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Preface

Cover image
On this cover image you’ll find the author steering the helm of the three masted bark Europa somewhere in
the low 40-50 degrees latitude in the Southern Ocean. I remember one night being at the helm in particularly
heavy seas in this region. The guests were no longer capable maintaining proper course and we were assigned
to helm duty in duo’s for good safety measures. My crew mate Lawrence was behind the wheel ensuring we’d
keep a proper course. In the mean time I was staring at the large silhouette of ocean chasing the stern of the
ship. Each time I saw a really big wave I would think that it was going to break over the ship. Nevertheless,
every time this threat posed to be premature as the stern was picked up by this wave and travelled underneath
the vessel. All went well up to that unexpected moment when a large dark peak emerged from the night and
broke. I shouted at Lawrence to watch out, yet my Dutch accent was not understandable enough to this
hardy Irishman in these conditions. I kept repeating myself until Lawrence finally said: "Oh! you mean on
your guard." What followed was me and Lawrence, who were luckily attached to safety lines, holding on to
each other as the body of water rushed over us. The pressure was high enough for me to open my eyes
and see our silhouettes in the water. This thesis further underlined my amazement at how these massive
waves seemingly emerge from nowhere. Still, this group of experienced, dedicated and warm hearted people
on board this vessel assured my safety as we continued our journey to the Falkland Islands. Although the
human race might not follow laws that we designed such that we can coexist in peace, this thesis helped me
understand that nature, within the right premise, does follow certain laws. What a comforting thought that
we, as a human race, discovered these laws.
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Summary

Delft University of Technology has access to a towing tank where a wave maker can generate waves. When
generating waves, non-linear start-up effects occur at the start of a wave train which affect the rest of the
signal. The aim of this thesis is to develop a model which can take these effects into account. A numerical
modelling approach is adopted, due to the necessity for generating a large space of wave profiles and the
need to optimize towards a wave maker input given a wave profile.

A clear assessment of the state-of-the-art revealed a scope of present methods to model non-linear free
surface waves. A potential flow assumption proved a clear balance between accuracy versus computational
cost. Analysis of this model showed that the state is described by a balance between potential and kinetic en-
ergy and should, in principle, be conserved. For numerical modelling, the Finite Element Method is adopted.
The sparse matrices and ease of evaluation of the integrals allow for a better adaptation in present computer
architectures. Additionally this method provides more rigorous mathematical tools to demonstrate prop-
erties such as stability and convergence. Lastly, the use of Isogeometric Analysis where the solution space
is described by splines instead of polynomials could provide an advantage over conventional methods with
respect to continuity, convergence and refinement strategies. Subsequently, literature revealed that the po-
tential flow model in conjunction with FEM will result in model that is accurate, stable and fast.

A novel numerical model is presented where the spatial discretization is done using IgA and the resulting
semi-discrete Ordinary Differential Equation is integrated in time with a separate method. Analysis shows
that this spatial model inhibits the same energy conservation laws as the physical model.

Implementation is done in the DelFI, an in-house fixed domain Navier-Stokes solver with an Open Source
back-end named MFEM which utilizes clever FEM abstractions and parallelization. To successfully imple-
ment the non-linear problem, first a linear problem is implemented to facilitate computation of variables
that are defined on the domain only, in this work the free-surface elevation. This results in introducing an
additional problem to compute the elevation on the interior which is dependent on the free-surface, but not
vice-versa. This, to ensure the wave problem remains unaffected. Coincidentally, this definition of the free-
surface elevation on the interior is used to deform the mesh required to capture non-linear effects in the
time-dependent domain.

Results of the linear problem show to agree with literature. Conservation of energy is guaranteed, yet
conservation of mass can be attained with sufficient mesh and time resolutions. This affirms the successful
implementation of free-surface problems in DelFI. Extension to the non-linear case shows that energy is not
conserved, yet analysis shows it should. The same holds for conservation of mass. Still, both quantities can
again be contained with sufficient mesh and time resolution. Additionally results demonstrate that imple-
mentation of a stabilization scheme is needed. Finally a benchmark case demonstrates that with the current
limitations, results agree with others.

This research demonstrated a novel mathematical framework to compute non-linear free surface waves
with special emphasis on conservation laws and geometric compliance with the fluid through Isogeometric
Analysis. A basis has been laid towards optimization of wave maker signals given a free-surface wave enve-
lope.
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Glossary

Acronyms

BEM Boundary Element Method

CAE Computer Aided Engineering

CAGD Computer Aided Geometric Design

CFD Computational Fluid Dynamics

DOF Degrees Of Freedom

DUT Delft University of Technology

FEA Finite Element Analysis

FEM Finite Element Method

IgA Isogeometric Analysis

MOL Method Of Lines

ODE Ordinary Differential Equation

PDE Partial Differential Equation

SUPG Streamlined Upwind Petrov Galerkin

Greek

α Coercivity parameter [-]

η Free surface elevation [m]

η0 Initial free surface elevation [m]

ηa Free surface elevation amplitude [m]

Γ Boundary [md-1]

γ Free surface normalisation factor [-]

κ Diffusivity parameter [md/s]

∇ Gradient operator in Rd [1/m]

Ω Domain [md]

ω Angular frequency [rad/s]

φ Solution approximation [tbd]

φh Discrete solution approximation [tbd]

ψ Velocity potential [md/s]

ψ0 Initial velocity potential [md/s]

ρ Density [kg/md]

vii



viii Glossary

θ Phase [-]

θwm Wave maker angle [-]

∇̃ Gradient operator in Rd−1 [1/m]

Latin

g Gravitational vector [m/s2]

n Normal vector [-]

u Velocity vector [m/s]

x Position vector [m]

d Spatial dimension size [-]

Eki n Kinetic Energy [J]

Epot Potential Energy [J]

g Gravitational constant [m/s2]

H Wave height [m]

k Wave number [1/m]

L Wave length [m]

Lt Towing tank Length [m]

p Pressure [N/m2]

R Source [tbd]

T Wave period [s]

t Time [s]

x x-position [m]

y y-position [m]

z z-position [m]
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1
Introduction

High amplitude waves are difficult to predict or simulate at full and model scale. Dysthe et al. [14] states
examples where conventional (linear) theories support a very high improbability of large waves occurring at
full scale, even though data suggests otherwise. Recently, under prediction of the tsunami resulting from the
eruption of the Tongan underwater volcano further underlined the need to keep questioning and improving
present models [29]. More accurate prediction methods can give a better understanding of when and why
these kind of waves or effects occur and hereby improving on the navigators safety.

Generating waves in ship model tests is important to extrapolate sea-keeping results to field applications.
When initiating a wave with a wave maker, undesirable non-linear effects occur at the front of a wave train
(Figure 1). These non-linear effects occur in the form of large amplitude waves. Apart from potentially dam-
aging the test setup, it is postulated that these large amplitude waves degrade the rest of the wave envelope.

Currently, linear theory is assumed to arrive at an initial wave profile. After this, the experimentalist still
has to tweak the input until a sufficient quality of the wave profile is achieved. Searching such a large domain
of possible wave maker inputs by hand is impractical. This lack of data motivates for a numerical modelling
approach, allowing for a flexible prediction method of free surface gravity waves. Secondly, it is possible to
simulate waves faster than real-time when adopting the right methods. This could be further augmented with
automation to converge towards a desired wave envelope.

Figure 1: Wave elevation of a probe at DUT at a position x over a time period t . The illustrative black
line is plotted to indicate the non constant amplitude from approximately t = [80,110] (courtesy of

Jennifer Rodrigues Monteiro)

1



2 1. Introduction

1.1. Problem definition
The goal is to improve on current wave predicting techniques. This thesis focusses on the towing tank at the
Delft university of technology. This facility hosts towing tank with a wave maker, where model tests can be
conducted. Here, the previously mentioned non-linear effects have been observed as well. In Figure 1, a time
trace is plotted of the wave elevation at a wave probe. Here, start-up effects of a regular wave can be observed
at the start of the time trace. Additionally, the amplitude is non-constant in the interval t = [80,110]. It is
postulated that these effects occur due to non-linearity.

The current method at Delft university of technology is to slowly ramp-up the amplitude of the wave-
maker (Figure 2). Another method to generate a regular wave, is to use two identical waves as input for
the wave maker and slowly matching the phase difference from π to 0 (Figure 3). These methods have not
succeeded in solving the problem. An alternative is to develop a digital twin of the towing tank. This digital
twin determines the input given the desired wave profile and reduces the start-up effects in the wave train
accordingly. This thesis will focus on the numerical modelling of free-surface flows.

0 2 4 6 8 10

t [s]

−1.00

−0.75

−0.50

−0.25

0.00
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0.75

1.00 Sig

ε(t)

Figure 2: One of the proposed methods where the wave-maker signal is multiplied by a simple ramp
up function ε(t ).
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Figure 3: One of the proposed solutions for a wave maker signal. Two signals, where one has a phase
shift ε(t ). This phase is then linearly decreased to zero resulting in one signal of twice the amplitude

of the original signals.
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1.2. Research goal
A numerical wave tank consists of a basin, a wave maker and a beach to dissipate the waves. The goal of
this research is to numerically model non-linear waves. The underlining requirements are integrated into the
main question of this research:

How can we model free-surface waves in an accurate stable and fast way?

Accurate in the sense that the model must closely represent the physical waves. With stability we need to
ensure that small changes in input will result in small changes in the output. Lastly, the speed is required such
that the experimentalist improves on the preparation of his/her experiments. The following sub-questions
serve to reduce this question into more executable sub-questions.

Chapter 2, How do we describe waves and their key physical parameters and properties and what techniques
can we use to predict them?
It is important to explore the different methods that have been used to describe and compute free
surface waves. From these methods we will converge to a physical model together with a numerical
method that fits the main research question accordingly.

Chapter 3, What are the fundamentals of the selected models and how do these fit the requirements?
Properties and parameters of the physical model are elaborated after which the numerical method is
discussed for linear and non-linear waves. Additionally, properties are derived which serve as a refer-
ence to check the computed result.

Chapter 4, What tools do we need to use in order to model non-linear gravity waves?
With Computational Science and Engineering as the third pillar of science, thorough understanding
of tools that are used in research is important for reproducibility. The platform DelFI in which the
numerical model needs to be implemented is discussed.

Chapter 5, How do we implement our numerical model into DelFI?
One to one correspondence between abstract analytical representation and the actual model is never
evident. Details and challenges will be addressed here. This, in conjunction with the previous question,
allows for an individual with knowledge of the topic to be able to reproduce the data.

Chapter 6, Are the observed results consistent with analysis?
Here, we will test computation with analysis. Flaws will be easily observed, due to the deductive nature
of the chosen method.

Chapter 7, Which conclusions can we draw from the obtained results and what are the resulting recommen-
dations for future work?
Lastly, a concluding summary is given outlining critical notes together with recommendations for fu-
ture work.





2
State-of-the-art

In this chapter we will discuss the Physical flow model in terms of Partial Differential Equations (PDE) and
the rationale behind it. Next, a trade-off is made between two dominant numerical approaches for gravity
free-surface wave theory. First, the current go-to Boundary Element Method (BEM) is discussed. BEM is then
followed by an alternative numerical method, namely the Finite Element Method (FEM) and its potential
advantages over BEM. This comparative study will yield an appropriate physical and numerical model for
simulating non-linear free-surface gravity waves.

2.1. Gravity free-surface wave theory
In order to implement a suitable numerical model, a physical flow model has to be chosen. For fluids three
important properties can be distinguished: conservation of mass, conservation of momentum and conser-
vation of energy. A potential flow can be derived when the fluid is assumed to be inviscid and irrotational
[24]. A free-surface is defined when the boundary is free to move. At the free surface a kinematic and dy-
namic condition are imposed where gravity acts as the stabilizing force ensuring waves can not get too steep.
Waves occurring at the free surface stabilized by gravity are called free-surface gravity waves. The poten-
tial flow equations augmented with these boundary conditions and initial conditions read: "Given g ∈ R,
ψ0 : Ω(0) →R and η0 : Γ(0) →R, find ψ : Ω(t ) →R and η : Γ(t ) →R such that:"

∇·u =∆ψ=0 onΩ(t ) (Mass conservation) (2.1a)

ψ,t +

Non-linear︷ ︸︸ ︷
1

2

∥∥∇ψ∥∥2+gη=0 on Γ f s (t ) (Dynamic B.C.) (2.1b)

η,t +
Non-linear︷ ︸︸ ︷
∇̃ψ∇η −ψ,z =0 on Γ f s (t ) (Kinematic B.C.) (2.1c)

∇ψ ·n =0 on Γ\Γ f s (t ). (No penetration B.C.) (2.1d)

Here g is the gravitational constant, n the outward pointing normal, ψ the potential and η is the free surface
elevation. ∇̃ is the two dimensional gradient operator. Note that mass conservation (A.17) is equivalent to the
Laplace equation.

