint, in these
equations denoted as f ; the summation of all relative slipper
lengths. The optimization process could optimize for work
done instead of maximizing load capacity. Depending on the
application the model could provide or optimize for other
parameters. Equations (12) and (13) show the relationship and
equation (14) concludes for footprints smaller than a single
wavelength, the work done is maximum at about „ 64%
guiding surface coverage.

W “ rStroke ¨ Faxial (12)
ymax,tot “ ´ymin,tot (13)

W9 2
A

f
sinpf

2
qPrfbĀ

W9 Af sinpf
2
q (14)

In equation (14) b is defined as the slipper width, which has
been set to be equal as half of the slipper length. Therefore f
and b both depend on slipper length.
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V. COMPLIANT PIVOT IMPLEMENTATION

The pivots must transfer all load from the lower levels up
to the highest level. The load on to the bearing must be
transferred through the pivots, the intermediate bodies and
down to the individual hydrostatic slippers. The bearing thus
requires a high axial stiffness. It has been noted that these
pivots require a rotational stiffness which is much lower than
the tilt stiffness of the slippers in order to prevent mechanical
contact. The maximum rotation these pivots will have to make
are found in figure 9. These are relatively small rotations under
large loads which will lead to hertz stresses, which lead to
wear. Therefore, reintroducing rolling contact to the bearing
system is unwanted because it negates all the advantages
of replacing a conventional roller bearing with a hydrostatic
bearing. Compliant joints are investigated as an option for low
wear, low rotational stiffness and high axial stiffness.

From previous studies it was concluded that cross flexures
meet these requirements[14]. Notch flexures would not be
able to make the rotation that is expected. Complex variations
like the butterfly hinges[15] or Flex-16[16] flexures use the
working principle of a cross flexure. Many compliant pivoting
elements have been developed yet the cross flexure stands
out as one of the first and most understood [17]. Therefore
cross flexures have been chosen to implement as pivot as
it could be studied analytically, while these models are not
present in literature for its complex counterparts. Figure 11
shows how cross flexures as pivots might be implemented. An
approximation for stress levels for simple cross flexures has
be found in literature[18], as seen in equation (15).

σ “ Et

2Ls
θ ` Fx

tbs
(15)

Here the stress σ is calculated for the outer edge of the
flexure using the flexure angle, denoted as θ. E is the Young’s
Modulus of the flexure material, t stands for the thickness
of the flexure, Fx is the axial load on the flexure and Ls is
the length of the flexure spring element. For a standard cross
flexure the flexure elements are positioned under a 450 angle.
Therefore, this length will be taken as

?
2 times the length of

the element it supports. The flexure width is defined by the
parameter bs. The flexure is a as wide as the bearing allows
it, which is equal to the width of the connecting element. As
the flexure width wants to be as large as possible it is chosen
half of slipper width, and the slipper width is taken as half of
the slipper’s length.

To distribute stresses more evenly over all flexures, it is
recommended to choose a configuration for which not all of
the rotation is done by just one of the flexures. Ideally all
flexures make an equally large maximum rotation. It is likely
to choose a configuration where the pivot points at the slipper
end hold only a small rotation compared to the rotation of
the pivot at the axial end. This will cause a larger stress
concentration in the uppermost pivot, as seen in figure 9.

Up to this point, the stiffness has been assumed to be much
smaller than the tilt-stiffness of the bearing. Equation (16)
describes rotational stiffness for a cross flexure.

Fig. 11: Impression of hydrostatic bearing with whiffletree based distribution
of four slippers using compliant cross flexure elements as pivots.

Kθ “ EItotal
Ls

(16)

In this equation Itotal is the total moment of inertia of the
flexure elements on which the moment is applied and Ls is
the length of cross flexure spring elements.

These two equations are constraints on the entire bearing
system, as tilt stiffness from figure 14 will be compared with
the outcome of equation (16). Material properties will be
compared to the outcome of stress equation (15).

The final step in the model is to check the stress levels.
The stress levels of the flexures should be below the flexure
material’s endurance limit, the fatigue stress a material can
handle for 106 cycles[8].

VI. HYDROSTATIC SLIPPER IMPLEMENTATION

The pivot’s rotational stiffness must be much lower than the
tilt stiffness of the slippers below it. As the tilt stiffness of the
bearing is yet unknown this first has to be modeled. Therefore
a hydrostatic slipper is set up to model load capacity, and with
it, tilt stiffness.

The tilt stiffness of the bearing is modeled for a single
slipper, assuming a multi-recess bearing with orifice flow
restrictor. A multi-recess bearing, as seen in figure 12, has
tilt stiffness achieved through individual fluid inlets. These
individual flow restrictors give each recess a film stiffness
independent of the other chambers[19].

The tilting of the slipper causes a film height difference
between two sides of the slipper, as illustrated in figure 12.
This inequality in film height causes a pressure difference
over the bearing land of the slipper, and therefore results
in a moment on the bearing. This moment is dependent on
film height. Studies have been done on the tilting of multi-
pad bearings[12], however a simplified description should be
sufficient for choosing a pivot type. Simplifying the slipper
recesses as separate rigid bearings, as seen in figure 13, gives
the moment and tilt stiffness as follows:

Mφ “ Fleftrleft ` Frightrright (17)

Kφ “ BMφ

Bφ (18)
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Fig. 12: A side section and bottom view of a multi-recess bearing tilting under
an angle φ.

Fig. 13: A simplified model of bearing tilt of a multi-recess bearing. The
original film height of the bearing without tilt would be h0, but due to tilt a
difference of htilt is introduced.

In equation (17) r is the arm of the moment, as the recess
bearing drawn is symmetric and only tilts over one axis. The
distance on the left side is the exact opposite on that of the
right. The force is a function of recess pressure, as known from
equation (1). Equation (19) calculates the recess pressure for
a multi-recess orifice bearing as defined by Rowe [1]. With
this, the complete film stiffness is set up. In figure 14 the
axial stiffness and tilt stiffness can be seen dependent on film
height.

Pr “

d
1` 4Ps

ρ

2pCoAoq2 p
B̄h3

η
q2

2
ρ

2pCoAoq2
B̄h3

η

(19)

In equation (19) the parameters are filled in to give an order
of magnitude estimation. A supply pressure [Ps] of 10 bar
is used. The dynamic viscosity [η] of water is 1.002 MPa s.
And for the orifice parameters Co and Ao the values 0.55 and
1 mm2 are used respectively.

This model corresponds with the expectation that load
capacity scales linear with bearing size and tilt stiffness is
proportional to the bearings size, L, to the forth power.
Figure 14 shows that even for large film thicknesses, 50 µm,
the tilt stiffnesses of the slippers are 500 N m rad´1 and
50 MN m rad´1 for the 10 mm and 100 mm slipper sizes re-
spectively. Therefore these will be the values used to compare
tilt stiffness with rotation stiffness of the pivots.

Fig. 14: Film Stiffness and tilt stiffness curve for rectangular multi recess
bearings. With Ā of 0.78 and B̄ of 2.23.

VII. CASE STUDY AND RESULTS

Implementing multi-recess bearings as slipper and cross
flexure as compliant joints grants us insight into a complete
deforming hydrostatic bearing. For this example we are max-
imizing the load using a total of eight slippers. The eight
slippers require four levels of cross flexures, as seen in figure
15. The load capacity is increase until it in combination with
the stress due to bending is too large for the flexure. As
mechanical failure is presumed to occur as it crosses the
threshold for endurance limit of steel, in this case is defined
as 270 MPa[20]. A waviness amplitude of the guiding surface
which has to be followed is chosen to be 2% of the wavelength.
Assuming a wavelength of a meter this is a 40 mm peak/valley.
With the deformation factor υ of 0.001 this gives a maximum
single slipper size of 10 mm to maintain a parallel film.

Matching this design the maximum angle the flexure ele-
ment has to make is 0.6˝. The flexures are made out of spring
steel with a young’s modulus of 200 GPa with a thickness of
1 mm. The flexures are at a 45˝ angle from one another, and
with flexure length equal to slipper length. For the 0.6˝ the
functions for stress and stiffness found in literature can still be
used, but these will become inaccurate for larger angles due to
non-linearity. Filling the chosen flexure values into equation
(16), gives a rotation stiffness of 16.66 N m rad´1. Which is
lower than the tilt stiffness of 500 N m rad´1. However, the
difference is only one order of magnitude so the film thickness
might be influenced, it is recommended to decrease flexure
stiffness if stress levels allow it.

For this configuration a film thickness of 95 µm is found,
corresponding to a load capacity of single slipper of 6.7 N.
And for this film thickness the tilt stiffness of a multi-recess
bearing is larger than the rotational stiffness found, as seen
in figure 13. The model has now given us maximum loading
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Fig. 15: Whiffletree-based distribution of eight deformable slippers. Note that
dimensions as amplitude, slipper size and flexures size are not to scale with
the case study and slippers are illustrated as single-recess bearings.

capacity, 53.72 N, for an eight slipper whiffletree, with slippers
of 20 mm, which are capable of following a 20 mm amplitude
wavy guiding tracks.

This is one possible design, from this one example it is
impossible to make conclusion on whether altering a parameter
will lead to failure or not. It was chosen to visualise this in
a Matlab[21] Graphical User Interface, as seen in figure 16.
The parameters are connected as visualised by figure 10 and
utilises all modeling principles presented in this paper.

VIII. CONCLUSION

This work showed the use of a pivot to increase wavy
guiding surface following capabilities of deformable hydro-
static slippers. The combination of these two topics within
a whiffletree improved the working range of deforming hy-
drostatic bearings. The whiffletree concept is feasible for
applications if the main goal is to have a waviness following
hydrostatic bearing. However, as shown there are limitations
to this concept. The load carrying capacities are not on par
with the alternatives, as stress in both flexures and slipper is
limiting.

The model shows an increase in slipper compliance is
needed to further increase the maximum waviness the slippers
can follow without decreasing their size. The other limitation
is caused by stress limitations in the compliant pivot. In the
case study, the stress levels in the compliant flexure exceed
the maximum allowed endurance limit if either axial forces or
waviness was further increased.

For a whiffletree-based design there is a trade-off between
loading capacity and deformability. The priority in the case
study was given to deformability to follow a certain wavi-
ness guiding surface, therefore the loading capacity is low.
Choosing a higher loading capacity would have decreased the
maximum waviness that could have been followed. And the
design choice to maximize work per stroke can be made, here
in it is wanted to increase both waviness and load capacity.

IX. DISCUSSION

This trade-off can be further used to change parameters or
design choices to optimize for either deformability or load
capacity. In this section, recommendations for such design

choices are presented. As figure 5 showed, if the individual
slipper’s compliance improves it is possible to further increase
the capability to follow wavy guiding surfaces. And as stress
levels in flexure prove to be problematic, these could be
replaced by alternatives better able to handle large loads.
Therefore further work is required on both individual slipper
deformation and the creation of a compliant joint for high
loading conditions.

Cross flexures in the case study are loaded in compression.
However, the design could be adjusted to load the flexures in
tension. This might decrease chance on mechanical failure. A
design can also be chosen to adjust the rotation point, which
might decrease the maximum pivot angle[22]. Cross flexure
were chosen from literature but, alternatives are available[14].
Q-LIFT pivots could provide lower stress levels when the
rotation is the dominant cause of stress[16]. If the axial loading
is the main cause of stress then pivots such as compliant rolling
contact elements could be implemented instead of a pure
compliant flexure. These are far more capable of handling high
loading capacity and maintain low rotational stiffness[23][24].

However the concept of the large deforming mechanism
could also be changed. This design is based on the classical
whiffletree, but with more research being done in mech-
anisms, it shows alternatives and promising enhancements.
An alternative deforming distribution mechanism could be a
zero potential energy system[25], that it could easily take all
shapes, while maintaining axial stiffness[26]. A zero stiffness
mechanism was considered but not worked out as current
understanding on kinematics was insufficient and as overall
limitations were yet unknown. The kinematics were investi-
gated for a symmetrical whiffletree for which all slipper were
continuously parallel to the guiding surface, yet it might be
possible to have a bearing with some non-parallel slippers,
but with the system as a whole still maintaining full film lu-
brication. In these cases non-asymmetrical whiffletrees might
provide require less angular rotation, resulting in lower stress
levels. For a symmetrical guiding surface there no advantages
were seen to develop a non-symmetrical whiffletree concept
and was therefore not investigated.

An alternative mechanism could be pressure vessels, using
the hydraulics fluids providing the support film to pressurize
chambers within the elastic bearing support. This could pro-
vide hydrostatic slippers with increased compliance[10]. And
these might be used as pivots where the pressurized chambers
could move fluid to tilt, while maintaining axial stiffness.
Therefore the pressure vessel itself becomes a hydrostatic pivot
with high axial stiffness and low rotational stiffness.
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Elaboration on kinematic models
In the previous chapter relations were given and set up, the following sections elaborate on the mathematical deriva-
tions such that design choices are better understood and recreating the results will become easier.

Derivation of Deformation Criteria
Chapter II introduced the deformation criteria based on the principle that a hydrostatic slipper could deform a frac-
tion of it’s length, a that this deformation would not lead to mechanical failure of the hydrostatic slipper. Using this
deformation principle allows the modeling of deformations to be done as in figure 6.1.

(a) A hydrostatic slipper deforming to a concave shape (b) A hydrostatic slipper deforming to a convex shape

Figure 6.1: Hydrostatic bearing deformation is being modeled using the axial deformation factor υ for both convex and concave deformations

Combined with a sine curve as the guiding surface, the requirement to maintain parallel film can be defined.
A parallel film is maintained if the bearing surface deforms an equal amount as the guiding surface. A simplified
version of convex deformation from figure 6.1b is illustrated in figure 6.2. This clearly shows that axial deformation
times the length should match the height difference on this point. This point is given by half a slipper length from
the point of zero deformation. This leads to xL being defined as in equation (6.1). Using the definition for the guiding
surface from figure 4.3 and y-position of the middle of the bearing on guiding surface from equation (4.3), the left or
right y-position of the bearing on the guiding surface is defined in equation (6.3).
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Figure 6.2: Representation of convex deforming bearing on wavy surface, on which the deformation criteria is based.

xL = x1 − L

2
(6.1)

xR = x1 + L

2
(6.2)

yL = s A sin sxL (6.3)

yR = s A sin sxR (6.4)

The scaling factor introduced in chapter 4 is applied. Note that from this point on wards this scaling is automati-
cally implied. As stated, the bearing must deform equal to the guiding surface curving away, which is checked for the
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left and right-side most points of the bearing. As the curving away of the guiding surface is the most extreme as long
as our slipper is less than a quarter of a wavelength. With the use of pivots, the undeformed bearings can be described
by a tangent line position x1. This is the middle of the bearing from which the tangent line is set up, as explained
in chapter 4. This will allow us to set up the deformation criteria for both concave and convex curvature. Using the
assumption that film thickness is negligible, y1 is both the y-position of the guiding surface and the y-position of the
middle of the bearing. The deformation cases for the peaks and valleys of the guiding surfaces are investigated. Here
the deformation required will be largest, as proven in appendix C. On this position, the deformed bearing position
is the bearing position, x1 plus or minus υL. Equations (6.5) and (6.6) describe the deformed bearing positions for
these symmetric positions.

yLB = A sin x1 ±υL (6.5)

yRB = A sin x1 ±υL (6.6)

In these equations the scaling factor s has already been applied, thus A is the Relative Waviness Amplitude,
L is the length as a fraction of the wavelength and x1 is the relative x-position. The subscripts LB and RB stand
for Left-side Bearing and Right-side Bearing. yLB gives the y-position of the left side of the slipper for maximum
deformation. When positioning the bearing underneath the guiding surface as in figure 6.2 with a sine wave as the
guiding surface, convex bending of the guiding surface will occur for π ≤ x ≤ 2π, similarly, concave deformation
will occur for 0 ≤ x ≤ π. For the convex bending yB, the y-position of the bearing must be equal or larger than the
y-position of the guiding surface. For concave deformation, the slipper should bend away, thus the y-position of
the bearing should be lower or equal to the y-position of the guiding surface. This is written down in equations
(6.7)-(6.14).

yLB ≥ yL ⇒ {0 ≤ xL ≤π} (6.7)

yRB ≥ yR ⇒ {0 ≤ xR ≤π} (6.8)

yLB ≤ yL ⇒ {π≤ xL ≤ 2π} (6.9)

yRB ≤ yR ⇒ {π≤ xL ≤ 2π} (6.10)

A sin x1 +υL ≥ A sin x1 − L

2
⇒ {0 ≤ xR ≤π} (6.11)

A sin x1 +υL ≥ A sin x1 + L

2
⇒ {0 ≤ xL ≤π} (6.12)

A sin x1 −υL ≤ A sin x1 + L

2
⇒ {π≤ xR ≤ 2π} (6.13)

A sin x1 −υL ≤ A sin x1 − L

2
⇒ {π≤ xL ≤ 2π} (6.14)

Due to symmetry yL = yR , this was already seen in equations (6.5) and (6.6). Because of the symmetry, the left

side of the slipper equals the right side. For these positions x1 = π

2
∨ 3π

2
, equation (6.11) is equal to equation (6.12),

and equation (6.13) equals equation(6.14). And these can then be further be simplified and using that the relations
that A sin 1

2π=−A sin 3
2π= A. And using the definition that ≤ equals −≥, allows us to write the concave and convex

deformation the same, as seen in equations (6.15)-(6.17).

A+υL ≥ A sin

(
π

2
+ L

2

)
⇒

{
x = 1

2
π

}
(6.15)

−A−υL ≤ A sin

(
3π

2
+ L

2

)
⇒

{
x = 3

2
π

}
(6.16)

−A−υL ≤−A sin

(
π

2
+ L

2

)
(6.17)

Therefore, it can be concluded that if either the top or bottom is checked, both will pass the deformation criteria
and thus the bearing will be parallel for all positions on the guiding surface.

xRB = x1 +L cosφ+υL sinφ ⇒ {0 ≤ x1 ≤π} (6.18)

xRB = x1 +L cosφ−υL sinφ ⇒ {π≤ x1 ≤ 2π} (6.19)

yRB = A sin x1 +L sinφ−υL cosφ ⇒ {0 ≤ x1 ≤π} (6.20)

yRB = A sin x1 +L sinφ+υL cosφ ⇒ {π≤ x1 ≤ 2π} (6.21)
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For this statement to be true, it has to be checked that deformation is largest on the peaks and valleys. For this
it is first required to set up the deformed slipper for non-symmetrical positions. As the bearings are symmetric,
the bearing deformation can be simplified by only using the right side of the deforming slipper. As the previous
equations already showed the symmetry of the deforming slipper. Equations (6.18) to (6.21) are the coordinates of
the right side of the deformed slipper as defined in 6.3, for convex and concave deformations.

Figure 6.3: Illustration used to define the position of the most right side of the deformed slipper for convex shapes, thus valid from π≤ x ≤ 2π

yR = Asi n
(
x1 +L sinφ

)
(6.22)

−υL cosφ ⇒ {0 ≤ x1 ≤π} (6.23)

υL cosφ ⇒ {π≤ x1 ≤ 2π} (6.24)

The gap between the bearing and the guiding surface is diffrent between (6.20) or (6.21), and (6.22). This differ-
ence is seen in equations (6.23) and (6.24). It is seen that the deformation will be largest if the angle φ is either equal
to zero or π. In equation (4.4) φ is defined and it showed to be equal to zero on both peaks and valleys. Therefore if
the deformation criteria as stated in (6.15) is passed it will mean that the bearing will be parallel for all positions on
the guiding surface. In absolute terms, this means the deformation criteria is defined as followed;

s A+υsL ≥ s A sin

(
π

2
+ sL

2

)
(6.25)

This function has been introduced in section II and is used to create figure 6.5 which shows that smaller slippers
and more complaint slippers are better to follow wavy guiding surfaces. Which is illustrated in figure 6.4. This
deformation criteria shows the major improvement of the implementation of pivots as compensation for tilt allows
for this huge improvement, it also shows that improvements can be made if the deformation factor is increased.

(a) Large deforming hydrostatic bearing (b) Deforming hydrostatic bearing (c) Smaller deforming hydrostatic
bearing

Figure 6.4: Three hydrostatic bearings slippers, deforming to a curved guiding surface. Limiting on the maximum deformation are elasticity of
the elastic bearing support and bearing slipper size.
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Contour Plot - Deformation Criteria

0.001

0.005

0.005

0.005

0.01

0.01

0.01

0.015

0.015

0.02

0.02

0.025

0.025

0.03

0.035

0.04

Bearing Slipper Length % of 

W
av

in
es

s 
Am

pl
itu

de
 A

/

Figure 6.5: Contour plot of maximum running track waviness a slipper can follow for a given slipper length and slipper deformation factor. The
waviness and slipper length are expressed relative to the guiding surface wavelength. The contour lines give the axial deformation factor, the

fraction of a slipper’s length it can deform.

Derivation of Whiffletree Kinematics
This section elaborates the kinematic derivation used to model the whiffletree. The kinematics are presented in
chapter III but, a step by step derivation is not provided, therefore, an elaboration is presented here. The coordinates
of a single deforming slipper on a guiding surface have been defined in figure 4.3. These coordinates are the input
for the whiffletree from which the kinematics model expands.

Figure 6.6 shows a two slipper cell, which can be defined as a whiffletree branch. Using the relative waviness
amplitude, A, relative slipper length, L and relative position x, all scaled with the factor s as defined in equation (4.2),
the angles of two slippers, φ1 and φ2 are defined in equations (6.26) and (6.27). The amplitude A, will include the
scaling factor; s. Thus whenever guiding surface amplitude is mentioned, this is the relative waviness amplitude, as
the amplitude is relative to the wavelength. Similar scaling is applied to the position on the guiding surface, length
of the slippers and length of whiffletree elements. These will all include scaling by s. The distance between two
slippers, L f , changes depending on positions of the slipper with one another. A linearisation has been introduced,
meaning the distance between two slippers are fixed at a distance d from one another.

φ1 = arctan(A cos(x1)) (6.26)

φ2 = arctan(A cos(x1 +d)) (6.27)

The linearisation on slipper positioning is noted as x2 = x1 + L f , where L f for now is fixed a distance d . The
effects of this linearisation compared to the actual distance have been investigated, the derivations has been taken
up into appendix B. Figure 6.6 shows that the angle of the intermediate body, φ12, between the two slippers equals
to the angle between the two pivot points. In the previous chapter it was discussed that the coupling elements are
half the length of the slipper and that the pivot point is taken halfway on the coupling element perpendicular to the
slipper. This lever arm therefore has a length of 1

4 L, other lengths are treated in the appendix B. Using these relations
the angles are defined as in (6.28)-(6.33).
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Figure 6.6: Representation on angle definitions of a slipper cell, with pivot points in the middle of the perpendicular rigid beam elements. In this
illustration the uppermost pivot is connected to the normal load and therefor vertical.

