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Abstract
The majority of epidemic models are described by non-linear differential equations
which do not have a closed-form solution. Due to the absence of a closed-form
solution, the understanding of the precise dynamics of a virus is rather limited. We
solve the differential equations of the N -intertwined mean-field approximation of
the susceptible-infected-susceptible epidemic process with heterogeneous spreading
parameters around the epidemic threshold for an arbitrary contact network, provided
that the initial viral state vector is small or parallel to the steady-state vector. Numerical
simulations demonstrate that the solution around the epidemic threshold is accurate,
also above the epidemic threshold and for general initial viral states that are below the
steady-state.

Keywords NIMFA differential equations · SIS process · Epidemic models · Viral
state dynamics

Mathematics Subject Classification 92D30 · 92D25 · 34A34

1 Introduction

Epidemiology originates from the study of infectious diseases such as gonorrhoea,
cholera and the flu (Bailey 1975; Anderson and May 1992). Human beings do not
only transmit infectious diseases from one individual to another, but also opinions, on-
line social media content and innovations. Furthermore, man-made structures exhibit
epidemic phenomena, such as the propagation of failures in power networks or the
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1300 B. Prasse, P. Van Mieghem

spread of amalicious computer virus.Modern epidemiology has evolved into the study
of general spreading processes (Pastor-Satorras et al. 2015; Nowzari et al. 2016). Two
properties are essential to a broad class of epidemic models. First, individuals are
either infected with the disease (respectively, possess the information, opinion, etc.)
or healthy. Second, individuals can infect one another only if they are in contact (e.g.,
by a friendship). In this work, we consider an epidemic model which describes the
spread of a virus between groups of individuals.

We consider a contact network of N nodes, and every node i = 1, . . . , N corre-
sponds to a group1 of individuals. If the members of two groups i, j are in contact,
then group i and group j can infect one another with the virus. We denote the sym-
metric N ×N adjacency matrix by A and its elements by ai j . If there is a link between
node i and node j , then ai j = 1, and ai j = 0 otherwise. Hence, the virus directly
spreads between two nodes i and j only if ai j = 1. We stress that in most applications
it holds that aii �= 0, since infected individuals in group i usually do infect suscepti-
ble individuals in the same group i . At any time t ≥ 0, we denote the viral state of
node i by vi (t). The viral state vi (t) is in the interval [0, 1] and is interpreted as the
fraction of infected individuals of group i . N -intertwined mean-field approximation
(NIMFA) with heterogeneous spreading parameters (Lajmanovich and Yorke 1976;
Van Mieghem and Omic 2014) assumes that the curing rates δi and infection rates βi j
depend on the nodes i and j .

Definition 1 (Heterogeneous NIMFA) At any time t ≥ 0, the NIMFA governing equa-
tion is

dvi (t)

dt
= −δivi (t) + (1 − vi (t))

N∑

j=1

β̃i j ai jv j (t) (1)

for every group i = 1, . . . , N , where δi > 0 is the curing rate of node i , and β̃i j > 0
is the infection rate from node j to node i .

For a vector x ∈ R
N , we denote the diagonal matrix with x on its diagonal by diag(x).

We denote the N ×N curing rate matrix S = diag(δ1, . . . , δN ). Then, the matrix form
of (1) is a vector differential equation

dv(t)

dt
= −Sv(t) + diag (u − v(t)) Bv(t), (2)

where v(t) = (v1(t), . . . , vN (t))T is the viral state vector at time t , the N×N infection
rate matrix B is composed of the elements βi j = β̃i j ai j , and u is the N × 1 all-one
vector. In this work, we assume that the matrix B is symmetric.

Definition 2 (Steady-State Vector) The N × 1 steady-state vector v∞ is the non-zero
equilibrium of NIMFA, which satisfies

(B − S) v∞ = diag (v∞) Bv∞. (3)

1 In this work, we use the words node and group interchangeably.
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Time-dependent solution of the NIMFA equations around… 1301

In its simplest form, NIMFA (Van Mieghem et al. 2009) assumes the same infection
rate β and curing rate δ for all nodes. More precisely, for homogeneous NIMFA the
governing equations (2) reduce to

dv(t)

dt
= −δv(t) + βdiag (u − v(t)) Av(t). (4)

For the vast majority of epidemiological, demographical, and ecological models,
the basic reproduction number R0 is an essential quantity (Hethcote 2000; Heester-
beek 2002). The basic reproduction number R0 is defined (Diekmann et al. 1990)
as “The expected number of secondary cases produced, in a completely susceptible
population, by a typical infective individual during its entire period of infectiousness”.
Originally, the basic reproduction number R0 was introduced for epidemiologicalmod-
els with only N = 1 group of individuals. Van den Driessche and Watmough (2002)
proposed a definition of the basic reproduction number R0 to epidemic models with
N > 1 groups. For NIMFA (1), the basic reproduction number R0 follows (Van den
Driessche and Watmough 2002) as R0 = ρ(S−1B), where ρ(M) denotes the spectral
radius of a square matrix M . For the stochastic Susceptible-Infected-Removed (SIR)
epidemic process on data-driven contact networks, Liu et al. (2018) argue that the
basic reproduction number R0 is inadequate to characterise the behaviour of the viral
dynamics, since the number of secondary cases produced by an infectious individual
varies greatly with time t . In contrast to the stochastic SIR process, for the determinis-
tic NIMFA equations (1), the basic reproduction number R0 = ρ(S−1B) is of crucial
importance for the viral state dynamics. Lajmanovich and Yorke (1976) showed that
there is a phase transition at the epidemic threshold criterion R0 = 1: If R0 ≤ 1,
then the only equilibrium of NIMFA (1) is the origin, which is globally asymptoti-
cally stable. Else, if R0 > 1, then there is a second equilibrium, the steady-state v∞,
whose components are positive, and the steady-state v∞ is globally asymptotically
stable for every initial viral state v(0) �= 0. For real-world epidemics, the regime
around epidemic threshold criterion R0 = 1 is of particular interest. In practice, the
basic reproduction number R0 cannot be arbitrarily great, since natural immunities
and vaccinations lead to significant curing rates δi and the frequency and intensity
of human contacts constrain the infection rates βi j . Beyond the spread of infectious
diseases, many real-world systems seem to operate in the critical regime around a
phase transition (Kitzbichler et al. 2009; Nykter et al. 2008).

The basic reproduction number R0 only provides a coarse description of the dynam-
ics of NIMFA (1). Recently (Prasse and Van Mieghem 2019), we analysed the viral
state dynamics for the discrete-time version of NIMFA (1), provided that the initial
viral state v(0) is small (see also Assumption 2 in Sect. 3). Three results of Prasse
and Van Mieghem (2019) are worth mentioning, since we believe that they could also
apply to NIMFA (1) in continuous time. First, the steady-state v∞ is exponentially
stable. Second, the viral state is (almost always) monotonically increasing. Third, the
viral state v(t) is bounded by linear time-invariant systems at any time t . In this work,
we go a step further in analysing the dynamics of the viral state v(t), and we focus
on the region around the threshold R0 = 1. More precisely, we find the closed-form
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1302 B. Prasse, P. Van Mieghem

expression of the viral state vi (t) for every node i at every time t when R0 ↓ 1, given
that the initial state v(0) is small or parallel2 to the steady-state vector v∞.

We introduce the assumptions in Sect. 3. Section 4 gives an explicit expression
for the steady-state vector v∞ when R0 ↓ 1. In Sect. 5, we derive the closed-form
expression for the viral state vector v(t) at any time t ≥ 0. The closed-form solution
for R0 ↓ 1 gives an accurate approximation also for R0 > 1 as demonstrated by
numerical evaluations in Sect. 6.

2 Related work

Lajmanovich and Yorke (1976) originally proposed the differential equations (1) to
model the spread of gonorrhoea and proved the existence and global asymptotic sta-
bility of the steady-state v∞ for strongly connected directed graphs. In Lajmanovich
and Yorke (1976), Fall et al. (2007), Wan et al. (2008), Rami et al. (2013), Prasse
and Van Mieghem (2018) and Paré et al. (2018), the differential equations (1) are
considered as the exact description of the virus spread between groups of individuals.
Van Mieghem et al. (2009) derived the differential equations (1) as an approximation
of the Markovian Susceptible-Infected-Susceptible (SIS) epidemic process (Pastor-
Satorras et al. 2015; Nowzari et al. 2016), which lead to the acronym “NIMFA”
for “N -Intertwined Mean-Field Approximation” (Van Mieghem 2011; Van Mieghem
and Omic 2014; Devriendt and Van Mieghem 2017). The approximation of the SIS
epidemic process by NIMFA is least accurate around the epidemic threshold (Van
Mieghem et al. 2009; Van Mieghem and van de Bovenkamp 2015). Thus, the solution
of NIMFA when R0 ↓ 1, which is derived in this work, might be inaccurate for the
description of the probabilistic SIS process.

Fall et al. (2007) analysed the generalisation of the differential equations (1) of
Lajmanovich and Yorke (1976) to a non-diagonal curing rate matrix S. Khanafer et al.
(2016) showed that the steady-state v∞ is globally asymptotically stable, also for
weakly connected directed graphs. Furthermore, NIMFA (1) has been generalised to
time-varying parameters. Paré et al. (2017) consider that the infection rates3 βi j (t)
depend continuously on time t . Rami et al. (2013) consider a switched model in which
both the infection rates βi j (t) and the curing rates δi (t) change with time t . NIMFA
(1) in discrete time has been analysed in Ahn and Hassibi (2013), Paré et al. (2018),
Prasse and Van Mieghem (2019) and Liu et al. (2020).

InVanMieghem (2014b), NIMFA (4)was solved for a special case: If the adjacency
matrix A corresponds to a regular graph and the initial state vi (0) is the same4 for
every node i , then NIMFA with time-varying, homogeneous spreading parameters
β(t), δ(t) has a closed-form solution. In this work, we focus on time-invariant but

2 The initial state vector v(0) is parallel to the steady-state vector v∞ if v(0) = αv∞ for some scalar
α ∈ R.
3 More precisely, Paré et al. (2017) assume that the adjacencymatrix A(t) is time-varying but not necessarily
symmetric nor binary-valued, which is equivalent to time-varying infection rates βi j (t).
4 The steady-state v∞,i is the same for every node i in a regular graph for homogeneous spreading param-
eters β, δ. Hence, the initial state vi (0) is the same for every node i if and only if the initial state v(0) is
parallel to the steady-state vector v∞.
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Time-dependent solution of the NIMFA equations around… 1303

heterogeneous spreading parameters δi , βi j . We solve NIMFA (1) for arbitrary graphs
around the threshold criterion R0 = 1 and for an initial viral state v(0) that is small
or parallel to the steady-state vector v∞.

3 Notations and assumptions

The basic reproduction number R0 = ρ(S−1B) is determined by the infection rate
matrix B and the curing rate matrix S. Thus, the notation R0 ↓ 1 is imprecise, since
there are infinitely many matrices B, S such that the basic reproduction number R0
equals 1. To be more precise, we consider a sequence

{(
B(n), S(n)

)}
n∈N of infection

rate matrices B(n) and curing rate matrices S(n) that converges5 to a limit (B∗, S∗),
such that ρ

(
(S∗)−1 B∗

)
= 1 and

ρ

((
S(n)

)−1
B(n)

)
> 1 ∀n ∈ N.

For the ease of exposition,we drop the index n and replace B(n) and S(n) by the notation
B and S, respectively. In particular, we emphasise that the assumptions below apply to
every element

(
B(n), S(n)

)
of the sequence. In Sects. 4 to 6, we formally abbreviated

the limit process
(
B(n), S(n)

) → (B∗, S∗) by the notation R0 ↓ 1. For the proofs in the
appendices,we use the lengthier but clearer notation (B, S) → (B∗, S∗). Furthermore,
we use the superscript notation Ξ∗ to denote the limit of any variable Ξ that depends
on the infection rate matrix B and the curing rate matrix S. For instance, δ∗

i denotes
the limit of the curing rate δi of node i when (B, S) → (B∗, S∗). The Landau-notation
f (R0) = O(g(R0)) as R0 ↓ 1 denotes that | f (R0)| ≤ σ |g(R0)| for some constant σ
as R0 ↓ 1. For instance, it holds that (R0 − 1)2 = O(R0 − 1) as R0 ↓ 1.

In the remainder of this work, we rely on three assumptions, which we state for
clarity in this section.

Assumption 1 For every basic reproduction number R0 > 1, the curing rates are
positive and the infection rates are non-negative, i.e., δi > 0 and βi j ≥ 0 for all nodes
i, j . Furthermore, in the limit R0 ↓ 1, it holds that δi � 0 and δi � ∞ for all nodes i .

We consider Assumption 1 a rather technical assumption, since only non-negative
rates δi and βi j have a physical meaning. Furthermore, if the curing rates δi were zero,
then the differential equations (1) would describe a Susceptible-Infected (SI) epidemic
process. In this work, we focus on the SIS epidemic process, for which it holds that
δi > 0.

Assumption 2 For every basic reproduction number R0 > 1, it holds that vi (0) ≥ 0
and vi (0) ≤ v∞,i for every node i = 1, . . . , N . Furthermore, it holds that vi (0) > 0
for at least one node i .

5 By convergence of the sequence of tuples
(
B(n), S(n)

)
to the limit (B∗, S∗), we mean that, for all ε > 0,

there exists an n0(ε) ∈ N such that both ‖B(n) − B∗‖2 < ε and ‖S(n) − S∗‖2 < ε holds for all n ≥ n0(ε).
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1304 B. Prasse, P. Van Mieghem

For the description of most real-world epidemics, Assumption 2 is reasonable for two
reasons. First, the total number of infected individuals often is small in the beginning
of an epidemic outbreak. (Sometimes, there is even a single patient zero.) Second,
a group i often contains many individuals. For instance, the viral state vi (t) could
describe the prevalence of virus in municipality i . Thus, even if there is a considerable
total number of infected individuals in group i , the initial fraction vi (0) would be
small.

Assumption 3 For every basic reproduction number R0 > 1, the infection rate matrix
B is symmetric and irreducible. Furthermore, in the limit R0 ↓ 1, the infection rate
matrix B converges to a symmetric and irreducible matrix.

Assumption 3 holds if and only if the infection ratematrix B (and its limit) corresponds
to a connected undirected graph (Van Mieghem 2014a).

4 The steady-state around the epidemic threshold

We define the N × N effective infection rate matrix W as

W = S−1B. (5)

In this section, we state an essential property that we apply to solve the NIMFA
equations (1) when the basic reproduction number R0 is close to 1: The steady-state
vector v∞ converges to a scaled version of the principal eigenvector x1 of the effective
infection rate matrix W when R0 ↓ 1.