Analytical modelling of free surface flow One could adopt an analytical model for free-surface waves where
the potential and free-surface elevation are explicitly defined and hereby omitting the need of computational
methods. However, analytic descriptions of waves have only been found for simple cases. We will illustrate
two examples by the Airy wave and second order Stokes wave. For the Airy wave, the non-linear terms in
the boundary conditions at the free surface are disregarded. This is the case when waves are assumed not
to be too steep due to a small wave number k (ηak << 2π). This is also the case when the amplitude ηa is
sufficiently small with respect to the water depth d (ηa << d). The solution for the free surface elevation and

5



6 2. State-of-the-art

potential are [20]

η(x, t ) = ηa sin(ωt −kx) (2.2)

ψ= ωηa

k

cosh(k(d + z))

sinh(kd)
cos(ωt −kx). (2.3)

The angular frequency ω and wave number k are related through the linear dispersion relation

ω2 = kg tanh(kd). (2.4)

For Stokes waves, the momentum balance (See Appendix (A.16)) is expanded at the free surface level y = η

to the undisturbed free-surface y = 0. The momentum balance is given independent from the free surface
elevation if the material derivative for the pressure is taken to be zero [36]

Dp

Dt
=

(
∂

∂t
+∇φ ·∇

)(
∂φ

∂t
+ 1

2
∇φ ·∇φ+ g y

)
= 0. (2.5)

From this expression the potential is derived up to a desired order. The free surface elevation is derived
by substituting this potential into the momentum balance which is explicitly dependent on the free surface
elevation. The solution (plotted in Figure 4) for second order Stokes potential and wave elevation are

ψ=ψ(1) +ψ(2) = ωηa

k

cosh(k(d + z))

sinh(kd)
sin(ωt −kx)+ 3ωη2

a

k

cosh(2k(d + z))

8sinh4(kd)
sin(2ωt −2kx) (2.6)

η= η(1) +η(2) = ηa cos(ωt −kx)+kη2
a

cosh(kd)(cosh(2kd)+2)

4sinh3(kd)
cos(2ωt −2kx). (2.7)

These equations are subject to the first order dispersion relation given in Equation (2.4).

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x/λ [m]

−0.04

−0.02

0.00

0.02

0.04

0.06

η

Airy and Stokes 2nd order free surface elevation

ηAiry

η
(2)
Stokes

η
(1)+(2)
Stokes

Figure 4: Plot of analytical solutions of linear Airy and non-linear Stokes waves for a depth d = 1,
wavelength λ= 1 and amplitude ηa = 0.05. Note the flatter troughs and sharper peaks for the Stokes

waves

These analytical expressions provide valuable understanding of free surface gravity waves and its key pa-
rameters, but are limiting with respect to applicability (see Figure 5). Secondly, these cases are often restricted
to steady problems.

The goal is to be able to model a wide range of wave envelopes. From variable depth to substantial steep-
ness within the bounds of the potential flow assumption. Additionally, there is a need to model unsteady be-
haviour as well as an irregular envelope to study non-linear wave-wave interaction. Current explicit analytical
descriptions offer a tool to understand fundamental physical properties, yet lack a description conforming to
reality. Numerical modelling provides a method where such flexibility is guaranteed.



2.1. Gravity free-surface wave theory 7

Figure 5: Applicability of different wave theories [20]. The index HL2/
d3 is an indication of the

w ave steepness over the (r el ati ve depth)3. Also referred to as the Ursell number. Here, H is the
wave height, L is the wavelength and T = 2π/ω is the wave period.

Computational modelling of free surface flow Apart from using analytical expressions, a more general ap-
proach is to take a set of PDE’s describing the physics with appropriate boundary conditions. The next step
is to adopt a numerical method to approximate the derivatives and solve for the unknown potential and
free-surface height. Herein, a choice can be made to solve the full non-linear governing equations or an ap-
proximated/reduced form of the governing PDE’s under the premise that some property, e.g. wavelength or
steepness, is dominant over others [8][41]. The shallow water Boussinesq equations are such a reduced form.
These approximated cases have the advantage that when used in conjunction with numerical methods pro-
vide cost efficient models to predict a wave. These cases are divided into two classes. When the amplitude
ηa is much larger than the wave number k ( i.e. ηak ¿ 1) the solution is in the shallow water regime. These
shallow water waves are also called steep waves. The second class is the deep water limit. Here the amplitude
should be much smaller than the water depth d for deep water, i.e. ηa ¿ d [20].

A requirement for model tests in towing tanks is the possibility of generating waves at a wide range of
wavelengths and finite depths. Secondly, Figure 1 indicates that different waves do interact with each other
non-linearly. This is due to the fact multiple frequencies are observed in the signal, even though the source
is harmonic. The incompressible Navier-Stokes equations are physically the most accurate for water-flow.
Still, a potential flow model shows to be sufficiently accurate for non-linear free-surface gravity waves up to a
certain wave steepness or water depth. This reduces the computational costs considerably.

In Brink et al. [7], non-linear potential flow theory is used to predict deep water rogue waves. In Gidel
[17] this is further extended to predict deep water waves and coupled to a finite volume method to compute
shallow water waves which can break. In both studies, validation is done by generating a wave and measuring
the output. The movement of the wave maker is recorded as well. The wave maker motion is then used as
input for the model. The methods presented in both papers shows to have good agreement with reality. This
justifies the use of a potential flow model.

In order to successfully implement these equations into a discretized form one can make use of conser-
vation laws from which the PDE is derived. From this scalar conservation function a minimization problem
can be derived. Consequently, a solution of the minimization problem, means a solution of the PDE. Here,
we could make use of the conservation of energy that is inherent to ideal flow [37].

Energy properties of potential flow Potential flow is also referred to as an ideal flow. This is due to the
energy state of the fluid. The fluid is ideal in the sense that no energy loss occurs through viscous or vor-
tex dissipation [35]. With Kelvin’s circulation theorem this can be shown. What remains is only the Kinetic
energy Eki n and the Potential energy Epot . Two energy statements for the kinetic and potential energy are
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Figure 6: Match between potential flow model from [7] and experimental data provided by MARIN.

distinguished in the field of classical mechanics [35].

L = Eki n −Epot (2.8)

is the Lagrangian description, with L being the Lagrangian. The Hamiltonian description H is given by

H = Eki n +Epot (2.9)

These descriptions are related when we consider the variation δL and δH of L and H [5][35]. This time con-
servation statement is of special importance for numerically solving wave problems, due to it’s physical rele-
vance regarding phase and amplitude errors.

To illustrate this, for a regular numerical wave with a phase θh we can define an amplification factor
λ= 1+ε by which θh is amplified due to an error ε. For a time step n, which is denoted by the superscript, we
have

θh
1 =λθh

0 (2.10)

θh
2 =λθh

1 (2.11)

... (2.12)

θh
n =λθh

n−1. (2.13)

Through induction one can derive θh
n = λnθh

0 . The desired requirement from an energy conservation point
of view is |λ| = 1. When this factor is not equal to unity the global error increases or decreases with each
time step. Additionally, any error made at an instance remains in the solution and can negatively affect the
solution, due to the absence of damping or dissipation. Accordingly, it is important for a numerical method
that physical properties are carried over into the numerics and sufficient accuracy is maintained.

Methods that adopt the energy conservative properties of potential flow are demonstrated in [7] and [17].
Their energy expression is referred to as a Hamiltonian structure. A Hamiltonian structure is a variational
statement in which the motions of a Newtonian potential system coincide with the extrema of this statement
[5][8]. Physically, a certain quantity is minimized with respect to some physical parameters. This is equiva-
lent to stating that a particle seeks the path of minimal resistance. Examples are the brachistochrone or the
hanging cable problem. For the case of the non-linear gravity wave problem in [7] and [17], a variational
statement was derived by Luke [28]. Here, the pressure is postulated to be the conserved quantity.

In Luke’s variational principle the physical parameters are the free-surface height η and potentialψ. These
parameters are constrained to δη(x1, x2, t1, t2) = 0 and δψ(x1, x2, t1, t2) = 0 to satisfy a solution. Luke’s state-
ment minimizes the following functional:

J =
∫ t1

t0

∫ x1

x0

L d xd t
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, with

L =
∫ η(x,t )

0

(
p −p0

)
dΩ=−

∫ η(x,t )

0

(
1

2
ψ2

x +
1

2
ψ2

y +ψ,t + g
(
y −H0

))
d y

begin the variation of the pressure. If we vary the functional J accordingly with respect to η and ψ at the
boundaries, Luke states the following:

δJ =
∫ t1

t0

∫ x1

x0

δL d xd t = 0

To arrive at.

δL =
[

1

2

∥∥∇ψ∥∥2 +ψ,t + g
(
y −H0

)]
y=h

+
∫ η(x,t )

0
∇ψ ·∇(

δψ
)+δψ,t d y

⇒ δJ =
∫ t1

t0

∫ x1

x0

{[
1

2

∥∥∇ψ∥∥2 +ψ,t + g
(
y −H0

)]
y=h

δη+
∫ η(x,t )

0
∇ψ ·∇(

δψ
)+δψ,t d y

}
d xd t = 0 (2.14)

For an expanded derivation see Appendix B. From this functional the correct potential flow equations are
obtained for the interior and boundaries after integration by parts and by first setting δη= 0 and allowing for
ψ to vary and then δψ= 0 and allowing η to vary. As such, the variational formulation shows to be consistent
with the governing equations.

1

2
ψ2

,x +
1

2
ψ2

,y +ψ,t + g
(
y −H0

)= 0 at Γ f s (t )

−η,xψ,x +ψ,y −η,t = 0 at Γ f s (t )

ψ,y = 0 at y = 0

ψ,xx +ψ,y y = 0 onΩ(t )

A property of the variational statement, is that it provides a single scalar expression for both the interior as
well as the boundary in which energy is conserved due to δJ = 0.

In this case the variational formulation starts from an energy principle which is conserved. This means
that the problem is a minimization problem and suitable for discretization with the finite element method.
In [7] this method is used a priori to derive a conservative numerical model. In [1] & [2], energy conservation
is derived a posteriori.

2.2. Numerical Approximation Techniques
Numerical modelling of non-linear waves consist of solving continuous (partial) differential equations through
discretization. To numerically solve the strong form of the potential flow equations, two approaches are
mainly present in literature. One is to use BEM [10][11][32][38] and the other is to use FEM [2][7][17][23].

Boundary Element Method
BEM is a well established method in the maritime industry [10][26][32][38]. With these methods, the appli-
cation of Green’s second identity on the interior effectively reduces the dimension of the problem by one. A
result of this is that the entire fluid potential is described only by its boundaries [6] or a so-called boundary
integral equation. The integral for ψ : Ω(t ) →R is given by

4πTψ(~x) =
∫ ∫ [

∂ψ

∂nξ
(~ξ)G(~ξ,~x)−ψ(~ξ)

∂G

∂nξ
(~ξ,~x)

]
dSξ (2.15)

withψ the velocity potential, T is a variable dependent on the position. This can be inside the domain, on the
boundary or outside of the domain. The normal pointing into the fluid is nξ , ξ is the position with respect to
the potential source, G is a Green’s kernel function, and dSξ the bounding surface.

Solution methods present itself by solving the integral using a Galerkin approximation or using the linear
properties of the Laplace equation (A.17) on the full fluid domain.
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Galerkin BEM The Galerkin method [15] is a weighted residual method [44]. A weighted residual method is
a method where the continuous integral is multiplied by a weighting function, which is part of the solution,
and integrated over. The residual states that this integral has to be minimized, i.e. equate to zero. This
continuous statement is then split into a discrete subset such that the potential can be approximated as the
sum of these discrete elements suitable for linear computation.

The integrals form a dense system. This dense system poses additional computational challenges and
requires different solvers than the traditional O(N 2) solvers with N unknowns [13][15]. For example, solving
these systems can be done using Fast Fourier Transforms [15] or Fast Multipole methods [13]. Additionally,
due to the Green’s function, a singular integral has to be evaluated. As a result, appropriate techniques in
conjunction with standard quadrature rules have to be used [18][31].

The advantage of using Galerkin BEM over collocation methods discussed in the next section, is that the
method gives more control regarding smoothness over the entire geometry. In contrary to collocation meth-
ods where boundary conditions only have to be met pointwise in collocation points. With Galerkin BEM the
solution is defined by the weighting function, which is continuous up to a certain order. For instance, one
could opt for a second order polynomial. This imposes C 2 continuity across the elements. Similar condi-
tions can be imposed between elements. This enhanced control over the solution allows for more thorough
analysis of the method over collocation methods at the cost of complexity.

For the case of free boundaries, such as a free surface, studies were not found. In retrospect, these types
of problems are mainly presented with an emphasis on techniques which allow for efficient solving of dense
matrix vector equations and singular integrals. Applied physical problem solving do not seem to be the main
criteria, limiting this method to academia only.