φ12 = arctan
∆x12

∆y12
(6.28)

∆x12 = x2 − L

4
sin(φ2)−x1 + L

4
sin(φ1) (6.29)

∆y12 = y2 + L

4
cos(φ2)− y1 − L

4
cos(φ1) (6.30)

φ12 = arctan

(
x2 − L

4 sin(φ2)−x1 + L
4 sin(φ1)

y2 + L
4 cos(φ2)− y1 − L

4 cos(φ1)

)
(6.31)

θ1 =φ1 −φ12 (6.32)

θ2 =φ2 −φ12 (6.33)

For a system with more than two slippers, an additional level of pivots is required. The geometric relationship of
the new level is similar to the two slipper-cell. The angles of intermediate bodies φ12 and φ34 can be compared with
the angles of φ1 and φ2. These are used to calculate the angle of the coupling body, which in turn is used to calculate
the pivot angles. Like the intermediate body that connected two slippers, the angle of the body that connects two
cells (four slippers) is equal to the angle between the pivot points. This gives equations (6.41)-(6.43) as definitions
for the angles φ1234, θ12 and θ34.

x12 = x1 − L

4
sin(φ1)− L

4
sin(φ12)+ L

2
cos(φ12) (6.34)

x34 = x3 − L

4
sin(φ3)− L

4
sin(φ34)+ L

2
cos(φ34) (6.35)

y12 = y1 + L

4
cos(φ1)+ L

4
cos(φ12)+ L

2
cos(φ12) (6.36)

y34 = y3 + L

4
cos(φ3)+ L

4
cos(φ34)+ L

2
cos(φ34) (6.37)
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φ1234 = arctan

(
∆x1234

∆y1234

)
(6.38)

∆x1234 = x34 − L

2
sin(φ34)−x12 + L

2
sin(φ12) (6.39)

∆y1234 = y34 + L

2
cos(φ34)− y12 − L

2
cos(φ12) (6.40)

φ1234 = arctan

(
x34 − L

2 sin(φ34)−x12 + L
2 sin(φ12)

y34 + L
2 cos(φ34)− y12 − L

2 cos(φ12)

)
(6.41)

θ12 =φ12 −φ1234 (6.42)

θ34 =φ34 −φ1234 (6.43)

Note the resemblance with the equations of the lower level, which repeats for higher levels as well. The lengths
between slippers has been replaced by lengths between cells and the length of coupling elements is doubled as those
now couple twice as large substructures. This is an advantage of the whiffletree, in which the functions are in essence
the same only the inputs change. Only the angle of the uppermost level is to be calculated differently, depending on
the number of levels. If the bearing would have only two slippers, the angle of the intermediate body connecting the
two is the uppermost intermediate body. Therefore φ12 =φax and the pivot connecting this uppermost body to the
axial load is the uppermost pivot. Giving us θ12 = θax . For the uppermost level, the pivot is connected to the axial
load. And as the axial load must always be placed vertically, this angle is defined as in equation (6.44).

θax =π−φax (6.44)

In the previous chapter an eight slipper whiffletree system was introduced and the angles of both the interme-
diate bodies and the flexure angles have been set up. While these equations can be used to find the angle on any
point of the guiding surface it is more interesting to look at the maximum flexure angles as these will likely cause
mechanical failure. Figure 6.7 shows the contour plots, in appendix C one can find the matlab code used to make
these. The range chosen for slipper length is up to 1

8 ofλ, as our assumptions do not hold for deformable bearing that
cover a larger running track than one wavelength or slippers that cover more than a forth of a wavelength. Therefore,
relative waviness also goes up to a similar percentage. From a design perspective these plots shows that choosing
specific lengths for a given waviness can decrease maximum flexure angles.
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Figure 6.7: Contour plots of maximum angles as functions of distance between slippers and the relative waviness of the guiding surface.



Model Interface
The kinematic model has been completed in the previous chapter and the model has been visually represented in
4. This model together with the implementations introduced before, serves as a design tool for a demonstrator to
be created as a verification of the model. It combines all the elements presented in this thesis. However, this thesis
also presents many design options, thus as a design tool it would require many options therefore a Graphical User
Interface was chosen to represent this. But with the increasing complexity due to implementation of cross flexures,
hydrostatic bearing model and the many design choices left open within the model. The model could not long be
verified and due to time pressure the guided user interface is now a tool to visualize the results of the model.

The matlab code behind this Graphical User Interface (GUI) can be found in appendix C. It will present all of
the individual scripts running as the callbacks for this GUI as well as a more elaborate user manual. The main
principles of the GUI has been visualized in figure 4. This section elaborates on the modeling used in the GUI from
the perspective of the user interface.

Graphical User Interface
The user interface is seen in figure 7.1, it shows the results of a eight slipper whiffletree placed on a 1 metre guiding
surface. The compliant slippers, with a deformation factor of 1

100 , have a length of 5 cm and are able to deform
to the given waviness, which is 1% of the guiding surface. These slippers would provide 40 N which is a result of
their effective area being multiplied by the recess pressure, which followed from equation (7.1). This recess pressure
follows from the input supply pressure of 5 bar and film thickness of 100µm. The kinematic model represented
in this chapter leads to the flexure angles and whiffletree angles shown in this interface for this slipper length and
waviness, the maximum angles being around 0.5 deg. These maximum angles lead to a maximum flexure stress of
190 MPa according to equation (7.4), introduced in the previous chapter. As this is below the stress endurance limit
of 270 MPa for 107 cycles, the background colour is presented as green. Turning to orange and an eventual red if the
stress criteria is not met.

Figure 7.1: A screen capture of the guided user interface created with matlab[2].

Figure 7.1 shows an example of a configuration of inputs for which the whiffletree based deformable bearing will
remain parallel to the guiding surface and for which stress levels of the flexures are below the maximum allowed

28
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tolerance. Increasing any one of these inputs slightly results in a configuration which fails. For a eight slipper con-
figuration with slippers that have a axial deformation factor of 1

200 requires the slipper size to decrease, in order to
maintain parallel with the guiding surface, this in turn results in larger flexure angles. And these flexure will then
fail due to extensive stress levels, this will then be made clear to the user by the aforementioned color coding. The
deformation criteria also has a build-in check to inform the user if the check is met or not. If, for example, a slipper
size of 0.075% of the guiding surface length are used, the model will return a warning as seen in figure 7.2.

Figure 7.2: A screen capture of the warning given by the GUI, if the deformation criteria is not met.

This warning is one of the features of the design tool, the GUI also has an option to find the maximum allowed
slipper size for a given wavelength and deformation factor. This is done when the knob Slipper parallel with film on
the User interface panel has the option Yes selected, then the user is unable to edit slipper size, as the maximum size
will be entered once the Update button is pressed. The accuracy of the result depends on the step size, which can be
altered using the slider in the upper left corner, the default settings use a step size of 1000. It is also possible to allow
the slipper a loss in film height, this is actually the mismatch between the slipper not being able to deform parallel to
the guiding surface and the actual gap size because of this. Thus selecting with the knob Slipper parallel with film the
option Within specification will enable editing this as input variable. And after pressing update, the GUI will output
a slipper length that will deform to the given waviness amplitude with a given deformation factor with the specified
gap size remaining undeformed. This gap is simplified and added to the designed film height therefore the model
also outputs a lower load capacity of the bearing. The load capacity is calculated by the chosen hydrostatic bearing
model, one of the many models implemented in the GUI.

Modeling implementations
In this section the implemented models in the GUI are treated, as these are often specific design choices. Let us start
by the hydrostatic slipper model which is used to calculate the force for a given film thickness. A model of a orifice
multi recess bearing has been used, a multi recess bearing was chosen for the tilt stiffness it would provide[46]. The
recess pressure could be calculated through equation (7.1), which holds true for multi recess bearings[55].

Pr =

√
1+4Ps

ρ

2(Co Ao)2 (
B̄h3

η
)2

2
ρ

2(Co Ao)2

B̄h3

η

(7.1)

Here supply pressure is defined as Ps η, described the dynamic viscosity of the lubricant. Co and Ao represent
orifice parameters. B̄ and Ā are shape factors, a geometry dependent parameters describing the effective flow and
effective bearing land area. Using the effective bearing land area, the force on a slipper can be formulated as in
equation (7.2). In the top left of the GUI selecting slipper specifications will present a drop down menu that allows
one to plot all data from the hydrostatic bearing model for a given slipper length, supply pressure and film height.

Fn = Ā APr (7.2)

The effective area is multiplied by the real bearing land area, A, and recess pressure to give the normal force
acting upon one slipper. Using the angle of the slipper, the axial load can be derived from this as seen in equation
(7.3). This can in turn be done for each slipper to give the total load acting upon the whiffletree for a certain film
thickness. This is where the model of the hydrostatic slipper ends as it gives the forces upon the flexures for a given
angle. Therefore, this is coupled to the kinematics and used as input for the flexure model.

Fax = Fn sinφax (7.3)

The flexure used was chosen to be a cross flexure, as seen in figure 7.4, as this was amongst the highest ratio
of axial stiffness to rotational stiffness[38] and could be studied analytical. The rotational stiffness of a cross flexure
depends on many parameters such as designed intersection angle, and it is non linear [27]. For small angles however,
it can be assumed that linear elastic bending occurs and assuming that this is due to a pure bending moment gives
equations (7.4) and (7.5) to calculate the stress on the outer edge of a cross flexure and the rotational stiffness [63].
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Figure 7.3: Tilt stiffness for a few example hydrostatic slippers as given in the GUI.

σ= Et

2Ls
θ+ Fx

tbs
(7.4)

In equation (7.4) the stress is calculated in two parts, the first is the bending stress. It is expressed as function
of the Young’s Modulus, E , length of a cross flexure spring element, Ls , and the flexure angle, θ. The second part is
loading stress as expressed by the normal load, Fx , the thickness of the flexure elements is defined as t and width
of the flexure elements, bs . This could all be seen in figure 7.4. The stress is calculated for each angle θ and for all
flexure levels, as the force doubles but so does length, this is seen in the bottom right of the GUI. The stress on each
of the flexures would be different, as each is under a different angle and for the higher levels as they will be under a
higher load, while simultaneously allowing a bigger slipper to be placed and the slipper itself undergoing different
angles. The stress levels would eventually be checked with the endurance limit cycle stress level found online. For
spring steel, which is likely to be used in a cross flexure this is 650 MPa[3]. Or regular carbon steel which is likely to
be used for a first order demonstrator 270 MPa. The guided user interface also allows manual entry of stress levels
criteria, or the entry of a common material type.

Kθ =
E Itot al

Ls
(7.5)

The rotational stiffness is calculated in equation (7.5). Again using the material property E , the Young’s Modulus.
The total second moment of inertia is denoted as Itot al , this is twice the moment of inertia of a single cross spring
element, as the chosen pivot was a two strip cross flexure. The second moment of inertia of a spring element is
calculated in (7.6). Here, Ls again describes the length of a spring element. This length, for cross flexures with a size
equal to the slippers is equal to

p
2L, as the cross flexures under a angle of 45°. The rotational stiffness is calculated

to compare with tilt stiffness of the slippers. The tilt stiffness of the bearing slipper, as seen in figure 7.3, can be
generated by the GUI by selecting this from the drop down menu of Slipper Specifications. The hydrostatic bearing
model to calculate this tilt stiffness is treated in more detail in section VI.

I = bh3

12
(7.6)

Equation (7.6) describes the area moment of inertia of a rectangle. Where, h is the height of the rectangle and b
is the width. Using the spring element definitions from figure 7.4 to determine bending stiffness over the Z-axis, this
requires the moment of inertia over the z-axis. Rewriting equation (7.6) to (7.7).

Iz = bs t 3

12
(7.7)

Putting in parameters as found in literature, a length of 20 mm, width of 4 mm and thickness of 0.15 mm with
a young’s modulus of 70 GPa results in a bending stiffness of 0.0079 Nmrad−1, this is equal to the value provided
by literature for this cross flexure[38]. Thus for small angles this function is accurate and is therefore used as an
implementation of the cross flexure. And it can be used to confirm that rotational stiffness is smaller than the tilt
stiffness, this is calculated for a 10 mm and a 100 mm slipper. The results are found below in table 7.1.
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Figure 7.4: The chosen cross flexure design, the cross strip elements are under a 45° to the slipper and connecting element[38]. The elements
have a spring length of Ls , a width of bs and thickness t . With the defined coordinate system the rotation stiffness is defined as Kθ=Kθz.

Flexure L Ls bs t Iz E Kθz

Literature example - 20 mm 4 mm 0.15 mm 1.125×10−15 m4 70 GPa 0.0079 Nmrad−1

Small slipper 10 mm 14.14 mm 5 mm 0.5 mm 5.21×10−14 m4 70 GPa 0.517 Nmrad−1

Larger slipper 100 mm 141.42 mm 50 mm 0.5 mm 5.21×10−13 m4 70 GPa 0.517 Nmrad−1

Large steel flexure 100 mm 141.42 mm 50 mm 0.5 mm 5.21×10−13 m4 200 GPa 1.467 Nmrad−1

Small and thick 10 mm 14.14 mm 5 mm 1 mm 4.16×10−13 m4 70 GPa 4.13 Nmrad−1

Larger and thick 100 mm 141.42 mm 50 mm 1 mm 4.16×10−12 m4 70 GPa 4.13 Nmrad−1

Largest flexure - 500 mm 50 mm 2 mm 3.33×10−11 m4 200 GPa 23.59 Nmrad−1

Table 7.1: A few cross flexures rotational stiffnesses, to compare with tilt stiffnesses and literature. Parameters as thickness, Young’s modulus and
slipper size can be altered in the GUI, width and spring length are coupled to slipper length and can therefor not be changed directly.

The results show that the rotational stiffnesses for a variety of different parameters. The thickness of the flexures
could be increased if stress levels due to loading are dominant. However, for the rotational stiffness it is best to keep
thickness as low as possible. As it scales with the power three. The largest flexure considered here, is again for the
eight slipper whiffletree with even with the largest possible slipper size this flexure would not become larger than the
tilt stiffness. The tilt stiffness for the higher levels also have a leverage effect such that for the higher levels effective
tilt stiffness is larger, and therefor these flexure can be more stiff. The tilt stiffness vs rotational stiffness need to be
watched closely for different design parameters as they are only one order of magnitude apart for thicker flexures.
It is recommended to use low thickness 0.5 mm and a flexible material with Young’s Modulus of 70 GPa or lower if
stress levels allow it. The GUI unfortunately is unable make this trade-off as there are many parameters and design
variables involved, so this has to be done manually.

Note that cross flexure also has compliance in other directions and even though loading in those direction is not
intentional, these must be taken into account as instability may become an issue for the higher level flexures and the
risk on buckling will increase for ever larger flexures if the width and thickness do not increase. This along with the
transnational stiffness, the axial shift and non-linearity are recommended to be look at in further research. The next
chapter will provide multiple topics on which the GUI implementation may be improved upon.



Conclusion, Discussion and Future research

Research objectives evaluation
Inspired by past research in deformable fluid bearings and complaint support structures. It was possible set-up a
model from which it is now possible to reflect on the research objectives. To answer this question a number of sub-
questions were formulated. This chapter reflect on the research objective by treating the sub question first, then the
research goal followed by recommendations for future research and end with a general conclusion.

Can compliant mechanisms be combined with elastic slippers to improve overall compliance?

The compliant pivot is a great addition to deformable slippers. The use of pivots decreases the deformation needed
by the slipper, by allowing the slipper to become tangent to the guiding surface. Therefore, overall compliance is
increased by these pivot. Complaint mechanisms were investigated but the cross flexure was chosen as a result of
a trade-off, a high as possible axial stiffness was required while having as low as possible rotational stiffness. The
cross flexure was chosen as it had the highest axial to rotational stiffness ratio[38]. In hindsight the axial stiffness
might be of much more importance as long as the tilt stiffness of the slippers proved to be higher than the rotational
stiffness of these flexures. And as stress levels of the cross flexure are limiting the system, this requires a more detailed
investigation. Figure 8.1 shows a very simplified cross flexure finite element model which could be used to verify
modeled stress levels.

Figure 8.1: Example of comsol verification on stress levels for a simplified cross flexure

How large of a waviness can be followed using elastic hydrostatic slippers?

The principle used to determine the maximum waviness an elastic slipper can follow has been thoroughly explained
in 6.1. As pivots were introduced, a large improvement in waviness following capabilities is seen for. However, the
model showed that the deformation of elastic slippers is currently limiting on waviness following capabilities. These
limitations are based on assumptions inspired by literature, which need to be further verified. As this introduced the
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axial deformation factor, υ. Which determines the magnitude of compression and lead to compression stress levels
which eventually lead to mechanical failure [44].

A finite element model of an elastic support undergoing linear compression can be seen in figure 8.2. It shows
two rubber blocks fixed on the top and a fixed displacement on the bottom representing the concave or convex
displacement. Using linear elastic solid mechanics the output stress level show that for υ = 1

1000 the stress levels
are not in the levels that cause mechanical failure, considering they are made out of a Reomas BV. Rupulan rubber,
able to handle 10 N/mm2[44]. This means it might be possible to improve υ, therefore, in the next section this is
introduced as a future research topic. It also shows that the maximum deformation factor might depend on slipper
length. Note that this model also shows that convex and concave stress levels are not the same, thus, the assumption
that υ is the same for concave and convex curvature will no longer hold. The deformation criteria of equations (6.12)
and (6.14), for positive and negative bending, will have to be used separately. If stress due to convex deformation is
dominant, as seems to be when comparing 8.2a with 8.2b, it might become possible to use the convex deformation
factor to describe the full range of deformation motion.

(a) Comsol model of concave compression (b) Comsol model of convex compression

Figure 8.2: Example of verification using comsol multiphysics[1] to show that axial deformation factor can be improved upon

The deformation criteria showed that waviness following capabilities improve when the slipper size is decreased.
In order to keep load capacity the same the number of slipper must increase to compensate for their size. But in-
creasing whiffletree size comes with an increase in complexity in the system. And with the height of the whiffletree
the slippers lateral motion increases as the movement of coupling bodies due to tilt also moves the slippers. This
means the slippers must be made smaller, resulting in a further decrease in load capacity.

What are the kinematics of a whiffletree-like structure on a wavy guiding surface?

The kinematics of a whiffletree can be set up for a system where the lengths of the connecting elements are known.
Therefore, the length of the horizontal coupling elements that connect one slipper to the next is equal to the length of
a slipper. The vertical element is equal to half this length. The final assumption is that the linearisation of the slipper
position is valid. This states that the slippers are positioned exactly one slipper length apart from one another.
With these assumptions a exact description has been given of the position for each slipper and all the connecting
elements. However, it has already been noted that an error up to 7% is introduced by the linearisation. For pivots on
the lower levels of the whiffletree, closer to the slipper and further to the load. The maximum angle will decrease as
there is less of an amplification arm. This in turn also decreases lateral motion of the slippers.

Can multiple deformable hydrostatic slippers be combined in a force distribution mechanism to improve
waviness following capabilities?

The large deformable hydrostatic bearing has been modeled. This model of the kinematic behaviour granted
insight on how a force distribution mechanism could be implemented. Investigating mechanical support structures
in literature inspired the design of a whiffletree based bearing system. A comparison between multiple complaint
pivots resulted in the choice of a cross flexure. Therefore a whiffletree with cross flexure elements as pivots proved
to be a interesting option. The trade-off between loading and wave following capabilities shows that it is possible to
design a deformable hydrostatic bearing to some extent.
Therefore, it can be concluded that the research objective;

Design and model a hydrostatic bearing for large deformations and high loading conditions using a me-
chanical support structure.
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has been partially achieved. Because an increase of the loading conditions decreases the wave following capabilities.
Kinematic modeling showed that the introduction of pivots increased the capabilities of deformable hydrostatic

slippers to follow wavy guiding surfaces. Loads can be disturbed over multiple slipper to increase load capacity. The
model showed that the combination of these two components within a whiffletree improved the waviness following
capabilities of deforming hydrostatic bearing systems. The implementation of cross flexures as the compliant pivots
and using the kinematics from the model as input, showed that cross flexures are limiting in the general performance
of the whiffletree based hydrostatic bearing. Therefore, further work is required on this topic before implementation
in the form of demonstrators can be achieved. And with the possible improvements to deforming slippers and alter-
natives to cross flexures, the demonstrator might be better able to handle loads and deformations than the current
whiffletree based bearing model suggests.

Recommendations for future research
The recommendations are based upon current limitations of the concept and on assumptions which require more
research. Each of the following subsections could be a research project on its own.

Verification of whiffletree based model
The current model is based on the whiffletree concept. However, no experimental verification has been done. It
was the intention to do so when the project was first introduced. However, it was first required to set up a kine-
matic model, set up a deformation criteria and design a concept. Many unknown factors had to be investigated
before implementation could be achieved. Therefore, experimental verification is it highly recommended for future
research. In order to further develop the whiffletree-based deformable bearing, the following subjects are highly
recommended for future research:

• Expand the kinematic model to include stiffnesses of the pivot elements and tilt of the bearings

• Introducing compliance of coupling elements in idealized whiffletree model

• Implement pivots and verify internal stress levels using finite element modeling

• Investigate compliance and stress levels of elastic bearing slipper

Once this is done a large deformable hydrostatic bearing demonstrator can be developed in order to experimentally
validate the model.

Compliant pivots
When implementing compliant pivots their on-axis rotational stiffness was compared to the off-axis stiffness in z-
direction. It was decided that the ratio between load capacity to rotational stiffness would be a good indication on
stability of the concept. In reality the axial stiffness must simply be as high as possible, as long as rotational stiffness
is low enough such that the slipper will not be lift from the guiding surface. From this comparison of ratios the
cross flexure came out as a promising candidate. The alternatives had a less favourable ratio and were seen as too
complex, therefore the cross flexure was chosen as compliant pivot due to its relative ease to implement. However,
they proved to be limiting in both ability to carry axial loads and due to internal stress build up as a result of rotation.

Two other types of pivots which were investigated but not implemented were;

• Compliant rolling element

• Q-LIFT pivots

A more in depth look into stress and failure mechanism would be recommended in order chose a design. As an
alternative a compliant pivot could be designed purely for this application this could lead to a far more suitable type
of complaint pivot.

Hydraulic pressurized cell support
A interesting way to provide elastic slipper support would be to use pressurized chambers. These chambers would
be complaint on their own but as they are filled they would be able to deform by moving fluids, this would allow the
bearing land surface to form to the guiding surface profile, while the internal pressure provides axial stiffness. This
hydraulic principle could be a solution to provide very high axial stiffness while being rotationally compliant at the
same time. This principle could also be used to compensate for the tilting of the hydrostatic bearings. So these could
be implemented as pivots within a whiffletree.

The stress level within the pressure cell would be critical, as it must counteract the load from the bearing and
allow for rotation. Therefore, elaborate finite element modeling is required, while investigating the different type of
concepts of pressure cells. As these cells could either be directly connected to recess chamber or have separate cells.
Therefore, additional research is recommended in;

• Pressurised cell structures as pivots
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General Conclusion
The kinematic model created achieved the goal of providing knowledge such that we were able to make design
choices and set-up a concept of a large deformable hydrostatic bearing. The implementation of deformable hy-
drostatic slippers with a rubber support and cross flexures as compliant pivots were good additions and allowed
for large wavy guiding surfaces to be followed. These however introduced many assumptions which were not thor-
oughly investigated. Similarly the internal stress levels are non-negligible but interest was directed more at proof
of concept rather than into feasibility of the slipper support. Therefore, this was only investigated marginally. The
complete model was put together as a design tool to set-up a demonstrator which was to be created as a verification
of the model. Due to difficulties connecting the many models into one and implementing the cross flexures, with
many design choices still left open, a verification through testing of a demonstrator was no longer possible within
this project. The graphical user interface does provide visualization of the results of the model. It directly shows the
relation between slipper compliance, waviness and slipper size as given by the deformation criteria. Slipper size, in
turn directly relates to the flexure angles, which in combination with the load criteria allowed for a analytic stress
analysis. This is the main working principle behind the complete model shown in figure 8.3.
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Figure 8.3: Visual representation of the models and relationships used to set up the graphical user interface.

