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FROM INFINITE TO FINITE PROGRAMS: EXPLICIT ERROR
BOUNDS WITH APPLICATIONS TO APPROXIMATE

DYNAMIC PROGRAMMING∗

PEYMAN MOHAJERIN ESFAHANI† , TOBIAS SUTTER‡ , DANIEL KUHN§ ,

AND JOHN LYGEROS‡

Abstract. We consider linear programming (LP) problems in infinite dimensional spaces that
are in general computationally intractable. Under suitable assumptions, we develop an approximation
bridge from the infinite dimensional LP to tractable finite convex programs in which the performance
of the approximation is quantified explicitly. To this end, we adopt the recent developments in two
areas of randomized optimization and first-order methods, leading to a priori as well as a posteriori
performance guarantees. We illustrate the generality and implications of our theoretical results in
the special case of the long-run average cost and discounted cost optimal control problems in the
context of Markov decision processes on Borel spaces. The applicability of the theoretical results is
demonstrated through a fisheries management problem.

Key words. infinite dimensional linear programming, Markov decision processes, approximate
dynamic programming, randomized and convex optimization

AMS subject classifications. 90C05, 90C39, 90C34, 93E20, 90C40, 68W20
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1. Introduction. Linear programming (LP) problems in infinite dimensional
spaces appear in, among other areas, engineering, economics, operations research,
and probability theory [1]. Infinite LPs offer remarkable modeling power, subsuming
general finite dimensional optimization problems and the generalized moment problem
as special cases. They are, however, often computationally formidable, motivating the
study of approximations schemes.

A particularly rich class of problems that can be modeled as infinite LPs involves
Markov decision processes (MDP) and optimal control problems defined in this con-
text. The history beyond this link dates back to the seventies, when the connection
between multistage stochastic programs and infinite LPs was discovered [20, 39, 40].
More often than not, it is impossible to obtain explicit solutions to MDP problems,
making it necessary to resort to approximation techniques. Such approximations are
the core of a methodology known as approximate dynamic programming [6, 8]. Inter-
estingly, a wide range of optimal control problems involving MDP can be equivalently
expressed as static optimization problems over a closed convex set of measures, more
specifically, as infinite LPs [25, 27]. This LP reformulation is particularly appealing for
dealing with unconventional settings involving additional constraints [3], secondary
costs [18], information-theoretic considerations [44], and reachability problems [32].
In addition, the infinite LP reformulation allows one to leverage the developments in
the optimization literature, in particular convex approximation techniques, to develop
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FROM INFINITE TO FINITE PROGRAMS 1969

approximation schemes for MDP problems. This will also be the perspective adopted
in the present article.

Approximation schemes to tackle infinite LPs have historically been developed
for special classes of problems, e.g., the general capacity problem [30], or the gener-
alized moment problem [31]. The literature on MDPs with infinite state or action
spaces mostly concentrates on approximation schemes with asymptotic performance
guarantees [26, 27]; see also the comprehensive book [29] for controlled stochastic
differential equations and [33] for reachability problems in the similar setting. From
a practical viewpoint, a challenge using these schemes is that the convergence anal-
ysis is not constructive and does not lead to explicit error bounds. A wealth of
approximation schemes have been proposed in the literature under the names of ap-
proximate dynamic programming [5], neuro-dynamic programming [8], reinforcement
learning [28, 47], and value and/or policy iteration [6, 42]. Most, however, deal with
discrete (finite or at most countable) state and action spaces, while approximation
over uncountable spaces remains largely unexplored.

The MDP literature on explicit approximation errors in uncountable settings can,
roughly speaking, be divided into two groups in terms of the performance criteria
considered: discounted cost and average cost (AC). Of the two, the discounted cost
setting has received more attention as the corresponding dynamic programming op-
erator is a contraction, a useful property to obtain a convergence rate for the ap-
proximation error. Examples include the LP approach [13, 14] and also a recent
series of works [11, 17, 18] on approximating a probability measure that underlies the
random transitions of the dynamics of the system using different discretization proce-
dures. Long-run AC problems introduce new challenges due to losing the contraction
property. The authors in [19] develop approximation schemes leading to finite but
nonconvex optimization problems, while [43] investigates the convergence rate of the
finite-state approximation to the original (uncountable) MDP problem.

The approach presented in this article tackles a class of general infinite LPs that,
as a special case, cover both long-run discounted and AC performance criteria. The
resulting approximation is based on finite convex programs that are different from the
existing schemes. Closest in spirit to our proposed approximation is the LP approach
based on constraint sampling in [13, 14, 46]. Unlike these works, however, we introduce
an additional norm constraint that effectively acts as a regularizer. We study in detail
the conditions under which this regularizer can be exploited to bound the optimizers
of the primal and dual programs and hence provide an explicit approximation error
for the proposed solution.