Collocation methods The use of sources and sinks is a method which is widely adopted in Maritime appli-
cations [10] [19] [25] [32] [38]. Due to the harmonic Laplace equation for the interior, the velocity potential is
described by a sum of harmonic functions, namely sources and sinks over the boundaries [32] [38]. The sum
of these functions approximates the global flow. For a moving body or surface, the contribution of a singular-
ity φi in its collocation point has to relate to that of the singularities φ j 6=i such that the boundary conditions
are met, whereas for Galerkin BEM this has to be satisfied over the entire boundary. Accordingly, a dense
system of equations is derived that solves for the flow.

Raven [32] developed a code for the non-linear steady problem called RAPID (RAised Panel Iterative Daw-
son). Here, panels are used as singular potential valued sources and sinks. This method has been used exten-
sively to predict the wave-making resistance of ships and has proven its capabilities.

RAPID solves the potential flow equations by assuming an initial free surface η and velocity potential
distributionφ and iteratively solve for the kinematic and dynamic boundary conditions. The main distinction
from other methods is that the panels corresponding with the free surface are in this case raised above the
free surface. The collocation points remain on the free surface.

For the free surface a linearised perturbation is assumed for the velocity and elevation. The dynamic
boundary condition can then be substituted in the kinematic boundary condition. Although Raven [32]
shows that the raised panels are superior over placing the panels at the free surface, energy loss occurs when
evaluating the derivatives at the free-surface.

Secondly, Raven [32] shows that numerical dispersion is apparent for his improved scheme. For a steady
problem such as RAPID this might not pose as much as a problem as for an unsteady problem where numer-
ical dispersion results in phase errors with each time step.

Lastly, the author gives considerable doubts regarding the robustness of the method [32]. In addition,
these observations were in line with other work [11][38]. Sclavounos [34] does give some indications on con-
sistency and stability, but are nearly not as rigorous as the derivations presented in Finite Element Methods,
such as Galerkin BEM.

Boundary Integral Methods provide an attractive solution method for solving a scalar potential equation,
due to reduced dimensionality as a result of the Green’s function. This reduced number of unknowns to solve
for does, however, come with dense matrices and additional solution techniques to evaluate singular integrals
for the case of Galerkin BEM. The less strict/formal approach in collocation methods shows to be an easier
adaption for industry purposes. However, unintended diffusion is introduced when evaluating derivatives at
the free-surface and to make the system solvable relaxation factors have to be introduced. An extension of
the method of weighted residuals called FEM could provide an alternative. Now applied on the full domain,
this method is mathematically more challenging, but allows firm analysis if needed.
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Finite Element Analysis
FEM is a widely adopted method for approximating partial differential equations [22][40]. The resulting sys-
tem of equations that needs to be solved is larger, as the entire volume needs to be discretized. In con-
trast, FEM is locally coupled, also known as compact support, which results in solving sparse systems. These
sparse systems are then again suitable for implementation of parallel computation methods. Literature on
linear and non-linear potential flow for Finite Elements is rather extensive [2][7][17][23][39][43]. Here, a clear
distinction is observed between a decoupled [23][43] and a monolithic formulation [2][7][17][39]. With de-
coupled we mean separate or implicit treatment of the boundary and interior problems.

Energy non-conserving methods In [23] and [43], first the interior problem is solved for the velocity po-
tential. From the interior problem, the velocity potential values on the free surface are used to evolve the
free-surface solution in the time domain. Hereafter, the interior problem is solved and the process starts over
again. This approach decouples the boundary problem from the interior problem, whilst they are physically
connected.

Westhuis [39] recovers the velocity from the gradient of the potential. The grid is adjusted by means of this
velocity and the kinematic and dynamic boundary conditions are solved for. Although this method might
seem of an intuitive approach, an order of continuity for the velocity is lost due to derivation of the shape
function. Secondly, this approach still serves as a multistep method and hereby not solving the complete
problem in a coupled or monolithic fashion.

In effect, for both approaches an explicit energy statement is no longer present, even though energy con-
servation is guaranteed in the strong form of the problem. Ideally, these properties are present in the numer-
ical scheme as well. Results from Kim and Bai [23] and Wu and Eatock Taylor [43] lead to small, but present
phase errors. This can pose problems when dealing with unsteady non-linear problems. A mathematical tool
that combines the boundary problem and the interior problem into one expression are so-called variational
principles.

Energy conserving methods In Brink et al. [7] the functional from Luke [28] is discretized after which the
variations are taken to obtain the discrete variational principle. Gidel [17] does the opposite. Here, the varia-
tional principle is derived after which the weak form is derived. The discrete variational principles are written
in Hamiltonian form to arrive at an energy conservation statement. Both methods show to lead to good en-
ergy conservation behaviour.

In Akkerman et al. [2], an energy statement is shown as the time evolution of the sum of the potential and
the kinetic energy. This method is reduced to the linearised case, but computed using the novel methodol-
ogy of Isogeometric Analysis (IgA). They also show boundedness and accuracy of the solution. The results
presented in this paper show some good properties of using Non-Uniform Rational B-Splines (NURBS) over
conventional basis functions regarding (phase) accuracy and convergence (Figure 25) as well as smoothness.
The number of elements required also shows to be much less than in conventional FEM [7][17][39].

Figure 7: h-refinement convergence of the method presented in Akkerman et al. [2] compared to
linear and quadratic FE
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Isogeometric Analysis
Isogeometric Analysis (IgA) is a framework introduced in Hughes et al. [21]. This method aims to close the
gap between Computer Aided Geometric Design (CAGD) and Computer Aided Engineering (CAE). Geometry
within CAGD is defined by means of parametric splines, whereas in CAE a different geometric description is
used1. This discrepancy results in a geometric error when performing analysis. Due to the much larger market
capitalization of CAGD, [21] asserted that the branch of CAE should conform to that of CAGD. Apart from the
computational benefit, labour costs are also partly reduced now that less time is involved in transferring the
CAGD spline mesh to a CAE mesh.

Isogeometric analysis diminishes the geometric error between GAGD and CAE. Often, the solution space
of dependent variables is in a different mathematical description than that of the design. Meshing processes
involve transferring the geometry description to one that is suitable for analysis. Hughes et al. [21] aims to
omit this step by describing the solution mesh in the same function space as the geometry.

Hughes et al. [21] describes NURBS based Isogeometric Analysis. Here the geometric and solution space
is described by NURBS. However, different methods of describing geometries are also optional [33][30]. A
B-spline basis function is recursively defined through

Ni ,p (ξ) = ξ−ξi

ξi+p −ξi
Ni ,p−1(ξ)+ ξi+p+1 −ξ

ξi+p+1 −ξi +1
Ni+1,p−1(ξ) (2.16)

Here, p is the order and i is the index of the knot vector Θ having value ξi . In other words ξi ∈Θ. The zeroth
and first order splines are equivalent to their polynomial counterparts. For second and higher order splines,
this similarity disappears (see Figure 8). A B-spline curve C (ξ) ∈Rd is defined by a linear combination of basis

Figure 8: NURBS based basis functions of order 0,1,2 for uniform knot vectorΘ= {0,1,2,3,4, . . . }.
From [21]

functions

C (ξ) =
n∑

i=1
Ni ,p (ξ)Bi (2.17)

Here, Bi ∈Rd is a corresponding control point and d the dimension of the Cartesian space.
Some key advantages of NURBS based IgA adopted from [21] are:

1. Exact design geometry (also through refinement)

2. k-refinement

1e.g. polynomials or wavelets
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3. Total variation diminishing property (TVD) of NURBS

Exact geometry is retained through refinement with knot insertion. In this process, the exact geometry is
retained of the original curves. Retaining the same geometry through refinement is ideal, albeit not always
guaranteed in conventional FEM.

Another refinement strategy called k-refinement presented by [21] allows for a refinement and order el-
evation strategy where no loss of continuity occurs within the original element. For an element of order h,
C h−1-continuity is maintained through the refinement process. With conventional FEM, if n extra elements
are added due to refinement, then also n nodes over which C h−1 continuity occurs are added. Consequently,
both refinement strategies(knot insertion and k-refinement) show to be superior of that over conventional
basis functions.

The TVD property shows to be effective near sharp changes in the solution, e.g. boundary layers. When
fitting discontinuous data, a conventional Lagrange interpolation shows spurious results when elevating or-
der. With NURBS this behaviour is not observed for the same data. In [21] this is illustrated by an example of
skewed advection with outflow Dirichlet boundary conditions.

Akkerman et al. [2] presented a linearised case for a free-boundary problem regarding potential flow. They
showed that a linear wave can accurately be described by only four DOF’s [2], whereas for other methods this
is generally higher [32] [7] [17]. Momentum can be approximated with less DOF’s using present methods.
Secondly, IgA shows to have superior convergence properties over conventional basis functions. The method
presented in [2] also shows energy correct behaviour of the method allowing for long time duration simula-
tions in wave problems.



14 2. State-of-the-art

2.3. Concluding remarks
The state-of-the-art is assessed in non-linear water wave analysis. The framework needed for a digital twin
wave-maker consists of a flow description, solution methods and optimization techniques. In summary, a
succinct list of the conclusions drawn from this chapter is:

• A potential flow description provides a fast and reliable alternative for non-linear water waves over
viscous models. Requirements for a numerical scheme are phase and amplitude accuracy together
with energy conservation.

• The reduced number of unknowns that come with a boundary element method is not necessarily ad-
vantageous over the Finite Element method where compact support results in sparse matrices.

• Additionally, the Finite Element allows for a more robust, accurate and precise method over the Bound-
ary Element Method.

• The use of NURBS in FEM can lead to coarser meshes, yet retaining accuracy and reducing computa-
tional cost.

A comparison of the key literature and the proposed method is listed in Table 1

Table 1: Properties of different methods presented in literature. The different properties are Linear
Potential Flow(LPF), Non-Linear Potential Flow(NLPF), Boundary Element Method (BEM), Finite

Element Method and Isogeometric Analysis (IgA).

dE
/

d t = 0 ∂
/
∂t 6= 0 LPF NLPF BEM FEM IgA

van Walree [38] x x x
Raven [32] x x
Brink et al. [7] x x x x
Gidel [17] x x x
Akkerman et al. [2] x x x x x

Proposed method x x x x x



3
Methodology

In this chapter methods are discussed that describe the physics which again can be computed using numer-
ics. The physical model distinguishes from the numerical model in the sense that a physical model serves
as a mathematical model to describe the relation between physical variables by means of partial differential
equations. These PDE’s are augmented by boundary conditions in order to complete the problem descrip-
tion. A system of PDE’s and it’s boundary conditions can then be approximated using a numerical method.
The numerical method aims to approximate these variables, such that the PDE’s and it’s boundary conditions
are valid at a given time and place up to a certain accuracy.

3.1. Physical Model
Physical modelling involves deriving mathematical descriptions for physical processes. Similarly, many well
known mathematical equations can be linked to physical processes. Examples are the heat equation or the
advection diffusion equation. Physical models are generally derived from a conservation principle, e.g. con-
servation of heat, mass, momentum or energy. For fluid flow we can imply conservation of momentum[24].
This, added with conservation of mass and the requirement that the fluid does not change density, yields
the incompressible Navier-Stokes equations, where given the density ρ ∈ R, gravitational vector g ∈ Rd and
kinematic viscosity µ ∈R, we aim to find the velocity u : Ω(t ) →Rd and pressure p : Ω(t ) →Rd , such that

ρu,t +ρ(u ·∇)u =−∇p +ρg+µ∇2u (3.1a)

∇·u = 0. (3.1b)

Assumptions
The Navier-Stokes can be non-dimensionalized (see Appendix A). Properly selecting the physical parame-
ters for the pressure and non-dimensionalizing displays the relevant non-dimensional numbers. For non-
breaking free-surface water waves in the inertial regime we can make the following assumptions [7][17].

1. Incompressible onΩ
2. Irrotational onΩ
3. No surface tension on Γ f s

4. No overturning waves on Γ f s

Under these assumptions the Navier-Stokes equations reduce to a potential flow formulation. The resulting
fluid description is also referred to as a perfect or ideal fluid. The fluid is perfect in the sense that the net
energy change can only be a result of the boundary conditions. This can be shown through Kelvin’s circulation
theorem.

15
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Governing equations
The governing equations for free-surface potential flow are recited: given the gravitational constant g ∈R we
aim to find the potential ψ : Ω(t ) →R and free-surface elevation η : Γ f s (t ) →R such that

∆ψ=0 onΩ(t ) (Mass conservation) (3.2a)

ψ,t +

Non-linear︷ ︸︸ ︷
1

2

∥∥∇ψ∥∥2+gη=0 on Γ f s (t ) (Dynamic B.C.) (3.2b)

η,t +
Non-linear︷ ︸︸ ︷
∇̃ψ∇η −ψ,z =0 on Γ f s (t ) (Kinematic B.C.) (3.2c)

∇ψ ·n =0 on Γ\Γ f s (t ). (No penetration B.C.) (3.2d)

The non-linear terms are annotated in the governing equations (3.2). When the wave is assumed to be linear,
these terms are dropped. The linear boundary conditions with the Laplace equation 3.2a imply that any
linear wave can be described as the sum of individual linear components. This simplifies solution methods
and implementation considerably. When the non-linear terms are not disregarded this is no longer valid.

