
Numerical analysis of a
Josephson junction qubit using

Matrix Product States
by

J.T. Teitsma
to obtain the degree of Bachelor of Science

at the Delft University of Technology

Student number: 4327454
Supervisors: J.M. Thijssen, Faculty of Applied Sciences, TU Delft

C. Vuik, Faculty of Electrical Engineering,
Mathematics and Computer Science, TU Delft

Co-readers thesis committee: M.T. Wimmer, Faculty of Applied Sciences, TU Delft
R. van der Toorn, Faculty of Electrical Engineering,

Mathematics and Computer Science, TU Delft

Acknowledgments

Writing this thesis has learned me valuable lessons in many areas. First of all, getting inside knowledge in
many topics ranging from quantum mechanics to numerical analysis and trying to combine both worlds into
one project, has learned an indescribable lot about the two fields of study that I took my bachelors in. Maybe
even more important are the lessons that I learned on a personal level.

I wish to thank my supervisors Jos Thijssen and Kees Vuik for the discussions we had, but also for keeping
me on track during our regular meetings and your personal attention. I cannot imagine how I would have
finished this project without your flexibility and patience.

Also a special thanks to Michael Wimmer and Ramses van der Toorn for taking the time to read and eval-
uate this thesis.

For my friends and family, who have supported me throughout the process in any possible way — al-
though these two words are not enough to express my gratitude: thank you.

J.T. Teitsma
Delft, 27 August 2018

iii

Contents

1 Introduction 1
2 Theoretical foundation 3

2.1 Quantum systems. 3
2.2 One-dimensional quantum chains . 6
2.3 Numerical methods to find the ground state energy . 8
2.4 Josephson junctions . 12
2.5 A superconducting qubit of Josephson junctions . 14

3 Matrix product states and time-evolving block decimation 17
3.1 Matrix product states . 17
3.2 Time-evolving block decimation (TEBD) . 23

4 Simulation results 27
4.1 Application of TEBD . 27
4.2 Josephson junction qubit . 30

5 Conclusion and discussion 33
A Python scripts 35

A.1 Calculating the analytic solution of the Ising model from Pfeuty [1] 35
A.2 Simulation of translational invariant Ising model ground state 36
A.3 Simulation of finite size Ising model ground state. 37
A.4 Simulation of chain of Josephson junctions . 39

Bibliography 43

v

1
Introduction

Technological developments in the last couple of decades have been marked by the rise of computing ma-
chines. Since the introduction of so called supercomputers in the 1960s, the calculation power of these ma-
chines have doubled nearly every two years, as described by Moore’s Law. This trend opened many possibil-
ities in nearly every field of science. As computing power kept growing larger and the devices kept growing
smaller, computers now have made their way into many people’s homes and even pockets, affecting personal
lives on a daily basis. However, computer chips now are reaching a such a small scale, that physical limits on
performance arise. Leading chip manufacturer Intel has stated [2] that the pace at which they will introduce
new chip-making technology will slow in the coming decade.

Simultaneously, an alternative type of computers is being developed, namely quantum computers. The
field of quantum computing and quantum information has been developing since the 1980s, when among
others David Deutsch started his research on this topic [3]. The quantum computer is able to perform many
computations simultaneously by making use of quantum mechanical principles such as entanglement and
superposition. The potential of quantum computers is enormous: many problems that are believed to be in-
solvable by classical computation could be solved using quantum computers and quantum algorithms. One
of the most promising applications of quantum computing is in quantum chemistry. Recently, researchers
of the University of Sydney developed a way model chemical bonds and reactions using quantum comput-
ers [4]. This could lead to new ways to solve problems in for example medicine. There are numerous other
possible applications for quantum computing, as for example listed by Networked Quantum Information
Technologies (NIQT) [5].

Classical computers are built up from bits representing a value of 0 or 1, on which they can perform one
operation (or calculation) at the time. In contrast, quantum computers consist of quantum bits (’qubits’).
The Hilbert space of a qubit is two-dimensional. The basis is formed by states |0〉 and |1〉. A qubit can be in
superposition of the two ground states. This property allows for parallel computations, increasing comput-
ing power compared to classical computers. In order to preserve accuracy of calculations on qubits, another
important requirement is that they are robust, meaning that they are not influenced by perturbations from
outside, which is called decoherence. For example, qubits could decohere after single light particles (called
’photons’) disturb them out of their original superposition state, limiting the performance of the qubit device
[6]. Developing robust, reliable qubits is thus essential to the development of the first quantum computer.
Currently, many research teams around the world are participating in a research race to do so, among them
the QuTech institute, in collaboration with the department of Quantum Nanoscience at the TU Delft.

In this thesis, we study one possible realization of a qubit. This realization was proposed by Hans Mooij,
emeritus professor at the TU Delft. The qubit consists of a superconducting circuit, with several non super-
conducting or isolating junctions included. The structure composed of two pieces of superconducting ma-
terial, separated by non superconducting materials, is called a Josephson junction, named after Brian David
Josephson, who discovered and described the effects that occur at these junctions [7]. When exposed to an
external magnetic flux, a circuit containing one or more Josephson junctions conserves discrete quanta of
flux enabling the formation of two required ground states, which could be used as basis states for a qubit.

1

2 1. Introduction

As will be described in later chapters, the Josephson junctions can be characterized by the phase differ-
ence between the two superconducting materials on both sides of the junction. Therefore, the wave function
of the circuit — needed to find the two ground states of the qubit — depends on the phase differences of all
junctions.

One way to analyze the qubit is to view each Josephson junction as a site in a one-dimensional quan-
tum chain [8]. For the analysis of such a system, we are interested in the possible configuration ’states’ of
our system. The space in which these states are included, is called the Hilbert space. Generally, the wave
function of any one-dimensional quantum chain is a linear combination of the wave function of basis states
of the Hilbert space. For a chain of only two sites, the Hilbert space can be explored quite straightforwardly.
However, every time one adds another site to the chain, the number of possible states increases by the same
factor - hence the dimension of the Hilbert space increases exponentially with the length of the chain. This
also increases the size of the vector containing all linear combination coefficient, making the calculations
of systems with multiple sites quite hard. Ironically enough, the availability of a quantum computer would
make the exploration of exponentially growing number of states a lot easier.

Over the years, many numerical methods have been developed to analyze one-dimensional quantum
chains. Most notably the density matrix renormalization group (DMRG) algorithm [9] has delivered great re-
sults. In recent research, the formalism of matrix product states (MPS) has been successfully combined with
the DMRG algorithm, significantly improving its performance and providing solutions to other problems[10].
In MPS, the linear combination coefficient vector is rewritten as a product of matrices, which offers possibili-
ties to further increasing the efficiency of numerical simulations. The time-evolving block decimation (TEBD)
algorithm is a way to simulate time-evolution of quantum states. This procedure also allows us to evolve a
random quantum state into the ground state of a system. Both MPS and TEBD will be at the core of this thesis.

The main goal of this thesis to understand the workings of the MPS formalism and apply the TEBD algo-
rithm to systems of superconducting Josephson junctions. The build-up is as follows: in chapter 2 I lay the
theoretical framework behind the Josephson junction qubits. We will start with a brief overview of the the-
ory of quantum mechanics, needed to understand qubits at a small scale and to introduce the notation used
in later calculations. We dive into a specific subset of quantum systems, namely one-dimensional chains,
and learn about numerical methods that reveal properties of these systems. Next, the Josephson effect is ex-
plained in detail. In chapter 3, the mathematical foundation for our analysis is laid out, when we discuss the
earlier-mentioned DMRG and MPS, that led to the development of the TEBD algorithm. Chapter 4 contains
the results of all simulations that were done in this thesis. We start with the application of TEBD to one-
dimensional models as the Ising model and Josephson junction chains, before we move on to the analysis of
the proposed qubit.

2
Theoretical foundation

In order to study the system of interest in this report, we need to build an understanding of quantum
systems. For that, the origin, history and most important principles of quantum mechanics are described in
this chapter.

2.1. Quantum systems

Quantum mechanics is the study of the behavior of energy and matter at the the smallest scale. The theory
behind quantum mechanics is built on several postulates, of which some are introduced in this section. After
a short introduction about the origin of quantum mechanics, we elaborate on the underlying principles, we
shall introduce concepts that are needed in later chapters.

2.1.1. Origin of quantum mechanics
At the end of the 19th century, some phenomena that could not be described by classical mechanics were dis-
covered; most notably, the observation of light spectra coming from radiating blackbodies. Classical physics
did not provide a way to predict the spectrum of the light coming off such a metal body. Max Planck found a
way to predict these spectra, using the assumption that the energy in heat radiation is quantized,

E = nh f , n ∈N (2.1)

where f is the frequency of the emitted photons and h is now known as Planck’s constant. The value of
h = 6.626×10−34 J ·s. Later Einstein discovered that this quantization assumption could also explain the pho-
toelectric effect, which describes the liberation of photoelectrons when photons fall on a cathode. Following
these discoveries, the assumption of quantized energy levels led to the development of a whole new field of
physics, intuitively called quantum mechanics.

2.1.2. Wave function of quantum systems
From a classical perspective, it is possible to exactly describe a system by a set of its measurable physical
quantities (also called observables), such as position, momentum or energy at initial time t = t0. We call this
configuration of quantities the state of the system. Time evolution is then determined by Hamilton’s equa-
tions. Next to that, quantum mechanical systems can be in different states, each representing a possible sys-
tem configuration. However, each state is now represented by a complex function called the wave function.
The wave function can be represented by a ket |ψ〉 in a complex vector space of states. Its complex conjugate
is represented by the bra 〈ψ|. All states are represented in bra-ket notation in this report. The vector space of
states is called the Hilbert space H .

To illustrate this, we look at the example of a single electron, which will be used throughout the rest of
this chapter. Electrons have a fundamental property s, spin, which is comparable to an angular momentum
intrinsic to the particle and not determined by its motion. The spin of the electron is quantized and can have
two directions, up or down. In this case, up and down are the possible states that the system of interest (the

3

4 2. Theoretical foundation

electron) can be in. We denote these states by |ψup〉 and |ψdown〉.

The two states |ψup〉 and |ψdown〉 span up the Hilbert space for an electron spin, so the Hilbert space has
dimension 2. The most intuitive - although generally not the most convenient - way to denote the states
is to use arrows, so |ψup〉 = | ↑〉 and |ψdown〉 = | ↓〉. Another possibility is to number the states, denoted as
|ψup〉 = |0〉 and |ψdown〉 = |1〉.

The vector space nature of the Hilbert space reveals another property of quantum mechanical system
states. Mathematically, a complex vector space V is closed under linear combinations, meaning that for two
states |ψ1〉 and |ψ2〉 in V , any linear combination c1|ψ1〉+ c2|ψ2〉, with c1,c2 ∈ C, is also in V . In quantum
mechanics, this means that the so called superposition of |ψ1〉 and |ψ2〉, |ψsuperposition〉 = c1|ψ1〉+ c2|ψ2〉, is
also a possible state of the system. In the mathematics of complex vector spaces, there are no restrictions on
c1 and c2 as long as they are complex numbers. In quantum mechanics however, a normalization condition is
imposed on coefficients |ci |2, as they are a measure of finding the corresponding state. The total probability
of finding any state is 1, leading to the requirement that |c1|2 +|c2|2 = 1, or in general

∑N
i=1 |ci |2 = 1.

For more complex systems, the dimension of H increases. A Hilbert space of dimension N is spanned by
N linear independent basis vectors |ψ1〉, |ψ2〉, ... , |ψN〉 ∈H , also denoted as |1〉, |2〉, ... , |N〉 ∈H . The vector
notation represents each basis state as a unit vector of dimension N . Following the principle of superposition,
each possible state in H can be written as a linear combination of the basis states:

|ψ〉 = c1|ψ1〉+ ...+ cN |ψN〉 =
[
c1 c2 . . . cN

]
(|ψ1〉+ |ψ2〉+ . . .+|ψN 〉)

=
N∑

i=1
ci |ψi 〉 with

N∑
i=1

|ci |2 = 1.
(2.2)

In our example of an electron spin, the states |ψup〉 and |ψdown〉 are the basis states and any state |ψ〉 of the
electron spin can be a superposition of these two states, with the condition that |cup|2 + |cdown|2 = 1. This
leads to the following notation:

|ψup〉 =| ↑〉 = |0〉 =
[

1
0

]
|ψdown〉 =| ↓〉 = |0〉 =

[
0
1

]
, so

|ψ〉 =cup|ψup〉+ cdown|ψdown〉 =
[

cup

cdown

] (2.3)

2.1.3. Density matrix
The wave function representation |ψ〉 of a quantum state - as defined in equation (2.2) - can be used when
we have complete knowledge of the quantum state. However, when there is uncertainty in which state a
system is, the wave function is unknown. This occurs for example when the system of interest is not isolated
anymore, but interacts with an environment. In this case, it might not be possible anymore to find a single
wave function of the system itself, for example because there the system can reside in multiple states. We call
this a mixed state. In that case, another representation of the wave function turns out to be useful: the density
matrix ρ. The density matrix is defined as:

ρ =∑
i

pi |ψi 〉〈ψi | (2.4)

Remember that 〈ψi | is the complex conjugate of |ψi 〉, so ρ is defined sum of the outer products of all possible
states |ψi 〉 that the system can be in. In this equation, the coefficients pi are probabilities corresponding
to the possible states |ψi 〉. When the system is in a pure, known state |ψ〉, the density matrix reduces to
ρ = |ψ〉〈ψ|.