Under Assumptions 1 and 3, the effective infection rate matrix W is non-negative
and irreducible. Hence, the Perron–Frobenius Theorem (VanMieghem 2014a) implies
that the matrix W has a unique eigenvalue λ1 which equals the spectral radius ρ(W ).
As we show in the beginning of Appendix B, the eigenvalues of the effective infection
rate matrix W are real and satisfy λ1 = ρ(W ) > λ2 ≥ · · · ≥ λN . In particular, under
Assumptions 1 and 3, the largest eigenvalue λ1, the spectral radius ρ(W ) and the basic
reproduction number R0 are the same quantity, i.e., R0 = ρ(W ) = λ1.

In VanMieghem (2012, Lemma 4) it was shown that, for homogeneous NIMFA (4),
the steady-state vector v∞ converges to a scaled version of the principal eigenvector
of the adjacency matrix A when R0 ↓ 1. We generalise the results of Van Mieghem
(2012) to heterogeneous NIMFA (1):

Theorem 1 Under Assumptions 1 and 3, the steady-state vector v∞ obeys

v∞ = γ x1 + η, (6)

where the scalar γ equals

γ = (R0 − 1)

∑N
l=1 δl (x1)2l∑N
l=1 δl (x1)3l

, (7)
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Time-dependent solution of the NIMFA equations around… 1305

and the N × 1 vector η satisfies ‖η‖2 ≤ O (
(R0 − 1)2

)
when the basic reproduction

number R0 approaches 1 from above.

Proof Appendix B. �

5 The viral state dynamics around the epidemic threshold

In Sect. 5.1, we give an intuitive motivation of our solution approach for the NIMFA
equations (1) when R0 ↓ 1. In Sect. 5.2, we state our main result.

5.1 Motivation of the solution approach

For simplicity, this subsection is confined to the homogeneous NIMFA equations
(4). In numerical simulations (Prasse and Van Mieghem 2018), we observed that the
N × N viral state matrix V = (v(t1), . . . , v(tN )), for arbitrary observation times
t1 < · · · < tN , is severely ill-conditioned. Thus, the viral state v(t) at any time
t ≥ 0 approximately equals the linear combination of m << N orthogonal vectors
y1, . . . , ym , and we can write v(t) ≈ c1(t)y1 + · · · + cm(t)ym , see also Prasse and
Van Mieghem (2020). Here, the functions c1(t), . . . , cm(t) are scalar. We consider
the most extreme case by representing the viral state v(t) by a scaled version of only
m = 1 vector y1, which corresponds to v(t) ≈ c(t)y1 for a scalar function c(t). The
viral state v(t) converges to the steady-state vector v∞ as t → ∞. Hence, a natural
choice for the vector y1 is y1 = v∞, which implies that c(t) → 1 as t → ∞. If
R0 ≈ 1 and v(0) ≈ 0, then the approximation v(t) ≈ c(t)v∞ is accurate at all times
t ≥ 0 due to two intuitive reasons.

1. If v(t) ≈ 0 when t ≈ 0, then NIMFA (4) is approximated by the linearisation
around zero. Hence, it holds that

dv(t)

dt
≈ (βA − δ I ) v(t) (8)

when t ≈ 0. The state v(t) of the linear system (8) converges rapidly to a scaled
version of the principal eigenvector x1 of the matrix (βA − δ I ). Furthermore,
Theorem 1 states that v∞ ≈ γ x1 when R0 ≈ 1. Thus, the viral state v(t) rapidly
converges to a scaled version of the steady-state v∞:

2. Suppose that the viral state v(t) approximately equals to a scaled version of the
steady-state vector v∞. (In other words, the viral state v(t) is “almost parallel” to
the vector v∞.) Then, it holds that

v(t) ≈ c(t)v∞ (9)

for some scalar c(t). We insert (9) into the NIMFA equations (4), which yields
that

dc(t)

dt
v∞ ≈ c(t) (βA − δ I ) v∞ − βc2(t)diag(v∞)Av∞. (10)
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1306 B. Prasse, P. Van Mieghem

For homogeneous NIMFA (4), the steady-state equation (3) becomes

(βA − δ I ) v∞ = βdiag (v∞) Av∞. (11)

We substitute (11) in (10) and obtain that

dc(t)

dt
v∞ ≈

(
c(t) − c2(t)

)
(βA − δ I ) v∞. (12)

Since v∞ ≈ γ x1 around the epidemic threshold, it holds that Av∞ ≈ ρ(A)v∞.
Hence, we obtain that

dc(t)

dt
v∞ ≈

(
c(t) − c2(t)

)
(βρ(A) − δ) v∞. (13)

Left-multiplying (13) by vT∞ and dividing by vT∞v∞ yields that

dc(t)

dt
≈

(
c(t) − c2(t)

)
(βρ(A) − δ) . (14)

The logistic differential equation (14) has been introduced by Verhulst (1838) as
a population growth model and has a closed-form solution.

Due to the two intuitive steps above, NIMFA (4) reduces around the threshold R0 ≈ 1
to the one-dimension differential equation (14). Solving (14) for the function c(t) gives
an approximation of the viral state v(t) by (9). The solution approach is applicable to
other dynamics on networks, see for instance (Devriendt and Lambiotte 2020).

However, the reasoning above is not rigorous for two reasons. First, the viral state
vector v(t) is not exactly parallel to the steady state v∞. To be more specific, instead
of (9) it holds that

v(t) = c(t)v∞ + ξ(t) (15)

for some N × 1 error vector ξ(t) which is orthogonal to the steady-state vector v∞.
In Sect. 5.2, we use (15) as an ansatz for solving NIMFA (1).

Second, the steady-state vector v∞ is not exactly parallel to the principal eigenvector
x1. More precisely, we must consider the vector η in (6). Since η �= 0, the step from
(12) to (13) is affected by an error.

5.2 The solution around the epidemic threshold

Based on themotivation in Sect. 5.1, we aim to solve the NIMFA differential equations
(1) around the epidemic threshold criterion R0 = 1. The ansatz (15) forms the basis
for our solution approach. From the orthogonality of the error vector ξ(t) and the
steady-state vector v∞, it follows that the function c(t) at time t equals

c(t) = 1

‖v∞‖22
vT∞v(t). (16)
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Time-dependent solution of the NIMFA equations around… 1307

The error vector ξ(t) at time t follows from (15) and (16) as

ξ(t) =
(
I − 1

‖v∞‖22
v∞vT∞

)
v(t). (17)

Our solution approach is based on two steps. First, we show that6 the error term ξ(t)
satisfies ξ(t) = O((R0 − 1)2) at every time t when R0 ↓ 1. Hence, the error term
ξ(t) converges to zero uniformly in time t . Second, we find the solution of the scalar
function c(t) at the limit R0 ↓ 1.

Assumption 2 implies that7 the viral state v(t) does not overshoot the steady-
state v∞:

Lemma 1 Under Assumptions 1 to 3, it holds that vi (t) ≤ v∞,i for all nodes i at every
time t ≥ 0. Furthermore, it holds that 0 ≤ c(t) ≤ 1 at every time t ≥ 0.

Proof Appendix C. �
Theorem 2 states that the error term ξ(t) converges to zero in the order of (R0 − 1)2

when R0 ↓ 1.

Theorem 2 Under Assumptions 1 to 3, there exist constants σ1, σ2 > 0 such that the
error term ξ(t) at any time t ≥ 0 is bounded by

‖ξ(t)‖2 ≤ ‖ξ(0)‖2e−σ1t + σ2(R0 − 1)2 (18)

when the basic reproduction number R0 approaches 1 from above.

Proof Appendix D. �
UnderAssumption 2, the steady-state v∞ is exponentially stable forNIMFA in discrete
time (Prasse and Van Mieghem 2019). If the steady-state v∞ is exponentially stable,
then the error vector ξ(t) goes to zero exponentially fast, since ξ(t) is orthogonal to
v∞. Thus, the first addend on the right-hand side in (18) is rather expectable, under
the conjecture that the steady-state v∞ is exponentially stable also for continuous-time
NIMFA (1). Regarding this work, the most important implication of Theorem 2 is that
ξ(t) = O (

(R0 − 1)2
)
uniformly in time t when R0 ↓ 1, provided the initial value

ξ(0) of the error vector is negligibly small.
We define the constant Υ (0), which depends on the initial viral state v(0), as

Υ (0) = artanh

(
2
vT∞v(0)

‖v∞‖22
− 1

)
. (19)

6 Theorem 1 implies that the steady-state v∞ satisfies ‖v∞‖2 = O (R0 − 1) when R0 ↓ 1. Thus, also
‖c(t)v∞‖2 = O (R0 − 1) at every time t . Thus, a linear convergence of the error term ξ(t) to zero, i.e.,
‖ξ(t)‖2 = O (R0 − 1), would not be sufficient to show that the viral state v(t) converges to c(t)v∞ when
R0 ↓ 1.
7 In Prasse and VanMieghem (2019), an analogous statement has been proved for the discrete-time version
of the NIMFA equations (2).
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1308 B. Prasse, P. Van Mieghem

Furthermore, we define the viral slope w, which determines the speed of convergence
to the steady-state v∞, as

w = (R0 − 1)
N∑

l=1

δl (x1)
2
l .

Then, building on Theorems 1 and 2, we obtain our main result:

Theorem 3 Suppose that Assumptions 1 to 3 hold and that, for some constant p > 1,
‖ξ(0)‖2 = O ((R0 − 1)p) when R0 ↓ 1. Furthermore, define

vapx(t) = 1

2

(
1 + tanh

(w

2
t + Υ (0)

))
v∞. (20)

Then, there exists some constant σ > 0 such that

‖v(t) − vapx(t)‖2
‖v∞‖2 ≤σ(R0 − 1)s−1 ∀t ≥ 0, (21)

where s = min{p, 2}, when the basic reproduction number R0 approaches 1 from
above.

Proof Appendix E. �
We emphasise that Theorem 3 holds for any connected graph corresponding to the
infection rate matrix B. Theorem 3 is in agreement with the universality of the SIS
prevalence (Van Mieghem 2016). The bound (21) states a convergence of the viral
state v(t) to the approximation vapx(t) which is uniform in time t . Furthermore, since
both the viral state v(t) and the approximation vapx(t) converge to the steady-state
v∞, it holds that ‖v(t)− vapx(t)‖2 → 0 when t → ∞. At time t = 0, we obtain from
Theorem 3 and (17) that

‖v(0) − vapx(0)‖2 = ‖ξ(0)‖2.

Since ‖ξ(0)‖2 = O ((R0 − 1)p) and, by Theorem 1, ‖v∞‖2 = O (R0 − 1), we obtain
that

‖v(0) − vapx(0)‖2
‖v∞‖2 = O

(
(R0 − 1)p−1

)
.

Hence, for general t ≥ 0 the approximation error ‖v(t) − vapx(t)‖2/‖v∞‖2 does not
converge to zero faster thanO (

(R0 − 1)p−1
)
, and the bound (21) is best possible (up

to the constant σ ) when p ≤ 2. With (17), the term ‖ξ(0)‖2 in Theorem 2 can be
expressed explicitly with respect to the initial viral state v(0) and the steady-state v∞.
In particular, it holds that ‖ξ(0)‖2 ≤ ‖v(0)‖2. Furthermore, if the initial viral state
v(0) is parallel to the steady-state vector v∞, then it holds that ξ(0) = 0. Thus, if the
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initial viral state v(0) is small or parallel to the steady-state vector v∞, then it holds
that ξ(0) = 0 and the bound (21) on the approximation error vector becomes

‖v(t) − vapx(t)‖2
‖v∞‖2 ≤ σ(R0 − 1) ∀t ≥ 0. (22)

The time-dependent solution to NIMFA (1) at the epidemic threshold criterion
R0 = 1 depends solely on the viral slope w, the steady-state vector v∞ and the initial
viral state v(0). The viral slope w converges to zero as R0 ↓ 1. Thus, Theorem 3
implies that the convergence time to the steady-state v∞ goes to infinity when R0 ↓ 1,
even though the steady-state v∞ converges to zero. More precisely, it holds:

Corollary 1 Suppose that Assumptions 1 and 3 hold and that the initial viral state v(0)
equals v(0) = r0v∞ for some scalar r0 ∈ (0, 1). Then, for any scalar r1 ∈ [r0, 1),
the largest time t01 at which the viral state satisfies vi (t01) ≤ r1v∞,i for every node i
converges to

t01 = 1

w
log

(
r1
r0

1 − r0
1 − r1

)

when the basic reproduction number R0 approaches 1 from above.

Proof Appendix F. �
We combine Theorem 1 and Theorem 3 to obtain Corollary 2.

Corollary 2 Suppose that Assumptions 1 to 3 hold and that, for some constant p > 1,
‖ξ(0)‖2 = O ((R0 − 1)p) when R0 ↓ 1. Furthermore, define

ṽapx(t) =
(
1 + tanh

(w

2
t + Υ (0)

)) γ

2
x1. (23)

Then, there exists some constant σ > 0 such that

‖v(t) − ṽapx(t)‖2
‖v∞‖2 ≤σ(R0 − 1)s−1 ∀t ≥ 0,

where s = min{p, 2}, when the basic reproduction number R0 approaches 1 from
above.

In contrast to Theorem 3, the approximation error ‖v(t) − ṽapx(t)‖2 in Corollary 2
does not converge to zero when t → ∞, since we replaced the steady-state v∞ by the
first-order approximation of Theorem 1. Corollary 2 implies that

vi (t)

v j (t)
→ ṽapx,i (t)

ṽapx, j (t)
= (x1)i

(x1) j
(24)

at every time t when R0 ↓ 1, provided that the initial viral state v(0) is small or parallel
to the steady-state vector v∞. From (24) it follows that, around the epidemic threshold
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criterion R0 = 1, the eigenvector centrality (Van Mieghem 2010) fully determines the
“dynamical importance” of node i versus node j .

For homogeneous NIMFA (4), the infection ratematrix B and the curing ratematrix
S reduce to B = βA and S = δ I , respectively. Hence, the effective infection rate
matrix becomes W = β

δ
A, and the principal eigenvector x1 of the effective infection

ratematrixW equals the principal eigenvector of the adjacencymatrix A. Furthermore,
the limit process R0 ↓ 1 reduces to τ ↓ τc, with the effective infection rate τ = β

δ
and the epidemic threshold τc = 1/ρ(A). For homogeneous NIMFA (4), Theorem 3
reduces to:

Corollary 3 Suppose that Assumptions 1 to 3 hold and consider the viral state v(t) of
homogeneous NIMFA (4). Furthermore, suppose that ‖ξ(0)‖2 = O ((τ − τc)

p) for
some constant p > 1 when τ ↓ τc and define

vapx(t) = 1

2

(
1 + tanh

(
(τ − τc)δ

2τc
t + Υ (0)

))
v∞. (25)

Then, there exists some constant σ > 0 such that

‖v(t) − vapx(t)‖2
‖v∞‖2 ≤σ(τ − τc)

s−1 ∀t ≥ 0,

where s = min{p, 2}, when the effective infection rate τ approaches the epidemic
threshold τc from above.

