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Verification of Joint Input-State Estimation by
In Situ Measurements on a Footbridge

K. MAES, E. LOURENS, K. VAN NIMMEN,
P. VAN DEN BROECK, P. GUILLAUME,
G. DE ROECK and G. LOMBAERT

ABSTRACT

An existing joint input-state estimation algorithm is extended for applications in
structural dynamics. The estimation of the input and the system states is performed in
a minimum-variance unbiased way, based on a limited number of response
measurements and a system model. The noise statistics are estimated, as they are
essential for the joint input-state estimation and can be used to quantify the uncertainty
on the estimated forces and system states. The methodology is illustrated using data
from an in situ experiment on a footbridge.

INTRODUCTION

For civil engineering structures, knowledge of the dynamic loads is crucial to
design purposes. Very often these dynamic loads can hardly be obtained by direct
measurements and have to be determined indirectly from the system response.

The joint input-state estimation algorithm proposed in this work is an extension of
an algorithm proposed by Gillijns and De Moor [1]. The algorithm has the structure of
a Kalman filter, except that the true value of the input is replaced by a minimum-
variance unbiased estimate.

The noise statistics are essential when using the proposed joint input-state estimation
algorithm, especially for quantification of the uncertainty on the estimation. Several
methods have been proposed in the literature to identify the noise statistics, both
offline [2] and online [3]. Very often, in structural dynamics applications, operational
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loads (e.g. wind loads) are modeled as stochastic noise processes. This can be directly
taken into account for the noise identification procedure, which then boils down to a
force identification problem.

This paper consists of a theoretical part, followed by a practical illustration.
Firstly, a brief overview is given of system models as commonly used in structural
dynamics. Secondly, the joint input-state estimation algorithm is presented. Thirdly, a
method for the identification of noise statistics is proposed. The methodology is finally
illustrated for the practical case of a footbridge, where multiple forces are identified.

MATHEMATICAL FORMULATION
System model

In structural dynamics, first principle models, e.g. finite element (FE) models, are
widely used. In many cases, modally reduced order models are applied, constructed
from a limited number of structural modes. When proportional damping is assumed,
the continuous-time decoupled equations of motion in modal coordinates are given by:

Z(t) + T z(t) + Q%z(t) = TS, (H)p(t) (1)

where z(t) € R™m is the vector of modal coordinates, with n,, the number of modes.
The excitation force is written as the product of a selection matrix S, € R™dof*™p and
a time history vector p(t) € R", with n, the number of forces. The number of
degrees of freedom is indicated by ng,r. I' € R™m X ™m s 3 diagonal matrix containing
the terms 2 &;w; on its diagonal, with w; and §; the natural frequency and modal
damping ratio according to mode j, respectively. Q € R"m*"m is g diagonal matrix,
containing the natural frequencies w; on its diagonal. @ € R™dof *'m s g matrix with
the eigenvectors ¢ ; as columns.
The output vector is generally written as:

d(t) = S,® Z(t) + Sy® z(t) + Sq® z(t) )

where S,, S,, and S4 € R™dX™dof gre selection matrices indicating the degrees of
freedom corresponding to the acceleration, velocity, and displacement measurements,
respectively.

Eq. (1) and Eq. (2) can be written into state space form. After time discretization
and adding process noise and measurement noise to the state equation (3), and the
output equation (4), respectively, the following discrete-time combined deterministic-
stochastic state space description of the system is obtained:

X[k+1] = A X[ + B Py + Wi (3)
dig) = GXpg + I Pk + Vi (4)

where xp,] = xX(kAt), ppx) = p(kAt) and dyg = d(kAt) (k =1, ...,N), At is the
sampling time step, and N is the total number of samples. The state vector xp,

. . .. T
consists of the modal displacements and modal velocities: X = [2, Zj] -



Joint input-state estimation

An existing joint input-state estimation algorithm for linear systems with direct
feedthrough [1] is extended in order to include the correlation between the process
noise wp,) and the measurement noise vy,;. As will be illustrated in the following, this
correlation becomes important if operational loads are modeled as stochastic noise
processes, as is often the case in structural dynamics. The system under consideration
is described by Eq. (3) and Eq. (4). The noise processes w,; € R*™m and v, € R™d
are assumed to be zero mean and white, with known covariance matrices Q, R, and S:

E[(‘:/I[[:]]) (Wi V[Tk])]: [Sqr ;] Ok (®)

withR > 0, [ ]>O and &y = 1 for k = 0 and 0 otherwise.
Joint input-state estimation consists of estimating the forces pp,; and states Xy,
from a set of response measurements dj,;. A state estimate X ;; is defined as an

. : l .
estimate of xp, given the output sequence {d[n]}n=0' The corresponding error

covariance matrix, denoted as P, is defined as E [(x[k] — Rpep) (X — f([k”])T].

An input estimate P, ;) and its error covariance matrix Py ;) are defined similarly.
The filtering algorithm is initialized using an initial state estimate vector Kg|_;

and its error covariance matrix Py _4], both assumed known. Hereafter, it propagates

by computing the force and state estimates recursively in three steps, i.e. the input
estimation step, the measurement update and the time update:

Input estimation

EH=GPmkﬂG—FR (6)
My = (ITRGAD I TRG (7)
Pikik] = M (g — G Xpgejk—-11) (8)
Pores = (1TRG)) ™ )

Measurement update
L) = Prege-11G R (10)
Rikik] = Xikjk-1] + L (A — G Xikk—11 — I Pixji] ) (11)
Piig = Priei—11 = Lpg (Rp = TPppeiia) )Ly (12)
Papiici] = Ppugiin] = = Ly Ppiiiad (13)

Time update

Riklk-1] = AX[kik) + B Pk (14)
Ligg = Lyg(1 =1 M) (15)
Spg = S (ALyy + BMpy)' (16)

[ Pkl Pxplkix

HN]+Q—S — ST (17)
Poxikik]  Pplieixy 11BT (k] ™ STk]

Ps1k] = [A



Estimation of noise statistics

In structural dynamics applications, operational loads, such as wind loads, are very
often modeled as stochastic noise processes. The noise statistics Q, R, and S, under the
assumption of white noise processes, can then be estimated from a preliminary
vibration experiment where only noise sources are present (p = 0).

The noise sources are modeled as a set of stochastic forces pgx, concentrated in a
Iimited number of structural nodes. The power spectral density (PSD) of the forces

Sp.p. (W) € C"s*™s at frequency w is obtained from the PSD of the measured
response Sy g (w) € C"ds*™ds and the frequency response function (FRF) matrix
H(w) € C™ds *™ps as follows:

Speps (@) = H ()Sg.q,(w)H™" (w) (18)

where H*(w) and H*(w) denote the Moore-Penrose pseudo-inverse and the
Hermitian transpose of the matrix H(w), respectively. Defining the PSD of a sampled
time series as:

spq( w) = ZQ’;& qu[k] exp(—iwkAt), (19)

where Rpqig := E{Ppiqi}
The force PSD Spsps(“)) obtained from Eq. (18), equals the force covariance

matrix Cov(psx) = IE[ps[k]pZ[k]], under the assumption of a stationary discrete-
time white noise process. This holds for each frequency. The noise covariance
matrices are calculated as:

s ol = [featter +fg g @

where the matrices B; € R?"mX™s and J, € R™ X™ss | occurring in Eq. (3) and
Eq. (4), respectively, correspond to the n,_ stochastic forces assumed for the noise
identification procedure and the ngq output measurements used for the joint input-state
estimation procedure. R, is the “true” measurement noise covariance matrix, which is
chosen as a diagonal matrix with the squared value of the sensor resolution on its
diagonal.

In the literature, several methods have been proposed to estimate the cross-PSD of
two sampled time series py,) and qp [4]. For the remainder of this paper, the
periodogram approach is used to calculate the output PSD Sy g (w) from a set of
output measurements. The FRF matrix H(w) can be obtained from an updated finite
element model of the structure or can be obtained from system identification
techniques.