When measuring a quantum system that is initially in a pure state, the wave function collapses to a single
state |φ〉. Before a measurement has taken place, it is uncertain to which state the system will collapse. The
probability of finding the system in state |φ〉 is given by the square of the inner product of |φ〉 and |ψ〉: Pφ =

2.1. Quantum systems 5

|〈φ|ψ〉|2. If the system is in a mixed state, this probability is given by Pφ =∑
i pi |〈φ|ψi 〉|2. This expression can

be rewritten in order to reveal an important property of the density matrix:

Pφ =∑
i

pi |〈φ|ψi 〉|2 =
∑

i
pi 〈φ|ψi 〉〈ψi |φ〉 = 〈φ|(∑

i
pi |ψi 〉〈ψi |)|φ〉 = 〈φ|ρ|φ〉 (2.5)

Using the definition of the density matrix, this equation shows that the density matrix of a mixed state con-
tains enough information to calculate the possibility of finding that system in state |φ〉 in measurement. Re-
member that all probabilities should add up to 1, so we can say that

∑
i pi = 1.

2.1.4. Operators and observables
In the previous section, it is argued that quantum states are represented by a wave function or density matrix.
We now turn to the quantum description of physical observables, such as position x or momentum p. In gen-
eral, every observable q corresponds to a hermitian linear operator Q̂. Q̂ works on |ψ〉 via left multiplication
[11]:

Q̂ : |ψ〉→ |ψ′〉 = Q̂|ψ〉 (2.6)

The fact that Q̂ is hermitian means that Q̂ is equal to its hermitian conjungate Q̂†. The spectral theorem states
the following about hermitian operators:

Theorem 1 Suppose H is a finite-dimensional complex vector space of dimension N . If linear operator Q̂ ∈
L (H) is hermitian, there exists an orthogonal basis {|ψi 〉}N

i=1 for H consisting of the eigenvectors of Q̂.

This basis can be used as the set of linearly independent basis states |ψi 〉 as used in equation (2.2) [12].
The N eigenvalues λi of Q̂ are the values that can be found in a measurement of observable q . To illustrate
this concept, we look at the example of electron spin s. We introduce the spin operator σ̂z , that represents s,
the spin component along the z-direction:

σ̂z =
[

1 0
0 −1

]
(2.7)

Applying σ̂z to the states up |0〉 and down |1〉 - as defined in equation 2.3 - we find σ̂z |0〉 = +|0〉 and σ̂z |1〉 =
−|0〉. We conclude that |0〉 and |1〉 are eigenstates of σ̂z , respectively corresponding to eigenvalues +1 and −1.
Next to σ̂z , operators σ̂x and σ̂y are defined, corresponding to the spin components in the x- and y-direction:

σ̂x =
[

0 1
1 0

]
(2.8)

σ̂y =
[

0 −i
i 0

]
(2.9)

The first eigenvalue of σ̂x is +1, corresponding with eigenstate 1p
2

(|0〉+ |1〉) (or 1p
2

[
1
1

]
). The other eigenvalue

is −1, corresponding to eigenstate 1p
2

(|0〉 − |1〉) (or 1p
2

[
1
−1

]
). These eigenstates are of interest in the next

sections.

2.1.5. Properties of the density matrix
When working with observables, their average value 〈Q̂〉 can be of interest. There are multiple ways to obtain
this average value. If the system can be represented by its wave function |ψ〉, 〈Q̂〉 is found by taking its ex-
pected value 〈ψ|Q̂|ψ〉. However, when we have a mixed state in density matrix representation, 〈Q̂〉 can also
be expressed in terms of ρ. For this derivation we use a set of orthonormal eigenvectors |φk〉 of the Hilbert
space of this system. As all |φk〉 are orthonormal, the identity

∑
k |φk〉〈φk | = 1 holds:

〈Q̂〉 = 〈ψ|Q̂|ψ〉 = 〈ψ|Q̂|
[∑

k
|φk〉〈φk |

]
|ψ〉 =∑

k
〈ψ|Q̂|φk〉〈φk |ψ〉

=∑
k
〈φk |ψ〉〈ψ|Q̂|φk〉 =

∑
k
〈φk |ρ̂Q̂|φk〉 = Tr(ρ̂Q̂)

(2.10)

In equation 2.10, the trace operator is introduced. In general, the trace of operator Q̂ is defined as:

Tr(Q̂) =∑
k
〈φk |Q̂|φk〉 (2.11)

6 2. Theoretical foundation

The trace operator in practice sums over all diagonal entries of a square matrix. The trace will be of later use
in this chapter, where also the partial trace is introduced.

We know from section 2.1.3 that all probabilities in the definition of the density matrix (equation 2.4) add
up to 1. This reveals another important property of the trace of the density matrix:

Tr(ρ̂) =∑
k
〈φk |ρ̂|φk〉

=∑
k
〈φk |

[∑
i

pi |ψi 〉〈ψi |
]
|φk〉

=∑
i

pi
∑
k
|〈φk |ψi 〉|2 = 1

(2.12)

where we used the normality of bases {|ψi 〉} and {|φk〉} in the last step.

2.1.6. Hamiltonian of quantum systems
One operator in particular is of significant interest in quantum mechanics: the Hamiltonian, which is closely
related to time evolution of a quantum system, given by the time-dependent Schrödinger equation:

iħ ∂

∂t
|ψ〉 = Ĥ |ψ〉 (2.13)

A common example is the Hamiltonian of a particle in potential U ; Ĥ = − ħ2

2m ∇2 +U , (2.3). The Schrödinger
equation is then written as.

iħ ∂

∂t
|ψ〉 =− ħ2

2m
∇2|ψ〉+U |ψ〉 (2.14)

The Hamiltonian corresponds to the total energy of the system, which means that when Ĥ is applied to with
one of its eigenstates |ψi 〉, the returned eigenvalue λi has the value of Ei , the energy of the corresponding
eigenstate:

Ĥ |ψi 〉 =λi |ψi 〉 = Ei |ψi 〉
Now we know how to find the energy of the system from its Hamiltonian, it is possible to look at one eigen-

state of significant interest, namely the eigenstate |ψi 〉 with the lowest energy Ei . This state is called the
ground state of the system, with the corresponding energy being called ground state energy. If there are more
than one states with the same lowest energy, the ground state is said to be degenerate.

2.2. One-dimensional quantum chains

Section 2.1 introduced some important elements of quantum systems, such as the wave function, super-
position, observables and operators; specifically the Hamiltonian. In this section, we focus on a specific subset
of quantum systems, namely one-dimensional (1D) quantum chains. Methods used in this report specifically
make use of the characteristics of these systems.

Quantum systems consisting of only one body - such as the single spin used as an example - can be ex-
tended by adding similar bodies to the system. When the locations of the additional bodies can be labeled by
a single index, corresponding to the position on a one-dimensional line, we speak of a quantum chain.

Figure 2.1: A simple graphical representation of a quantum chain of L bodies

As Thijssen [13] points out, there are several reasons why one-dimensional quantum chains are inter-
esting to study. There exist experimental realizations of quasi-one dimensional systems in some crystals,

2.2. One-dimensional quantum chains 7

but more importantly, the analytical and computational tools to study one-dimensional systems successfully
may be useful for higher dimensions as well. This is exactly what we try to achieve in this thesis using the
matrix product state method.

All units in a chain have their own Hilbert space H i , of which the dimension is denoted by d . In case of
the electron spin, d = 2, as the electron spin has two possible configurations: up and down. The Hilbert space
of a chain H is the direct product of all single Hilbert spaces H i . This means that a chain of L units, has d L

possible configurations. We conclude the dimension of the Hilbert space of the system grows exponentially
with the number of units.

For many-body systems, a Hamiltonian can be found as well. Generally, this Hamiltonian contains inter-
action terms between the different bodies in the chain. This means that the wave function of the chain can
not be written as a direct product of single-site wave functions anymore. Instead, we need to look at the wave
function of the system as a whole. This phenomenon, called entanglement, is a central topic in this thesis.

The notation for wave function of a multi-body system is similar to the notation introduced in section 2.1
for single-body systems. In the case when we have two bodies A and B , the wave function of the system is
obtained by taking the tensor product of the single-body wave functions |ψ〉A and |ψ〉B , i.e.

|ψ〉AB = |ψ〉A ⊗|ψ〉B . (2.15)

For simplicity, expression 2.15 may be abbreviated to |ψAB 〉 = |ψA〉|ψB 〉 or |ψAψB 〉 throughout this thesis, by
omitting the ⊗-sign. So in the case of a system consisting of electron spins that all point up (|0〉 or | ↑〉), the
wave function is written as |ψ〉 = |00...0〉 or | ↓↓ ... ↓〉 etcetera.

2.2.1. Ising model with transverse field
To get a better grasp of the concept of quantum chains, we consider the 1D Ising model in more detail. The
Ising model consists of a chain of N electron spins, which are exposed to a uniform external magnetic field.
All electron spins have two possible configurations, up and down. Hence the number of possible system con-
figurations - and the dimension of the Hilbert space - is N = d L = 2L . The energy of the system is determined
by the Hamiltonian. Note that if we write Hamiltonian in its matrix representation, this matrix would have
dimensions 2L ×2L , and also grows exponentially with system size. The Hamiltonian of the Ising chain reads:

Ĥ =−J
∑

i
σ̂z

i σ̂
z
i+1 − g

∑
i
σ̂x

i (2.16)

Ĥ consists of two terms. The first term represents the coupling between two neighbouring spins in the chain
via coupling constant J . The operators σ̂z

i σ̂
x
i are the spin operators introduced in section 2.1.4, acting on site

i . The summation of the first term is performed over all neighbouring pairs. In case of a positive value for J ,
all spins prefer to be surrounded by spins with the same orientation, as this lowers the total energy. This is
called ferromagnetic. On the other hand, for negative J , the spins spend tend to orient in opposite direction,
the antiferromagnetic model. The second term accounts for the influence of the external field g . The sign of
g determines the direction of the field; in case g is positive, the eigenstate of σ̂x

i belonging to eigenvalue +1,

which is 1p
2

[
1
1

]
, is favored in the configuration of the chain. Similarly, 1p

2

[
1
−1

]
is less preferred for positive g .

For negative g , this reasoning flips.

There are two possible ways to define boundary conditions on this model: open and periodic. In case
of open boundary conditions, the model represents a finite chain, where the bodies on both ends of the
chain only interact with one neighbour. For periodic boundary conditions, we need to make sure the first
and last bodies interact by setting σ̂z

L+1 ≡ σ̂z
1. For periodic boundary conditions, this model has been solved

analytically by Pfeuty [1]. The analytical solution is not explored in detail in this thesis, but the values of the
ground state energy are used to benchmark our own simulations of this model in chapter 4.

2.2.2. Heisenberg model
Quite similar to the Ising model from the previous section, is the Heisenberg model. The Heisenberg model is
another one-dimensional quantum system that consists of electron spins that can point up and down. This

8 2. Theoretical foundation

model is governed by the slightly different Hamiltonian [8]:

Ĥ = J
L−1∑
i=1

Si ·Si+1 = ħ2 J

4

L−1∑
i=1

σx
i σ

x
i+1 +σ

y
i σ

y
i+1 +σz

i σ
z
i+1 (2.17)

In this Hamiltonian, Si = (Sx ,S y ,Sz) ≡ ħ
2 (σx

i ,σy
i ,σz

i) is the spin vector at site i . The Heisenberg model also has

2L possible configurations, similar to the Ising model in the previous section.

2.3. Numerical methods to find the ground state energy

Suppose we are interested in the ground state energy of our Ising model, or large quantum systems in gen-
eral. As we know that the Hamiltonian has all possible values for the energy as its eigenvalues, the straight-
forward procedure would be to completely diagonalize the Hamiltonian matrix. For direct diagonalization,
many algorithms are available. The approach described in [14] is to transform the matrix in a tridiagonal
form, and then diagonalize this tridiagonal matrix using the QL or QR algorithm. The computational cost of
this approach scales as 2

3 L3 [15]. During this approach, the entire matrix has to be stored and diagonalized,
imposing limits on the maximum chain size. This makes direct diagonalization not suitable for computation
of large chains.

For larger systems, there are many numerical methods for matrix computations available in standard text-
books [16]. One of these methods is the Lanczos method [17]: an iterative diagonalization method, which is
often used in physics. The Lanczos algorithm not only can be used to diagonalize the Hamiltonian directly,
but it is also used in the DMRG algorithm, discussed later in this chapter. In this section we discuss the ideas
behind Lanczos diagonalization briefly.

Before we describe the Lanczos algorithm, we first look into the power method, which is at the basis of
many iterative diagonalization methods. In the power method, Ĥ is repeatedly applied to a random initial
state |ψ0〉. Remember from section 2.1.2 that this random state can be expanded in the basis of eigenstates
|ψi 〉:

|ψ0〉 =∑
i

ci |ψi 〉

|ψn〉 = Ĥ n |ψ0〉
|ψn〉 = Ĥ n

∑
i

ci |ψi 〉

|ψn〉 =∑
i

ci Ĥ n |ψi 〉

|ψn〉 =∑
i

ciλ
n
i |ψi 〉

(2.18)

It then follows immediately that the state |ψmax〉 with the largest eigenvalue λmax dominates |ψn〉 after suffi-
cient iterations, provided that cmax is unequal to zero - i.e. the initial state |ψ0〉 has overlap with |ψmax〉. The
convergence of the power method depends on the difference between λmax and the next-largest eigenvalue.
The power method generally converges more slowly than other diagonalization methods - such as Lanczos
diagonalization. However, it is easy to implement and very memory efficient as only |ψn〉 and |ψn−1〉 need to
be stored in memory.