η(x, t ) =
n∑

i=0
ai sin(ki x −ωi t +θi ) Linear assumption

η(x, t ) 6=
n∑

i=0
ai sin(ki x −ωi t +θi ) Non-linear

Boundary and initial conditions
The governing equations can be augmented by boundary conditions and initial conditions resulting in a
description suited for computation.

∇ψ ·n =0 on Γ\
(
Γ f s ∪ΓR

)
(3.3a)

∇ψ ·n− Ṡ =0 on ΓR . (3.3b)

ψ(x, t = 0) =ψ0 onΩ (Initial condition) (3.3c)

η(s, t = 0) =η0 onΩ (Initial condition) (3.3d)

Equation (3.3a) refers to as a no-penetration condition, implying no fluid can travel through this boundary. A
moving boundary can be described with equation (3.3b) where S : Γ(t ) →R, describes the moving boundary,
which is not a part of this thesis. One of the initial conditions (3.3d) or (3.3c) can be imposed if the solution for
either the potential or free-surface at t = 0 is known. For a sloshing case, this could be an initial perturbation
of the free-surface.

Geometric parameters for the free surface
For the free surface, additional parameters can be derived which are of use to prove properties a of numer-
ical method for the non-linear case. Additionally, they can be substituted to follow boundary conditions.
Irrotationality implies that the velocity field derives from a potential

u =∇ψ

The free surface η(x, y, t ) equation is defined to be the level-set

z −η= 0.

The normal on the free-surface is defined as

n = ∇(
z −η)∥∥∇(z −η)

∥∥
= 1√

1+∥∥∇η∥∥2

[−∇η
1

]
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We can derive some equalities on the free surface by using this expression where we take the dot product of
the normal with the velocity potential and substituting the kinematic boundary condition.

γ= 1√
1+∥∥∇η∥∥2

∇ψ ·n = γ
[−∇η

1

]
∇ψ

= γ(
ψz −∇η∇ψ)

= γηt

⇒∇ψ ·n = u ·n = γη,t (3.4)

Problem setup
The problem setup describes the parameters and geometrical description of the domain. For a numerical
towing tank the body of water is initially at rest after which the wave maker starts to move. In this thesis we
will restrict the domain without a wave maker. The aim is to replicate the linear wave from Akkerman et al.
[2] in DelFI first. When this is achieved, the non-linear case extension to Akkerman et al. [2] is implemented.

Γ f s

ΓS Ω

z

xO Lt

d

Figure 9: Schematic representation of the problem setup of a numerical towing tank. Lt denotes the
length of the towing tank and d denotes the water depth.
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3.2. Numerical model: space
Numerical modelling is a technique where the continuous physical model is approximated using a numerical
method. The PDE’s are discretized with a method of choice such that the physical model is followed as closely
as possible at any state. Discretization is the partitioning of the continuous domain into a set of discrete
points or domains. For a time dependent problem this has to be done both in space and time.

Spatial discretization is done using the Finite Element Method resulting in a semi-discrete system of equa-
tions. With the Finite Element Method, the solution functions are approximated by weighing them by test
functions. In practice this involves multiplying the trial/solution function space by a test function space and
integrating over, resulting in a weak form. Green’s identities (B.5) can be used to reduce the order of the PDE,
with which boundary terms arise. Boundary conditions that can be substituted implicitly from Green’s identi-
ties are called natural boundary conditions. Boundary conditions that have to be defined explicitly are called
essential boundary conditions. Discretization stems from the partition of the domain of this weak form into a
discrete subset and describing the solution in each subdomain by means of a simple function times a weight.
The Linear combination of these basis functions approximates the integral defined by the weak form.

Linear wave
For the linear wave we first start with the strong form of the problem and work towards the weak or variational
form.

Strong form The strong form of the linear problem reads:

∆ψ=0 onΩ (Mass conservation)

ψ,t + gη=0 on Γ f s (dynamic B.C.)

η,t −ψ,z =0 on Γ f s (kinematic B.C.)

∇ψ ·n =0 on Γ\Γ f s

Weak form The strong form is multiplied by their respective test functions and integrated over the domain.
The interior term can be reduced with integration by parts and Gauss’ divergence theorem. The identities
in equation (3.4) are used to substitute the kinematic boundary condition. For the linear case, γ is equal to
one. Clearly, if γ= 1, then the boundary term is only a function of the undisturbed free-surface. The dynamic
boundary condition relates ψ to η only in time and can also be computed with respect to the undisturbed
free-surface. With the notation

(b,c)Ω =
∫
Ω

ab dΩ

(b,c)Ω =
∫
Ω

a ·bdΩ

The weak form formulates to

−(
w,∆ψ

)
Ω

P.I.−−→ (∇w,∇ψ)
Ω− (

w,∇ψ ·n
)
Γ f s

=0 onΩ (Mass conservation)(
w,ψ,t + gη

)
Γ f s

=0 on Γ f s (dynamic B.C.)

In [1], this weak formulation is presented in the following way: given g ∈ R, find (ψ,η) ∈ W ×V , such that for
all (w, v) ∈W ×V

Bl
(
{w, v};

{
ψ,η

})= 0 (3.5)

, with

Bl
(
{w, v};

{
ψ,η

})= (∇w,∇ψ)
Ω− (

w,ηt
)
Γ f s

+ 1

2

(
v + α

g
w,ψt + gη

)
Γ f s

(3.6)

The added α ·w
/

g term guarantees coercivity by selectingα based on the time integrator. Coercivity ensures
stability. Derivation of a coercivity statement for the non-linear case is beyond the scope of this thesis.
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Energy evolution Akkerman and ten Eikelder [1] show energy conservation by selecting a case where w =
ψt and v = 2ηt − αψt

/
g . The weak formulation is rewritten and by use of the chain rule the definitions of the

kinetic and potential energy are found.

B
(
{w, v};

{
ψ,η

})= (∇ψt ,∇ψ)− (
ψt ,ηt

)
Γ f s

+ 1

2

(
2ηt − α

g
ψt + α

g
ψt ,ψt + gη

)
= (∇ψt ,∇ψ)Ω+ g (ηt ,η)Γ f s

= d

d t
Eki n + d

d t
Epot = 0

Non-linear wave
Strong form The strong form is now complemented with non-linear terms:

∇2ψ=0 onΩ (Mass conservation)

ψ,t + 1

2

∣∣∇ψ∣∣2 + gη=0 on Γ f s (dynamic B.C.)

η,t +ψ,xη,x +ψ,yη,y −ψ, z =0 on Γ f s (kinematic B.C.)

∇ψ ·n =0 on Γ\
(
Γ f s ∪ΓR

)

Weak form For the non-linear case, a similar approach is adopted for the interior. The kinematic boundary
condition can be substituted into the arising boundary terms after integration by parts of the mass conserva-
tion equation. The dynamic boundary condition is multiplied by the test function γv to satisfy correct energy
evolution.

−(
w,∆ψ

) P.I .−−→= (∇w,∇ψ)
Ω(t ) −

(
w,∇ψ ·n

)
Γ f s (t ) =

(∇w,∇ψ)
Ω− (

w,γη,t
)
Γ f s (t ) = 0(

γv,ψ,t + 1

2

∥∥∇ψ∥∥2 + gη

)
Γ f s (t )

= 0

The weak formulation reads: given g ∈R , find (ψ,η) ∈W ×W , such that for all (w,γv) ∈W ×W ,

Bnl
(
{w, v};

{
ψ,η

})= 0 (3.7)

with

Bnl
(
{w, v};

{
ψ,η

})= (∇w,∇ψ)
Ω(t ) −

(
w,γη,t

)
Γ f s (t ) +

(
γv,ψ,t + 1

2

∥∥∇ψ∥∥2 + gη

)
Γ f s (t )

Energy evolution For the energy evolution we adopt the test function spaces to be w =ψ,t and v = η,t . It is
not possible to take the time derivative out of the integral analogous to the linearised case in [1]. This is due
to the time dependent domain. The mass conservation term is rewritten using Reynold’s Transport Theorem
and the identities in equation (3.4):

∫
Ω(t )

∇(
ψ,t

) ·∇ψdΩ= d

dt

∫
Ω(t )

1

2

∥∥∇ψ∥∥2 dΩ−
∫
Γ f s (t )

1

2

∥∥∇ψ∥∥2u ·ndΓ

= d

dt

∫
Ω(t )

1

2

∥∥∇ψ∥∥2 dΩ−
∫
Γ f s (t )

1

2

∥∥∇ψ∥∥2
γη,t dΓ

Substitution in the mass conservation term in equation (3.7) yields

d

dt

∫
Ω(t )

1

2

∥∥∇ψ∥∥2 dΩ+ g
∫
Γ f s (t )

ηγη,tΓ= 0.
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Clearly, the first term is the kinetic energy evolution. We will now show that the second term equates to the
potential energy. Applying Reynold’s transport Theorem to the potential energy (equation (B.4))

d

dt

∫
Ω(t )

g z dΩ=
�
��

�
��*

0

g
∫
Ω(t )

∂z

∂t
dΩ+ g

∫
Γ f s (t )

zu ·ndΓ

z

∣∣∣∣
Γ f s

= η, u ·n = γη,t

⇒ g
∫
Γ f s (t )

ηγη,t dΓ

shows total conserved energy evolution

d

dt

(
Eki n +Epot

)= d

dt

∫
Ω(t )

1

2
‖u‖2 + d

dt

∫
Ω(t )

g z dΩ

d

dt

(
Eki n +Epot

)= d

dt

∫
Ω(t )

1

2

∥∥∇ψ∥∥2 dΩ+ g
∫
Γ f s (t )

ηγη,t dΓ= 0 (3.8)

Discretization
The presented weak forms are also called variational forms of the governing PDE’s. Approximation takes place
when the weak form is discretized. Numerical discretization is done by partitioning the continuous domainΩ
into a discrete subset and approximate the continuous solution space and test function space by a weighted
sum of shape functions

φ≈φh(x) =
ndo f∑
e=0

φe Ne (x) (3.9)

where the weights φe are called Degrees Of Freedom and

Ne (x) =
{

N (x), x ∈Ωe

0, x ∉Ωe
(3.10)

The continuous domainΩ relates toΩe by

Ω=⋃
e
Ωe

⋂
e
Ωe =;

This approximation is applied to both the weighting functions as well as the solution function. For each term
we can substitute these expressions in the weak form leading to an expression for each element e. The linear
case from Akkerman et al. [2] for an element e is given by

B
(
{w, v};

{
ψ,η

})= ndo f∑
j=0

{(∇N 1
a ,∇Nbψ j

)
Ωi

− (
N 1

a , Nbη j ,t
)
Γi . f s

+ 1

2

(
α

g
N 1

a +N 2
a , Nb

(
φ j ,t + gη j

))
Γi . f s

}

The superscripts for the Na basis functions denote the different finite element spaces. The parameter for α
to guarantee coercivity with midpoint time integration is ∆t/2 .

The semi-discrete weak form can now be solved for the unknown time derivatives with appropriate initial
and boundary conditions. The Method Of Lines is used to advance the solution in time.

3.3. Numerical model: time
The Method of Lines is applied to the semi-discrete system of equations. Semi-discrete in the sense that
space is discretized using the Finite Element Method discussed in section 3.2. This sytem which solves for the
continuous unknown time derivativeφ,t is treated as an ODE. The solution is advanced in time by integrating
this ODE with a numerical integration method. We can define the time derivative to be a function of time and
the solution.

φ,t = f
(
t ,φ

)
φn+1 =φn +

∫ tn+1

tn

f
(
t ,φ

)
d t .



3.4. Numerical model: Mesh motion 21

The integral is discretized with a method of choice, either implicit or explicit. As an example we will illustrate
this by the midpoint method. The midpoint method evaluates the slope at the center of an interval ∆t =
[tn , tn+1]. Multiplication of this slope by the timestep ∆t retrieves the solution at tn+1∫ tn+1

tn

f
(
t ,φ

)
d t ≈∆t f

(
t n +h,φn +hk

)
with h = ∆t/2 for the implicit midpoint method. For the residual, a matrix vector computation of the form

F
(
φh ,φh

,t , t
)
=G

(
φh , t

)
(3.11)

φh =
{
ψh ,ηh

}
φh

,t =
{
ψh

,t ,ηh
,t

}
is solved for φ,t . Here, the operators F and G are the semi-discrete counterparts of the weak form [4]. Initial
conditions are set by means of a projection

F
(
φh −φ,0,0

)
= 0

Equation 3.11 is implicit when G = 0. The implicit midpoint method solves

F

(
φh + ∆t

2
φh

,t ,φh
,t , t + ∆t

2

)
= 0 (3.12)

forφ,t . By default the rateφ,t is assumed to be non-linear. To accommodate this, a Newton-Raphson iteration
scheme is used to approximate the rate at the new timestep.