The proposed approximation scheme involves a restriction of the decision variables
from an infinite dimensional space to a finite dimensional subspace, followed by the
approximation of the infinite number of constraints by a finite subset; we develop two
complementary methods for performing the latter step. The structure of the article
is illustrated in Figure 1, where the contributions are summarized as follows:

• We introduce a subclass of infinite LPs whose regularized semi-infinite restric-
tion enjoys analytical bounds for both primal and dual optimizers (Propo-
sition 3.2). The implications for MDP with AC (Lemma 3.7) and with dis-
counted cost (Lemma A.2) are also investigated.

• We derive an explicit error bound between the original infinite LP and the
regularized semi-infinite counterpart, providing insights on the impact of the
underlying norm structure as well as on how the choice of basis functions
contributes to the approximation error (Theorem 3.3, Corollary 3.5). In the
MDP setting, we recover an existing result as a special case (Corollary 3.9).
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1970 MOHAJERIN ESFAHANI, SUTTER, KUHN, AND LYGEROS

discrete time

MDP

infinite LP

(P): J

robust program

(Pn): Jn

scenario program

(Pn,N ): Jn,N

semi-infinite program

(Dn): J̃n

regularized program

(Dn,η): J̃n,η

prior & posterior error

J̃n,η − Jn,N

infinite program

semi-infinite programs

finite programs

Proposition 3.2

strong duality

equivalent

Theorem 3.3

Theorem 4.4 Theorem 5.3

Theorem 6.1

Fig. 1. Graphical representation of the article structure and its contributions.

• We adopt the recent developments from the randomized optimization litera-
ture to propose a finite convex program whose solution enjoys a priori proba-
bilistic performance bounds (Theorem 4.4). We extend the existing results to
also offer an a posteriori bound under a generic underlying norm structure.
The required conditions and theoretical assertions are validated in the MDP
setting (Corollary 4.12).

• In parallel to the randomized approach, we also utilize the recent develop-
ments in the structural convex optimization literature to propose an iterative
algorithm for approximating the semi-infinite program. For this purpose, we
extend the setting to incorporate unbounded prox-terms with a certain growth
rate (Theorem 5.3). We illustrate how this extension allows us to deploy the
entropy prox-term in the MDP setting (Lemma 5.10, Corollary 5.8).

Section 2 introduces the main motivation for the work, namely, the control of
discrete-time MDP and their LP characterization. Using standard results in the liter-
ature we embed these MDP in the more general framework of infinite LPs. Section 3
studies the link from infinite LPs to semi-infinite programs. Section 4 presents the
approximation of semi-infinite programs based on randomization, while section 5 ap-
proaches the same objective using first-order convex optimization methods. Section 6
summarizes the results in the preceding sections, establishing the approximation error
from the original infinite LP to the finite convex counterparts. Section 7 illustrates
the theoretical results through a truncated linear quadratic Gaussian (LQG) example
and a fisheries management problem. The proof of a few technical lemmas and an
additional numerical simulation are given in an extended online version [34].

Notation. The set R+ denotes the set of nonnegative reals and ‖ · ‖`p for p ∈
[1,∞] the standard p-norm in Rn. Given a function u : S → R, we denote the
infinity norm of the function by ‖u‖∞ := sups∈S |u(s)| and the Lipschitz norm by

‖u‖L := sups,s′∈S
{
|u(s)|, |u(s)−u(s′)|

‖s−s′‖`∞

}
. The space of Lipschitz functions on a set S

is denoted by L (S); define the function 1(s) ≡ 1 ∀ s ∈ S. We denote the Borel
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FROM INFINITE TO FINITE PROGRAMS 1971

σ-algebra on the (topological) space S by B(S). Measurability is always understood
in the sense of Borel. Products of topological spaces are assumed to be endowed
with the product topology and the corresponding product σ-algebra. The space of
finite signed measures (resp., probability measures) on S is denoted by M(S) (resp.,
P(S)). The Wasserstein norm on the space of signed measures M(S) is defined by
‖µ‖W := sup‖u‖L≤1

∫
S
u(s)µ(ds) and can be shown to be the dual of the Lipschitz

norm. The set of extreme points of a set A is denoted by E{A}. Given a bilinear form〈
·, ·
〉
, the support function of A is defined by σA(y) = supx∈A

〈
y, x
〉
. The standard

bilinear form in Rn (i.e., the inner product) is denoted by y·x.