2.3.1. Lanczos Diagonalization
The power method serves another goal, as all steps generated in this procedure form a subspace - the Krylow
space - that is a starting point for other procedures. The Krylow space is defined as follows:

{|ψ0〉, |ψ1〉, |ψ2〉, ..., |ψn〉} = {|ψ0〉, Ĥ |ψ0〉, Ĥ 2|ψ0〉, ..., Ĥ n |ψ0〉} (2.19)

The Lanczos method produces a matrix representation of Ĥ that is tridiagonal, by projecting Ĥ on the Krylow
space. The algorithm works as follows [18]:

1. Choose a random normalized initial vector |ψ0〉 that has non-zero overlap with the Hamiltonian’s eigen-
states.

2.3. Numerical methods to find the ground state energy 9

2. Generate a sequence of Lanczos states with the following recursion relation:

|ψn+1〉 = H |ψn〉−an |ψn〉−b2
n |ψn−1〉

with an = 〈ψn |Ĥ |ψn〉
〈ψn |ψn〉

and b2
n = 〈ψn |ψn〉

〈ψn−1|ψn−1〉
3. Iteratively repeat step 2 until the conditions 〈ψn |ψn〉 < ε or n = M (maximum number of iterations) are

met.

4. Compute the following tridiagonal matrix T :

T =



a0 b1

b1 a1 b2

b2 a2
. . .

. . .
. . . bn

bn an


Let V be the orthonormal matrix with columns |ψ0〉, ..., |ψn〉, then it follows that Ĥ =V †T V 1. Observe

that any eigenvalue λi of T is also an eigenvalue of Ĥ as V and V † are orthonormal.

5. Diagonalize T using the QL algorithm to find eigenvalues λ0, ...,λn of Ĥ .

The procedure above briefly describes the Lanczos algorithm to find eigenvalues of the Hamiltonian of
a large quantum system. As matrix T is tridiagonal, finding eigenvalues using the diagonalization in step 5
is more efficient to carry out. The Lanczos algorithm is a widely used method that can be applied to many
systems. As with the power method, the convergence of the largest eigenvalues happens first, making the
scheme especially suitable to find these states. For excited states of higher order, the number of iterations
required to converge rises. In addition, as the dimension of the Hilbert space grows exponentially with the
length L of one-dimensional systems, the growth of vectors |ψi 〉 needs to grow evenly, reducing the speed of
the method and making it less useful for large systems. In the next section, we look into a method that over-
comes this exponential dimension growth. Despite these disadvantages, Lanczos is still used as the preferred
method to benchmark other methods.

2.3.2. Density matrix formulation of quantum states
Although diagonalization using the Lanczos algorithm can provide numerically exact solutions to ground-
state problems of one-dimensional quantum systems, the scheme becomes less powerful when the system
size increases, as pointed out in the previous section. Therefore, there has been interest in other ways to
represent a system state, in order to analyze systems of larger size. One such method is the density ma-
trix renormalization group (DMRG), that was originally developed by White [9]. As the name suggests, this
method makes use of the density matrix formulation, which is extended in this section.

One important step of the DMRG method is to split the system into two parts, as illustrated in figure 2.2.
Mathematically, this is equivalent to bipartitioning the Hilbert space H =H A⊗HB . When we take {|i 〉A} and
{| j 〉B } as orthonormal bases for H A and HB , any wave function of the complete system |ψ〉AB can be written
as a composition of the possible wave functions of subsystems A and B:

|ψ〉AB =∑
i , j

ci j |i 〉A ⊗| j 〉B (2.20)

Subspaces H A and HB might have different dimensions d NA and d NB if the size of subsystems A and B differ.
If we now define

|ĩ 〉B =∑
j

ci j | j 〉B , (2.21)

1SOURCE

10 2. Theoretical foundation

Figure 2.2: A quantum chain of 10 sites is split up in subsystems A and B, both consisting of 10 sites

the expression for |ψ〉AB in this equation reduces to a single sum:

|ψ〉AB =∑
i
|i 〉A |ĩ 〉B (2.22)

Preskill shows in his lecture notes on quantum computation [19] that {|ĩ 〉} is an orthogonal basis for HB . To
arrive at an orthonormal basis for HB , we impose a normality condition on {|ĩ 〉}:

|i ′〉 = |ĩ 〉
|| |ĩ 〉|| ≡λi |ĩ 〉 (2.23)

|ψ〉AB =∑
i
λi |i 〉A |i ′〉B (2.24)

The expression in 2.24 is called the Schmidt decomposition [20]. In the sum, index i and has min(d NA ,d NB)
values. The coefficients λi are called the Schmidt coefficients.

The Schmidt decomposition allows us to write |ψ〉AB ∈ H in terms of eigenvectors of subsystems A and
B, with {|i 〉A} ⊂ H A and {|i ′〉B } ⊂ HB . The Schmidt decomposition offers a more convenient representation
of |ψ〉AB which is also used in the DMRG algorithm and when we explore matrix product states in the next
chapter.

Just as density matrix ρAB is a way to represent the complete system, reduced density matrices ρA and ρB

represent the respective subsystems A and B. We see in this section how to derive ρA and ρB from ρAB . We
start off by plugging the expression for |ψ〉AB from equation 2.20 into the definition for the density matrix:

ρAB = |ψ〉AB AB 〈ψ| =∑
i , j

ci j |i 〉A | j 〉B
∑
i , j

c∗i , j A〈i |B 〈 j | (2.25)

Now we use an orthonormal basis {| j 〉B } ∈HB for subsystem B, and take the partial trace TrB over B, which is
defined similarly to the trace in equation 2.11.

TrB (ρAB) =∑
j

B 〈 j |ρAB | j 〉B (2.26)

When we plug in the expression for ρAB from equation 2.25 into 2.26 and use the orthonormality of basis
{| j 〉B }, we are left with the following expression:

TrB (ρAB) =∑
i

ci c∗i |i 〉A A〈i | (2.27)

After taking pi = ci c∗i , we conclude that we derived another expression for the reduced density matrix ρA of
subsystem A. A similar expression can be found for ρB :

ρA = TrBρAB

ρB = TrAρAB
(2.28)

With knowledge of the partial trace, we can show that the Schmidt coefficients relate to the eigenvalues of
ρA , pi . To show this, we compute ρA by taking the partial trace of ρAB using the Schmidt decomposition in
equation 2.24:

ρA = TrBρAB = Tr|ψ〉AB AB 〈ψ| = TrB
∑

i
λi |i 〉A |i ′〉B

∑
i
λ∗

i A〈i |B 〈i ′|

= TrB
∑

i
λ2

i |i ′〉B |i 〉A A〈i |B 〈i ′| =
∑

i
λ2

i |i 〉A A〈i | ≡
∑

i
pi |i 〉A A〈i |

(2.29)

2.3. Numerical methods to find the ground state energy 11

It follows that λ2
i = pi .

2.3.3. Density matrix renormalization group (DMRG) algorithm
As discussed before, the complexity of large one-dimensional quantum systems lies in the dimension of the
Hilbert space of such systems, as the dimension of H grows exponentially with system size. The idea behind
infinite DMRG is to start with a small (two-site) system and gradually expand this by adding new sites, all
while keeping the dimension of the vectors and matrices low. This can be achieved by diagonalizing the
density matrix in every iteration and truncating it by only keeping the eigenvectors corresponding to the
largest eigenvalues. If the sum of these eigenvalues is close to 1, these eigenvalues are supposed to represent
the physics well enough [21]. This procedure is explained in more detail below and visualized in figure 2.3.

1. Set up a one-dimensional chain of identical quantum sites with dimension d and total length L = 2,
and define its Hamiltonian H . As this system is still small, it is possible to directly diagonalize the
Hamiltonian and obtain the ground state of the system |ψ〉U and the corresponding eigenvalue.

2. Call the total chain universe (U) and split this up into two subsystems, the system (S) and the environ-
ment (E). Note that this is equivalent to the use of subsystems A and B in the previous section. We use
{|i 〉S } and {|l〉E } as bases for the Hilbert spaces HS and HE . Similar to 2.20, we write the wave function
of the ground state |ψ〉U in terms of eigenfunctions of S and E:

|ψ〉U =∑
i ,l

ci l |i 〉S |l〉E (2.30)

In this sum, indices i and l are chosen in such a way that they still are the most intuitive in later steps.
Note that in the initial setup of the chain, the dimension of the Hilbert spaces HS and HE — N S and
N E respectively — is d , and the dimension of the Hilbert space HU — NU — of the total chain is d 2.
Hamiltonian HU of the chain can be split up into three parts:

HU = HS +HE +HSE (2.31)

where HS is the Hamiltonian of the system S, HE is the Hamiltonian of environment E and HSE contains
the interacting terms between S and E . If there is only next-neighbour interaction between S and E ,
HSE is a two-site operator connecting the two subsystems.

3. After splitting up U in S and E, add two identical sites of dimension d in between them. The basis states
of the new sites again have dimension d and are denoted by | j 〉S and |k〉E . Using Lanczos diagonaliza-
tion, we find the wave function of the ground state of the extended system, and write this function in
terms of |i 〉S , | j 〉S , |k〉E and |l〉E . The wave function of the ground state of the extended system is:

|ψ〉U = ∑
i , j ,k,l

ci j kl |i 〉S | j 〉S |k〉E |l〉E (2.32)

4. Update the wave functions for system (S) and environment (E), by taking the tensor products |ĩ 〉S =
|i 〉S ⊗ | j 〉S and |l̃〉E = |k〉E ⊗ |l〉E respectively. The updated wave function of the ground state of the
system |ψ̃U 〉 in the updated formulation is:

|ψ̃〉U =∑
i ,l

ci l |ĩ 〉S |l̃〉E (2.33)

Dimension Ñ S grows to N S ×d (or d 2 in the first iteration). The same holds for Ñ E . Again HU can be
split up in HS , HE and HSE . The dimensions of HS and HE similarly grow to Ñ S and Ñ E .

5. Now it is important to reduce Ñ S and Ñ E , as we grow the system size iteratively. We need to find a basis
of the lowest lying eigenstates of the density matrices of both S and E , in order to update HS , HSE and
HE into matrices of smaller size. As described in section 2.1.3, S and E cannot explicitly be represented
by a wave function, as they interact with each other. Therefore we take a look at the density matrices ρS

and ρE . To obtain these, we define ρU = |ψ̃〉U U 〈ψ̃|. As in equation 2.28, ρS can be found by taking the
partial trace of ρU :

ρS = TrEρU , (2.34)

12 2. Theoretical foundation

Figure 2.3: Step-by-step visualization of the DMRG algorithm

We find the eigenbasis BS of ρS consisting of eigenvectors |w〉 using SVD. This eigenbasis is ordered by
weights w , that sum up to 1, thanks to property 2.12. Now we truncate ρS by creating a new eigenbasis
B′

S that consists of only χ eigenvectors from BS with the highest weights w . The number χ is chosen
in such a way that the sum of the weights of the vectors in B′

S is sufficiently close to 1, in order to
keep accuracy. We use our newly found basis to truncate HS into H tr

S to an operator of size χ×χ by
transforming to the reduced basis is explained by Schollwöck [21]. The same routine can be followed for
ρE and HE to obtain H tr

E . After finding truncated eigenbases B′
S and B′

E for ρS and ρE , it is possible to
rewrite HSE intro H ′

SE in truncated eigenbase B′
U =B′

S ⊗B′
E . The new expression for the Hamiltonian

is:
H tr

U = H tr
S +H tr

E +H tr
SE (2.35)

6. With the new truncated Hamiltonian H tr
U , it is possible to directly calculate the ground state and its

energy via direct or Lanczos diagonalization. After this, we return to step 3, where we again insert two
sites in the chain and run the procedure until a sufficient accuracy for the ground state energy is found.

2.4. Josephson junctions

The qubit that we study in this thesis is made out of a circuit of Josephson junctions (JJ). In this section,
we take a look at the underlying physics of Josephson junctions, in order to understand the behaviour of this
device. Later in this thesis, this knowledge is used to construct the Hamiltonian of the qubit and calculate its
ground state energy.

2.4.1. Superconductivity
When electrons travel through metals, they generally experience some form of electrical resistance, due to
interactions with the material. However, in certain materials, when the temperature is below a critical tem-
perature, this resistance drops to zero. This phenomenon is called superconductivity. Similar to the systems
previously described, superconducting materials can also be described by a wave function, called the macro-
scopic wave function [22]:

ψ(r, t) =√
ρ(r, t)e iθ(r,t) (2.36)

In this relation, ρ is the charge density in the material and θ is the quantum phase of the material. Within su-
perconducting materials, Cooper pairing [23] occurs. Cooper pairing is the mechanism where two electrons
with opposite spin and momentum may together form a bound state because of the interaction between
electrons and phonons.