∆φn
,t =−JF

(
φn ,φn

,t , t n)−1F
(
φn ,φn

,t , t n)
(3.13)

Here, JF is the Jacobian of the discretized equation.

JF = ∂F

∂φ

Where the chain rule is applied to φ,t and φ,x

f (φ,t ),φ = 1

∆t
f (φ),φ and f (φ,x ),φ = N,x f (φ),φ (3.14)

The increment ∆φn
,t is then used to update the rate. This process repeats until either the absolute or relative

residual reaches a certain convergence criteria. The resulting increment is added to the current rate. The new
rate times ∆t advances the solution in time.

3.4. Numerical model: Mesh motion
For the Non-linear case, the free-surface elevation is no longer linearised around the still water level. As such,
it is required to update the mesh at every time-step. More specifically, for every Newton iteration the mesh
has to be updated. Taking the non-linear weak form (3.7)

B =
∫
Ω(t )

∇w∇ψdΩ−
∫
Γ(t )

wγη,t dΓ f s +
∫
Γ(t )

vγ

(
ψ,t + 1

2

∥∥∇ψ∥∥2 + gη

)
dΓ f s

η can directly be used to move the mesh. For the interior a uni-directional Poisson problem is assumed for η
with η

∣∣
z=0 = 0. ∫

Ω(t )
κ
∂2η

∂y2 dΩ= 0 (3.15)

In every time-step we solve for the rate φ,t . Prior to the mesh update we need an update of the solution by
means of

φn+1 =φn +∆tφn
,t (3.16)

The solution of the free surface elevation can then directly be used to accommodate for the mesh motion by
updating the DOF’s. For each DOF i we get [

xn+1
i

yn+1
i

]
=

[
x0

i
y0

i

]
+

[
0
ηn

i

]
(3.17)

when d = 2.
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3.5. Arbitrary Lagrangian Eularian (ALE) Frame
The nodal values for a function φ now have to be corrected for the mesh motion, due to the movement of
each node at every time step. Let us denote at each time t a point x on the deformed domain, which relates
to a point X on the reference domain

x = x(X , t ) X ∈Ω0, x ∈Ω(t )

The time derivative of this function in the ALE frame is then defined to be

∂φ

∂t

∣∣∣∣
X
= ∂φ

∂t

∣∣∣∣
x
+u ·∇xφ

With u being the mesh motion, the vertical mesh motion is equal to ∂ψ
∂z , due to ∇φ = u. In our case we

incorporate a vertical mesh motion only. The time derivative in the Eulerian frame is then

∂ψ

∂t

∣∣∣∣
x
= ∂ψ

∂t

∣∣∣∣
X
− ∂ψ

∂z

2

(3.18)

It is argued that due to η being effectively being defined on a constant plane we need not to implement this.
When implementing a wave maker boundary condition this does need to be implemented. We substitute the
Lagrangian definition for ψ into the momentum equation yielding

Bnl =
∫
Ω(t )

∇w∇ψdΩ−
∫
Γ(t )

wγη,t dΓ f s +
∫
Γ(t )

vγ

(
∂ψ

∂t

∣∣∣∣
X
+ 1

2

∥∥∇̃ψ∥∥2 − 1

2

∂ψ

∂z

2

+ gη

)
dΓ f s

∇̃ =
[
∂
∂x

∂
∂y

]T



4
Tools: DelFI & MFEM

This chapter serves as an succint introduction into DelFI and MFEM. This, to allow reproducibility of the
work outlined in this thesis. First a global summary is given of the specifications of DelFI. Next, a step-by-
step approach illustrates the implementation of a generic variational form into DelFI.

DelFI stands for Delft Finite Elements and IsoGeometric Analysis. DelFI is a wrapper for the FEM library
MFEM [4]. MFEM stands for Modular Finite Element Method. In MFEM, the inherent topological hierarchy
present in FEM is inherited into the library. Clever use of Object Oriented Programming clearly shows when
FEM Objects are addressed vs. Linear algebra objects graphically shown in Figure 10. This abstraction of
the construction of Linear algebra objects given a Finite Element formulation, allows for scalable support
of distributed memory architectures. In this manner, any local group of element related operations can be
executed on a per node basis.

Figure 10: Relationship between FEM objects and linear algebra objects. From [4].

Secondly, MFEM also makes use of the compact support of FEM allowing for a partitioning of the domain
and allocating each partition to a separate MPI rank. This MPI rank can then be allocated to a CPU or thread.
Using this property, MFEM ensures nearly seemless scalability. Additional speed-up can be achieved by de-
composing the local level operator to a element level and quadrature level operator in conjunction with the
systems GPU. As of yet, this isn’t implemented in DelFI. Transforming the DOF vector by using these operators
is illustrated in Figure 11.

MFEM creates an abstract relation between two mathematical concepts: The Finite Element Method and
Linear Algebra. DelFI extends this relation by distinguishing between physics and mathematics. In Chapter
3 a clear distinction is made between the physical model and numerical model and what laws have to be
inherited by the numerical model. DelFI standardizes the numerical model allowing versatility in different
physics implementations.

In DelFI, variational forms of transport equations such as the Navier Stokes equations or the Advection
Diffusion equation can be implemented. The default assumes a single mesh with fixed boundary conditions.

23



24 4. Tools: DelFI & MFEM

Figure 11: Graphic representation of decomposition of the DOF Vectors in the computational
domain. The T-Vector corresponds to the linear algebra setting with X and B in Figure 10. . From [4]

Equivalently, a single mesh is used as input. In DelFI the Method Of Lines is implemented where a FEM
spatial discretization is augmented by an ODE integration in time. Stabilization can be done through SUPG
and PSPG. When a suitable (semi-discrete) variational form is derived, implementation can be done through
a new physics definition.

4.1. Mesh input
The residual is approximated by a weighted sum of shape functions where the spatially independent weights
are the solution variables. The mesh on which the shape functions are defined is given by a .mesh file. In
the .mesh file a few different "headers" are given (Appendix E.1) followed by the mesh type. In this case a
NURBS mesh. First the finite element relevant data is given by dimension, elements and boundary. Next
the topological data is defined through edges, vertices, patches, knotvectors another dimension and
controlpoints.

The first dimension denotes the dimension of the mesh by an integer. Under the elements header, the
number of elements is denoted followed by a sequence of integers. The first integer is an identifier for the
element. The second denotes the geometry type: 1 for a segment, 3 for a square and 5 for a cube. The
integers following denote which nodes belong to the element in a counter clockwise convention. Next, under
the boundary header the boundaries are defined in a similar manner. A boundary has a dimension less than
the dimension of the problem itself. Thus if we describe an element with a square, then the boundary has to
be defined with a segment. The edges header describes the edges needed for the NURBS implementation. In
a square element, opposing edges share the same knotvector and they also have the same directionality. This
is indicated by the first integer followed by the starting and ending node. The vertices header describes the
number of vertices.

Next the parametric space is defined for each individual NURBS patch or "element". This section is in-
dicated by the header patches. A 2D NURBS patch is constructed from the span of two knotvectors indi-
cated in the knotvectors section. Here the first index denotes the degree, the second denotes the number
of control points followed by the knots and their placement in the parametric space. The dimension section
denotes the dimension of the knotvectors. Lastly, the section controlpoints denotes the controlpoints with
3D coordinates required to map the NURBS patch from the parametric space to the physical space. A graphic
representation of a 2D NURBS patch is shown in Figure 12. When a correct weak form is implemented and a
mesh is constructed DelFI is ready to be compiled and compute.
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Figure 12: Graphic representation of the .mesh file for a unit square comprising of a single 2D surface
element

4.2. Spatial discretization implementation
DelFI standardizes the weak form into a general residual statement. Each term of this form is defined in
the DELFI_Physics class. Treatment of the interior Ω and boundary Γ is done separately. DelFI’s spatial
discretization is of the following

R =
vdi m∑
k=1

((
Nk , I k

A

)
Ω
+

(
∇Nk , I k

B

)
Ω
+

(
Nk , I k

C

)
Γ
+

(
∇Nk , I k

D

)
Γ

)
(4.1)

=
vdi m∑
k=1

((
Nk , I k

A0

)
Ω
+

d∑
i=1

(
∂Nk

∂xi
, I k

Bi

)
Ω

+
(
Nk , I k

C 0

)
Γ
+

d∑
i=1

(
∂Nk

∂xi
, I k

Di

)
Γ

)
(4.2)

Where the residual R is minimized at a time t . This is the equivalent of the operator F given in section 3.3. The

physics terms have to be assigned to each of the integrands I j
A0 and I k

Ai listed in equation (4.2). Initialization
of the integrands can be done by following Table 2. The test function basis functions are denoted N j and

Table 2: DelFI implementation of integrands

Value DelFI equivalent

I k
A0 I0[k]

I k
Ai Ii[i](k)

vdi m is the variable dimension. The integrands I A0 and I Ai are a function of the solution vectors φh . DelFI
has a separate definition for the time- and spatial derivative listed in Table 3. With k denoting the variable.

Table 3: DelFI implementation of Jacobians

Value DelFI equivalent

φhl phi[l]
φhl

, j dphidx[j][l]
φhl

,t dphidt[l]

For instance, the potential ψh is assigned to phi[0]. The Jacobian JF from equation (3.13) is computed by
splitting it into four separate parts which have to be defined both for the interior and the boundary. Equation
(4.3) lists the Jacobian for the interior. Instancing in DelFI is shown in Table 4

∂R

∂φ

∣∣∣∣
Ω

=
vdi m∑
k=1

((
Nk ,

∂I k

∂φ

)
Ω

+
(
∇Nk ,

∂I k

∂φ

)
Ω

)
(4.3)
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The differentiation rules for the integrand I j have to be followed according to equation (3.14) for φ,t . The ∇φ
terms are captured by a separate instance of the Jacobian, namely J0i . Both the integrands and Jacobians are

Table 4: DelFI and mathematical syntax of Jacobian terms.

Value Definition DelFI equivalent

J kl
00

∂I k
0

∂φl
J00(k,l)

J kl
0i

∂I k
0

∂φl , j
J0i[j](k,l)

J kl
i 0

∂I k
i

∂φl
Ji0[i](k,l)

J kl
i j

∂I k
i

∂φl , j
Jij[i+dim*j][k][l]

initialized in the DELFI_Physics class. A new physics type has to be defined for each different set of PDE’s, i.e.
physical model. This can be for instance the convection-diffusion equation or the Navier Stokes equations.
For the linear wave case, this class is named LinearWave. Each different physics implementation has it’s
own .hpp and .cpp file. Additionally, it inherits from the DELFI_Physics class. The boundary condition
functions, forcing terms together with relevant coefficients are read from a separate .c file. Additionally,
some global or local monitors can be defined which are written to a separate .dat file.

4.3. Output
DelFI currently offers three methods for checking the solution or changes to a physics formulation. When
a run starts the user can pipe the run output to a log file with | tee log at the end of the run command.
In the log file a list is given of the options used in the run, what type of mesh is used and the number of
unknowns for each variable. At each time step it uses Newtons method to approximate the next time step.
Here information is passed regarding the norm of the residuals. In between Newton-steps, the amount of
iterations needed for the GMRES solver. This linear solver solves for the residual at each time step. The
amount of newton and GMRES iterations give an indication on the conditioning of the Jacobian and residual.
Additionally, the convergence rate of the residuals also gives an indication on the stability of the system. If
these norms monotonically decrease with every Newton step, then the method shows to be stable.

Values such as Kinetic or Potential energy are assigned to global monitors. These global monitors are of
the form ∫

Ω
m(x)dΩ and

∫
Γ

m(x)dΓ (4.4)

The solution field projected to the mesh is written to an .mfem_root file. This file can be read using Visit [12].
The DelFI source code can be found on github [3] with a valid TU Delft account.

4.4. Flow of control
In this section the flow of control for DelFI is presented in Figure 13. This serves as a bird’s eye view of how
the program is executed.
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Figure 13: Flow of control for DelFI





5
Implementation: linear and non-linear

wave

In chapter 3, a mathematical description of the wave problem is given and how the weak form is obtained
from the governing equations. This results in a semi-discrete system of equations. Next, a method is pre-
sented to treat the weak form as an ODE which can be integrated in time. In chapter 4 DelFI, a program to
approximate transport equations, is discussed. Here, the actions needed to implement a variational form are
discussed. In this chapter we aim to apply this to the case of a linear and non-linear wave.

5.1. Linear wave
The linear form of the problem is presented in [2]. The weak form of the linear wave is given in equation
(3.5). In [2] coercivity is obtained whenα= 2/∆t = 1

/
d t for midpoint time integration where d t is the solver

timestep passed in DelFI. Due to bilinearity (see appendix B.5), we can rewrite the weak form (3.5) into a form
fit for implementation in DelFI

B
(
{w, v};

{
ψ,η

})= (∇w,∇ψ)+(
w,

1

∆t

(
ψt

g
+η

)
−ηt

)
Γ f s

+
(

v,
1

2

(
ψt + gη

))
Γ f s

(5.1)

Verification is done according to an Airy wave with initial conditions

η0 = ηa cos(kx)

ψ0 = ω

k
ηa

cosh(k(z +d))

sinh(kH)
sin(kx)

DelFI is limited in implementing this weak form. This is because η is not defined on the interior. The weak
form has to be extended such that a non-zero value for η can be computed on the interior. A requirement is
that these extra DOF’s do not influence the boundary terms.

