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1 ‘ Introduction
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Problem Statement

Applications of High-Resolution Aerial Imagery:
° Urban Planning

°* Object Detection

° Environmental Monitoring

Challenges:

* Acquisition cost

* Sensor noise

e Optical distortions

e Limited availability

!

Super-resolution bridges this gap—transforming
available LR to HR for actionable insights despite
seasonal differences.

%
TUDelft

30-6-2025

4



State of the Art & Research Gap

State of the Art

* Most SR research focuses on natural or facial
imagery
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* Few works adapt GANs to aerial imagery or
geospatial use cases

 Downstream task performance rarely
evaluated

Research Gap

* Lack of domain-specific architectures for
aerial imagery

e Limited integration of SR with geospatial
pipelines

Source: Moser et al. (2022) — Hitchhiker’s Guide to Super-Resolution
* No robust evaluations under real-world,

misaligned conditions
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To what extent can super-

resolution 25 cm aerial imagery to 8
cm, ensuring its applicability for
?
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Research Questions

Main Question

To what extent can GAN-based super-resolution enhance 25 cm aerial imagery to 8 cm,

ensuring its applicability for object detection tasks?

Sub-questions

1.

4.

How accurately can a GAN reconstruct 8 cm HR images from 25 cm LR aerial inputs, especially for
building edges and solar panels?

How do seasonal differences between HR and LR images (e.g., winter HR vs. Summer LR) affect GAN
performance, and can domain adaptation via pre-training on synthetic data mitigate these effects?

What are the limitations of GANs in preserving geometric fidelity (e.g., artifacts, hallucination) for
geospatial use cases?

What metrics best assess SR image quality for downstream object detection tasks?
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2 ‘ Methodology
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Iteration 1

Iteration 2

Pre Processing GAN Pretrain

SR

Synthetic LR

—7 Discriminator

\ 4
Is SR close to HR?

/ Generator /@r

A

Final
weights

‘7/ Discriminator /
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Is SR close to HR?
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3 ‘ Implementation

%
TUDelft 30-6-2025 10



SRGAN adapted by Ledig et al. (2017) Generator Network B residual blocks

k9n64s1 k3n64s1 k3n64s1 k3n64s1 k3n256s1 k9n3s1

* Edge-aware residual blocks

PixelShuffler x2

* Mask-guided refinement module

skip connection
P EdgeMaskBlock

(—A—\

. e Mask and edge features are learned in parallel from _>x final = x_base + mask x edge
[ ] — —
PatCh based blnary ClaSSIfler the input and fused into the base SR output.

e MSE (pretraining)

Discriminator Network k3n128s2 K3n256s2
k3n64s1  k3n64s2 k3n128s1 k3n256s1 k3n512s1

k3n512s2

e Perceptual (VGG features)

e Adversarial (fine tuning)

Leaky ReLU
Dense (1024

Leaky RelLU
Dense (1
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Tiling Strategy

* Source: HR raster 8cm

* HRtiles 256 x 256 8cm

* Synthetic LR tiles 64 x 64 32cm (Bicubic)
* Qverlap: 10%

* Sources:
HR raster upsampled to 6¢cm (from 8cm)
LR raster 25cm
* HRtiles 256 x 256 6cm
* LRtiles64 x64 25cm
* Overlap: 20% NG el e
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Evaluation Strategy

* Train/Test split 80/20 with : Delft / Rotterdam

* Train test split 80 — 20 with: Delft/ Rotterdam
/Utrecht

* Tested generalization to: Den Haag / Zwolle

* PSNR - Pixel level fidelity
e SSIM — Structural similarity
* LPIPS — Perceptual similarity (deep features)

 Segment Anything Model (Meta Al)
. S;mantic Segmentation (READAR B.V.)
TUDelft

Tile Categorization using Urban Atlas:
Categories HR Tiles LR Tiles

Overlay by Land Use

Samples 2.300 23.800
Pre train epochs 2000 0
Fine train epochs 4000

Comparison Baseline:
All evaluations (metrics & downstream tasks) are benchmarked against:
Bicubic Upsampling at matching resolution

SRGAN performance is interpreted relative to this standard baseline.
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PSNR