2.4.2. Josephson effect
The coupling of two superconducting materials with a sufficiently thin layer of non-superconducting or in-
sulating material in between, is called a Josephson junction. Both superconducting materials have a macro-

2.4. Josephson junctions 13

Figure 2.4: Schematic illustration of a Josephson junction, constructed out of two parts of superconducting material seperated by insu-
lating material. (Source: http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/Squid.html)

scopic wave functions ψ1, ψ2 and quantum phases θ1, θ2. Brian Josephson predicted [7] in his 1962 paper
that the aforementioned Cooper pairs might tunnel through the insulating layer - even when zero voltage
is applied over the junction - and lead to a superconducting current. This effect is called the DC Josephson
effect. The Josephson current depends on the phase difference δ= θ1 −θ2 between the two materials [24]:

I J = I0 sin δ (2.37)

In this equation, I0 is the maximum supercurrent that the junction can carry. Another phenomenon occurs
when a voltage is applied over a Josephson junction. The first time derivative of δ depends linearly on the
applied voltage V :

dδ

d t
= 2eV

ħ (2.38)

From equations 2.37 and 2.38 we derive the classical Hamiltonian for the Josephson junction. Classically,
the Hamiltonian consists of two parts: the induction energy and capacitive energy. The contribution of the
inductance is:

UJ =
∫ t

0
I J V d t = I0ħ

2e

∫ t

0
sin δ′

dδ′

d t
d t = I0ħ

2e

∫ t

0
sin δ′dδ′ = I0ħ

2e
(1−cos δ) = E J (1−cos δ) (2.39)

where we defined Josephson energy E J = I0ħ
2e . If we look at the second part, the capacitive energy, we can find

this by:

UC = 1

2
CV 2 = 1

2

Q2

C
= 1

2

(2en)2

C
= 2e2n2

C
= EC n2 (2.40)

where we defined charging energy EC = 2e2

C and introduced the difference in Cooper pairs between the two
superconducting materials n. Combining these two terms leads to the classical Hamiltonian for the Joseph-
son junction:

H = EC n2 +E J (1−cos δ) (2.41)

Generally, we distinguish two regimes: the phase regime (EC ¿ E J) and the charge regime (E J ¿ EC). It is pos-
sible to rewrite the Hamiltonian in equation 2.41 in terms of phase difference δ. To achieve this, we transform
the classical Hamiltonian above, where n and δ are regarded as continuous variables, by quantizing n and δ
in 2.41 into quantum operators (n̂ and δ̂). Now, they obey a commutation relation between them [8]:

[δ̂, n̂] = i (2.42)

This relation is similar to the commutation relation between position x̂ and momentum p̂ ([x̂, p̂] = iħ). We
extend this similarity to find a relation between n̂ and δ̂:

n̂ =−i
d

dδ
(2.43)

The Hamiltonian operator in terms of δ̂ is:

Ĥ =−EC
d 2

dδ2 +E J (1−cos δ) (2.44)

14 2. Theoretical foundation

2.4.3. Josephson junction chains
Next to individual Josephson junctions, it is possible to create devices that contain multiple connected Joseph-
son junctions. Therefore, we look at how these junctions interact with each other. We start off with a one-
dimensional array of Josephson junctions. In the previous section we have seen that the Hamiltonian of
Josephson junctions depend on the phase difference δ over the junction. This allows us to rewrite the Hamil-
tonian in terms of φi , the phase at a certain island between two junctions. It holds that δi = φi −φi+1. For
a chain of L Josephson junctions, there are L − 1 intermediate islands, meaning that this frees up a degree
of freedom [8]. As a result, we can impose one of the islands to a fixed phase. It is convenient to set the
first phase φ0 = 0. We can impose a fixed boundary condition by setting φL+1 = ∆θ. The Hamiltonian from
equation 2.44 for junction i as a function of φi becomes:

Ĥi =−EC
d 2

dφ2
i

+1−cos (φi −φi+1) (2.45)

where we set E J = 1. For the complete chain, the Hamiltonian becomes:

Ĥ =
L∑

i=1
Ĥi =

L∑
i=1

[
−EC

d 2

dφ2
i

+1−cos (φi −φi+1)

]

= 2−cos (φ1)−cos (φL −∆θ)+
L−1∑
i=2

[
−EC

d 2

dφ2
i

+1−cos (φi −φi+1)

] (2.46)

The chain of JJ with boundary condition φL+1 = ∆θ has a classical analogy of a chain of springs that are
stretched over a fixed distance ∆θ. This approximation only holds when δ is sufficiently small, as cos δ ≈ δ2

in that case. The chain of stretched strings is in its lowest-energy configuration when all strings are stretched
uniformly. The same holds for the chain of Josephson junctions. Therefore it is convenient to make the
following transformation:

φi → φ̃i =φi + i∆θ/L (2.47)

Instead of dealing with the boundary condition of ∆θ, the total "stretch" is now uniformly imposed at each
junction, leading to the following Hamiltonian:

Ĥ =
L∑

i=1

[
−EC

d 2

dφ̃2
i

+1−cos (φ̃i − φ̃i+1 +∆θ/L)

]
(2.48)

This Hamiltonian will be used in simulations using Josephson junctions in chapter 4.

2.5. A superconducting qubit of Josephson junctions

The system of particular interest in this thesis is a superconducting qubit, which was originally proposed
by Hans Mooij. A schematic representation of the qubit is given in figure 2.5. This qubit is exposed to an
external magnetic flux of strength f Φ. When the flux is exactly two flux quanta Φ0, the structure behaves as
a qubit with two ground states, that represent the situation where two non-adjacent inner squares — i.e. n1

and n4 or n2 and n3 — both contain one flux quantum. Any closed loop of Josephson junctions is subject to
the fluxoid quantization condition [8], which means that the sum of the phase difference of all junctions on
this loop should be a multiple of 2π. Formally, this condition is written as:∑

contour
γi = 2π(n − f) (2.49)

where γi is the phase difference over each junction on the loop and n is the fluxoid number that is contained
in the loop. This means that the frustration f should be distributed over the junctions in outer branch of the
loop.

A high number of θi junctions on the outer branch of the structure makes the qubit "better defined". If
the number is large, the phase difference over the individual junctions drops. However, these junctions come
at a high cost in terms of computability. For a simpler version of the qubit, the number of junctions θi may be
reduced to for example 2 per quarter. Furthermore, the ψi branches could be removed. This leaves us with a

2.5. A superconducting qubit of Josephson junctions 15

Figure 2.5: Schematic representation of the qubit proposed by Hans Mooij. All crosses represent a possible Josephson junction, depend-
ing on the exact configuration of the qubit. (From [8])

much simpler proposition of the qubit, as can be seen in figure 2.6.

Note that only 12 junctions remain in this simplified qubit. It is now possible to write the Hamiltonian in
the charge regime, i.e. E J ¿ EC , in terms of the phases of islands φi :

Ĥ =
12∑

i=1
1−cos (δi − fi) =

8∑
i outer junctions

1−cos (δi − f /8)+α
4∑

i inner junctions
1−cos (δi) (2.50)

We are allowed to set the phase of the central island to φc , so the expression above reduces to [8]:

Ĥ = 12+
8∑

i=1
1−cos (φi −φi+1 − f /8)+ ∑

i=1,3,5,7
cos (φi) (2.51)

We will use this expression in our analysis of the qubit in chapter 4.

16 2. Theoretical foundation

Figure 2.6: Schematic representation of a simplified version of the qubit proposed by Hans Mooij. There are only 2 θi junctions per
quarter and all ψi junctions are removed. (From [8])

3
Matrix product states and time-evolving

block decimation

The one-dimensional interacting systems described in the previous chapters tend to grow exponentially with
system size. In order to analyze these systems, it is important to keep the computational costs low by reduce
the required amount of stored data. This has led to the development of several numerical methods for this
purpose, of which some are outlined by Noack [15]. White’s DMRG method, that is introduced in chapter 2,
is the best known method to analyze such systems. At the core of the DMRG algorithm, is the decomposition
of the chain into a bipartite system. This decomposition could be done repeatedly, leading to another class
of methods, namely that of matrix product states (MPS) [10, 21]. We first introduce the concept of MPS in
section 3.1 and then explain a related algorithm for finding the ground-state energy, called time-evolving
block decimation (TEBD) in section 3.2. In the next chapter 4.1, the TEBD algorithm is applied to both the
Heisenberg model and a chain of Josephson junctions in order to explore the workings of the method, before
we analyze the qubit of our interest.

3.1. Matrix product states

Consider a one-dimensional quantum system that consists of L sites that all have a Hilbert space of di-
mension d , with basis {|σi 〉}i=1,2,...,d . The system has a Hilbert space H of dimension d L , and any wave
function |ψ〉 ∈H can be written as follows:

|ψ〉 = ∑
σ1,σ2,...,σL

cσ1σ2...σL |σ1σ2...σL〉 (3.1)

In this representation, the sum runs over the d L basis states of H , hence cσ1σ2...σL is a vector of size d L . In the
formalism of matrix product states, |ψ〉 can be rewritten as:

|ψ〉 = ∑
σ1,σ2,...,σL

Aσ1 Aσ2 ...AσL |σ1σ2...σL〉 (3.2)

In equation 3.2, Aσ1 is a row vector of size χ1, Aσi are matrices of size χi−1 ×χi and AσL is a column vector of
size χL . The variables χi are known as the bond dimensions and determine the amount of stored information.
By choosing variables χi in the right way, the product of A matrices is a reduction in size in comparison to
the c tensor in equation 3.1, without losing accuracy. Just as the ket representation or the density matrix,
the matrix product state of equation 3.2 is a method to represent a state of the system, that stores enough
information about the state to use for analysis.

3.1.1. Constructing matrix product states
First, we show that there exists an exact equivalence between the wave function in equation 3.1 and a matrix
product representation. The procedure to show this is described in detail by Schollwöck [20]. In section 3.1.4,
we show that the reduction in size can be obtained by truncating the matrix product representation to the

17

18 3. Matrix product states and time-evolving block decimation

form in equation 3.2.

The procedure starts by rewriting the column vector cσ1σ2...σL as matrixΨσ1,(σ2...σL) of dimension d×d L−1.
The next step is to use singular value decomposition (SVD) to expandΨ into a product of matrices:

cσ1σ2...σL =Ψσ1,(σ2...σL)

=
r1∑
a1

Ua1σ1Λa1a1V †
a1(σ2...σL)

=
r1∑
a1

Aσ1
a1
Λa1a1V †

a1(σ2...σL)

A =UΛV †

(3.3)

In this expression, Λa1a1 contains the r1 singular values of Ψσ1,(σ2...σL), where r1 is the rank of Ψσ1,(σ2...σL).
r1 ≤ d , so a1 runs from 1 to d at most. In the last step, matrix Ua1σ1 is reshaped into d vectors of dimension r1

which we call Aσ1
a1

. The next step is to multiplyΛ and V † and reshape the result intoΨ(a1σ2),(σ3...σL), which has
dimension (r1d ×d L−2). We again apply singular value decomposition, this time onΨ(a1σ2),(σ3...σL) to further
expand our initial wave function:

cσ1σ2...σL =
r1∑
a1

Aσ1
a1
Ψ(a1σ2),(σ3...σL)

=
r1∑
a1

r2∑
a2

Aσ1
a1

U(a2σ1)a2Λa2a2V †
a2(σ3...σL)

=
r1∑
a1

r2∑
a2

Aσ1
a1

Aσ2
a1a2

Λa2a2V †
a2(σ3...σL)

=
r1∑
a1

r2∑
a2

Aσ1
a1

Aσ2
a1a2

Ψ(a2σ3),(σ4...σL)

(3.4)

Λa2a2 contains the r2 singular values ofΨ(a1σ2),(σ3...σL) and U(a1σ1)a2 is reshaped into d matrices of dimension

(r1 × r2). Ψ(a2σ3),(σ4...σL) is the product of Λa2a2 and V †
a2(σ3...σL) and has dimension (r2d ×d L−3), where r2 ≤

r1d ≤ d 2. After performing the SVD L−1 times, we arrive at the following form:

cσ1σ2...σL = ∑
a1,a2,...aL−1

Aσ1
a1

Aσ2
a1a2

... AσL−1
aL−2,aL−1

AσL
aL−1

(3.5)

where all sums over ai run over ri . After summing over all ai , the expression above reduces to

cσ1σ2...σL = Aσ1 Aσ2 ...AσL (3.6)

We substitute this expression in equation 3.1 to arrive at the desired MPS form in equation 3.2.

