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Abstract

In this thesis, we aim to improve the application of deep reinforcement learning in portfo-
lio optimization. Reinforcement learning has in recent years been applied to a wide range
of problems, from games to control systems in the physical world and also to finance.
While reinforcement learning has shown success in simulated environments (e.g. matching
or exceeding human performance in games), its adoption in practical applications (non-
simulated environments) has lagged. Dulac-Arnold et al. [2019] suggest this is caused
by a discrepancy in the experimental set-up in research and the conditions in practice.
Specifically, they present a list of challenges that make the application of reinforcement
learning in real-world settings more difficult. One of these challenges is non-stationary
environments, which is common in financial environments. It is a challenge since, given an
observed state, the optimal action may not always be the same as it may change over time
due to non-stationarity. Therefore, more specifically, the goal of this thesis is to overcome
the challenge of non-stationarity in the application of reinforcement learning to portfolio
optimization. In this thesis, we use reinforced deep Markov models (RDMM) introduced
by Ferreira [2020] (applied to an optimal execution problem and later used by Cartea et al.
[2021] for statistical arbitrage on simulated price movements of an FX triplet) for its data
efficiency and ability to handle complex environments. RDMM involve a partially observ-
able Markov decision process (POMDP) which is also the setting used by Xie et al. [2021]
to model non-stationarity in reinforcement learning. We extend RDMM to incorporate
non-stationarity, using the framework suggested by Xie et al. [2021], and apply it to port-
folio optimization. Our implementation is sample efficient which allows for quick learning,
by doing this we attempt to improve on another challenge of reinforcement learning — i.e.
sample-inefficiency [Dulac-Arnold et al., 2019]. Moreover, our implementation can handle
continuous state and action spaces.

We compare the performance of our algorithms to classical portfolio optimization tech-
niques such as Mean-Variance (MV) and Equal Risk Contribution (ERC), and to popular
reinforcement learning techniques such as Deep Deterministic Policy Gradient (DDPG)
and Soft Actor-Critic (SAC). We observe our implementation has higher sample-efficiency
compared DDPG and SAC, and higher cumulative returns on the test set compared to
MV, ERC, DDPG, and SAC.

Keywords: Reinforced Deep Markov Models, Model-Based Reinforcement Learning, Pol-
icy Gradient, Non-Stationarity, Portfolio Optimization, Partially Observable Markov De-
cision Processes, Variational Autoencoders, Deep Neural Networks
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Chapter 1

Introduction

In this thesis, we explore and aim to improve the application of (deep) reinforcement learn-
ing to the problem of portfolio optimization. The field of reinforcement learning has gained
significant traction in recent years, demonstrating its effectiveness in a variety of settings,
including AlphaGo and large language models (LLMs). Its application in finance has shown
potential, with implementations in various areas including market making, optimal execu-
tion [Ning et al., 2021], pricing and hedging options [Buehler et al., 2019], and portfolio
optimization.

Combining deep neural networks with reinforcement learning has proven to be espe-
cially effective. This approach enables a decision-making framework using available data
without the need for a predefined model that may often contain unrealistic assumptions
regarding the problem or environment. This is particularly relevant in finance, where tra-
ditional problems often require simplifications or assumptions to arrive at an analytical
solution—for example, the Almgren-Chriss model for optimal execution or the assumption
of continuous-time delta-hedging in option pricing.

Within finance, we choose to apply reinforcement learning to portfolio optimization.
One advantage is that data for portfolio optimization are usually easy to access for free.
This is not necessarily the case for other financial data such as limit-order book (LOB) data
used in market making. This allows us to perform a numerical experiment on historical
data as opposed to simulated data which may be less realistic.

In the following subsections, we will provide a basic introduction to the reinforcement
learning framework, concepts and definitions. This is followed by a brief introduction to
portfolio optimization and the existing literature on reinforcement learning being applied
to portfolio optimization. We then introduce general challenges that have inhibited the
successful application of reinforcement learning to real-world tasks (as opposed to games
and simulated environments) that require decision-making. Of those problems, we focus
specifically on dealing with non-stationary environments.
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1.1 Reinforcement Learning

Reinforcement learning, along with supervised and unsupervised learning, are distinct ap-
proaches of machine learning. It revolves around learning an agent to take actions in a
certain environment in order to satisfy an objective – i.e. to maximize a quantity such as
the cumulative reward. It is distinguished from supervised or unsupervised learning which
may classify data or use regression to provide a prediction, respectively. Reinforcement
learning, on the other hand, aims select an action to given input from the environment.

Figure 1.1: General Markov Decision Problem (MDP) for reinforcement learning [Cartea
et al., 2021]

1.1.1 Markov Decision Process

A reinforcement learning environment is usually described by a Markov Decision Process
(MDP). An MDP consists of states st , st+1, actions at and rewards rt at time t. The action
at depends on state st and influences the (stochastic) transition from state st to state st+1.
The corresponding triplet (st , st+1, at) influences the reward rt from taking action at and
transitioning from st to st+1 [Jaimungal, 2022].

The central goal of reinforcement learning can be summarized quite simply as [Jaimun-
gal, 2022]:

Find the mapping of states to actions that maximizes the (discounted) cumu-
lative reward

Let us introduce a discrete time Markov Decision Process (MDP) with an infinite time
horizon. The setting consists of a state space S and an action space A. Since our goal is to
find the mapping from states to actions, called the policy, that maximizes the discounted
cumulative reward, we define the reward function as

Rπ =
∞∑

t=0
γtrπt , (1.1)

where γ ∈ (0, 1) is a discount factor, and rπt is the reward at time t when following policy
π [Jaimungal, 2022]. The policy can be deterministic π : S → A which maps a state
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to a deterministic action, or a randomized policy π : S → P(A) which maps a state to
a probability distribution over actions. Here we denote P(A) as the set of probability
measures over the space A [Hambly et al., 2023].

We can now formulate the goal of reinforcement learning mathematically by defining
the value function, for each state s ∈ S [Hambly et al., 2023]

V (s) = sup
π∈Π

E [Rπ | s0 = s] . (1.2)

In addition, we define P : S × A → P(S) to be the Markov transition function. Further,
st+1 is sampled from distribution P(st , at) ∈ P(S).

By Bellman’s optimality principle, we can rewrite the value function to a Bellman
equation. Bellman’s principle of optimality is [Bellman, 1957]:

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

Consequently, one can recursively rewrite the value function by relating the value function
of subsequent time periods

V (s) = sup
a∈A

[
E [ra

t ] + γEst+1∼P(s,a) [V (st+1)]
]

, (1.3)

where ra
t denotes the random reward from taking action a at time t. It is furthermore

useful to define the Q-function, which measures the quality of an action in a given state

Q(s, a) =
[
E [ra

t ] + γEst+1∼P(s,a) [V (st+1)]
]

, (1.4)

from which it is clear that
V (s) = sup

a∈A
Q(s, a). (1.5)

Similarly, by Equation 1.3 we can also write the Q-function as a Bellman function

Q(s, a) = E [ra
t ] + γEst+1∼P(s,a) sup

a′∈A
Q(st+1, a′). (1.6)

The optimal policy is then given by π∗ ∈ arg maxa∈A Q(s, a), assuming it exists and is
stationary.

A Markov decision problem becomes a reinforcement learning problem when the goal is
to find an optimal policy π while the transition dynamics P and the reward function r are
unknown. Those functions will be learned implicitly in reinforcement learning methods.

A reinforcement learning algorithm generally has at least one of the following com-
ponents: a value function to determine the value of a state (or state-action pair) and a
policy function. Consequently, reinforcement learning algorithms consist of two categories:
value-based methods and policy-based methods.
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1.1.2 Value-Based Reinforcement Learning

Value-based methods involve the estimation of the value function given in Equation (1.3)
such as the Q-function which is given in Equation (1.6). What distinguishes value-based
methods from policy-based methods is that only the value function is learned and not the
policy. However, ultimately, the policy can be derived from the value function by taking
the action that maximizes the value function, i.e. arg maxa∈A Q(s, a). The downside is,
however, that computing arg maxa∈A Q(s, a) becomes computationally expensive as the
dimensionality of the state or action spaces increases. This is especially expensive as value-
based methods may require the aforementioned computation multiple times. Indeed, the
computation of arg maxa∈A Q(s, a) becomes infeasible when the action space is continu-
ous (or unbounded) [Jaimungal, 2022]. Consequently, value-based methods are used with
bounded discrete state and action spaces—i.e. the set of states and actions is bounded and
consists of discrete variables.

1.1.3 Policy-Based Reinforcement Learning

Despite the success of value-based reinforcement learning in practice, it has few theoretical
guarantees in terms of convergence and some applications resulted in convergence issues.
This was a reason behind the search for alternative methods that have more reliable and
well-defined convergence properties [Sutton et al., 2000]. As a result, policy-based methods
were introduced. These methods involve a directly parameterized policy function (instead
of an implicit policy through a value function). The goal of policy-based reinforcement
learning methods is to learn this policy function. Indeed, better convergence properties
have been observed compared to value-based methods [Sewak and Sewak, 2019, Dabérius
et al., 2019, Yu and Sun, 2020] because in value-based methods big oscillations tend to
occur during the training process since actions may need to change dramatically for a
small increase in the value function [Hambly et al., 2023]

Furthermore, an advantage of policy-based methods is that, unlike value-based meth-
ods, it does not suffer from an increasing dimensionality of state or action spaces. Indeed,
policy-based methods can handle continuous action spaces, in which the actions are contin-
uous variables or a vector whose elements are continuous variables. Indeed, Lillicrap et al.
[2015] note that many tasks of interest, (mainly physical control tasks) have continuous
and high dimensional action spaces.

In policy-based methods, there is a policy distribution π(s, ·; θ) ∈ P(A) over the action
space parameterized by the vector θ in a given state s (note that a policy can also be a
deterministic function). Furthermore, there is ρπ, denoting the stationary state distribution
associated with policy πθ [Hambly et al., 2023]. The policy objective function is given by
[Hambly et al., 2023]

J (θ) :=
∫

S
V π
θ (s)ρπ(ds), (1.7)
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where the goal is to maximize this objective function, which can be done through a gradient
ascent update on the parameter θ

θn+1 = θn + β∇θJ (θ), (1.8)

where ∇θJ (θ) is the gradient of the objective function and β is the learning rate.
To perform the gradient ascent step, the gradient ∇θJ (θ) must be estimated. Using

the stochastic policy gradient theorem [Sutton et al., 1999], gives an expression for the
gradient

Theorem 1. [Sutton et al., 1999] Assume π(s, a; θ) is differentiable with respect to θ. For
any MDP for which a stationary distribution ρπ exists, the policy gradient is

∇θJ (θ) = Es∼ρπ ,a∼πθ
[∇θ ln π(s, a; θ)Qπ(s, a)] . (1.9)

Conveniently, the expression does not require the gradient of the stationary distribution
as it is unclear how to estimate it. In addition, the term ∇θ ln π(s, a; θ), is a Score func-
tion which, under a softmax or (multi-dimensional) Gaussian policy, has an analytically
tractable derivative [Rao and Jelvis, 2022].

1.1.4 Model-Free and Model-Based Reinforcement Learning

Similar to the dichotomy between value-based methods and policy-based methods, there is
another dichotomy in reinforcement learning — model-free and model-based reinforcement
learning. Model-free reinforcement learns through direct interaction with been successful
in video game playing and other simple control tasks, where the environment is relatively
predictable and the goal is straightforward [Mnih et al., 2015]. This method, however,
suffers from sample inefficiency.

Model-based reinforcement learning models the dynamics of state transitions and re-
wards, which, for example, could be modelled using supervised learning methods such as
deep neural networks. This method was introduced to accelerate convergence and enhance
data (sample) efficiency [Ferreira, 2020]. While the implementation is more complex than
model-free, Nagabandi et al. [2018] show improved sample efficiency using model-based
reinforcement learning in complex locomotion tasks.

1.1.5 On-Policy and Off-Policy Learning

Another concept in reinforcement learning is that of on-policy and off-policy. In off-policy
learning there is a distinction between the policy that samples the data and the policy
that is learned. This approach allows learning from more past experiences and not only
the current decision. Off-policy is particularly useful in cases where acquiring new data
is expensive or risky, as it can utilize historical or external data sources for learning. On
the other hand, on-policy learning involves learning directly from the interactions and the
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samples generated from the current policy. On-policy learning is known to have poor
sample efficiency, whereas off-policy is known to be more sample-efficient Haarnoja et al.
[2018a]. Off-policy learning is more sample efficient through the use of a replay buffer, which
stores experiences consisting of states, actions and rewards, collected from interactions with
the environment. These experiences come from different past policies and are sampled in
batches from the replay buffer to update the current policy. Using large replay buffers
stabilize and speeds up the learning process [Mnih et al., 2015, Haarnoja et al., 2018a].

1.2 Portfolio Optimization Problem

Portfolio optimization involves the construction of a portfolio from a pool of assets based
on a specific objective. This problem was introduced by Markowitz [1952] when he claimed
that not only the expected return of a portfolio should be considered, but also its ”risk”.
Markowitz [1952] argued if only the expected return were to be maximized, then the port-
folio would have to be fully allocated to the asset(s) with the highest expected return(s).
Instead, to avoid high concentrations in a single or a small set of assets, Markowitz [1952]
suggested that a portfolio should both maximize expected return while offering ”diversi-
fication” which minimizes the portfolio’s ”risk”. This risk was expressed in terms of the
portfolio’s variance. Consequently, the aim was to minimize the portfolio’s variance for
a given level of expected return or to maximize the expected return for a given level of
variance.

We consider optimizing a portfolio of n assets, with allocation weight vector w⊺ =
(w1, . . . , wn) ∈ Rn , such that

w⊺1 = 1, (1.10)
w ≥ 0, (1.11)

where 1 = (1, . . . , 1)⊺ ∈ Rn . The weights summing up to one and the non-negativity of the
weights indicates we consider portfolios without leverage and short-selling.

Here we take the Mean-Variance portfolio optimization as an example. Let µ ∈ Rn be
the vector of expected returns of the n assets, and let Σ ∈ Rn×n be the covariance matrix
of the n-assets. The variance of the portfolio is given by

w⊺Σw. (1.12)

Furthermore, let z ∈ R be the target (desired) return. Then, the Mean-Variance (single-
period) portfolio optimization problem can be formulated as

min
w

w⊺Σ (1.13)

s.t. w⊺µ = z. (1.14)
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1.3 Literature Review

In this section, we will review the literature regarding the application of reinforcement
learning to portfolio optimization. We first broadly discuss some of the differences in
implementation and then we discuss the reinforcement learning algorithms used. We also
present a list of problems that have hindered the applicability of reinforcement problems in
real-world applications. Lastly, we will explain the concepts of value-based or policy-based
reinforcement learning, and model-free or model-based reinforcement learning.