Within this model the tilt stiffness of the hydrostatic slipper is also investigated and checked whether it is much
smaller than the rotational stiffness of the cross flexure, as this was assumed. If this was false, then full film lubri-
cation could not be maintained. These and other assumptions are listed in appendix A. Most of these assumptions
are still quite logical choices, others do require some more attention if the whiffletree concept is further investigated.
Overall the model grants good insight on possibilities and applications. It brought forth new insights, as for the appli-
cation of pumps, the power pumped normally is transferred through a single point. A whiffletree based deformable
bearing would distribute the force over an area. Resulting in a lower stroke, and thus less power transferred. This in-
sight must be taken into account for large hydrostatic bearing designs specifically for the application of radial pump
designs.

In the end a large deforming hydrostatic bearing is not created, however the foundation is laid, the seeds have
been sown, so that future research may flourish.
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Assumptions
The paper made a large number of assumptions many of which are used to set up the kinematic models and lead to
the results presented in this work. Effects of some assumptions are simply unknown for example; The deformation
of a single slipper was assumed to be υL and for this it was assumed the bearing would be parallel. However it is only
known that the bearing does not make contact. Thus full film lubrication is maintained.

A related assumption has been made for this configuration. This assumption has been made in order to prevent
statements on stress levels, as this thesis does not focus on slipper stress and is a topic on its own. Therefore it has
not been investigated whether internal stress levels are below the endurance limit for a deformation factor of υ.

I. Assumptions not mentioned or investigated in this thesis
• Change of geometric area shape factor and flow shape factor, Ā, B̄ , due to tilt or deformation. The geomet-

ric shapes are recommendations found in literature [55]. For the hydrostatic multi-recess slipper model the
optimal values were used for high load capacity and stability.

• Rotational stiffness of the cross flexure does not influence film height as it is much lower than tilt stiffness of
the bearing. In reality the rotational stiffness of the flexure always influences the film height, as spring in series.

II. Assumptions introduced through literature
• Small angle assumption for flexure rotation, so linear bending can be applied [63]. This is required for equa-

tions (7.4) and (7.5) to be valid.

• High translational (out-of-plane) stiffness of the cross flexures so lateral deformation is low[38]. With no de-
signed out-of-plane forces the effects of out-of-plane stiffness are out-of-the scope of this research.

• Constant position of flexure rotation point, so no

– Displacement due to axial compression [27]

– Axis drift due to rotation, related to small angle assumption [63]

III. Summary of modeling assumptions
The following assumptions were introduced in this thesis.

• The guiding surface can be described by sine wave [chap. 1][chap. 4]

• Bearing slipper is small and can therefore be tangent to the guiding surface [sec. 4.1]

• With an axial deformation factor of 1
1000 full film lubrication is maintained [sec. 4.1][sec. II]

• No elastic deformation of the guiding surface, very stiff compared to the slipper. [sec. II]

• Deformation is small, thus linear beam bending can be applied [sec. 6.1]7.2]

• Axial deformation factor is the same for concave, convex and asymmetric deformation [sec. 6.1][sec. II]

• Deformation is always perpendicular to bearing land, ideal flexures transfer forces perpendicular to guiding
surface [sec. 4.1]

• Film thickness is negligible compared to length of deformable slipper or waviness of guiding surface [sec. 6.1]

• Slippers are at a fixed distance from one another [sec. 6.2][sec. III]

• Intermediate coupling bodies are fixed length and do not deform when loaded [sec. 6.2]

• Tilt of a multi recess bearing can be represented by two serpate chambers with an uniform increase in height
at one side and loss at the other [sec. VI]

• Resultant force as result of bearing tilt has a moment arm exactly at the recess centroid. [sec. VI]

36
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Kinematic Derivations
In this appendix elaborations are given on kinematics that are derived but not implemented in the final model. Some
of these kinematics were investigated in hopes to simplify the problems at hand. So, while some for there was never
the intention to implement them, only to check if a assumption was correct. Others were not implement due to them
being mathematically incomplete or illogical design choices.

Whiffletree Kinematics, pivot arm length.
In figure 6.6 the pivots were introduced to be on coupling elements which were half the length of the slippers. How-
ever, what if the coupling elements would be much larger, smaller or the pivot point would not be in the middle of
the coupling elements? This has been investigated and it was concluded that this only has a small influence on the
maximum angles of the pivot, the slipper and intermediate bodies.

φ12 = arctan
∆x12

∆y12
(1)

∆x12 = x2 −R sin(φ2)−x1 +R sin(φ1) (2)

∆y12 = y2 +R cos(φ2)− y1 −R cos(φ1) (3)

φ12 = arctan

(
x2 −R sin(φ2)−x1 +R sin(φ1)

y2 +R cos(φ2)− y1 −R cos(φ1)

)
(4)

θ1 =φ1 −φ12 (5)

θ2 =φ2 −φ12 (6)

Replacing the length of the arm L
4 by a variable R in equations 6.28 to 6.33 gives 1 to 6. This is repeated for higher

levels up unto a third level, so it has been implemented for an eight slipper system. Figure 4 shows that there is a
difference for angle depending on the size of the pivot arm, however it is only a small difference.

In order to investigate that this is not a local behaviour but to show that this pivot arm length has only a small in-
fluence on maximum angles this is investigated more thoroughly. The results can be seen in figures 5, these contour
plot show the maximum angles for different waviness guiding surfaces and lengths of the slippers. Yet the differences
are so small that they can not be observed.

Error due to linearisation
The slippers are set a fixed distance apart, this linearisation introduces an error, here the magnitude of that error is
investigated. The maximum error occurs with the first slipper on the point of maximum curvature with the second
slipper on the point of zero curvature. These positions are given by x1 = 1

2π+nπ and x2 = π+nπ with n being any
real integer. On these positions the amplitude difference is exactly A, as the maximum amplitude used in the model
is %10λ. The maximum error can be calculated, the equations (7)-(12) are used to calculate an estimation on error
positioning.

∆xr =
√

d 2 − A2 (7)

e = 1− ∆xr

∆xa
(8)

d =
√(

1

2
π

)2

+ A2 (9)

∆xr

∆xa
=

1
2π

d
= π

2
√( 1

2π
)2 + A2

(10)

dmax =
√
∆x2

max + A2
A=0.1︷︸︸︷=

√
(1/4π)2 + (π0.2)2 (11)

emax = 1− ∆xr

dmax
= 1−0.928 = 7% (12)
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Figure 4: A comparison between angles of the intermediate bodies for two different pivot arm lengths. As the pivot is in the middle, the arm
length R equals L

4 , at the bottom the arm length equals zero.

(a) Maximum angles of coupling elements (b) Maximum angles of pivots elements

Figure 5: Contour plots of maximum angles as functions of distance between slippers and the relative waviness of the guiding surface. With three
colors to represent the difference in pivot arm length. Blue represents the maximum angles for no pivot arm, red a pivot arm length of L

4 and

black a pivot arm length of L
2

The error on location due to the linearisation for a 10% relative waviness amplitude is 7%. This is the largest
possible derivation, for a two slipper whiffletree, spaced 1

2π apart. Other assumptions also have an error in their
calculation, however those could not be quantified as correctly as this one.

Lateral motion slippers
In reality the slipper are not a fixed distance apart, but due to the rotation of the pivot they will move close or further
from another. To prevent contact it will be required to check how much lateral motion the individual slippers expe-
rience. The most critical case would be where the first slipper has a lateral motion equal to the exact opposite of the
second slipper. Figure 6.6 is used to define this lateral drift of the slippers.
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xd1,2 = R sinφ1 (13)

xd2,2 = R sinφ2 (14)

xg ap12,2 = xd2 −xd1 (15)

(16)

This has been investigated in the same manner as the pivot arm length. In order to find out that the lateral motion
is not only a local effect but it’s influence depends on pivot arm length, again three different pivot arm lengths have
been take to investigate this behaviour. For a whiffletree with multiple cells the lateral motion of the cells has also be
taken into account. With equations (6.34) and (6.35) this can be calculated in a similar fashion. Only the contact will
likely occur between the second and third slipper, so the motion of these slippers has to be added.

xd12,4 = 2R sinφ12 (17)

xd34,4 = 2R sinφ34 (18)

xd2,4 = xd2,2 +xd12,4 (19)

xg ap23,4 = xd3,4 −xd2,4 (20)

Figure 6 shows the contour plot of the lateral motion, it shows that pivot arm length has little to no influence on
the motion, which is unexpected, compared to the effects of waviness and slipper spacing. Which does behave as
expected, the slippers lateral drift due to rotation increases as the waviness increases, because the angles required
will be bigger. But they also increase with increasing slipper spacing, at first the lateral motion appears small. How-
ever this should be taken into perspective that the slippers themselves are also small. The lateral motion also has to
encompass the motion of all the three levels combined, as the slipper also moves if the cell is drifting.

Figure 6: A contour plot showing the lateral motion between slippers as a function of relative waviness and relative slipper spacing. Blue
represents lateral motion for no pivot arm, red represents lateral motion for a pivot arm length of L

4 and black represents lateral motion for a

pivot arm length of L
2
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Function for maximum angles
As the angles are known for any position on the guiding surface, it was tried to find a relationship between the max-
imum angles on the guiding surface. Equation 6.31 is used to determine the maximum angles of the intermediate
bodies for higher levels of whiffletrees if these higher levels exist. For this purpose, a bearing is placed on a peak thus
x = 1

2π is filled into these equations. This gives a function dependent on slipper spacing, d , and relative waviness
amplitude, A. These are simplified using the following trigonometric relations were used to simplify the problem.

cos x =−cos x (21)

2arctan(x) = arctan

(
2x

1+x2

)
(22)

cos(arctan(x) =
√

1

x2 +1
(23)

sin(arctan(A cos x) =
√

A cos x

A2 cos x2 +1
(24)

||φ12,max || = 1

2
arctan

4A
4A cos

d

2
2− A2 cosd

 (25)

||φ1234,max || = 1

2
arctan

4A
4A cosd cos

d

2
2− A2 cosd − A2 cos2d

 (26)

Equations (25) and (26) gave the impression that for each level the equation adds an additional term, therefore
higher levels were also written out.

||φ12345678,max || = 1

2
arctan


4A cosd cos 1

2 d

2− A2 cos2d − A2 cosd
+ 4A cos3d cos 1

2 d

2− A2 cos6d − A2 cosd

1− 4A cosd cos 1
2 d

2− A2 cos2d cosd

4A cos3d cos 1
2 d

2− A2 cos6d − A2 cosd

 (27)

However, this recursive addition to the function however was not found. Since it proved to be ineffective and
not further relevant to investigate the angles for higher levels as no clear connection was found. Equations (25)-(27)
were tools created to give insight in a relationship between the amount of levels of a whiffletree and the angles that it
would make. However, it proved less insight-full than expected for the problem at hand. And as the goal of this thesis
is not to make mathematical derivations and descriptions of angles of the kinematics this was not further looked
into.
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Matlab Model Manuals
In this appendix the models are given as their matlab script. And an elaboration is given on the scripts so that they
can be ran, altered and used in further research. As supplement to this thesis you are able to find these scripts and
the figures, animations or interfaces they produce. The names of the scripts are given as sub titles in the following
sections.

Manuals

Deformation Criteria 41
Deformation factor contour plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Slipper length Contour plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Slipper deformation visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

WhiffletreeKinematics 49
Relationship angles and slipper position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Maximum angles for given length and waviness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Model Visualisation 58
Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Deformation Criteria
DeformationCriteria.m
The deformation criteria was expressed by equation (6.25) as defined in section 6.1. The contour plot 6.5 was gener-
ated by the following script. The script starts by setting up the number of steps and the largest slipper spacing and
maximum relative waviness, which are the values on the x and y axis. Then through for-loops, the deformation cri-
teria is check for every different value of slipper spacing, waviness amplitude and deformation factor. The smallest
value of the deformation factor for which the criteria is satisfied for a given length and waviness is stored in a matrix.
This matrix is then plotted, which gives us the contour plot seen in figure 6.5.

1 %% 22−11−2018
2 %% Simplified Deformation Criteria
3 %% Jan van Willigen
4 %% This script plots the deformation criteria, with as contours the deformation factor
5
6 close all
7 clear all
8 an=400; %Step size
9 % bn=200;

10 Amax=0.1; %Maximum Relative Waviness
11 Lmax=0.1; %Maximum Slipper spacing
12 DFmin=1001; %Minimum deformation factor
13 DFdiff=991; %Steps of deformation factor
14 dH=00*(10^−6); %Allow loss in flight height
15
16 l=1; b=1; a=1; ln=400;
17 Bok=zeros(an,ln,DFdiff); %Allocating free space
18 Bplot=zeros(ln,an); %Allocating free space
19 for A=linspace(0.01,Amax,an)
20 for L=linspace(0.01,Lmax,ln)
21 for B=linspace(1/(DFmin−DFdiff),1/DFmin,DFdiff)
22 if (A*sin((0.25+0.5*L)*2*pi))+dH>(A−B*L)

41
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23 Bok(a,l,b)=B; %If Criteria is met, store current B
24 end
25 if Bok(a,l,b)~=0 && l==1 %If it is not met, it will never be met
26 Bplot(l,a)=Bok(a,l,b);
27 elseif Bok(a,l,b)~=0 && Bok(a,l−1,b) == 0 % If at the current length the

deformation is not reached it will never be reached.
28 if Bplot(l,a)==0 %If this was the first entry, thus its value was zero
29 Bplot(l,a)=Bok(a,l,b); %Make sure the plotted will also be zero.
30 end
31 % This aditional Loop is required to prevent over writng as the script would find Larger L's

that also met the requirements.
32 % If the maximum length is reached store the maximum length
33 elseif (l~=1 && Bok(a,l,b)~=0 && Bok(a,l,b)==Bok(a,l−1,b))
34 Bplot(l,a)=Bok(a,l,b);
35 elseif Bok(a,l,b)==1/1000
36 Bplot(l,a)=Bok(a,l,b);
37 end
38 b=b+1;
39 end
40 b=1;
41 l=l+1;
42 end
43 l=1;
44 a=a+1;
45 end
46 %% Ploting data
47 Bplot;
48
49 L=linspace(0.01,Lmax,ln);
50 A=linspace(0.01,Amax,an);
51 B=linspace(1/(DFmin−DFdiff),1/DFmin,DFdiff);
52
53 figure(2)
54 axis equal
55 % [Data,Cplot]=contour(L,A,Bplot',[0 0.001 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04], '

showtext','on');
56 [Data,Cplot]=contourf(L,A,Bplot',[0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.01 0.015 0.02 0.025 0.03 0.035 0.04], 'showtext','on');
57 Cplot.LineWidth=1;
58 Cplot.LabelSpacing=350;
59 % Cplot.LineStyle='−';
60 colormap(flipud(0.6*(gray+0.4))); %cool %hsv %pink %spring %autumn %hot
61 clabel(Data,Cplot,'FontSize',16)
62
63 set(gca,'FontSize',14, 'TickLabelInterpreter','latex','yTickLabel', {'1\%','2\%','3\%','4\%',

'5\%','6\%','7\%','8\%','9\%','10\%'});
64 set(gca, 'XTickLabel', {'1\%','2\%','3\%','4\%','5\%','6\%','7\%','8\%','9\%','10\%'});
65
66 title('Contour Plot − Deformation Criteria','FontSize',18)
67 xlabel('Bearing Slipper Length % of \lambda','FontSize',18)
68 ylabel('Waviness Amplitude A/\lambda','FontSize',18)

DeformationCriteriaLengthContour.m
A variation on this script is that instead of the criteria is being plotted as a contour of the deformation factor, it is
given as contour of the slipper length. This script runs similar to the last. Only instead of the for-loops saving the
smallest deformation factor for which the criteria is satisfied, the largest slipper length is stored. Therefore, it is
possible to create a contour plot with on the x and y axis, the deformation factor and waviness while the contour
lines represent different relative slipper lengths. This can be seen in figure 7
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Figure 7: Contour plot of the deformation criteria with as contour lines the maximum slipper size corresponding the waviness and deformation
factor.

1 %% 18−12−2018
2 %% Reversed Deformation Criteria
3 %% Jan van Willigen
4 %% This script plots the deformation criteria plot, not as contours of the deformation factor
5 %% But as contourlines of the maximum slipper size, with on the x−axis the deformation factor

.
6
7 close all
8 clear all
9 an=1000;

10 % bn=1000;
11 Amax=0.25; %Maximum Relative Waviness
12 DFmin=1000; %Minimum deformation factor
13 DFdiff=900; %Steps of deformation factor
14
15
16 l=1; b=1; a=1; ln=5;
17 Aok=zeros(ln,DFdiff,an); %Allocating free space
18 Aplot=zeros(ln,DFdiff); %Allocating free space
19 for A=linspace(0,Amax,an) %Taking steps for each wavelength
20 for B=linspace(1/DFmin,1/(DFmin−DFdiff),DFdiff) %Taking steps for each Deformation Factor
21 for L=[0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05];
22 if (A*sin((0.25+0.5*L)*2*pi))>(A−B*L) %If the the deformation facotr is

satisfied
23 Aok(l,b,a)=A; %Store current wave−length A in Aok
24 end
25
26 if Aok(l,b,a)~=0 && b==1 % If the deformation could not reach

the curve at the smallest length, thus
27 Aplot(l,b)=Aok(l,b,a); % at v==1 then it will never be

reaced at this Deformation factor thus store Lplot = 0
28 elseif Aok(l,b,a)~=0 && Aok(l,b−1,a) == 0 % If at the current length the

deformation is no longer reached
29 if Aok(l,b,a)>Aplot(l,b)
30 Aplot(l,b)=Aok(l,b,a); % for which the deformation can be reached at
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this deformation factor
31 end
32 elseif (b~=1 && Aok(l,b,a)~=0 && Aok(l,b,a)==Aok(l,b−1,a))
33 Aplot(l,b)=Aok(l,b,a);% This aditional Loop is required to prevent over

writng as the script would find Larger L's that also met the requirements
.

34 elseif Aok(l,b,a)>=Amax−Amax/an % If the maximum length is reached
store the maximum length

35 Aplot(l,b)=Aok(l,b−1,a); % That means the length should be
even larger than this to deform towards the curve.

36 end
37 l=l+1;
38 end
39 l=1;
40 b=b+1;
41 end
42 b=1;
43 a=a+1;
44 end
45 %% Ploting Data
46 % L=linspace(0.01,Lmax,ln);
47 L=[0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05];
48 A=linspace(1/100,Amax,an);
49 % B=linspace(1/1000,1/100,bn);
50 B=linspace(1/DFmin,1/(DFmin−DFdiff),DFdiff);
51
52 figure
53 L1=plot(B,Aplot(1,:));
54 hold on;
55 L2=plot(B,Aplot(2,:));
56 L3=plot(B,Aplot(3,:));
57 L4=plot(B,Aplot(4,:));
58 L5=plot(B,Aplot(5,:));
59 L6=plot(B,Aplot(6,:));
60 L7=plot(B,Aplot(7,:));
61 L8=plot(B,Aplot(8,:));
62 L9=plot(B,Aplot(9,:));
63
64 % legend([L1,L2,L3,L4,L5],['L_{\% of \lambda} = ' num2str(L(1))],['L_{\lambda=1} = ' num2str(

L(2))],['L_{\lambda=1} = ' num2str(L(3))],['L_{\lambda=1} = ' num2str(L(4))],['L_{\lambda
=1} = ' num2str(L(5))])%,['A_{\lambda=2\pi} = ' num2str(L(6))],['A_{\lambda=2\pi} = '
num2str(L(7))],['A_{\lambda=2\pi} = ' num2str(L(8))],['A_{\lambda=2\pi} = ' num2str(L(9))
]);

65 legend([L1,L2,L3,L4,L5,L6,L7,L8,L9],['L_{% of\lambda} = ' num2str(L(1))],['L_{% of\lambda} =
' num2str(L(2))],['L_{% of\lambda} = ' num2str(L(3))],['L_{% of\lambda} = ' num2str(L(4))
],['L_{% of\lambda} = ' num2str(L(5))],['L_{% of\lambda} = ' num2str(L(6))],['L_{% of\
lambda} = ' num2str(L(7))],['L_{% of\lambda} = ' num2str(L(8))],['L_{% of\lambda} = '
num2str(L(9))])%,['A_{\lambda=2\pi} = ' num2str(L(6))],['A_{\lambda=2\pi} = ' num2str(L
(7))],['A_{\lambda=2\pi} = ' num2str(L(8))],['A_{\lambda=2\pi} = ' num2str(L(9))]);

66
67 axis([1/1000 1/100 0 0.1])
68 set(gca, 'TickLabelInterpreter', 'latex', 'XTickLabel', {'$\frac{1}{1000}$', '$\frac{1}{500}$

', '$\frac{1}{333.33}$', '$\frac{1}{250}$', '$\frac{1}{200}$','$\frac{1}{166.66}$', '$\
frac{1}{142.38}$', '$\frac{1}{125}$','$\frac{1}{111.11}$', '$\frac{1}{100}$'},'FontSize'
,12);

69 title('Contour Plot − Slipper length Criteria','FontSize',15)
70 xlabel('Deformation factor','FontSize',14)
71 ylabel('Max Curve A/\lambda','FontSize',14)
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SingleBearingDeformationMatrix.m
The previous plots showed how the contour plot was generated on the deformation criteria. However in the thesis
presentation some visuals were presented that are not treated in this thesis. These can be seen in figure 8. These
explain how the deformation criteria is defined as was illustrated by figure 6.2.
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Figure 8: Simplified representation of slipper deformation, the slipper here does not meet the deformation criteria. As the deformed slipper does
not reach the guiding surface.

This script stats by creating the guiding surface, and placing the slipper on top of as a tangent line. The deforma-
tion lines are place as tangent lines on the ends of the slipper with a length of 1

1000 th of the slipper length. This script
also generates a gif, illustrating how a single slipper moves over the guiding surface. This GIF image is generated by
taking a snapshot of the figure of a slipper at one location, then placing it a bit further and taking another snapshot.
This process is repeated to let the bearing move over the complete guiding surface.