Proof Appendix G. �
FromCorollary 3,we can obtain the analogue toCorollary 2 forNIMFA(4)with homo-
geneous spreading parameters β, δ. Furthermore, the approximation vapx(t) defined
by (25) equals the exact solution (Van Mieghem 2014b) of homogeneous NIMFA (4)
on a regular graph, provided that the initial state vi (0) is the same for every node i .
In particular, the net dose �(t), a crucial quantity in Van Mieghem (2014b); Kendall
(1948), is related to the viral slope w via �(t) = wt .

Theorem 3 and Corollary 3 suggest that, around the epidemic threshold criterion
R0 = 1, the dynamics of heterogeneous NIMFA (1) closely resembles the dynamics
of homogeneous NIMFA (4). In particular, we pose the question: Can heterogeneous
NIMFA (1) be reduced to homogeneous NIMFA (4) around the epidemic threshold
criterion R0 = 1 by choosing the homogeneous spreading parameters β, δ and the
adjacency matrix A accordingly?

Theorem 4 Consider heterogeneous NIMFA (1) with given spreading parameters
βi j , δi . Suppose that Assumptions 1 to 3 hold and that, for some constant p > 1,
‖ξ(0)‖2 = O ((R0 − 1)p) when the basic reproduction number R0 approaches 1
from above. Define the homogeneous NIMFA system

dvi,hom(t)

dt
= −δhomvi,hom(t) + βi i,hom

(
1 − vi,hom(t)

)
vi,hom(t)
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+ (
1 − vi,hom(t)

)
βhom

N∑

j=1, j �=i

v j,hom(t), (26)

where the homogeneous curing rate δhom equals

δhom =
∑N

l=1 δl (x1)3l∑N
l=1 (x1)3l

, (27)

the homogeneous infection rate βhom equals

βhom = δhom∑N
l=1 (x1)l

(
1 + γ

N∑

l=1

(x1)
3
l

)
min

l=1,...,N
(x1)l (28)

with the variable γ defined by (7), and the self-infection rates βi i,hom equal

βi i,hom = βhom

⎛

⎝ 1

min
l=1,...,N

(x1)l
− 1

(x1)i

⎞

⎠
N∑

j=1

(x1) j + βhom.

Then, if vhom(0) = v(0), there exists some constant σ > 0 such that

‖v(t) − vhom(t)‖2
‖v∞‖2 ≤σ(R0 − 1)s−1 ∀t ≥ 0,

where s = min{p, 2}, when the basic reproduction number R0 approaches 1 from
above.

Proof Appendix H. �
In other words, when R0 ↓ 1, for any contact network and any spreading parameters

δi , βi j , heterogeneous NIMFA (1) can be reduced to homogeneous NIMFA (4) on a
complete graph plus self-infection rates βi i,hom. We emphasise that the sole influence
of the topology on the viral spread is given by the self-infection rates βi i,hom. Thus,
under Assumptions 1 to 3, the network topology has a surprisingly small impact on
the viral spread around the epidemic threshold.

6 Numerical evaluation

We are interested in evaluating the accuracy of the closed-form expression vapx(t),
given by (20), when the basic reproduction number R0 is close, but not equal, to one.
We generate an adjacency matrix A according to different random graph models. If
ai j = 1, then we set the infection rates βi j to a uniformly distributed random number

in [0.4, 0.6] and, if ai j = 0, then we set βi j = 0. We set the initial curing rates δ
(0)
l

to a uniformly distributed random number in [0.4, 0.6]. To set the basic reproduction
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number R0, we set the curing rates δl to a multiple of the initial curing rates δ
(0)
l , i.e.

δl = σδ
(0)
l for every node l and some scalar σ such that ρ(W ) = R0. Thus, we realise

the limit process R0 ↓ 1 by changing the scalar σ . Only in Sect. 6.2, we consider
homogeneous spreading parameters by setting βi j = 0.5 and δ

(0)
i = 0.5 for all nodes

i, j . Numerically, we obtain the “exact” NIMFA viral state sequence v(t) by Euler’s
method for discretisation, i.e.,

dvi (t)

dt

∣∣∣∣
t=T k

≈ vi (T k) − vi (T (k − 1))

T
(29)

for a small sampling time T and a discrete time slot k ∈ N. In Prasse andVanMieghem
(2019), we derived an upper bound Tmax on the sampling time T which ensures that
the discretisation (29) of NIMFA (1) converges to the steady-state v∞. We set the
sampling time T to T = Tmax/100. Except for Sect. 6.3, we set the initial viral state to
v(0) = 0.01v∞. We define the convergence time tconv as the smallest time t at which

∣∣vi (tconv) − v∞,i
∣∣ ≤ 0.01

holds for every node i . Thus, at the convergence time tconv the viral state v(tconv) has
practically converged to the steady-state v∞. We evaluate Theorem 3 with respect to
the approximation error εV , which we define as

εV = 1

Ntconv

N∑

i=1

∫ tconv

0

∣∣vi
(
t̃
) − vapx,i

(
t̃
)∣∣

v∞,i
d t̃ .

All results are averaged over 100 randomly generated networks.

6.1 Approximation accuracy around the epidemic threshold

We generate a Barabási–Albert random graph (Barabási and Albert 1999) with N =
500 nodes and the parameters m0 = 5, m = 2. Figure 1 gives an impression of the
accuracy of the approximation of Theorem 3 around the epidemic threshold criterion
R0 = 1. For a basic reproduction number R0 ≤ 1.1, the difference of the closed-form
expression of Theorem 3 to the exact NIMFA viral state trace is negligible.

We aim for a better understanding of the accuracy of the closed-form expression
of Theorem 3 when the basic reproduction number R0 converges to one. We generate
Barabási–Albert andErdős–Rényi connected randomgraphswith N = 100, . . . , 1000
nodes. The link probability of the Erdős–Rényi graphs (Erdős and Rényi 1960) is set to
pER = 0.05. Figure 2 illustrates the convergence of the approximation of Theorem 3
to the exact solution of NIMFA (1). Around the threshold criterion R0 = 1, the
approximation error εV converges linearly to zerowith respect to thebasic reproduction
number R0, which is in agreement with Theorem 3. The greater the network size N ,
the greater is the approximation error εV for Barabási–Albert networks. The greater
the network size N , the lower is the approximation error εV for Erdős–Rényi graphs.
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(a) Basic reproduction numberR0 = 1.01.
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(b) Basic reproduction numberR0 = 1.1.
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(c) Basic reproduction numberR0 = 1.2.

Fig. 1 For a Barabási–Albert random graphwith N = 500 nodes, the approximation accuracy of Theorem 3
is depicted. Each of the sub-plots shows the viral state traces vi (t) of seven different nodes i , including the
node i with the greatest steady-state v∞,i

6.2 Impact of degree heterogeneity on the approximation accuracy

For NIMFA (4) with homogeneous spreading parameters β, δ, the approximation
vapx(t) defined by (4) is exact if the contact network is a regular graph. We are inter-
ested how the approximation accuracy changes with respect to the heterogeneity of the
node degrees. We generate Watts–Strogatz (Watts and Strogatz 1998) random graphs
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(a) Erdős-Rényi random graphs.
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(b) Barabási-Albert random graphs.

Fig. 2 The approximation error εV of the NIMFA solution versus the basic reproduction number R0 for
different network sizes N

with N = 100 nodes and an average node degree of 4. We vary the link rewiring prob-
ability pWS from pWS = 0, which correspond to a regular graph, to pWS = 1, which
corresponds to a “completely random” graph. Figure 3 depicts the approximation error
εV versus the rewiring probability pWS for homogeneous spreading parameters β, δ.
Interestingly, the approximation error reaches a maximum and improves when the
adjacency matrix A is more random.

6.3 Impact of general initial viral states on the approximation accuracy

Theorem 3 required that the initial error ξ(0) converges to zero, which means that
the initial viral state v(0) must be parallel to the steady-state v∞ or, since ‖ξ(0)‖2 ≤
‖v(0)‖, converge to zero. To investigate whether the approximation of Theorem 3 is
accurate alsowhen the initial error ξ(0)does not converge to zero,we set the initial viral
state vi (0) of every node i to a uniformly distributed random number in (0, r0v∞,i ]
for some scalar r0 ∈ (0, 1]. By increasing the scalar r0, the initial viral state v(0) is
“more random”. Figure 4 shows that the approximation error εV is almost unaffected
by an initial viral state v(0) that is neither parallel to the steady-state v∞ nor small.
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Fig. 3 The approximation error εV versus the link rewiring probability pWS for Watts–Strogatz random
graphs with N = 100 nodes and homogeneous spreading parameters β, δ
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Fig. 4 The approximation error εV versus the scalar r0, which controls the variance of the randomly
generated initial viral state v(0), for Barabási–Albert networks with N = 250 nodes

Figure 5 shows that the viral state v(t) converges rapidly to the approximation vapx(t)
as time t increases.

For general initial viral states v(0) with ξ(0) �= 0, it holds that vapx(0) �= v(0)
since the approximation vapx(0) is parallel to the steady-state vector v∞. Hence, the
approximation vapx(t) does not converge point-wise to the viral state v(t)when R0 ↓ 1.
However, based on the results shown in Figs. 4 and 5, we conjecture convergence with
respect to the L2-norm for general initial viral states v(0) when R0 ↓ 1.

Conjecture 1 Suppose that Assumptions 1 to 3 hold. Then, it holds for the approxima-
tion vapx(t) defined by (20) that

1

‖v∞‖2
∫ ∞

0
‖v(t) − vapx(t)‖2dt → 0

when the basic reproduction number R0 approaches 1 from above.
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(a) Viral state v(t) until time t = 120.
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(b) Viral state v(t) until time t = 6.

Fig. 5 For a Barabási–Albert random graph with N = 500 nodes, a basic reproduction number R0 = 1.01
and a randomly generated initial viral state v(0), the approximation accuracy of Theorem 3 is depicted. The
viral state traces vi (t) of seven different nodes i are depicted

6.4 Directed infection rate matrix

The proof of Theorem 3 relies on a symmetric infection rate matrix B as stated by
Assumption 3. We perform the same numerical evaluation as shown in Fig. 2 in
Sect. 6.1 with the only difference that we generate strongly connected directed Erdős–
Rényi randomgraphs. Figure 6 demonstrates the accuracy of the approximation vapx(t)
for a directed infection rate matrix B, which leads us to:

Conjecture 2 Suppose that Assumptions 1 and 2 hold and that the infection rate matrix
B is irreducible but, in contrast to Assumption 3, not necessarily symmetric. Then,
the viral state v(t) is “accurately described” by the approximation vapx(t) when the
basic reproduction number R0 approaches 1 from above.

6.5 Accuracy of the approximation of the convergence time

Corollary 1 gives the expression of the convergence time t01 from the initial viral state
v(0) = r0v∞ to the viral state v(t01) ≤ r1v∞ for any scalars 0 < r0 ≤ r1 < 1 around
the epidemic threshold criterion R0 = 1. We set the scalars to r0 = 0.01 and r1 = 0.9
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Fig. 6 The approximation error εV of the NIMFA solution versus the basic reproduction number R0 for
directed Erdős–Rényi graphs for different network sizes N
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(a) Erdős-Rényi random graphs.
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(b) Barabási-Albert random graphs.

Fig. 7 The approximation error εt of the convergence time t01 versus the basic reproduction number R0
for different network sizes N

and define the approximation error

εt =
∣∣t̂01 − t01

∣∣
t01

,
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(a) Erdős-Rényi random graph andR0 = 1.01.
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(b) Erdős-Rényi random graph andR0 = 1.001.

Fig. 8 The approximation accuracy of Theorem 4 on a Erdős–Rényi random graph with N = 100 nodes.
Each of the sub-plots shows the viral state traces vi (t) of seven different nodes i , including the node i with
the greatest steady-state v∞,i

where t01 denotes the exact convergence time and t̂01 denotes the approximate expres-
sion of Corollary 1. We generate Barabási–Albert and Erdős–Rényi random graphs
with N = 100, . . . , 1000 nodes. Figure 7 shows that Corollary 1 gives an accurate
approximation of the convergence time t01 when the basic reproduction number R0 is
reasonably close to one.

6.6 Reduction to a complete graph with homogeneous spreading parameters

Theorem 4 states that, around the epidemic threshold, heterogeneous NIMFA (1) on
any graph can be reduced to homogeneous NIMFA (4) on a complete graph. Figures 8
and 9 show the approximation accuracy of Theorem 4 for Erdős–Rényi and Barabási–
Albert randomgraphs, respectively. To accurately approximate heterogeneousNIMFA
on Barabási–Albert graphs by homogeneous NIMFA on a complete graph, the basic
reproduction number R0 must be closer to 1 than for Erdős–Rényi graphs.
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(a) Barabási-Albert random graph andR0 = 1.01.
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(b) Barabási-Albert random graph andR0 = 1.001.

Fig. 9 The approximation accuracy of Theorem 4 on a Barabási–Albert random graphwith N = 100 nodes.
Each of the sub-plots shows the viral state traces vi (t) of seven different nodes i , including the node i with
the greatest steady-state v∞,i

7 Conclusion

We solved the NIMFA governing equations (1) with heterogeneous spreading param-
eters around the epidemic threshold when the initial viral state v(0) is small or parallel
to the steady-state v∞, provided that the infection rates are symmetric (βi j = β j i ).
Numerical simulations demonstrate the accuracy of the solution when the basic repro-
duction number R0 is close, but not equal, to one. Furthermore, the solution serves as
an accurate approximation also when the initial viral state v(0) is neither small nor
parallel to the steady-state v∞. We observe four important implications of the solution
of NIMFA around the epidemic threshold.

First, the viral statev(t) is almost parallel to the steady-statev∞ for every time t ≥ 0.
On the one hand, since the viral dynamics approximately remain in a one-dimensional
subspace of R

N , an accurate network reconstruction is numerically not viable around
the epidemic threshold (Prasse and VanMieghem 2018). Furthermore, when the basic
reproduction number R0 is large, then the viral state v(t) rapidly converges to the
steady-state v∞, which, again, prevents an accurate network reconstruction. On the
other hand, only the principal eigenvector x1 of the effective infection rate matrix
W and the viral slope w are required to predict the viral state dynamics around the
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epidemic threshold.Thus, around the epidemic threshold, the prediction of an epidemic
does not require an accurate network reconstruction.