1.3.1 Reinforcement Learning in Portfolio Optimization

There have been various papers on the application of reinforcement learning algorithms
portfolio optimization, and stock trading more generally. With respect to stock trading,
Zhang et al. [2020] use reinforcement learning to select an action from the discrete set
{–1, 0, 1} per stock to either short, stay neutral or long the stock at any chosen time
interval. Moody and Saffell [1998] used reinforcement learning to extend this to two-
asset portfolios consisting of a stock index (the SP500) and bonds (US T-bills). Similarly,
Pendharkar and Cusatis [2018] also construct a two-asset portfolio of the SP500 and bond
index (AGG) (or Treasury Bills). Pendharkar and Cusatis [2018], however, use different
discrete actions (allocations), namely for a long-only portfolio given in Table 1.1.

The number of assets used in portfolio optimization using reinforcement learning was
increased by Park et al. [2020], only ever so slightly, from two to three assets. Park
et al. [2020] choose discrete actions from the set {–1, 0, 1} however, these have a different
meaning; namely, they denote the multiple of a fixed dollar amount (e.g. $10,000) of shares
to be bought or sold. While this may limit transaction costs, the resulting allocation may
be far removed from an optimal allocation. Moreover, it adds the complexity of dealing
with infeasible actions which occur once there is no capital left for buying, or when there
is no more of the asset that can be sold. The authors Park et al. [2020] do note that
the portfolio can be extended to deal with more than three assets at the cost of more
computational effort. Liu et al. [2018] use a similar approach to Park et al. [2020] where
they indicate actions are selected from the set {–k, 0, k}, where k denotes the number of
shares to be bought or sold.

Other authors do use reinforcement learning in portfolio optimization for multi-asset
portfolios [Jiang et al., 2017, Liang et al., 2018, Aboussalah et al., 2022, Sood et al., 2023].
Unlike before, in Jiang et al. [2017], Liang et al. [2018], Sood et al. [2023] actions are not
selected from a set of discrete variables but take continuous values. Specifically, in Jiang
et al. [2017], Liang et al. [2018], Sood et al. [2023] the actions are a vector a = (a1, . . . , an) ∈
Rn which resemble portfolio weights where the non-negative weights sum up to one (using
a softmax function).

The choice between a discrete or continuous action space depends on whether a value-
based or a policy-based method is used. The authors Moody and Saffell [1998], Zhang et al.
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Table 1.1: Reinforcement agent action set in Pendharkar and Cusatis [2018]

Asset 1 2 3 4 5

S&P 500 (%) 0 25 50 75 100
AGG or T-bill bond (%) 100 75 50 25 0

[2020], Pendharkar and Cusatis [2018], Park et al. [2020] who use a discrete set mainly use
value-based learning with the exception of Liu et al. [2018] who do use a policy-based
method, and Zhang et al. [2020] who compare a value-based method with a policy-based
mehtod. Conversely, the authors who use a continuous action action space, Jiang et al.
[2017], Liang et al. [2018], Sood et al. [2023], employ policy-based methods. The policy-
based methods allow for more flexibility in the actions that can be chosen, hence it will be
our preferred method.

The various value-based reinforcement learning methods used are Q-learning [Moody
and Saffell, 1998, Pendharkar and Cusatis, 2018], Deep Q-Networks (Q-learning with deep
neural networks) [Park et al., 2020, Zhang et al., 2020]. Q-learning involves learning the
Q-function given in Equation (1.6) and will be explained in more detail in Section 2.1.
The policy-based methods used are Deterministic Policy Gradient (DPG) Jiang et al.
[2017] Deep Deterministic Policy Gradient (DDPG) [Liang et al., 2018, Liu et al., 2018,
Aboussalah et al., 2022], Proximal Policy Optimization [Liang et al., 2018, Sood et al.,
2023, Aboussalah et al., 2022], where the latter two are popular state-of-the-art policy
gradient methods. DDPG will be explained in Section 2.6.

The states used in the learning methods for portfolio optimization include historical
price data (open, high, low and close price) and/or the returns computed from this data:
such as the close-to-close return between two days, or the ratio of the highest price to the
close price of the same day per asset [Zhang et al., 2020, Park et al., 2020, Liu et al., 2018,
Pendharkar and Cusatis, 2018, Liang et al., 2018, Sood et al., 2023, Jiang et al., 2017].
In addition, Park et al. [2020], Liu et al. [2018], Sood et al. [2023] also use the previous
action (portfolio weight or number of shares held) as an input, which can have a relation
on whether an asset needs to be bought or sold. Zhang et al. [2020] use the price data
to also add technical indicators (e.g. MACD or RSI) which indicate price patterns, as
states. More interestingly, Sood et al. [2023] use volatility indicators such as the VIX and
a calculation which determines whether an asset’s volatility has increased over a rolling
period. The historical data used as states pertain to a specific period. This results in a
tensor of dimension (n, t, f ) where n is the number of assets, t is the length of the historical
period of the data, and f is the number of features. Using neural networks, this tensor can
either be flattened to a one-dimensional input to a neural network, or a Recurrent Neural
Network (RNN) can be used to handle time-series data which is used by Zhang et al. [2020],
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Jiang et al. [2017].
The simplest rewards for portfolio optimization is the return of the portfolio between

two periods and hence it is used in Park et al. [2020], Liu et al. [2018], Liang et al. [2018],
Jiang et al. [2017]. Moody and Saffell [1998], Sood et al. [2023], however, use a Sharpe ratio
of the portfolio as rewards which resembles the objective of portfolio optimization more
closely. Specifically, a differential Sharpe ratio is used which was introduced by Moody
and Saffell [1998] which is essentially an approximation of the rate of change of the Sharpe
ratio. This was introduced to ensure additivity of the rewards in the reward objective given
in Equation (1.1).

1.3.2 Application Challenges of Reinforcement Learning

Dulac-Arnold et al. [2019, 2020, 2021] have observed numerous challenges that frequently
occur when applying reinforcement learning to real-world problems (as opposed to simu-
lated problems). These problems are [Dulac-Arnold et al., 2019, 2020, 2021]

1. Sample inefficiency: learning on live systems from limited samples.
2. Dealing with unknown and potentially large delays in rewards.
3. Learning and acting in high-dimensional state and action spaces.
4. Incorporating system constraints that cannot be violated.
5. Interacting with partially observable systems, which can alternatively be

viewed as non-stationary.
6. Learning from multi-objective or poorly specified reward functions.
7. Being able to provide actions quickly, especially for systems requiring low

latencies.
8. Learning policies offline (and off-policy).
9. Obtaining explainability of policies.

Of these problems, we deemed the sample efficiency (Problem 1) and non-stationarity
(Problem 5) to be the most important and pertinent for the portfolio optimization problem.
Indeed, the problem of non-stationary financial market environments or non-stationary
financial data was mentioned to be a relevant problem in Liang et al. [2018], Yu et al. [2019],
Aboussalah et al. [2022], Hambly et al. [2023], however, Liang et al. [2018], Aboussalah
et al. [2022] did not attempt to solve it. Furthermore, Yu et al. [2019] did not explicitly
model non-stationarity, but instead, unconvincingly, merely used the percentage change of
an asset as a state variable, which was assumed to be a non-stationary time series. The
precise definition of non-stationarity will be provided in Section 4.3.1.

Regarding sample efficiency, while this is generally an important problem for any algo-
rithm, it is also particularly relevant for portfolio optimization. On the spectrum of high-
frequency to low-frequency financial problems, portfolio optimization is a low-frequency
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problem. Whereas, in the high-frequency domain, there is usually an abundance of data
(in terms of samples), in the low-frequency domain there is usually a lack of data. Hence
it is important to have a sample-efficient reinforcement learning method in portfolio opti-
mization.

1.3.3 Reinforced Deep Markov Models

To improve sample efficiency through model-based reinforcement learning, Ferreira [2020]
used a Reinforced Deep Markov Model (RDMM) applied to optimal trade execution. This
model was subsequently used by Cartea et al. [2021] in statistical arbitrage on an FX-
triplet. Cartea et al. [2021], however, train the model on simulated data FX-price data,
which omits the necessity for model-based reinforcement learning as sufficient samples can
be generated artificially.

The term reinforced deep Markov model (RDMM) was coined by Ferreira [2020]. It is an
integration between a partially observable Markov decision process (POMDP), deep neural
networks and policy gradient. A POMDP is an MDP (introduced in Section 1.1.1) with
additional unobserved variables zt , which are called latent variables. Alternatively, RDMM
can also be thought of as the integration of a POMDP and a deep latent variable model
(DVLM), where a DVLM is any model with latent variables and deep neural networks.

Relatedly, Xie et al. [2021] introduced a way to model non-stationarity using a POMDP
and Soft Actor-Critic (SAC)(explained in Section 2.7). Their implementation, lifelong
latent actor-critic (LILAC), was applied to simulated environments with discrete state and
action spaces.

1.4 Our Contribution

We propose a policy-based Non-Stationary Reinforced Deep Markov Model (NSRDMM)
to improve on value-based and policy-based reinforcement learning methods applied to
portfolio optimization. The method is an extension of Reinforced Deep Markov Models
(RDMM) [Ferreira, 2020] that is designed to provide a model for non-stationary Markov
Decision Processes (MDPs) [Xie et al., 2020] with time-varying state transition distribution,
reward distributions and policy distribution. Our contribution, is combining the RDMM
to incorporate non-stationarity in the reward distribution and policy function (following
the framework by Xie et al. [2021]) and applying it to portfolio optimization.

Similar to Cartea et al. [2021], we use Gaussian distributions to model the continuous
state and action spaces. These Gaussian distributions are parameterized by neural net-
works which are also called mean-variance-estimation (MVE) networks. Specifically, for
training the MVE networks, we use a warm-up period where only the mean of the normal
distribution is learned, instead of the mean and variance simultaneously, as suggested by
Sluijterman et al. [2023]. Furthermore, as in Ferreira [2020] (but unlike [Cartea et al.,
2021]) we use a Gaussian policy function.
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Another contribution is using a multi-objective model-based reward function, where the
learned mean reward and variance of rewards are simultaneously maximized and minimized,
respectively (Ferreira [2020] use a single objective). In the model-based implementation, we
avoid the issue of having a Mean-Variance objective in the reward function which makes it
computationally challenging to find the global optimum for the policy (indeed, convergence
to the global optimum is not guaranteed) [Mannor and Tsitsiklis, 2013]. This is because the
variance of rewards is nonlinear in expectation such that Bellman’s principle of optimality
cannot be applied [Tamar et al., 2016, Vigna, 2020, Wang and Zhou, 2020]. Our model-
based multi-objective function avoids the need for Bellman’s principle of optimality because
we the use the learned mean and variance parameters of the reward distribution.

Furthermore, even though RDMM was introduced partly for its data efficiency, it
has only been applied to simulated data Ferreira [2020], Cartea et al. [2021]. We train
NSRDMM on historical data to show it can indeed be applied in real-world applications by
overcoming the issue of sample-inefficiency. A further contribution is that, unlike [Ferreira,
2020, Cartea et al., 2021], we use a off-policy gradient updates of the policy function to
further improve sample-efficiency as suggested by Haarnoja et al. [2018b] through using a
replay buffer.

Lastly, the states (features) we use are covariance matrices (and momentum indica-
tors) to provide a more close comparison to portfolio optimization methods such as Mean-
Variance. Unlike previous literature which mainly used a combination of return data and
technical indicators.

1.5 Outline

In Chapter 2, we will introduce model-free reinforcement learning algorithms, Deep Deter-
ministic Policy Gradient (DDPG) and Soft Actor-Critic, which will be used in the numerical
experiment. In the subsequent Chapter 3, we introduce the portfolio optimization methods
Mean-Variance (MV) and Equal Rsik Contribution (ERC), which are popular portfolio op-
timization techniques in practice, as benchmarks in the numerical experiment. In Chapter
4, we describe the NSRDMM model used for portfolio optimization, including the objective
functions used. In the numerical experiment (Chapter 5) the neural network architectures,
data, training, validation and testing is explained, along with the results of the portfolio
optimization experiment.
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Chapter 2

Reinforcement Learning Methods

In this chapter, we introduce various reinforcement learning methods and concepts. We
first explain Q-learning which is an important value-based reinforcement learning method.
We will then explain Actor-Critic methods which combine policy-based methods with a Q-
function to stabilize learning. In addition, we introduce Monte Carlo Policy Gradient which
will be useful for understanding Deep Deterministic Policy Gradient and Soft Actor-Critic
(SAC). The latter two algorithms will be used in the numerical experiment.

2.1 Q-learning

Q-learning is a value-based reinforcement learning algorithm introduced by Watkins [1989]
and is used to approximate the Bellman equation for the Q-function 1.3. For each iteration
the agent:

1. observes the current state s,
2. selects action a,
3. observes the next state s′, where s′ ∼ P(s, a),
4. receives a reward r .

For iteration n, the Q-function update is as follows [Hambly et al., 2023]

Qn+1(s, a)← (1 – βn) Qn(s, a)︸ ︷︷ ︸
current estimate

+

βn(s, a)
[
r(s, a) + γmax

a′
Qn(s′, a′)

]
︸ ︷︷ ︸

new estimate

,
(2.1)

where βn is the learning rate that determines the weight given to the current estimate
and the new estimate of the Q-function. The new estimate of the Q-function, r(s, a) +
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γmaxa′ Qn(s′, a′), consists of the reward r(s, a) from taking action a in state s, whereas
the latter term denotes the best the agent ’thinks’ it can do from the subsequent state
[Watkins and Dayan, 1992]. See Algorithm 1 for the Q-learning steps.

The following theorem states that under certain conditions, Qn converges to Q∗, the
true Q-function.

Theorem 2. [Watkins and Dayan, 1992] Assume |A| < ∞ and |S| < ∞. Let ni(s, a)
denote the index of the ith time that action a is taken in state s. Let R <∞ be a constant.
Given bounded rewards |r | < R and learning rate βn ∈ [0, 1), and

∞∑
i=1

βni(s,a) =∞,
∞∑

i=1
(βni(s,a)))2 <∞∀s, a, (2.2)

then, Qn(s, a)→ Q∗(s, a) with probability 1.

While Theorem 2 provides an asymptotic result, it does not give any guarantee on the
number of iterations, or samples (s, a, r , s′), needed to give an accurate result.

Algorithm 1: Q-learning [Hambly et al., 2023]
Input:
Total number of iterations N ; the policy π; the learning rate βn ∈ (0, 1]
(0 ≤ n ≤ N – 1)
Initialize Q0(s, a) for all s ∈ S, a ∈ A
Initialize s
for n = 0, . . . , N – 1 do

Sample action a from π(s)
Observe r and s′ after taking action a
Update Qn according to 2.1
s ← s′

2.2 Monte Carlo Policy Gradient

Monte Carlo Policy Gradient (also named REINFORCE) is one of the simplest policy-
based methods [Williams, 1992] that uses the policy-gradient theorem (Theorem 1). Since
there is an expression for ∇θ ln π(s, a; θ), it is only necessary to estimate Qπ(s, a) when
using the theorem. REINFORCE uses the sum of discounted rewards Gt = ∑T

k=t γ
k–trk

as an unbiased sample of Qπ(s, a) [Rao and Jelvis, 2022]. Then, for each timestep, the
gradient ascent step is [Rao and Jelvis, 2022]

βγt∇θ ln π(s, a; θ)Gt . (2.3)
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Algorithm 2: REINFORCE
Initialize θ
for each episode {s0, a0, r0, . . . , sT , aT , rT} ∼ π(·, ·; θ) do

for t = 0, . . . , T do
θ ← θ + βγt∇θ ln π(st , at ; θ)Gt

return (θ)

From Algorithm 2, we can see that for one episode (or ”trajectory” of states, actions and
rewards), the parameter θ is updated T + 1 times, and all future rewards in the episode
are used in each update.