1 %% Jan van Willigen
2 %% 27−11−2018
3 %% This script follows a single bearing as it moves over a sinus curve with amplitude A.
4 %% Where the length L of the bearing is variable as well as it's deformation capability BF.
5 %%
6
7
8 %% Initilazation
9 clear all;

10 close all;
11
12 n=10000; %We discretize our sinus in N pieces
13 Amin=0.02; %The maximum amplitude of our sinus
14 Amax=0.2; %The maximum amplitude of our sinus
15 step=Amax/1000; %I wanted big step sizes to increase compuational speed, but

small to make the curvature appear smooth, this is was a good trade−off
16
17 Lmax=pi/8; %As the total area we are looking at is pi/2, half this size

seemed to me to be a good maxium size for length
18 increment=Lmax/1000; %For the Length increments I wanted them to be a fragment of

the maxium Length
19
20
21 Xx=linspace(0,pi,n); %We are currently looking to an area around the peak of th sinus
22 y=Amax.*sin(Xx); %Let us start with plotting the maximum amplitude sinus
23 figure(1)
24 plot(Xx,y)
25 hold on;
26
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27 xt=1/2.*pi; %We are only intrested in the area around the peak for now,
for a sinus the peak lies at pi/2

28
29 h=0.000005; % Designed fluid film thickness
30
31
32 % Prealocation of Storage Memory
33 Bx=0.001;
34 Ax=0.1;
35 Lx=[increment:increment:Lmax];
36
37
38
39 Lstorage=zeros(length(Bx), length(Lx),length(Xx));
40 Lplot=zeros(length(Bx),length(Ax),length(Xx));
41
42 Lstorage1=zeros(length(Xx), length(Lx));
43 Lstorage2=zeros(length(Xx), length(Lx));
44
45
46 b=1;s=1;d=1;v=1; %Variables to check in which iteration we are at, b for

Deformation Factor, s for Sinus Amplitude, v for Length and d for position X
47
48 hold on;
49 %%
50
51 x=Xx;
52 B=Bx %
53 A=Ax;
54 L=Lx';
55 x1=x;
56 y1=A.*sin(x1); %for x=1/2pi it is known that y1=y2, but for other x this is

not known!
57 % Location xt is the middle point between the two bearings
58 theta1=atan(A*cos(x1)); % sin(x)=y, cos(x)=dy/dx, tan(theta)=dy/dx
59 % Thus atan(cos(x))=theta, in this case x=xt
60 % We found out how to find the perpendicular vector to point X
61 dx1p=1/10*L*sin(theta1); % I decided to give this vectors length depending on L to give

them more visibilty
62 dy1p=1/10*L*cos(theta1); % See Figure Geomtery1 for more info in WorkDocument, Week 43.
63
64 x1p=x1−dx1p; %X1p is the x location of the end of the vector perpendicular to

x1
65 y1p=y1+dy1p; %Y1p is the x location of the end of the vector perpendicular to

y
66
67 dx1=L./(2..*sqrt(A.*cos(x1).^2+1));
68 bx1=x1−dx1;
69 tx1=x1+dx1;
70 tx1p=tx1+B.*L.*sin(theta1);
71 bx1p=bx1+B.*L.*sin(theta1);
72 dy1=(L.*A.*cos(x1))./(2.*sqrt(A.*cos(x1).^2+1));
73 by1=y1−dy1;
74 ty1=y1+dy1;
75 ty1p=ty1−B.*L.*cos(theta1);
76 by1p=by1−B.*L.*cos(theta1);
77
78 Theta=rad2deg(theta1);
79
80 %%
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81 % How to use data, x is a row, L is a column
82 % Thus tx1(:,1) is the location of tx1 for position 1 (x=0) and all
83 % Lengths L
84
85 % Plotting postions
86 % Number of steps plotted N
87 N=100;
88 P=int16(linspace(1,length(x),N));
89
90 % Plotting for a certain Length Ln and finding at what index of Lx this
91 % length is found and stored in i.
92 Ln=0.178;
93 i=1
94 while L(i)−Ln<0
95 i=i+1
96 end
97 %% Plotting Gif
98 gif=figure;
99

100 % axis tight manual % this ensures that getframe() returns a consistent size
101 % axis([0 max(Xx) Amin Amax]);
102 axis equal
103
104 filename = 'Equal.gif';
105
106 plot(x,A*sin(x))
107 hold on
108
109 for n = 1:N
110 axis equal
111
112 % Draw plot for every N
113 a=plot(x1(P(n)),y1(P(n)),'ob');
114 b=plot([x1(P(n)) x1p(i,P(n))],[y1(P(n)) y1p(i,P(n))],'−k');
115 c=plot([bx1(i,P(n)) tx1(i,P(n))],[by1(i,P(n)) ty1(i,P(n))],'r');
116 d=plot([tx1(i,P(n)) tx1p(i,P(n))],[ty1(i,P(n)) ty1p(i,P(n))],'−−ok');
117 e=plot([bx1(i,P(n)) bx1p(i,P(n))],[by1(i,P(n)) by1p(i,P(n))],'−−ok');
118 n
119 drawnow
120 % pause(0.05)
121 % Capture the plot as an image
122 frame = getframe(gif);
123 im = frame2im(frame);
124 [imind,cm] = rgb2ind(im,256);
125 % Write to the GIF File
126 if n == 1
127 imwrite(imind,cm,filename,'gif', 'Loopcount',inf,'DelayTime',0);
128 else
129 imwrite(imind,cm,filename,'gif','WriteMode','append','DelayTime',0.1);
130 end
131 delete(a)
132 delete(b)
133 delete(c)
134 delete(d)
135 delete(e)
136 end
137
138
139 %%
140
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141 N=8;
142 P=int16(linspace(1,length(Xx),N));
143
144 figure
145 axis equal
146 x=linspace(0,2*pi,2*n);
147 hold on
148
149 plot(x,A*sin(x))
150
151 for n = 1:N
152 % Draw plot for every N
153 a=plot(x1(P(n)),y1(P(n)),'ob');
154 b=plot([x1(P(n)) x1p(i,P(n))],[y1(P(n)) y1p(i,P(n))],'−k');
155 c=plot([bx1(i,P(n)) tx1(i,P(n))],[by1(i,P(n)) ty1(i,P(n))],'r');
156 d=plot([tx1(i,P(n)) tx1p(i,P(n))],[ty1(i,P(n)) ty1p(i,P(n))],'−−ok');
157 e=plot([bx1(i,P(n)) bx1p(i,P(n))],[by1(i,P(n)) by1p(i,P(n))],'−−ok');
158 end
159
160
161 %%
162 % Plotting for a certain Length Ln and finding at what index of Lx this
163 % length is found and stored in i.
164 Ln=0.08;
165 i=1
166 while L(i)−Ln<0
167 i=i+1;
168 end
169 Lf=ty1p.*(ty1p−A*sin(tx1p)<0);
170 Lr=by1p.*(by1p−A*sin(bx1p)<0);
171 figure
172 hold on
173 PLr=plot(Xx,Lr(i,:),'b');
174 PLf=plot(Xx,Lf(i,:),'r');
175
176 xlabel('x location on sinus')
177 ylabel('Height')
178 title('Can it follow the curve')
179 legend([PLr,PLf],['Front of the bearing for a bearing size of ' num2str(Ln)],['Rear of the

bearing for a bearing size of ' num2str(Ln)]);
180
181
182 figure
183 hold on
184 FB=plot(Xx,ty1p(i,:)−A*sin(tx1p(i,:)),'b');
185 RB=plot(Xx,by1p(i,:)−A*sin(bx1p(i,:)),'r');
186 xlabel('Location on sinus')
187 ylabel('Deformation distance')
188 title('Diffrence between tip of bearing and sinus in vertical direction')
189 legend([FB,RB],['Front of the bearing for a bearing size of ' num2str(Ln)],['Rear of the

bearing for a bearing size of ' num2str(Ln)]);



Manuals 49

TheActualAngles.m
The kinematics have been thoroughly elaborated in chapter 6. Below is the script that give both a plot for the inter-
mediate angles and the flexure angles for different positions on the guiding surface. The slipper size and amplitude
of the guiding surface are chosen at the beginning of the script. The calculations follows the kinematic descriptions
of section 4.1 once the calculations are done, a plot is created of the guiding surface, after that the intermediate
angles are plotted followed by the flexure angles. The later two can be seen in figure 9
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Figure 9: Whiffletree angles for a given wavelength and slipper size of a eight slipper whiffletree design.

1 %% This script calculates the whiffletree angles
2 %% Of both the intermediate bodies and the flexure angles
3 %% Jan van Willigen 29−4−2019
4
5 %% Initialisation
6 clear all
7 close all
8
9 xn=1000;

10 dn=100;
11 N=8;
12 f=2*pi; %Scaling factor turns 1 into 2pi.
13 x=linspace(0,1*f,xn)'; %Guiding surface of 1 metre
14 d=(1/32)*f; %Slipper spacing
15 A=0.1*f; %Wavelength percentage of wavlength
16 L=d; %Length of pivots
17
18 % Memory allocation
19 phi=zeros(N,xn);
20 xr=zeros(N,xn);
21 yr=zeros(N,xn);
22
23 %% Calculations
24
25 %For eigth slippers calculate the angle of the slipper with guiding surface
26 for i=1:N
27 phi(i,:)=atan(A.*cos(x+i*d));
28 xr(i,:)=x−sin(phi(i,:)').*L; %Calculate the rotation point of pivot
29 yr(i,:)=A*sin(x)+cos(phi(i,:)').*L;
30 end
31
32 %
33 phi_12=atan((yr(2,:)−yr(1,:))./(xr(2,:)−xr(1,:)));
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34 phi_34=atan((yr(4,:)−yr(3,:))./(xr(4,:)−xr(3,:)));
35 phi_56=atan((yr(6,:)−yr(5,:))./(xr(6,:)−xr(5,:)));
36 phi_78=atan((yr(8,:)−yr(7,:))./(xr(8,:)−xr(7,:)));
37
38 theta(1,:)=(phi(1,:)−phi_12);
39 theta(2,:)=(phi(2,:)−phi_12);
40 theta(3,:)=(phi(3,:)−phi_34);
41 theta(4,:)=(phi(4,:)−phi_34);
42 theta(5,:)=(phi(5,:)−phi_56);
43 theta(6,:)=(phi(6,:)−phi_56);
44 theta(7,:)=(phi(7,:)−phi_78);
45 theta(8,:)=(phi(8,:)−phi_78);
46
47 x12=(xr(1,:)+xr(2,:))/2;
48 x34=(xr(3,:)+xr(4,:))/2;
49 x56=(xr(5,:)+xr(6,:))/2;
50 x78=(xr(7,:)+xr(8,:))/2;
51
52 y12=(yr(1,:)+yr(2,:))/2;
53 y34=(yr(3,:)+yr(4,:))/2;
54 y56=(yr(5,:)+yr(6,:))/2;
55 y78=(yr(7,:)+yr(8,:))/2;
56
57 phi_1234=atan((y34−y12)./(x34−x12));
58 phi_5678=atan((y78−y56)./(x78−x56));
59
60 theta_12=phi_12−phi_1234;
61 theta_34=phi_34−phi_1234;
62 theta_56=phi_56−phi_5678;
63 theta_78=phi_78−phi_5678;
64
65 x1234=mean(xr([1,2,3,4],:));
66 x5678=mean(xr([5,6,7,8],:));
67 y1234=mean(yr([1,2,3,4],:));
68 y5678=mean(yr([5,6,7,8],:));
69
70 phi_12345678=atan((y5678−y1234)./(x5678−x1234));
71
72 theta_1234=phi_1234−phi_12345678;
73 theta_5678=phi_5678−phi_12345678;
74
75 theta_12345678=phi_12345678−0;
76
77
78 figure(1) % Check wether amplitude and waviness are correct
79 plot(x,A*sin(x));
80 title('Scaled guiding surface, x=1m, A=0.1%');
81 xlabel('x−position on guiding surface');
82 ylabel('y−position Waviness')
83
84
85 figure
86 plot(x,phi,'b');
87 hold on
88 plot(x,phi_12,'r');
89 plot(x,phi_34,'r');
90 plot(x,phi_56,'r');
91 plot(x,phi_78,'r');
92 hold on
93 plot(x,phi_1234,'LineWidth',1.5,'color',[1 0.45 1]);
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94 plot(x,phi_5678,'LineWidth',1.5,'color',[1 0.45 1]);
95 plot(x,phi_12345678,'LineWidth',2,'color',[1 0.6 0.0]);
96
97 % legend([q1,q2,q3,q4,q5,q6,q7,q8,w12,w34,w56,w78,z1234,z5678,y12345678],['\theta_1'],['\

theta_2'],['\theta_{3}'],['\theta_{4}'],['\theta_5'],['\theta_6'],['\theta_{7}'],['\
theta_{8}'],['\theta_{12}'],['\theta_{34}'],['\theta_{56}'],['\theta_{78}'],['\theta_

{1234}'],['\theta_{5678}'],['\theta_{12345678}']);
98 set(gca, 'XTick', [0 1 2 3 4 5 6]*pi,'TickLabelInterpreter', 'latex', 'XTickLabel', {'0','$\

pi$', '$2\pi$','$3\pi$', '$4\pi$','$5\pi$', '$6\pi$'});
99 title(['Whiffletree angles for a curvature of ' num2str(A) '/\lambda' 'and length of '

num2str(d/(2*pi)) '/\lambda']);
100 xlabel('position on guiding surface');
101 ylabel('angle in degrees')
102
103 % %%
104 figure
105 hold on
106 %
107 %
108 q1=plot(x,360/(2*pi)*theta(1,:),'color',[0 0.5 1]); %Blue
109 q2=plot(x,360/(2*pi)*theta(2,:),'color',[0 0.5 0.85]);
110 q3=plot(x,360/(2*pi)*theta(3,:),'color',[0 0.5 0.8]);
111 q4=plot(x,360/(2*pi)*theta(4,:),'color',[0 0.5 0.75]);
112 q5=plot(x,360/(2*pi)*theta(5,:),'color',[1 0.5 0.7]);
113 q6=plot(x,360/(2*pi)*theta(6,:),'color',[1 0.5 0.65]);
114 q7=plot(x,360/(2*pi)*theta(7,:),'color',[1 0.5 0.6]);
115 q8=plot(x,360/(2*pi)*theta(8,:),'color',[1 0.5 0.55]);
116 %
117 w12=plot(x,360/(2*pi)*theta_12,'LineWidth',1,'color',[1 0.4 0]); %Red
118 w34=plot(x,360/(2*pi)*theta_34,'LineWidth',1,'color',[1 0.35 0]);
119 w56=plot(x,360/(2*pi)*theta_56,'LineWidth',1,'color',[1 0.3 0]);
120 w78=plot(x,360/(2*pi)*theta_78,'LineWidth',1,'color',[1 0.25 0]);
121 %
122 z1234=plot(x,360/(2*pi)*theta_1234,'LineWidth',1.5,'color',[0.8 0.45 0.8]); %Purple
123 z5678=plot(x,360/(2*pi)*theta_5678,'LineWidth',1.5,'color',[0.8 0.25 0.8]);
124
125 y12345678=plot(x,360/(2*pi)*theta_12345678,'LineWidth',2,'color',[0.4 0.8 0.4]); %Green
126 % legend([q1,q2,q3,q4,q5,q6,q7,q8],['\theta_1'],['\theta_2'],['\theta_{3}'],['\theta_

{4}'],['\theta_5'],['\theta_6'],['\theta_{7}'],['\theta_{8}']);
127 %
128 legend([q1,q2,q3,q4,q5,q6,q7,q8,w12,w34,w56,w78,z1234,z5678,y12345678],['\theta_1'],['\

theta_2'],['\theta_{3}'],['\theta_{4}'],['\theta_5'],['\theta_6'],['\theta_{7}'],['\
theta_{8}'],['\theta_{12}'],['\theta_{34}'],['\theta_{56}'],['\theta_{78}'],['\theta_

{1234}'],['\theta_{5678}'],['\theta_{12345678}']);
129 title(['Flexure angles for a curvature of ' num2str(A/(2*pi)) '/\lambda' 'and length of '

num2str(d/(2*pi)) '/\lambda']);
130 xlabel('position on guiding surface');
131 ylabel('angle in degrees')
132 set(gca, 'XTick', [0 1 2 3 4 5 6]*pi,'TickLabelInterpreter', 'latex', 'XTickLabel', {'0','$\

pi$', '$2\pi$','$3\pi$', '$4\pi$','$5\pi$', '$6\pi$'});

CompleteAnglesChaos.m
The calculation of the maximum angle requires alot of effort. And as explained in section B a single function for the
maximum angles is not found. Therefore it is required to calculate every angle while varying both slipper length and
the guiding surface waviness. Thus to find the maximum angles requires a lot of computational power. However,
one can use it to calculate both the angles of the intermediate bodies and the flexures at the same time. As well as
calculating the lateral motion of the slippers. This is all combined in this script and is thus used to create figures 5a,
5b and 5.

This script was written to run per section. In the initialisation one can choose a value for the pivot arm length.
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After the calculation section is done, it is recommended to store this data, so it can later be loaded as the calculation
takes a lot of time. In the section Compare to others the script loads three .mat files, which are the results of the
calculation for a specific arm length of either 0, 0.25L or 0.5L.

1 %% Jan van Willigen
2 %% March 2019
3 %% Script for determining maximum angles
4 %% As a function of Relative Waviness amplitude
5 %% and distance between slippers (slipper size)
6
7 clear all
8 close all
9

10 %Defining the step sizes
11 xn=1000;
12 ND=500;
13 NA=502;
14
15 % Alocating free space
16 phimax=zeros(15,ND,NA);
17 thetamax=zeros(16,ND,NA);
18 driftmax=zeros(7,ND,NA);
19 id=0;
20 ia=0;
21
22 % Chose the maximia a further than actual maxima so it's easier to plot
23 dmax=0.15; %Max slipper size is 1/8 of 2*pi
24 Amax=0.15; %Max Waviness amplitude is 10% of 2*pi
25
26 %% Calculation of the Angles and Drift
27 for d=linspace(0,dmax,ND)
28 ia=0;
29 id=id+1;
30 for A=linspace(0.0009,Amax,NA)
31 ia=ia+1;
32 dn=100;
33 N=8;
34
35 x=linspace(0,2,xn)';
36 % d=(1/(8*3));
37 % A=0.1;
38 L=d;
39
40 f=2*pi;
41 %Refresh for each new loop (new length of new waviness)
42 phi=zeros(N,xn);
43 xr=zeros(N,xn);
44 yr=zeros(N,xn);
45 %Arm length of connecting elements, this varies from R1=0, 0.25L and 0.5L
46 %The results of the diffrent arm lengths are explained in the appendix.
47 R1=0.5*L;
48 R2=2*R1;
49 R3=2*R2;
50
51 % For each bearing (i) calaculate; tangent angle phi, x−pos and y−position
52 for i=1:N
53 phi(i,:)=atan(A.*cos(f*(x+(i−1)*d)));
54 xr(i,:)=f*(x+d*(i−1))−sin(phi(i,:)').*R1;
55 yr(i,:)=A*sin(f*(x+d*(i−1)))+cos(phi(i,:)').*R1;
56 end
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57
58 %Angles of intermediate bodies connecting two slippers in one cell.
59 phi_12=atan((yr(2,:)−yr(1,:))./(xr(2,:)−xr(1,:)));
60 phi_34=atan((yr(4,:)−yr(3,:))./(xr(4,:)−xr(3,:)));
61 phi_56=atan((yr(6,:)−yr(5,:))./(xr(6,:)−xr(5,:)));
62 phi_78=atan((yr(8,:)−yr(7,:))./(xr(8,:)−xr(7,:)));
63
64 %Angles of first level flexures connected to slipper coupling element
65 theta(1,:)=(phi(1,:)−phi_12);
66 theta(2,:)=(phi(2,:)−phi_12);
67 theta(3,:)=(phi(3,:)−phi_34);
68 theta(4,:)=(phi(4,:)−phi_34);
69 theta(5,:)=(phi(5,:)−phi_56);
70 theta(6,:)=(phi(6,:)−phi_56);
71 theta(7,:)=(phi(7,:)−phi_78);
72 theta(8,:)=(phi(8,:)−phi_78);
73
74 dx=1/4*sin(theta)*L;
75 %For checking how linearistion holds up
76 l1d12=dx(1,:)−dx(2,:);
77 l1d34=dx(3,:)−dx(4,:);
78 l1d56=dx(5,:)−dx(6,:);
79 l1d78=dx(7,:)−dx(8,:);
80
81 %Calculating positions of the middle of coupling elements.
82 x12=(xr(1,:)+xr(2,:))/2;
83 x34=(xr(3,:)+xr(4,:))/2;
84 x56=(xr(5,:)+xr(6,:))/2;
85 x78=(xr(7,:)+xr(8,:))/2;
86 %Only relative motion is importance not absolute
87 y12=(yr(1,:)+yr(2,:))/2;
88 y34=(yr(3,:)+yr(4,:))/2;
89 y56=(yr(5,:)+yr(6,:))/2;
90 y78=(yr(7,:)+yr(8,:))/2;
91
92 %Calculating rotationalpoints of second flexure pivot
93 x12r=x12−R2*sin(phi_12);
94 x34r=x34−R2*sin(phi_34);
95 x56r=x56−R2*sin(phi_56);
96 x78r=x78−R2*sin(phi_78);
97
98 y12r=y12+R2*cos(phi_12);
99 y34r=y34+R2*cos(phi_34);