2. Motivation: Control of MDP and LP characterization.

2.1. MDP setting. We briefly recall some standard definitions and refer in-
terested readers to [2, 24, 25] for further details. Consider a Markov control model(
S,A, {A(s) : s ∈ S}, Q, ψ

)
, where S (resp., A) is a metric space called the state space

(resp., action space) and for each s ∈ S the measurable set A(s) ⊆ A denotes the set
of feasible actions when the system is in state s ∈ S. The transition law is a stochastic
kernel Q on S given the feasible state-action pairs in K := {(s, a) : s ∈ S, a ∈ A(s)}.
A stochastic kernel acts on real valued measurable functions u from the left as
Qu(s, a) :=

∫
S
u(s′)Q(ds′|s, a) ∀(s, a) ∈ K and on probability measures µ on K

from the right as µQ(B) :=
∫
K
Q(B|s, a)µ

(
d(s, a)

)
∀B ∈ B(S). Finally ψ : K → R+

denotes a measurable function called the one-stage cost function. The admissible
history spaces are defined recursively as H0 := S and Ht := Ht−1 × K for t ∈ N
and the canonical sample space is defined as Ω := (S × A)∞. All random variables
will be defined on the measurable space (Ω,G), where G denotes the corresponding
product σ-algebra. A generic element ω ∈ Ω is of the form ω = (s0, a0, s1, a1, . . .),
where si ∈ S are the states and ai ∈ A the action variables. An admissible policy
is a sequence π = (πt)t∈N0

of stochastic kernels πt on A given ht ∈ Ht, satisfying
the constraints πt(A(st)|ht) = 1. The set of admissible policies will be denoted by
Π. Given a probability measure ν ∈ P(S) and policy π ∈ Π, by the Ionescu Tulcea
theorem [7, pp. 140–141] there exists a unique probability measure Pπν on (Ω,G) such
that for all measurable sets B ⊂ S, C ⊂ A, ht ∈ Ht, and t ∈ N0

Pπν
(
s0 ∈ B

)
= ν(B), Pπν

(
at ∈ C|ht

)
= πt(C|ht), Pπν

(
st+1 ∈ B|ht, at

)
= Q(B|st, at).

The expectation operator with respect to Pπν is denoted by Eπν . The stochastic process(
Ω,G,Pπν , (st)t∈N0

)
is called a discrete-time MDP. For most of the article we consider

optimal control problems where the aim is to minimize a long-term AC over the set
of admissible policies and initial state measures. We definite the optimal value of the
optimal control problem by

JAC := inf
(π,ν)∈Π×P(S)

lim sup
T→∞

1

T
Eπν

[
T−1∑
t=0

ψ(st, at)

]
.(2.1)

We emphasize, however, that the results also apply to other performance objectives,
including the long-run discounted cost problem as shown in Appendix A.

2.2. Infinite LP characterization. The problem in (2.1) admits an alternative
LP characterization under some mild assumptions.

Assumption 2.1 (control model). We stipulate that
(i) the set of feasible state-action pairs is the unit hypercube K = [0, 1]dim(S×A);
(ii) the transition law Q is Lipschitz continuous, i.e., there exists LQ > 0 such that
|Qu(k)−Qu(k′)| ≤ LQ‖u‖∞‖k − k′‖`∞ ∀ k, k′ ∈ K;
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1972 MOHAJERIN ESFAHANI, SUTTER, KUHN, AND LYGEROS

(iii) the cost function ψ is nonnegative and Lipschitz continuous on K with respect
to the `∞-norm.

Assumption 2.1(i) may seem restrictive; however, essentially it simply requires
that the state-action set K is compact. We refer the reader to Example 7.2, where a
nonrectangular K is transferred to a hypercube, and to [27, Chapter 12.3] for further
information about the LP characterization in more general settings.

Theorem 2.2 (LP characterization [19, Proposition 2.4]). Under Assumption
2.1,

−JAC =


inf
ρ,u

−ρ
s. t. ρ+ u(s)−Qu(s, a) ≤ ψ(s, a) ∀(s, a) ∈ K,

ρ ∈ R, u ∈ L (S).

(2.2)

The LP (2.2) can be expressed in the standard conic form infx∈X
{〈
x, c
〉

: Ax−b ∈
K
}

by introducing
X = R×L (S), b(s, a) = −ψ(s, a),
x = (ρ, u) ∈ X, c = (c1, c2) = (−1, 0),
C = R×M(S),

〈
x, c
〉

= c1ρ+
∫
S
u(s)c2(ds),

K = L+(K), Ax(s, a) = −ρ− u(s) +Qu(s, a),

(2.3)

where M(S) is the set of finite signed measures supported on S, and L+(K) is the
cone of Lipschitz functions taking nonnegative values. It should be noted that the
choice of the positive cone K = L+(K) is justified since, thanks to Assumption 2.1(ii),
the linear operator A maps the elements of X into L (K).

Our aim is to derive an approximation scheme for a class of such infinite dimen-
sional LPs, including problems of the form (2.2), that comes with an explicit bound
on the approximation error.