We introduce an "artificial anisotropic diffusion" to overcome DelFI’s limitation. This artificial diffusion
is defined to be

κy
∂2η

∂y2 = 0 onΩ. (5.2)

Requirements follow that the solution of actual problem given in equation (5.1) is not affected by this term.
equation (5.2) shows that η on the interior is either constant or of constant slope. Two versions for imple-
menting the free surface elevation η are presented. The first is to copy the initial condition η0 from the free
surface to the interior. The other is to multiply ηwith the y coordinate and setting Dirichlet conditions on the
bottom.

Version A Version B
ηΩ0

(
x, y

)= η0 ηΩ0
(
x, y

)= η0 · y

29
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z
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η

(a) Version A

z

x

η

(b) Version B

Figure 14: Schematic representation of the different implementations of η for the interior.

5.1.1. Version A
The first option is relatively easy to implement as it requires no decoupling of the interior problem from the
boundary problem. The strong form listed in Equation (5.2) is weighted by the test function space v . The
boundary terms naturally drop out after integration by parts.

−
∫
Ω

vκyη,y y dΩ=
∫
Ω

v,yκyη,y dΩ+
��

���
��:0∫

Γ
vκyη,y ny dΓ (5.3)

The weak form then becomes

B
(
{w, v};

{
ψ,η

})= (∇w,∇ψ)
Ω+ (∇v,κ◦∇η)

Ω+
(

w,
1

2d t

(
ψt

g
+η

)
−ηt

)
Γ f s

+
(

v,
1

2

(
ψt + gη

))
Γ f s

(5.4)

κ=
[

0
a

]
(5.5)

Following the conventions from chapter 4, the integrands are

I 0
i =ψ,i

I 1
i = kiη,i

With the non-zero Jacobian terms

∂I 0
i

∂φ0,l
= 1

∂I 1
1

∂φ1,1
= a

For the boundary terms we have

I 0
0 = 1

2g d t

(
ψt + gη

)−ηt

I 1
0 = 1

2

(
ψt + gη

)
With the non-zero Jacobian terms

∂I 0
0

∂φ0
= 1

2g (d t )2

∂I 0
0

∂φ1
= −1

2d t

∂I 1
0

∂φ0
= 1

2d t

∂I 1
0

∂φ1
= g

2
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The initial conditions are defined in the linearisedWave.c file. We will highlight the initial condition for η
as this differs between the two versions of the linearised cases. These are defined in separate functions for
the exterior and interior.

When the weak form is implemented, the program has to be compiled. The flags -bcp and -d99 have to
be set to zero. These are flags that account for certain convergence criteria when dealing with vicous flows.
As such, these criteria do not apply to potential flow. The Airy way is computed on a unit square mesh from
appendix E.1. The waveheight and period are respectively 0.1 m and 1 m.

5.1.2. Version B
For version B homogeneous Dirichlet conditions on the bottom are added to the unidirectional poisson prob-
lem. The natural boundary conditions that arise from integration by parts are no longer trivial. As a result, the
interior problem needs to be decoupled from the boundary problem such that it does not affect the solution
of φ and η on the boundary. Effectively we solve two problems. One is the wave problem and the other is a
unidirectional Poisson problem with Dirichlet conditions on top and bottom.

∂2ηn

∂y2

∣∣∣∣
Ω

= 0 (5.6)

ηn
∣∣∣∣

y=0
= 0 (5.7)

ηn
∣∣∣∣

y=η
= ηn (5.8)

Implementation of the weak form is the same as for version A. Changes have to be made to the DELFI_Form
class. In this class the operators F and J are defined to solve for φh

,t . This is done in two loops: one for the

interior and one for the exterior. To decouple η from the interior we set the solution φh
,t to be zero for the

DOF’s corresponding to the free-surface. Secondly, we have to set the rows of J to be equal to zero after the
interior loop for the same DOF’s. This decouples the problem in the Newton iteration. The total result is a
one way coupling from the wave problem to the interior, but not vice versa. Because the boundary terms are
accounted after the interior loop, these remain unaffected. The procedure is highlighted in Equation (5.9).
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The main advantage of this formulation over the other is that no influence of the interior onto the boundary is
guaranteed. Additionally, values of η on the interior can be directly used to incorporate mesh motion needed
for the non-linear case. The method can be summarized in the following steps and is graphically shown in
Figure 15:

1. Solve poisson on the interior with essential boundary
condition for η

∣∣
Γ

2. "Turn off" essential boundary condition

3. Evaluate wave problem

Figure 15: One way coupling of the Poisson problem
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5.2. Non-linear wave
The variational form of the non-linear wave from equation 3.7 is reintroduced with the Jacobian γ on the
righthandside of the comma and the additional term on the interior to solve for η

Bnl
(
{w, v};

{
ψ,η

})= (∇w,∇ψ)
Ω(t ) +

(∇v,κ◦∇η)
Ω− (

w,γη,t
)
Γ f s (t ) +

(
v,γ

(
∂ψ

∂t
+ 1

2

∥∥∇̃ψ∥∥2 − 1

2

∂ψ

∂z

2

+ gη

))
Γ f s (t )

Implementing this in DelFI results in the non-zero integrands for the interior

I 0
i =ψ,i

I 1
i = kiη,i

With the non-zero Jacobian terms

∂I 0
i

∂φ0,l
= 1

∂I 1
i

∂φ1,l
= k

The boundary terms are

I 0
0 =−γη,t

I 1
0 = γ

(
Dψ

Dt
+ 1

2

∥∥∇̃ψ∥∥2 − 1

2

∂ψ

∂z

2

+ gη

)
With the Jacobian terms

∂I 0
0

∂φ0
= 0

∂I 0
0

∂φ1
=− γ

∆t

∂I 1
0

∂φ0
= γ

∆t

∂I 1
0

∂φ1
= γg

∂I 1
0

∂φ0,i
= γψ,i i = {0..d −1}

∂I 1
0

∂φ0,d
=−γψ,d

Here we assume the variable γ to be much less dominant than the other variables. Otherwise, this also has to
be taken into account in the Jacobians as it is a function of η.



6
Results

This chapter presents the results obtained from the implementation of the linear and non-linear forms. First
the two versions of the linear form are presented to demonstrate computation of a free-surface problem in
DelFI and which one is correct. Next the non-linear wave is demonstrated for a simple unit square sloshing
case. Lastly, we’ve validated the method against a DNV sloshing case where we compare the results with
numerical results from others.

6.1. Linear Wave
The linear wave is validated and verified against an analytical Airy wave. The initial conditions are plotted
in Figure 16, clearly showing the difference in how to treat the wave elevation η. The different versions are
compared to each other with respect to the artificial diffusion parameter κ as well as conservation of mass
and energy. Additionally, mesh convergence is also checked.

Table 5: Data corresponding to the linear test case.
These values follow the linear wave criterion from [20]

Variable Value Unit

Ω [0,1]× [0,1] m ×m
ηa 0.1 m
k 6.28 m−1

λ 1 m
ω 7.85 r ad · s−1

T 0.8 s

6.1.1. Diffusivity dependence
The artificial diffusion is checked by plotting the total wave elevation and potential for an Airy wave for a set of
diffusions (Figure 17). If the method is computed correctly, no spurious behaviour should be observed in the
results. With version A however, it can be observed that the total mean potential shows to have no consistent
behaviour towards a higher diffusivity. In contrast version B does show to have consistent behaviour ofφ and
η with increasing diffusivity. The solution for φ and η does change with increasing diffusivity, even though
the Poisson problem for η is numerically decoupled from the wave problem. This could be due to round off
errors. The means converge towards machine precision for version B.

6.1.2. Mesh convergence
Mesh convergence is done to check if a numerical is consistent, that is the error decreases consistently with
the data. For the linear mesh convergence, a similar method is adopted as Brink et al. [7]. The simulation
for the Airy wave is run for 10 periods after which the mean absolute error between ηAi r y and ηh is checked.
This is done both for the degree (p-refinement) as well as the mesh size (h-refiment). In contrast to Akkerman
et al. [2], the coarsest mesh is 4×3 DOF’s. With less DOF’s the amount of nodes in x direction is no longer
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(a) Version A (b) Version B

Figure 16: Initial condtions with quadratic NURBS for version A and B. The variable η is used to
displace the mesh illustrating the difference between the two formulations. This mesh displacement

is a feature of the Visualization software and not computed for the linearised case.

sufficient for the initial conditions to plot a cosine. A sine is possible, due to the shift in phase. In this case,
the potential φ can no longer be fit accordingly. A solution to this could be to project the intitial conditions
for φ with the gradient of φ.

Table 6: Data corresponding to different mesh refinement strategies

(a) h-refinement

h-refinement mesh size

2r ×2r elx ×ely

(b) p-refinement

p-refinement Basis Function

p = 1 Linear
p = 2 Quadratic
p = 3 Cubic

6.1.3. Energy convergence
As stated previously, Both the linear and the non-linear problem should be energy conservative. For the airy
wave the wave energy is defined by

1

2
gζ2 (6.1)

The energy evolution is plotted in Figure 25. Energy conservation shows to hold. Obviously, the energy con-
vergence is directly linked to the wave elevation convergence.

6.1.4. Mass conservation
For mass conservation a sloshing case is checked with initial condition

η0 = ηa cos(kx). (6.2)

The results of which are shown in Figure 22b and 27. Mass is not fully conserved. Yet when adopting sufficient
mesh refinement we do converge towards mass conservation. The mass flux over the boundary does balance
the mass change in the interior. These problems originate from an incorrect no-penetration boundary con-
dition. It is believed that this is due to a bug in DelFI. Due to time restrictions we were unable to solve this.
The mass flux over the free-surface does show to be consistent with the free-surface velocity with round-off
errors in the range O (10−12).
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Figure 17:
∫
Ω ηdΩ and

∫
ΩφdΩwith temporal resolution d t/T = 0.125 Spatial resolution h/λ= 0.25.

Quadratic NURBS

6.1.5. Total potential and free surface
Furthermore, The total potential and free-surface are checked. Here, η remains stable around the horizontal
axis, whereas φ shows no clear trend. When running longer computations the deviation remains within the
order of O (10−11). The fact that φ shows no clear trend is that for the linear case the free-surface boundary
condition is determined up to a constant.
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Figure 18: p- and h- convergence of the error of the Airy wave profile η for version B
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

E
/

1 2
g
ζ

2

Energy output

Ekin r = 2

Epot r = 2

Etot r = 2

(b) Quadratic NURBS Basis Functions

Figure 19: Energy evolution for version B. ∆t = 0.01
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(a) Linear NURBS Basis Functions
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(b) Quadratic NURBS Basis Functions

Figure 20: Total energy convergence for version B. The total energy is non-dimensionalized with
respect to the analytical energy. ∆t = 0.01

6.2. Non-linear wave
Benchmarks that could be easily validated for the Non-linear sloshing case were hard to obtain. Wilkening
[42] does show a case for a non-linear Fourier expansion, but implementation of this method is rather tedious.
In Brink et al. [7], a Fenton Rienecker wave is used as a benchmark. The code from which is publicly available
at Fenton [16]. For a Fenton Rienecker we would need a periodic boundary condition similar to the linear
Airy case.

A periodic boundary condition hasn’t been implemented yet. As such, for validation we will use a DNV
sloshing case from Westhuis [39]. First we will present the energy and mass results for the non-linear case.
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(a) Linear NURBS Basis Functions. γ= 1
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Figure 21: Free-surface flux. ∆t = 0.01

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t [-]

−0.010

−0.005

0.000

0.005

0.010

∫
Ω ∆φdΩ

r = 2

r = 3

r = 4

r = 5

(a) Interior mass flux for Quadratic NURBS Basis Functions
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Basis Functions

Figure 22: Mass flux statements for the standing waves. ∆t = 0.01
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Figure 23: Mean global potential and free surface. ∆t = 0.01

Data corresponding to this case is listed in Table 7. In Figure 24b we can see the additional effects captured
in the non-linear case with respect to the linear case shown in Figure 24a.