3.1.2. Canonical form
To see why writing the wave function in matrix product state form is relevant, we need to perform an ad-

ditional step, namely bringing the expression into canonical form. To achieve this, we reuse the diagonal
matrices Λ[i] =Λai ai that were created in the SVD steps, and insert the identity Λ[i](Λ[i])−1 between the ma-
trix products in equation 3.2:

|ψ〉 = ∑
σ1,σ2,...,σL

Aσ1Λ[1](Λ[1])−1 Aσ2 ...Λ[L−1](Λ[L−1])−1 AσL |σ1σ2...σL〉 (3.7)

Now we perform the following transformation

Γσ1 = Aσ1

Γσi =Λ[i−1] Aσi for i = 2, ...,L
(3.8)

to arrive at another representation of matrix product states, the canonical form:

|ψ〉 = ∑
σ1,σ2,...,σL

Γσ1Λ[1]Γσ2 ...ΓσL−1Λ[L−1]ΓσL |σ1σ2...σL〉 (3.9)

3.1. Matrix product states 19

This canonical MPS form of the wave function becomes very useful for DMRG, as it can be rewritten into the
form of the Schmidt decomposition, as Schollwöck [21] shows. The Schmidt decomposition of a bipartition
on site i takes on the following form [8]:

|ψ〉 =
ri∑
ai

Λ[i]
ai ai

|ηai 〉A |ηai 〉B (3.10)

where |ηai 〉A and |ηai 〉B are the following Schmidt vectors:

|ηai 〉A = ∑
σ1,σ2,...,σi

∑
a1,a2,...,ai−1

Γ
σ1
a1
Λ[1]

a1a1
Γ
σ2
a1a2

...Λ[i−1]
ai−1ai−1

Γ
σi
ai−1ai

|σ1σ2...σi 〉 (3.11)

|ηai 〉B = ∑
σi+1,σi+2,...,σL

∑
ai+1,ai+2,...,aL

Γ
σi+1
ai ai+1

Λ[i+1]
ai+1ai+1

Γ
σi+2
ai+1ai+2

...Λ[L−1]
aL−1aL−1

Γ
σL
aL−1aL

|σi+1σi+2...σL〉 (3.12)

3.1.3. Graphical representation of matrix product states
The derivation of MPS in the previous sectors is highly detailed and therefore a clear visualization could be
helpful. We start with the representation of the original wave function in equation 3.1. Here, the complex
coefficient cσ1σ2...σL is written as a block with L legs, that all represent a site of the one-dimensional chain
(Figure 3.1). After that, the wave function is iteratively converted into MPS form through multiple SVD, which
is described by equation 3.3. The graphical representation of this process can be found in figure 3.2. Matrix
Aσ1 is represented by the black dot, diagonal matrix Λ[1] by the transparant rhombus and the remainder of
the coefficient is the black block. After L −1 iterations, the matrix product state is represented by the L dots,
connected by L − 1 black lines. This can again be transformed to the canonical form, which is depicted in
figure 3.3.

Figure 3.1: Graphical representation of wave function in the original complex vector form (from [8])

3.1.4. Entanglement and MPS truncation
Any of the most important advantages of the MPS representation, is its ability to truncate the wave function.
For a better understanding, we take a closer look at the concept entanglement. For this purpose, we follow
the reasoning of Feiguin [18]. Entanglement is property of a quantum system that consists of two or more
units. When the system is entangled, this means that you cannot describe one unit of the system — or a part
of the system — without having knowledge of other parts of the system. To illustrate this, we look at a simple
system consisting of two electron spins. Suppose this system is in an equal superposition of all possible
configurations:

|ψ〉 = | ↑↑〉+ | ↑↓〉+ | ↓↑〉+ | ↓↓〉 (3.13)

It is straightforward that this superposition can be rewritten as the product of the states of the two individual
spins:

|ψ〉 = (| ↑〉+ | ↓〉)⊗ (| ↑〉+ | ↓〉) (3.14)

This means that one spins can be in both states, without any dependence on the state of the other spin. This
changes when we look at the next possible state, the so called Bell state:

|ψ〉 = | ↑↑〉+ | ↓↓〉 (3.15)

In the Bell state, the system is in a superposition of only two possible configurations and it is clear that both
spins are completely dependent on each other. If we measure the state of the first spin to be | ↑〉, the sec-
ond spin can only be | ↑〉 as well, and vice versa. We call this system entangled. The advantage of entangled
systems is that information about a small part of the system suffices to have complete knowledge about the
complete system. The more a system is entangled, the more efficient its information can be stored.

20 3. Matrix product states and time-evolving block decimation

Figure 3.2: Graphical conversion of wave function into MPS form (from [8])

Figure 3.3: MPS wave function in canonical form (from [8])

It is possible to generalize this concept to larger systems that can be partitioned into subsystems. As
we have seen in the previous section, any wave function that can be written in MPS representation, can be
written as a Schmidt decomposition at any site i (equation 3.10):

|ψ〉 =
ri∑
ai

Λ[i]
ai ai

|ηai 〉A |ηai 〉B (3.16)

In this expression, all Λ[i]
ai ai

are the Schmidt coefficients of this decomposition, obtained through the SVD at

site i . Remember from section 2.3.2 that these values are related to the eigenvalues of ρA , by pi = (Λ[i]
ai ai

)2.

Therefore, the values of (Λ[i]
ai ai

)2 cannot exceed 1 and should add up to 1. This is a crucial point in under-
standing why the MPS representation can be used to truncate states efficiently. If the coefficients decay fast
enough, there occurs only a small error if we discard the states with the smallest coefficients, by keeping only
the χi largest of the ri singular values. All χi ’s can be chosen to be either a fixed number, or by choosing
truncation errors εi and retaining the minimum number of coefficients that reach the appropriate accuracy.
Verstraete and Cirac show that an upper bound on the total truncation error can be guaranteed in this way
[25]:

|| |ψ〉− |ψtrunc〉||2 ≤ 2
L−1∑
i=1

εi (3.17)

Now we know why it is allowed to truncate matrix product states, it is interesting to look at the advantage
in terms of storage complexity. In the original wave function in the form of equation 3.1, the coefficient
cσ1σ2...σL has complexity d L , with d being the possible number of states of one chain, and L the length of
the chain. Now, the truncated matrix product state in canonical form of equation 3.9 contains L −1 diagonal

3.1. Matrix product states 21

Figure 3.4: The number of coefficients needed to represent a Heisenberg chain ground state using the full vector and MPS representation.
In the latter representation, truncation error εi = 10−6 is used to determine the number of states that need to be kept. (from [8]).

matrices Λ[i]
ai ai

, each with χi entries. Next to that, the MPS contains dL rectangular matrices Γσi
ai−1ai

with
dimensions χi−1 ×χi . If χ is fixed or if we suppose that χ = max{χi } exists — we explore this in the next
sections — the overall complexity of the truncated matrix product state reduces to O(dLχ2), which means
that the storage complexity scales linearly with system size. It becomes clear that when χ is sufficiently small,
that matrix product states become much more efficient then complete wave functions if L becomes larger.
Melo illustrates this [8] by comparing the number of coefficients needed to represent the ground state of a
Heisenberg chain by both the full vector and the MPS representation, as can be seen in figure 3.4. For more
complex systems, with higher single-site dimension d , the advantages of MPS representation become even
more clear.

3.1.5. Entropy of ground states: the area law
In the previous section we saw that MPS representation has advantages in storage complexity, because en-
tanglement makes it possible to truncate the individual matrices to only χ states. Now it is important to see
that it is allowed to truncate the Schmidt decomposition without loss in accuracy, and thatχ is indeed smaller
than d for the states within our interest — ground states of one-dimensional quantum chains.

To see why this is true, we take a look at the entropy of ground states. Entropy is a measure that is related
to the amount of possible system configurations and therefore it is related to the entanglement of the system.
In general, entropy is an extensive property, meaning that it scales with system volume. This also holds for
quantum systems [26]. Entropy follows what is called a volume law. However, it can be shown [27] that the
ground states of entangled systems is not extensive, but rather proportional to the area of the surface of the
boundary between the partitions, obeying the area law. For 1D systems, this implies that the entropy of the
ground state is a constant.

States that follow the area law, generally have lower entropy than other possible states of the system, as
they are highly entangled. This impacts the Schmidt decomposition of such states. For highly entangled
states with low entropy, one can expect that such states can be decomposed accurately using only a small
number of states, in comparison to states with high entropy. If this is the case, it is indeed possible to trun-
cate the Schmidt decomposition to an sufficient number of states (which is χ) as is suggested in the previous
section. To illustrate this, Melo [8] compares the ground state and a random state of the aforementioned
Heisenberg chain, which is included in figure 3.5. Figure 3.5a) shows the Schmidt coefficients of both states.
For the random state, the significance of the Schmidt coefficients stays relatively constant, whereas this de-
cays rapidly for the ground state. Vidal [28] shows that the Schmidt coefficients of a ground state of one-
dimensional Hamiltonians generally decay exponentially. We can see this relation in figure 3.5b), where only
a small number of states are needed to achieve a truncation accuracy close to 1 for the ground state. This
suggests that it is possible to truncate the Schmidt decomposition of states that follow the area law to a finite

22 3. Matrix product states and time-evolving block decimation

number of χ states, as is done in the previous section.

Figure 3.5: Comparison of entanglement spectra of the ground state and a random state of a Heisenberg chain with L = 12 sites. a)
Schmidt coefficients in decreasing order b) accuracy of truncated state including α terms (from [8]).

3.1.6. MPS and the area law
The consequence of this argument is significant; when looking for ground states of a one-dimensional quan-
tum system, it suffices to look into a small subset of the states in the Hilbert space: those that follow the
area law. To see why matrix product states are suitable to represent ground states of one-dimensional quan-
tum systems, we look at the entropy of MPS. The entanglement of a state |ψ〉 with density matrix ρ can be
quantified through the Von Neumann entropy:

S(ρ) =−Tr(ρ log2ρ) (3.18)

For a bipartition at any site i , the truncated MPS in the Schmidt decomposition follows from equation 3.16:

|ψ〉 =
χ∑
ai

Λ[i]
ai ai

|ηai 〉A |ηai 〉B (3.19)

Note that the sum only runs until the number χ is reached. When taking the density matrix of above expres-
sion and plug it into equation 3.18, we find the Von Neumann entropy for the truncated MPS to be [27]:

S(ρ) =−Tr
[
Λ[i]

ai ai

]2
log2(Λ[i]

ai ai
)2 ≤O(log2χ) (3.20)

Isχ is chosen as a constant, this entropy is bounded by a constant, meaning that the MPS also naturally follow
an area law. This makes them suitable for exploring ground states of one-dimensional quantum states.

3.1.7. Applying operators on matrix product states
Next to efficient truncation of ground states, MPS have another advantage in the efficient performance of op-
erations. In the rest of this thesis, we work with MPS to perform TEBD simulations on one-dimensional chains
of electron spins and Josephson junctions. Therefore, we have a look into how operators can be applied to
MPS. The Hamiltonians that we work with generally consist of one- and two-site operators. We restrict our-
selves to nearest neighbour two-site operators in this section, as one-site operators can be generalized to this
situation by taking a tensor product with a unit operator. This procedure is also described in [8]

If we want to apply two-site operator O[i ,i+1] to sites i and i +1, we start with the MPS representation of
the complete system in canonical form:

|ψ〉 = ∑
σ1,σ2,...,σL

∑
a1,a2,...,aL

Γ
σ1
a1
Λ[1]

a1a1
Γ
σ2
a1a2

...ΓσL−1
aL−2aL−1

Λ[L−1]
aL−1aL−1

Γ
σL
aL−1aL

|σ1σ2...σL〉 (3.21)

3.2. Time-evolving block decimation (TEBD) 23

Figure 3.6: Graphical representation of the creation of tensorΘσiσi+1 (from [8]).

As we are only interested in sites i and i +1, we can simplify this form by multiplying all matrices left ofΛ[i−1]

and right of Λ[i+1]. For now, we discard these parts for the sake of readability and refer to [8] for a detailed
account of what happens to the complete MPS. We continue with the part that remains and create tensor
Θσiσi+1 by contracting the remaining matrices over indices ai−1, ai and ai+1:

Θ
σiσi+1
ai−1ai+1

|σiσi+1〉 =
∑
ai

Λ[i−1]
ai−1ai−1

Γ
σi
ai−1ai

Λ[i]
ai ai

Γ
σi+1
ai ai+1

Λ[i+1]
ai+1ai+1

|σiσi+1〉 (3.22)

Analogous to the visual representation of matrix product states in section 3.1.3, figure 3.6 shows the creation
of Θσiσi+1

ai−1ai+1
from the contraction of Λ[i−1]

ai−1ai−1
Γ
σi
ai−1ai

Λ[i]
ai ai

Γ
σi+1
ai ai+1

Λ[i+1]
ai+1ai+1

. Now we apply operator O[i ,i+1] and
insert unit operator 1=∑

σ′
iσ

′
i+1

|σ′
iσ

′
i+1〉〈σ′

iσ
′
i+1| to calculate the updated tensor Θ̃σiσi+1

ai−1ai+1
:

Θ̃
σiσi+1
ai−1ai+1

|σ′
iσ

′
i+1〉 =

∑
σiσi+1

Θ
σiσi+1
ai−1ai+1

〈σ′
iσ

′
i+1|O[i ,i+1]|σiσi+1〉 (3.23)

To restore the MPS representation of the updated system, we need to restore Θ̃σiσi+1
ai−1ai+1

into the original form
of the matrix products, we reshape it to a matrix and apply SVD. Some minor alterations are needed to restore
the final MPS form, for which we refer to [8]. The final result reads as follows:

O[i ,i+1]|ψ〉 = ∑
σ1,σ2,...,σL

∑
a1,a2,...,aL

Γ
σ1
a1

...Γ̃
σ′

i
ai−1ai

Λ̃[i]
ai ai

Γ̃
σ′

i+1
ai ai+1

...ΓσL
aL−1aL

|σ1...σ′
iσ

′
i+1...σL〉 (3.24)

or in simplified form:

O[i ,i+1]|ψ〉 = ∑
σ1,σ2,...,σL

Γσ1 ...Γ̃σ
′
i Λ̃[i]Γ̃σ

′
i+1 ...ΓσL |σ1...σ′

iσ
′
i+1...σL〉 (3.25)

3.2. Time-evolving block decimation (TEBD)

We have seen in the previous section that MPS are an effective way to represent quantum states that follow
the area law and that the ground states of entangled quantum systems follow the same law. The DMRG algo-
rithm, introduced in chapter 2, has established itself as an important technique to numerically analyze the
ground state of many-body quantum states. However, the use of DMRG is mainly restricted to the analysis of
the static properties of the ground states [29], whereas the time-evolution of these states is another problem
of interest. Furthermore, the time evolution of the time-dependent Schrödinger equation can in fact be used
as a method to reduce a random state to the ground state of the system.