3. Infinite to semi-infinite programs.

3.1. Dual pairs of normed vector spaces. The triple
(
X,C, ‖ · ‖

)
is called a

dual pair of normed vector spaces if
• X and C are vector spaces;
•
〈
·, ·
〉

is a bilinear form on X× C that “separates points,” i.e.,

– for each nonzero x ∈ X there is some c ∈ C such that
〈
x, c
〉
6= 0,

– for each nonzero c ∈ C there is some x ∈ X such that
〈
x, c
〉
6= 0;

• X is equipped with the norm ‖·‖, which together with the bilinear form in-
duces a dual norm in C defined through ‖c‖∗ := sup‖x‖≤1

〈
x, c
〉
.

The norm in the vector spaces is used as a means to quantify the performance of the
approximation schemes. In particular, we emphasize that the vector spaces are not
necessarily complete with respect to these norms.

Let
(
B,Y, ‖ · ‖

)
be another dual pair of normed vector spaces. As there is no

danger of confusion, we use the same notation for the potentially different norm and
bilinear form for each pair. Let A : X → B be a linear operator and K be a convex
cone in B. Given the fixed elements c ∈ C and b ∈ B, we define a linear program,
hereafter called the primal program P, as

J :=

{
inf
x∈X

〈
x, c
〉

s. t. Ax �K b,
(P)
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where the conic inequality Ax �K b is understood in the sense of Ax − b ∈ K.
Throughout this study we assume that the program P has an optimizer (i.e., the
infimum is indeed a minimum), the cone K is closed, and the operator A is continuous
where the corresponding topology is the weakest in which the topological duals of X
and B are C and Y, respectively. Let A∗ : Y→ C be the adjoint operator of A defined
by
〈
Ax, y

〉
=
〈
x,A∗y

〉
∀x ∈ X, ∀y ∈ Y. Recall that if A is weakly continuous, then

the adjoint operator A∗ is well defined as its image is a subset of C [27, Proposition
12.2.5]. The dual program of P is denoted by D and is given by

J̃ :=


sup
y∈Y

〈
b, y
〉

s. t. A∗y = c,
y ∈ K∗,

(D)

where K∗ is the dual cone of K defined as K∗ :=
{
y ∈ Y :

〈
b, y
〉
≥ 0 ∀b ∈ K

}
. It is

not hard to see that weak duality holds, as

J = inf
x∈X

sup
y∈K∗

〈
x, c
〉
−
〈
Ax− b, y

〉
≥ sup
y∈K∗

inf
x∈X

〈
x, c
〉
−
〈
Ax− b, y

〉
= J̃ .

An interesting question is when the above assertion holds as an equality. This is
known as zero duality gap, also referred to as strong duality particularly when both
P and D admit an optimizer [1, p. 52]. Our study is not directly concerned with
conditions under which strong duality between P and D holds; see [1, section 3.6] for
a comprehensive discussion of such conditions. The programs P and D are assumed
to be infinite, in the sense that the dimensions of the decision spaces (X in P, and Y
in D) as well as the number of constraints are both infinite.

3.2. Semi-infinite approximation. Consider a family of linearly independent
elements {xn}n∈N ⊂ X, and let Xn be the finite dimensional subspace generated
by the first n elements {xi}i≤n. Without loss of generality, we assume that xi are
normalized, i.e., ‖xi‖ = 1. Restricting the decision space X of P to Xn, along with an
additional norm constraint, yields the program

Jn :=


inf
α∈Rn

∑n
i=1 αi

〈
xi, c

〉
s. t.

∑n
i=1 αiAxi �K b,

‖α‖R ≤ θP ,
(3.1)

where ‖ · ‖R is a given norm on Rn and θP determines the size of the feasible set. In
the spirit of dual-paired normed vector spaces, one can approximate (X,C, ‖·‖) by the
finite dimensional counterpart (Rn,Rn, ‖ · ‖R) where the bilinear form is the standard
inner product. In this view, the linear operator A : X→ B may also be approximated
by the linear operator An : Rn → B with the respective adjoint A∗n : Y → Rn
defined as

Anα :=

n∑
i=1

αiAxi, A∗ny :=
[〈
Ax1, y

〉
, . . . ,

〈
Axn, y

〉]
.(3.2)

It is straightforward to verify the definitions (3.2) by noting that
〈
Anα, y

〉
= α·A∗ny

∀α ∈ Rn and y ∈ Y. Defining the vector c := [
〈
x1, c

〉
, . . . ,

〈
xn, c

〉
], we can rewrite the

program (3.1) as
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Jn :=


inf
α∈Rn

α·c
s. t. Anα �K b,

‖α‖R ≤ θP .
(Pn)

We call Pn a semi-infinite program, as the decision variable is a finite dimensional
vector α ∈ Rn, but the number of constraints is still in general infinite due to the conic
inequality. The additional constraint on the norm of α in Pn acts as a regularizer and
is a key difference between the proposed approximation schemes and existing schemes
in the literature. Methods for choosing the parameter θP will be discussed later.