100 y56r=y56+R2*cos(phi_56);
101 y78r=y78+R2*cos(phi_78);
102
103 %Angles of second level coupling elements, conneting 4 slippers.
104 phi_1234=atan((y34r−y12r)./(x34r−x12r));
105 phi_5678=atan((y78r−y56r)./(x78r−x56r));
106 %Angles of second level pivots, connecting a two slipper cell
107 theta_12=phi_12−phi_1234;
108 theta_34=phi_34−phi_1234;
109 theta_56=phi_56−phi_5678;
110 theta_78=phi_78−phi_5678;
111
112 l2d1234=L*sin(theta_12)−L*sin(theta_34);
113 l2d5678=L*sin(theta_56)−L*sin(theta_78);
114 %Calculating positions of the middle of coupling elements.
115 x1234=mean(xr([1,2,3,4],:));
116 x5678=mean(xr([5,6,7,8],:));
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117 y1234=mean(yr([1,2,3,4],:));
118 y5678=mean(yr([5,6,7,8],:));
119 %Calculating positions of the rotation point of third level flexure
120 x1234r=x1234−L*sin(phi_1234);
121 x5678r=x5678−L*sin(phi_5678);
122 y1234r=y1234+L*cos(phi_1234);
123 y5678r=y5678+L*cos(phi_5678);
124 %Fourth and final level angle of coupling element
125 phi_12345678=atan((y5678r−y1234r)./(x5678r−x1234r));
126 %Third level flexure angles
127 theta_1234=phi_1234−phi_12345678;
128 theta_5678=phi_5678−phi_12345678;
129 %Third level − drift between 1234 and 5678
130 l3d12345678=L*sin(theta_1234)−L*sin(theta_5678);
131 %Final flexure connecting the vericle
132 theta_12345678=phi_12345678−0;
133 theta_12345678_2=pi−phi_12345678;
134
135 % Capturing data, we are only intrested in the maximum angles
136 phimax([1:8],id,ia)=max(phi');
137
138 phimax(9,id,ia)=max(phi_12');
139 phimax(10,id,ia)=max(phi_34');
140 phimax(11,id,ia)=max(phi_56');
141 phimax(12,id,ia)=max(phi_78');
142
143 phimax(13,id,ia)=max(phi_1234');
144 phimax(14,id,ia)=max(phi_5678');
145
146 phimax(15,id,ia)=max(phi_12345678);
147
148
149 thetamax([1:8],id,ia)=max(theta');
150
151 thetamax(9,id,ia)=max(theta_12');
152 thetamax(10,id,ia)=max(theta_34');
153 thetamax(11,id,ia)=max(theta_56');
154 thetamax(12,id,ia)=max(theta_78');
155
156 thetamax(13,id,ia)=max(theta_1234');
157 thetamax(14,id,ia)=max(theta_5678');
158
159 thetamax(15,id,ia)=max(theta_12345678);
160 thetamax(16,id,ia)=max(theta_12345678_2);
161
162 %Check how much lateral motion there is between the bearings
163 driftmax(1,id,ia)=max(l1d12);
164 driftmax(2,id,ia)=max(l1d34);
165 driftmax(3,id,ia)=max(l1d56);
166 driftmax(4,id,ia)=max(l1d78);
167 driftmax(5,id,ia)=max(l2d1234);
168 driftmax(6,id,ia)=max(l2d5678);
169 driftmax(7,id,ia)=max(l3d12345678);
170 end
171
172 end
173 %% Contour plot of maximum values of the angles
174 close all
175 d=linspace(0,dmax,ND);
176 A=linspace(0.009,Amax,NA);
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177 figure(4)
178 [Data,Cplot]=contour(A,d,squeeze(phimax(1,:,:)), 'showtext','on','LineStyle','−');
179 hold on;
180 [Data1,Cplot1]=contour(A,d,squeeze(phimax(9,:,:)), 'showtext','on','LineStyle','−.');
181 [Data2,Cplot2]=contour(A,d,squeeze(phimax(13,:,:)), 'showtext','on','LineStyle',':');
182 [Data3,Cplot3]=contour(A,d,squeeze(phimax(15,:,:)), 'showtext','on','LineStyle','−−');
183
184 legend([Cplot,Cplot1,Cplot2,Cplot3],['\phi_1'],['\phi_{12}'],['\phi_{1234}'],['\phi_{tot}']);
185
186
187 title('Intermediate angles Contour plot [Rad]','FontSize',16);
188 xlabel('Relative waviness of guiding surface [−]','FontSize',14);
189 ylabel('Relative spacing between flexures [−]','FontSize',14)
190
191 figure(5)
192 [Bata,Dplot]=contour(A,d,squeeze(thetamax(1,:,:)), 'showtext','on','LineStyle','−');
193 hold on
194 [Bata1,Dplot1]=contour(A,d,squeeze(thetamax(9,:,:)), 'showtext','on','LineStyle','−.');
195 [Bata2,Dplot2]=contour(A,d,squeeze(thetamax(13,:,:)), 'showtext','on','LineStyle',':');
196 [Bata3,Dplot3]=contour(A,d,squeeze(thetamax(15,:,:)), 'showtext','on','LineStyle','−−');
197 title('Flexure Angles Contour plot [Rad]','FontSize',16);
198 xlabel('Waviness of guiding surface [−]','FontSize',14);
199 ylabel('Spacing between flexures [−]','FontSize',14)
200 legend([Dplot,Dplot1,Dplot2,Dplot3],['\theta_1'],['\theta_{12}'],['\theta_{1234}'],['\theta_{

tot}']);
201
202 figure(6)
203 hold on
204 [Gata1,Hplot1]=contour(A,d,squeeze(driftmax(1,:,:)),[0.0001 0.0005 0.001 0.002 0.003 0.004

0.005], 'showtext','on','Labelspacing',5,'LineStyle','−');
205 [Gata2,Hplot2]=contour(A,d,squeeze(driftmax(5,:,:)),[0.001 0.005 0.01 0.02 0.03 0.04 0.05], '

showtext','on','Labelspacing',50,'LineStyle',':');
206 [Gata3,Hplot3]=contour(A,d,squeeze(driftmax(7,:,:)),[0.001 0.005 0.01 0.02 0.03 0.04 0.05], '

showtext','on','Labelspacing',500,'LineStyle','−−');
207 legend([Hplot1,Hplot2,Hplot3],['drift_{level1}'],['drift_{level2}'],['drift_{level3}']);
208
209 title('Lateral Motion of slippers Contour plot [−]','FontSize',16);
210 xlabel('Relative waviness of guiding surface [−]','FontSize',14);
211 ylabel('Spacing between flexures [−]','FontSize',14)
212
213 %% To Compare Add The Other Calculations of the angles with diffrent R values
214
215 load('ZomerChaosR0.mat','driftmax','thetamax','phimax')
216 figure(8)
217 1
218 [R0Data,R0Cplot]=contour(A,d,squeeze(phimax(1,:,:)), 'showtext','on','Labelspacing',450,'

LineStyle','−','color','b');
219 R0Cplot.LineWidth=1;
220 hold on;
221 [R0Data1,R0Cplot1]=contour(A,d,squeeze(phimax(9,:,:)), 'showtext','on','Labelspacing',450,'

LineStyle','−.','color','b');
222 [R0Data2,R0Cplot2]=contour(A,d,squeeze(phimax(13,:,:)), 'showtext','on','Labelspacing',450,'

LineStyle',':','color','b');
223 [R0Data3,R0Cplot3]=contour(A,d,squeeze(phimax(15,:,:)), 'showtext','on','Labelspacing',450,'

LineStyle','−−','color','b');
224
225 load('ZomerChaosR0.25.mat','driftmax','thetamax','phimax')
226 [R025Data,R025Cplot]=contour(A,d,squeeze(phimax(1,:,:)), 'showtext','on','Labelspacing',450,'

LineStyle','−','color','r');
227 hold on;
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228 [R025Data1,R025Cplot1]=contour(A,d,squeeze(phimax(9,:,:)), 'showtext','on','Labelspacing'
,450,'LineStyle','−.','color','r');

229 [R025Data2,R025Cplot2]=contour(A,d,squeeze(phimax(13,:,:)), 'showtext','on','Labelspacing'
,450,'LineStyle',':','color','r');

230 [R025Data3,R025Cplot3]=contour(A,d,squeeze(phimax(15,:,:)), 'showtext','on','Labelspacing'
,450,'LineStyle','−−','color','r');

231
232
233 load('ZomerChaosR0.5.mat','driftmax','thetamax','phimax')
234 [R05Data,R05Cplot]=contour(A,d,squeeze(phimax(1,:,:)), 'showtext','on','Labelspacing',450,'

LineStyle','−','color','k');
235 hold on;
236 [R05Data1,R05Cplot1]=contour(A,d,squeeze(phimax(9,:,:)), 'showtext','on','Labelspacing',450,'

LineStyle','−.','color','k');
237 [R05Data2,R05Cplot2]=contour(A,d,squeeze(phimax(13,:,:)), 'showtext','on','Labelspacing',450,

'LineStyle',':','color','k');
238 [R05Data3,R05Cplot3]=contour(A,d,squeeze(phimax(15,:,:)), 'showtext','on','Labelspacing',450,

'LineStyle','−−','color','k');
239
240 legend([R0Cplot,R0Cplot1,R0Cplot2,R0Cplot3,R025Cplot,R025Cplot1,R025Cplot2,R025Cplot3,

R05Cplot,R05Cplot1,R05Cplot2,R05Cplot3],['\phi_1'],['\phi_{12}'],['\phi_{1234}'],['\phi_{
tot}'],['\phi_1'],['\phi_{12}'],['\phi_{1234}'],['\phi_{tot}'],['\phi_1'],['\phi_{12}'],[
'\phi_{1234}'],['\phi_{tot}']);

241
242 title('Intermediate angles Contour plot [Rad]','FontSize',16);
243 xlabel('Relative waviness of guiding surface [−]','FontSize',14);
244 ylabel('Relative spacing between flexures [−]','FontSize',14)
245
246 load('ZomerChaosR0.mat','driftmax','thetamax','phimax')
247 figure(9)
248 [R0Bata,R0Dplot]=contour(A,d,squeeze(thetamax(1,:,:)), 'showtext','on','Labelspacing',450,'

LineStyle','−','color','b');
249
250 hold on;
251 [R0Bata1,R0Dplot1]=contour(A,d,squeeze(thetamax(9,:,:)), 'showtext','on','Labelspacing',450,'

LineStyle','−.','color','b');
252 [R0Bata2,R0Dplot2]=contour(A,d,squeeze(thetamax(13,:,:)), 'showtext','on','Labelspacing',450,

'LineStyle',':','color','b');
253 [R0Bata3,R0Dplot3]=contour(A,d,squeeze(thetamax(15,:,:)), 'showtext','on','Labelspacing',450,

'LineStyle','−−','color','b');
254 load('ZomerChaosR0.25.mat','driftmax','thetamax','phimax'); 6
255 R0Dplot.LineWidth=1;
256 R0Dplot1.LineWidth=1;
257 R0Dplot2.LineWidth=1;
258 R0Dplot3.LineWidth=1;
259
260 [R025Bata,R025Dplot]=contour(A,d,squeeze(thetamax(1,:,:)), 'showtext','on','Labelspacing'

,450,'LineStyle','−','color','r');
261 [R025Bata1,R025Dplot1]=contour(A,d,squeeze(thetamax(9,:,:)), 'showtext','on','Labelspacing'

,450,'LineStyle','−.','color','r');
262 [R025Bata2,R025Dplot2]=contour(A,d,squeeze(thetamax(13,:,:)), 'showtext','on','Labelspacing'

,450,'LineStyle',':','color','r');
263 [R025Bata3,R025Dplot3]=contour(A,d,squeeze(thetamax(15,:,:)), 'showtext','on','Labelspacing'

,450,'LineStyle','−−','color','r');
264 load('ZomerChaosR0.5.mat','driftmax','thetamax','phimax'); 7
265
266 [R05Bata,R05Dplot]=contour(A,d,squeeze(thetamax(1,:,:)), 'showtext','on','Labelspacing',450,'

LineStyle','−','color','k');
267 [R05Bata1,R05Dplot1]=contour(A,d,squeeze(thetamax(9,:,:)), 'showtext','on','Labelspacing'

,450,'LineStyle','−.','color','k');
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268 [R05Bata2,R05Dplot2]=contour(A,d,squeeze(thetamax(13,:,:)), 'showtext','on','Labelspacing'
,450,'LineStyle',':','color','k');

269 [R05Bata3,R05Dplot3]=contour(A,d,squeeze(thetamax(15,:,:)), 'showtext','on','Labelspacing'
,450,'LineStyle','−−','color','k');

270
271 legend([R0Dplot,R0Dplot1,R0Dplot2,R0Dplot3,R025Dplot,R025Dplot1,R025Dplot2,R025Dplot3,

R05Dplot,R05Dplot1,R05Dplot2,R05Dplot3],['\theta_1'],['\theta_{12}'],['\theta_{1234}'],['
\theta_{tot}'],['\theta_1'],['\theta_{12}'],['\theta_{1234}'],['\theta_{tot}'],['\theta_1
'],['\theta_{12}'],['\theta_{1234}'],['\theta_{tot}']);

272
273 title('Flexure Angles Contour plot [Rad]','FontSize',16);
274 xlabel('Waviness of guiding surface [−]','FontSize',14);
275 ylabel('Spacing between flexures [−]','FontSize',14)
276
277 load('ZomerChaosR0.mat','driftmax','thetamax','phimax');8
278 figure(10)
279 hold on
280 [R0Gata1,R0Hplot1]=contour(A,d,squeeze(driftmax(1,:,:)),[0.0001 0.0005 0.001 0.002 0.003

0.004 0.005], 'showtext','on','Labelspacing',450,'LineStyle','−','color','b');
281 [R0Gata2,R0Hplot2]=contour(A,d,squeeze(driftmax(5,:,:)),[0.001 0.005 0.01 0.02 0.03 0.04

0.05], 'showtext','on','Labelspacing',450,'LineStyle',':','color','b');
282 [R0Gata3,R0Hplot3]=contour(A,d,squeeze(driftmax(7,:,:)),[0.001 0.005 0.01 0.02 0.03 0.04

0.05], 'showtext','on','Labelspacing',450,'LineStyle','−−','color','b');
283 load('ZomerChaosR0.25.mat','driftmax','thetamax','phimax');9
284
285 [R025Gata1,R025Hplot1]=contour(A,d,squeeze(driftmax(1,:,:)),[0.0001 0.0005 0.001 0.002 0.003

0.004 0.005], 'showtext','on','Labelspacing',450,'LineStyle','−','color','r');
286 [R025Gata2,R025Hplot2]=contour(A,d,squeeze(driftmax(5,:,:)),[0.001 0.005 0.01 0.02 0.03 0.04

0.05], 'showtext','on','Labelspacing',450,'LineStyle',':','color','r');
287 [R025Gata3,R025Hplot3]=contour(A,d,squeeze(driftmax(7,:,:)),[0.001 0.005 0.01 0.02 0.03 0.04

0.05], 'showtext','on','Labelspacing',450,'LineStyle','−−','color','r');
288 load('ZomerChaosR0.5.mat','driftmax','thetamax','phimax');10
289 [R05Gata1,R05Hplot1]=contour(A,d,squeeze(driftmax(1,:,:)),[0.0001 0.0005 0.001 0.002 0.003

0.004 0.005], 'showtext','on','Labelspacing',450,'LineStyle','−','color','k');
290 [R05Gata2,R05Hplot2]=contour(A,d,squeeze(driftmax(5,:,:)),[0.001 0.005 0.01 0.02 0.03 0.04

0.05], 'showtext','on','Labelspacing',450,'LineStyle',':','color','k');
291 [R05Gata3,R05Hplot3]=contour(A,d,squeeze(driftmax(7,:,:)),[0.001 0.005 0.01 0.02 0.03 0.04

0.05], 'showtext','on','Labelspacing',450,'LineStyle','−−','color','k');
292
293 legend([R0Hplot1,R0Hplot2,R0Hplot3,R025Hplot1,R025Hplot2,R025Hplot3,R05Hplot1,R05Hplot2,

R05Hplot3],['drift_{level1}'],['drift_{level2}'],['drift_{level3}'],['drift_{level1}'],['
drift_{level2}'],['drift_{level3}'],['drift_{level1}'],['drift_{level2}'],['drift_{level3
}']);

294
295 title('Lateral Motion of slippers Contour plot [−]','FontSize',16);
296 xlabel('Relative waviness of guiding surface [−]','FontSize',14);
297 ylabel('Spacing between flexures [−]','FontSize',14)
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RUN.m
Besides the Graphical User Interface another tool has been created to visualize the possibilities of a whiffletree based
hydrostatic bearing. This script creates a GIF with four subs-screens as seen in figure 10. The first subplot in the top
left shows the eight slippers moving side by side over the guiding surface. To the right of this one can see the total
stroke the bearing mechanism would make. On the bottom left one can see the whiffletree angles of the intermediate
body angles. Only a single slipper or intermediate body is shown at the time, otherwise this figure would become to
cluttered. In the last figure one is able to see a close-up of a single slipper moving over the guiding surface, which is
checked for the deformation criteria, if it passes the criteria the bearing turns green, otherwise it is red.

Figure 10: A single frame of the GIF which is the result of running the script RUN.m

One can alter the length of the bearing sizes and waviness amplitude in the Initialization. With the parame-
ters known for the bearing size and guiding surface, the kinematics are run by an external matlab function Bear-
ing_Curve_Following.m, this function requires the bearing position, waviness amplitude, length of the bearing, bear-
ing deformation factor and scaling factor to run. It then outputs the all the kinematic parameters of a single slipper
and the angle it is making with the guiding surface. Using this data the plot is created, first the guiding surface is
plotted in all four subplots, as well as the trajectory for the whiffletree angles. Then the bearings are plotted upon
this surface, the stroke on this current position, the angles for the current position and deformation criteria for a
single slipper is checked. This image is stored as the first frame as the GIF, then the current positions are cleared and
the bearing is moved, the new positions, stroke, angles etc. are plotted. This is repeated until the end of the wave is
reached, as denoted by x in the initialisation. The step size for which the bearing is moved each step is denoted by
Q. If the end is reached the GIF is stored in the current file directory under the name; Green_Lb.gif, where the Lb is
the variable of the slipper length, thus the name is related to the slipper length. If the name already exists _1 is added
to the name.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %% Jan van Willigen
3 %% 12−12−2018
4 %% This script will be the main visualiation of this research.
5 %% We split it up in four pieces:
6 %% Initialization, what variables and ranges of motion are we using.
7 %% Bearing Model Calculation, all calculation on bearing geometry
8 %% Post processing, making calculation into usefull information
9 %% Plotting, showing the results.

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11



Manuals 59

12 %% Initialization
13 clear all;
14 close all;
15
16 Amin=0.02; % The miniumum amplitude of our sinus
17 Amax=0.05; % The maximum amplitude of our sinus
18 step=Amax/1000; % I wanted big step sizes to increase compuational speed, but

small to make the curvature appear smooth, this is was a good trade−off
19
20 Lmax=pi/16; % As the total area we are looking at is pi/2, half this

size seemed to me to be a good maxium size for length
21 increment=Lmax/10000; % For the Length increments I wanted them to be a fragment

of the maxium Length
22
23 nf=10000; % We discretize our sinus in nf pieces
24 xmax=3; % xmax is 1 so our sinus will be 1.
25 f=2*pi; % Scaling factor such that x=1 is a period
26 Xx=linspace(0,1.5,nf); % The x−axis length in n steps from 0 to ..
27 y=Amax.*sin(f*Xx); % Here we multiply by f to scale to a sinus of length 1.
28 figure(1)
29 plot(Xx,y) % Plot a sinus for the length Xx with amplitude of Amax.
30 hold on;
31
32
33 % Prealocation of Storage Memory
34 Bmax=0.001; % Deformation factor
35 Ax=0.1; % Amplitude of curve
36 Lx=increment:increment:Lmax; % Length of bearing
37
38 % As it is faster to replace zeros by values to lengthen vectors
39 % afterwards. It also gives insight that we make sure we are collecting all
40 % data we need and want.
41
42 xn=zeros(13,length(Xx)); % storage assigned for bearings.
43
44 % b=1;s=1;d=1;v=1; % Variables to check in which iteration we are at, b for

Deformation Factor, s for Sinus Amplitude, v for Length and d for position X
45 x=linspace(0,3,nf);
46 B=Bmax;
47 A=Amax;
48 L=Lx';
49 %%
50 N=8; % with this number of bearings we can fit in bearings of
51 % Lb=0.01; % size Lb onto a guiding surface of length 1/2 xmax.
52 Lb=0.05;
53 i=1;
54 while L(i)−Lb<0 % What index matches this bearing length
55 i=i+1;
56 end
57 Lb=L(i); % This is the length that matches the requirement
58 clear L
59
60 %% Curve follower
61 % Deterimine the postition of each of the bearings
62 % With each of them a distance Lb removed from the previous bearing
63
64 for n=1:N
65 [xb,yb,xp,yp,rxb,fxb,ryb,fyb,fxp,fyp,rxp,ryp,Theta] = Bearing_Curve_following(x+Lb*n,A,Lb

,B,f);
66 xn(:,:,n)=[xb;yb;xp;yp;rxb;fxb;ryb;fyb;fxp;fyp;rxp;ryp;Theta];
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67 n
68 end
69 % xn(1,:,:,n)=xb;
70 % xn(2,:,:,n)=yb;
71 % xn(3,:,:,n)=xp;
72 % xn(4,:,:,n)=yp;
73 % xn(5,:,:,n)=rxb;
74 % xn(6,:,:,n)=fxb;
75 % xn(7,:,:,n)=ryb;
76 % xn(8,:,:,n)=fyb;
77 % xn(9,:,:,n)=fxp;
78 % xn(10,:,:,n)=fyp;
79 % xn(11,:,:,n)=rxp;
80 % xn(12,:,:,n)=ryp;
81 % xn(13,:,:,n)=Theta;
82 % n
83 % end
84 % for n=1:n
85 % [xb,yb,xp,yp,rxb,fxb,ryb,fyb,fxp,fyp,rxp,ryp,Theta] = Curve_follower(x+Lb*n,A,L,B);
86 % xn(:,:,n)=[xb;yb;xp;yp;rxb;fxb;ryb;fyb;fxp;fyp;rxp;ryp;Theta];
87 % end
88
89 %% Using the Data
90 % How to use data, x is a row, L is a column
91 % Thus tx1(:,1) is the location of tx1 for position 1 (x=0) and all
92 % Lengths L, and tx1(1,:) for all postions x with with smallest length L.
93 % xn(1,:,10)==xb
94
95 % Plotting postions P
96 % Number of steps plotted q
97 Q=200; % Pick some number of points on which we
98 P=int16(linspace(1,length(x),Q)); % will plot the movement of the bearing.
99

100 %% Plotting Gif
101 close all
102 gif=figure(2);
103
104 %axis tight manual % this ensures that getframe() returns a consistent size
105 %axis([0 max(Xx) Amin Amax]);
106 axis equal
107 set(gcf, 'Position', get(0, 'Screensize'));
108
109 filename = sprintf('Green_%1.3f.gif', Lb);
110
111 while exist(filename, 'file') == 2
112 filename=char(string(filename([1:length(filename)−4]))+'_1.gif');
113 end
114
115 %Plot all initial lines, plot the guiding surface.
116 subplot(2,2,1);
117 plot(x,A*sin(f*x))
118 title('Bearing Mechanism');
119 hold on
120 xlabel('Wave Length \lambda')
121 ylabel('Amplitude A')
122
123 subplot(2,2,2);
124 plot(x,A*sin(f*x))
125 title('Stroke Motion');
126 hold on
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127 stroke=plot(mean(xn(1,:,:),3),mean(xn(2,:,:),3),'color',[0.85 0.85 0.85]);
128 xlabel('Wave Length \lambda')
129 ylabel('Amplitude A')
130
131 subplot(2,2,3);
132 title('WhiffleTree Angles');
133 hold on
134 theta_level_1=plot(xn(1,:,1),xn(13,:,1),'color',[0.85 0.85 1]);
135 theta_level_2=plot((xn(1,:,1)+xn(1,:,2))/2,(xn(13,:,1)+xn(13,:,2))/2,'color',[1 0.85 0.85]);
136 theta_level_3=plot((xn(1,:,1)+xn(1,:,2)+(xn(1,:,3)+xn(1,:,4)))/4,(xn(13,:,1)+xn(13,:,2)+xn