While REINFORCE gives an unbiased estimate for the gradient step, it may suffer
from high variance (as it is a Monte Carlo method), resulting in a slow convergence. This
is an instance of the bias-variance tradeoff.

2.3 Actor-Critic

To mitigate the high variance of REINFORCE, a function approximation for Qπ can be
used. Unlike the unbiased sample for the Q-function, Gt , which may vary a lot, the
function approximation for the Q-function will be updated gradually, thereby reducing
the variance in the gradient update. We denote the function approximation of the Q-
function by Q(s, a; w), where w is the parameter vector of the function approximation.
Consequently, there are two function approximations, π(s, a; θ), which is called the ’Actor’
and the ’Critic’ Q(s, a; w). Intuitively, ”the Actor updates policy parameters in a direction
suggested by the Critic.” [Rao and Jelvis, 2022]. Therefore, Actor-Critic methods involve
two function approximations to lower the variance of the policy gradient ascent step. In

Algorithm 3: Actor-Critic [Hambly et al., 2023] [Rao and Jelvis, 2022]
Initialize policy parameter θ and Q-function parameter w
Initialize state s
Sample a ∼ π(s, ·; θ)
for n = 0, 1, . . . , N – 1 do

Take action a, observe r , s′

Sample a′ ∼ π(s, ·; θ)
δ ←r + γQ(s′, a′; w) – Q(s, a; w) (TD-error)
w ← w + βwδ∇wQ(s, a; w)
θ ← θ + βθQ(s, a; w)∇θ ln π(s, a; θ)
s ← s′, a ← a′

addition, the variance can be lowered by subtracting a baseline function B(s) from the Q-
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value estimate in the policy gradient update without introducing a bias to the estimation.
This can be shown as follows from rewriting the policy gradient equation 1.9

∇θJ (θ) =
∫

S
ρπ(s)

∫
A
∇θπ(s, a; θ) ·Qπ(s, a) · da · ds. (2.4)

Subtracting the baseline function does not introduce bias since [Rao and Jelvis, 2022]∫
S
ρπ(s)

∫
A
∇θπ(s, a; θ) · B(s) · da · ds (2.5)

=
∫

S
ρπ(s) · B(s) · ∇θ

∫
A
π(s, a; θ) · da · ds. (2.6)

=
∫

S
ρπ(s) · B(s) · ∇θ1 · ds (2.7)

=0 (2.8)

A good baseline function is the state value function V (s) from Equation 1.2.

2.4 Deep Reinforcement Learning

Some of the reinforcement learning algorithms introduced in the previous sections involved
a form of function approximation through a parametrization of the Q-function or policy
function. A widely used form of function approximation is neural networks due to desirable
properties and effectiveness in practice. One of the desirable properties of neural networks
is that they are universal function approximators. Let us provide a version of the universal
approximation theorem.

Theorem 3. [Cybenko, 1989, Hornik et al., 1989, Hornik, 1991] Let σ be any continuous
function that is not a polynomial. Then, the set of functions

f̃ (x) =
m∑

i=1
aiσ(wT

i x + bi) (2.9)

is dense in C ([0, 1]d). I.e. given any continuous function f : [0, 1]d → R and let ϵ > 0,
there is a function like f̃ (x) (2.9), for which

|f (x) – f̃ (x)| < ϵ, ∀x ∈ [0, 1]d . (2.10)

Besides the useful result of the universal approximation theorem, neural networks are
known to deal well with the high dimensionality of features, which is desirable for rein-
forcement learning settings with large state and action spaces. Moreover, neural networks
can be learned in an online fashion, which is useful in many settings where new data is
received frequently.
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2.5 Deep Q-Networks

In Deep Q-Networks (DQN), a neural network Q(s, a; w) is used as a function approxi-
mation for the Q-function. We define the policy µ(s) to be a greedy policy, i.e. µ(s) =
arg maxa Q(s, a). Let π be any stochastic policy, then the loss function for the function
approximation is [Lillicrap et al., 2015]

L(θ) = Est∼ρπ ,at∼π
[
(Q(st , at ; w) – yt)2

]
, (2.11)

where
yt = rt + γQ(st+1,µ(st+1); w). (2.12)

This loss function learns the Q-function off-policy. It should be noted that when using
non-linear function approximations such as neural networks, the convergence of Q-learning
is no longer guaranteed [Lillicrap et al., 2015].

2.6 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is a policy-based method that was invented
to extend Deep Q-learning to continuous action spaces. It is an extension built on the
Deterministic Policy Gradient (DPG) introduced by Silver [Silver et al., 2014]. For DPG
we denote a deterministic policy function by µθ. To improve a policy, it is common to use
a greedy maximization of arg maxa∈A Qµ(s, a) with respect to θ. However, since it requires
a global maximization at every update step, it becomes computationally infeasible for
continuous action spaces [Lillicrap et al., 2015]. Instead, a computationally more feasible
method than globally maximizing the Q-function is to update the policy parameters in
the direction of ∇θQπθ (s, a). Since each state may suggest a different update direction,
the average is taken over the states with respect to the stationary state distribution ρπ.
Therefore, the policy improvement update is [Silver et al., 2014]

θn+1 = θn + β Es∼ρµ [∇θQµ(s,µθ(s))] , (2.13)

which, by the chain rule can be written as

θn+1 = θn + β Es∼ρµ

∇θµθ(s)∇aQµ(s, a)
∣∣∣∣∣
a=µθ(s)

 . (2.14)

Here, ∇θµθ(s) is a Jacobian matrix where each column is the gradient [∇θµθ(s)]d of the dth
dimension of the action space. Note that the state distribution ρµ changes as the policy
changes. Like the (stochastic) policy gradient theorem, this does not give any problems as
the gradient of the state distribution does not need to be computed.

We now introduce the deterministic policy gradient theorem.
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Theorem 4. [Silver et al., 2014] Suppose ∇θµθ, ∇aQµ and the deterministic policy gra-
dient exist, then

∇θJ (θ) =
∫

S
ρµ(s) · ∇θµθ(s) · ∇θQµ(s, a)|a=µθ(s) · ds (2.15)

=Es∼ρµ

[
∇θµθ(s) · ∇θQµ(s, a)|a=µθ(s)

]
(2.16)

The relation of the deterministic policy gradient to the stochastic policy gradient is that
for many stochastic policies, the deterministic policy gradient is, in the limit, a specific case
of the stochastic policy gradient [Silver et al., 2014]. The importance of Theorem 4, lies in
the fact that it allows the usage of the policy gradient framework—like in the stochastic
case—on deterministic policies while making the gradient easier to compute since it avoids
an integral over the action space.

Since most optimization methods assume i.i.d. samples, which does not hold in se-
quential exploration, it is necessary to learn in batches as opposed to online. This can be
achieved by using a large enough replay buffer which stores samples (st , at , rt , st+1), where
the oldest samples will be deleted when the replay buffer is full. In addition, likewise
to DQN, updating the Q-function may be unstable. To mitigate instability a target Q-
function and a target policy are used which is updated more slowly (with rate τ ≪ 1). To
ensure exploration noise is required from, for example, a normal distribution as a determin-
istic policy does not provide any randomness for exploration. A caveat is that DDPG does
require a large number of training episodes [Lillicrap et al., 2015] (Haarnoja et al. [2018a]
state that it is relatively sample-efficient, but it is very sensitive to hyperparameters). In-
deed, similar to DQN, there are no convergence guarantees for (D)DPG. However, despite
these drawbacks, it is a method that has found success in numerous practical applications.

2.7 Soft Actor-Critic

Soft Actor-Critic (SAC) is an off-policy actor-critic algorithm. Its goal is to maximize the
expected reward, while also maximizing the entropy—i.e. to perform a task well while
acting as randomly as possible. Maximum entropy improves robustness (to model and
estimation errors) and exploration. SAC shows better performance and sample complexity
than other on-policy and off-policy algorithms.

The maximum entropy objective is [Haarnoja et al., 2018a]

J (θ) =
T∑

t=0
γt Es∼ρπ ,a∼π [r(st , at) + αH(π(s, a))] , (2.17)

where α is the ’temperature’ which determines the weight given to the entropy term H
compared to the reward. Naturally, as α → 0, we recover the standard RL-objective
function of reward maximization.
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Algorithm 4: DDPG [Lillicrap et al., 2015]
Initialize critic network Q(s, a; w), actor µ(s; θ) and weights w, θ
Initialize target network Q′ and µ′ with weights w′ ← w, θ′ ← θ
Initialize replay buffer D
for episode = 1, . . . , M do

Initialize random process N
Initialize state s
for t = 1,. . . ,T do

Select action at = µ(st ; θ) +Nt
Take action at , observe rt , st+1
Store sample (st , at , rt , st+1) in D
Sample a random minibatch of N transitions (st , at , rt , st+1) from D
Set yi = ri + γQ′(si+1,µ′(si+1; θ′); w′)
Update critic by minimizing the loss

L = 1
N

N∑
i=1

(yi – Q(si , ai ; w))2

Update the policy using the sampled policy gradient θn+1 = θn + β∇θJ (θ)
with

∇θJ ≈
1
N

n∑
i=1
∇aQ(s, a; w)|s=si ,a=µ(si)∇θµ(s; θ)|s=si

Update the target networks

w′ ← τw + (1 – τ)w′

θ′ ← τθ + (1 – τ)θ′
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To derive the algorithm it is useful to first define the soft policy iteration—a general
method to learn maximum entropy policies [Haarnoja et al., 2018a]. We first consider
theoretical results for tabular setting (discrete and bounded action and state spaces) which
will then be extended to the continuous case. Let π be some fixed policy, and let Q :
S ×A → R be any Q-function, then the soft Q-value can be found by iteratively applying
the Bellman backup operator T π which is given by [Haarnoja et al., 2018a]

T πQ(st , at) := r(st , at) + γ Est+1∼P(s,a) [V (st+1)] , (2.18)

where
V (st) = Eat∼π [Q(st , at) – log π(at |st)] , (2.19)

where the expectation of – log π(st |at) denotes the entropy.

Lemma 1. (Soft Policy Evaluation) [Haarnoja et al., 2018a]. Let T π be the soft Bellman
backup operator defined in Equation 2.18 and let Q0 : S × A → R (with |A| <∞. Define
Qk+1 = T πQk . Then the sequence Qk converges to the soft Q-function of policy π as
k →∞.

In the policy improvement step, the policy is updated in the direction of the exponential
of the Q-function. The policy π will be selected from a set of tractable policies Π (e.g.
Gaussian policies). This is done by projecting the policy unto the set of admissible policies
Π. The Kullback-Leibler divergence is used to project the policy as it turns out to be
convenient. The policy update is done as follows [Haarnoja et al., 2018a]

πnew = arg min
π′∈Π

DKL

(
π(·|st)

∣∣∣∣∣
∣∣∣∣∣exp(Qπold (st , ·))

Zπold (st)

)
, (2.20)

where Zπold (st) is a normalizing factor for the distribution, which is not necessarily tractable.
Fortunately, it can be omitted as it has no effect on the policy gradient.

Theorem 5. Soft Policy Iteration [Haarnoja et al., 2018a]. Let pi ∈ Π, then π converges
to π∗ ∈ Π from iterative applications of the soft policy evaluation and improvement step.
Then Qπ∗(st , at) ≥ Qπ(st , at) for all (st , at) ∈ S ×A, assuming that |A| <∞.

Neural networks can be used to approximate the Q-function Q(s, a; w) and the value
function V (s;ψ), and a Gaussian distribution with neural networks for the mean and
covariance for the policy distribution π(a|s; θ). The SAC Algorithm 5 collects samples
from the environment after which it performs a gradient step. Usually, multiple gradient
steps are performed for each environment step. Gradient steps are performed for the value
function, the Q-function and the policy.

The objective function of the soft value function is

JV (ψ) = Est∼D

[1
2 (Vψ(st) – Eat∼πθ

[Qw(st , at) – log πθ(at , st)])2
]

. (2.21)
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Algorithm 5: Soft Actor-Critic [Haarnoja et al., 2018a]
Initialize parameter vectors θ,ψ, w
for each iteration do

for each environment step do
at ∼ πθ(at |st)
st+1 ∼ P(st , at)
D ← D ∪ {(st , at , rt , st+1)}

for each gradient step do
ψ ← ψ – λV ∇̂ψJV (ψ)
wi ← wi – λQ∇̂wiJQ(wi) for i ∈ {1, 2}
θ ← θ – λπ∇̂θJπ(θ)
ψ′ ← τψ + (1 – τ)ψ′

The unbiased estimator of the gradient of the soft value function is given by

∇̂JV (ψ) = ∇ψ(Vψ(st) – Qw(st , at) + log πθ(at |st)) (2.22)

The objective function of the soft Q-function is the TD error:

JQ(θ) = E(st ,at)∼D

[1
2
(
Qw(st , at) – r(st , at) – γ Est+1∼P(s,a)

[
V ′
ψ(st+1)

])2
]

, (2.23)

of which the gradient can be estimated by

∇̂wJQ(w) = ∇wQw(st , at)
(
Qw(st , at) – r(st , at) – γV ′

ψ(st+1)
)

, (2.24)

where V ′
ψ is the target network. Two Q-functions are used to speed up training.

For the policy function, the target density is the Q-function which is a neural network
that can be differentiated. Therefore it is convenient to reparameterize the policy by a
neural network which can also be differentiated

at = fθ(ϵt ; st), (2.25)

where ϵ is some noise vector (e.g. sampled from a Gaussian). The policy objective function
from Equation 2.20 can be rewritten to

Jπ(θ) = Est∼D,ϵt∼N [log πθ(fθ(ϵt ; st)|st) – Qw(st , fθ(ϵt ; st))] (2.26)

The normalization term from Equation 2.20 does not depend on θ and can thus be omitted.
Then, the gradient of Jπ is

∇̂Jπ(θ) = ∇θ log πθ(at |st) + (∇at logθ(at |st) –∇at Q(st , at))∇θfθ(ϵt ; st) (2.27)
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Chapter 3

Portfolio Optimization

In this chapter, we will introduce two portfolio optimization techniques that are often used
in practice: Mean-Variance and Equal Risk Contribution. Both techniques will be used as
a benchmark in the numerical experiment.