Dualizing the conic inequality constraint in Pn and using the dual norm definition
leads to a dual counterpart

J̃n :=

{
sup
y∈Y

〈
b, y
〉
− θP‖A∗ny − c‖R∗

s. t. y ∈ K∗,
(Dn)

where‖ · ‖R∗ denotes the dual norm of ‖ · ‖R. Note that setting θP = ∞ effectively
implies that the second term of the objective in Dn introduces n hard constraints
A∗ny = c (cf. (3.2)). We study further the connection between Pn and Dn under the
following regularity assumption.

Assumption 3.1 (semi-infinite regularity). We stipulate that
(i) the program Pn is feasible;

(ii) there exists a positive constant γ such that ‖A∗ny‖R∗ ≥ γ‖y‖∗ for every y ∈ K∗,
and θP is large enough so that γθP > ‖b‖.

Assumption 3.1(ii) is closely related to the condition

inf
y∈K∗

sup
x∈Xn

〈
Ax, y

〉
‖x‖‖y‖∗

≥ γ,

which in the literature of numerical algorithms in infinite dimensional spaces, in par-
ticular the Galerkin discretization methods for partial differential equations, is often
referred to as the inf-sup condition; see [21] for a comprehensive survey. To see this,
note that for every x ∈ Xn the definitions in (3.2) imply that

〈
Ax, y

〉
=
〈
Anα, y

〉
=

α·A∗ny, x =
∑n
i=1 αixi. These conditions are in fact equivalent if the norm ‖ · ‖R

is induced by the original norm on X, i.e., ‖α‖R := ‖
∑n
i=1 αixi‖. We note that A∗n

maps an infinite dimensional space to a finite dimensional one, and as such Assump-
tion 3.1(ii) effectively necessitates that the null-space of A∗n intersects the positive
cone K∗ only at 0. In the following we show that this regularity condition leads to a
zero duality gap between Pn and Dn, as well as an upper bound for the dual optimiz-
ers. The latter turns out to be a critical quantity for the performance bounds of this
study.

Proposition 3.2 (duality gap and bounded dual optimizers). Under Assumption

3.1(i), the duality gap between the programs Pn and Dn is zero, i.e., Jn = J̃n. If in
addition Assumption 3.1(ii) holds, then for any optimizer y?n of the program Dn and
any lower bound JLB

n ≤ Jn we have

‖y?n‖∗ ≤ θD :=
θP‖c‖R∗ − JLB

n

γθP − ‖b‖
≤ 2θP‖c‖R∗
γθP − ‖b‖

.(3.3)

Proof. Since the elements {xi}i≤n are linearly independent, the feasible set of the
decision variable α in program Pn is a bounded closed subset of a finite dimensional
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space and hence compact. Thus, thanks to the feasibility Assumption 3.1(i) and
compactness of the feasible set, the zero duality gap follows because

Jn= inf
‖α‖R≤θP

{
α·c + sup

y∈K∗

〈
b−Anα, y

〉}
= sup
y∈K∗

inf
‖α‖R≤θP

{〈
b, y
〉
− α·(A∗ny − c)

}
= J̃n,

where the first equality holds by the definition of the dual cone K∗, and the second
equality follows from Sion’s minimax theorem [45, Theorem 4.2]. Thanks to the zero
duality gap above, we have

JLB
n ≤ Jn = J̃n =

〈
b, y?n

〉
− θP‖A∗ny?n − c‖R∗ ≤

〈
b, y?n

〉
− θP‖A∗ny?n‖R∗ + θP‖c‖R∗ .

By Assumption 3.1(ii), we then have

Jn ≤ ‖b‖‖y?n‖∗ − γθP‖y?n‖∗ + θP‖c‖R∗ = θP‖c‖R∗ −
(
γθP − ‖b‖

)
‖y?n‖∗,

which together with the lower bound JLB
n := −θP‖c‖R∗ ≤ Jn concludes the proof.

Proposition 3.2 effectively implies that in the program Dn one can add a norm
constraint ‖y‖∗ ≤ θD without changing the optimal value. The parameter θD depends
on JLB

n , a lower bound for the optimal value of Jn. A simple choice for such a lower
bound is −θP‖c‖R∗ , but in particular problem instances one may be able to obtain
a less conservative bound. We validate the assertions of Proposition 3.2 for long-
run AC problems in the next section and for long-run discounted cost problems in
Appendix A.