The number of modes significantly contributing to the response at a frequency w
can become less than the number of stochastic forces to be estimated. The problem of
estimating the force PSD from a set of output measurements then becomes ill-posed
and rank deficient. The stochastic force covariance matrix is estimated hereafter by
averaging the force PSD over a number of frequencies where the ill-posedness of the
problem is minimal. The accuracy of the result at a frequency w is therefore assessed
based on a criterion proposed by Fabunmi [5].



IN SITU EXPERIMENT ON A FOOTBRIDGE

In this section, the proposed methodology is illustrated for an in situ experiment on
a real structure, in the presence of modeling errors, measurement errors and ambient
excitation. The structure under consideration is a footbridge, located in Ninove
(Belgium). It is a two-span cable-stayed steel bridge (Figure 1) with a main and
secondary span of 36 m and 22.5 m, respectively.

A system model is constructed from a FE model of the bridge. The FE model has
been updated using a set of experimental modal parameters, which have been obtained
through a combined output-only [6] and input-output system identification procedure
[7]. TABLE I presents a comparison between the experimentally identified modal
characteristics and those calculated from the updated FE model. The MAC value [8]
indicates the correspondence between the measured mode shapes and those obtained
from the FE model. For nearly all vertical bending modes and torsional modes, a good
correspondence is obtained between the identified modal characteristics and the modal
characteristics obtained from the FE model (natural frequency, mode shape).

A reduced-order discrete-time state-space model is constructed from the updated
FE model of the footbridge, applying a zero order hold assumption on the force. The
model includes the 15 modes listed in TABLE I. The mass normalized mode shape is
assumed to be known from the FE model. The natural frequency as well as the modal
damping ratio are taken as the experimentally identified values.

Figure 1. The footbridge in Ninove, Belgium.

TABLE |. COMPARISON BETWEEN THE EXPERIMENTALLY IDENTIFIED MODAL
CHARACTERISTICS AND THE MODAL CHARACTERISTICS OF THE UPDATED FE MODEL
(fiq: identified natural frequency, &;4: identified modal damping ratio, fr.,: undamped natural frequency
updated FE model, €: error from W.I.t. fig, MAC: MAC-value).

No. fia[Hz] &4 [%] frem [Hz] € [%] MAC[—]  Description

1 2.98 0.4 2.93 1.59 0.99 1% vertical bending main span

2 3.08 0.67 3.15 -2.55 0.97 1* lateral bending main span

3 3.81 0.58 3.77 1.13 0.95 1% combined lateral bending

4 5.84 0.89 5.56 4.79 ©) 1% lateral bending secondary span
5 6.00 0.67 5.92 1.36 0.99 1% vertical bending secondary span
6 6.92 0.29 7.23 -4.44 0.95 1* torsional main span

7 8.00 0.76 7.77 2.79 0.99 2" vertical bending main span

8 9.84 0.48 10.06 -2.29 0.76 2" combined lateral bending

9 10.98 0.87 11.01 -0.27 0.89 1% torsional secondary span

10 12.52 1.62 12.97 -3.56 0.94 3" combined lateral bending

11 13.55 0.52 13.24 2.27 0.97 3" vertical bending main span

12 14.02 0.16 14.25 -1.61 0.89 3" lateral bending main span

13 14.71 0.57 14.29 2.92 0.97 2" vertical bending secondary span
14 17.29 0.14 17.3 -0.04 © 4" ateral bending main span

15 18.57 0.46 18.16 2.26 0.91 4" vertical bending main span

) Low MAC-value due to irregular identified mode shape.



Estimation of noise statistics

The data used in the following analysis contain the response of the footbridge to
ambient excitation. The measurement setup is shown in Figure 2. The response data
consist of the vertical (z-direction) and lateral (y-direction) acceleration measurements
for each of the five sensor locations. A time period of 400 s is considered.

The response data and the system model are now used to estimate the ambient
force covariance matrix. For each acceleration signal a stochastic force is assumed,
acting at the same node and along the same direction. In this way, a set of 10
stochastic forces is estimated from 10 acceleration measurements. The averaged force
PSD values are shown in Figure 3. Since the force covariance matrix has real
elements, the averaging is performed for the real part of the PSD values over the
frequency range where the ill-posedness of the problem is minimal [5]. In general, the
force covariance of the lateral forces is larger than the force covariance of the vertical
forces. The largest force variance occurs at node 27. The covariance matrix obtained is
now used to calculate the noise covariance matrices.