™ PSNR — Higher
pixel-level accuracy

Fge-Aware SROAN ‘

Base model vs Edge Aware model Base SRGAN
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MW lter. 2 PSNR m®Iter. 1 PSNR

e PSNR in both iterations LPIPS

indicating less noise and better pixel- Edge-Aware SRGAN

J, LPIPS — Lower

level accuracy perceptual difference

Base SRGAN

LPIPS decreases reflecting

0 0.1 0.2 0.3 0.4 0.5 0.6
erce tual ua“t M |ter. 2 LPIPS ™ Iter. 1 LPIPS
P P q Y SSIM

SSIM suggesting stronger

Edge-Aware SRGAN

structural similarity to GT 2 SSIM —> Stronger

Base SROAN L structural similarity
0 0.2 0.4 0.6 0.8

1
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PSNR

Non-Urban (Green)

Industrial & Infrastructure ,]\ PSNR —> Higher
pixel-level accuracy

Ite rati O n 1 Low-Density Urban

High-Density Urban
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B PSNR_Bicubic ® PSNR_SR

Bicubic SRGAN in PSNR due LPIPS
to deterministic nature Non-Urban (Green) - | —
Industrial & Infrastructure _ \l/ LPIPS — Lower
SRGAN achieves SSIM and LPIPS Low-Density Urban | — perceptual difference
indicating better structural and High-Density Urcan - |
. 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31
perceptual reconstruction of textures m LPIPS Bicubic m LPIPS SR
SSIM
and edges.
Non-Urban (Green) |
Industrial & Infrastructure _
_ ™ SSIM — Stronger
Low-Density Urban | .
structural similarity
High-Density Urban |
0 0.2 0.4 0.6 0.8 1
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PSNR

Non-Urban (Green)

Industrial & Infrastructure

™ PSNR — Higher

Low-Density Urban pier-IeveI daCcuracy

lteration 2

High-Density Urban

17 175 18 185 19 195 20 205 21 215 22 225

B PSNR_Bicubic ®PSNR_SR

SRGAN Bicubic in PSNR LPIPS

Non-Urban (Green)

showing improved pixel level
Industrial & Infrastructure
J LPIPS — Lower

reconstruction .
perceptual difference

Low-Density Urban

I

High-Density Urban

Close LPIPS scores

0.54 0.545 0.55 0.555 0.56 0.565 0.57 0.575 0.58 0.585 0.59 0.595

W LPIPS_Bicubic ®LPIPS_SR

Noise in SRGAN is SSIM

Non-Urban (Green)

Industrial & Infrastructure

™ SSIM — Stronger
structural similarity

Low-Density Urban

High-Density Urban

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Iteration 1 — Synthetic input

* The model produces and
more visual outputs

* Shows perceptual fidelity
over Bicubic

° roof textures and natural
patterns

* Successfully reconstructs rooftop
elements
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High-Density Urban

Low-Density Urban

Industrial & Infrastructure

Non-Urban Green

Ground truth

GT Full (tile 11040_11730) Ground Truth (8cm)

Ground Truth (8cm)

Ground Truth (8cm)

GT Full (tile 10580_1610) Ground Truth (8cm)

Input

LR Input (25cm)

LR Input (25cm)

LR Input (25cm)

LR Input (25cm)

Bicubic Output

Bicubic (8cm) SRGAN (8cm)

PSNR:28.91|SSIM:0.823|LPIPS:0.304 PSNR:33.22|SSIM:0.912|LPIPS:0.221
Bicubic (8cm) SRGAN (8cm)

,\

PSNR:29.92|SSIM:0.812|LPIPS:0.317 PSNR:30.57|SSIM:0.865|LPIPS:0.276
Bicubic (8cm) SRGAN (8cm)

PSNR:27.85|SSIM:0.778|LPIPS:0.288 PSNR:32.06|SSIM:0.899|LPIPS:0.204
Bicubic (8cm) SRGAN (8cm)

PSNR:36.76|SSIM:0.877|LPIPS:0.293 PSNR:36. 39|SSIM 0.889|LPIPS:0.277
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Iteration 2 — Real World Input

®* Model reconstructs building
shapes and structural

* Fine like solar panels, roof
materials, and shadows are recovered,
even when seasons differ

* Model to environmental and
temporal variation

. outputs

]
TUDelft

ngh—L)ensny Urban

Low-Density Urban

g
=
=
o]
3
=
b=
]
o
s
E
£
)
o
=
b=
0
3
k=]
c

Non-Urban Green

Ground truth Input Bicubic Output

GT Full (tile 759) Ground Truth (8cm) LR Input (25cm) Bicubic (8cm) SRGAN (8cm)
= . —