Program Pn is a restricted version of the original program P (also called an
inner approximation [27, Definition 12.2.13]), and thus J ≤ Jn. However, under
Assumption 3.1, we show that the gap Jn − J can be quantified explicitly. To this
end, we consider the projection mapping ΠA(x) := arg minx′∈A ‖x′ − x‖ and the
operator norm ‖A‖ := sup‖x‖≤1 ‖Ax‖ and define the set

Bn :=

{
n∑
i=1

αixi ∈ Xn : ‖α‖R ≤ θP

}
.(3.4)

Theorem 3.3 (semi-infinite approximation). Let x? and y?n be optimizers for
the programs P and Dn, respectively, and let rn := x? − ΠBn(x?) be the projection
residual of the optimizer x? onto the set Bn as defined in (3.4). Under Assumption
3.1(i), we have 0 ≤ Jn− J ≤

〈
rn,A∗y?n− c

〉
, where Jn and J are the optimal value of

the programs Pn and P. In addition, if Assumption 3.1(ii) holds, then

0 ≤ Jn − J ≤
(
‖c‖∗ + θD‖A‖

)
‖rn‖,(3.5)

where θD is the dual optimizer bound introduced in (3.3).

Proof. The lower bound 0 ≤ Jn − J is trivial, and we only need to prove the
upper bound. Note that since the optimizer x? ∈ X is a feasible solution of P, then
Ax? − b ∈ K. By the definition of the dual cone K∗, this implies that

〈
Ax?−b, y

〉
≥ 0

∀ y ∈ K∗. Since the dual optimizer y?n belongs to the dual cone K∗, then

Jn − J ≤ Jn − J +
〈
Ax? − b, y?n

〉
= Jn −

〈
x?, c

〉
+
〈
Ax?, y?n

〉
−
〈
b, y?n

〉
= Jn +

〈
x?,A∗y?n − c

〉
−
〈
b, y?n

〉
= Jn +

〈
rn,A∗y?n − c

〉
+
〈
ΠBn(x?),A∗y?n − c

〉
−
〈
b, y?n

〉
= Jn +

〈
rn,A∗y?n − c

〉
+ α̃·(A∗ny?n − c

)
−
〈
b, y?n
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1976 MOHAJERIN ESFAHANI, SUTTER, KUHN, AND LYGEROS

for some α̃ ∈ Rn with norm ‖α̃‖R ≤ θP ; for the last line, see the definition of the
operator An in (3.2) as well as the vector c in the program Pn. Using the definition
of the dual norm and the operators (3.2), one can deduce from above that

Jn−J≤ Jn+
〈
rn,A∗y?n − c

〉
+ θP‖A∗ny?n − c‖R∗−

〈
b, y?n

〉
=Jn +

〈
rn,A∗y?n − c

〉
− J̃n,

which in conjunction with the zero duality gap (Jn = J̃n) establishes the first assertion
of the proposition. The second assertion is simply the consequence of the first part
and the norm definitions, i.e.,〈

rn,A∗y?n − c
〉
≤ ‖rn‖‖c‖∗ + ‖Arn‖‖y?n‖∗ ≤ ‖rn‖

(
‖c‖∗ + ‖A‖‖y?n‖∗

)
.

Invoking the bound on the dual optimizer y?n from Proposition 3.2 completes the
proof.

Remark 3.4 (impact of norms on semi-infinite approximation). We note the
following concerning the impact of the choice of norms on the approximation error:

(i) The only norm that influences the semi-infinite program Pn is ‖ · ‖R on Rn.
When it comes to the approximation error (3.5), the norm ‖ · ‖R may have an
impact on the residual rn only if the set Bn in (3.4) does not contain ΠXn(x?),
the projection x? on the subspace Xn, where x? is an optimizer of the infinite
program P.

(ii) The norms of the dual pairs of vector spaces only appear in Theorem 3.3 to
quantify the approximation error. Note that in (3.5) the stronger the norm on
X, the higher ‖rn‖, and the lower ‖c‖∗ and ‖A‖. On the other hand, the stronger
the norm on B, the higher ‖b‖ and ‖A‖ and the lower γ (cf. Assumption 3.1(ii)).

The error bound (3.5) can be further improved when X is a Hilbert space. In this
case, let Xn denote the orthogonal complement of Xn. We define the restricted norms
by

‖c‖∗n := sup
x∈Xn

〈
x, c
〉

‖x‖
, ‖A‖n := sup

x∈Xn

‖Ax‖
‖x‖

.(3.6)

It is straightforward to see that by definition ‖c‖∗n ≤ ‖c‖∗ and ‖A‖n ≤ ‖A‖.
Corollary 3.5 (Hilbert structure). Suppose that X is a Hilbert space and ‖·‖ is

the norm induced by the corresponding inner product. Let {xi}i∈N be an orthonormal
dense family and ‖ · ‖R = ‖ · ‖`2 . Let x? be an optimal solution for P and chose
θP ≥ ‖x?‖. Under the assymptions of Theorem 3.3, we have

0 ≤ Jn − J ≤
(
‖c‖n + θD‖A‖n

)∥∥ΠXn(x?)
∥∥.

