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ABST AR CT 
 

nA  gnitsixe  tnioj  tupni - etats  noitamitse  mhtirogla  si  xe dednet  rof  snoitacilppa   ni  
ts ur tc ural dyna im cs. ehT  e ts imatio  n fo  ht e inpu  t and t eh  sy ts em ts ates is perf ro med in  

a muminim - ecnairav  desaibnu  ,yaw  desab  no  a detimil  rebmun  fo   esnopser  
stnemerusaem  dna  a metsys  .ledom  ehT  esion  scitsitats  era  ,detamitse  sa  yeht   era  

es nes tial f ro  the join  t input- ts ate estima it on na d nac  be su ed to qu na it fy t eh  un rec tainty  
no  eht  detamitse  secrof  dna  metsys  .setats  m ehT e golodoht y nisu detartsulli si g tad a  

fr mo  na  ni  sit  u exper mi ne o t n a foot rb idge.  
 
 

INTRODUCTION 
 

roF  livic  gnireenigne  ,serutcurts  egdelwonk  fo  eht  cimanyd  sdaol  si  laicurc   ot  
ised g rup n p .seso  yreV  netfo  eseht  cimanyd  sdaol  nac  yldrah  eb  deniatbo  yb   tcerid  

m ae us er men st  and have t  o be deter im en d in id r ce tly morf  ht  e sy ts e  m er ps o sn e.  
T eh  joint ni put-state estima it on algori mht  rp oposed ni  ht is work si  an exten is on of  

an alg ro ti hm prop so ed by G li l ji ns na d De Moor [1]. The algor ti mh  has ht e struc ut er  of  
a namlaK  ,retlif  tpecxe  taht  eht  eurt  eulav  fo  eht  tupni  si  decalper  yb  a im mumin - 
varian ec  unbia des  e ts imate  .  

sion ehT e ts ati its c  s ra e e ss e itn a  l nehw  su ing ht e p or pos de  join pni t ut-state e ts im ta oi n  
,mhtirogla  yllaicepse  rof  noitacifitnauq  fo  eht  ytniatrecnu  no  eht  .noitamitse  Several  

sdohtem  evah  neeb  desoporp  ni  eht  rutaretil e ot  yfitnedi  eht  esion  ,scitsitats   htob  
o ff il ne [2] na o d n il ne [3]. Very tfo en, in struc ut ar l dyna im c  s pa ilp ac ti sno , po era it onal  
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loads (e.g. wind loads) are modeled as stochastic noise processes. This can be directly 

taken into account for the noise identification procedure, which then boils down to a 

force identification problem.  

This paper consists of a theoretical part, followed by a practical illustration. 

Firstly, a brief overview is given of system models as commonly used in structural 

dynamics. Secondly, the joint input-state estimation algorithm is presented. Thirdly, a 

method for the identification of noise statistics is proposed. The methodology is finally 

illustrated for the practical case of a footbridge, where multiple forces are identified.  

 

 

MATHEMATICAL FORMULATION 

 

System model 

 

In structural dynamics, first principle models, e.g. finite element (FE) models, are 

widely used. In many cases, modally reduced order models are applied, constructed 

from a limited number of structural modes. When proportional damping is assumed, 

the continuous-time decoupled equations of motion in modal coordinates are given by:  

                                    (1) 

where            is the vector of modal coordinates, with    the number of modes. 

The excitation force is written as the product of a selection matrix              , and 

a time history vector         , with    the number of forces. The number of 

degrees of freedom is indicated by     .            is a diagonal matrix containing 

the terms        on its diagonal, with    and    the natural frequency and modal 

damping ratio according to mode  , respectively.            is a diagonal matrix, 

containing the natural frequencies    on its diagonal.              is a matrix with 

the eigenvectors    as columns.  

The output vector is generally written as: 

                                    (2) 

where   ,   , and                 are selection matrices indicating the degrees of 

freedom corresponding to the acceleration, velocity, and displacement measurements, 

respectively.  