3.1 Mean-Variance

One of the common objectives of portfolio optimization consists of maximizing the expected
return while minimizing its variance (risk). It usually involves maximizing the expected
return for a given level of variance or minimizing the variance for a given level of expected
return. This objective was introduced by Markowitz in his 1952 paper on Portfolio Selection
[Markowitz, 1952]. Here, Markowitz introduced a single-period optimization problem. This
single-period optimization problem was subsequently solved by Merton in 1972 [Merton,
1972].

The objective is formalized as follows. Let {xw
t , 0 ≤ t ≤ T} be the wealth process, i.e.

the portfolio value at time t, under the allocation strategy w = {wt , 0 ≤ t ≤ T}. Then,
the Mean-Variance objective is [Wang and Zhou, 2020]

min
w

Var[xw
T ] (3.1)

s.t. E[xw
T ] = z, (3.2)

where z ∈ R is the desired mean return set at time t and to be attained at time T of the
investment horizon [0, T ]. If, additionally, we require Equation 5.1 to hold we speak of the
constrained mean-variance objective.

The downside of the mean-variance objective is that it suffers from time-inconsistency—
i.e. the optimal solution at time t is not the optimal solution at time s > t. This is because
the Bellman principle of optimality does not hold due to the non-linear function in the
expectation of the mean-variance objective in 3.2 [Vigna, 2020].
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If one relaxes the requirement of finding a time-consistent solution and instead looks
at the optimal solution at t = 0, then the optimization problem can be solved by applying
a Lagrange multiplier λ

min
w

E[(xw
T )2] – z2 – 2λ(E[(xw

T )] – z) = min
w

E[(xw
T – λ)2] – (λ – z)2. (3.3)

This problem has an analytical solution w∗ = {w∗
t , 0 ≤ t ≤ T} depending on λ, which in

turn is determined by E[xw∗
T ] = z [Wang and Zhou, 2020].

3.1.1 Global Minimum Variance

It should be noted that optimal Mean-Variance portfolios do suffer from drawbacks in
practice. It has been observed that such portfolios tend to exhibit high concentrations in
a small subset of the assets [Maillard et al., 2010]. In addition, the optimal mean-variance
portfolio is very sensitive to its input— minor perturbations in its input parameters cause
substantial differences in the portfolio composition. This is most notable for changes in
the expected return [Merton, 1980].

Global minimum variance (GMV) omits the use of the expected return. Therefore, it is
considered to be robust by practitioners [Maillard et al., 2010]. GMV is an unconstrained
minimization of the variance; it seeks to minimize objective 3.2 without the expected return
constraint in 3.3. Conveniently, this problem allows a unique closed-form solution.

Let Σ be the (constant) covariance matrix of the n assets. Then the variance of the
wealth process xT is w⊺Σw. Then, the GMV optimization problem is [Back, 2010]

min
w

1
2w⊺Σw (3.4)

s.t. w⊺
t 1 = 1. (3.5)

With a Lagrange multiplier λ the Lagrangian of the above optimization problem is
1
2w⊺Σw – λ(w⊺

t 1 – 1). (3.6)

From setting the partial derivative with respect to w to, it can be deduced that

Σw – λ1 = 0 =⇒ w = λΣ–11. (3.7)

Likewise, by setting the partial derivative with respect to the Lagrange multiplier λ equal
to zero

w⊺1 = 1. (3.8)

Substituting w from Equation 3.7 into Equation 3.8 gives λ = 1/(1⊺Σ–11). Hence, the
global minimum variance solution w∗

gmv is given by

w∗
gmv = Σ–11

1⊺Σ–11 . (3.9)
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3.2 Equal Risk Contribution

Equal Risk Contribution (ERC) is a portfolio construction methodology that aims to allo-
cate risk equally among the assets in a portfolio. Unlike traditional portfolio optimization
methods that focus on maximizing returns for a given level of risk, ERC focuses solely
on the risk aspect—therefore, ERC is assumed to be robust. The main idea of ERC is
to construct a portfolio where each asset contributes equally to the overall risk, which is
typically measured by volatility. ERC, therefore, is a specific (and widely used) instance
of risk parity, which focuses on the allocation of risk.

The share of total portfolio risk attributable to an asset i, is the risk contribution of
that asset. It is defined by the asset’s weight multiplied by the marginal risk contribution—
i.e. the infinitesimal change in the portfolio risk by changing the asset i’s weight [Maillard
et al., 2010].

Let us define a portfolio w = (w1, w2, . . . , wn) of n assets. Let σ2
i represent the vari-

ance of asset i, let σ2
ij denote the covariance between assets i and j, and let Σ denote

the covariance matrix. Let the risk of the portfolio be defined by σ(w) =
√

w⊺Σw =√∑
i w2

i σ
2
i +∑

i
∑

j ̸=i wiwjσij . Then the marginal risk contribution is [Maillard et al.,
2010]

δwiσ(w) = δσ(w)
δ(wi)

=
wiσ

2
i +∑

j ̸=i wjσij

σ(w) . (3.10)

It is called the marginal risk contribution as it represents the change in a portfolio’s volatil-
ity for an infinitesimal change in an asset’s weight. Then, the total risk contribution of
asset i is, σi = wi ·δwi . Whereas the risk of the overall portfolio is the sum of the individual
contributions [Maillard et al., 2010]

σ(w) =
∑

i
σi . (3.11)

Using the covariance matrix instead, the marginal risk contribution is Σw√
w⊺Σw . This can be

seen from w⊺ Σw√
w⊺Σw =

√
w⊺Σw = σ(w).

Let us consider only portfolios without short-selling, i.e. w ∈ [0, 1]n . The aim is to find
a portfolio that has equal risk contributions for each respective asset within the portfolio.
This can be formalized as follows, we need to find the portfolio w∗ where [Maillard et al.,
2010]

w∗ =
{

w ∈ [0, 1]n :
∑

i
wi = 1, wi · δwiσ(w) = wj · δwjσ(w) ∀i, j

}
. (3.12)

Let (Σw)i be the ith row of the the vector resulting form the multiplication of Σ with w,
and note that δwiσ(w) ∝ (Σw)i . Then, similar to Equation 3.13

w∗ =
{

w ∈ [0, 1]n :
∑

i
wi = 1, wi · (Σw)i = wj · (Σw)j ∀i, j

}
. (3.13)
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3.2.1 Equal Correlation Case

Let us consider a scenario of n > 2 assets that have an equal correlation ρ. Then, from
Equation 3.10 the total risk contribution becomes

w2
i σ

2
i + ρ

∑
j ̸=i wiwjσiσj

σ(w) . (3.14)

It can be shown that, assuming ρ ≥ – 1
n–1 , the weight wi that equalizes the total risk

contribution of all assets is given by [Maillard et al., 2010]

wi = σ–1
i∑n

j=1 σ
–1
j

. (3.15)

This shows the assets’ weights are scaled inversely to their volatility and normalized by the
sum of all weights. Therefore, the equal correlation case has an analytical solution to the
equal risk contribution problem.

3.2.2 Equal Risk Contribution Optimization Problem

Unless there is an equal correlation between all assets there is no closed-form solution. It
therefore has to be solved numerically. The optimization problem can be formulated as
[Maillard et al., 2010]

w∗ = arg min f (w) (3.16)
s.t. w⊺1 = 1 and w ∈ [0, 1]n , (3.17)

where
f (w) =

n∑
i=1

n∑
j=1

(wi(Σw)i – wj(Σw)j)2. (3.18)

This optimization problem can be solved using a sequential quadratic programming method
[Maillard et al., 2010].

3.2.3 Comparison of Minimum-Variance, Equal Risk Contribution and
1/n Strategy

The 1/n portfolio, or equal-weight portfolio, is a simple heuristical portfolio allocation
method that allocates a weight wi = 1

n to each asset i. When n = 2, the weight w∗
1/n is

therefore equal to 1
2 . Similarly, when equating the total risk contributions in the two-asset

case for the ERC portfolio, it is easy to derive that w∗
erc, too is equal to 1

2 when σ1 = σ2
(see [Maillard et al., 2010]). For MV, the explicit unconstrained solution for the two-asset
case is w∗

1 = (σ2
2 – ρσ1σ2)/(σ2

1 + σ2
2 – 2ρσ1σ2). Here, too, the MV portfolio coincides with

the equal-weight portfolio when the volatilities are equal, i.e. σ1 = σ2.
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For the general case, the comparison between ERC, MV, and 1/n is as follows [Maillard
et al., 2010]

wi = wj (1/n)
δwiσ(w) = δwjσ(w) (MV)
wi · δwi = wj · δwj , (ERC)

where the MV case is equivalent to equalizing the marginal risk contributions [Maillard
et al., 2010], rather than the total risk contributions in the ERC case. Because it can
further be shown that

σmv(w) ≤ σerc(w) ≤ σ1/n . (3.19)

Therefore, the ERC portfolio is said to lie between the equal-weight and MV portfolio (see
[Maillard et al., 2010] for details on the derivation).
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Chapter 4

Non-Stationarity in Reinforced
Deep Markov Models

In this chapter, we will introduce the variational autoencoding (VAE) framework by Kingma
and Welling [2013], Kingma et al. [2019]. We will use VAEs to modify RDMM to our needs
for portfolio optimization that takes into account non-stationarity.

4.1 Variational Autoencoders

In this section, useful concepts from VAEs are introduced. This includes, directed proba-
bilistic graphical models, which we will use to design our model for portfolio optimization.
Furthermore, we introduce latent variable models and the related problem of intractability
of the posterior distribution. Lastly, we discuss variational inference in VAEs.

4.2 Directed Probabilistic Graphical Models

In the following section, we use a directed probabilistic graphical model to describe our
Markov Decision Process(es). First, let us introduce these probabilistic models. Let x
denote a set of observed random variables which has an unknown probability distribution
p∗(x). The aim is to estimate or learn this probability distribution with a chosen model
pθ(x) such that [Kingma et al., 2019]

pθ(x) ≈ p∗(x), (4.1)
where θ are the parameters of the chosen model (we will use θ to denote the set of all
parameters for the decoding model which will be introduced). This can be extended to
conditional models with another set of observable random variables y, where a model
pθ(x|y) is chosen such that [Kingma et al., 2019]

pθ(x|y) ≈ p∗(x|y). (4.2)
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Directed probabilistic graphical models consist of a directed acyclic graph where all vari-
ables have a topological order [Kingma et al., 2019]. The joint distribution x = (x1, . . . , xN )
of the observed variables in such models can be factorized into the conditional probability
distributions distributions [Kingma et al., 2019]

pθ(x1, . . . , xN ) =
N∏

i=1
pθ(xi |Pa(xi)), (4.3)

where Pa(xi) is the set of parents for node xi — i.e. the set of nodes with edges directed
towards xi (for a visual example see Figure 4.1). Nodes without parents are the prior prob-
ability distributions. Furthermore, each conditional probability distribution pθ(xi |Pa(xi))
or pθ(x|y) can be parameterized by a neural network.

Figure 4.1: Directed graphical model with factorization p(A, B, C , D) = p(A) · p(B|A) ·
p(C |A) · p(D|A, C ) [Wikipedia, 2024].

4.2.1 Latent Variable Models

The directed graphical models can be extended to incorporate latent variables z = (z1, . . . , zN ).
These latent variables, while part of the model, are unobserved. The graphical model
could then be described by the joint distribution pθ(x, z). From the joint distribution, the
marginal distribution pθ(x) of observed variables x can be computed by

pθ(x) =
∫

pθ(x, z) dz. (4.4)

An example of a simple directed graphical model that includes latent variables can be given
by [Kingma et al., 2019]

pθ(x, z) = pθ(x|z) pθ(z), (4.5)

where pθ(z) is the prior probability distribution of z. This model can also be extended to
a conditional model where

pθ(x, z|y) = pθ(x|z, y) pθ(z|y). (4.6)

36



We note that when the conditional distributions are parameterized by neural networks the
models are called deep latent variable models (DLVM).

4.2.2 Intractability

While the chosen model pθ(x|z) pθ(z) is tractable, the marginal probability is often in-
tractable [Kingma et al., 2019]

pθ(x) =
∫

pθ(x|z) pθ(z) dz. (4.7)

The integral namely becomes intractable for complicated models pθ(x|z) which happens to
be the case for neural networks with a non-linear activation function [Kingma and Welling,
2013] (which is what we will use). Since we have the following relation for the posterior
distribution pθ(x)

pθ(z|x) = pθ(x|z) pθ(z)
pθ(x) , (4.8)

we have that the tractability of the posterior distribution pθ(z|x) is directly related to
the tractability of the marginal distribution pθ(x) (remember that the model we choose
pθ(x|z) pθ(z) is tractable). Therefore, if the marginal distribution pθ(x) is intractable, then
the posterior distribution pθ(z|x) is intractable too.

4.2.3 Variational Inference

While the posterior pθ(z|x) is intractable, it is possible to estimate the posterior with a
tractable inference model qϕ(z|x) parameterized by the variational parameters ϕ. This
model is called an encoder because it encodes the observed variables x to a distribution
over the values z (that may have generated x) [Kingma et al., 2019]. On the other hand,
the model pθ(x|z) is called the decoder as it decodes the latent variables z to the observed
variables x. The inference model is used to learn the variational parameters ϕ such that
[Kingma et al., 2019]

qϕ(x|z) ≈ pθ(z|x). (4.9)

Similar to Equation (4.3) Kingma et al. [2019] state that inference model qϕ(z|x) can be
almost any directed graphical model

qϕ(z1, . . . , zN ) =
N∏

i=1
qϕ(zi |Pa(zi), x), (4.10)

where the conditional distributions qϕ(zi |Pa(zi), x) can also be modeled by deep neural
networks. Note that the variational parameters ϕ are shared across all variables z as
opposed to having variational parameters θi for each zi (i.e. qϕi (zi |Pa(zi), x). This method
is called variational autoencoders in which the sharing of parameters is what makes the
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method more efficient as opposed to variational inference where the parameters are not
shared. The posterior distribution is approximated by optimizing the evidence lower bound
(ELBO) — a lower bound on the log-likelihood of the observations which we will derive
specifically for our model that incorporates non-stationarity.

Figure 4.2: Visual representation of variational autoencoder (VAE) model [Kingma and
Welling, 2013]. Solid lines denote the generative model; dashed lines denote the inference
model.

4.3 Non-Stationary Reinforced Deep Markov Model

4.3.1 Non-Stationarity

In this section, we will introduce a probabilistic model that incorporates non-stationarity.
First, we need to define non-stationarity. Let (Xt : t ∈ Z) be a sequence of random
variables.

Definition 1. [Van der Vaart, 2010] The stochastic process Xt is strictly stationary if,
for any integer h ∈ N, the unconditional joint probability distribution of the vector
(Xt , Xt+1, . . . , Xt+h) does not depend on t.

Therefore, the definition of strict stationarity implies that non-stationarity (in the strict
sense), will have an unconditional joint distribution that is not independent of t.