Proof. We first note that the `2-norm on Rn is indeed the norm induced by ‖ · ‖,
since due to the orthonormality of {xi}i∈N we have

‖α‖R :=
∥∥∥ n∑
i=1

αixi

∥∥∥ =

√√√√ n∑
i=1

α2
i ‖xi‖2 = ‖α‖`2 .

If θP ≥ ‖x?‖, then ΠBn(x?) = ΠXn(x?), i.e., the projection of the optimizer x? on
the ball Bn is in fact the projection onto the subspace Xn. Therefore, thanks to the
orthonormality, the projection residual rn = x? −ΠXn(x?) belongs to the orthogonal
complement Xn. Thus, following the same reasoning as in the proof of Theorem 3.3,
one arrives at a bound similar to (3.5) but using the restricted norms (3.6); recall that
the norm in a Hilbert space is self-dual.
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3.3. Semi-infinite results in the MDP setting. We now return to the MDP
setting in section 2, and in particular the AC problem (2.2), to investigate the appli-
cation of the proposed approximation scheme. Recall that the AC problem (2.1) can
be recast in an LP framework in the form of P; see (2.3). To complete this transition
to the dual pairs, we introduce the spaces X = R×L (S), C = R×M(S),

B = L (K), Y =M(K),
K = L+(K), K∗ =M+(K).

(3.7)

The bilinear form between each pair (X,C) and (B,Y) is defined in an obvious way
(cf. (2.3)). The linear operator A : X → B is defined as A(ρ, u)(s, a) := −ρ − u(s) +
Qu(s, a), and it can be shown to be weakly continuous [27, p. 220]. On the pair (X,C)
we consider the norms

‖x‖ = ‖(ρ, u)‖ = max
{
|ρ|, ‖u‖L} = max

{
|ρ|, ‖u‖∞, sup

s,s′∈S

u(s)−u(s′)
‖s−s′‖`∞

}
,

‖c‖∗ := sup
‖x‖≤1

〈
x, c
〉

= |c1|+ sup
‖u‖L≤1

∫
S
u(s)c2(ds) = |c1|+ ‖c2‖W.

(3.8a)

Recall that ‖ · ‖L is the Lipschitz norm on L (S) whose dual norm ‖ · ‖W in M(S)
is known as the Wasserstein norm [48, p. 105]. The adjoint operator A∗ : Y → C is
given by A∗y(·) :=

(
−
〈
1, y
〉
,−y(· ×A) + yQ(·)

)
, where 1 is the constant function in

L (S) with value 1. In the second pair (B,Y), we consider the norms
‖b‖ = ‖b‖L := max

{
‖b‖∞, sup

k,k′∈K

b(k)−b(k′)
‖k−k′‖`∞

}
,

‖y‖∗ := sup
‖b‖L≤1

〈
b, y
〉

= ‖y‖W.
(3.8b)

A commonly used norm on the set of measures is the total variation whose dual
(variational) characterization is associated with ‖ · ‖∞ in the space of continuous
functions [27, p. 2]. We note that in the positive cone K∗ = M+(K) the total
variation and Wasserstein norms indeed coincide.

Following the construction in Pn, we consider a collection of n-linearly indepen-
dent, normalized functions {ui}i≤n, ‖ui‖L = 1, and define the semi-infinite approxi-
mation of the AC problem (2.2) by

−JAC
n =


inf

(ρ,α)∈R×Rn
−ρ

s. t. ρ+
n∑
i=1

αi
(
ui(s)−Qui(s, a)

)
≤ ψ(s, a) ∀(s, a) ∈ K,

‖α‖R ≤ θP .

(3.9)

Comparing with the program Pn, we note that the finite dimensional subspace Xn ⊂
R × L (S) is the subspace spanned by the basis elements x0 = (1, 0) and xi =
(0, ui) ∀ i ∈ {1, . . . , n}, i.e., the subspace Xn is in fact n + 1 dimensional. Moreover,
the norm constraint in (3.9) is only imposed on the second coordinate of the decision
variables (ρ, α) (i.e., ‖α‖R ≤ θP). The following lemmas address the operator norm
and the respective regularity requirements of Assumption 3.1 for the program (3.9).

Lemma 3.6 (MDP operator norm). In the AC problem (2.2) under Assumption
2.1(ii) with the specific norms defined in (3.8), the linear operator norm satisfies
‖I −Q‖ := sup‖u‖L≤1 ‖u−Qu‖L ≤ 1 + max{LQ, 1}.
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Proof. Using the triangle inequality it is straightforward to see that

‖I −Q‖ = sup
u∈L (S)

‖u−Qu‖L
‖u‖L

≤ 1 + sup
u∈L (S)

‖Qu‖L
‖u‖L

≤ 1 + sup
u∈L (S)

‖Qu‖L
‖u‖∞

≤ 1 + max
{
LQ, sup

u∈L (S)

‖Qu‖∞
‖u‖∞

}
≤ 1 + max{LQ, 1},

where the second line is an immediate consequence of Assumption 2.1(ii) and the fact
that the operator Q is a stochastic kernel. Hence, |Qu(s, a)| = |

∫
S
u(y)Q(dy|s, a)| ≤

‖u‖∞(
∫
S
Q(dy|s, a)) = ‖u‖∞.