Eq. (1) and Eq. (2) can be written into state space form. After time discretization 

and adding process noise and measurement noise to the state equation (3), and the 

output equation (4), respectively, the following discrete-time combined deterministic-

stochastic state space description of the system is obtained: 

                            (3) 

                          (4) 

where            ,             and             (       ),    is the 

sampling time step, and   is the total number of samples. The state vector      

consists of the modal displacements and modal velocities:           
       

  
 
. 

 



Joint input-state estimation 

 

An existing joint input-state estimation algorithm for linear systems with direct 

feedthrough [1] is extended in order to include the correlation between the process 

noise      and the measurement noise     . As will be illustrated in the following, this 

correlation becomes important if operational loads are modeled as stochastic noise 

processes, as is often the case in structural dynamics. The system under consideration 

is described by Eq. (3) and Eq. (4). The noise processes             and            

are assumed to be zero mean and white, with known covariance matrices  ,  , and  : 

    
    

    
      

     
      

  

   
        (5) 

with    ,  
  

   
   , and        for     and 0 otherwise. 

Joint input-state estimation consists of estimating the forces      and states     , 

from a set of response measurements     . A state estimate         is defined as an 

estimate of     , given the output sequence          

 
. The corresponding error 

covariance matrix, denoted as       , is defined as                               
 
 . 

An input estimate         and its error covariance matrix         are defined similarly.  

The filtering algorithm is initialized using an initial state estimate vector          

and its error covariance matrix        , both assumed known. Hereafter, it propagates 

by computing the force and state estimates recursively in three steps, i.e. the input 

estimation step, the measurement update and the time update: 

 

Input estimation 

                  
      (6) 
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Measurement update 
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Time update 
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Estimation of noise statistics 

 

In structural dynamics applications, operational loads, such as wind loads, are very 

often modeled as stochastic noise processes. The noise statistics  ,  , and  , under the 

assumption of white noise processes, can then be estimated from a preliminary 

vibration experiment where only noise sources are present (      ).  

The noise sources are modeled as a set of stochastic forces      , concentrated in a 

limited number of structural nodes. The power spectral density (PSD) of the forces 

     
                   at frequency   is obtained from the PSD of the measured 

response      
                  and the frequency response function (FRF) matrix 

                 , as follows: 

      
              

          (18) 

where       and       denote the Moore-Penrose pseudo-inverse and the 

Hermitian transpose of the matrix     , respectively. Defining the PSD of a sampled 

time series as: 

                                
    , (19) 

where                      
  . 

The force PSD      
   , obtained from Eq. (18), equals the force covariance 

matrix                         
  , under the assumption of a stationary discrete-

time white noise process. This holds for each frequency. The noise covariance 

matrices are calculated as: 

  
  

   
    

  

  
              

   
    

  
   

  (20) 

where the matrices                   and                 , occurring in Eq. (3) and 

Eq. (4), respectively, correspond to the    
 stochastic forces assumed for the noise 

identification procedure and the    output measurements used for the joint input-state 

estimation procedure.    i  the “true” mea urement noi e covariance matrix, which is 

chosen as a diagonal matrix with the squared value of the sensor resolution on its 

diagonal.  

In the literature, several methods have been proposed to estimate the cross-PSD of 

two sampled time series      and      [4]. For the remainder of this paper, the 

periodogram approach is used to calculate the output PSD      
    from a set of 

output measurements. The FRF matrix      can be obtained from an updated finite 

element model of the structure or can be obtained from system identification 

techniques. 

The number of modes significantly contributing to the response at a frequency   

can become less than the number of stochastic forces to be estimated. The problem of 

estimating the force PSD from a set of output measurements then becomes ill-posed 

and rank deficient. The stochastic force covariance matrix is estimated hereafter by 

averaging the force PSD over a number of frequencies where the ill-posedness of the 

problem is minimal. The accuracy of the result at a frequency   is therefore assessed 

based on a criterion proposed by Fabunmi [5]. 



IN SITU EXPERIMENT ON A FOOTBRIDGE 

 

In this section, the proposed methodology is illustrated for an in situ experiment on 

a real structure, in the presence of modeling errors, measurement errors and ambient 

excitation. The structure under consideration is a footbridge, located in Ninove 

(Belgium). It is a two-span cable-stayed steel bridge (Figure 1) with a main and 

secondary span of 36 m and 22.5 m, respectively.  