Second, the eigenvector centrality (with respect to the principal eigenvector x1 of
the effective infection rate matrix W ) gives a complete description of the dynami-
cal importance of a node i around the epidemic threshold. In particular, the ratio
vi (t)/v j (t) of the viral states of two nodes i, j does not change over time t .

Third, around the epidemic threshold, we gave an expression of the convergence
time t01 to approach the steady-state v∞. The viral state v(t) converges to the steady-
state v∞ exponentially fast.However, as the basic reproduction number R0 approaches
one, the convergence time t01 goes to infinity.

Fourth, around the epidemic threshold, NIMFA with heterogeneous spreading
parameter on any graph can be reduced to NIMFA with homogeneous spreading
parameters on the complete graph plus self-infection rates.

Potential generalisations of the solution of NIMFA to non-symmetric infection rate
matrices B or time-dependent spreading parameters βi j (t), δl(t) stand on the agenda
of future research.
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Appendices

A Nomenclature

The eigenvalues of the effective infection rate matrix W are denoted, in decreasing
order, by |λ1| ≥ · · · ≥ |λN |. The principal eigenvector of unit length of the matrix W
is denoted by x1 and satisfies Wx1 = λ1x1. The greatest and smallest curing rate in
{δ1, . . . , δN } are denoted by δmax and δmin, respectively. The numerical radius r(M)

for an N × N matrix M is defined as (Horn and Johnson 1990)

r(M) = max
z∈CN

∣∣∣∣
zH Mz

zH z

∣∣∣∣ , (30)

where zH is the conjugate transpose of a complex N × 1 vector z. For a square matrix
M , we denote the 2-norm by ‖M‖2, which equals the largest singular value of M . In
particular, it holds that the 2-norm of the curing rate matrix S equals ‖S‖2 = δmax.
Table 1 summarises the nomenclature.
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Table 1 Nomenclature

βi j Infection rate from node j to node i

B Infection rate matrix; Bi j = βi j

c(t) Projection of the viral state v(t) on the steady-state v∞; see (16)

δi Curing rate of node i

diag(x) N × N diagonal matrix with x ∈ R
N on its diagonal

I N × N identity matrix

λk k-th eigenvalue of the matrix W ; λ1 > λ2 ≥ · · · ≥ λN

N Number of nodes

‖M‖2 2-norm of a matrix M : largest singular value of M

r(M) Numerical radius of a square matrix M ; see (30)

R0 Basic reproduction number; R0 = ρ(W ) = λ1

ρ(M) Spectral radius of a square matrix M

S Curing rate matrix; S = diag(δ1, . . . , δN )

u N × 1 all-one vector u = (1, . . . , 1)T

v(t) N × 1 viral state vector v(t) at time t ≥ 0; vi (t) ∈ [0, 1] for i = 1, . . . , N

v∞ Steady-state vector, see Definition 2

w The viral slope; w = (R0 − 1)
∑N

l=1 δl (x1)
2
l

W Effective infection rate matrix W = S−1B; ρ(W ) > 1

W̃ Symmetric N × N matrix W̃ = S− 1
2 BS− 1

2

xk k-th eigenvector of the matrix W ; Wxk = λk xk
ξ(t) Viral state component that is orthogonal to v∞; ξ(t) = v(t) − c(t)v∞

B Proof of Theorem 1

The steady-state v∞ solely depends on the effective infection rate matrix W : By left-
multiplication of (3) with the diagonal matrix S−1, we obtain that

(W − I ) v∞ = diag (v∞)Wv∞. (31)

In general, the effective infection rate matrix W , defined in (5) as W = S−1B, is
asymmetric, which prevents a straightforward adaptation of the proof in VanMieghem
(2012, Lemma 4). However, the matrix W is similar to the matrix

W̃ = S− 1
2 BS− 1

2

= S
1
2WS− 1

2 . (32)

Since the infection rate matrix B is symmetric under Assumption 3, the matrix W̃ is
symmetric. Hence, the matrix W̃ , and also the effective infection rate matrix W , are
diagonalisable. With (32), we write the steady-state (31) with respect to the symmetric
matrix W̃ as (

W̃ − I
)
S

1
2 v∞ = diag (v∞) W̃ S

1
2 v∞. (33)
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1322 B. Prasse, P. Van Mieghem

We decompose the matrix W̃ as

W̃ = λ1 x̃
T
1 x̃1 +

N∑

k=2

λk x̃
T
k x̃k, (34)

where the eigenvalues of W̃ are real and equal to λ1 > λ2 ≥ · · · ≥ λN with the
corresponding normalized eigenvectors denoted by x̃1, . . . , x̃N . Then, the steady-state
vector v∞ can be expressed as linear combination

v∞ =
N∑

l=1

ψl x̃l ,

where the coefficients equal ψl = vT∞ x̃l . To prove Theorem 1, we would like to
express the coefficients ψ1, . . . , ψN as a power series around R0 = 1. However, in
the limit process (B, S) → (B∗, S∗), the eigenvectors x̃1, . . . , x̃N of the matrix W̃
are not necessarily constant. Hence, the coefficients ψl depend on the full matrix W̃
and not only on the basic reproduction number R0. To overcome the challenge of non-
constant eigenvectors x̃1, . . . , x̃N in the limit process (B, S) → (B∗, S∗), we define
the symmetric auxiliary matrix

M(z) = zx̃T1 x̃1 +
N∑

k=2

λk x̃
T
k x̃k ∈ R

N×N (35)

for a scalar z ≥ 1. Thus, the matrix M(z) is obtained from the matrix W̃ by replacing
the largest eigenvalue λ1 of W̃ by z. In particular, the definition of the matrix M(z) in
(35) and (34) illustrate that M(λ1) = W̃ . When the matrix W̃ is formally replaced by
the matrix M(z), the steady-state equation (33) becomes

(M(z) − I ) S
1
2 ṽ(z) = diag (ṽ(z)) M(z)S

1
2 ṽ(z) (36)

where the N × 1 vector ṽ(z) denotes the solution of (36). Since M(R0) = W̃ , the
solution of (36) at z = R0 and the solution to (33) coincide, i.e., ṽ(R0) = v∞. Lemma2
expresses the solution of the equation (36) as a power series.

Lemma 2 Suppose that Assumptions 1 and 3 hold. If (B, S) is sufficiently close to
(B∗, S∗), then the N × 1 vector ṽ(z) which satisfies (36) equals

ṽ(z) = (z − 1)

(
N∑

l=1

1√
δl

(x̃1)
3
l

)−1

S− 1
2 x̃1 + φ(z), (37)

where the N × 1 vector φ(z) satisfies ‖φ(z)‖2 ≤ σ(B, S)(z − 1)2 for some scalar
σ(B, S) when z approaches 1 from above.
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Proof The proof is an adaptation of the proof (Van Mieghem 2012, Lemma
4). We express the solution ṽ(z) of (36) as linear combination of the vectors

S− 1
2 x̃1, . . . , S− 1

2 x̃N , i.e.,

ṽ(z) =
N∑

k=1

ψk(z)S
− 1

2 x̃k . (38)

Since the diagonal matrix S− 1
2 is full rank, the vectors

(
S− 1

2 x̃k
)
, where k = 1, . . . , N ,

are linearly independent. Furthermore, we express the coefficients ψk(z) as a power
series

ψk(z) =
∞∑

j=0

g j (k) (z − 1) j , (39)

where g0(k) = 0 for every k = 1, . . . , N , since (Lajmanovich and Yorke 1976) it
holds that ṽ(z) = 0 when z = 1. We denote the eigenvalues of the matrix M(z) by

λk(z) =
{
z if k = 1,

λk if k ≥ 2.
(40)

By substituting (38) into (36), we obtain that

N∑

k=1

(λk(z) − 1) ψk(z)x̃k = diag

(
N∑

l=1

ψl(z)x̃l

)
S− 1

2

N∑

k=1

λk(z)ψk(z)x̃k

and left-multiplying with the eigenvector x̃ Tm , for any m = 1, . . . , N , yields

(λm(z) − 1) ψm(z) =
N∑

n=1

(x̃m)n

N∑

l=1

ψl(z) (x̃l)n
1√
δn

N∑

k=1

ψk(z)λk(z) (x̃k)n . (41)

We define

X(m, l, k) =
N∑

n=1

1√
δn

(x̃m)n (x̃l)n (x̃k)n .

Then, we rewrite (41) as

(λm(z) − 1) ψm(z) =
N∑

l=1

N∑

k=1

ψl(z)ψk(z)λk(z)X(m, l, k). (42)
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1324 B. Prasse, P. Van Mieghem

First, we focus on the left-hand side of (42), which we denote by

θm(z) = (λm(z) − 1) ψm(z).

With the power series (39), we obtain that

θm(z) = (λm(z) − 1)
∞∑

j=1

g j (m) (z − 1) j .

Further rewriting yields that

θm(z) = (λm(z) − z + z − 1)
∞∑

j=1

g j (m) (z − 1) j

= (λm(z) − z)
∞∑

j=1

g j (m) (z − 1) j +
∞∑

j=1

g j (m) (z − 1) j+1

=
∞∑

j=1

(λm(z) − z) g j (m) (z − 1) j +
∞∑

j=2

g j−1(m) (z − 1) j . (43)

Second, we rearrange the right-hand side of (42) as

θm(z) = λ1(z)
N∑

l=1

ψl(z)ψ1(z)X(m, l, 1) +
N∑

l=1

N∑

k=2

ψl(z)ψk(z)λk(z)X(m, l, k).

By the definition of λk(z) in (40) it holds that λ1(z) = z, and we obtain that

θm(z) =(z − 1)
N∑

l=1

ψl(z)ψ1(z)X(m, l, 1) +
N∑

l=1

N∑

k=1

ψl(z)ψk(z)λ̃k X(m, l, k), (44)

where

λ̃k =
{
1 if k = 1,

λk if k ≥ 2.

Introducing the power series (39) into (44) and executing the Cauchy product for
ψl(z)ψk(z) yields

θm(z) =
∞∑

j=1

⎛

⎝
j−1∑

n=1

N∑

l=1

g j−n(1)gn(l)X(m, l, 1)

⎞

⎠ (z − 1) j+1

+
∞∑

j=1

⎛

⎝
j−1∑

n=1

N∑

l=1

N∑

k=1

g j−n(l)gn(k)λ̃k X(m, l, k)

⎞

⎠ (z − 1) j .
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We shift the index j in the first term and obtain

θm(z) =
∞∑

j=2

⎛

⎝
j−2∑

n=1

N∑

l=1

g j−1−n(1)gn(l)X(m, l, 1)

⎞

⎠ (z − 1) j

+
∞∑

j=1

⎛

⎝
j−1∑

n=1

N∑

l=1

N∑

k=1

g j−n(l)gn(k)λ̃k X(m, l, k)

⎞

⎠ (z − 1) j . (45)

Finally, we equate powers in (z − 1) j in (43) and (45), which yields for j = 1 that

(λm(z) − z) g1(m) = 0 (46)

for every m = 1, . . . , N . The spectral radius of the limit W ∗ of the effective infection
rate matrix W equals 1. Furthermore, the limit W ∗ is a non-negative and irreducible
matrix. Thus, the eigenvalues of the limit W ∗ obey λ∗

1 = 1 > |λ∗
m | for every m ≥ 2,

which implies that |λm | < 1 for every m ≥ 2 provided that (B, S) is sufficiently close
to (B∗, S∗). With the definition of λm(z) in (40), we obtain from (46) that g1(m) = 0
when m ≥ 2 provided that (B, S) is sufficiently close to (B∗, S∗), since z ≥ 1.

For j ≥ 2, equating powers in (45) yields that

(λm(z) − z) g j (m) + g j−1(m) =
j−2∑

n=1

N∑

l=1

g j−1−n(1)gn(l)X(m, l, 1)

+
j−1∑

n=1

N∑

l=1

N∑

k=1

g j−n(l)gn(k)λ̃k X(m, l, k). (47)

In particular, for the case j = 2, we obtain

(λm(z) − z) g2(m) + g1(m) =
N∑

l=1

N∑

k=1

g1(l)g1(k)λ̃k X(m, l, k)

= g1(1)g1(1)X(m, 1, 1), (48)

since g1(l) = 0 for all l ≥ 2 and λ̃1 = 1. Since λ1(z) = z, we obtain for m = 1 from
(48) that

g1(1) = g1(1)
2X(1, 1, 1)

and, hence,

g1(1) = 1

X(1, 1, 1)
=

(
N∑

l=1

1√
δl

(x̃1)
3
l

)−1

.
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1326 B. Prasse, P. Van Mieghem

Since g1(m) = 0 for m ≥ 2, we obtain that the power series (38) for the solution ṽ(z)
of (36) becomes

ṽ(z) = (z − 1)g1(1)S
− 1

2 x̃1 + φ(z), (49)

where the N × 1 vector φ(z) equals

φ(z) =
N∑

k=1

⎛

⎝
∞∑

j=2

g j (k) (z − 1) j

⎞

⎠ S− 1
2 x̃k .

Thus, it holds ‖φ(z)‖2 = O (
(z − 1)2

)
when z approaches 1 from above, which proves

Lemma 2. �

We believe that, based on (47), a recursion for the coefficients g j (k) can be obtained
for powers j ≥ 2, similar to the proof of VanMieghem (2012, Lemma 4). The radius of
convergence of the power series (49) is an open problem, see alsoHe andVanMieghem
(2020). To express the solution ṽ(z) in (37) in terms of the principal eigenvector x1 of
the effective infection rate matrix W , we propose Lemma 3.

Lemma 3 Under Assumptions 1 and 3, it holds that

(
N∑

l=1

1√
δl

(x̃1)
3
l

)−1

S− 1
2 x̃1 =

∑N
l=1 δl (x1)2l∑N
l=1 δl (x1)3l

x1. (50)

Proof From (32), it follows that the principal eigenvector x̃1 of the matrix W̃ and the
principal eigenvector x1 of the effective infection rate matrix W are related via

x̃1 = 1∥∥∥S
1
2 x1

∥∥∥
2

S
1
2 x1,

or, component-wise,

(x̃1)l = 1∥∥∥S
1
2 x1

∥∥∥
2

√
δl (x1)l .

Then, we rewrite the left-hand side of (50) as

(
N∑

l=1

1√
δl

(x̃1)
3
l

)−1

S− 1
2 x̃1 =

(
N∑

l=1

δl (x1)
3
l

)−1 ∥∥∥S
1
2 x1

∥∥∥
2

2
x1,
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which simplifies to

(
N∑

l=1

1√
δl

(x̃1)
3
l

)−1

S− 1
2 x̃1 = xT1 Sx1∑N

l=1 δl (x1)3l
x1.