Table 7: Data corresponding to the non-linear test case

Variable Value Unit

Ω [0,1]× [0,1] m ×m
ηa 0.05 m
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(a) Linear (b) Non-Linear

Figure 24: Snapshots of the sloshing standing wave at t = 0.62[s]. On the left for the linear formulation
and on the right for the non linear formulation

6.2.1. Energy
The Energy is plotted for h- and p-refinement in Figure 25a and Figure 25b respectively. h-refinement is check
with Linear basis functions. In both Figures the energy is not conserved. Erratic behaviour can be detained
by adopting h-refinement strategy. For p-refinement this is less clear. First of all for the waveheight of 0.05
instabilities occur when p = 3. By reducing the time resolution these instabilities are delayed. The cause
of these instabilities is the higher density of nodes near the boundary when adopting p-refinement. Locally
this increases the Péclet number and thus the solution becomes unstable. Still, we’ve derived that energy
conservation should be satisfied. Two factors could be playing a role in this not being the case. One is the
mass flux over the boundary shown in the linear case. The other is that the mapping from a Eulerian to a
Lagrangian frame of reference was done incorrectly.
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(a) h-refinement of the non-linear sloshing case: Linear NURBS
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(b) p-refinement of the non-linear sloshing case: r = 4

Figure 25: Energy evolution for the non-linear wave problem with different refinement strategies.
∆t = 0.001

6.2.2. Mesh convergence
The kinematic free-surface condition shows to be within acceptable limits, implying conservation of the ge-
ometry. The mass flux over the free-surface reduces with mesh refinement. A phase shift is observed. For the
coarsest mesh a second period is observed in the mass flux, which again reduces with mesh refinement.
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Figure 26: Free-surface flux. ∆t = 0.001

6.2.3. Mass conservation
Even though incompressibility is not achieved, but can be reduced with sufficient mesh refinement, mass is
conserved. In Figure 27a the laplace equation for the potential is not satisfied with coarse meshes. This indi-
cates that the fluid is not incompressible. Mass conservation is followed. Figure 27b indicates that divergence
of mass in the interior equates to the mass flux over the boundary.
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Figure 27: Mass balance Quadratic NURBS basis functions. ∆t = 0.001

6.2.4. Total potential and free surface
The total potential and free-surface elevation converge with adequate mesh refinement. When adopting
higher order basis functions the solution is observed to be more prone to instabilities. When adopting a p-
refinement strategy additional degree’s of freedom are also inserted. A clustering of these nodes occurs at the
boundaries and this locally decreases the mesh width significantly [21]. The result could be an increase in the
Local Péclet number and resulting in instabilities. Due to no physical stabilisation in the form of viscosity or
free-surface tension or any stabilization scheme such as SUPG[9].
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Figure 28: Free-surface flux. ∆t = 0.001

6.2.5. Comparison of linear free surface with non-linear free surface
In Figure 29 and 30 a close up of the linear and non-linear free surface is displayed. The shallower trough and
higher peak is clearly observed for the non-linear case. A feature which is also observed in the second order
Stokes waves. A a coupled of time instances later we can see that the crest has actually flattened out. Also
known as a dimpled crest [20]

Figure 29: Close up of the free surface for the linear case indicated by the grid. The non-linear free
surface is shown with the filled colour. ∆t = 0.001

Figure 30: Dimpled crest where we can see that the crest is flattened out by collapsing under its own
weight. ∆t = 0.001
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6.2.6. Case: Sloshing DNV
Lastly we validate the code against other results presented in Westhuis [39]. This is a numerical sloshing
benchmark presented by DNV. In this case eight participants, including Westhuis [39] presented their findings
on a sloshing case where the initial free-surface is perturbed by

η0(x, y) = 12y

70

(
1− ( x/53 )2)e−( x/76 )2

(6.3)

, which is graphically shown in Figure 31. Parameters of the Westhuis [39] case compared to ours are listed in
Table 8.

Table 8: Data corresponding to the DNV sloshing benchmark.

Variable This thesis Westhuis [39] Unit

Ω 160×70 m ×m
DOFx ×DOFy 35×36 160×15 −
∆t 0.1 0.1 s

Table 9 shows that our data comes close to the other data. Figure 32 shows the fluid state at this time.
Realistic results can still be obtained, even though mass and energy conservation are not as reliable as is
deemed optimal.

Table 9: Data corresponding to the DNV sloshing benchmark at x = 60[m] and t = 9.2[s]. With X and
σ being the mean and standard deviation respectively. Our data is obtained from VisIt and may have

some additional interpolation errors.

η[m] ux [m/s] uy [m/s]

X −3.796 −2.4095 −0.535

Participant nr.

1 −3.803 −2.456 −0.363
2 −3.860 −2.280 −0.560
3 −3.815 −2.414 −0.445
4 −3.759 −2.411 0.602
5 −3.820 −2.417 −0.580
6 −3.803 −2.417 −0.572
7 −3.720 −2.480 −0.690
Westhuis [39] −3.788 −2.401 −0.561

This thesis −3.795 −2.449 −0.501

Table 10: Deviation from the mean listed in Table 9. Data corresponding to the DNV sloshing
benchmark at x = 60[m] and t = 9.2[s]. Our data is obtained from VisIt and may have some additional

interpolation errors.

Participant nr. η[%] ux [%] uy [%]

1 −0.1873 −1.745 32.97
2 −1.689 5.547 −3.406
3 −0.5035 −0.004603 17.83
4 0.9718 0.1197 −11.16
5 −0.6352 −0.1289 −7.099
6 −0.1873 −0.1289 −5.622
7 1.999 −2.739 −27.41
Westhuis [39] 0.2078 0.5339 −3.59

This thesis 0.02342 −1.455 7.489
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Figure 31: Initial conditions from DNV sloshing case. The initial condition for the free surface is
captured in the mesh deformation.

Figure 32: Solution at t = 9.2 from DNV sloshing case. The colormesh denotes the potential and the
vectorplot the velocities.



7
Conclusions & recommendations

The ability to develop a flexible and open-source method which could optimize towards a given wave-maker
input given a certain free-surface profile is necessary. Adopting such an iterative method in the towing tank
itself provides too costly of a method. This motivated strongly for the development of an in-house numerical
method which proved to be accurate, stable and fast. To achieve this:

• A suitable physical model had to be adopted where accuracy had to be balanced with simplicity

• The numerical model and the physical model need to inhibit the same properties.

• The numerical method has to be fast which is inevitably highly dependent on the tools in which it
is implemented. Reproducibility requires the need to use open-source software where every detail is
documented

• Added features in the tools had to be consistent with the mathematical framework. Careful documen-
tation ensures that the fellow scholar can fill the missing pieces.

• Results have to be analysed and flaws which were unsolvable in the given time frame need to be ad-
dressed. Suggestions can then be made for future work

7.1. Conclusion
A literature research provided a review of the state-of-the-art. A potential flow model proved to fit the require-
ments. It was shown that from these equations an integral extrema can be derived indicating the existence
of a unique solution. It is argued that the reduced degrees of freedom in Boundary Element Methods is not
necessarily advantageous over the Finite Element Method. The compact support of basis functions in FEM
allows better use of the machine’s architecture. Additionally, the more rigorous mathematical tool-set gives
the ability to derive properties such as stability and accuracy. Properties that are difficult to prove in BEM. Lit-
erature further demonstrated that an energy conservative method is clearly superior over a non-conserving
one. Enhancing conventional FEM with the Isogeometric Framework capped the literature research and re-
quirements for the method were set.

Successful implementation of the method in DelFI shows this tool to be viable for use in this thesis. Com-
puting a variable which is only defined on the boundary is achieved by extending it to the interior and effec-
tively solving two problems. Herein the wave problem was coupled unidirectional to interior problem such
that the wave problem remains unaffected. DelFI shows to be flexible enough to allow the implementation
of a monolithic linear potential free-surface flow problem. This is shown by addressing the energy conserva-
tive properties of the numerical method together with different formulations of conservation of mass. The
energy conservation shows to hold. Conservation of mass is not guaranteed, but can be reduced by adopting
an appropriate space and time resolution. Validation against an Airy wave shows these errors to be marginal
with respect to results achieved.

Extension to the non-linear case shows to have been conditionally successful. The added feature to com-
pute a variable that is defined on the boundary alone is directly used for mesh deformation to capture non-
linear effects. A sloshing case demonstrates the implementation of the non-linear potential flow equations
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compared to others. Although only nodal values are evaluated, it does demonstrate that the method validates
against others. Energy conservation is not guaranteed. Possibly this is due to the previous mass conservation
error having a direct effect on the energy. A second argument could be that in the implementation of the
integral not all Lagrangian definitions have been adequately implemented. Results also show that instabili-
ties occur when using a p-refinement strategy. P-refinement introduces additional nodes near the boundary
of the problem and hereby increasing the local Péclet number. The instabilities are observed most apparent
near the boundaries. SUPG provides a solution method that complies with the research question.

Currently, results from conservation laws and instabilities that are a natural result of the method can be
reduced with appropriate mesh and time resolution. Still, a DNV sloshing benchmark shows that the method
is capable of reproducing the results of others with less degrees of freedom.

7.2. Recommendations
In this thesis a basis is laid for development of a digital twin of a towing tank. The main focus was the imple-
mentation of a novel variational form describing the non-linear potential flow equations.

Investigation of numerical behaviour Global conservation properties of the method have been investi-
gated. Current analytical methods show that these relatively simple observation handles need to be aug-
mented with additional mathematics similar to Akkerman et al. [2] . Further in depth review of the numerical
behaviour of the method such as convergence proofs and error estimates together with a correct relation
between the boundary and interior will reveal potential improvements on the analytical frame work.

Stabilization When this is achieved an appropriate stabilization scheme needs to be implemented to re-
duce instabilities occurring at high advection. For FEM Brooks and Hughes [9] showed that stability can be
enforced on a local level with methods without affecting the physics too much. Methods such as SUPG locally
stabilize the residual and energy descriptions for these methods are readily available.

Wave maker A wave maker boundary condition together with a dissipation boundary condition at the
beach completes the numerical towing tank. The mesh motion now has to be extended to all directions.
The dissipation at the beach ensures that the waves decay accordingly. Different implementations of these
boundary conditions are showcased in [7][17] and [39].

Validation These results can then be validated and compared to empirical results. The potential flow equa-
tion should provide an accurate description of waves up to breaking. Interesting would be if high phase
accuracy can be achieved. In [7][17] and [39] this still proved to be a challenge.

Optimization A quality sufficient for implementation of an optimization scheme to design am improved
wave-maker startup routine to reduce non-linear effects. In [27] a number of these methods are addressed.
Particularly interesting is the adjoint method



A
Derivation of Ideal Free-Surface Ideal flow

A.1. Bernouilli equations
To derive the equations for potential flow we start at the Incompressible Navier-Stokes Equations [24]

ρ
∂u

∂t
+ρ(u ·∇)u =−∇p+µ∇2u+ρg (A.1)

∇·u = 0 (A.2)

For fluid problems, certain characteristics can be defined by identifying some key physical parameters.
These can be, for instance, length, density, viscosity or gravity. We can non-dimensionalize the Navier Stokes
equations with these physical parameters. Here, define a characteristic density ρ̃, length L and mean stream
velocity U . Resulting in the non-dimensionalized Navier Stokes Equations. The characteristic timescale τ is
a function of velocity and space.

ρU

τ

∂u

∂t
+ ρU 2

L
(u ·∇)u =−π

L
∇p+ ρU

L2 µ∇2u+ρg (A.3)

∇·u = 0 (A.4)

For the inertial regime we select π= ρU 2. If we then divide the Navier Stokes Equations by ρU 2/L we get
the non-dimensional Navier Stokes Equations.

St
∂u

∂t
+ (u ·∇)u =−∇p+ 1

Re
∇2u+ 1

F r 2 g (A.5)

∇·u = 0 (A.6)

St = L

Uτ
Strouhal number (A.7)

Re = ρU L

µ
Reynolds number (A.8)

F r = U√
g L

Froude number (A.9)

(A.10)

For large Reynolds numbers, the viscous terms cancel and from that we obtain the Euler equations. Now
if we also assume irrotationality, we can say that the velocity field derives from a potential.

∇×u = 0 irrotationality (A.11)

∇φ= u velocity derives from a potential (A.12)
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46 A. Derivation of Ideal Free-Surface Ideal flow

we obtain

(u ·∇)u =�����:
0

u×∇×u+∇1

2

(‖u‖2) (A.13)

Substitution in the reduced momentum equations and incompressibility statement.

ρ
∂u

∂t
+ 1

2
ρ‖u‖2 +ρg+∇p = 0 (A.14)

∇
(
ρ
∂φ

∂t
+ 1

2
ρ
∥∥φ∥∥2 +p

)
+ρg = 0 (A.15)

ρ
∂φ

∂t
+ 1

2
ρ
∥∥∇φ∥∥2 +p +ρg z =C (t ) Momentum (A.16)

∇2φ= 0 Mass conservation (A.17)

A.2. Boundary condtions
For the case of the free-surface we define an additional physical boundary conditions apart from the momen-
tum conditions which have to be met. Additionally a geometric or kinematic boundary condition has to be
defined to preserve the interface.

p −pa = γ
(

1

R1
+ 1

R2

)
Normal stress boundary condition (A.18)

With γ, being the kinematic viscosity, R1 and R2 are the principle radii of curvature and pa is the atmo-
spheric pressure. An ideal fluid can not exert any surface tension at a surface. Therefore at the free surface
we have p = pa . Consequently, the momentum equation at the free surface becomes

∂φ

∂t
+ 1

2

∥∥∇φ∥∥2 + gη= 0 (A.19)

Next we define an equation for the free-surface.