The development of MPS opened the door to new techniques that can numerically simulate quantum
states. The technique of interest in this thesis is time-evolving block decimation (TEBD), introduced by Vidal
[29]. In this section, we introduce the algorithm and its underlying principles, and illustrate the application
of TEBD on the Ising model and a chain of Josephson junctions.

3.2.1. Time evolution of a random quantum state
The time evolution of quantum state |φ〉 is governed by the time-dependent Schrödinger equation:

iħ ∂

∂t
|ψ〉 = Ĥ |ψ〉 (3.26)

We start with an initial state |φ0〉, that can be described as a superposition of eigenstates of the Hamiltonian
|ψi 〉, that all have eigenvalues Ei :

|φ0〉 =
∑

i
ci |ψi 〉 (3.27)

24 3. Matrix product states and time-evolving block decimation

The straightforward solution of the Schrödinger equation shows that |φt 〉 at time t comes in the following
form:

|φt 〉 = e−
i Ĥ t
ħ |φ0〉 (3.28)

For TEBD, we are only interested in relative time evolution, so in that case it is allowed to omit constant ħ.

When we introduce imaginary time τ= i t , we arrive at the imaginary time evolution operator: e−Ĥτ. Next, we
apply this operator to the random initial state |φ0〉:

e−Ĥτ|φ0〉 =
∑

i
ci e−Ĥτ|ψi 〉 =

∑
i

ci e−Ei τ|ψi 〉 (3.29)

When the energy of the ground state Eg is smaller than all other energies Ei , this expression becomes pro-
portional to the ground state |ψg 〉, as the contributions of all other terms diminish relatively. Only when the
ground state is degenerate, meaning that there are multiple states with the same lowest energy, the initial
state converges to a superposition of these degenerate states.

3.2.2. TEBD algorithm
The exponentially increasing dimension of the Hilbert space for one-dimensional systems makes the time

evolution operator hard to compute. However, the nature of the Hamiltonians of interest in this thesis could
be split up into small components, which makes it much easier to compute. The Hamiltonians are built up
from single- and two-site operators O[i] and O[i ,i+1], making it possible to split them up into an even and odd
part:

Ĥ =
L−1∑
i=1

O[i ,i+1] +
L∑

i=1
O[i] = Ĥeven + Ĥodd (3.30)

with
Ĥeven = ∑

even i
O[i ,i+1] +O[i] = ∑

even i
Ĥ [i]

even (3.31)

and
Ĥodd = ∑

odd i
O[i ,i+1] +O[i] = ∑

odd i
Ĥ [i]

odd (3.32)

This decomposition could be used to transform e−Ĥτ into a form that could be handled by the TEBD
algorithm. Note that all operators Ĥeven and Ĥodd have dimension d 2, as they work on a maximum of two sites
with dimension d . Next we introduce ∆τ= τ/N , where N À 1 is the number of time steps in the simulation.
Then

e−Ĥτ =
(
e−Ĥ∆τ

)N
(3.33)

If we choose ∆τ sufficiently small, it is allowed to decompose e−Ĥ∆τ even further, using the second-order
Suzuki-Trotter decomposition, which has an error of O(∆τ3) [30]:

e−Ĥ∆τ = e−
(
Ĥeven+Ĥodd

)
∆τ ≈ e−Ĥeven∆τ/2e−Ĥodd∆τe−Ĥeven∆τ/2 = ŜevenŜoddŜeven (3.34)

In the last equality, we introduced Ŝeven and Ŝodd. All Ĥ [i]
even and Ĥ [i]

odd are mutually commuting —
[

Ĥ [i]
even, Ĥ [j]

even

]
=[

Ĥ [i]
odd, Ĥ [j]

odd

]
= 0 — so both Ŝeven and Ŝodd be written as products of individual components of the original

time evolution operator:

Ŝeven = e−Ĥeven∆τ/2 = e−
∑

even i Ĥ [i]
even∆τ/2 = ∏

even i
e−Ĥ [i]

even∆τ/2 (3.35)

and
Ŝodd = e−Ĥodd∆τ = e−

∑
odd i Ĥ [i]

odd∆τ = ∏
odd i

e−Ĥ [i]
odd∆τ (3.36)

The transformations above allow us to write the original time evolution operator e−Ĥ∆τ as product of local

operators e−Ĥ [i]
even∆τ/2 and e−Ĥ [i]

odd∆τ of dimension d 2. The TEBD algorithm now works as follows:

3.2. Time-evolving block decimation (TEBD) 25

Figure 3.7: Graphical representation of the time evolution over ∆τ of a random initial quantum state |φo〉 using the TEBD algorithm.
|φo〉 is depicted in MPS in canonical form (similar to figure 3.3), the grey blocks represent the two-site elements of Ĥ . (from [8]).

1. Create a random initial state |φ0〉 and transform this into MPS form.

2. Write the Hamiltonian of the system in terms of two-site operators e−Ĥ [i]
even∆τ/2 and e−Ĥ [i]

odd∆τ. Write the
operators in MPS form as well.

3. Evolve |φ0〉 in imaginary time over ∆τ by applying Ŝeven, Ŝodd and again Ŝeven. Operators Ŝ are applied
using so called Trotter sweeps, where the two-site operators sweep through the one-dimensional chain
from left to right. The application of the two-site operators is explained in section 3.1.7.

4. Repeat step 3. until a desired accuracy for ground state |ψg 〉 is reached.

The procedure is graphically presented in figure 3.7.

4
Simulation results

The foundation for all simulations in this thesis is laid in the previous chapters. The underlying principles
of quantum systems in general are outlined in chapter 2, focusing on one-dimensional quantum chains of
electron spins and Josephson junctions. In chapter 3.1 MPS formalism was introduced, with special atten-
tion for the entanglement and truncation of matrix product states. This led to the development of the TEBD
algorithm, explained in chapter 3.2. Next, the superconducting Josephson junction qubit was introduced in
chapter 4.

The simulations in this thesis can be split up in two parts. Firstly in section 4.1 we illustrate the TEBD
algorithm and look at its inner workings by applying it to both the Ising model with a transverse field and a
one-dimensional chain of Josephson junction. Secondly, we analyze the superconducting qubit, also using
TEBD, in order to find its ground state energy. All simulations are done using Python software. All used scripts
can be found in appendix A. For TEBD simulations, the used scripts are based on the example that Pollmann
offers in his lecture slides [31].

4.1. Application of TEBD

In order to illustrate the TEBD algorithm outlined in chapter 3, we apply it to the Ising model and a one-
dimensional chain of Josephson junctions. Specifically, we are interested in the performance of the model
and try to find an optimal set of parameters for the analysis of the qubit, in the next section.

4.1.1. Ising model with a transverse field
The Ising model with transverse field that we simulate is governed by the following Hamiltonian:

Ĥsim =−Jsim
∑

i
σ̂z

i σ̂
z
i+1 − gsim

∑
i
σ̂x

i (4.1)

We are interested in the ground state energy, which we can compare to the analytical solution from [1]. The
model parameters of this model are spin coupling Jsim and field coupling gsim. The simulation parameters
are site dimension d — which is 2 for the electron spins in this model — bond dimension χ, imaginary time
step∆τ and number of iterations N . We introduced superscripts for the model that we simulate in this thesis,
in order to avoid confusion when we compare with the Hamiltonian in [1], which is as follows:

ĤPfeuty =−JPfeuty

∑
i

Ŝx
i Ŝx

i+1 −ΓPfeuty

∑
i

Ŝz
i (4.2)

There are two important differences between Ĥsim and ĤPfeuty. Firstly, Pfeuty interchanges x and z. This has
no impact on the ground state energy, as this is only a change in dimensions. Furthermore, Pfeuty uses Ŝx

and Ŝz operators, whereas we simulate using σ̂x and σ̂z . Remember from section 2.2.2 that the difference
between Ŝ and σ̂ is a factor ħ/2. We omit constant ħ as this only effects the energy unit and establish the
following relations for correct comparison of the results:

JPfeuty = 4Jsim

ΓPfeuty = 2gsim
(4.3)

27

28 4. Simulation results

Table 4.1: Analytic and numerical calculation of ground state energy Eg of infinite-chain Ising model with transverse field for different
values of J and g . Numerical calculation is done with the TEBD algorithm with N = 1000, τ= 0.01 and χ= 5.

λ JPfeuty ΓPfeuty Eg ,Pfeuty Jsim gsim Eg ,sim |Eg ,Pf −Eg ,sim|/|Eg ,Pf|
0.5 2 2 -1.06354440997 0.5 1 -1.06354575445 1.3×10−6

1 4 2 -1.27323954474 1 1 -1.27292632397 2.5×10−4

1.5 6 2 -1.67192622154 1.5 1 -1.67192780049 9.4×10−7

2 8 2 -2.12708881995 2 1 -2.12708993556 5.2×10−7

2 4 1 -1.06354440997 1 0.5 -1.06354454877 1.3×10−7

Firstly, we want to show that our implementation of the Ising model is correct by comparing the ground
state energy with the analytic solution. Pfeuty solves the Ising model for a chain with periodic boundary
conditions. The analytic solution for the ground state energy is given by (equation 3.2 in[1]):

−Eg

ΓN
= 2

π
(1+λ)E

(π
2

,θ
)

(4.4)

where λ= JPfeuty/2ΓPfeuty = Jsim/gsim and E is an elliptic integral of the second kind. The script used to calcu-
late the analytic solution can be found in appendix A.1.

The chain with periodic boundary conditions is analogous to an infinite chain. Because of translation in-
variance, this means that the solution of the ground state should be the same for all individual sites. However,
as we deal with two-site operators, we partially break this translational invariance by defining the random ini-
tial state |φ0〉 on two sites. Then we perform the TEBD algorithm outlined in section 3.2 for N = 1000 time
steps of τ = 0.01, applying two-site operators as described in section 3.1.7. The value for χ is chosen to be 5
based on the example by Pollmann [31]. For the Ising model, the individual spins have dimension d = 2, and
the operators have dimension d 2 = 4, so χ= 5 suffices for our purpose now.

As the outcome of every iteration is normalized, |φ0〉 has converged to e−Ĥ∆τN |ψg 〉 when the procedure

ends. Next we take the expectation value of e−Ĥ∆τN — the sum of squares of all matrix elements [8] — which
yields e−Eg∆τN . From this we can calculate the ground state energy per site by dividing by 2. The script that is
used can be found in appendix A.2.

Figure 4.1: Numerical simulation of infinite Ising chain with a transverse field with parameters J = 1 and g = 0.5 using TEBD algorithm
with ∆τ= 0.01, N = 1000 and χ= 5.

From [1], it becomes clear that Eg depends on the ratio λ and the value of ΓPfeuty, which correlates with
the strength of the external field. For our simulations, we compare the analytical result and the simulated

4.1. Application of TEBD 29

result for λ= 0.5, 1, 1.5 and 2. As the sign of J and g has no effect on the value of the ground state energy, only
on the configuration of the ground state, we have not varied the sign of these parameters.

In table 5.1 we compare the analytic solution for the ground state energy with the results of the TEBD sim-
ulation for multiple values of λ after N = 1000 iterations. For all values of λ, the TEBD gives a good approxi-
mation for the analytical solution. Figure 4.1 shows that the TEBD indeed converges to Eg =−1.06354440997
for J = 1 and g = 0.5 and that N = 1000 iterations are enough to approximate the ground state energy. In fact,
less iterations already suffice to reach comparable accuracy.

In the simulation above, we used the TEBD algorithm to approximate the infinite-chain Ising model using
partial translation invariance. In this way, we only need to include two sites in our model. However, the real
power of MPS formulation and the TEBD algorithm lies in longer chains, where exponentially growing Hilbert
space can be efficiently explored using the truncation of the matrix product states. Therefore, it is interesting
to look at the behaviour of longer quantum chains, with open boundary conditions.

For this, we slightly change our script by introducing chain length L and running the sweeps over even and
odd sites alternately. Also, we store the energy per site in every iteration, and average over the complete chain
to find the average ground state energy per site of the chain. The adjusted script can be found in appendix A.3.

Table 4.2: Numerical calculation of ground state energy Eg of finite-chain Ising model with transverse field for different values of L.
Numerical calculation is done with the TEBD algorithm with J = 1, g = 0.5, N = 1000, τ= 0.01 and χ= 5.