Writing out the quadratic form in the numerator completes the proof. �
The basic reproduction number R0 converges to 1when (B, S) → (B∗, S∗). Hence,

if (B, S) is sufficiently close to (B∗, S∗), then the basic reproduction number R0 is
smaller than the radius of convergence of the power series (38). Thus, if (B, S) is
sufficiently close to (B∗, S∗), then the solution ṽ(R0) to (36) at z = R0 follows with
Lemma 2 as

ṽ(R0) = (R0 − 1)

(
N∑

l=1

1√
δl

(x̃1)
3
l

)−1

S− 1
2 x̃1 + φ(R0)

= γ x1 + φ(R0),

where the last equality follows from Lemma 3 and the definition of the scalar γ in (7).
We emphasise that Lemma 2 implies that γ = O(R0 − 1) and, hence, ‖ṽ(R0)‖2 =
O(R0 − 1) as (B, S) → (B∗, S∗). Since M(R0) = W̃ , the solution of (36) at z = R0
and the solution to (33) coincide, i.e., ṽ(R0) = v∞. Thus, from the definition of the
vector η in (6), we obtain that

‖η‖2 = ‖v∞ − γ x1‖2
= ‖φ(R0)‖2 (51)

when (B, S) → (B∗, S∗). Lemma 2 states that ‖φ(z)‖2 = O (
(z − 1)2

)
as z ↓ 1.

Hence, we obtain from (51) that

‖η‖2 ≤ σ(B, S)(R0 − 1)2 (52)

for some scalar σ(B, S) when (B, S) → (B∗, S∗).
Furthermore, when (B, S) converge to the limit (B∗, S∗), the scalar σ(B, S) con-

verges to some limit σ(B∗, S∗). Hence, by defining the constant

σ = σ(B∗, S∗) + εσ

for some εσ > 0, it holds that

σ(B, S) < σ,

for all (B, S) which are sufficiently close to (B∗, S∗). Finally, we obtain from (52)
that

‖η‖2 ≤ σ(R0 − 1)2

when (B, S) approaches (B∗, S∗).
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C Proof of Lemma 1

We divide Lemma 1 into two parts. In Sect. C.1, we prove that the viral state v(t) does
not overshoot the steady-state v∞. In Sect. C.2, we show that the function c(t) lies in
the interval [0, 1].

C.1 Absence of overshoot

The proof follows the same reasoning as Prasse and Van Mieghem (2019, Corollary
1). Assume that at some time t0 it holds vi (t0) = v∞,i for some node i and that
v j (t0) ≤ v∞, j for every node j . Since vi (t0) = v∞,i , the NIMFA equation (1) yields
that

dvi (t)

dt

∣∣∣∣
t=t0

= −δiv∞,i + (1 − v∞,i )

N∑

j=1

βi jv j (t0).

Since v j (t0) ≤ v∞, j for every node j , we obtain that

dvi (t)

dt

∣∣∣∣
t=t0

≤ −δiv∞,i + (1 − v∞,i )

N∑

j=1

βi jv∞, j = 0,

where the last equality follows from the steady-state equation (3). Thus, vi (t0) = v∞,i

implies that dvi (t)
dt

∣∣∣
t=t0

≤ 0, which means that, at time t0, the viral state vi (t0) does

not increase. Hence, the viral state vi (t0) cannot exceed the steady-state v∞,i at any
time t ≥ 0.

C.2 Boundedness of the function c(t)

Relation (16) indicates that

c(t) = 1

‖v∞‖22
vT∞v(t) = 1

‖v∞‖22
(
v∞,1v1(t) + · · · + v∞,NvN (t)

)
(53)

Section C.1 shows that Assumption 2 implies that vi (t) ≤ v∞,i for all nodes i and
every time t . Thus, we obtain from (53) that

c(t) ≤ 1

‖v∞‖22
(
v∞,1v∞,1 + · · · + v∞,Nv∞,N

) = 1

Analogously, since vi (t) ≥ 0 for all nodes i and every time t , we obtain from (53) that
c(t) ≥ 0.
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D Proof of Theorem 2

By inserting the ansatz (15) into the NIMFA equations (2), we obtain that

dc(t)

dt
v∞ + dξ(t)

dt
= Λ1(t) + Λ2(t). (54)

Here, the function Λ1(t) is given by

Λ1(t) = (B − S) c(t)v∞ − c2(t)diag(v∞)Bv∞,

which simplifies, with the steady-state equation (3), to

Λ1(t) =
(
c(t) − c2(t)

)
(B − S) v∞. (55)

The function Λ2(t) is given by

Λ2(t) = (B − S) ξ(t) − c(t)diag(ξ(t))Bv∞ − c(t)diag(v∞)Bξ(t)

− diag(ξ(t))Bξ(t).

With diag(ξ(t))Bv∞ = diag(Bv∞)ξ(t), we obtain that

Λ2(t) = (B − S − c(t)diag(Bv∞) − c(t)diag(v∞)B) ξ(t)

− diag(ξ(t))Bξ(t). (56)

To show that the error term ξ(t) converges to zero at every time t when (B, S) →
(B∗, S∗), we consider the squared Euclidean norm ‖ξ(t)‖22. The convergence of the
squared norm ‖ξ(t)‖22 to zero implies the convergence of the error term ξ(t) to zero.
The derivative of the squared norm ‖ξ(t)‖22 is given by

d‖ξ(t)‖22
dt

= 2ξ T (t)
dξ(t)

dt
.

Thus, we obtain from (54) that

1

2

d‖ξ(t)‖22
dt

= ξ T (t)Λ1(t) + ξ T (t)Λ2(t), (57)

since ξ T (t)v∞ = 0 by definition of ξ(t). We do not know how to solve (57) exactly,
and we resort to bounding the two addends on the right-hand side of (57) in Sects. D.1
and D.2, respectively. In Sect. D.3 we complete the proof of Theorem 2 by deriving
an upper bound on the squared norm ‖ξ(t)‖22.
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1330 B. Prasse, P. Van Mieghem

D.1 Upper bound on �T(t)31(t)

We obtain an upper bound on the projection of the functionΛ1(t) onto the error vector
ξ(t), which is linear with respect to the norm ‖ξ(t)‖2:

Lemma 4 Under Assumptions 1 to 3, it holds at every time t ≥ 0 that
∣∣∣ξ T (t)Λ1(t)

∣∣∣ ≤ 1

4
δmax (γ (R0 − 1) + (R0 + 1)‖η‖2) ‖ξ(t)‖2.

Proof From (55) and the definition of the matrix W in (5) it follows that

ξ T (t)Λ1(t) =
(
c(t) − c2(t)

)
ξ T (t)S (W − I ) v∞.

With Theorem 1, we obtain

ξ T (t)Λ1(t) =
(
c(t) − c2(t)

) (
γ (R0 − 1)ξ T (t)Sx1 + ξ T (t)S(W − I )η

)
.

The triangle inequality yields that
∣∣∣ξ T (t)Λ1(t)

∣∣∣ ≤
∣∣∣c(t) − c2(t)

∣∣∣
(
|γ (R0 − 1)|

∣∣∣ξ T (t)Sx1
∣∣∣ +

∣∣∣ξ T (t)S(W − I )η
∣∣∣
)

.

(58)

With the Cauchy–Schwarz inequality, the first addend in (58) is upper-bounded by
∣∣∣ξ T (t)Sx1

∣∣∣ ≤ ‖ST ξ(t)‖2‖x1‖2
= ‖Sξ(t)‖2,

since ‖x1‖2 = 1 and the matrix S is symmetric. The matrix 2-norm is sub-
multiplicative, which yields that

∣∣∣ξ T (t)Sx1
∣∣∣ ≤ ‖S‖2‖ξ(t)‖2
= δmax‖ξ(t)‖2.

Thus, (58) gives that
∣∣∣ξ T (t)Λ1(t)

∣∣∣ ≤
∣∣∣c(t) − c2(t)

∣∣∣
(
γ (R0 − 1)δmax‖ξ(t)‖2 +

∣∣∣ξ T (t)S(W − I )η
∣∣∣
)

,

(59)

since γ > 0 and R0 > 1. We consider the second addend in (59), which we write with
(32) as

∣∣∣ξ T (t)S(W − I )η
∣∣∣ =

∣∣∣ξ T (t)S
1
2 (W̃ − I )S

1
2 η

∣∣∣ .
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From the Cauchy–Schwarz inequality and the sub-multiplicativity of the matrix norm
we obtain

∣∣∣ξ T (t)S(W − I )η
∣∣∣ ≤ ‖ξ(t)‖2‖S 1

2 ‖2‖W̃ − I‖2‖S 1
2 ‖2‖η‖2.

The triangle inequality and the symmetry of the matrix W̃ imply that

‖W̃ − I‖2 ≤ ‖W̃‖2 + ‖I‖2 = R0 + 1.

Thus, we can upper bound the second added in (59) by

∣∣∣ξ T (t)S(W − I )η
∣∣∣ ≤ δmax(R0 + 1)‖ξ(t)‖2‖η‖2,

since ‖S 1
2 ‖2 = √

δmax. Hence, (59) yields the upper bound

∣∣∣ξ T (t)Λ1(t)
∣∣∣ ≤

∣∣∣c(t) − c2(t)
∣∣∣ δmax (γ (R0 − 1) + (R0 + 1)‖η‖2) ‖ξ(t)‖2.

Finally, Lemma 1 states that 0 ≤ c(t) ≤ 1, which implies that

∣∣∣c(t) − c2(t)
∣∣∣ ≤ 1/4

and completes the proof. �

D.2 Upper bound on �T(t)32(t)

Lemma 5 states an intermediate result, which we will use to bound the projection of
the function Λ2(t) onto the error vector ξ(t).

Lemma 5 Suppose that Assumptions 1 to 3 hold. Then, at every time t ≥ 0, it holds
that

ξ T (t)Λ2(t) ≤ −‖S 1
2 ξ(t)‖22 + ξ T (t)diag(u − c(t)v∞)Bξ(t).

Proof From (56) it follows that

ξ T (t)Λ2(t) = ξ T (t) (B − S − c(t)diag(Bv∞) − c(t)diag(v∞)B) ξ(t)

− ξ T (t)diag(ξ(t))Bξ(t). (60)

To simplify (60), we aim to bound the last addend of (60) by an expression that is
quadratic in the error vector ξ(t). The last addend equals

−ξ T (t)diag(ξ(t))Bξ(t) =
N∑

l=1

ξ2l (t)
N∑

j=1

βl j
(−ξ j (t)

)
. (61)

123



1332 B. Prasse, P. Van Mieghem

Since v(t) = c(t)v∞ + ξ(t) and vi (t) ≥ 0 for every node i at every time t , it holds
that

−ξi (t) ≤ c(t)v∞,i , i = 1, . . . , N . (62)

By inserting (62) in (61), the last addend of (60) is upper bounded by

−ξ T (t)diag(ξ(t))Bξ(t) ≤
N∑

l=1

ξ2l (t)
N∑

j=1

βl j c(t)v∞, j ,

which simplifies to

−ξ T (t)diag(ξ(t))Bξ(t) ≤ c(t)ξ T (t)diag(Bv∞)ξ(t). (63)

By applying the upper bound (63) to (60), we obtain that

ξ T (t)Λ2(t) ≤ξ T (t) (B − S − c(t)diag(v∞)B) ξ(t).

With the definition of the matrix W̃ in (32), we obtain

ξ T (t)Λ2(t) ≤ξ T (t)S
1
2

(
W̃ − I − c(t)diag(v∞)W̃

)
S

1
2 ξ(t),

and further rearranging completes the proof. �
For any scalar ς ∈ [0, 1] and any vector υ ∈ R

N , we define

Θ(ς, υ, B, S) =
∣∣υT diag(u − ςv∞)Bυ

∣∣

‖S 1
2 υ‖22

.

Then, we obtain from Lemma 5 that

ξ T (t)Λ2(t) ≤ (Θ(c(t), ξ(t), B, S) − 1) ‖S 1
2 ξ(t)‖22. (64)

To upper-bound the term Θ(c(t), ξ(t), B, S), we make use of (parts of) the results of
Issos (1966), which are analogues of the Perron–Frobenius Theorem for the numerical
radius of a non-negative, irreducible matrix:

Theorem 5 (Issos 1966) Let M be a real irreducible and non-negative N × N matrix.
Then, there is a positive vector z ∈ R

N of length zT z = 1 such that zT Mz = r(M).
Furthermore, if z̃T Mz̃ = r(M) holds for a vector z̃ ∈ R

N of length z̃T z̃ = 1, then
either z̃ = z or z̃ = −z.

We refer the reader to Issos (1966), Maroulas et al. (2002) and Li et al. (2002) for
further results on the numerical radius of non-negative matrices. We apply Theorem 5
to obtain:
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Lemma 6 Denote the set of N × 1 vectors with at least one positive and at least one
negative component as

S =
{
υ ∈ R

N |∃i, j : υ j > 0 > υi

}
.

Then, it holds Θ(ς, υ, B, S) < R0 for every scalar ς ∈ [0, 1] and for every vector
υ ∈ S.
Proof By introducing the N × 1 vector

υ̃ = S
1
2 υ

and by using (32), we rewrite the term Θ(ς, υ, B, S) as

Θ(ς, υ, B, S) =
∣∣∣υ̃T diag(u − ςv∞)W̃ υ̃

∣∣∣

‖υ̃‖22
. (65)

For every scalar ς ∈ [0, 1] the matrix (diag(u − ςv∞)W̃ ) is irreducible and non-
negative. Since υ ∈ S and the matrix S is a diagonal matrix with non-negative entries,
it holds that υ̃i < 0 and υ̃ j > 0 for some i, j . Hence, at least two components of the
vector υ̃ have different signs, and Theorem 5 implies that (65) is upper-bounded by

Θ(ς, υ, B, S) < r
(
diag(u − ςv∞)W̃

)
.

Since the matrix W̃ is irreducible and diag(u − ςv∞)W̃ ≤ W̃ for every ς ∈ [0, 1],
where the inequality holds element-wise, it holds (Li et al. 2002, Corollary 3.6.) that

Θ(ς, υ, B, S) < r
(
W̃

)
.

Thematrix W̃ is symmetric, and, hence, the numerical radius r
(
W̃

)
equals the spectral

radius ρ
(
W̃

)
= R0, which yields that

Θ(ς, υ, B, S) < R0.