An MDP is said to be stationary if both its transition probability function p(st+1|st , at)
and its reward function r(st , at) do not change over time [Hambly et al., 2023]. Here, st and
st+1 denote the current and next state, respectively, and at represents an action at time t.
An MDP is therefore considered non-stationary if either its transition probability function
p(st+1|st , at), its reward function r(st , at), or both change over time. This means that
the probabilities of moving from one state to another given an action, and/or the rewards
received for such transitions depend on the time at which the action is taken. Consequently,
time-varying transition distributions and reward distributions are particularly important
[Hambly et al., 2023]. Moreover, as the state transition and reward distribution change,
ideally, the policy function should change to remain optimal in a different environment.
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4.3.2 Probabalistic Model for Non-Stationary Markov Decision Process

Xie et al. [2021] introduced a way to include non-stationarity in a partially observable
Markov decision process (POMDP) which is similar to a latent variable model that also
includes actions. To model non-stationarity, Xie et al. [2021] assume there is a sequence
of N ∈ N MDPs, where each MDP i ∈ {1, . . . , N} has a latent random variable z i that
describes the dynamics of the MDP. Within each MDP, the observable variables are the
states st , the actions at , and the rewards rt for each timestep t ∈ {1, . . . , T}. Therefore, in
the non-stationary MDP framework, the latent variable z i determines the state transitions
pθ(st+1|st , at ; zi) and the reward distribution pθ(rt |st , at ; zt) of MDP i [Xie et al., 2020].
Similar to the VAE setting, we include θ to denote the parameters of the chosen probability
model.

Therefore, the model consists of a Markov chain of latent variables z i where there is
a different MDP for each latent variable. Within each MDP, there si

1:T = (si
1, . . . , si

T ) be
the sequence of observable states within MDP i. Similarly, let ai

1:T = (ai
1, . . . , ai

T ) and
r i

1:T = (r i
1, . . . , r i

T ) be the sequence of observable actions and observable rewards within
each MDP i, respectively. Since we assume there are N MDPs, let s1:N

1:T = {s1
1:T , . . . , sN

1:T},
a1:N

1:T = {a1
1:T , . . . , aN

1:T}, r1:N
1:T = {r1

1:T , . . . , rN
1:T} denote the set of states, actions and re-

wards sequences from each MDP. Furthermore, let z1:N = {z1, . . . , zN} be the set of latent
variables that describe each MDP respectively.

The joint distribution over all variables of a chosen directed probabilistic graphical
model can be factorized into a prior probability and conditional distributions. This model
allows us to define a factorization of the joint probability of latent variables, states and
rewards the actions pθ(z1:N , s1:N

1:T , r1:N
1:T |a1:N

1:T ). This can be compared to setting z = z1:N , x =
(s1:N

1:T , r1:N
1:T ), and y = a1:N

1:T in the conditional model from Equation (4.6). Then, our graph-
ical model has the following factorization

pθ(z1:N , s1:N
1:T , r1:N

1:T |a1:N
1:T ) =

N∏
i=1

pθ(z i |z i–1, si–1
1:T , r i–1

1:T , ai–1
1:T ) pθ(si

1:T , r i
1:T |z i , ai

1:T ), (4.11)

where we set the initial conditional probability pθ(z1|z0, s0
1:T , r0

1:T , a0
1:T ) to be pθ(z1), the

prior distribution of the initial latent variable z1, for ease of notation. According to Kingma
et al. [2019], we may choose any directed graphical model in this framework. This graphical
model is shown in Figure 4.3.

In Equation (4.11), we assume that the latent variable z i is dependent on the latent
variable of the previous MDP z i–1 and on the previous sequences of states, actions, rewards(
si–1
1:T , ai–1

1:T , r i–1
1:T
)
. We have chosen this dependence for two reasons. Firstly, we believe it

resembles financial markets; for example, when the latent variable z i describes a market
regime, we think it is reasonable to assume it depends on the previous regime z i–1 instead
of all preceding regimes z1:i–1. Similarly, we believe it is a reasonable assumption that
the data or observable variables of the previous MDP

(
si–1
1:T , ai–1

1:T , r i–1
1:T
)

provide information
about the next (hidden) market regime z i , instead of assuming all preceding observable
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Figure 4.3: Visual representation of the directed graphical probabilistic latent variable
model for non-stationarity. Each variable z i decodes an MDP with states, actions, rewards
(st , at , rt) for t ∈ {1, . . . , T} and its own state transition and reward distribution. The
latent variable z i+1 is dependent on z i and observations (si

1:T , ai
1:T , r i

1:T ) from MDP i.

variables provide information on the next hidden market state. Secondly, this allows the
implementation of an off-policy policy gradient method which uses a replay buffer (or
database) to store all trajectories of states, actions, rewards and inferred latent variables.
This is because we only need to store (and sample) observable variables and inferred latent
variables of the current and previous MDP, respectively. This avoids the need to sample
all preceding variables from a replay buffer which is significantly more complicated to
implement.

The joint probability pθ(si
1:T , r i

1:T |z i , ai
1:T ) from Equation (4.11) can be further factor-

ized into the state transition distribution and the reward distribution

pθ(si
1:T , r i

1:T |z i , ai
1:T ) (4.12)

= pθ(s1)
T∏

t=1
pθ(si

t+1|si
t , ai

t ; z i) pθ(r i
t |si

t , ai
t ; z i) for i = 1, . . . , N . (4.13)

In this factorization, we condition both the state transition function pθ(si
t+1|si

t , ai
t ; z i) and

pθ(r i
t |si

t , ai
t ; z i) on latent variable z i , this subdivides the overall non-stationary problem

into multiple stationary MDPs where the reward and transition probabilities are stationary
conditional on the latent variables z1:N .

Following the VAE framework, we aim to approximate the posterior distribution of the
latent variables given the observations pθ(z1:i |s1:i

1:T , a1:i
1:T , r1:i

1:T ) at episode i ∈ N. Where we
use the notation i to indicate that the model can be used in an online learning setting.
As stated by Kingma et al. [2019], we may choose almost any directed graphical model for
the variational approximating distribution of the posterior. We select the posterior model,
with parameters ϕ, qϕ(z i |z i–1, si

1:T , r i
1:T , ai

1:T ), such that Pa(z i) the set of parents of z i , in-
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cludes the previous latent variable z i–1 and the current observed trajectory (si
1:T , r i

1:T , ai
1:T ).

Therefore, the factorization of the posterior approximating distribution is given by

qϕ(z1:i |s1:i
1:T , r1:i

1:T , a1:i
1:T ) =

i∏
j=1

qϕ(z j |z j–1, sj
1:T , r j

1:T , aj
1:T ), (4.14)

where the initial term of the factorization qϕ(z1|z0, s1
1:T , r1

1:T , a1
1:T ) is set given by qϕ(z1|s1

1:T ,
r1

1:T , a1
1:T ), for ease of notation. As a consequence, we can factorize the expectation

Eqϕ(z1:i |·) [·] =
i∏

j=1
Eqϕ(zj |·) [·] , (4.15)

where we shorten qϕ(z1:i |s1:i
1:T , r1:i

1:T , a1:i
1:T ) to qϕ(z1:i |·), and qϕ(z j |z j–1, sj

1:T , r j
1:T , aj

1:T ) to
qϕ(z j |·) for ease of notation in the following derivations.

4.3.3 Evidence Lower Bound

Likewise, to the VAE framework, we aim to find a lower bound on the log-likelihood of
the observable variables. This evidence lower bound (ELBO), is what we seek to maximize
through the parameters θ and ϕ. We aim to find this lower bound on the log-likelihood of
the conditional model log pθ(s1:i

1:T , r1:i
1:T |a1:i

1:T ). The ELBO of this log-likelihood is given by

log pθ(s1:i
1:T , r1:i

1:T |a1:i
1:T ) (4.16)

≥
i∑

j=1

[
Eqϕ(zj |·)

T∑
t=1

log pθ(sj
t+1, |sj

t , aj
t ; z j) pθ(r j

t |s
j
t , aj

t ; z j)
]

(4.17)

– DKL
(
qϕ(z j |z j–1, sj

1:T , r j
1:T , aj

1:T )||pθ(z j |z j–1, sj–1
1:T , r j–1

1:T , aj–1
1:T )

)

To derive the lower bound, we first rewrite the log-likelihood log pθ(s1:i
1:T , r1:i

1:T |a1:i
1:T ) to its

expectation with respect to qϕ(z1:i |s1:i
1:T , r1:i

1:T , a1:i
1:T ) (where z1:i = {z1, . . . , z i} denotes the
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set of latent variables)
log pθ(s1:i

1:T , r1:i
1:T |a1:i

1:T ) (4.18)

= log
∫

z1
· · ·
∫

zi
pθ(s1:i

1:T , r1:i
1:T , z1:i |a1:i

1:T ) dz1 . . . dz i (4.19)

= log
∫

z1:i
pθ(s1:i

1:T , r1:i
1:T , z1:i |a1:i

1:T ) dz1:i (4.20)

= log
∫

z1:i

pθ(s1:i
1:T , r1:i

1:T , z1:i |a1:i
1:T )

qϕ(z1:i |s1:i
1:T , r1:i

1:T , a1:i
1:T )qϕ(z1:i |s1:i

1:T , r1:i
1:T , a1:i

1:T ) dz1:i (4.21)

= logEqϕ(z1:i |·)

[
pθ(s1:i

1:T , r1:i
1:T , z1:i |a1:i

1:T )
qϕ(z1:i |s1:i

1:T , r1:i
1:T , a1:i

1:T )

]
(4.22)

≥ Eqϕ(z1:i |·)

[
log pθ(s1:i

1:T , r1:i
1:T , z1:i |a1:i

1:T )
qϕ(z1:i |s1:i

1:T , r1:i
1:T , a1:i

1:T )

]
(4.23)

= Eqϕ(z1:i |·)

log
i∏

j=1

pθ(z j |z j–1, sj–1
1:T , r j–1

1:T , aj–1
1:T ) pθ(sj

1:T , r j
1:T |z j , aj

1:T )
qϕ(z j |z j–1, sj

1:T , r j
1:T , aj

1:T )

 (4.24)

= Eqϕ(z1:i |·)

 i∑
j=1

log pθ(sj
1:T , r j

1:T |z
j , aj

1:T ) – log qϕ(z j |z j–1, sj
1:T , r j

1:T , aj
1:T )

pθ(z j |z j–1, sj–1
1:T , r j–1

1:T , aj–1
1:T )

 (4.25)

=
i∑

j=1

[
Eqϕ(zj |·) log pθ(sj

1:T , r j
1:T |z

j , aj
1:T )

]

– Eqϕ(zj |·)

[
log qϕ(z j |z j–1, sj

1:T , r j
1:T , aj

1:T )
pθ(z j |z j–1, sj–1

1:T , r j–1
1:T , aj–1

1:T )

]
(4.26)

=
i∑

j=1

[
Eqϕ(zj |·) log pθ(sj

1:T , r j
1:T |z

j , aj
1:T )

]
– DKL

(
qϕ(z j |z j–1, sj

1:T , r j
1:T , aj

1:T )||pθ(z j |z j–1, sj–1
1:T , r j–1

1:T , aj–1
1:T )

)
(4.27)

=
i∑

j=1

[
Eqϕ(zj |·)

T∑
t=1

log pθ(sj
t+1, |sj

t , aj
t ; z j) pθ(r j

t |s
j
t , aj

t ; z j)
]

– DKL
(
qϕ(z j |z j–1, sj

1:T , r j
1:T , aj

1:T )||pθ(z j |z j–1, sj–1
1:T , r j–1

1:T , aj–1
1:T )

)
. (4.28)

The lower bound for Equation (4.23) is by Jensen’s inequality due to moving the log inside
the expectation. Then, using Equation (4.11) and Equation (4.14), we can factorize both
pθ(s1:i

1:T , r1:i
1:T , z1:i |a1:i

1:T ) and qϕ(z1:i |s1:i
1:T , r1:i

1:T , a1:i
1:T ) in Equation (4.24). Furthermore, we use

Equation (4.15) to take the expectation inside the summation in Equation (4.26). In
Equation 4.26 we use the Kullback-Leibler divergence (KL-divergence), which is given by

DKL(q ∥ p) =
∫

q(x) log
(q(x)

p(x)

)
dx, (4.29)
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and which measures the dissimilarity or ”distance” between two distributions p and q.
Finally, using Equation (4.13) to the previous Equation, we obtain the state transition
distribution and the reward distribution in Equation (4.28).

By optimizing the ELBO in Equation (4.28) with respect to θ and ϕ, we simultaneously
maximize the likelihood pθ(sj

t+1, |sj
t , aj

t ; z j) of state transitions, the likelihood pθ(r j
t |s

j
t , aj

t ; z j)
of rewards, and we minimize the KL-divergence between the approximating distribution
qϕ(z j |z j–1, sj

1:T , r j
1:T , aj

1:T ) and the posterior pθ(z j |z j–1, sj–1
1:T , r j–1

1:T , aj–1
1:T ).

4.3.4 Model Distributions

Since we have chosen to use continuous state, action and reward spaces for portfolio opti-
mization (due to their lack of restriction compared to discrete spaces), we choose Gaussian
distributions for our model distributions, as these can handle continuous variables. Fur-
thermore, Kingma et al. [2019] claim that despite using simple prior or conditional model
distributions such as Gaussian distributions, the marginal distribution pθ(x) can still be
considerably complex in the sense that it may contain arbitrary dependencies. Before we
introduce the model distributions, we first introduce the variable hj used in Cartea et al.
[2021], to summarize the sequence of observable variables or the trajectory of MDP j:
(sj

1:T , r j
1:T , aj

1:T ). It is a summary as it contains fewer elements than the complete sequence
(sj

1:T , r j
1:T , aj

1:T ). The computation of this summary variable is covered in Subsection 5.2.
We now specifically use the parameters θz , θs, θr to denote the following decoding multi-
variate Gaussian distributions similar to Cartea et al. [2021]

z j+1|z i , sj
1:T , r j

1:T , aj
1:T

P∼ N
(
µθz (z j , hj), Σθz (z j , hj)

)
, (4.30)

st+1|st , at ; z j P∼ N
(
µθs(st , at ; z j), Σθs(st , at ; z j)

)
, (4.31)

rt |st , at ; z j P∼ N
(
µθr (st , at ; z j), Σθr (st , at ; z j)

)
, (4.32)

The parameters ϕ parameterize the encoder (inference model) which is given by

z j+1|sj+1
1:T , r j+1

1:T , aj+1
1:T

Q∼ N
(
µϕ(hj+1), Σϕ(hj+1)

)
. (4.33)

In addition, following the VAE framework, we choose to use neural networks to describe
the distributions parameterized by θz , θs, θr and ϕ. These neural networks respectively
output a mean vector µθz ,µθs ,µθr , and a covariance matrix Σθz , Σθs , Σθr . Since these
neural networks model Gaussian distributions, they are called mean-variance-estimation
(MVE) networks. A visual representation of a one-dimensional MVE network is given in
Figure 4.4.