L Eg ,sim at N = 1000 Relative error to analytical solution

3 -1.11696246824 5.0×10−2

10 -1.06389273293 3.3×10−4

50 -1.0635935535 4.6×10−5

100 -1.06356853454 2.3×10−5

We run the simulation for L = 3, 10 and 50. The results can be found in table 5.2 and figure 4.2. Some
things stand out from these plots. Firstly, the simulation for L = 3 does not converge to the analytical value
for the infinite Ising chain. The reason for this is the fact that we simulate with open boundary conditions.
As the chain is only one site larger than the two-site chain that we used in the previous simulation, the open
boundary conditions clearly have their impact on the ground state energy. The sites at the boundaries are
less restricted than before, which allows them to take on lower-energy configurations in the ground state. A
detailed explanation of this effect is given by [32]. As the chain length grows to L = 10 or more, these ad-
vantages become relatively smaller, allowing the ground state energy to approximate the ground state energy
for the infinite chain. However, the effects will always have a slight advantage at the boundaries, meaning
that the ground state energy for the finite chain with open boundaries is always lower than the infinite result.
We can see this from table 5.2, as all simulated ground state energies are lower than the analytical value of
Eg =−1.06354440997.

Next to that, we see that the simulation converges at roughly the same rate as the infinite chain, for L =
10 and L = 50. This indicates the linear character of the TEBD algorithm, as increasing L only increases
the computation time per iteration, but not the overall converging speed. As we pointed out in chapter 2,
methods such as Lanczos diagonalization can handle quantum chains up to roughly 22 sites, and at longer
chain lengths, the TEBD algorithm really shows its power.

4.1.2. One-dimensional chain of Josephson junctions
We extend our knowledge of Josephson junctions and TEBD by applying the algorithm to a one-dimensional
chain of Josephson junctions. As we have seen in chapter 2, a chain of Josephson junctions with fixed bound-
ary condition is governed by the following Hamiltonian:

Ĥ =
L∑

i=1

[
−EC

d 2

dφ2
i

+1−cos (φi −φi+1 +∆θ/L)

]
(4.5)

In order to analyze this Hamiltonian numerically, we need to discretize φi . We discretize φi uniformly into
d states {|φ j 〉i }d

j=1, where the difference between the states is ∆φ. Here, i is the index for the position of the

30 4. Simulation results

junction, and index j represents the discrete state of a junction. For an accurate description of the system,
we will need a dimension d that is much higher than d = 2, which we used for the analysis of the Ising model.
The first part of the Hamiltonian can now be discretized as follows (location index i is left out for simplicity):

−EC
d 2

dφ2 ≈ −EC

(∆φ)2

(∑
j
|φ j+1〉〈φ j |−2|φ j 〉〈φ j |+ |φ j−1〉

)
(4.6)

The second part of the Hamiltonian is built up straightforwardly, which can be seen in the script in appendix
A.4.

Again, we are first interested in the accuracy of our model. Although we could not compare our results
to an analytical solution, Melo [8] shows graphs containing the ground state energy of Josephson junction
chains with varying values for length L, charging energy EC and boundary condition∆θ. The data underlying
these graphs is not available, but reconstruction of the same graphs gives at least an indication of the accu-
racy of our model.

We reconstruct the simulations for a Josephson junction chain of length L = 4, with EC = 0.1, E J = 1, d = 10
and χ = 10 and N = 500. The total dimension of this chain is 104, which is significantly higher than that of
most of the Ising model simulations in the previous section. χ= 10 might seem to be on the low side, but for
a first impression of the performance of the model, it suffices. The same holds for the choice of N . We vary
∆θ from π/10 to π in order to reconstruct the graph from [8]. The results of our simulation can be found in
figure 4.3. In this figure, we see that the results from our simulation roughly compare to that of Melo, except
at small ∆θ.

4.1.3. Chain of Josephson junctions with periodic boundary conditions

To be filled after discussion with Jos

4.2. Josephson junction qubit

To be filled after discussion with Jos

4.2. Josephson junction qubit 31

Figure 4.2: Numerical simulation of finite Ising chain with a transverse field of lengths L = 3, L = 10 and L = 50 using TEBD algorithm.
Parameters are J = 1 and g = 0.5 with ∆τ= 0.01, N = 1000 and χ= 5. The plot for L = 100 is almost identical to the L = 50 plot and is left
out for clarity.

32 4. Simulation results

Figure 4.3: Top: Numerical simulation of Josephson junction chain of length L = 4 using TEBD algorithm. Parameters are EC = 0.1,
E J = 1, d = 10 and χ= 10 and N = 500. Bottom: plot from [8] included to compare performance of numerical simulation for Josephson
junction chains.

5
Conclusion and discussion

Simulations on the Heisenberg model have shown that TEBD is indeed a very efficient way to perform ground
state calculations on low-entanglement quantum systems. We have been able to implement example schemes
of the TEBD algorithm and adjust them accordingly, for example to include open boundary conditions. Re-
sults were in line with the analytical solution offered by Pfeuty [1].

The extension to Josephson junctions chains confronted us with quantum systems that have Hilbert
spaces of even higher dimensions. Although we have successfully implemented a scheme to analyze these
chains using TEBD, the limitations on laptop computing power eventually limited us to perform further anal-
ysis on these systems. Interesting questions that remain involve the optimal truncation of χ and the required
dimension for the discretization of |φ j 〉, both ensuring optimal performance of the algorithm. Melo does of-
fer answers to these questions, stating that TEBD with χ = 20 and d = 20 in cases with few junctions offers
remarkable results, although the method does not fully capture the correct behaviour of larger systems [8].

In chapter 2, we gave a detailed overview of the DMRG algorithm, as it was this method that led to the
development of MPS and eventually TEBD. However, the direct comparison of ’classic’ DMRG, MPS-style
DMRG and other MPS-based methods such as TEBD in terms of performance of solving the same problems
could be very interesting. Under what circumstances is any of the methods preferred over the others? In this
thesis, we have been primarily focussed on the computation of ground-state energies, but there might be
other problems of interest that require other methods.

In our comparison of the simulation results with the analytical solution by Pfeuty, we did not dive deep
into the background of his solution, although this could reveal a lot about the structure of the ground state.
Further study would be required to add these insights. The same could be said about an analytical solution
for the Josephson junction chain. Further study is required to find an analytical solution to this problem,
which in turn could be used to benchmark and optimize the methods used.

In the simulations in this thesis, we have only encountered situations in which the algorithms used be-
haved stable. However, to ensure that TEBD is stable in any case, for any system and any Hamiltonian, a
stability study should be performed.

Matrix product states arise naturally from physics, as it incorporates the system property entanglement.
Its beneficial truncation and operator properties raise the question whether the method could be explored
outside physics as well, offering efficiency costs in other field within science or engineering.

The field of low-entanglement states has received an increasing amount of attention over the past years.
Next to matrix product states, the more general Tensor network states are another area of research interest.
Projected entangled pair states (PEPS) have another advantage over MPS, namely that it is not restricted to se-
quential entanglement, but can handle arbitrary networks of entanglement instead, making it more suitable
for other applications [33].

33

A
Python scripts

A.1. Calculating the analytic solution of the Ising model from Pfeuty [1]

import numpy as np
import math
import matplotlib . pyplot as p l t
from scipy . l i n a l g import expm, sinm , cosm
from scipy . special import e l l i p e i n c

Jpollmann =1;
gpollmann = 0 . 5 ;
J =4*Jpollmann ;
g=2*gpollmann ;
l = J /2/g ;

N=100;
k=np . zeros (N) ;

for m in range (0 ,N) :
k [m]=2*math . pi *m/N #use p e r i o d i c i t y here : cos (k)= cos (2+2* pi)

lambda_sq=np . zeros (N) ;
for i in range (0 ,N) :
lambda_sq [i]=1+ l **2+2* l *math . cos (k [i])

print (lambda_sq)

lambda_fin=lambda_sq * * 0 . 5

print (sum(lambda_fin))

E_gr=−g/2*sum(lambda_fin) /N # (2 . 1 3) in Pfeutty

print (E_gr)

theta =4* l /(1+ l) * * 2
print (2*(1+ l) /math . pi * e l l i p e i n c (math . pi /2 , theta)*−0.5* g) # (3 . 2) in Pfeutty

35

36 A. Python scripts

A.2. Simulation of translational invariant Ising model ground state

import numpy as np
import matplotlib . pyplot as p l t
import math
import scipy . l i n a l g
from scipy . l i n a l g import expm, sinm , cosm

#model parameters
J = 1 . 0 ; g = 0 . 5 ; chi =5; d=2; delta =0.01; N=1000;
G = np . random . rand (2 ,d , chi , chi) ; l =np . random . rand (2 , chi)

#Generate the two−s i t e time evolution operator
H = np . array ([[J ,−g/2,−g / 2 , 0] , [−g/2,− J ,0 ,−g / 2] , [−g/2 ,0 ,− J ,−g / 2] , [0 ,−g/2,−g /2 , J]])
U = np . reshape (expm(−delta *H) , (2 , 2 , 2 , 2))
E = np . empty(N) ;
Ean = np . empty(N) ;
Ean . f i l l (−1.06354440997)

#Perform the imaginary time evolution alternating on A and B bonds
for step in range (0 , N) :
A = np .mod(step , 2) ; B = np .mod(step +1 ,2)

#Construct theta 1
theta = np . tensordot (np . diag (l [B , :]) , G[A , : , : , :] , axes = (1 , 1))

#Construct theta 2
theta = np . tensordot (theta , np . diag (l [A , :] , 0) , axes = (2 , 0))

#Construct theta 3
theta = np . tensordot (theta ,G[B , : , : , :] , axes = (2 , 1))
print (theta)
print (theta . shape)

#Construct theta 4
theta = np . tensordot (theta , np . diag (l [B , :] , 0) , axes = (3 , 0))

#Apply U
theta = np . tensordot (theta ,U, axes = ([1 , 2] , [0 , 1]))

#SVD
theta = np . reshape (np . transpose (theta , (2 , 0 , 3 , 1)) , (d* chi , d* chi))
X , Y , Z = np . l i n a l g . svd (theta) ; Z = Z . T

#Truncate
l [A , 0 : chi]=Y [0 : chi] /np . sqrt (sum(Y [0 : chi] * * 2)) #normalize

X=np . reshape (X [0 : d* chi , 0 : chi] , (d , chi , chi))
G[A , : , : , :] = np . transpose (np . tensordot (np . diag (l [B, :] * * (−1)) , X , axes = (1 , 1)) , (1 , 0 , 2))

Z=np . transpose (np . reshape (Z [0 : d* chi , 0 : chi] , (d , chi , chi)) , (0 , 2 , 1))
G[B , : , : , :] = np . tensordot (Z , np . diag (l [B, :] * * (−1)) , axes = (2 , 0))
E[step]=−np . log (np .sum(theta * * 2)) / delta /2

print ("E_iTEBD =" , −np . log (np .sum(theta * * 2)) / delta /2)

A.3. Simulation of finite size Ising model ground state 37

A.3. Simulation of finite size Ising model ground state

import numpy as np
import matplotlib . pyplot as p l t
import math
import scipy . l i n a l g
from scipy . l i n a l g import expm, sinm , cosm

#model parameters
J = 1 . 0 ; g = 0 . 5 ; chi =5; d=2; delta =0.01; N=1000; L=10;
G = np . random . rand (L , d , chi , chi) ; l =np . random . rand (L , chi)

#Generate the two−s i t e time evolution operator
H = np . array ([[J ,−g/2,−g / 2 , 0] , [−g/2,− J ,0 ,−g / 2] , [−g/2 ,0 ,− J ,−g / 2] , [0 ,−g/2,−g /2 , J]])
U = np . reshape (expm(−delta *H) , (2 , 2 , 2 , 2))
E si te = np . empty(L−2); # s t o r e energy per s i t e
Estep = np . empty(N) ; # s t o r e average energy of the chain per i t e r a t i o n
Ean = np . empty(N) ;
Ean . f i l l (−1.06354440997)

#Perform the imaginary time evolution on a f i n i t e chain with open ends
for step in range (0 , N) :
for s i t e in range (0 , L−2 ,2): #even s i t e s
A = s i t e ; B = s i t e +1; C = s i t e +2;

#Construct theta 1
theta = np . tensordot (np . diag (l [A , :]) , G[A , : , : , :] , axes = (1 , 1))

#Construct theta 2
theta = np . tensordot (theta , np . diag (l [B , :] , 0) , axes = (2 , 0))

#Construct theta 3
theta = np . tensordot (theta ,G[B , : , : , :] , axes = (2 , 1))

#Construct theta 4
theta = np . tensordot (theta , np . diag (l [C, :] , 0) , axes = (3 , 0))

#Apply U
theta = np . tensordot (theta ,U, axes = ([1 , 2] , [0 , 1]))

#SVD
theta = np . reshape (np . transpose (theta , (2 , 0 , 3 , 1)) , (d* chi , d* chi))
X , Y , Z = np . l i n a l g . svd (theta) ; Z = Z . T

#Truncate
l [B , 0 : chi]=Y [0 : chi] /np . sqrt (sum(Y [0 : chi] * * 2))

X=np . reshape (X [0 : d* chi , 0 : chi] , (d , chi , chi))
G[A , : , : , :] = np . transpose (np . tensordot (np . diag (l [A, :] * * (−1)) , X , axes = (1 , 1)) , (1 , 0 , 2))