A system model is constructed from a FE model of the bridge. The FE model has 

been updated using a set of experimental modal parameters, which have been obtained 

through a combined output-only [6] and input-output system identification procedure 

[7]. TABLE I presents a comparison between the experimentally identified modal 

characteristics and those calculated from the updated FE model. The MAC value [8] 

indicates the correspondence between the measured mode shapes and those obtained 

from the FE model. For nearly all vertical bending modes and torsional modes, a good 

correspondence is obtained between the identified modal characteristics and the modal 

characteristics obtained from the FE model (natural frequency, mode shape).  

A reduced-order discrete-time state-space model is constructed from the updated 

FE model of the footbridge, applying a zero order hold assumption on the force. The 

model includes the 15 modes listed in TABLE I. The mass normalized mode shape is 

assumed to be known from the FE model. The natural frequency as well as the modal 

damping ratio are taken as the experimentally identified values.  
 
 

 
 

Figure 1. The footbridge in Ninove, Belgium. 
 

 

TABLE I. COMPARISON BETWEEN THE EXPERIMENTALLY IDENTIFIED MODAL 

CHARACTERISTICS AND THE MODAL CHARACTERISTICS OF THE UPDATED FE MODEL 

(   : identified natural frequency,    : identified modal damping ratio,     : undamped natural frequency 

updated FE model,  : error      w.r.t.    ,    : MAC-value). 

No.                                          Description 

1 2.98 0.4 2.93 1.59 0.99 1
st
 vertical bending main span 

2 3.08 0.67 3.15 -2.55 0.97 1
st
 lateral bending main span 

3 3.81 0.58 3.77 1.13 0.95 1
st
 combined lateral bending 

4 5.84 0.89 5.56 4.79 
(*) 

1
st
 lateral bending secondary span 

5 6.00 0.67 5.92 1.36 0.99 1
st
 vertical bending secondary span 

6 6.92 0.29 7.23 -4.44 0.95 1
st
 torsional main span 

7 8.00 0.76 7.77 2.79 0.99 2
nd

 vertical bending main span 

8 9.84 0.48 10.06 -2.29 0.76 2
nd

 combined lateral bending 

9 10.98 0.87 11.01 -0.27 0.89 1
st
 torsional secondary span 

10 12.52 1.62 12.97 -3.56 0.94 3
rd

 combined lateral bending 

11 13.55 0.52 13.24 2.27 0.97 3
rd

 vertical bending main span 

12 14.02 0.16 14.25 -1.61 0.89 3
rd

 lateral bending main span 

13 14.71 0.57 14.29 2.92 0.97 2
nd

 vertical bending secondary span 

14 17.29 0.14 17.3 -0.04 
(*) 

4
th
 lateral bending main span 

15 18.57 0.46 18.16 2.26 0.91 4
th
 vertical bending main span 

(*) 
Low MAC-value due to irregular identified mode shape. 



Estimation of noise statistics 

 

The data used in the following analysis contain the response of the footbridge to 

ambient excitation. The measurement setup is shown in Figure 2. The response data 

consist of the vertical (z-direction) and lateral (y-direction) acceleration measurements 

for each of the five sensor locations. A time period of 400 s is considered.  

The response data and the system model are now used to estimate the ambient 

force covariance matrix. For each acceleration signal a stochastic force is assumed, 

acting at the same node and along the same direction. In this way, a set of 10 

stochastic forces is estimated from 10 acceleration measurements. The averaged force 

PSD values are shown in Figure 3. Since the force covariance matrix has real 

elements, the averaging is performed for the real part of the PSD values over the 

frequency range where the ill-posedness of the problem is minimal [5]. In general, the 

force covariance of the lateral forces is larger than the force covariance of the vertical 

forces. The largest force variance occurs at node 27. The covariance matrix obtained is 

now used to calculate the noise covariance matrices. 

 

Force identification 

 

The data used in the following analysis are obtained during the excitation of the 

footbridge by two vertical hammer forces at the bridge deck, one at node 27 and one at 

node 48. The measurement setup is shown in Figure 4. A time period of 25 seconds is 

considered, containing one impact at both nodes, see Figure 5.  