H = η− z = 0 (A.20)

For the free surface to remain intact the following has to hold which gives rise to the kinematic boundary
condition.

D H

Dt
= ∂H

∂t
+u ·∇H = 0 (A.21)

∂η

∂t
+∇φ ·

[∇η
−1

]
= 0 (A.22)



B
Mathematical expressions

B.1. Reynold’s Transport Theorem & Gauss’ Divergence Theorem

d

dt

∫
Ω(t )

q dΩ
RT T=

∫
Ω(t )

∂q

∂t
+∇· (qu

)
dΩ,

∫
Ω(t )

∇·q dΩ
G d t=

∫
Γ(t )

q ·ndΓ (B.1)

⇒ d

dt

∫
Ω(t )

q dΩ=
∫
Ω(t )

∂q

∂t
dΩ+

∫
Γ(t )

qu ·ndΓ (B.2)

B.2. Definition of kinetic and potential energy

Eki n ≡ 1

2
m‖u‖2 (B.3)

Epot ≡
∫ η

0
g z d z (B.4)

B.3. Green’s identities

−
∫
Ω

w∇2ψdΩ=
∫
Ω
∇w ·∇φdΩ−

∫
Γ

w
(∇ψ ·n

)
dΓ (B.5)

B.4. Boundary integral mapping
In this section we arrive at an expression for the boundary integrals(

w,γηt
)
Γ f s (t ) =

∫
Γ f s (t )

wγηt dΓ (B.6)∫
Γ f s (t )

γv

(
dψ

dt
+ 1

2
∇ψ ·∇ψ+ gη

)
dΓ (B.7)

In terms of the still water level Γ0. For now we assume no wave maker to be present. Remind us

∇ψ ·n = u ·n = γηt (B.8)

From calculus we know that the surface integral of a function f (x, y, z) over an domain S can be expressed
as ∫

Γ
f (x, y, z)dΓ=

∫
S

f (x, y, g (x, y))
√

1+ (g1(x, y))2 + (g2(x, y))2 d A (B.9)

z = g (x, y) (B.10)

The free surface η is given to be
z = η(x, t ) (B.11)
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For a transformation of the integrals from the moving free-surface the γ term drops out which corresponds
to the cosine of the angle with the z axis.

nz = cosθ = n ·e3 = γ (B.12)

As such we get (
w,γηt

)
Γ f s (t ) =

∫
Γ f s (t )

wγηt dΓ=
∫
Γ0

wηt dS (B.13)∫
Γ f s (t )

γv

(
dψ

dt
+ 1

2
∇ψ ·∇ψ+ gη

)
dΓ=

∫
Γ0

v

(
dψ

dt
+ 1

2
∇ψ ·∇ψ+ gη

)
dS (B.14)

This makes sense as effectively a "larger" differential area is projected onto a smaller one whilst the integral
remains the same.

B.5. Bilinear form

B(u + v, w) = B(u, w)+B(v, w) (B.15)

B(u, v +w) = B(u, v)+B(u, w) (B.16)

B.6. Luke’s Principle

J =
∫ t1

t0

∫ x1

x0

L d x d t

Here we take the variation of the pressure

L =
∫ h(x,t )

0

(
p −p0

)
dΩ=−

∫ h(x,t )

0

(
1

2
φ2

x +
1

2
φ2

y +φ,t + g
(
y −H0

))
d y

If we vary J accordingly with respect to h and φ at the boundaries, Luke derives the following:

δJ =
∫ t1

t0

∫ x1

x0

δL d x d t = 0

The delta is moved inside of the integral, due to the boundary values.

δL =
∫ h(x,t )+δh

0

(
1

2

∥∥∇(
φ+δφ)∥∥2 + (

φ+δφ)
,t + g

(
y −H0

))
d y −

∫ h(x,t )

0

(
1

2

∥∥∇φ∥∥2 +φ,t + g
(
y −H0

))
d y

The first term rewrites∫ h(x,t )+δh

0

(
1

2

∥∥∇(
φ+δφ)∥∥2 + (

φ+δφ)
,t + g

(
y −H0

))
d y

=
∫ h(x,t )

0

(
1

2

∥∥∇(
φ+δφ)∥∥2 + (

φ+δφ)
,t + g

(
y −H0

))
d y +

[
1

2

∥∥∇(
φ+δφ)∥∥2 + (

φ+δφ)
,t + g

(
y −H0

)]
y=h

δh

Neglecting higher order terms O
(
δ2

)
∫ h(x,t )+δh

0

(
1

2

∥∥∇(
φ+δφ)∥∥2 + (

φ+δφ)
,t + g

(
y −H0

))
d y

=
∫ h(x,t )

0

(
1

2

(∇φ ·∇φ+2∇φ∇(
δφ

)+∇(
δφ

) ·∇(
δφ

))+ (
φ+δφ)

,t + g
(
y −H0

))
d y +

[
1

2

∥∥∇φ∥∥2 +φ,t + g
(
y −H0

)]
y=h

δh

Again, neglecting higher order terms O
(
δ2

)
δL =

[
1

2

∥∥∇φ∥∥2 +φ,t + g
(
y −H0

)]
y=h

+
∫ h(x,t )

0
∇φ ·∇(

δφ
)+δφ,t d y

⇒ δJ =
∫ t1

t0

∫ x1

x0

{[
1

2

∥∥∇φ∥∥2 +φ,t + g
(
y −H0

)]
y=h

δh +
∫ h(x,t )

0
∇φ ·∇(

δφ
)+δφ,t d y

}
d x d t = 0 (B.17)



C
FEM example: advection diffusion

This example serves as a short introduction into FEM by means of the advection-diffusion equation where
given u ∈R, ε ∈R and f : [0,L] →R we need to find φ ∈R such that

uφ,1 +εφ,11 = f

The weak for of the problem reads that given u ∈ R, ε ∈ R and f : [0,L] → R we need to find φ ∈ R such that
∀w ∈W , ∫

Ω
−w,1uφ+w,1εφ,1d x =

∫
Ω

w f d x. (C.1)

We will approximate the solution to Equation (C.1) using the Bubnov-Galerkin method and C 0 piecewise-
linear finite element spaces V 0

1,h . With the above choice of finite elements, the trial and test function spaces
are chosen as below,

Sh :=
{

f ∈V 0
1,h : f (0) = 0, f (L) = 1

}
, Wh :=

{
f ∈V 0

1,h : f (0) = 0, f (L) = 0
}

The weak form of the problem is ∫
Ω

w,1uφ+w,1εφ,1 −w f d x = 0

Next, the infinite dimension spaces can replaced by the finite dimension spaces.

φh =∑
j

B jφ j , wh =∑
i

Bi wi

Substituting for w and φ and using bilinearity gives

n−1∑
i=1

wi

n∑
j=1

∫ L

0
(−Bi ,1uB jφ j +Bi ,1εB j ,1φ j −Bi f )d x = 0

To solve for an element i we look at a schematic representation of the elements here it can be seen that when
|i − j | > 1 the integral is equal to zero. As such, we can rewrite this into

i+1∑
j=i−1

∫ xi+1

xi−1

(−Bi ,1uB jφ j +Bi ,1εB j ,1φ j −Bi f )d x = 0 (C.2)

Let consider the four non-zero cases of Equation (C.2) depicted in table 11 Substitution of the basis functions
in Equation (C.2) gives the following equation∫ xi

xi−1

−u

h
(1− 1

h
(x −xi−1))φi−1 − 1

h2 εφi−1)d x +
∫ xi

xi−1

−u

h

1

h
(x −xi−1)φi − 1

h2 εφi )d x

+
∫ xi+1

xi

u

h
(1− 1

h
(x −xi ))φi + 1

h2 εφi )d x +
∫ xi+1

xi

u

h

1

h
(x −xi )φi+1 − 1

h2 εφi+1)d x

+
∫ xi+1

xi−1

Bi f d x = 0
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50 C. FEM example: advection diffusion

x ∈ [xi−1, xi ), j = i −1
Bi−1 = 1− 1

h (x −xi−1)
Bi−1,1 =− 1

h

x ∈ [xi−1, xi ), j = i
Bi = 1

h (x −xi−1)
Bi ,1 = 1

h

x ∈ [xi , xi+1), j = i
Bi = 1− 1

h (x −xi )
Bi ,1 =− 1

h

x ∈ [xi , xi+1), j = i +1
Bi+1 = 1

h (x −xi )
Bi+1,1 = 1

h

Table 11: Piecewise basis function

These are solved and combined resulting in

h

[
u
φ j+1 −φ j−1

2h
−εφ j+1 −2φ j +φ j−1

h2 − 1

h

∫ x j+1

x j−1

Bi f d x

]
= 0

For every element i . Results are plotted in Figure 33. For Peclet number higher than one the solution shows
to be unstable. The Peclet number is defined by

Peh = |u|h
ε

(C.3)

Figure 33: Galerkin approximation of the Advection Diffusion equation. The dashed line indicates the
exact solution. Peh = 8



D
Wave maker derivations

Pitching wave maker boundary condition For the wave maker a boundary condition in parametric form
could be the following

θwm = θmax
wm sin(ωwm t )

θ̇wm = θmax
wm ωwm cos(ωwm t )

u ·n = sθ̇wm

Here s ∈ [0,Lwm] is a parameter denoting the position along the wave maker and a is a control parameter for
the wave maker frequency.

u ·n = sωwmθ
max
wm cos(at ) (D.1)

Energy evolution with wavemaker BC
After integration by parts, the Neumann boundary condition for the wavemaker can be substituted in. This
is a natural boundary condition.

− (w,∆ψ)Ω(t ) = (∇w,∇ψ)Ω(t ) − (w,∇ψ ·n)Γ f s (t ) = (w,∇ψ ·n)Γwm (t )

Doing the same as previously we find that with the included forcing term the total energy evolution is a func-
tion of the wave-maker energy. From here onwards we will no longer address the wave maker boundary
condition as this is beyond the scope of this thesis.

d

dt

(
1

2
(∇ψ,∇ψ)Ω(t ) +

∫
Ω(t )

g z dΩ

)
= 1

4
ω2

wmL2
wm

(
θmax

wm

)2 cos2(ωwm t ) (D.2)
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E
Code Snippets

E.1. C++

Listing E.1: Mesh file for a 2D unit square

1 MFEM NURBS mesh v1 . 0
2
3 # 2D square mesh
4
5 dimension
6 2
7
8 elements
9 1

10 1 3 0 1 3 2
11 boundary
12 4
13 1 1 0 1
14 2 1 1 3
15 3 1 3 2
16 4 1 2 0
17
18 edges
19 4
20 0 0 1
21 1 0 2
22 0 2 3
23 1 1 3
24
25 v e r t i c e s
26 4
27
28 patches
29
30 knotvectors
31 2
32 1 2 0 0 1 1
33 1 2 0 0 1 1
34
35 dimension
36 2
37
38 controlpoints
39 0 0 1
40 1 0 1
41 0 1 1
42 1 1 1

Listing E.2: Periodicity file

1 1
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2 4 2

E.2. C

Listing E.3: local.bcs file for version A

1 bnd form phi eta
2 1 0 0 1
3 2 0 0 0
4 3 1 0 0
5 4 0 0 0\n

Listing E.4: local.bcs file for version B

1 bnd form phi eta
2 1 0 0 1
3 2 0 0 0
4 3 1 0 1
5 4 0 0 0\n



F
Running DelFI

DelFI runs through the Command Line Interface (CLI). When changes are made that need to be compiled
into binaries, DelFI has to be recompiled. Other changes which only dependent on ASCII input such as mesh
files, need no recompilation of DelFI. Recompilation is done in the build folder with the command make. To
speed up the process, compilation can be done in parallel with make -j 6, e.g. for 6 processes. A typical run
command is given by

mpirun -np 1 ../../delfi -m square.mesh –physics LinearisedWave -r 2 -tf 10.0
-dt 0.01 -eo -vis 0.01 -ni 10 -s 32 -o 2 -lt 1e-6 -nt 1e-3 -bcp 0 -d99 0 -b local.bcs
-p local.per | tee log;

The first argument is to run DelFI in parallel using MPI. The flag -np, followed by an integer indicates the
number of processes/threads which we would like to use. Next the location of executable file of DelFI is given.
Consequently, the user specifies MPI to run the delfi executable with 1 process. Expressions starting with a
dash are called flags. These flags are followed by an input for DelFI. By running delfi -help, definitions of
these flags can be found.

The boundary conditions are specified in a .bcs file (Appendix E.3 E.4). The first column corresponds
to the boundary identifiers specified in the .mesh file. The second column corresponds to a marker which
can be used to evaluate a residual boundary formulation, such as the free-surface description, only on the
indicated boundary.
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