(13,:,3)+xn(13,:,4))/4,'color',[1 0.85 1]);
137 theta_level_4=plot(mean(xn(1,:,:),3),mean(xn(13,:,:),3),'color',[0.75 1 .75]);
138
139 xlabel('Wave Length \lambda')
140 ylabel('Angle \theta')
141
142 subplot(2,2,4);
143 title('Single Bearing Deformation');
144 hold on
145 plot(x,A*sin(f*x))
146 xlabel('Wave Length \lambda')
147 ylabel('Amplitude A')
148
149 a=zeros(N);
150 b=zeros(N);
151 c=zeros(N);
152 d=zeros(N);
153 e=zeros(N);
154
155 f2=round(length(x)/Q);
156
157
158 for q = 1:(Q−(n*Lb/max(x))*Q)
159 % gif=figure(2);
160
161 % axis equal
162 axis([0+x(q*f2−q) 1+x(q*f2−q) −1.5*Amax 1.5*Amax])
163 for n=1:N
164 subplot(2,2,1);
165 % Draw plot for every Q
166 % xn(:,:,n)=[xb;yb;xp;yp;rxb;fxb;ryb;fyb;fxp;fyp;rxp;ryp;Theta];
167 % xn(1,P(q),n) gives xb values for certain positions P(q) for bearing n
168 a(n)=plot(xn(1,P(q),n),xn(2,P(q),n),'ob');
169 %Plots xb to yb on postions P(q) for bearing n
170
171 b(n)=plot([xn(1,P(q),n) xn(3,P(q),n)],[xn(2,P(q),n) xn(4,P(q),n)],'−k');
172 %Plots [xb xp],[yb,yp]
173
174 c(n)=plot([xn(5,P(q),n) xn(6,P(q),n)],[xn(7,P(q),n) xn(8,P(q),n)],'r');
175 %plots [rxb ftx],[ryb fyb]
176
177 d(n)=plot([xn(5,P(q),n) xn(11,P(q),n)],[xn(7,P(q),n) xn(12,P(q),n)],'−−ok');
178 %plots [rxb rxp],[ryb ryp]
179
180 e(n)=plot([xn(6,P(q),n) xn(9,P(q),n)],[xn(8,P(q),n) xn(10,P(q),n)],'−−ok');
181 %plots [fxb fxp],[fyb fyp]
182 % n
183 axis([0+x(q*f2−q) 1+x(q*f2−q) −1.5*Amax 1.5*Amax])
184 end
185
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186 abc=plot(mean(xn(1,P(q),:)),mean(xn(2,P(q),:)),'ro','MarkerSize',10);
187
188 subplot(2,2,2);
189 stroke=plot(mean(xn(1,P(q),:)),mean(xn(2,P(q),:)),'ro','MarkerSize',10);
190 axis([0+x(q*f2−q) 1+x(q*f2−q) −1.5*Amax 1.5*Amax])
191
192 theta_12345678=mean(xn(13,P(q),:));
193 theta_1234=(xn(13,P(q),1)+xn(13,P(q),2)+xn(13,P(q),3)+xn(13,P(q),4))/4−theta_12345678;
194 theta_12=(xn(13,P(q),1)+xn(13,P(q),2))/2−theta_1234;
195 theta_1=xn(13,P(q),1)−theta_12;
196
197 % sub plot of the angles
198 subplot(2,2,3);
199 theta_level_1=plot(xn(1,P(q),1),xn(13,P(q),1),'*b','MarkerSize',10);
200 theta_level_2=plot((xn(1,P(q),1)+xn(1,P(q),2))/2,(xn(13,P(q),1)+xn(13,P(q),2))/2,'*r','

MarkerSize',10);
201 theta_level_3=plot((xn(1,P(q),1)+xn(1,P(q),2)+xn(1,P(q),3)+xn(1,P(q),4))/4,(xn(13,P(q),1)

+xn(13,P(q),2)+xn(13,P(q),3)+xn(13,P(q),4))/4,'*','color',[0.5 0 1],'MarkerSize',10);
202 theta_level_4=plot(mean(xn(1,P(q),:)),mean(xn(13,P(q),:)),'*','color',[0.1 1 0.1],'

MarkerSize',10);
203 axis([0+x(q*f2−q) 1+x(q*f2−q) −1.1*max(xn(13,:,N)) 1.1*max(xn(13,:,N))])
204
205 subplot(2,2,4);
206 % single bearing deformation
207 a1=plot(xn(1,P(q),1),xn(2,P(q),1),'ob');
208 b1=plot([xn(1,P(q),1) xn(3,P(q),1)],[xn(2,P(q),1) xn(4,P(q),1)],'−k');
209 c1=plot([xn(5,P(q),1) xn(6,P(q),1)],[xn(7,P(q),1) xn(8,P(q),1)],'r');
210 d1=plot([xn(5,P(q),1) xn(11,P(q),1)],[xn(7,P(q),1) xn(12,P(q),1)],'−−ok');
211 e1=plot([xn(6,P(q),1) xn(9,P(q),1)],[xn(8,P(q),1) xn(10,P(q),1)],'−−ok');
212 axis([0+x(q*f2−round(1/N*q)) 0.085+x(q*f2−round(1/N*q)) −1.1*Amax 1.1*Amax])
213
214 % %% Deformation Criteria !!
215
216 % Color the bearing green if the dofrmation criteria is met
217 % if
218 % (fyp < A*sin(f*fxp) & fyp>0 OR fyp > A*sin(f*fxp) & fyp<0)
219 % AND
220 % (ryp < A*sin(f*rxp) & ryp>0 OR fyp > A*sin(f*rxp) & ryp<0)
221 % Where in BearingCurveFollower the deformation curvature can be both
222 % positive and negative, convex or concave
223 if (((xn(10,P(q),1))<(A*sin(f*xn(9,P(q),1)))&&(xn(10,P(q),1)>0))||(((xn(10,P(q),1))>(A*

sin(f*xn(9,P(q),1))))&&(xn(10,P(q),1)<0)))&&...
224 (((xn(12,P(q),1))<(A*sin(f*xn(11,P(q),1)))&&(xn(12,P(q),1)>0))||(((xn(12,P(q),1))

>(A*sin(f*xn(11,P(q),1))))&&(xn(12,P(q),1)<0)))
225 c1.Color=[0 1 0];
226 end
227
228
229
230
231 % q
232 drawnow
233
234 % Capture the plot as an image
235 frame = getframe(gif);
236 im = frame2im(frame);
237 [imind,cm] = rgb2ind(im,256);
238 % Write to the GIF File
239 if q == 1
240 imwrite(imind,cm,filename,'gif', 'Loopcount',inf,'DelayTime',0);
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241 elseif q>0.5*Q
242 imwrite(imind,cm,filename,'gif','WriteMode','append','DelayTime',0.1);
243 else
244 imwrite(imind,cm,filename,'gif','WriteMode','append','DelayTime',0.05);
245 end
246
247 delete(a)
248 delete(b)
249 delete(c)
250 delete(d)
251 delete(e)
252 delete(abc)
253
254 delete(theta_level_1)
255 delete(theta_level_2)
256 delete(theta_level_3)
257 delete(theta_level_4)
258
259 delete(a1)
260 delete(b1)
261 delete(c1)
262 delete(d1)
263 delete(e1)
264
265 end
266
267
268 %%
269
270 Q2=8;
271 P=int16(linspace(1,length(Xx),Q2));
272
273 figure(3)
274 axis equal
275
276 hold on
277
278 Xx=linspace(0,f,nf);
279 plot(Xx,A*sin(f*Xx))
280
281 for q = 1:Q2
282 for n=1:8
283 % Draw plot for every Q2
284 a=plot(xn(1,P(q),n),xn(2,P(q),n),'ob');
285 b=plot([xn(1,P(q),n) xn(3,P(q),n)],[xn(2,P(q),n) xn(4,P(q),n)],'−k');
286 c=plot([xn(5,P(q),n) xn(6,P(q),n)],[xn(7,P(q),n) xn(8,P(q),n)],'r');
287 d=plot([xn(5,P(q),n) xn(11,P(q),n)],[xn(7,P(q),n) xn(12,P(q),n)],'−−ok');
288 e=plot([xn(6,P(q),n) xn(9,P(q),n)],[xn(8,P(q),n) xn(10,P(q),n)],'−−ok');
289 % fyp < A*sin(fxp);
290 % if
291 % (fyp < A*sin(f*fxp) & fyp>0 OR fyp > A*sin(f*fxp) & fyp<0)
292 % AND
293 % (ryp < A*sin(f*rxp) & ryp>0 OR fyp > A*sin(f*rxp) & ryp<0)
294 %
295 if (((xn(10,P(q),n))<(A*sin(f*xn(9,P(q),n)))&&(xn(10,P(q),n)>0))||(((xn(10,P(q),n))>(

A*sin(f*xn(9,P(q),n))))&&(xn(10,P(q),n)<0)))&&...
296 (((xn(12,P(q),n))<(A*sin(f*xn(11,P(q),n)))&&(xn(12,P(q),n)>0))||(((xn(12,P(q)

,n))>(A*sin(f*xn(11,P(q),n))))&&(xn(12,P(q),n)<0)))
297 c.Color=[0 1 0];
298 end
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299
300 end
301 end
302
303 %%
304 figure
305 plot(A*sin(f*xn(1,:,1)));
306 hold on
307 plot(((((xn(10,:,1))<(A*sin(f*xn(9,:,1)))&(xn(10,:,1)>0)))|(((xn(10,:,1))>(A*sin(f*xn(9,:,1))

))&(xn(10,:,1)<0)))&...
308 (((xn(12,:,1))<(A*sin(f*xn(11,:,1)))&(xn(12,:,1)>0))|(((xn(12,:,1))>(A*sin(f*xn(11,:,1))))&(

xn(12,:,1)<0))))
309
310 % (((xn(10,:,1))<(A*sin(f*xn(9,:,1)) && xn(10,:,1)>0)) || ((xn(10,:,1))>(A*sin(f*xn(9,:,1))

&&...
311 % xn(10,:,1)<0)))&&(((xn(12,:,1))<(A*sin(f*xn(11,:,1)) && xn(12,:,1)>0)) || ((xn(12,:,1))

>(A*sin(f*xn(11,:,1)) && xn(11,:,1)<0)))

Bearing_Curve _Following.m

1 function [xb,yb,xp,yp,rxb,fxb,ryb,fyb,fxp,fyp,rxp,ryp,Theta] = Curve_follower(x,A,L,B,f)
2
3 xb=x; % x−location of n−th bearing.
4 % Scaling factor such that xb=1 is 1 period
5 yb=A.*sin(f*xb); % bearing y−location of n−th bearing.
6
7 theta=atan(A*f*cos(f*x)); % sin(x)=y, cos(x)=dy/dx, tan(theta)=dy/dx
8 % Thus atan(cos(x))=theta, in this case x=xt
9 % Create the perpendicular vector to point X

10 dxp=1/2*L.*sin(theta); % Vector length depending on L for more visibilty
11 dyp=1/2*L.*cos(theta); % For more info in WorkDocument, Week 43.
12
13 % psign=(xb<(max(x)/2)|xb>max(x))−(xb>(max(x)/2)&xb<(max(x)));
14 % psign=(yb>0)−(yb<0);
15
16 psign=1;
17 xp=xb−psign.*dxp; %xp is the x location of the vector perpendicular to xb
18 yp=yb+psign.*dyp; %Yp is the y location of the vector perpendicular to yb
19
20 % dx=L./(2..*sqrt(A.^2.*cos(f*x).^2+1)); % dx of tangent line on x /w length L/2
21 dx=(L./2).*cos(theta); % is the same as the line above in%
22 rxb=xb−dx; % x−location rear of the bearing
23 fxb=xb+dx; % x−location front of the bearing
24
25
26 % dy=(A.*L.*cos(f*x))./(2.*sqrt(A.^2.*cos(f*x).^2+1)); % dy of tangent line
27 dy=(L./2).*sin(theta); % is the same as the line above in%
28 ryb=yb−dy; % y−location rear of the bearing
29 fyb=yb+dy; % y−location front of the bearing
30
31 % fsign=(fxb<(max(x)/2)|fxb>max(x))−(fxb>(max(x)/2)&fxb<(max(x)));
32 % rsign=(rxb<(max(x)/2)|rxb>max(x))−(rxb>(max(x)/2)&rxb<(max(x)));
33 % Sign is related to convex or concave deformation
34 fsign=(fyb>0)−(fyb<0);
35 rsign=(ryb>0)−(ryb<0);
36
37 fxp=fxb+fsign.*B.*L.*sin(theta); % x−location of bearing front 'deformation'
38 rxp=rxb+rsign.*B.*L.*sin(theta); % vector perpendicular to rear of bearing
39 ryp=ryb−rsign.*B.*L.*cos(theta); % y location of rear bearing 'deformation'
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40 fyp=fyb−fsign.*B.*L.*cos(theta); % vector perpendicular to front of bearing
41
42 Theta=rad2deg(theta);

DeAppzomerb ackup.ml app
The Graphical User Interface uses three external functions to run, these are Angles.m, Orifice.m and Tilt.m. These
are used to calculate the angles, the load capacity of an orifice bearing and the tilt stiffness of a multi-recess bearing.
These scripts use the inputs given on default screen of the interface, as guiding surface length, waviness, slipper de-
formation, slipper length, designed film height and supply pressure. The angles and orifice scripts are run when the
update button is pressed. As the interface needs the parameters from the angles and orifice to show the kinematics
and loading capacity of the bearing. These are also required to calculate stress levels and are needed for the stress
criteria.

The GUI is created using matlab 2018b, with the app designer toolbox. The scripts is run through callbacks and
interactions with the interface. Clicking the Update button, turning a knob or clicking a option from a drop down
menu will run a series of functions resulting in a visual change on the interface.

1 classdef DeApp_zomer_backup < matlab.apps.AppBase
2
3 % Properties that correspond to app components
4 properties (Access = public)
5 UserInterfaceBearingDesignerUIFigure matlab.ui.Figure
6 SlipperSpecificationsMenu matlab.ui.container.Menu
7 FilmFluidStiffnessMenu matlab.ui.container.Menu
8 RecessPressureMenu matlab.ui.container.Menu
9 LoadCapacityMenu matlab.ui.container.Menu

10 TiltStiffnessMenu matlab.ui.container.Menu
11 StepSizeSliderLabel matlab.ui.control.Label
12 StepSizeSlider matlab.ui.control.Slider
13 UIAxes matlab.ui.control.UIAxes
14 LengthofguidingsurfacemLabel matlab.ui.control.Label
15 EF_x matlab.ui.control.NumericEditField
16 WavinessamplitudemmLabel matlab.ui.control.Label
17 EF_A matlab.ui.control.NumericEditField
18 GuidingCurvatureDropDownLabel matlab.ui.control.Label
19 DD_funtion matlab.ui.control.DropDown
20 LengthofsingleslippermmLabel matlab.ui.control.Label
21 EF_L matlab.ui.control.NumericEditField
22 SlipperdeformationLabel matlab.ui.control.Label
23 EF_DF matlab.ui.control.NumericEditField
24 SlipperparallelwithfilmLabel matlab.ui.control.Label
25 Knob_h matlab.ui.control.DiscreteKnob
26 AllowedlossinflightheightmLabel matlab.ui.control.Label
27 EF_dH matlab.ui.control.NumericEditField
28 UpdateButton matlab.ui.control.Button
29 LengthtoLoadSwitchLabel matlab.ui.control.Label
30 Switch_LW matlab.ui.control.Switch
31 UIAxes_Theta matlab.ui.control.UIAxes
32 UIAxes_Phi matlab.ui.control.UIAxes
33 LoadCapacitySlipperNLabel matlab.ui.control.Label
34 EF_W matlab.ui.control.NumericEditField
35 TotalBearingLoadCapacityNLabel matlab.ui.control.Label
36 EF_F matlab.ui.control.NumericEditField
37 BearingfootpringonguidingsurfaceLabel matlab.ui.control.Label
38 EF_foot matlab.ui.control.NumericEditField
39 Stressflexurelevel1MPaLabel matlab.ui.control.Label
40 EF_s1 matlab.ui.control.NumericEditField
41 Stressflexurelevel2MPaLabel matlab.ui.control.Label
42 EF_s2 matlab.ui.control.NumericEditField
43 Stressflexurelevel3MPaLabel matlab.ui.control.Label
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44 EF_s3 matlab.ui.control.NumericEditField
45 Stressflexurelevel4MPaLabel matlab.ui.control.Label
46 EF_s4 matlab.ui.control.NumericEditField
47 TabGroup matlab.ui.container.TabGroup
48 SupplySpecsTab matlab.ui.container.Tab
49 SupplyPressurebarLabel matlab.ui.control.Label
50 EF_Ps matlab.ui.control.NumericEditField
51 DesignedfilmthicknessmLabel matlab.ui.control.Label
52 EF_h0 matlab.ui.control.NumericEditField
53 NumberofslippersLabel matlab.ui.control.Label
54 EF_Nu matlab.ui.control.NumericEditField
55 FlexureParametersTab matlab.ui.container.Tab
56 YoungsModulusGPaDropDownLabel matlab.ui.control.Label
57 DD_E matlab.ui.control.DropDown
58 ThicknessmmDropDownLabel matlab.ui.control.Label
59 DD_t matlab.ui.control.DropDown
60 WidthmmDropDownLabel matlab.ui.control.Label
61 DD_b matlab.ui.control.DropDown
62 RecessPressurebarLabel matlab.ui.control.Label
63 EF_Pr matlab.ui.control.NumericEditField
64 YieldStressMPaLabel matlab.ui.control.Label
65 EF_sy matlab.ui.control.NumericEditField
66 StressEnduranceLimitMPaLabel matlab.ui.control.Label
67 EF_se matlab.ui.control.NumericEditField
68 StrokemLabel matlab.ui.control.Label
69 EF_Stroke matlab.ui.control.NumericEditField
70 WorkJLabel matlab.ui.control.Label
71 EF_Work matlab.ui.control.NumericEditField
72 end
73
74 % Callbacks that handle component events
75 methods (Access = private)
76
77 % Button pushed function: UpdateButton
78 function UpdateButtonPushed(app, event)
79 %% Update Start
80 w=1; % Slipper width (1 means equals Length of slipper)
81 A=app.EF_A.Value; % Amplitude of Curvature (waviness)
82 B=app.EF_DF.Value; % Deformation Factor (typical 1/1000)
83 if app.EF_L.Value==0 % Make sure the calculations are not done with 0

length bearing, this causes issues
84 L=0.0000000001;
85 else
86 L=app.EF_L.Value;
87 end
88 N=app.StepSizeSlider.Value; % Number of steps in calculations (1000 is

accurate for most things)
89 Nu=app.EF_Nu.Value; % Number of bearings, will likely not change and

stay at 8.
90 x=linspace(0,app.EF_x.Value,app.StepSizeSlider.Value); %The bearing guiding

surface
91 f=2*pi/app.EF_x.Value; % Scaling of the guiding surface such that we can

see it a single wavelength
92 plot(app.UIAxes,x,A*sin(f*x)); % Plotting the guididng surface in the correct

window
93 axis(app.UIAxes, 'equal'); % Equal axis to see the scale of the waviness

more accurate
94
95
96 %% Update Length of Single Slipper
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97 if convertCharsToStrings(app.Switch_LW.Value)=='L to W'
98
99 if convertCharsToStrings(app.Knob_h.Value)=='Yes'

100 %% Calculate the Length
101 app.EF_L.Value=StaticSlipperDeformation(app.EF_A.Value,app.EF_DF.Value,

app.StepSizeSlider.Value);
102 %% Calculate the Load of single slipper using the found length
103 [W,Pr]=Orifice(app.EF_Ps.Value,app.EF_L.Value,app.EF_h0.Value);
104 if isnan(Pr)
105 W=0;
106 Pr=0;
107 end
108 app.EF_W.Value=W;
109 app.EF_Pr.Value=Pr;
110 elseif convertCharsToStrings(app.Knob_h.Value)=='Within specifications'
111 %% Calculate the Length
112 app.EF_L.Value=StaticSlipperDeformation(app.EF_A.Value,app.EF_DF.Value,

app.StepSizeSlider.Value,app.EF_dH.Value);
113 %% Calculate the Load of single slipper using the found length and the

change in flight height
114 [W,Pr]=Orifice(app.EF_Ps.Value,app.EF_L.Value,app.EF_h0.Value,app.EF_dH.

Value);
115 if isnan(Pr)
116 W=0;
117 Pr=0;
118 end
119 app.EF_W.Value=W;
120 app.EF_Pr.Value=Pr;
121 else
122
123 %% Check if length is feasible
124
125 dy=(A*sin((0.25+0.5*L)*2*pi))−(A−B*L); %The Deformation Criteria,

Putting a slipper on a peak, comparing its deformation with the
guiding surface

126
127 if dy<0 % IF deformation Criteria is NOT met, tell us about how ''bad

it really is''
128 msgbox( sprintf('Slippers are not parallel with guiding surface, gap

of %2.2g m , slipper length must be maximum of %2.2g %% of
Wavelength in order to be parallel.',−dy*1000000,
StaticSlipperDeformation(A,B,N)*100),'Warning');

129 else % IF deformation Criteria is met, do nothing
130 msgbox('Slipper is parallel', 'Check')
131 end
132
133 %% Calculate the Load of single slipper using the given length
134 [W,Pr]=Orifice(app.EF_Ps.Value,app.EF_L.Value,app.EF_h0.Value);
135 %% If some sizes are chosen very low, the recess pressure might result in

NaN. In this case set the pressure to zero.
136 if isnan(Pr)
137 W=0;
138 Pr=0;
139 end
140 app.EF_W.Value=W;
141 app.EF_Pr.Value=Pr;
142
143 end
144
145 elseif convertCharsToStrings(app.Switch_LW.Value)=='W to L'
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146 msgbox('Load to Length is under construction 25−03−2019');
147 end
148
149 L=app.EF_L.Value;
150
151 %% Update total load and footprint
152 app.EF_F.Value=W*Nu;
153 app.EF_foot.Value=L*Nu*100;
154 stroke=2*A/(Nu*L)*sin((Nu*L*f)/2);
155
156 if L*Nu*100>100 %% If footprint is larger than 100% of the bearing wavelength

change the color, such that the user will notice.
157 app.EF_foot.BackgroundColor=[1,0.2,0];
158 app.EF_Stroke.BackgroundColor=[1,0.2,0];
159 else
160 app.EF_foot.BackgroundColor=[1,1,1];
161 app.EF_Stroke.BackgroundColor=[1,1,1];
162 end
163
164 if isnan(stroke)
165 app.EF_Stroke.Value=0;
166 app.EF_Work.Value=0;
167 else
168
169 app.EF_Stroke.Value=stroke;
170 app.EF_Work.Value=W*Nu*stroke;
171 end
172
173 %% Update Angles
174 [phi,theta]=Angles(x,A,L,N,Nu);
175 phideg=rad2deg(phi);
176 thetadeg=rad2deg(theta);
177 plot(app.UIAxes_Phi,x,phideg);
178 plot(app.UIAxes_Theta,x,thetadeg);
179
180 %% First collect parameters on Flexure
181 app.EF_sy.Editable='off';
182 app.EF_se.Editable='off';
183 if convertCharsToStrings(app.DD_E.Value)=='200 (Spring Steel)'
184 E=200;
185 elseif convertCharsToStrings(app.DD_E.Value)=='69 (Aluminium 6061−T6)'
186 E=69;
187 elseif convertCharsToStrings(app.DD_E.Value)=='3.5 (PLA)'
188 E=3.5;
189 elseif convertCharsToStrings(app.DD_E.Value)=='2 (ABS)'
190 E=2;
191 else
192 E=double((convertCharsToStrings(app.DD_E.Value)));
193 if isnan(E)
194 msgbox('Error, please enter a numerical value for Youngs Modulus','Error

Error');
195 E=0;
196 app.DD_E.Value=0;
197 else
198 app.EF_sy.Editable='on';
199 app.EF_se.Editable='on';
200 msgbox('You can now alter the values for Yield Stress and Endurance Limit