�
Finally, we obtain a bound on the projection of the functionΛ2(t) onto the error vector
ξ(t):

Lemma 7 Under Assumptions 1 to 3, there is some constant ω > 0 such that

ξ T (t)Λ2(t) ≤ −ωδmax‖ξ(t)‖22
holds at every time t ≥ 0 when (B, S) approaches (B∗, S∗).
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1334 B. Prasse, P. Van Mieghem

Proof Wedenote themaximumof the functionΘ(ς, υ, B, S)with respect toς ∈ [0, 1]
and υ ∈ S by

Θmax(B, S) = max
ς∈[0,1],υ∈S

Θ(ς, υ, B, S). (66)

As a first step, we consider the value of Θmax(B∗, S∗) at the limit (B∗, S∗). Since the
steady-state v∞ equals to zero at the limit (B∗, S∗), we obtain from (65) that

Θ(ς, υ, B∗, S∗) = 1

‖υ̃‖22
∣∣∣υ̃T W̃ ∗υ̃

∣∣∣ , (67)

wherewedenote W̃ ∗ = (S∗)−
1
2 B∗ (S∗)−

1
2 . Since it holds R0 = 1 at the limit (B∗, S∗),

Lemma 6 implies that

Θmax(B
∗, S∗) < 1. (68)

As a second step, we consider that the infection rate matrix B and the curing
rate matrix S do not equal the respective limit B∗ and S∗. Thus, there are non-zero
N × N matrices ΔB,ΔS and ΔW̃ such that B = B∗ + ΔB, S = S∗ + ΔS, and
W̃ = W̃ ∗ + ΔW̃ . Then, we obtain from (65) that

Θ(ς, υ, B, S) = 1

‖υ̃‖22
∣∣∣υ̃T

(
W̃ ∗ − ςdiag(v∞)W̃ ∗ + diag(u − ςv∞)ΔW̃

)
υ̃

∣∣∣ ,

which is upper-bounded by

Θ(ς, υ, B, S) ≤ 1

‖υ̃‖22
∣∣∣υ̃T W̃ ∗υ̃

∣∣∣ + 1

‖υ̃‖22
∣∣∣υ̃T ςdiag(v∞)W̃ ∗υ̃

∣∣∣

+ 1

‖υ̃‖22
∣∣∣υ̃T diag(u − ςv∞)ΔW̃ υ̃

∣∣∣ . (69)

Maximising every addend in (69) independently yields an upper bound onΘmax(B, S)

as

Θmax(B, S) ≤ max
ς∈[0,1],υ∈S

1

‖υ̃‖22
∣∣∣υ̃T W̃ ∗υ̃

∣∣∣

+ max
ς∈[0,1],υ∈S

1

‖υ̃‖22
∣∣∣υ̃T ςdiag(v∞)W̃ ∗υ̃

∣∣∣

+ max
ς∈[0,1],υ∈S

1

‖υ̃‖22
∣∣∣υ̃T diag(u − ςv∞)ΔW̃ υ̃

∣∣∣ . (70)
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In the following, we state upper bounds for each of the three addends in (67) separately.
With (67), we write the first addend in (70) as

max
ς∈[0,1],υ∈S

1

‖υ̃‖22
∣∣∣υ̃T W̃ ∗υ̃

∣∣∣ = max
ς∈[0,1],υ∈S

Θ(ς, υ, B∗, S∗)

= Θmax(B
∗, S∗), (71)

where the last equality follows from the definition ofΘmax(B∗, S∗) in (66). Regarding
the second addend in (70), it holds that

max
ς∈[0,1],υ∈S

1

‖υ̃‖22
∣∣∣υ̃T ςdiag(v∞)W̃ ∗υ̃

∣∣∣ ≤ max
ς∈[0,1] max

υ∈RN

1

‖υ̃‖22
∣∣∣υ̃T ςdiag(v∞)W̃ ∗υ̃

∣∣∣

= max
ς∈[0,1] r

(
ςdiag(v∞)W̃ ∗) ,

where the last equality follows from the definition the numerical radius. Hence, the
second addend in (70) is upper-bounded by

max
ς∈[0,1],υ∈S

1

‖υ̃‖22
∣∣∣υ̃T ςdiag(v∞)W̃ ∗υ̃

∣∣∣ ≤ r
(
ς

(1)
opt diag(v∞)W̃ ∗) (72)

for some ς
(1)
opt ∈ [0, 1]. Similarly, we obtain an upper bound on the third addend in

(70) as

max
ς∈[0,1],υ∈S

1

‖υ̃‖22
∣∣∣υ̃T diag(u − ςv∞)ΔW̃ υ̃

∣∣∣ ≤ r
(
diag(u − ς

(2)
optv∞)ΔW̃

)
(73)

for some ς
(2)
opt ∈ [0, 1]. With (71), (72) and (73), we obtain from (70) that

Θmax(B, S) ≤ Θmax(B
∗, S∗) + r

(
ς

(1)
opt diag(v∞)W̃ ∗)

+ r
(
diag(u − ς

(2)
optv∞)ΔW̃

)
. (74)

The numerical radius r(M) is a vector8 norm (Horn and Johnson 1990) on the space of
N×N matricesM . Thus, the numerical radius r(M) converges to zero if the matrixM
converges to zero. Since v∞ → 0 and ΔW̃ → 0 as (B, S) → (B∗, S∗) and ς

(1)
opt , ς

(2)
opt

are bounded, the last two addends in (74) converge to zero as (B, S) → (B∗, S∗).
Hence, for every scalar ω > 0 there is a ϑ(ω) such that ‖B − B∗‖2 < ϑ(ω) and
‖S − S∗‖2 < ϑ(ω) implies that

Θmax(B, S) ≤ Θmax(B
∗, S∗) + ω. (75)

8 The numerical radius is not a matrix norm, since the numerical radius is not sub-multiplicative.
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1336 B. Prasse, P. Van Mieghem

We choose the scalar ω = (1−Θmax(B∗, S∗))/2, which is positive due to (68). Then,
the right-hand side of (75) becomes

Θmax(B
∗, S∗) + ω = 1

2
+ 1

2
Θmax(B

∗, S∗)

= 1 − ω.

Thus, we obtain from (75) that

Θmax(B, S) ≤ 1 − ω (76)

holds for all (B, S) which are sufficiently close to the limit (B∗, S∗).
By definition, the error vector ξ(t) at any time t ≥ 0 is orthogonal to the steady-state

vector v∞. Since the steady-state v∞ is positive, the error vector ξ(t) has at least one
positive and one negative element, and, hence, it holds that ξ(t) ∈ S. Thus, we obtain
from the definition of the term Θmax(B, S) in (66) that

Θ(c(t), ξ(t), B, S) ≤ Θmax(B, S).

With (76), we obtain from (64) that

ξ T (t)Λ2(t) ≤ −ω‖S 1
2 ξ(t)‖22.

From the sub-multiplicativity of the matrix norm, we obtain

ξ T (t)Λ2(t) ≤ −ω‖S 1
2 ‖22‖ξ(t)‖22,

which completes the proof, since ‖S 1
2 ‖22 = δmax. �

D.3 Bound on the error vector �(t)

With Lemma 4 and Lemma 7, we upper-bound (57) by

1

2

d‖ξ(t)‖22
dt

≤ 1

4
δmax (γ (R0 − 1) + (R0 + 1)‖η‖2) ‖ξ(t)‖2 − ωδmax‖ξ(t)‖22.

From

d‖ξ(t)‖2
dt

= 1

2‖ξ(t)‖2
d‖ξ(t)‖22

dt
,

it follows that

d‖ξ(t)‖2
dt

≤ 1

4
δmax (γ (R0 − 1) + (R0 + 1)‖η‖2) − ωδmax‖ξ(t)‖2.
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Time-dependent solution of the NIMFA equations around… 1337

We denote

ϕ (B, S) = 1

4
(γ (R0 − 1) + (R0 + 1)‖η‖2) , (77)

and we obtain that

d‖ξ(t)‖2
dt

≤ ϕ (B, S) δmax − ωδmax‖ξ(t)‖2. (78)

The upper bound (78) is a linear first-order ordinary differential inequality, which is
solved by (Arfken and Weber 1999)

‖ξ(t)‖2 ≤ e−ωδmaxt
(

‖ξ(0)‖2 +
∫ t

0
ϕ (B, S) δmaxe

ωδmax t̃ d t̃

)
,

which simplifies to

‖ξ(t)‖2 ≤
(

‖ξ(0)‖2 − ϕ (B, S)

ω

)
e−ωδmaxt + ϕ (B, S)

ω
.

The triangle inequality yields that

‖ξ(t)‖2 ≤ ‖ξ(0)‖2e−ωδmaxt + ϕ (B, S)

ω

(
1 + e−ωδmaxt

)
. (79)

Furthermore, since e−ωδmaxt ≤ 1 at every time t ≥ 0, we obtain from (79) that

‖ξ(t)‖2 ≤ ‖ξ(0)‖2e−ωδmaxt + 2
ϕ (B, S)

ω
. (80)

The maximum δmax of the curing rates converges to some limit δ∗
max when (B, S) →

(B∗, S∗). Hence, for any ε > 0 it holds that δ∗
max − ε < δmax when (B, S) approaches

(B∗, S∗). For some ε ∈ (0, δ∗
max), we set the constant

σ1 = ω(δ∗
max − ε).

Then, it holds that σ1 < ωδmax when (B, S) approaches (B∗, S∗), and we obtain from
(80) that

‖ξ(t)‖2 ≤ ‖ξ(0)‖2e−σ1t + 2
ϕ (B, S)

ω
. (81)

Theorem 1 states that γ = O(R0 − 1) and ‖η‖2 = O (
(R0 − 1)2

)
when (B, S)

approaches (B∗, S∗). Thus, it follows from the definition of the term ϕ (B, S) in (77)
that ϕ (B, S) = O (

(R0 − 1)2
)
. Hence, there is a constant σ2 > 0 such that (81) yields

‖ξ(t)‖2 ≤ ‖ξ(0)‖2e−σ1t + σ2 (R0 − 1)2
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1338 B. Prasse, P. Van Mieghem

when (B, S) approaches (B∗, S∗).

E Proof of Theorem 3

By projecting the differential equation (54) onto the steady-state vector v∞, we obtain
that

dc(t)

dt
vT∞v∞ = vT∞Λ1(t) + vT∞Λ2(t),

since vT∞ξ(t) = 0 by definition of the error term ξ(t). We divide by ‖v∞‖22 and obtain
with (55) that

dc(t)

dt
=

(
c(t) − c2(t)

) vT∞ (B − S) v∞
‖v∞‖22

+ vT∞Λ2(t)

‖v∞‖22
. (82)

The first addend in the differential equation (82) can be expressed in a simpler
manner when (B, S) approaches (B∗, S∗):

Lemma 8 Under Assumptions 1 and 3, it holds

vT∞ (B − S) v∞
vT∞v∞

= (R0 − 1)xT1 Sx1 + ζ, (83)

where ζ = O (
(R0 − 1)2

)
when (B, S) approaches (B∗, S∗).

Proof With Theorem 1 and the definition of the matrix W in (5), the numerator of the
left-hand side of (83) becomes

vT∞ (B − S) v∞ = (γ x1 + η)T (S(W − I )γ x1 + (B − S)η)

= (γ x1 + η)T (γ (R0 − 1)Sx1 + (B − S)η),

where the last equality follows from Wx1 = R0x1. Thus, it holds that

vT∞ (B − S) v∞ = γ 2(R0 − 1)xT1 Sx1 + γ xT1 (B − S)η

+ γ (R0 − 1)ηT Sx1 + ηT (B − S)η. (84)

Under Assumption 3, both matrices B and S are symmetric, which implies that

(
xT1 (B − S)

)T = (B − S)x1

= S(R0 − 1)x1.

Hence, we obtain from (84) that

vT∞ (B − S) v∞ = γ 2(R0 − 1)xT1 Sx1 + γ (R0 − 1)xT1 Sη
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+ γ (R0 − 1)ηT Sx1 + ηT (B − S)η.

Since γ = O(R0 − 1) and ‖η‖2 = O (
(R0 − 1)2

)
, we finally rewrite the numerator

of the left-hand side of (83) as

vT∞ (B − S) v∞ =γ 2(R0 − 1)xT1 Sx1 + O
(
(R0 − 1)4

)
. (85)

With Theorem 1, the denominator of the left-hand side of (83) equals

vT∞v∞ = γ 2 + 2γ ηT x1 + ‖η‖22
= γ 2 + O

(
(R0 − 1)3

)
. (86)

Combining the approximate expressions for the numerator (85) and the denominator
(86) completes the proof. �
We define the viral slope w as

w = (R0 − 1)xT1 Sx1 (87)

and the function n(t) as

n(t) =
(
c(t) − c2(t)

)
ζ + vT∞Λ2(t)

‖v∞‖22
. (88)

Then, we obtain from (82) that

dc(t)

dt
=

(
c(t) − c2(t)

)
w + n(t). (89)

The function n(t) is complicated and depends on the error vector ξ(t). Hence, we
cannot solve the differential equation (89) for the function c(t) without knowing the
solution for the error vector ξ(t). However, as (B, S) → (B∗, S∗), the function n(t)
converges to zero uniformly in time t as stated by the bound in Lemma 9.

Lemma 9 Under Assumptions 1 to 3, it holds at every time t ≥ 0 that

|n(t)| ≤ σ1‖ξ(0)‖2e−σ2t + σ3(R0 − 1)2

for some constants σ1, σ2, σ3 > 0 when (B, S) approaches (B∗, S∗).

Proof Regarding the first addend in the definition of the function n(t) in (88), Lemma 1
implies that 0 ≤ c(t)− c2(t) ≤ 1/4 at every time t . Hence, Lemma 8 yields that there
is a constant σ̃0 such that

∣∣∣
(
c(t) − c2(t)

)
ζ

∣∣∣ ≤ σ̃0(R0 − 1)2
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1340 B. Prasse, P. Van Mieghem

at every time t when (B, S) approaches (B∗, S∗). Regarding the second addend of the
function n(t) defined in (88), it follows from the definition of the function Λ2(t) in
(56) that

vT∞Λ2(t)

‖v∞‖22
= 1

‖v∞‖22
vT∞ (B − S − c(t)diag(Bv∞) − diag(v(t))B) ξ(t),

since v(t) = c(t)v∞ + ξ(t). Thus, it holds that

vT∞Λ2(t)

‖v∞‖22
= 1

‖v∞‖22
vT∞ (−S + diag(u − v(t))B − c(t)diag(Bv∞)) ξ(t).