Force identification

The data used in the following analysis are obtained during the excitation of the
footbridge by two vertical hammer forces at the bridge deck, one at node 27 and one at
node 48. The measurement setup is shown in Figure 4. A time period of 25 seconds is
considered, containing one impact at both nodes, see Figure 5.

The force identification is performed using the proposed joint input-state estimation
algorithm. During the actual experiment, only accelerations have been measured.
Displacement signals, however, are required for the stability of the joint input-state
estimation algorithm and the uniqueness of the estimated quantities. They are obtained

Figure 2. Overview of the measurement setup used for the estimation of the noise statistics.
Accelerometer positions are indicated in blue.
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Figure 3. Estimated stochastic forces covariance matrix in [N?] (Vi: vertical and Hi: lateral force node ).



by integrating the corresponding acceleration signals. We do not suggest this as the
way to follow, but rather as a way to illustrate the proposed methodology for this set
of measurements. The output vector consists of two acceleration signals, i.e. the
vertical accelerations at nodes 27 and 48, and two displacement signals, i.e. the
vertical displacements at nodes 20 and 39 (Figure 4). The integration of the
acceleration signals is performed in the frequency domain. The displacement signals
obtained are passed through a fifth order Chebyshev type | high-pass filter with a
cutoff frequency of 1 Hz and a filter ripple of 0.1 dB.

The noise covariance matrices Q, R, and S are calculated from the estimated
stochastic force covariance matrix, according to Eg. (20), and assuming a resolution of
10 ms™ for the acceleration measurements and of 10°® m for the displacement signals.
The initial state estimate vector X{o|_4] is assumed zero and its error covariance matrix
P[o)-1] is assigned a diagonal matrix with values of 10~*° on its diagonal.

The reconstructed forces are characterized by a low frequency drift. This is due to
inaccuracies in the low frequency content of the displacement signals, but also to the
large influence of ambient excitation at low frequencies. For frequencies up to 2.6 Hz,
the identified force signals are characterized by a large error. The low frequency drift
is removed by applying a fourth order Butterworth high-pass filter with a cutoff
frequency of 2.6 Hz to the identified force signals. The measured force signal is
filtered using the same filter. The uncertainty on the identified force signals is
quantified by means of the force error covariance matrix Py ) (see Eq. (9)). The
diagonal elements of this matrix are a measure for the variance of the estimation error
and are used to define an uncertainty bound on the results obtained.

The results of the force identification are shown in Figure 6 and Figure 7 for the
hammer forces at node 27 and node 48, respectively. Both for the force applied at
node 27 and at node 48 a very good correspondence between the measured and the
identified force signal is obtained. In addition, the uncertainty bound on the results
gives a good indication of the true estimation error. The first few seconds after the
impact, the uncertainty interval, however, does not contain the measured force signal.
This is due to low frequency ambient excitation and modeling errors, which are not
directly accounted for.
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Figure 4. Overview of the measurement setup used for the force identification (red: force locations, blue:

acceleration location, green: displacement location).
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Figure 5. (a) Time history and (b) frequency content up to 20 Hz, of the hammer forces applied
vertically to the bridge deck (blue: node 27, green: node 48).
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Figure 6. (a) Complete time history and (b) detail of the time history of the identified hammer force at
node 27 (blue: measured, red: identified, dark grey to light grey: 1o — 36 uncertainty interval).
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Figure 7. (a) Complete time history and (b) detail of the time history of the identified hammer force at
node 48 (blue: measured, red: identified, dark grey to light grey: 1 — 36 uncertainty interval).

CONCLUSIONS

An existing joint input-state estimation algorithm was extended for applications in
structural dynamics. In addition, a method was proposed to identify the process noise
and measurement noise characteristics. The methodology was illustrated for a set of
data collected from an in situ experiment on a footbridge. Multiple hammer forces
have been identified from a limited set of acceleration data. The identified force
signals are a very good estimate of the true applied forces. In addition, taking the
identified noise statistics into account leads to an indication of the estimation error by
means of an uncertainty interval.
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