');
201 end
202 end
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203
204 if convertCharsToStrings(app.DD_t.Value)=='0.7 (Printing Nozzle)'
205 t=0.7;
206 else
207 t=double(app.DD_t.Value);
208 end
209
210 if convertCharsToStrings(app.DD_b.Value)=='Slipper Width'
211 b=L*w;
212 elseif convertCharsToStrings(app.DD_b.Value)=='Half Slipper Width'
213 b=L*w*0.5;
214 else
215 b=double(app.DD_b.Value);
216 end
217
218 %% Stress Calculations!
219 Lf=sqrt(2)*L; %Flexure length is Length of Slipper under angle of 45deg.
220
221 if isequal(theta(1,:),zeros(1,N))
222 app.EF_s1.BackgroundColor=[1,0,0];
223 app.EF_s2.BackgroundColor=[1,0,0];
224 app.EF_s3.BackgroundColor=[1,0,0];
225 app.EF_s4.BackgroundColor=[1,0,0];
226 sigma_1=Inf;
227 sigma_2=Inf;
228 sigma_3=Inf;
229 sigma_4=Inf;
230 else
231 sigma_1=E*t/(2*Lf)*theta(1,:)+W/(t*b);
232 sigma_2=E*t/(2*2*Lf)*theta(9,:)+2*W/(t*b);
233 sigma_3=E*t/(2*4*Lf)*theta(13,:)+4*W/(t*b);
234 sigma_4=E*t/(2*8*Lf)*theta(15,:)+8*W/(t*b);
235
236
237 end
238
239 app.EF_s1.Value=max(sigma_1);
240 app.EF_s2.Value=max(sigma_2);
241 app.EF_s3.Value=max(sigma_3);
242 app.EF_s4.Value=max(sigma_4);
243
244 %% Stress Comparison
245 if app.EF_s1.Value>=app.EF_sy.Value
246 app.EF_s1.BackgroundColor=[.85,0,0];
247 elseif app.EF_s1.Value>=app.EF_se.Value
248 app.EF_s1.BackgroundColor=[1,0.5,0.2];
249 else
250 app.EF_s1.BackgroundColor=[0.9,1,0.9];
251 end
252 if app.EF_s2.Value>=app.EF_sy.Value
253 app.EF_s2.BackgroundColor=[.85,0,0];
254 elseif app.EF_s2.Value>=app.EF_se.Value
255 app.EF_s2.BackgroundColor=[1,0.5,0.2];
256 else
257 app.EF_s2.BackgroundColor=[0.9,1,0.9];
258 end
259 if app.EF_s3.Value>=app.EF_sy.Value
260 app.EF_s3.BackgroundColor=[.85,0,0];
261 elseif app.EF_s3.Value>=app.EF_se.Value
262 app.EF_s3.BackgroundColor=[1,0.5,0.2];
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263 else
264 app.EF_s3.BackgroundColor=[0.9,1,0.9];
265 end
266 if app.EF_s4.Value>=app.EF_sy.Value
267 app.EF_s4.BackgroundColor=[.85,0,0];
268 elseif app.EF_s4.Value>=app.EF_se.Value
269 app.EF_s4.BackgroundColor=[1,0.5,0.2];
270 else
271 app.EF_s4.BackgroundColor=[0.9,1,0.9];
272 end
273
274 end
275
276 % Value changed function: Knob_h
277 function Yes_No(app, event)
278 value = convertCharsToStrings(app.Knob_h.Value);
279 if value == 'Yes'
280 app.EF_dH.Enable = 'off';
281 app.EF_L.Enable = 'off';
282 app.AllowedlossinflightheightmLabel.Enable='off';
283 elseif value == 'No'
284 app.EF_dH.Enable = 'off';
285 app.EF_L.Enable = 'on';
286 app.EF_L.Editable = 'on';
287 app.AllowedlossinflightheightmLabel.Enable='off';
288 else
289 app.EF_dH.Enable = 'on';
290 app.EF_L.Enable = 'off';
291 app.AllowedlossinflightheightmLabel.Enable='on';
292 end
293 end
294
295 % Menu selected function: RecessPressureMenu
296 function PlotRecessPressure(app, event)
297 if app.EF_L.Value==0
298 L=0.0000000001;
299 else
300 L=app.EF_L.Value;
301 end
302 [~,Pr]=Orifice(app.EF_Ps.Value,L,linspace(1,250,app.StepSizeSlider.Value));
303 figure(1)
304 hold on
305 plot(linspace(1,250,app.StepSizeSlider.Value),Pr)
306 xlabel('Film heigth [\mu m]')
307 ylabel('Recess Pressure [Bar]')
308
309 if isempty(findobj(figure(1), 'Type', 'Legend'))
310 legend(['For Ps=' num2str(app.EF_Ps.Value) 'bar'])
311 else
312 old_legend=findobj(figure(1), 'Type', 'Legend');
313 old_legend.String{end}=['For Ps=' num2str(app.EF_Ps.Value) 'bar'];
314 end
315 end
316
317 % Menu selected function: LoadCapacityMenu
318 function PlotLoadCapacity(app, event)
319 if app.EF_L.Value==0
320 L=0.0000000001;
321 else
322 L=app.EF_L.Value;
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323 end
324
325 [W,~]=Orifice(app.EF_Ps.Value,app.EF_L.Value,linspace(1,250,app.StepSizeSlider.

Value));
326 figure(2)
327 hold on
328 plot(linspace(1,250,app.StepSizeSlider.Value),W)
329 xlabel('Film heigth [\mu m]')
330 ylabel('Load Capacity [N]')
331
332 if isempty(findobj(figure(2), 'Type', 'Legend'))
333 legend(Load,['For L = ' num2str(L) 'm and Ps = ' num2str(app.EF_Ps.Value) '

bar'])
334 else
335 old_legend=findobj(figure(2), 'Type', 'Legend');
336 old_legend.String{end}=['For L = ' num2str(app.EF_L.Value) 'm and Ps = '

num2str(app.EF_Ps.Value) 'bar'];
337 end
338 end
339
340 % Menu selected function: TiltStiffnessMenu
341 function PlotTiltStiffness(app, event)
342
343 if app.EF_L.Value==0
344 L=0.0000000001;
345 else
346 L=app.EF_L.Value;
347 end
348 %% Tilt Inputs (Ps,L,h,{optional} Types)
349 [M]=Tilt(app.EF_Ps.Value,app.EF_L.Value,linspace(1,250,app.StepSizeSlider.Value))

;
350 figure(3)
351 hold on
352
353 plot(linspace(1,250,app.StepSizeSlider.Value),M)
354 xlabel('Film heigth [\mu m]')
355 ylabel('Tilt Stiffness [Nm/Rad]')
356
357 if isempty(findobj(figure(3), 'Type', 'Legend'))
358 legend(['For L = ' num2str(app.EF_L.Value) 'm and Ps = ' num2str(app.EF_Ps.

Value) 'bar'])
359 else
360 old_legend=findobj(figure(3), 'Type', 'Legend');
361 old_legend.String{end}=['For L = ' num2str(app.EF_L.Value) 'm and Ps = '

num2str(app.EF_Ps.Value) 'bar'];
362 end
363 end
364
365 % Callback function
366 function UnderConstruction(app, event)
367 msgbox('under construction 13−03−2019')
368 end
369
370 % Value changed function: DD_E
371 function Stress(app, event)
372 %% Change of Material Stress level
373 app.EF_sy.Editable='off';
374 app.EF_se.Editable='off';
375 if convertCharsToStrings(app.DD_E.Value)=='200 (Spring Steel)'
376 app.EF_sy.Value=1200;
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377 app.EF_se.Value=270;
378 elseif convertCharsToStrings(app.DD_E.Value)=='69 (Aluminium 6061−T6)'
379 app.EF_sy.Value=270; %
380 app.EF_se.Value=160; % Based on 10e6 cycles
381 elseif convertCharsToStrings(app.DD_E.Value)=='3.5 (PLA)'
382 app.EF_sy.Value=30;
383 app.EF_se.Value=7; % Based on 2e6 cycles
384 elseif convertCharsToStrings(app.DD_E.Value)=='2 (ABS)'
385 app.EF_sy.Value=20;
386 app.EF_se.Value=2.4; % Based on 2e6 cycles
387 else
388 app.EF_sy.Editable='on';
389 app.EF_se.Editable='on';
390 end
391 end
392 end
393
394 % Component initialization
395 methods (Access = private)
396
397 % Create UIFigure and components
398 function createComponents(app)
399
400 % Create UserInterfaceBearingDesignerUIFigure and hide until all components are

created
401 app.UserInterfaceBearingDesignerUIFigure = uifigure('Visible', 'off');
402 app.UserInterfaceBearingDesignerUIFigure.Position = [100 100 1145 718];
403 app.UserInterfaceBearingDesignerUIFigure.Name = 'User Interface − Bearing

Designer';
404
405 % Create SlipperSpecificationsMenu
406 app.SlipperSpecificationsMenu = uimenu(app.UserInterfaceBearingDesignerUIFigure);
407 app.SlipperSpecificationsMenu.Text = 'Slipper Specifications';
408
409 % Create FilmFluidStiffnessMenu
410 app.FilmFluidStiffnessMenu = uimenu(app.SlipperSpecificationsMenu);
411 app.FilmFluidStiffnessMenu.Text = 'Film Fluid Stiffness';
412
413 % Create RecessPressureMenu
414 app.RecessPressureMenu = uimenu(app.FilmFluidStiffnessMenu);
415 app.RecessPressureMenu.MenuSelectedFcn = createCallbackFcn(app, @

PlotRecessPressure, true);
416 app.RecessPressureMenu.Text = 'Recess Pressure';
417
418 % Create LoadCapacityMenu
419 app.LoadCapacityMenu = uimenu(app.FilmFluidStiffnessMenu);
420 app.LoadCapacityMenu.MenuSelectedFcn = createCallbackFcn(app, @PlotLoadCapacity,

true);
421 app.LoadCapacityMenu.Text = 'Load Capacity';
422
423 % Create TiltStiffnessMenu
424 app.TiltStiffnessMenu = uimenu(app.SlipperSpecificationsMenu);
425 app.TiltStiffnessMenu.MenuSelectedFcn = createCallbackFcn(app, @PlotTiltStiffness

, true);
426 app.TiltStiffnessMenu.Text = 'Tilt Stiffness';
427
428 % Create StepSizeSliderLabel
429 app.StepSizeSliderLabel = uilabel(app.UserInterfaceBearingDesignerUIFigure);
430 app.StepSizeSliderLabel.HorizontalAlignment = 'right';
431 app.StepSizeSliderLabel.VerticalAlignment = 'top';
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432 app.StepSizeSliderLabel.Position = [21 613 57 15];
433 app.StepSizeSliderLabel.Text = 'Step Size';
434
435 % Create StepSizeSlider
436 app.StepSizeSlider = uislider(app.UserInterfaceBearingDesignerUIFigure);
437 app.StepSizeSlider.Limits = [10 10000];
438 app.StepSizeSlider.MajorTicks = [10 10000];
439 app.StepSizeSlider.MajorTickLabels = {'10', '10000'};
440 app.StepSizeSlider.MinorTicks = [];
441 app.StepSizeSlider.Position = [98 619 151 3];
442 app.StepSizeSlider.Value = 1000;
443
444 % Create UIAxes
445 app.UIAxes = uiaxes(app.UserInterfaceBearingDesignerUIFigure);
446 title(app.UIAxes, 'Guiding Surface')
447 xlabel(app.UIAxes, 'Length [m]')
448 ylabel(app.UIAxes, 'Amplitude [m]')
449 app.UIAxes.Position = [311 501 300 185];
450
451 % Create LengthofguidingsurfacemLabel
452 app.LengthofguidingsurfacemLabel = uilabel(app.

UserInterfaceBearingDesignerUIFigure);
453 app.LengthofguidingsurfacemLabel.HorizontalAlignment = 'right';
454 app.LengthofguidingsurfacemLabel.VerticalAlignment = 'top';
455 app.LengthofguidingsurfacemLabel.Position = [21 557 162 15];
456 app.LengthofguidingsurfacemLabel.Text = 'Length of guiding surface [m]';
457
458 % Create EF_x
459 app.EF_x = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
460 app.EF_x.ValueDisplayFormat = '%2.4g';
461 app.EF_x.Position = [198 553 67 22];
462 app.EF_x.Value = 1;
463
464 % Create WavinessamplitudemmLabel
465 app.WavinessamplitudemmLabel = uilabel(app.UserInterfaceBearingDesignerUIFigure);
466 app.WavinessamplitudemmLabel.HorizontalAlignment = 'right';
467 app.WavinessamplitudemmLabel.VerticalAlignment = 'top';
468 app.WavinessamplitudemmLabel.Position = [36 521 147 15];
469 app.WavinessamplitudemmLabel.Text = 'Waviness amplitude [m/m]';
470
471 % Create EF_A
472 app.EF_A = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
473 app.EF_A.ValueDisplayFormat = '%2.4g';
474 app.EF_A.Position = [198 517 67 22];
475 app.EF_A.Value = 0.05;
476
477 % Create GuidingCurvatureDropDownLabel
478 app.GuidingCurvatureDropDownLabel = uilabel(app.

UserInterfaceBearingDesignerUIFigure);
479 app.GuidingCurvatureDropDownLabel.HorizontalAlignment = 'right';
480 app.GuidingCurvatureDropDownLabel.VerticalAlignment = 'top';
481 app.GuidingCurvatureDropDownLabel.Position = [36 666 105 15];
482 app.GuidingCurvatureDropDownLabel.Text = 'Guiding Curvature';
483
484 % Create DD_funtion
485 app.DD_funtion = uidropdown(app.UserInterfaceBearingDesignerUIFigure);
486 app.DD_funtion.Items = {'Sinus'};
487 app.DD_funtion.Position = [156 662 100 22];
488 app.DD_funtion.Value = 'Sinus';
489
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490 % Create LengthofsingleslippermmLabel
491 app.LengthofsingleslippermmLabel = uilabel(app.

UserInterfaceBearingDesignerUIFigure);
492 app.LengthofsingleslippermmLabel.HorizontalAlignment = 'right';
493 app.LengthofsingleslippermmLabel.VerticalAlignment = 'top';
494 app.LengthofsingleslippermmLabel.Position = [191 427 167 15];
495 app.LengthofsingleslippermmLabel.Text = 'Length of single slipper [m/m]]';
496
497 % Create EF_L
498 app.EF_L = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
499 app.EF_L.ValueDisplayFormat = '%2.4g';
500 app.EF_L.Editable = 'off';
501 app.EF_L.Position = [375 423 69 22];
502
503 % Create SlipperdeformationLabel
504 app.SlipperdeformationLabel = uilabel(app.UserInterfaceBearingDesignerUIFigure);
505 app.SlipperdeformationLabel.HorizontalAlignment = 'right';
506 app.SlipperdeformationLabel.VerticalAlignment = 'top';
507 app.SlipperdeformationLabel.Position = [58 484 125 15];
508 app.SlipperdeformationLabel.Text = 'Slipper deformation [−]';
509
510 % Create EF_DF
511 app.EF_DF = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
512 app.EF_DF.ValueDisplayFormat = '%2.4g';
513 app.EF_DF.Position = [196 480 69 22];
514 app.EF_DF.Value = 0.001;
515
516 % Create SlipperparallelwithfilmLabel
517 app.SlipperparallelwithfilmLabel = uilabel(app.

UserInterfaceBearingDesignerUIFigure);
518 app.SlipperparallelwithfilmLabel.HorizontalAlignment = 'center';
519 app.SlipperparallelwithfilmLabel.VerticalAlignment = 'top';
520 app.SlipperparallelwithfilmLabel.Position = [21 352 135 15];
521 app.SlipperparallelwithfilmLabel.Text = 'Slipper parallel with film';
522
523 % Create Knob_h
524 app.Knob_h = uiknob(app.UserInterfaceBearingDesignerUIFigure, 'discrete');
525 app.Knob_h.Items = {'Yes', 'Within specifications', 'No'};
526 app.Knob_h.ValueChangedFcn = createCallbackFcn(app, @Yes_No, true);
527 app.Knob_h.Position = [66 382 42 42];
528 app.Knob_h.Value = 'Yes';
529
530 % Create AllowedlossinflightheightmLabel
531 app.AllowedlossinflightheightmLabel = uilabel(app.

UserInterfaceBearingDesignerUIFigure);
532 app.AllowedlossinflightheightmLabel.HorizontalAlignment = 'right';
533 app.AllowedlossinflightheightmLabel.VerticalAlignment = 'top';
534 app.AllowedlossinflightheightmLabel.Position = [193 392 176 15];
535 app.AllowedlossinflightheightmLabel.Text = 'Allowed loss in flightheight [ m ]';
536
537 % Create EF_dH
538 app.EF_dH = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
539 app.EF_dH.Enable = 'off';
540 app.EF_dH.Position = [375 388 69 22];
541 app.EF_dH.Value = 20;
542
543 % Create UpdateButton
544 app.UpdateButton = uibutton(app.UserInterfaceBearingDesignerUIFigure, 'push');
545 app.UpdateButton.ButtonPushedFcn = createCallbackFcn(app, @UpdateButtonPushed,

true);
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546 app.UpdateButton.FontSize = 18;
547 app.UpdateButton.Position = [835 83 136 46];
548 app.UpdateButton.Text = 'Update';
549
550 % Create LengthtoLoadSwitchLabel
551 app.LengthtoLoadSwitchLabel = uilabel(app.UserInterfaceBearingDesignerUIFigure);
552 app.LengthtoLoadSwitchLabel.HorizontalAlignment = 'center';
553 app.LengthtoLoadSwitchLabel.VerticalAlignment = 'top';
554 app.LengthtoLoadSwitchLabel.Position = [45 267 87 15];
555 app.LengthtoLoadSwitchLabel.Text = 'Length to Load';
556
557 % Create Switch_LW
558 app.Switch_LW = uiswitch(app.UserInterfaceBearingDesignerUIFigure, 'slider');
559 app.Switch_LW.Items = {'L to W', 'W to L'};
560 app.Switch_LW.Position = [66 297 45 20];
561 app.Switch_LW.Value = 'L to W';
562
563 % Create UIAxes_Theta
564 app.UIAxes_Theta = uiaxes(app.UserInterfaceBearingDesignerUIFigure);
565 title(app.UIAxes_Theta, 'Flexure Angles')
566 xlabel(app.UIAxes_Theta, 'Length [m]')
567 ylabel(app.UIAxes_Theta, 'Angles [ ]')
568 app.UIAxes_Theta.Position = [513 307 300 185];
569
570 % Create UIAxes_Phi
571 app.UIAxes_Phi = uiaxes(app.UserInterfaceBearingDesignerUIFigure);
572 title(app.UIAxes_Phi, 'Whiffle Tree angles')
573 xlabel(app.UIAxes_Phi, 'Length [m]')
574 ylabel(app.UIAxes_Phi, 'Angles [ ]')
575 app.UIAxes_Phi.Position = [820 307 300 185];
576
577 % Create LoadCapacitySlipperNLabel
578 app.LoadCapacitySlipperNLabel = uilabel(app.UserInterfaceBearingDesignerUIFigure)

;
579 app.LoadCapacitySlipperNLabel.HorizontalAlignment = 'right';
580 app.LoadCapacitySlipperNLabel.VerticalAlignment = 'top';
581 app.LoadCapacitySlipperNLabel.Position = [196 271 144 15];
582 app.LoadCapacitySlipperNLabel.Text = 'Load Capacity Slipper [N]';
583
584 % Create EF_W
585 app.EF_W = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
586 app.EF_W.ValueDisplayFormat = '%2.4g';
587 app.EF_W.Editable = 'off';
588 app.EF_W.Position = [377 267 69 22];
589
590 % Create TotalBearingLoadCapacityNLabel
591 app.TotalBearingLoadCapacityNLabel = uilabel(app.

UserInterfaceBearingDesignerUIFigure);
592 app.TotalBearingLoadCapacityNLabel.HorizontalAlignment = 'right';
593 app.TotalBearingLoadCapacityNLabel.VerticalAlignment = 'top';
594 app.TotalBearingLoadCapacityNLabel.Position = [74 172 177 15];
595 app.TotalBearingLoadCapacityNLabel.Text = 'Total Bearing Load Capacity [N]';
596
597 % Create EF_F
598 app.EF_F = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
599 app.EF_F.ValueDisplayFormat = '%2.4g';
600 app.EF_F.Editable = 'off';
601 app.EF_F.Position = [288 168 69 22];
602
603 % Create BearingfootpringonguidingsurfaceLabel
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604 app.BearingfootpringonguidingsurfaceLabel = uilabel(app.
UserInterfaceBearingDesignerUIFigure);

605 app.BearingfootpringonguidingsurfaceLabel.HorizontalAlignment = 'right';
606 app.BearingfootpringonguidingsurfaceLabel.VerticalAlignment = 'top';
607 app.BearingfootpringonguidingsurfaceLabel.Position = [26 140 225 15];
608 app.BearingfootpringonguidingsurfaceLabel.Text = 'Bearing footpring on guiding

surface [%]';
609
610 % Create EF_foot
611 app.EF_foot = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
612 app.EF_foot.ValueDisplayFormat = '%2.4g';
613 app.EF_foot.Editable = 'off';
614 app.EF_foot.Position = [288 136 69 22];
615
616 % Create Stressflexurelevel1MPaLabel
617 app.Stressflexurelevel1MPaLabel = uilabel(app.

UserInterfaceBearingDesignerUIFigure);
618 app.Stressflexurelevel1MPaLabel.HorizontalAlignment = 'right';
619 app.Stressflexurelevel1MPaLabel.VerticalAlignment = 'top';
620 app.Stressflexurelevel1MPaLabel.Position = [530 242 152 15];
621 app.Stressflexurelevel1MPaLabel.Text = 'Stress flexure level 1 [MPa]';
622
623 % Create EF_s1
624 app.EF_s1 = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
625 app.EF_s1.ValueDisplayFormat = '%2.3g';
626 app.EF_s1.Editable = 'off';
627 app.EF_s1.Position = [705 238 61 22];
628
629 % Create Stressflexurelevel2MPaLabel
630 app.Stressflexurelevel2MPaLabel = uilabel(app.

UserInterfaceBearingDesignerUIFigure);
631 app.Stressflexurelevel2MPaLabel.HorizontalAlignment = 'right';
632 app.Stressflexurelevel2MPaLabel.VerticalAlignment = 'top';
633 app.Stressflexurelevel2MPaLabel.Position = [530 208 152 15];
634 app.Stressflexurelevel2MPaLabel.Text = 'Stress flexure level 2 [MPa]';
635
636 % Create EF_s2
637 app.EF_s2 = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
638 app.EF_s2.ValueDisplayFormat = '%2.3g';
639 app.EF_s2.Editable = 'off';
640 app.EF_s2.Position = [705 204 61 22];
641
642 % Create Stressflexurelevel3MPaLabel
643 app.Stressflexurelevel3MPaLabel = uilabel(app.

UserInterfaceBearingDesignerUIFigure);
644 app.Stressflexurelevel3MPaLabel.HorizontalAlignment = 'right';
645 app.Stressflexurelevel3MPaLabel.VerticalAlignment = 'top';
646 app.Stressflexurelevel3MPaLabel.Position = [530 175 152 15];
647 app.Stressflexurelevel3MPaLabel.Text = 'Stress flexure level 3 [MPa]';
648
649 % Create EF_s3
650 app.EF_s3 = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
651 app.EF_s3.ValueDisplayFormat = '%2.3g';
652 app.EF_s3.Editable = 'off';
653 app.EF_s3.Position = [705 171 61 22];
654
655 % Create Stressflexurelevel4MPaLabel
656 app.Stressflexurelevel4MPaLabel = uilabel(app.