Z=np . transpose (np . reshape (Z [0 : d* chi , 0 : chi] , (d , chi , chi)) , (0 , 2 , 1))
G[B , : , : , :] = np . tensordot (Z , np . diag (l [C, :] * * (−1)) , axes = (2 , 0))

E si te [s i t e]=−np . log (np .sum(theta * * 2)) / delta /2 # s t o r e energy per s i t e f o r t h i s i t e r a t i o n

for s i t e in range (1 , L−2 ,2): #odd s i t e s

38 A. Python scripts

A = s i t e ; B = s i t e +1; C = s i t e +2;

#Construct theta 1
theta = np . tensordot (np . diag (l [A , :]) , G[A , : , : , :] , axes = (1 , 1))

#Construct theta 2
theta = np . tensordot (theta , np . diag (l [B , :] , 0) , axes = (2 , 0))

#Construct theta 3
theta = np . tensordot (theta ,G[B , : , : , :] , axes = (2 , 1))

#Construct theta 4
theta = np . tensordot (theta , np . diag (l [C, :] , 0) , axes = (3 , 0))

#Apply U
theta = np . tensordot (theta ,U, axes = ([1 , 2] , [0 , 1]))

#SVD
theta = np . reshape (np . transpose (theta , (2 , 0 , 3 , 1)) , (d* chi , d* chi))
X , Y , Z = np . l i n a l g . svd (theta) ; Z = Z . T

#Truncate
l [B , 0 : chi]=Y [0 : chi] /np . sqrt (sum(Y [0 : chi] * * 2))

X=np . reshape (X [0 : d* chi , 0 : chi] , (d , chi , chi))
G[A , : , : , :] = np . transpose (np . tensordot (np . diag (l [A, :] * * (−1)) , X , axes = (1 , 1)) , (1 , 0 , 2))

Z=np . transpose (np . reshape (Z [0 : d* chi , 0 : chi] , (d , chi , chi)) , (0 , 2 , 1))
G[B , : , : , :] = np . tensordot (Z , np . diag (l [C, :] * * (−1)) , axes = (2 , 0))

E si te [s i t e]=−np . log (np .sum(theta * * 2)) / delta /2 # s t o r e energy per s i t e f o r t h i s i t e r a t i o n

Estep [step]=np . average (E s i te) # s t o r e average energy in the chain f o r t h i s i t e r a t i o n

print ("E_iTEBD =" , Estep [step]) #approximate average ground s t a t e energy a f t e r N i t e r a t i o n s
print (" E_analyt ical=" ,Ean [1]) # a n a l y t i c a l solution to the i n f i n i t e I s i n g chain
print (" r e l a t i v e _ e r r o r =" , abs ((Estep [step]−Ean [1]) / Ean [1]))

A.4. Simulation of chain of Josephson junctions 39

A.4. Simulation of chain of Josephson junctions

import numpy as np
import matplotlib . pyplot as p l t
import math
import scipy . l i n a l g
from scipy . l i n a l g import expm, sinm , cosm

#model parameters
Ec = 0 . 1 ;
Ej = 1 . 0 ;
chi =10; d=10; delta =0.01; N=1000; L=4; dtheta=math . pi ;
dphi=2*math . pi /d ;
G = np . random . rand (L , d , chi , chi) ; l =np . random . rand (L , chi) ;
E s i te = np . empty(L) ; # store energy per s i t e
Estep = np . empty(N) ; # store average energy of the chain per i t e r a t i o n

#Generate the one−s i t e second d e r i v a t i v e operator
diag=np . eye (d , k=1)+np . eye (d , k=−1)−2*np . eye (d , k=0)
diag [0 ,d−1]=1
diag [d−1 ,0]=1
print (diag)

create Hphase two−s i t e operator
Hphase=np . kron (diag , np . eye (d))
Hphase=−Ec / (dphi * * 2) * Hphase

create Hcharge
Hcharge=np . zeros ((d , d))
step = 1
while step <d/ 2 :
Hcharge=Hcharge + step *np . eye (d , k=step)+ step *np . eye (d , k=d−step)+ step *np . eye (d , k=−step)+ step *np . eye (d , k=−d+step)
step+=1
i f d%2==0:
Hcharge=Hcharge + step *np . eye (d , k= i n t (step)) + step *np . eye (d , k=−i n t (step))

#reshape Hcharge
Hcharge=2*np . pi /d*Hcharge*+np . ones ((d , d)) * dtheta /(L−1)
Hcharge=np . ones ((d , d))−np . cos (Hcharge)
Hcharge=Ej *np . diag (np . reshape (Hcharge , d * * 2))

create H
H=Hphase+Hcharge

create U
U = np . reshape (expm(−delta *H) , (d , d , d , d))

#Perform the imaginary time evolution al ter nat i ng on A and B bonds
for step in range (0 , N) :

for s i t e in range (0 , L , 2) :
A = s i t e ; B = (s i t e +1)%L ; C = (s i t e +2)%L ;

#Construct theta 1
theta = np . tensordot (np . diag (l [A , :]) , G[A , : , : , :] , axes = (1 , 1))

40 A. Python scripts

#Construct theta 2
theta = np . tensordot (theta , np . diag (l [B , :] , 0) , axes = (2 , 0))

#Construct theta 3
theta = np . tensordot (theta ,G[B , : , : , :] , axes = (2 , 1))

#Construct theta 4
theta = np . tensordot (theta , np . diag (l [C, :] , 0) , axes = (3 , 0))

#Apply U
theta = np . tensordot (theta ,U, axes = ([1 , 2] , [0 , 1]))

#SVD
theta = np . reshape (np . transpose (theta , (2 , 0 , 3 , 1)) , (d* chi , d* chi))
X , Y , Z = np . l i n a l g . svd (theta) ; Z = Z . T

#Truncate
l [B , 0 : chi]=Y [0 : chi] /np . sqrt (sum(Y [0 : chi] * * 2))

X=np . reshape (X [0 : d* chi , 0 : chi] , (d , chi , chi))
G[A , : , : , :] = np . transpose (np . tensordot (np . diag (l [A, :] * * (−1)) , X , axes = (1 , 1)) , (1 , 0 , 2))

Z=np . transpose (np . reshape (Z [0 : d* chi , 0 : chi] , (d , chi , chi)) , (0 , 2 , 1))
G[B , : , : , :] = np . tensordot (Z , np . diag (l [C, :] * * (−1)) , axes = (2 , 0))

for s i t e in range (1 , L , 2) :
A = s i t e ; B = (s i t e +1)%L ; C = (s i t e +2)%L ;

#Construct theta 1
theta = np . tensordot (np . diag (l [A , :]) , G[A , : , : , :] , axes = (1 , 1))

#Construct theta 2
theta = np . tensordot (theta , np . diag (l [B , :] , 0) , axes = (2 , 0))

#Construct theta 3
theta = np . tensordot (theta ,G[B , : , : , :] , axes = (2 , 1))

#Construct theta 4
theta = np . tensordot (theta , np . diag (l [C, :] , 0) , axes = (3 , 0))

#Apply U
theta = np . tensordot (theta ,U, axes = ([1 , 2] , [0 , 1]))

#SVD
theta = np . reshape (np . transpose (theta , (2 , 0 , 3 , 1)) , (d* chi , d* chi))
X , Y , Z = np . l i n a l g . svd (theta) ; Z = Z . T

#Truncate
l [B , 0 : chi]=Y [0 : chi] /np . sqrt (sum(Y [0 : chi] * * 2))

X=np . reshape (X [0 : d* chi , 0 : chi] , (d , chi , chi))
G[A , : , : , :] = np . transpose (np . tensordot (np . diag (l [A, :] * * (−1)) , X , axes = (1 , 1)) , (1 , 0 , 2))

Z=np . transpose (np . reshape (Z [0 : d* chi , 0 : chi] , (d , chi , chi)) , (0 , 2 , 1))
G[B , : , : , :] = np . tensordot (Z , np . diag (l [C, :] * * (−1)) , axes = (2 , 0))

A.4. Simulation of chain of Josephson junctions 41

Estep [step]=−np . log (np .sum(theta * * 2)) / delta # store energy per junction at t h i s i t e r a t i o n

print ("E_iTEBD =" , −np . log (np .sum(theta * * 2)) / delta)

Bibliography

[1] Pierre Pfeuty. The one-dimensional ising model with a transverse field. Annals of Physics, 57(1):79 – 90,
1970.

[2] Tom Simonite. Intel puts the brakes on moore’s law, 2016.

[3] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th An-
niversary Edition. Cambridge University Press, New York, NY, USA, 10th edition, 2011.

[4] Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar
Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian F.
Roos. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X, 8:031022, Jul
2018.

[5] Networked Quantum Information Technologies. Applications of quantum computing, 2018.

[6] Luca Chirolli and Guido Burkard. Decoherence in solid-state qubits. Advances in Physics, 57(3):225–285,
2008.

[7] B.D. Josephson. Possible new effects in superconductive tunnelling. Physics Letters, 1(7):251 – 253, 1962.

[8] Andre Melo. Numerical study of a superconducting qubit for the realization of quantum ising chains
using matrix product state techniques. Master’s thesis, TU Delft.

[9] Steven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett.,
69:2863–2866, Nov 1992.

[10] Garnet Kin-Lic Chan. Matrix product operators, matrix product states, and ab initio density matrix
renormalization group algorithms. The Journal of Chemical Physics, 145, Jul 2016.

[11] R. L. Jaffe. Supplementary lecture notes on dirac notation, quantum states, etc., 1996.

[12] N. Dorey. Lecture notes on quantum mechanics, 2007.

[13] Jos Thijssen. Computational Physics. Cambridge University Press, Delft, The Netherlands, 2007.

[14] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes 3rd
Edition: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA, 3 edition,
2007.

[15] Reinhard M. Noack and Salvatore R. Manmana. Diagonalization- and numerical renormalization-
group-based methods for interacting quantum systems. AIP Conference Proceedings, 789:93, 2005.

[16] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns Hopkins University Press,
Baltimore, MD, USA, 1996.

[17] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators. J. Res. Natl. Bur. Stand. B, 45:255–282, 1950.

[18] Adrian E. Feiguin. The Density Matrix Renormalization Group, pages 31–65. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[19] John Preskill. Lecture notes on quantum computation, 2015.

[20] Artur Ekert and Peter L. Knight. Entangled quantum systems and the schmidt decomposition. American
Journal of Physics, 63(5):415–423, 1995.

43

44 Bibliography

[21] Ulrich Schöllwock. The density-matrix renormalization group in the age of matrix product states. Annals
of Physics, 326:96–192, 2010.

[22] Michael Tinkham. Introduction to Superconductivity: Second Edition . Dover Publications, second edi-
tion edition, June 2004.

[23] Leon N. Cooper. Bound electron pairs in a degenerate fermi gas. Phys. Rev., 104:1189–1190, Nov 1956.

[24] Serge Haroche. Lecture 5: An introduction to circuit qed describing josephson junctions as qubits
and lc circuits as quantum oscillators. URL: https://www.quantumlah.org/media/lectures/

QT5201E-Haroche-Slides-1.pdf.

[25] F. Verstraete and J. I. Cirac. Matrix product states represent ground states faithfully. Phys. Rev. B,
73:094423, Mar 2006.

[26] Don N. Page. Average entropy of a subsystem. Phys. Rev. Lett., 71:1291–1294, Aug 1993.

[27] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for the entanglement entropy. Rev. Mod.
Phys., 82:277–306, Feb 2010.

[28] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in quantum critical phenomena. Phys. Rev.
Lett., 90:227902, Jun 2003.

[29] Guifré Vidal. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett.,
93:040502, Jul 2004.

[30] Masuo Suzuki. Fractal decomposition of exponential operators with applications to many-body theories
and monte carlo simulations. Physics Letters A, 146(6):319 – 323, 1990.

[31] Frank Pollman. Introduction to matrix product states and algorithms. URL: http://quantumtensor.
pks.mpg.de/wp-content/uploads/2016/06/slides_1.pdf.

[32] G. G. Cabrera and R. Jullien. Role of boundary conditions in the finite-size ising model. Phys. Rev. B,
35:7062–7072, May 1987.

[33] Garnet Kin-Lic Chan. Low entanglement wavefunctions. Wiley Interdisciplinary Reviews: Computa-
tional Molecular Science, 2(6):907–920.

https://www.quantumlah.org/media/lectures/QT5201E-Haroche-Slides-1.pdf
https://www.quantumlah.org/media/lectures/QT5201E-Haroche-Slides-1.pdf
http://quantumtensor.pks.mpg.de/wp-content/uploads/2016/06/slides_1.pdf
http://quantumtensor.pks.mpg.de/wp-content/uploads/2016/06/slides_1.pdf

	Introduction
	Theoretical foundation
	Quantum systems
	One-dimensional quantum chains
	Numerical methods to find the ground state energy
	Josephson junctions
	A superconducting qubit of Josephson junctions

	Matrix product states and time-evolving block decimation
	Matrix product states
	Time-evolving block decimation (TEBD)

	Simulation results
	Application of TEBD
	Josephson junction qubit

	Conclusion and discussion
	Python scripts
	Calculating the analytic solution of the Ising model from Pfeuty pfeuty
	Simulation of translational invariant Ising model ground state
	Simulation of finite size Ising model ground state
	Simulation of chain of Josephson junctions

	Bibliography