The force identification is performed using the proposed joint input-state estimation 

algorithm. During the actual experiment, only accelerations have been measured. 

Displacement signals, however, are required for the stability of the joint input-state 

estimation algorithm and the uniqueness of the estimated quantities. They are obtained  
 
 

 
 

Figure 2. Overview of the measurement setup used for the estimation of the noise statistics. 

Accelerometer positions are indicated in blue. 

 

 
 

Figure 3. Estimated stochastic forces covariance matrix in [N
2
] (Vi: vertical and Hi: lateral force node  ). 

 



by integrating the corresponding acceleration signals. We do not suggest this as the 

way to follow, but rather as a way to illustrate the proposed methodology for this set 

of measurements. The output vector consists of two acceleration signals, i.e. the 

vertical accelerations at nodes 27 and 48, and two displacement signals, i.e. the 

vertical displacements at nodes 20 and 39 (Figure 4). The integration of the 

acceleration signals is performed in the frequency domain. The displacement signals 

obtained are passed through a fifth order Chebyshev type I high-pass filter with a 

cutoff frequency of 1 Hz and a filter ripple of 0.1 dB.  

The noise covariance matrices  ,  , and   are calculated from the estimated 

stochastic force covariance matrix, according to Eq. (20), and assuming a resolution of 

10
-6

 ms
-2

 for the acceleration measurements and of 10
-6

 m for the displacement signals. 

The initial state estimate vector          is assumed zero and its error covariance matrix 

        is assigned a diagonal matrix with values of       on its diagonal.  

The reconstructed forces are characterized by a low frequency drift. This is due to 

inaccuracies in the low frequency content of the displacement signals, but also to the 

large influence of ambient excitation at low frequencies. For frequencies up to 2.6 Hz, 

the identified force signals are characterized by a large error. The low frequency drift 

is removed by applying a fourth order Butterworth high-pass filter with a cutoff 

frequency of 2.6 Hz to the identified force signals. The measured force signal is 

filtered using the same filter. The uncertainty on the identified force signals is 

quantified by means of the force error covariance matrix         (see Eq. (9)). The 

diagonal elements of this matrix are a measure for the variance of the estimation error 

and are used to define an uncertainty bound on the results obtained.  

The results of the force identification are shown in Figure 6 and Figure 7 for the 

hammer forces at node 27 and node 48, respectively. Both for the force applied at 

node 27 and at node 48 a very good correspondence between the measured and the 

identified force signal is obtained. In addition, the uncertainty bound on the results 

gives a good indication of the true estimation error. The first few seconds after the 

impact, the uncertainty interval, however, does not contain the measured force signal. 

This is due to low frequency ambient excitation and modeling errors, which are not 

directly accounted for. 
 

 

 
 

Figure 4. Overview of the measurement setup used for the force identification (red: force locations, blue: 

acceleration location, green: displacement location). 
 

(a)  
 

(b)  
 

Figure 5. (a) Time history and (b) frequency content up to 20 Hz, of the hammer forces applied 

vertically to the bridge deck (blue: node 27, green: node 48). 



(a)  
 

(b)  
 

Figure 6. (a) Complete time history and (b) detail of the time history of the identified hammer force at 

node 27 (blue: measured, red: identified, dark grey to light grey: 1  – 3  uncertainty interval).  
 

(a)  
 

 

(b)  
 

Figure 7. (a) Complete time history and (b) detail of the time history of the identified hammer force at 

node 48 (blue: measured, red: identified, dark grey to light grey: 1  – 3  uncertainty interval). 

 

 

CONCLUSIONS 
 

An existing joint input-state estimation algorithm was extended for applications in 

structural dynamics. In addition, a method was proposed to identify the process noise 

and measurement noise characteristics. The methodology was illustrated for a set of 

data collected from an in situ experiment on a footbridge. Multiple hammer forces 

have been identified from a limited set of acceleration data. The identified force 

signals are a very good estimate of the true applied forces. In addition, taking the 

identified noise statistics into account leads to an indication of the estimation error by 

means of an uncertainty interval.  
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