With the definition of the matrix W̃ in (32), we obtain that

vT∞Λ2(t)

‖v∞‖22
= 1

‖v∞‖22
vT∞S

1
2

(
− I + diag(u − v(t))W̃

−c(t)S− 1
2 diag(Bv∞)S− 1

2

)
S

1
2 ξ(t).

The Cauchy–Schwarz inequality yields an upper bound as

∣∣∣∣∣
vT∞Λ2(t)

‖v∞‖22

∣∣∣∣∣ ≤ 1

‖v∞‖22
∥∥∥S

1
2 ξ(t)

∥∥∥
2
·

·
∥∥∥
(
−I + diag(u − v(t))W̃ − c(t)S− 1

2 diag(Bv∞)S− 1
2

)
S

1
2 v∞

∥∥∥
2

With
∥∥∥S

1
2 ξ(t)

∥∥∥
2

≤ √
δmax ‖ξ(t)‖2 and the triangle inequality, we obtain

∣∣∣∣∣
vT∞Λ2(t)

‖v∞‖22

∣∣∣∣∣ ≤ √
δmax

‖ξ(t)‖2
‖v∞‖22

∥∥∥
(
W̃ − I

)
S

1
2 v∞

∥∥∥
2

+ √
δmax

‖ξ(t)‖2
‖v∞‖22

∥∥∥diag(v(t))W̃
∥∥∥
2

∥∥∥S
1
2 v∞

∥∥∥
2

+ √
δmax

‖ξ(t)‖2
‖v∞‖22

∥∥∥c(t)S− 1
2 diag(Bv∞)S− 1

2

∥∥∥
2

∥∥∥S
1
2 v∞

∥∥∥
2
. (90)

In the following, we consider the three addends in (90) separately. Regarding the first
addend, we obtain with the definition of the matrix W̃ in (32) that

(
W̃ − I

)
S

1
2 v∞ = S

1
2 (W − I ) v∞

= γ (R0 − 1)S
1
2 x1 + S

1
2 (W − I ) η,
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where the last equality follows from Theorem 1. Thus, the triangle inequality yields
∥∥∥
(
W̃ − I

)
S

1
2 v∞

∥∥∥
2

≤ γ (R0 − 1)
∥∥∥S

1
2 x1

∥∥∥
2
+

∥∥∥S
1
2 (W − I ) η

∥∥∥
2
.

With the sub-multiplicativity of the matrix 2-norm, we obtain
∥∥∥
(
W̃ − I

)
S

1
2 v∞

∥∥∥
2

≤ √
δmax

(
γ (R0 − 1) + (R0 + 1) ‖η‖2

)
,

since ‖(W − I )‖2 ≤ R0 + 1. Since γ = O(R0 − 1) and ‖η‖2 = O((R0 − 1)2) when
(B, S) → (B∗, S∗), there is a constant σ̃1 such that

∥∥∥
(
W̃ − I

)
S

1
2 v∞

∥∥∥
2

≤ σ̃1(R0 − 1)2 (91)

when (B, S) approaches (B∗, S∗). Regarding the second addend in (90), it holds that
∥∥∥diag(v(t))W̃

∥∥∥
2

≤ ‖diag(v(t))‖2
∥∥∥W̃

∥∥∥
2

= R0 max
l=1,...,N

v∞,l .

Since ‖v∞‖2 = O(R0−1)when (B, S) → (B∗, S∗), it follows that there is a constant
σ̃2 such that

∥∥∥diag(v(t))W̃
∥∥∥
2

∥∥∥S
1
2 v∞

∥∥∥
2

≤ σ̃2(R0 − 1)2 (92)

when (B, S) approaches (B∗, S∗). Regarding the third addend in (90), it holds per
definition of the matrix 2-norm that

∥∥∥c(t)S− 1
2 diag(Bv∞)S− 1

2

∥∥∥
2

= c(t) max
l=1,...,N

N∑

j=1

β jl

δl
v∞, j

≤ max
l=1,...,N

(Wv∞)l ,

where the last inequality follows from c(t) ≤ 1, as stated by Lemma 1, and the
definition of the effective infection rate matrix W in (5). Hence, we obtain the upper-
bound

∥∥∥c(t)S− 1
2 diag(Bv∞)S− 1

2

∥∥∥
2

∥∥∥S
1
2 v∞

∥∥∥
2

≤ σ̃3(R0 − 1)2 (93)

for some constant σ̃3 when (B, S) approaches (B∗, S∗). We apply the three upper
bounds (91), (92) and (93) to (90) and obtain that

∣∣∣∣∣
vT∞Λ2(t)

‖v∞‖22

∣∣∣∣∣ ≤√
δmax (σ̃1 + σ̃2 + σ̃3)

(R0 − 1)2

‖v∞‖22
‖ξ(t)‖2
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when (B, S) approaches (B∗, S∗). Since ‖v∞‖22 = O((R0 − 1)2) when (B, S) →
(B∗, S∗), there is a constant σ̃4 such that, as (B, S) approaches (B∗, S∗), it holds

∣∣∣∣∣
vT∞Λ2(t)

‖v∞‖22

∣∣∣∣∣ ≤σ̃4 ‖ξ(t)‖2

at every time t . Thus, we have obtained an upper bound, which is proportional to the
norm of the error vector ξ(t). Finally, we apply Theorem 2 to bound the norm ‖ξ(t)‖2,
which completes the proof. �
Lemma 9 suggests that, since n(t) → 0 when (B, S) → (B∗, S∗), the differential
equation (89) for the function c(t) is approximated by the logistic differential equation

dc(t)

dt
≈

(
c(t) − c2(t)

)
w. (94)

To make the statement (94) precise, we define the function cb(t, x), for any scalar x
with |x | < w, as

cb(t, x) = 1

2
+ 1

2

√
1 + x

w
tanh

(√
w(w + x)

2
t + Υ (x)

)
, (95)

where the constant Υ (x) is set such that cb(0, x) = c(0), i.e.,

Υ (x) = artanh

(
2w√

w(w + x)

(
c(0) − 1

2

))
.

Lemma 10 states an upper and a lower bound on the function c(t).

Lemma 10 Suppose that Assumptions 1 to 3 hold and that

‖ξ(0)‖2 ≤ σ1(R0 − 1)p (96)

for some constants σ1 > 0 and p > 1 when (B, S) approaches (B∗, S∗). Then, the
function c(t) is bounded by

cb(t,−κ) ≤ c(t) ≤ cb(t, κ) ∀ t ≥ 0,

where the scalar κ equals κ = σ2(R0 − 1)s with s = min{p, 2} and some constant
σ2 > 0 as (B, S) approaches (B∗, S∗).

Proof With (96), Lemma 9 implies that it holds

|n(t)| ≤ σ̃1(R0 − 1)pe−σ̃2t + σ̃3(R0 − 1)2
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for some constants σ̃1, σ̃2, σ̃3 > 0. Since e−σ̃2t ≤ 1, we obtain that |n(t)| ≤ κ at every
time t , where we define the scalar

κ = σ̃4(R0 − 1)s

with the constants s = min{p, 2} and σ̃4 = σ̃1 + σ̃3. With |n(t)| ≤ κ , we obtain from
the differential equation (89) for the function c(t) that

(
c(t) − c2(t)

)
w − κ ≤ dc(t)

dt
≤

(
c(t) − c2(t)

)
w + κ ∀ t ≥ 0. (97)

The upper and lower bound (97) give rise to a Riccati differential equation, which can
be solved exactly, and we obtain that the function c(t) is bounded by

c(t) ≥ 1

2
+ 1

2

√
1 − κ

w
tanh

(√
w(w − κ)

2
t + Υ (−κ)

)

and

c(t) ≤ 1

2
+ 1

2

√
1 + κ

w
tanh

(√
w(w + κ)

2
t + Υ (κ)

)
.

at every time t ≥ 0. �
When (B, S) approaches (B∗, S∗), Theorem 2 states that the error term ξ(t) is negli-
gible and, furthermore, Lemma 10 states that the function c(t) converges to cb(t, 0).
Thus, based on the ansatz (15), we approximate the viral state v(t) by

vapx(t) = cb(t, 0)v∞.

With the definition of the function cb(t, x) in (95), it holds that

vapx(t) = 1

2

(
1 + tanh

(w

2
+ Υ (0)

))
v∞.

Then, it follows from the ansatz (15) that the difference of the exact viral state v(t) to
the approximation vapx(t) equals

‖v(t) − vapx(t)‖2 = |c(t) − cb(t, 0)| ‖v∞‖2 + ‖ξ(t)‖2. (98)

The norm ‖ξ(t)‖2 of the error term ξ(t) is bounded by Theorem 2. Thus, it remains
to bound the first addend of (98). With Lemma 10, the difference of the function c(t)
to cb(t, 0) is bounded by

|c(t) − cb(t, 0)| ≤ cb(t, κ) − cb(t,−κ). (99)
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1344 B. Prasse, P. Van Mieghem

Furthermore, the scalar κ converges to zero when (B, S) approaches (B∗, S∗). Hence,
if we show that, as the scalar κ converges to zero, the upper bound cb(t, κ) converges
to the lower bound cb(t,−κ) then (99) implies that the function c(t) converges to
cb(t, 0). Furthermore, we must show that the upper bound cb(t, κ) converges to the
lower bound cb(t,−κ) uniformly in time t , since the upper bound on the approximation
error ‖v(t) − vapx(t)‖2 in Theorem 3 does not depend on time t . From the definition
of the function cb(t, x) in (95) we obtain that

|c(t) − cb(t, 0)| ≤ 1

2

√
1 + κ

w
g(t, κ) − 1

2

√
1 − κ

w
g(t,−κ), (100)

where we denote

g(t, κ) = tanh

(√
w (w + κ)

2
t + Υ (κ)

)
. (101)

Lemma 10 states that κ = O((R0 − 1)s) for some s > 1 when (B, S) approaches
(B∗, S∗). Furthermore, Lemma 8 states that w = O(R0 − 1). Hence, it holds that
κ/w = O((R0 − 1)s−1) when (B, S) approaches (B∗, S∗). For small x , the series
expansion of the square root yields that

1

2

√
1 + x = 1

2
+ 1

4
x + O(x2).

Thus, for small values of κ/w, we obtain from (100) that

|c(t) − cb(t, 0)| ≤ 1

2
(g(t, κ) − g(t,−κ)) + 1

4w
κ (g(t, κ) + g(t,−κ))

+ (g(t, κ) − g(t,−κ)) · O
(

κ2

w2

)
.

Since the magnitude of the hyperbolic tangent is bounded by 1, it follows from the
definition of the function g(t, κ) in (101) that

|g(t, κ) − g(t,−κ)| ≤ |g(t, κ)| + |g(t,−κ)| ≤ 2,

which yields that

|c(t) − cb(t, 0)| ≤1

2
(g(t, κ) − g(t,−κ)) + 1

2w
κ + O

(
(R0 − 1)2(s−1)

)
, (102)

since κ/w = O((R0 − 1)s−1). The last two addends of (102) are independent of time
t . Thus, it remains to show that first addend, i.e., the difference (g(t, κ) − g(t,−κ)),
converges to zero uniformly in time t as κ → 0.
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Lemma 11 Under Assumptions 1 to 3, there is some constant σ1 > 0 such that

|g(t, κ) − g(t,−κ)| ≤ 2σ1κ

at every time t ≥ 0 when the scalar κ approaches zero from above.

Proof The mean value theorem gives that

g(t, κ) = g(t, 0) + ∂κg(t, κ)|κ=z(t) κ

for some z(t) ∈ (0, κ). Thus, it holds that

g(t, κ) − g(t,−κ) = ∂κg(t, κ)|κ=z1(t) κ + ∂κg(t, κ)|κ=z2(t) κ

for some z1(t) ∈ (0, κ) and z2(t) ∈ (−κ, 0), which yields that

|g(t, κ) − g(t,−κ)| = ∣∣∂κg(t, κ)|κ=z1(t)

∣∣ κ + ∣∣∂κg(t, κ)|κ=z2(t)

∣∣ κ. (103)

To express the derivative of the function g(t, κ), we write the function g(t, x) as

g(t, κ) = tanh(h(t, κ)),

where we define the function h(t, κ) as

h(t, κ) =
√

w (w + κ)

2
t + Υ (κ) .

Then, the derivative of the function g(t, κ) with respect to the scalar κ is given by

∂κg(t, κ) = 4
(
e−h(t,κ) + eh(t,κ)

)2 ∂κh(t, κ),

which is upper-bounded by

|∂κg(t, κ)| ≤ 4e−2h(t,κ) |∂κh(t, κ)| . (104)

With the derivative of the function h(t, κ), i.e.

∂κh(t, κ) = w

4
√

w (w + κ)
t + ∂κΥ (κ) ,

we obtain from (104) that

|∂κg(t, κ)| ≤ 4e−√
w(w+κ)t−2Υ (κ)

∣∣∣∣
w

4
√

w (w + κ)
t + ∂κΥ (κ)

∣∣∣∣ .
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1346 B. Prasse, P. Van Mieghem

The right-hand side of (104) is finite at every time t ≥ 0. Furthermore, for every
scalar κ , the right-hand side of (104) converges to zero when t → ∞. Hence, we
can upper-bound the derivative |∂κg(t, κ)| by some constant σ1 > 0 for every time t .
Thus, we obtain from (103) that

|g(t, κ) − g(t,−κ)| = 2σ1κ ∀ t ≥ 0.

�

With Lemma 11, we obtain from (102) that there is a constant σ1 > 0 such that

|c(t) − cb(t, 0)| ≤σ1κ + 1

2

κ

w
+ O

(
(R0 − 1)2(s−1)

)
∀ t ≥ 0.

Since κ = O((R0 − 1)s) and w = O(R0 − 1) when (B, S) approaches (B∗, S∗), we
obtain that there exists some constant σ2 > 0 such that

|c(t) − cb(t, 0)| ≤σ2(R0 − 1)s−1.

Thus, it follows from (98) that

‖v(t) − vapx(t)‖2 ≤ σ2(R0 − 1)s−1‖v∞‖2 + ‖ξ(t)‖2, ∀t ≥ 0.

Hence, we obtain an upper bound as

‖v(t) − vapx(t)‖2
‖v∞‖2 ≤ σ2(R0 − 1)s−1 + ‖ξ(t)‖2

‖v∞‖2 .

Then, the upper bound on the error vector ξ(t) in Theorem 2 implies that there are
constants σ3, σ4 such that

‖v(t) − vapx(t)‖2
‖v∞‖2 ≤σ2(R0 − 1)s−1 + ‖ξ(0)‖2

‖v∞‖2 e−σ3t + σ4
(R0 − 1)2

‖v∞‖2 .