4.3.5 Policy Distribution

Furthermore, the actions are the output of a policy function (distribution) which can be
any arbitrary function (distribution). A general policy function for our problem is given
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Figure 4.4: Mean-variance-estimation (MVE) network of one-dimensional normal distribu-
tion which outputs a mean parameter µ and a variance parameter σ2 µ [Sluijterman et al.,
2023].

by
at = π

(
st , z i

)
, (4.34)

where at is the action taken at timestep t. The policy function π takes as input the
observable state st and latent variable z i which ensures sure it takes into account non-
stationarity through the hidden state that describes the MDP. This is essentially a policy
which can adapt to different financial market regimes characterized by z1:i . The policy
function can also be Gaussian, which due to the inherent randomness allows for exploration
in the reinforcement learning framework. The policy distribution we choose is therefore
given by

at |st , z i P∼ N
(
µν(st , z i), Σν(st , z i)

)
. (4.35)

A Gaussian policy with a time-decaying variance is shown to be optimal for entropy-
regularized mean-variance objective in portfolio optimization Wang and Zhou [2020]. We
choose to not add any more complexity and omit the time-decaying variance in the Gaussian
distribution.

4.3.6 Objective Functions

The decoding and encoding neural networks are trained by maximizing the Evidence Lower
Bound (ELBO) 4.28. Conveniently, we have a closed-from objective function due to the
multivariate Gaussian density function. Using the (log of) d-dimensional multivariate
Gaussian distribution

f (x;µ, Σ) = 1
(2π) d

2 |Σ| 12
exp

(
–1

2(x – µ)T Σ–1(x – µ)
)

, (4.36)

44



the first term of the ELBO 4.28 is given by [Cartea et al., 2021]

T–1∑
t=1

log p(sj
t+1, |sj

t , aj
t ; z j) p(r j

t |s
j
t , aj

t ; z j) (4.37)

=
T–1∑
t=1

log p(sj
t+1, |sj

t , aj
t ; z j) + log p(r j

t |s
j
t , aj

t ; z j) (4.38)

= –1
2

T∑
t=1

[
ds log(2π) + log det Σθs(s

j
t , aj

t ; z j)
]

(4.39)

+
(
sj
t+1 – µθs(s

j
t , aj

t ; z j)
)⊺ (

Σθs(s
j
t , aj

t ; z j)
)–1 (

sj
t+1 – µθs(s

j
t , aj

t ; z j)
)

+ dr log(2π) + log det Σθr (sj
t , aj

t ; z j)

+
((

r j
t – µθr (sj

t , aj
t ; z j)

)⊺ (
Σθs(s

j
t , aj

t ; z j)
)–1 (

r j
t – µθr (sj

t , aj
t ; z j)

)]
,

where ds, dr are the dimensions of the state and reward distributions, respectively. In
the ELBO 4.28, we take the expectation of Equation 4.37 with respect to qϕ(z j |hj) ∼
N (µϕ, Σϕ). Instead of sampling directly from qϕ(z j |hj) ∼ N (µϕ, Σϕ) which introduces
noise in the gradients of the network [Kingma et al., 2019], we can use the reparameteriza-
tion trick introduced by Kingma and Welling [2013] to reduce the variance of the gradients.
We use a differentiable reparameterization to allow stochastic gradient descent (SGD) on
the objective function. The reparameterization is given by

z(m) = µ+ Lϵ(m), (4.40)

where L is the Cholesky decomposition with non-zero diagonal of Σϕ such that Σϕ = LL⊺.
The reparameterization trick allows us to write

Eqϕ(z|·)[f (z)] = EN (ϵ;0,I )[f (µ+ Lϵ)] ≃ 1
M

M∑
m=1

f (µ+ Lϵ(m)), (4.41)

where ϵ(m)) ∼ N (0, I ). Let z(j,m) denote the m–th sample of z j from the reparameterization
trick. Hence the expectation in Equation (4.39) can be rewritten using Equation (4.41) to

– 1
2M

i∑
j=1

T∑
t=1

M∑
m=1

[
ds log(2π) + log det Σθs(s

j
t , aj

t ; z(j,m)) (4.42)

+
(
sj
t+1 – µθs(s

j
t , aj

t ; z(j,m))
)⊺ (

Σθs(s
j
t , aj

t ; z(j,m))
)–1 (

sj
t+1 – µθs(s

j
t , aj

t ; z(j,m))
)

+ log(2π) + log det Σθr (sj
t , aj

t ; z(j,m))

+
(
r j

t – µθr (sj
t , aj

t ; z(j,m))
)⊺ (

Σθs(s
j
t , aj

t ; z(j,m))
)–1 (

r j
t – µθr (sj

t , aj
t ; z(j,m))

)]
.
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For the second term of the ELBO 4.28, we use the expression for the KL-divergence between
two d-dimensional multivariate Gaussian distributions, which is given by

DKL(N1 ∥ N2) = 1
2

(
log |Σ2|
|Σ1|

– d + Tr(Σ–1
2 Σ1) + (µ2 – µ1)T Σ–1

2 (µ2 – µ1)
)

, (4.43)

where |Σ| denotes the determinant of Σ, and Tr(·) denotes the trace of a matrix. Then
applying Equation (4.43 to the latter (KL-divergence) term of the ELBO in Equation (4.28)
gives

i∑
j=1

DKL
(
qϕ(z j |sj

1:T , r j
1:T , aj

1:T ) ∥ p(z j |z j–1, sj–1
1:T , r j–1

1:T , aj–1
1:T )

)
(4.44)

=
i∑

j=1
–1

2

[
log det Σθz (z j–1, hj–1)

det Σϕ(hj) + Tr
(
Σθz (z j–1, hj–1)–1Σϕ(hj)

)
(4.45)

+(µθz (z j–1, hj–1) – µϕ(hj))T (Σθz (z j–1, hj–1)–1)(µθz (z j–1, hj–1) – µϕ(hj)) – dz
]

.

For the policy network θr , we can set the objective function to satisfy a mean-variance
objective. For this, we use the expected value and variance of the rewards given by the
decoding network θr . The distribution of the rewards of the portfolio allocation is learned
by the network θr and expressed through parameters µθr , Σθr ∈ R. Conveniently, we can
use these parameters as the objective function for the policy function. For the policy
function, the objective we wish to maximize is

µθr√
Σθr

, (4.46)

which is known as the ex-ante Sharpe ratio [Sharpe, 1994] (where the risk-free rate is
omitted µθr ). This corresponds to the goal of portfolio optimization which is to maximize
the expected rewards while minimizing the standard deviation of rewards. Explicitly, the
objective function for the policy network ν can be expressed as

i∑
j=1

T∑
t=1

µθr (st , at ; z j)√
Σθr (st , at ; z j)

=
i∑

j=1

T∑
t=1

µθr (st ,πν(st , z j); z j)√
Σθr (st ,πν(st , z j); z j)

. (4.47)

The objective function can also be adjusted to resemble the global minimum variance
portfolio (GMV). In this case the objective is to minimize

Σθr , (4.48)

which results in minimizing the following objective function
i∑

j=1

T∑
t=1

Σθr (st ,πν(st , z j); z j). (4.49)
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Using the Sharpe ratio in Equation (4.46) may have drawbacks. For negative mean returns,
the Sharpe ratio is not necessarily informative as it can be increased by increasing the
variance, which is the opposite of our goal. A solution can be to instead use a clipped
Sharpe ratio as the objective function for the policy network, i.e. we seek to maximize

max(0, µθr√
Σθr

), (4.50)

where one may ”clip” the positive values too by a constant c, to maximize

min
(

max(0, µθr√
Σθr

), c
)

. (4.51)

Clipping of the rewards or the objective functions is common in deep reinforcement learning
such as in DQN [Mnih et al., 2015] and Proximal Policy Optimization [Schulman et al.,
2017] to stabilize the learning process. A variance-penalized objective has also been used
in reinforcement learning studies which in our case can be expressed as

µθr – γΣθr , (4.52)

where the parameter γ controls the variance penalty. This formulation also avoids the
problem that arises when the mean reward estimate µθr is negative, the objective still aims
to minimize the variance.

4.4 NSRDMM Algorithm

The Non-Stationary Reinforced Deep Markov Model (NSRDMM) is shown in 6. It collects
trajectories in a replay buffer, from which, in turn, trajectories are sampled to determine
the gradient updates. This is a form of off-policy learning that has better sample efficiency
than on-policy gradient methods [Haarnoja et al., 2018a].
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Algorithm 6: Non-Stationary RDMM
Input:
Initialize encoder ϕ, decoder θz , θs, θr , and policy ν
Initialize empty replay buffer D
Trajectory length T
Sample z1 from prior ∼ pθz (z1)
for j = 2,. . . , N do

Sample z j ∼ pθz (z j |z j–1, sj–1
1:T , r j–1

1:T , aj–1
1:T )

Collect trajectory (sj
1:T , aj

1:T , r j
1:T ) from πν(aj

t |s
j
t , z j)

Update replay buffer D[j]← (sj
1:T , aj

1:T , r j
1:T , z j–1, z j)

Sample a batch of k trajectories from D
Update encoding network ϕ (including GRU) using Adam to minimize
Equation 4.45

Update decoding network θz using Adam to minimize Equation 4.45
Sample z(m) = µ+ Lϵ(m) with ϵ(m)) ∼ N (0, I ) for Q-expectation
Update decoding networks θs, θr using Adam to maximize Equation 4.42
Update policy network πν using Adam to maximize chosen policy objective
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Chapter 5

Numerical Experiment

In this section, we will compare the performance of our model-based NSRDMM algorithm
to other model-free reinforcement learning methods such as SAC and DDPG, and tra-
ditional analytical portfolio allocation methods such as Mean-Variance and Equal Risk
Contribution.

The setup of our experiment involves a monthly rebalancing of a portfolio, which hap-
pens to be a common rebalancing frequency in the financial industry. In each case, we
will consider a fixed portfolio of n pre-selected assets, which will be rebalanced monthly
over the full test period. Therefore, we omit the selection process of assets in the portfolio,
which in practice can be generated by any discretionary or systematic selection criteria,
and merely focus on the optimization of the given portfolio — i.e. we select the optimal
weight allocation of each of the n assets for each month. Furthermore, we consider port-
folios without leverage, i.e. we consider a weight vector w⊺

t = (w1, . . . , wn) ∈ Rn , where
0 < wi < 1 ∀i ∈ {1, . . . , n}, such that

w⊺
t 1 = 1, (5.1)

where 1 = (1, . . . , 1)⊺ ∈ Rn . We note that the policy in NSRDMM can also be adjusted to
handle portfolio allocations with leverage (which will be explained in Section 5.1.2).

5.1 Data

The dataset consists of the return data of all assets which have been in the SP500 for over
the last 20 years (this happens to be the case for a bit fewer than 400 assets). The return
data of each stock is freely available on Yahoo Finance. The companies currently in the
SP500 can be sourced from Wikipedia. Specifically, we use return data from February 2004
to January 2024. The data is split into a training set, a validation set and a test set. The
training set is from February 2004 to February 2014, the validation set is from March 2014
to March 2015, and the test set is from April 2016 to January 2024.
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For our NSRDMM, and reinforcement learning more generally, we need to select the
data we use for our states and rewards. For readability, we will simply denote, in the
following sections, at time t ∈ {1, . . . , T}, the states si

t , the actions ai
t and the rewards r i

t
for any MDP i ∈ {1, . . . , N}, as st , at and rt .

5.1.1 States

The states are the features that will be used as input for the policy function. Therefore, it
is important to select state variables that are meaningful to an allocation policy. In MV
portfolio optimization, those are usually the mean return and covariance matrix between
the assets. Since it is difficult to estimate the mean return (a phenomenon referred to as
the mean-blur problem by Luenberger [1998]), using only the covariance matrix (which is
the case for GMV and ERC) is considered to be more robust. Consequently, we believe it
is reasonable to use the covariance as feature entries, to compare NSRDMM to MV, GMV
and ERC. Following standard practice, we use daily log-returns to calculate the covariance
matrix, which are defined as

xt = log
( Pt

Pt–1

)
, (5.2)

where Pt and Pt–1 represent the close price on day t and day t–1, respectively. Furthermore,
to calculate the volatility of returns or covariance between returns, we assume an average
return of zero which is common practice by traders according to Taleb [1997], Sinclair [2013]
due to the noisiness in estimating the sample mean (this is reminiscent of the mean-blur
problem described in Luenberger [1998]). Hence, the volatility of a stock with log-return
xt is estimated by

σ =

√√√√ 1
n

n∑
t=1

x2
t . (5.3)

Similarly, the covariance matrix between returns x and y is given by

Cov(x, y) = 1
n

n∑
t=1

xtyt . (5.4)

Another consideration is the lookback period for estimating the covariance matrix. This
is a subjective consideration, which involves making a trade-off between long memory or
assigning more importance to more recent patterns. To allow for responsiveness to re-
cent changes in the covariance, we choose to use an exponential weighted moving average
(EWMA). This method provides an exponential decay to historical return data and there-
fore weights the returns in proportion to their recency [Taleb, 1997]. The exponentially
weighted moving average of the variance is given by

σ2
t = λσ2

t–1 + (1 – λ)x2
t , (5.5)
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where σ2
t is the variance at time t, x2

t is the squared log-return at time t, and λ is a decay
factor (0 < λ < 1). Substituting the same expression for σ2

t–1 into Equation (5.5) gives

σ2
t = λ(λσ2

t–2 + (1 – λ)x2
t–1) + (1 – λ)x2

t . (5.6)

Iterating this process recursively gives us the EWMA variance for log-returns xt

σ2
t = λtσ2

0 + (1 – λ)
t–1∑
i=0

λix2
t–i . (5.7)

If t is sufficiently large we may choose to leave out λtσ0 from Equation (5.7). Then,
similarly, the EWMA covariance between returns x and y can be written as

Cov(x, y) = (1 – λ)
t–1∑
i=0

λixt–iyt–i . (5.8)

The decay factor λ allows us to set our lookback period, as the span (or lookback period)
is given by

span = 2
(1 – λ) , (5.9)

where we choose λ = 0.99, to get a span of 200 trading days out of roughly 252 trading
days per year, which we deem appropriate for a monthly rebalancing frequency.

Since NSRDMM contains (deep) neural networks, the model provides the flexibility to
add any other feature deemed relevant to improve the portfolio allocation policy, unlike MV
and ERC which can only use the covariance matrix (and expected returns). For simplicity,
we will consider only one type of feature that can easily be computed from the close price
data which is already in our dataset, namely, we can use momentum features. Momentum
features are based on the premise that assets moving upwards (downwards) are likely to
continue moving upwards (downwards). Standard features for momentum are crossovers
between exponential moving averages of two different spans. We choose to compute the
exponential moving crossover with a span of one month (λ1) compared to two months (λ2)
which is given by

Crossovert = EWMAλ1,t – EWMAλ2,t . (5.10)

This crossover gives an indication of whether the short-term price trend is above or below
its longer-term average, therefore indicating an asset’s momentum. Additionally, we choose
to add another crossover feature with a span of 3 months and 6 months, respectively.