UserInterfaceBearingDesignerUIFigure);
657 app.Stressflexurelevel4MPaLabel.HorizontalAlignment = 'right';
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658 app.Stressflexurelevel4MPaLabel.VerticalAlignment = 'top';
659 app.Stressflexurelevel4MPaLabel.Position = [530 140 152 15];
660 app.Stressflexurelevel4MPaLabel.Text = 'Stress flexure level 4 [MPa]';
661
662 % Create EF_s4
663 app.EF_s4 = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
664 app.EF_s4.ValueDisplayFormat = '%2.3g';
665 app.EF_s4.Editable = 'off';
666 app.EF_s4.Position = [705 136 61 22];
667
668 % Create TabGroup
669 app.TabGroup = uitabgroup(app.UserInterfaceBearingDesignerUIFigure);
670 app.TabGroup.Position = [670 538 292 156];
671
672 % Create SupplySpecsTab
673 app.SupplySpecsTab = uitab(app.TabGroup);
674 app.SupplySpecsTab.Title = 'Supply Specs';
675
676 % Create SupplyPressurebarLabel
677 app.SupplyPressurebarLabel = uilabel(app.SupplySpecsTab);
678 app.SupplyPressurebarLabel.HorizontalAlignment = 'right';
679 app.SupplyPressurebarLabel.VerticalAlignment = 'top';
680 app.SupplyPressurebarLabel.Position = [47 86 122 15];
681 app.SupplyPressurebarLabel.Text = 'Supply Pressure [bar]';
682
683 % Create EF_Ps
684 app.EF_Ps = uieditfield(app.SupplySpecsTab, 'numeric');
685 app.EF_Ps.Position = [184 82 45 22];
686 app.EF_Ps.Value = 5;
687
688 % Create DesignedfilmthicknessmLabel
689 app.DesignedfilmthicknessmLabel = uilabel(app.SupplySpecsTab);
690 app.DesignedfilmthicknessmLabel.HorizontalAlignment = 'right';
691 app.DesignedfilmthicknessmLabel.VerticalAlignment = 'top';
692 app.DesignedfilmthicknessmLabel.Position = [9 52 160 15];
693 app.DesignedfilmthicknessmLabel.Text = 'Designed film thickness [ m ]';
694
695 % Create EF_h0
696 app.EF_h0 = uieditfield(app.SupplySpecsTab, 'numeric');
697 app.EF_h0.ValueDisplayFormat = '%.0f';
698 app.EF_h0.Position = [184 48 45 22];
699 app.EF_h0.Value = 50;
700
701 % Create NumberofslippersLabel
702 app.NumberofslippersLabel = uilabel(app.SupplySpecsTab);
703 app.NumberofslippersLabel.HorizontalAlignment = 'right';
704 app.NumberofslippersLabel.VerticalAlignment = 'top';
705 app.NumberofslippersLabel.Position = [45 16 124 15];
706 app.NumberofslippersLabel.Text = 'Number of slippers [#]';
707
708 % Create EF_Nu
709 app.EF_Nu = uieditfield(app.SupplySpecsTab, 'numeric');
710 app.EF_Nu.ValueDisplayFormat = '%.0f';
711 app.EF_Nu.Enable = 'off';
712 app.EF_Nu.Position = [184 12 45 22];
713 app.EF_Nu.Value = 8;
714
715 % Create FlexureParametersTab
716 app.FlexureParametersTab = uitab(app.TabGroup);
717 app.FlexureParametersTab.Title = 'Flexure Parameters';
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718
719 % Create YoungsModulusGPaDropDownLabel
720 app.YoungsModulusGPaDropDownLabel = uilabel(app.FlexureParametersTab);
721 app.YoungsModulusGPaDropDownLabel.HorizontalAlignment = 'right';
722 app.YoungsModulusGPaDropDownLabel.VerticalAlignment = 'top';
723 app.YoungsModulusGPaDropDownLabel.Position = [3 86 131 15];
724 app.YoungsModulusGPaDropDownLabel.Text = 'Young''s Modulus [GPa]';
725
726 % Create DD_E
727 app.DD_E = uidropdown(app.FlexureParametersTab);
728 app.DD_E.Items = {'200 (Spring Steel)', '69 (Aluminium 6061−T6)', '3.5 (PLA)', '2

(ABS)', ''};
729 app.DD_E.Editable = 'on';
730 app.DD_E.ValueChangedFcn = createCallbackFcn(app, @Stress, true);
731 app.DD_E.BackgroundColor = [1 1 1];
732 app.DD_E.Position = [144 82 100 22];
733 app.DD_E.Value = '200 (Spring Steel)';
734
735 % Create ThicknessmmDropDownLabel
736 app.ThicknessmmDropDownLabel = uilabel(app.FlexureParametersTab);
737 app.ThicknessmmDropDownLabel.HorizontalAlignment = 'right';
738 app.ThicknessmmDropDownLabel.VerticalAlignment = 'top';
739 app.ThicknessmmDropDownLabel.Position = [40 55 89 15];
740 app.ThicknessmmDropDownLabel.Text = 'Thickness [mm]';
741
742 % Create DD_t
743 app.DD_t = uidropdown(app.FlexureParametersTab);
744 app.DD_t.Items = {'2', '1', '0.7 (Printing Nozzle)', ''};
745 app.DD_t.Editable = 'on';
746 app.DD_t.BackgroundColor = [1 1 1];
747 app.DD_t.Position = [144 51 100 22];
748 app.DD_t.Value = '2';
749
750 % Create WidthmmDropDownLabel
751 app.WidthmmDropDownLabel = uilabel(app.FlexureParametersTab);
752 app.WidthmmDropDownLabel.HorizontalAlignment = 'right';
753 app.WidthmmDropDownLabel.VerticalAlignment = 'top';
754 app.WidthmmDropDownLabel.Position = [61 22 68 15];
755 app.WidthmmDropDownLabel.Text = 'Width [m/m]';
756
757 % Create DD_b
758 app.DD_b = uidropdown(app.FlexureParametersTab);
759 app.DD_b.Items = {'Slipper Width', 'Half Slipper Width', ''};
760 app.DD_b.Editable = 'on';
761 app.DD_b.BackgroundColor = [1 1 1];
762 app.DD_b.Position = [144 18 100 22];
763 app.DD_b.Value = 'Slipper Width';
764
765 % Create RecessPressurebarLabel
766 app.RecessPressurebarLabel = uilabel(app.UserInterfaceBearingDesignerUIFigure);
767 app.RecessPressurebarLabel.HorizontalAlignment = 'right';
768 app.RecessPressurebarLabel.VerticalAlignment = 'top';
769 app.RecessPressurebarLabel.Position = [198 356 125 15];
770 app.RecessPressurebarLabel.Text = 'Recess Pressure [bar]';
771
772 % Create EF_Pr
773 app.EF_Pr = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
774 app.EF_Pr.Editable = 'off';
775 app.EF_Pr.Position = [375 352 69 22];
776
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777 % Create YieldStressMPaLabel
778 app.YieldStressMPaLabel = uilabel(app.UserInterfaceBearingDesignerUIFigure);
779 app.YieldStressMPaLabel.HorizontalAlignment = 'center';
780 app.YieldStressMPaLabel.Position = [849 249 104 15];
781 app.YieldStressMPaLabel.Text = 'Yield Stress [MPa]';
782
783 % Create EF_sy
784 app.EF_sy = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
785 app.EF_sy.ValueDisplayFormat = '%2.4g';
786 app.EF_sy.Editable = 'off';
787 app.EF_sy.Position = [870 218 61 22];
788 app.EF_sy.Value = 1200;
789
790 % Create StressEnduranceLimitMPaLabel
791 app.StressEnduranceLimitMPaLabel = uilabel(app.

UserInterfaceBearingDesignerUIFigure);
792 app.StressEnduranceLimitMPaLabel.HorizontalAlignment = 'center';
793 app.StressEnduranceLimitMPaLabel.VerticalAlignment = 'top';
794 app.StressEnduranceLimitMPaLabel.Position = [820 189 165 15];
795 app.StressEnduranceLimitMPaLabel.Text = 'Stress Endurance Limit [MPa]';
796
797 % Create EF_se
798 app.EF_se = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
799 app.EF_se.ValueDisplayFormat = '%2.3g';
800 app.EF_se.Editable = 'off';
801 app.EF_se.Position = [870 161 61 22];
802 app.EF_se.Value = 270;
803
804 % Create StrokemLabel
805 app.StrokemLabel = uilabel(app.UserInterfaceBearingDesignerUIFigure);
806 app.StrokemLabel.HorizontalAlignment = 'right';
807 app.StrokemLabel.VerticalAlignment = 'top';
808 app.StrokemLabel.Position = [192 99 59 15];
809 app.StrokemLabel.Text = 'Stroke [m]';
810
811 % Create EF_Stroke
812 app.EF_Stroke = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
813 app.EF_Stroke.ValueDisplayFormat = '%2.4g';
814 app.EF_Stroke.Editable = 'off';
815 app.EF_Stroke.Position = [288 95 69 22];
816
817 % Create WorkJLabel
818 app.WorkJLabel = uilabel(app.UserInterfaceBearingDesignerUIFigure);
819 app.WorkJLabel.HorizontalAlignment = 'right';
820 app.WorkJLabel.VerticalAlignment = 'top';
821 app.WorkJLabel.Position = [203 66 48 15];
822 app.WorkJLabel.Text = 'Work [J]';
823
824 % Create EF_Work
825 app.EF_Work = uieditfield(app.UserInterfaceBearingDesignerUIFigure, 'numeric');
826 app.EF_Work.ValueDisplayFormat = '%2.4g';
827 app.EF_Work.Editable = 'off';
828 app.EF_Work.Position = [288 62 69 22];
829
830 % Show the figure after all components are created
831 app.UserInterfaceBearingDesignerUIFigure.Visible = 'on';
832 end
833 end
834
835 % App creation and deletion
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836 methods (Access = public)
837
838 % Construct app
839 function app = DeApp_zomer_backup
840
841 % Create UIFigure and components
842 createComponents(app)
843
844 % Register the app with App Designer
845 registerApp(app, app.UserInterfaceBearingDesignerUIFigure)
846
847 if nargout == 0
848 clear app
849 end
850 end
851
852 % Code that executes before app deletion
853 function delete(app)
854
855 % Delete UIFigure when app is deleted
856 delete(app.UserInterfaceBearingDesignerUIFigure)
857 end
858 end
859 end

Angles.m

1 function [phi,theta]=Angles(x,A,L,N,Nu)
2
3 x=x';
4 d=L;
5 f=2*pi/max(x);
6 phi=zeros(Nu,N);
7 xr=zeros(Nu,N);
8 yr=zeros(Nu,N);
9 % For each bearing (i) calaculate; tangent angle phi, x−pos and y−position

10 for i=1:Nu
11 phi(i,:)=atan(A.*cos(f*(x+(i−1)*d)));
12 xr(i,:)=f*(x+d*(i−1))−sin(phi(i,:)').*0.5*L;
13 yr(i,:)=A*sin(f*(x+d*(i−1)))+cos(phi(i,:)').*0.5*L;
14 end
15 %Angles of intermediate bodies connecting two slippers in one cell.
16 phi_12=atan((yr(2,:)−yr(1,:))./(xr(2,:)−xr(1,:)));
17 phi_34=atan((yr(4,:)−yr(3,:))./(xr(4,:)−xr(3,:)));
18 phi_56=atan((yr(6,:)−yr(5,:))./(xr(6,:)−xr(5,:)));
19 phi_78=atan((yr(8,:)−yr(7,:))./(xr(8,:)−xr(7,:)));
20 %For very small length or step sizes errors might occur, but for these
21 %cases the intermediate angles approach slipper angles.
22 if isnan(phi_12(1))
23 phi_12=phi(1,:);
24 phi_34=phi_12;
25 phi_56=phi_12;
26 phi_78=phi_12;
27 end
28 %Angles of first level flexures connected to slipper coupling element
29 theta(1,:)=(phi(1,:)−phi_12);
30 theta(2,:)=(phi(2,:)−phi_12);
31 theta(3,:)=(phi(3,:)−phi_34);
32 theta(4,:)=(phi(4,:)−phi_34);
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33 theta(5,:)=(phi(5,:)−phi_56);
34 theta(6,:)=(phi(6,:)−phi_56);
35 theta(7,:)=(phi(7,:)−phi_78);
36 theta(8,:)=(phi(8,:)−phi_78);
37 %Calculating positions of the middle of coupling elements.
38 x12=(xr(1,:)+xr(2,:))/2;
39 x34=(xr(3,:)+xr(4,:))/2;
40 x56=(xr(5,:)+xr(6,:))/2;
41 x78=(xr(7,:)+xr(8,:))/2;
42 %Only relative motion is importance not absolute
43 y12=(yr(1,:)+yr(2,:))/2;
44 y34=(yr(3,:)+yr(4,:))/2;
45 y56=(yr(5,:)+yr(6,:))/2;
46 y78=(yr(7,:)+yr(8,:))/2;
47 %Calculating rotationalpoints of second flexure pivot
48 x12r=x12−L*sin(phi_12);
49 x34r=x34−L*sin(phi_34);
50 x56r=x56−L*sin(phi_56);
51 x78r=x78−L*sin(phi_78);
52
53 y12r=y12+L*cos(phi_12);
54 y34r=y34+L*cos(phi_34);
55 y56r=y56+L*cos(phi_56);
56 y78r=y78+L*cos(phi_78);
57 %Angles of second level coupling elements, conneting 4 slippers.
58 phi_1234=atan((y34r−y12r)./(x34r−x12r));
59 phi_5678=atan((y78r−y56r)./(x78r−x56r));
60 if isnan(phi_1234(1))
61 phi_1234=phi(1,:);
62 phi_5678=phi(1,:);
63 end
64 %Angles of second level pivots, connecting a two slipper cell
65 theta_12=phi_12−phi_1234;
66 theta_34=phi_34−phi_1234;
67 theta_56=phi_56−phi_5678;
68 theta_78=phi_78−phi_5678;
69 %Calculating positions of the middle of coupling elements.
70 x1234=mean(xr([1,2,3,4],:));
71 x5678=mean(xr([5,6,7,8],:));
72 y1234=mean(yr([1,2,3,4],:));
73 y5678=mean(yr([5,6,7,8],:));
74 %Calculating positions of the rotation point of third level flexure
75 x1234r=x1234−L*sin(phi_1234);
76 x5678r=x5678−L*sin(phi_5678);
77 y1234r=y1234+L*cos(phi_1234);
78 y5678r=y5678+L*cos(phi_5678);
79 %Fourth and final level angle of coupling element
80 phi_12345678=atan((y5678r−y1234r)./(x5678r−x1234r));
81
82 if isnan(phi_12345678(1))
83 phi_12345678=phi(1,:);
84 end
85 %Third level flexure angles
86 theta_1234=phi_1234−phi_12345678;
87 theta_5678=phi_5678−phi_12345678;
88 %Final flexure connecting the vericle
89 theta_12345678=phi_12345678−0;
90
91 phi=[phi;phi_12;phi_34;phi_56;phi_78;phi_1234;phi_5678;phi_12345678];
92 theta=[theta;theta_12;theta_34;theta_56;theta_78;theta_1234;theta_5678;theta_12345678];
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Orifice.m

1 function [W,Pr] = Orifice(varargin)
2
3 Ps=varargin{1}*100000; % [Pa] Supply Pressure 1bar to Pa
4 L=varargin{2}; % [m] Diameter of Slipper
5 h0=varargin{3}/1000000; % [m] Designed flightheigth
6
7 if length(varargin)==4; % [m] Loss or gain in flight heigth
8 dh=varargin{4}/1000000;
9 else

10 dh=0;
11 end
12
13 R1=L/2; % [m] Outer radius bearing
14 R2=R1*0.8; % [m] 40 mm
15 rho=998.2; % [kg/m3] density of water
16 Cd=0.55; % [−] Orifice discharge coefficient
17 Ao=0.001*0.001*pi; % [m2] − Area of Orifice 1mm orifice
18 eta=0.0010016; % [Pa s] − Dynamic Viscosity https://www.engineeringtoolbox.com/water

−dynamic−kinematic−viscosity−d_596.html
19 h=h0+dh; % [m] nominal designed flightheight
20
21 Ko=rho/(2*(Cd*Ao)^2); % [−] Page 38 Rowe
22
23 %B_bar=0.75;
24 B_bar=pi/(6*log(R1/R2)); %Circular flow shape factor
25 %A_bar=0.54;
26 A_bar=(1−(R2^2/R1^2))/(2*log(R1/R2)); %Circular shape factor
27
28 Pr=((sqrt(1+4.*Ps.*Ko.*(((B_bar.*h.^3)./eta).^2)))−1)./(2.*Ko.*(((B_bar.*h.^3)./eta).^2));

%Recess pressure from balance with orfice restrictor page 38
29 Pr_bar=Pr./100000;
30 A=pi.*R1.^2;
31 W=A.*A_bar.*Pr;
32 Pr=Pr_bar;

Tilt.m

1 function [M] = Tilt(varargin)
2
3 Ps=varargin{1}*100000; % [Pa] Supply Pressure 1bar to Pa
4 L=varargin{2}; % [m] Diameter of Slipper
5 h=varargin{3}/1000000; % [m] Fluid film thickness
6
7 if length(varargin)==4; % Optential diffrent type of bearing used
8 type=varargin{4};
9 else

10 type=0;
11 end
12
13 if type == 0 % Type 0, circular recess bearing.
14 R1=L/2; % [m] Outer radius bearing
15 R2=R1*0.08; % [m] 40 mm
16 end
17
18 % Test Parameters
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19 % h=linspace(1,250,1000)/1000000;
20 % R1=0.05;
21 % R2=0.04;
22
23 rho=998.2; % [kg/m3] density of water
24 Cd=0.55; % [−] Orifice discharge coefficient
25 Ao=0.001*0.001*pi; % [m2] − Area of Orifice 1mm orifice
26 A=pi*R1^2; % [m2] − Total area of single slipper
27 eta=0.0010016; % [Pa s] − Dynamic Viscosity https://www.engineeringtoolbox.com/water

−dynamic−kinematic−viscosity−d_596.html
28
29 Ko=rho/(2*(Cd*Ao)^2); % [−] Page 38 Rowe
30
31 B_bar=pi/(6*log(R1/R2)); %Circular flow shape factor
32 A_bar=(1−(R2^2/R1^2))/(2*log(R1/R2)); %Circular shape factor
33 %
34 % B_bar=2.2; %Multi Recss bearings with a/R = 0.2
35 % A_bar=0.78; %Page 38 ROWE
36
37 ht=0.0000001;%left will be tilted 0.1 micro lower
38 %right will be tilted 0.1 micro up
39
40 theta=asin(ht/(4/3*R2/pi)) %Angle of tilt with dH lower/higher
41
42 %Page 38 ROWE
43 CF_L=((B_bar.*(h−ht).^3)./eta).^2; %A tenth of a micrometre lower
44 Pr_L=(sqrt(1+4.*Ps.*Ko.*CF_L)−1)./(2.*Ko.*CF_L);
45 F_L=A_bar.*A./2.*Pr_L;
46
47 CF_R=((B_bar.*(h+ht).^3)./eta).^2;
48 Pr_R=(sqrt(1+4.*Ps.*Ko.*CF_R)−1)./(2.*Ko.*CF_R);
49 F_R=A_bar.*A./2.*Pr_R;
50
51
52 M=F_L.*4./3.*R2./pi+F_R.*4/3.*R2/pi;
53
54 y_s=(M/theta);
55
56 %Pr*A*A_bar = W = Load capacity
57 M=y_s;
58
59 end
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Literature Overview

Table 1: Literature review

Keywords Result Research Topics

H
yd

ro
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ea

ri
n

gs

Surface Curvature
Linear Guidance
Surface Roughness
[51]

Hydraulic Pumps

Turbo-pumps
Rotor dynamics
Multi-recess
[16]

Elastic bearing de-
formation

Elastic support model
Deformation effects
Surface roughness
[46]

Multi-recess

Journal bearing
Number of recess
Shape variations
Tilt compensation
[22]
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Keywords Result Research Topics
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Geometric
Imperfections

Hybrid journal bearings
Performance comparison
[58]

Cryogenic
Turbo-pump

Hybrid thrust bearing
Effects of Misalignment
[56]

Hydraulic pumps

Disk thrust bearing
Concentric support
Compressible bearing
[67]

Multi-recess

Journal bearing
Membrane compensated
Shape variations
Hybrid journal bearing
[59]
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Keywords Result Research Topics

C
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p

li
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Foil support
Gas foil overview
Journal bump-type bearing
[14]

Hybrid bearing

Hybrid bearing
Journal bearing
Partitioned bearing-pads
Multi-recess
[20]

Thrust bearing

Comparison
Gas lubrication
Compliant Surfaces
[28]

Thrust bearing

Aerostatic bearing
Compliant Surfaces
Concave flexible diaphragm
[13]



D. Literature Overview 87

Keywords Result Research Topics
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Foil support
Gas foil overview
[9]

Hybrid bearing

Journal Bearings
Flexture
Misalignment
Multi-recess
[64]

Thrust bearing

Comparison
Gas lubrication
Compliant Surfaces
[28]

Thrust bearing

Aerostatic bearing
Compliant Surfaces
Concave flexible diaphragm
[13]
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Keywords Result Research Topics
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Flexure

Pivoted pad
Journal bearing
diaphragm flexure
[42]

Self-compensation
Rotary bearing
Complex fluid restrictor
[34]

Spring supported
Thrust bearing
Large pad
[24]

Pivot
Dynamic analysis
Thrust pad bearing
[43]
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Keywords Result Research Topics

M
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Effect of number
and size

Hybrid journal bearing
Eccentricity
Geometric comparison
[19]

Hole-entry
Configurations

Hybrid bearing
Journal bearing
Computational analysis
[53]

Load-capacity
Eccentricity
Journal bearings
[39]

Geometric shape
Recess shape variations
Hydrodynamic journal bearing
[57]
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Keywords Result Research Topics
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Aerostatic
High load capacity
Double pad
[41]

Elastic deformation
Configurations

Rubber support thrust bearing
Infinite length
Computational analysis
[12]

Elastic support
Thermal-elastic deformation
Hydrodynamic bearing
[35]

Spring supported
Thrust bearings
Effects of Viscosity
[21]
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Table 2: A few support structures found

Keywords Result Research Topics

Su
p

p
o

rt
st

ru
ct

u
re

s

Force balance
Four bar linkage
Robotic mechanism
Real-time controllable
[48]

Rocker-bogie sus-
pension

Mars Rover
Experimental test set-up
[31]

Force balance
Monolithic oscillator
[68]

Whiffle-Tree
Extremely large telescope
Mirror support
[4]
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Table 3: Patents found on deforming hydrostatic bearings

Compliant Hydrody-
namic bearing [69]

Compliant Hydrody-
namic bearing [40]

Compliant Hydrody-
namic gas lubricated
bearing [49]

Elastic supported self
compensating flow-
restrictors [62]

Compliant Foil Hydro-
dynamic Thrust Bearing
[30]

Self-Compensating Hy-
drostatic linear motion
bearing [60]

Compliant Foil Hydro-
dynamic Thrust Bearing
[25]

Low profile self-
compensated hydro-
static thrust bearing
[61]
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