PSNR:20.04|SSIM:0.541|LPIPS:0.433 PSNR:16.29|S51M:0.258|LPIPS:0.519
Bicubic (8cm) SRGAN (8cm)
o r, y

PSNR:18.86|SSIM:0.485|LPIPS:0.342 PSNR:17.44|SSIM:0.115|LPIPS:0.317
Bicubic (8cm) SRGAN (8cm)

PSNR:19.46|SSIM:0.426|LPIPS:0.399 PSNR:14.16|SSIM:0.144|LPIPS:0.483
GT Full (tile 61) Ground Truth {8cm) LR Input {25¢m) Bicubic (8cm) SRGAN (8cm)

PSNR:23.67|SS5IM:0.604|LPIPS:0.612 PSNR:21. 87[SSIM 0.540]LPIPS:0.623

30-6-2025




Adaptability to new geographical areas

Good to unseen cities

building outlines,
rooftop layers

Better structure that
bicubic

Strong in urban and
industrial areas

Model with entirely
unseen patterns

Highly on input quality
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Bicubic

B zubic (8cn)

TSN 19SS | 55000 0.A23 | LFPS: U.605

B zubic (8cn)

PSKR: 21,60 | SSIM: 0.613 | LPINS: 0,272
BicLbic 1Bz}

PSKR: 2214 | $SIM: O | LIPS 0,508

30-6-2025

PSMR 17 0L | 85100 0,260 | LFIFS. €095

SAGAM 1B}

FSHM: 15.23 | 55IM: 0.161 | LPIPS: D980
SRGAN (Bcmn)

FSNRG 18,84 | SSIM: 0417 LPIPS: D563
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Ground truth Bicubic SR Output

Downstream Tasks

* Enables more and
segmentation masks

* Clearly fine structures that

Bicubic often merges or misses rasn ¥
loU:0.35 %

* Maintains for S o\ - ) [—
building footprints across both N & "
iterations, even under domain shift
(e.g., Iteration 2)

- lou:0.14 1 l0U:0.36
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ATIER

Note: Mask count is not a formal metric—it illustrates how well
objects are reconstructed and distinguishable by models like SAM

TUDelft .. : WA loU:0.46
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Downstream Tasks

Higher object detection
, especially for small
urban features

Produces more and
segmentation, whereas Bicubic often
fails entirely for key classes

Detects more PV panels and
dormers, with significant
in and

Manual validation confirms SRGAN
avoids false detections and captures
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Research Questions

Main Question
To what extend can GAN-based super-resolution enhance 25 cm aerial imagery to 8 cm,
ensuring its applicability for object detection tasks?
* GAN-based SR significantly improves visual quality, clarity, and structural fidelity
* Successfully reconstructs small-scale features essential for segmentation

* Qutperforms Bicubic in both visual and functional accuracy

Sub-questions

1. How accurately can a GAN reconstruct 8 cm HR images from 25 cm LR aerial inputs, especially for
building edges and solar panels?

* The model reconstructs rooftop contours, building edges, and textures with high fidelity

* Qutperforms interpolation based methods by preserving geometry and avoiding blurring
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Research Questions

Sub-questions

2.

How do seasonal differences between HR and LR images (e.g., winter HR vs. Summer LR) affect GAN
performance, and can domain adaptation via pre-training on synthetic data mitigate these effects?

* Seasonal differences introduce color, shading, and vegetation shifts
°* Two phase training (synthetic + real) mitigates this
* Adaptation is effective but depends on training data diversity

What are the limitations of GANs in preserving geometric fidelity (e.g., artifacts, hallucination) for
geospatial use cases?

* Hallucinations occur in irregular or underrepresented regions
° Ghosting appears in less-structured zones due to limited training data
What metrics best assess SR image quality for downstream object detection tasks?

* Image quality metrics offer partial insights, task aware metrics provide most meaningful evaluation

%
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* Developed a GAN-based SR pipeline for
aerial imagery

* Applied a two-phase training strategy for
domain adaptation

* Enabled downstream segmentation
without retraining

* Limited generalization to unseen cities

* Results likely to improve with more
diverse data and full hyperparameter
tuning
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HR Tile HR Mask LR Tile LR Mask
* Introduce
®* Use smarter conditioning with

. from multiple citiesto |t 45" A. d

improve generalization

SR w/o mask SR w/mask SR Mask

. vegetation areas in metric
computation

* Develop end-to-end pipelines

5 PSNR: 34.28 —> PSNR: 32.59
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