Therefore, the dimensionality of the state space for a portfolio of n assets is n × n (co-
variance matrix) plus 2n for the two momentum features per asset, resulting in a flattened
vector of dimension n(n + 2).
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5.1.2 Actions

The actions at are sampled from the policy πν . In this numerical experiment, the actions are
similar to the weight vector wt ∈ Rn defined in Equation (5.1). That is, a⊺

t = (a1, . . . , an) ∈
Rn , where 0 < ai < 1 ∀i ∈ {1, . . . , n}, such that

a⊺
t 1 = 1, (5.11)

where 1 = (1, . . . , 1)⊺ ∈ Rn . This constraint is satisfied by a softmax output function on
the policy network πν . Given an input vector z = (z1, . . . , zk) ∈ Rk , the softmax function:
Rk 7→ (0, 1)k is given by

softmax(z)i = ezi∑n
j=1 ezj

for i = 1, . . . , n, (5.12)

which due to the normalization in the denominator ensures the weights sum up to one.
We note that other output functions can be used too to include the use of leverage. For
example, the l1 norm ∥ · ∥1, can be used to normalize the weights on both the long and
short sides of a market-neutral portfolio (which has an equal dollar amount in longs and
shorts) to obtain a gross leverage of 100%. The weights can subsequently be scaled by a
constant to set the gross leverage.

5.1.3 Rewards

The rewards rt used for training the reward network θr are chosen to be one-month forward
returns from the portfolio rebalancing date. Let Ri,t denote the simple one-month-forward
return of asset i ∈ {1, . . . , n} at time t, i.e.

Ri,t = Pi,t+1
Pi,t

, (5.13)

where Pi,t+1 is asset i’s price in one month time from t and Pi,t is its price at time t.
Then, if we define the return vector Rt = (R1,t , . . . , Rn,t)⊺ ∈ Rn , we calculate the portfolio
rewards rt corresponding to action at as

rt = a⊺
t Rt . (5.14)

5.2 Network Architectures

In this section we will describe the architectures of all artificial neural networks used in the
NSRDMM section for this numerical experiment.
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5.2.1 Gated Recurrent Unit (GRU)

The summary variable hj , also called a hidden state, of the trajectory is provided through a
Gated Recurrent Unit (GRU) [Cho et al., 2014], which is a recurrent neural network (RNN).
It is considered to be a simplified version of an LSTM network (it has fewer parameters),
but its performance is comparable [Chung et al., 2014]. Due to the recurrent nature, it can
be is useful for processing time-dependent sequences of data. Its architecture gives a GRU
the useful property of being able to ”memorize” previous states.

A GRU consists of a reset gate, an update gate, a proposed hidden state, and an actual
hidden state. Let t ∈ {0, . . . , T} and let hj = hT . The reset gate ρt is computed by [Cho
et al., 2014]

ρt = σ (Wrxt + Vrht–1) , (5.15)

where σ is the sigmoid function, xt is the current input, ht–1 is the previous hidden state
and, Wρ, Vρ are the weight matrices. Similarly, the update gate ut is computed by [Cho
et al., 2014]

ut = σ (Wzx + Vzht–1) . (5.16)

The actual hidden state h is then computed by [Cho et al., 2014]

ht = utht–1 + (1 – ut)h̃t , (5.17)

which involves a weighting of the previous hidden state and the proposed hidden state
given by [Cho et al., 2014]

h̃t = ϕ (Wxt + V (ρt ⊙ ht–1)) , (5.18)

where ⊙ is the Hadamard product, and where ϕ is an activation function commonly chosen
to be tanh (·). The reset gate allows the network to disregard the previous hidden state by
setting it close to 0 and instead focus solely on the current input. This mechanism enables
the network to eliminate any outdated information [Cho et al., 2014]. The update gate
determines the degree how much the previous hidden state influences the current state. Cho
et al. [2014] assert that having different reset and update gates for each state, the GRU
is able to learn dependencies across different time scales. Reset gates will be active for
short-term dependencies, where update gates will be active for longer-term dependencies.
A visual overview of a GRU is shown in Figure 5.1. To learn more complex dynamics, the
GRU can be extended to have multiple layers. In a multilayer GRU, with l > 1 layers, the
hidden state h(l–1)

t serves as the input x(l)
t for the l-th layer. In addition, we have reset,

update and proposed gates r (l)
t , z(l)

t , h̃(l)
t respectively, for the l-th layer. In this numerical

experiment, we choose to use a depth of 2 to 4 layers in the GRU, which is selected in the
trade-off to allow for learning complex dynamics while limiting the model’s complexity and
the potential to overfit.
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Figure 5.1: Visual representation of a Gated Recurrent Unit (GRU). The update gate u
determines how much the new hidden state is updated with the proposed hidden state h̃.
The reset gate ρ determines the extent to which the previous hidden state is forgotten for
the proposed hidden state [Cho et al., 2014].

Furthermore, to mitigate the potential for overfitting we use a dropout rate. In a
dropout-regularized GRU, the input to each neuron is calculated by

[
h(l–1)

t · δ(l–1)
t

]
j
, (5.19)

where δ(l–1)
t ∼ Bernoulli(pdropout) and [·]j is the j – th element of the vector — i.e. each

neuron has a probability of being dropped out of pdropout . We set pdropout to a default value
of 0.2.

In addition, we make use of layer normalization, which is computed by normalizing
the sum of all inputs into a layer’s neurons by its mean and variance. This mitigates the
problem of covariate shift, which is when changes in the outputs of one layer are highly
correlated to the sum of all inputs into the following layer. Layer normalization has been
shown to reduce training times and, in recurrent networks, to stabilize the dynamics of
hidden states [Ba et al., 2016]. Let x be the vector of inputs into a layer’s neurons, then
the layer normalization is given by [PyTorch, 2024]

LN(x) = γ ⊙ x – µ√
σ2 + ϵ

+ β, (5.20)

where µ, σ are the mean and variance of the sum of elements in the vector x, respectively;
ϵ is a small constant, and γ, β are the scale and bias vectors, respectively. The elements of
the scale and bias vector allow each neuron the flexibility to learn its own scale and bias
parameter after normalization.
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5.2.2 Mean-Variance-Estimation Networks

The decoding networks θz , θs, θr and encoding network ϕ are a specific type of artificial
neural networks, called mean-variance-estimation (MVE) networks. Each of these MVE
networks outputs a mean vector µ ∈ Rn and a covariance matrix Σ ∈ Rn×n of a multi-
variate normal distribution N (µ, Σ). As this would require n + n2 outputs, the model
complexity increases quickly as the dimensionality of the Gaussian distribution increases.
It is somewhat more convenient for the network to output the Cholesky decomposition L
of the covariance matrix Σ as it requires n(n + 1)/2 instead of n2 outputs. This is because
the Cholesky decomposition L is a lower-triangular matrix L which has n(n+1)/2 non-zero
elements. From the Cholesky decomposition we can computer the covariance matrix

Σ = LL⊺. (5.21)

We can compute the Cholesky decomposition because Σ is positive semi-definite by defi-
nition. However, the covariance matrix resulting from LL⊺ need not be unique [Pinheiro
and Bates, 1996]. We, therefore, use the log-Cholesky parametrization because this en-
sures the diagonal of L is positive which implies that the covariance matrix is unique. If
we suppose that the neural network outputs the log-Cholesky matrix, this means it out-
puts the diagonal elements (log l11, . . . , log lnn) with all other elements of the matrix L,
i.e. lij ∀i, j ∈ {1, . . . , n} where i ̸= j. Consequently, after exponentiating the diagonal
elements we obtain the Cholesky decomposition L with a positive diagonal. Instead of
using a log-Cholesky decomposition and exponentiating the diagonal element, it is also
common to apply the softplus function to the diagonal elements [Sluijterman et al., 2023].
The softplus function is given by

softplus(x) = log(1 + ex), (5.22)

and also ensures positivity of its outputs. In our experiment, we choose the Cholesky
decomposition with the softplus function to transform the diagonal elements.

The Cholesky parameterization, however, does not fully prevent the issue of the network
quickly increasing in complexity as the dimension of the Gaussian distribution increases.
To mitigate this issue for high dimensional Gaussian distributions, one may choose make
the simplifying assumption that the covariance matrix Σ is nearly diagonal. Then, the
neural network only needs n outputs to parameterize the covariance matrix (besides the
n outputs for the mean vector µ). We also choose to use this assumption when we add
the momentum features (for each of the n assets) to our state space as it increases the
dimensionality.

All neural networks use three hidden layers. This depth ensures the network is as ’deep’
neural network, with the ability to learn complex patterns while limiting the architecture’s
complexity and number of parameters. The number of nodes in each layer are between
30 and 120, depending on the dimensions of the input and output of the specific network.
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Furthermore, we choose the Rectified Linear Unit (ReLU) as our activation function and
the Kaiming normal weight initialization designed to work well with the ReLu activation
function [He et al., 2015]. Furthermore, we choose the widely used Adam to be the op-
timizer for our neural networks. Adam is known for its effectiveness through the use of
”momentum” and its update is given by [Kingma and Ba, 2014]

θt+1 = θt – η√
v̂t + ϵ

m̂t , (5.23)

where θ are the parameters of the neural network, η is the learning rate, m̂t is the first
moment estimate (a decayed average of past gradients), and v̂t is the second moment
estimate (a decayed average of past squared gradients). The term ϵ is a small scalar added
to the denominator to ensure numerical stability.

To ensure stability, and more specifically, to avoid gradients from exploding (which
happened on some occasions during training of the networks) we implement gradient clip-
ping on gradient g, with the clipping value cclip to 1. This works as follows, if ∥g∥2 ≥ c,
then we set

g := c g
∥g∥2

. (5.24)

Similar to the GRU, we also use layer normalization and a dropout rate of 0.2 to mitigate
the potential to overfit.

We also include a warm-up period for training the MVE networks as proposed by Nix
and Weigend [1994]. [Sluijterman et al., 2023] show that learning the mean paramter µ,
while keeping the variance (covariance) fixed during a warm-up period improves learning.
This is because the network may have trouble learning the mean function for regions where
it has large errors initially [Sluijterman et al., 2023]. In this scenario, the loss function can
be improved by increasing the variance while not necessarily improving the mean.

5.2.3 Training

Policy gradient methods (and reinforcement learning more generally) are known to suffer
from sample inefficiency. Even though our proposed NSRDMM is model-based which can
improve sample efficiency. As a consequence one needs either a lot of historical data or one
needs to simulate data. Unfortunately, the portfolio optimization problem is a relatively
low-frequency problem in finance as opposed to market making. This means that per
feature, there is usually much less data (fewer samples) available. Wang and Zhou [2020]
offer a clever solution to this problem. Wang and Zhou [2020] randomly choose n stocks
from the SP500 which is repeated 100 times to create 100 portfolios/datasets. This gives
us
(n

k
)

different portfolios where k is the number of stocks in the SP500.
In our training, we choose to allocate weights to a portfolio of n = 10 assets on a monthly

basis. For each trajectory (sj
1:T , aj

1:T , r j
1:T ), where j ∈ {1, . . . , i}, we set T = 12. This means

that we have monthly states, actions, and rewards (st , at , rt) at month t = 1, . . . , 12. Since
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our training data involves a period of 10 years from 2004 to 2014 we have, for each portfolio
of n = 10 assets, 10 years of monthly training data.

We note that NSRDMM has the flexibility to simulate data too by sampling z, s, r from
the decoding networks θz , θs, θr . However, we choose to use historical data to remain as
realistic as possible.

5.2.4 Early Stopping

Besides dropout, we also use early stopping to prevent the model from overtraining and
overfitting. Early stopping involves stopping the training of the neural networks when its
loss on the validation set starts to increase. This indicates the model is overfitting on
the training data as it loses its generalizability by performing worse on unseen data. The
networks were run for a maximum of 10,000 gradient steps; the networks θr and ϕ were
stopped from training after 3000 gradient steps as the loss on the validation set plateaued
and started to increase.

5.2.5 Hyperparameters

The validation set was also used to tune parameters such as the learning rate, and the
warm-up period. While there are sophisticated methods for hyperparameter tuning includ-
ing Bayesian optimization we refrained from using this due to the computational resources
necessary to train the algorithm for multiple runs on the training and validation set using
different parameters. The code was implemented in PyTorch and required CUDA GPUs
through Google Colab Pro to make training and testing the algorithm feasible (see code
in Appendix B). Therefore, we resorted to a rough grid search using mainly default hy-
perparameter initializations which were subsequently tweaked in the direction which was
deemed necessary.

The decoding networks, θz , θs, θr , the encoding network ϕ and the policy network
πν used a learning rate of 10–4 (unless stated otherwise in specific cases). This learning
rate allowed for stable learning curves on the training and validation set. Moreover, the
number of gradient steps for the warm-up period for the networks θz , θs, θr and ϕ was set
to 1500, as all these networks’ losses decreased and stabilized in under 1500 steps (some
networks somewhat sooner than the others albeit not by a large margin) on the validation
set. Since, the parameters µθr , Σθr were used in the objective function for policy network
πν , the policy network could only be trained after the warm-up period of the network θr .
This is because only after the warm-up period was the parameter Σθr learned. Our policy
network started learning after the warm-up period of 1500 gradient steps and had its own
warm-up period of 500 gradient steps (which corresponds to the 2000th gradient step of
training).

Other parameters in the model include the number of batches sampled from the replay
buffer D, which is the database that stores all sampled trajectories shown in Algorithm 6.
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The number of batches sampled is the number of samples used to compute the gradient
updates, which we set equal to 20. We also include a sampling period, where we only fill
the replay buffer with 200 trajectories. This sampling period is used to avoid using the
same trajectories for gradient computations over and over during the first few gradient
updates. Moreover, we set the q-sample size M , as provided in Equation (4.42), to 20.
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5.3 Results

In this section, we will share the loss plots on the training set of each network, and the
portfolio performance per algorithm on the 20 distinct test sets (portfolios). Performance
is mainly measured in terms of (log) cumulative returns, the Sharpe ratio; we also provide
the maximum drawdown. The SAC and DDPG algorithms were trained for 10,000 gradient
steps, learning rates of 0.001 and a batch size of 20.

We assume furthermore that the risk-free rate is 0 and that there is an absence of
transaction costs. We also assume that stocks can be bought at the close price without
paying the bid/ask spread. Furthermore, we assume that the exact weight allocation can
be bought and does not need to be rounded off to a specific number of shares.

(a) Training Loss State (b) Training Loss KL-Divergence

(c) Training Loss Reward (d) Training Loss Policy

Figure 5.2: Training losses (y-axis) for number of gradient steps (x-axis) for the networks:
(a) state decoder θs, (b) θz , ϕ and GRU with shared KL-divergence loss, (c) reward decoder
θr , (d) policy network πν . In (b) and (c) due to its validation loss, early stopping was used
at 3000 iterations.