By assumption it holds that ‖ξ(0)‖2 = O ((R0 − 1)p) for some constant p > 1, and
it holds that ‖v∞‖2 = O(R0 − 1) as stated by Theorem 1. Thus, we obtain that

‖v(t) − vapx(t)‖2
‖v∞‖2 ≤σ2(R0 − 1)s−1 + σ5(R0 − 1)p−1 + σ6(R0 − 1)

for some constants σ5, σ6 > 0, since e−σ3t ≤ 1. By using the definition s = min{p, 2}
of the scalar s, we complete the proof.
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F Proof of Corollary 1

By assumption, it holds that v(0) = r0v∞, which implies that ξ(0) = 0. Thus, we
obtain from (22) that

‖v(t) − vapx(t)‖2
‖v∞‖2 ≤ σ1(R0 − 1) ∀t ≥ 0

when (B, S) approaches (B∗, S∗). From the definition of the approximation vapx(t)
in (20), we obtain that vapx,i (t01) = r1v∞,i for every node i is equivalent to

tanh
(w

2
t01 + Υ (0)

)
= 2r1 − 1

With the definition of the term Υ (0) in (19), it follows that

w

2
t01 = artanh(2r1 − 1) − artanh

(
2
vT∞v(0)

‖v∞‖22
− 1

)
.

From v(0) = r0v∞, we obtain that

t01 = 2

w
(artanh(2r1 − 1) − artanh (2r0 − 1)) .

The inverse hyperbolic tangent equals

artanh(x) = 1

2
(log(1 + x) − log(1 − x)) ,

which completes the proof.

G Proof of Corollary 3

For NIMFA (4) with homogeneous spreading parameters β, δ, the effective infection
rate matrix reduces to W = β

δ
A. Hence, the basic reproduction number reproduction

becomes

R0 = β

δ
ρ(A) = τ

τc
,

where the last equation follows from the definition of the effective infection rate
τ = β/δ and the epidemic threshold τc = 1/ρ(A). Furthermore, it holds that δl = δ

for every node l and
∑N

l=1(x1)
2
l = 1, since the principal eigenvector x1 is of unit

length. Thus, the definition of the approximation vapx(t) in (20) yields that

vapx(t) = 1

2

(
1 + tanh

(
(τ − τc)δ

2τc
t + Υ (0)

))
v∞.

123



1348 B. Prasse, P. Van Mieghem

H Proof of Theorem 4

We acknowledge the help of Karel Devriendt, who constructed an effective infection
rate matrix of homogeneous NIMFAwith a given principal eigenvector x1. The idea of
proving Theorem 4 is based on Corollary 2: When R0 ↓ 1, the viral state dynamics of
heterogeneous NIMFA (1) are determined by the four variables x1, w, γ, Υ (0). Thus,
we aim to show that the corresponding four variables of the homogeneous NIMFA
system (26), which we denote by x1,hom, whom, γhom and Υhom(0), are the same as the
variables x1, w, γ, Υ (0) of heterogeneous NIMFA (1).

Lemma 12 The homogeneous NIMFA system (26) and heterogeneous NIMFA (1) have
the same principal eigenvector x1,hom = x1, the variable γhom = γ and viral slope
whom = w.

Proof First, we consider the principal eigenvector x1. The effective infection rate
matrix of the homogeneous NIMFA system (26) equals

Whom = βhom

δhom
uuT + βhom

δhom

1

min
l=1,...,N

(x1)l

N∑

j=1

(x1) j I

− βhom

δhom

N∑

j=1

(x1) j diag

(
1

(x1)1
, . . . ,

1

(x1)N

)
. (105)

We show that the principal eigenvector x1 of heterogeneous NIMFA (1) is also the
principal eigenvector x1,hom of the matrix Whom. Indeed,

Whomx1 = βhom

δhom

N∑

j=1

(x1) j u + βhom

δhom

1

min
l=1,...,N

(x1)l

N∑

j=1

(x1) j x1

− βhom

δhom

N∑

j=1

(x1) j u

= βhom

δhom

1

min
l=1,...,N

(x1)l

N∑

j=1

(x1) j x1.

Thus, x1 is an eigenvector of the effective infection rate matrix Whom of the homoge-
neous NIMFA system (26). The corresponding eigenvalue equals

λ1,hom = βhom

δhom

1

min
l=1,...,N

(x1)l

N∑

j=1

(x1) j . (106)

The effective infection rate matrixWhom is non-negative and irreducible, by definition
(105). Thus, the Perron–Frobenius Theorem (Van Mieghem 2010) yields that the
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eigenvalue λ1,hom to the positive eigenvector x1 equals the spectral radius ρ (Whom) =
λ1,hom and that x1,hom = x1. Second, we consider the variables γ , γhom in Theorem 1.
By definition (7) and since x1 is a vector of length 1, it holds that

γhom = (
λ1,hom − 1

) 1
∑N

l=1 (x1)3l

=
⎛

⎝βhom

δhom

1

min
l=1,...,N

(x1)l

N∑

j=1

(x1) j − 1

⎞

⎠ 1
∑N

p=1 (x1)3p
,

where the last equality follows from (106). With (28), we obtain further that

γhom =
((

1 + γ

N∑

l=1

(x1)
3
l

)
− 1

)
1

∑N
p=1 (x1)3p

= γ.

Thus, the variable γhom of the homogeneous NIMFA (26) equals the variable γ of
heterogeneous NIMFA (1). Third, we show that the viral slope whom of the homoge-
neous NIMFA (26) equals the viral slope w of heterogeneous NIMFA (1). From the
definition (87), the variable whom of the homogeneous NIMFA system (26) follows as

whom = (
λ1,hom − 1

)
δhom.

With (106), we obtain that

whom = βhom
1

min
l=1,...,N

(x1)l

N∑

j=1

(x1) j − δhom.

Then, the definition of the infection rate βhom in (28) yields that

whom = δhom

(
1 + γ

N∑

l=1

(x1)
3
l

)
− δhom

= δhomγ

N∑

l=1

(x1)
3
l ,

which simplifies with the definition of δhom in (27) to

whom = γ

N∑

l=1

δl (x1)
3
l .
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Then, the definition of γ in (7) yields that

whom = (R0 − 1)
N∑

l=1

δl (x1)
2
l .

Thus, the viral slope whom of the homogeneous NIMFA system (26) equals the viral
slope w of heterogeneous NIMFA (1), which completes the proof. �
In contrast to the variables x1, γ,w in Lemma 12, the two variables Υhom(0) and
Υ (0), given by definition (19), are not necessarily equal, since the steady states v∞
and v∞,hom might be different. For the homogeneous NIMFA system (26) and het-
erogeneous NIMFA (1), we denote the viral state approximations of Corollary 2 by
ṽapx(t) and ṽapx,hom(t), respectively. The difference of the viral state vectors v(t) and
vhom(t) can be written as

v(t) − vhom(t) = ṽapx(t) − ṽapx,hom(t) + (
v(t) − ṽapx(t)

)

− (
vhom(t) − ṽapx,hom(t)

)
.

With the triangle inequality, we obtain that

‖v(t) − vhom(t)‖2 ≤ ∥∥ṽapx(t) − ṽapx,hom(t)
∥∥
2 + ∥∥v(t) − ṽapx(t)

∥∥
2

+ ∥∥vhom(t) − ṽapx,hom(t)
∥∥
2 . (107)

Corollary 2 states that there is some constant σ , such that, at every time t ≥ 0, it holds
that

‖v(t) − ṽapx(t)‖2 ≤ σ‖v∞‖2(R0 − 1)s−1

= O (
(R0 − 1)s

)

as R0 ↓ 1, since ‖v∞‖2 = O (R0 − 1) by Theorem 1. Similarly, Corollary 2 implies
that ‖vhom(t) − ṽapx, hom(t)‖2 = O ((R0 − 1)s) as R0 ↓ 1. Thus, (107) yields that

‖v(t) − vhom(t)‖2 ≤ ∥∥vapx(t) − vapx,hom(t)
∥∥
2 + O (

(R0 − 1)s
)
. (108)

In the following, we bound the first addend on the right side of (108). We insert the
expression (23) for the approximations vapx(t) and vapx,hom(t) to obtain that

vapx(t) − vapx,hom(t) =
(
1 + tanh

(w

2
t + Υ (0)

)) γ

2
x1

−
(
1 + tanh

(whom

2
t + Υhom(0)

)) γhom

2
x1,hom

=
(
tanh

(w

2
t + Υ (0)

)
− tanh

(w

2
t + Υhom(0)

)) γ

2
x1,
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where the second equality follows from Lemma 12. From Abramowitz and Stegun
(1965, 4.5.45), it follows that

vapx(t) − vapx,hom(t) = sech
(w

2
t + Υ (0)

)
sech

(w

2
t + Υhom(0)

)

· sinh (Υ (0) − Υhom(0))
γ

2
x1.

Since 0 < sech(t) ≤ 1 for every time t and the eigenvector x1 has length 1, we obtain
that

∥∥vapx(t) − vapx,hom(t)
∥∥
2 ≤ γ

2
|sinh (Υ (0) − Υhom(0))| .

Thus, the difference of the viral states v(t) and vhom(t) in (108) is bounded by

‖v(t) − vhom(t)‖2 ≤ γ

2
|sinh (Υ (0) − Υhom(0))| + O (

(R0 − 1)s
)
. (109)

To bound the hyperbolic sine on the right side of (109), we introduce:

Lemma 13 Suppose that Assumptions 1 to 3 hold. Furthermore, assume that the initial
viral states of the homogeneous NIMFA system (26) and heterogeneous NIMFA (1)
are the same, i.e., v(0) = vhom(0). Then, as R0 ↓ 1, it holds that

|sinh (Υ (0) − Υhom(0))| = O (R0 − 1) .

Proof The series expansion (Abramowitz and Stegun 1965, 4.5.62) of the hyperbolic
sine yields that

sinh (Υ (0) − Υhom(0)) = Υ (0) − Υhom(0) + O
(
(Υ (0) − Υhom(0))3

)
. (110)

In the following, we consider the difference Υ (0) − Υhom(0). Since v(0) = vhom(0)
by the assumption, it follows from the definition of the variable Υ (0) in (19) that

Υ (0) − Υhom(0) = artanh

(
2
vT∞v(0)

‖v∞‖22
− 1

)
− artanh

(
2
vT∞,homv(0)

‖v∞,hom‖22
− 1

)

= artanh (�) − artanh (� + Θ) , (111)

where we define

� = 2
vT∞v(0)

‖v∞‖22
− 1 (112)

and

Θ = 2
vT∞,homv(0)

‖v∞,hom‖22
− 1 − �. (113)
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The Taylor series of artanh (� + Θ) around Θ = 0 reads

artanh (� + Θ) = artanh (�) + 1

1 − �2Θ + O
(
Θ2

)
.

Thus, we obtain from (111) that

Υ (0) − Υhom(0) = 1

�2 − 1
Θ + O

(
Θ2

)
. (114)

Hence, to bound the difference Υ (0)−Υhom(0), we aim to bound the variable Θ . The
definition of Θ in (113) yields with (112) that

Θ = 2
vT∞,homv(0)

‖v∞,hom‖22
− 2

vT∞v(0)

‖v∞‖22
= 2

(
vT∞,hom

‖v∞,hom‖22
− vT∞

‖v∞‖22

)
v(0).

The Cauchy–Schwarz inequality gives that

|Θ| ≤ 2 ‖v(0)‖2
∥∥∥∥∥

v∞,hom

‖v∞,hom‖22
− v∞

‖v∞‖22

∥∥∥∥∥
2

= 2
‖v(0)‖2
‖v∞‖22

∥∥∥∥∥
‖v∞‖22

‖v∞,hom‖22
v∞,hom − v∞

∥∥∥∥∥
2

.

Under Assumption 2, it holds that ‖v(0)‖2 ≤ ‖v∞‖2, and hence

|Θ| ≤ 2
1

‖v∞‖2

∥∥∥∥∥
‖v∞‖22

‖v∞,hom‖22
v∞,hom − v∞

∥∥∥∥∥
2

,

which can be rewritten as

|Θ| ≤ 2
1

‖v∞‖2

∥∥∥∥∥v∞,hom − v∞ +
(

‖v∞‖22
‖v∞,hom‖22

− 1

)
v∞,hom

∥∥∥∥∥
2

.

The triangle inequality yields that

|Θ| ≤ 2

∥∥v∞,hom − v∞
∥∥
2

‖v∞‖2 + 2
1

‖v∞‖2

∥∥∥∥∥

(
‖v∞‖22

‖v∞,hom‖22
− 1

)
v∞,hom

∥∥∥∥∥
2

,
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which becomes

|Θ| ≤ 2

∥∥v∞,hom − v∞
∥∥
2

‖v∞‖2 + 2

∥∥v∞,hom
∥∥
2

‖v∞‖2

∣∣∣∣∣
‖v∞‖22

‖v∞,hom‖22
− 1

∣∣∣∣∣

= 2

∥∥v∞,hom − v∞
∥∥
2

‖v∞‖2 + 2

∣∣‖v∞‖22 − ‖v∞,hom‖22
∣∣

‖v∞‖2
∥∥v∞,hom

∥∥
2

. (115)

Since, by Lemma 12, γhom = γ and x1,hom = x1, Theorem 1 implies that

v∞,hom = γ x1 + ηhom (116)

for some N × 1 vector ηhom that satisfies ‖ηhom‖2 = O (
(R0 − 1)2

)
as R0 ↓ 1. Thus,

with (6) and (116), we obtain from (115) that

|Θ| ≤ 2
‖η − ηhom‖2

‖v∞‖2 + 2

∣∣2γ xT1 (η − ηhom) + ‖η‖22 − ‖ηhom‖22
∣∣

‖v∞‖2
∥∥v∞,hom

∥∥
2

.

Finally, since ‖η‖2 = O (
(R0 − 1)2

)
, ‖ηhom‖2 = O (

(R0 − 1)2
)
, γ = O (R0 − 1),

‖v∞‖2 = O (R0 − 1) and ‖v∞,hom‖2 = O (R0 − 1), we obtain that

|Θ| = O (R0 − 1)

as R0 ↓ 1, which completes the proof in combination with (110) and (114). �
With Lemma 13 and γ = O(R0 − 1), we obtain from (109) that

‖v(t) − vhom(t)‖2 = O
(
(R0 − 1)2

)
+ O (

(R0 − 1)s
)

= O (
(R0 − 1)s

)
,

since, by definition, s = min{p, 2} ≤ 2. Since ‖v∞‖2 = O (R0 − 1) by Theorem 1,
it holds that

‖v(t) − vhom(t)‖2
‖v∞‖2 = O

(
(R0 − 1)s−1

)

as R0 ↓ 1, which completes the proof.
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