In Figure 5.2 the losses of all networks on the training set are shown. The loss functions
look reasonably stable, with the obvious exception of the first iteration after the warm-up
period where the variance of the networks is not held to an arbitrary fixed value. The
learning of networks θz , ϕ and GRU with a shared KL-divergence loss, and the reward
decoder θr , were stopped at 3000 iterations due to early stopping (the validation loss
plateaued or became higher). For the policy function, Objective (4.52) was used as it had
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the most stable loss function in training and validation unlike the clipped Sharpe Objective
(4.51) which was much noisier. The penalty parameter γ in Objective (4.52 was set to 1.

The Figures (5.3, 5.4a, 5.4b, 5.5a, 5.5b) summarize the log-cumulative returns of 20
portfolios over a test period from 2016-05-31 to 2023-12-29. The lines represent the median
log-cumulative return — i.e. it is the cumulative sum of the median log-return at each
timestep. Similarly, the shaded area represents the minimum and maximum log-cumulative
return, also by taking the cumulative sum of the minimum and maximum log-return,
respectively. This is used to show the distribution of the portfolio optimization method
in terms of cumulative returns over 20 portfolios in one visualization instead of 20. It
also provides insight into the median performance and the variability of performance. The
red-shaded area belongs to the same portfolio optimization method as the red line and the
blue-shaded area is from the same portfolio optimization method as the blue line.

In Figure 5.3, we compare two trained NSRDMM’s. The NSRDMM only takes the co-
variance matrix as input, whereas NRSDMM-Momentum also uses two momentum features
as state variables per asset.

Figure 5.3: Log of cumulative return comparison between NSRDMM-Momentum and
NSRDMM.

From Figure 5.3, it can be seen that the median cumulative portfolio returns have
similar performance at the end of the test period. It can also be seen that the best-
performing and worst-performing portfolios of NSRDMM-Momentum outperform those of
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NSRDMM (presented in the shaded area).
Compared to MV and ERC, in Figures (5.4a, 5.4b), although the NSRDMM-Momentum

achieves higher cumulative returns in its best portfolio, the worst performing portfolio has
lower cumulative returns than both MV and ERC. Consequently, MV and ERC exhibit a
lower dispersion of cumulative returns across the portfolios.

In Figures (5.5b, 5.5a), we see that NSRDMM-Momentum outperforms the model-free
reinforcement learning algorithms SAC and DDPG both in terms of both cumulative return
and dispersion of cumulative return at the end of the test period.

In Tables 5.1, 5.2, and 5.3 the full log-cumulative return data, Sharpe ratios, and
maximum drawdown are given, respectively. The full results in the tables also show that
the NSRDMM-Momentum performs best in terms of cumulative returns. In addition, the
Sharpe ratios and maximum drawdowns also corroborate the observation that the MV and
ERC have lower dispersion of returns than NSRDMM-Momentum and hence also lower
than SAC and DDPG.

We believe the results can be explained by the distribution of portfolio weights shown
in Figure 5.6 where the weights of MV and ERC vary little over the portfolios, followed
by NSRDMM-Momentum and NSRDMM, whereas SAC and DDPG have the largest dis-
persion of weights over the portfolios. While this does not benefit SAC and DDPG, we
may argue that in NSRDMM-Momentum, the increased weight allocation to certain assets
influences the performance seen in terms of cumulative returns, albeit at the cost of a lower
Sharpe ratio than GMV and ERC. These increased allocations, in turn, could be caused by
NSRDMM ”recognizing” that an asset may outperform and hence it could be interpreted
that NSRDMM also acts as a trading algorithm besides merely a portfolio optimization
method.

We emphasize that NSRDMM outperforms model-free methods SAC and DDPG in
both cumulative returns and Sharpe ratio. Moreover, the model-free methods lead to
very high and possibly unstable portfolio allocation weights. We believe this shows that
NSRDMM has superior sample efficiency for a similar amount of policy gradient steps
(10,000). From the loss on the validation set, we believe NSRDMM could have had good
performance for fewer than 5000 policy gradient steps (or 7000 total gradient steps when
taking into account the warm-up period of the policy network).
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Table 5.1: Log-cumulative returns of the different portfolio optimization methods.

Test NSRDMM-Mo NSRDMM MV ERC SAC DDPG

1 0.7473 0.5258 0.4098 0.6526 0.1473 0.3814
2 0.9423 0.8876 1.0263 1.0564 1.0289 0.3864
3 1.0822 0.8778 0.9233 0.8934 0.1933 1.1153
4 0.7518 0.6950 0.88 0.7633 0.8843 0.6925
5 1.6455 1.3195 1.1737 1.3098 1.0527 1.3303
6 0.9534 1.2909 0.8132 0.7379 0.6178 0.8104
7 1.2827 0.7529 0.8724 0.9240 0.9570 0.4201
8 1.2695 1.1054 1.1281 1.1012 0.6606 1.2013
9 1.0266 1.1401 1.2536 1.0760 1.1487 1.2440
10 0.5734 0.7133 1.1727 0.8017 1.1151 0.6500
11 0.9028 1.1913 1.0474 1.1064 1.0589 0.9027
12 0.9853 0.9713 0.8342 0.8292 1.2191 0.5320
13 1.1955 1.1545 1.1904 0.9899 0.7948 1.3968
14 0.8751 1.0560 0.8272 0.8891 0.7459 1.2761
15 0.8480 0.8807 0.9687 0.9444 1.3187 1.0836
16 0.9999 1.1858 0.7444 0.8690 0.9784 0.7969
17 1.0585 0.7282 1.0203 0.8051 1.0730 0.9770
18 0.5659 1.3290 1.0305 0.9642 1.2160 0.6901
19 1.1082 0.8410 0.8677 0.9059 0.7663 0.9983
20 1.1987 1.3540 0.8854 0.9609 1.2708 0.7206
Mean 1.0006 1.000 0.9534 0.9290 0.9123 0.8802
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(a) NSRDMM-Momentum vs Mean-Variance

(b) NSRDMM-Momentum vs Equal Risk Contribution

Figure 5.4: Log of cumulative return comparisons (Part 1)
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(a) NSRDMM-Momentum vs DDPG

(b) NSRDMM-Momentum vs SAC

Figure 5.5: Log of cumulative return comparisons (Part 2)
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Table 5.2: Sharpe ratios of the different portfolio optimization methods.

Test NSRDMM-Mo NSRDMM MV ERC SAC DDPG

1 0.5666 0.3998 0.381 0.5872 0.2080 0.3445
2 0.7215 0.7067 0.8565 0.8994 0.7395 0.3668
3 0.6512 0.4777 0.6559 0.5799 0.2339 0.6840
4 0.6512 0.5355 0.7976 0.7034 0.6858 0.5735
5 1.2233 1.0017 0.9495 1.1111 0.6824 1.0452
6 0.6589 0.8719 0.5364 0.5699 0.4538 0.5950
7 0.8564 0.5481 0.6815 0.7675 0.6372 0.3543
8 0.9566 0.8808 0.9705 0.9133 0.5225 0.8807
9 0.7101 0.7843 0.939 0.8088 0.7985 0.9031
10 0.3746 0.4103 0.8501 0.6240 0.6903 0.4800
11 0.6710 0.8478 0.9046 1.0347 0.5822 0.6740
12 0.6235 0.5783 0.6347 0.6232 0.7384 0.4208
13 0.7686 0.7869 0.8362 0.7941 0.5475 0.9946
14 0.6402 0.6539 0.6303 0.7665 0.6564 0.8698
15 0.6353 0.6131 0.7999 0.8266 1.0078 0.7858
16 0.7827 0.8717 0.5778 0.7551 0.7365 0.6170
17 0.7299 0.4993 0.8013 0.6187 0.7766 0.7297
18 0.3540 0.8949 0.8256 0.7357 0.8424 0.5218
19 0.8989 0.7526 0.7494 0.8080 0.6221 0.8891
20 0.7235 1.0205 0.7144 0.7569 0.6999 0.4829
Mean 0.7099 0.7067 0.7546 0.7641 0.6431 0.6606
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Table 5.3: Maximum drawdown for the different test portfolios.

Test NSRDMM-Mo NSRDMM MV ERC SAC DDPG

1 0.2545 0.2733 0.2225 0.2525 0.3717 0.3646
2 0.2192 0.1937 0.1814 0.1882 0.1815 0.2362
3 0.3129 0.4002 0.1949 0.3325 0.4292 0.2928
4 0.1750 0.2290 0.2344 0.1661 0.1814 0.2515
5 0.1727 0.1416 0.1621 0.1463 0.2297 0.1957
6 0.2639 0.2538 0.3169 0.2599 0.3650 0.3149
7 0.2497 0.2762 0.2082 0.1862 0.2451 0.3480
8 0.3016 0.2964 0.2568 0.2892 0.3636 0.3281
9 0.2367 0.2146 0.2427 0.2136 0.2572 0.2314
10 0.2948 0.3186 0.3366 0.2383 0.4284 0.2797
11 0.2198 0.2813 0.2192 0.2084 0.3405 0.2787
12 0.3196 0.2994 0.2756 0.2408 0.2784 0.3018
13 0.3366 0.2931 0.2927 0.2183 0.3492 0.2763
14 0.2377 0.2623 0.2314 0.2080 0.2335 0.2408
15 0.2573 0.2483 0.1834 0.2260 0.1520 0.2974
16 0.2162 0.2090 0.2414 0.2104 0.2651 0.2741
17 0.2777 0.2878 0.2937 0.2895 0.2833 0.2877
18 0.3176 0.2600 0.2469 0.2723 0.2955 0.2755
19 0.2509 0.2089 0.2369 0.2422 0.2669 0.2106
20 0.3227 0.2120 0.2393 0.2524 0.2806 0.3310
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(a) NSRDMM-Momentum (b) NSRDMM

(c) MV (d) ERC

(e) SAC (f) DDPG

Figure 5.6: Asset Weight Box Plots
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Chapter 6

Conclusion

In conclusion, this thesis has developed and evaluated NSRDMM, a model-based off-policy
reinforcement learning algorithm that incorporates non-stationarity inherent in financial
markets. Through comparative analysis with both traditional model-based approaches
(MV/ERC) and state-of-the-art model-free methods (DDPG/SAC), NSRDMM has not
only demonstrated its capability to achieve superior cumulative returns over MV, ERC,
DDPG, and SAC but also excelled in Sharpe Ratio performance against DDPG and SAC,
albeit with room for improvement against MV and ERC. Furthermore, NSRDMM show-
cased significant sample efficiency surpassing that of DDPG and SAC which is important
for many applications.

6.1 Recommendations for Future Work

We believe the flexibility of adding features to NSRDMM can improve the performance
of the model compared to classical methods such as MV and ERC. For example, the
integration of additional features such as the VIX and other measures of volatility may
enhance the performance of the algorithm. As features are added to the model, it may
behave more as a trading strategy compared to a pure portfolio optimizing method. This is
related to the problem of multi-objective reward functions [Dulac-Arnold et al., 2019, 2020,
2021] as there is a balancing act between maximizing the expected return and minimizing
variance. It is a useful avenue to further explore a framework to analyze and control this
trade-off.

While we chose to use a Gaussian policy, a Gaussian policy with decaying variance
suggested by the entropy-regularized framework by Wang and Zhou [2020] has not been
tested in NSRDMM. It would be interesting to see an integration and how it could improve
performance in the MV-objective.

Further recommendations include enhancements that could include implementing a
hyperparameter tuning method such as Bayesian optimization. Additionally, there are
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countless ways to design neural network architectures and improvements could be made by
trying different depths, numbers of nodes, activation functions etc. It would be a promising
idea to replace the fully connected neural networks with recurrent neural networks (RNNs)
which could be particularly useful for processing time-series data. Moreover, the current
success of large language models and transformers might pose promising avenues for im-
provement in various ways. For example, LLMs can be used for time series prediction. In
addition, inspired by the recommendation from Sluijterman et al. [2023], a modified MVE
network could be used that applies distinct regularization techniques for the prediction of
the mean and variance. This could improve the modelling of probabilistic graphical models
and hence lead to more accurate learned model distributions.

Lastly, we have not used NSRDMM’s ability to simulate data from the trained decoding
networks. An interesting suggestion for future research would be to test whether learning
a policy on such simulated data is effective and how it compares to real data.
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Appendix A

Optimality of Gaussian Polcies

In solving the MV-objective through Equation (3.3), [Wang, 2019, Wang and Zhou, 2020],
derive that a Gaussian policy is an optimal policy. [Wang, 2019, Wang and Zhou, 2020]
introduce a randomized control process u = {ut , 0 ≤ t ≤ T} where ut ∈ Rd denotes the
invested amount in each of the d assets. This control process leads to a measure-valued (or
distributional) control process with density function π = {πt , 0 ≤ t ≤ T}. They describe
the dynamics of the wealth process for a portfolio of d assets follows

dXπ
t =

(∫
Rd
ρ⊺σuπt(u)du

)
dt +

(∫
Rd

u⊺σ⊺σuπt(u)du
) 1

2
dBt , (A.1)

where ρ is a vector that represents the ”market price of risk”, σ ∈ Rd × d is an in-
vertible volatility/covariance matrix, and Bt is a one-dimensional Brownian motion on a
filtered probability space (Ω,F ,P). Then, [Wang and Zhou, 2020, Wang, 2019] introduce
a temperature parameter λ and a differential entropy term to model the trade-off between
exploration and exploitation. Then the ”entropy-regularized, exploratory MV problem”
for each w ∈ R is given by [Wang, 2019, Wang and Zhou, 2020]

min
π∈A(x0,0)

E
[
(Xπ

t – w)2 + λ

∫ T

0

∫
Rd
πt(u) ln πt(u)dudt

]
– (w – z)2, (A.2)

where A(x0, 0) is the set of controls admissible. Then, after defining the value function V
using Bellman’s principle of optimality and noting that it satisfies the Hamilton-Jacobi-
Bellman equation, [Wang, 2019, Wang and Zhou, 2020] derive that the optimal feedback
control is Gaussian with its distribution given by

π∗(t, x, w) = N
(

–σ–1ρ(x – w), (σ⊺σ)–1λ

2 eρ⊺ρ(T–t)
)

, (A.3)

from which a vector u ∈ Rd is sampled denoting the amount to be invested in each asset,
and where the Lagrange multiplier w is given by w = zeρ⊺ρT –x0

eρ⊺ρT –1 . Furthermore, [Wang, 2019,
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Wang and Zhou, 2020] show that the Gaussian policy can be parameterized as π(t, x, w) =
N
(
α(x – w), Σeβ(T–t)

)
, where α ∈ Rd ,β ∈ R and where Σ is a d × d matrix which is

positive definite, as it converges in distribution to the optimal policy π∗.
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Appendix B

All code can be found in this GitHub repository: https://github.com/lchinapauw/RL-
portfolio-allocation.
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