Lemma 3.7 (MDP semi-infinite regularity). Consider the AC program (2.2) un-
der Assumption 2.1. Then, Assumption 3.1 holds for the semi-infinite counterpart in
(3.9) for any positive θP and all sufficiently large γ. In particular, the dual optimizer
bound in Proposition 3.2 simplifies to ‖y?n‖W ≤ θD = 1.

Proof. Since K is compact, for any nonnegative θP , the program (3.9) is feasible
and the optimal value is bounded; recall that ‖(Q − I)ui‖L ≤ 1 + max{LQ, 1} from
Lemma 3.6 and ‖ψ‖∞ <∞ thanks to Assumption 2.1(iii). Hence, the optimal value
of (3.9) is bounded and, without loss of generality, one can add a redundant constraint
|ρ| ≤ ω−1θP , where ω is a sufficiently small positive constant. In this view, the last
constraint ‖α‖R ≤ θP may be replaced with

‖(ρ, α)‖ω := max{ω|ρ|, ‖α‖R} ≤ θP ,(3.10)

where ‖ · ‖ω can be cast as the norm on the pair (ρ, α) ∈ R × Rn+1. Using the ω-
norm as defined in (3.10), we can now directly translate the program (3.9) into the
semi-infinite framework of Pn. As mentioned above, the feasibility requirement in
Assumption 3.1(i) immediately holds. In addition, observe that for every y ∈ K∗ we
have

‖A∗ny‖ω∗ = sup
‖(ρ,α)‖ω≤1

(ρ, α)·[− 〈1, y〉, 〈Qu1 − u1, y
〉
, . . . ,

〈
Qun − un, y

〉]
= sup
ω|ρ|≤1

−ρ
〈
1, y
〉

+ sup
‖α‖R≤1

α·[〈Qu1 − u1, y
〉
, . . . ,

〈
Qun − un, y

〉]
≥ ω−1‖y‖W,

where the third line above follows from the equality
〈
1, y
〉

= ‖y‖W for every y in the
positive cone K∗ and the fact that the second term in the second line is nonnegative.
Since ω can be arbitrarily close to 0, the inf-sup requirement Assumption 3.1(ii) holds
for all sufficiently large γ = ω−1. The second assertion of the lemma follows from
the bound (3.3) in Proposition 3.2. To show this, recall that in the MDP setting
c = (−1, 0) ∈ R ×M(S) (cf. (2.3)) with the respective vector c = [−1, 0, . . . , 0] ∈
R×Rn (cf. Pn). Thus, ‖c‖ω∗ = sup‖(ρ,α)‖ω≤1 (ρ, α)·[−1, 0, . . . , 0] = ω−1, which helps
simplifying the bound (3.3) to

‖y?n‖W ≤ θD :=
θP‖c‖R∗ − JLB

n

γθP − ‖b‖
=
θPω

−1 + ‖ψ‖∞
ω−1θP − ‖ψ‖L

,

which delivers the desired assertion when ω tends to 0.

Remark 3.8 (AC dual optimizers bound). As opposed to the general LP in Propo-
sition 3.2, Lemma 3.7 implies that the dual optimizers for the AC problem are not
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influenced by the primal norm bound θP and are uniformly bounded by 1. In fact, this
result can be strengthened to ‖y?n‖W = 1 due to the special minimax structure of the
AC program (3.9). This refinement is not needed at this stage and we postpone the
discussion to section 5.2. The feature discussed in this remark, however, does not hold
for the class of long-run discounted cost problems; see Lemma A.2 in Appendix A.

Now we are in a position to translate Theorem 3.3 to the MDP setting for the
AC problem (2.2).

Corollary 3.9 (MDP semi-infinite approximation). Let JAC and u? be the
optimal value and an optimizer for the AC program (2.2), respectively. Consider the
semi-infinite program (3.9) where θP > ‖ψ‖L, and let Un := {

∑n
i=1 αiui : ‖α‖R ≤

θP}. Then, the optimal value of (3.9) satisfies the inequality

0 ≤ JAC − JAC
n ≤

(
1 + max{LQ, 1}

)∥∥u? −ΠUn(u?)
∥∥

L
.

Proof. We first note that the existence of the optimizer u? is guaranteed under
Assumption 2.1 [27, Theorem 12.4.2]. The proof is a direct application of Theorem 3.3
under the preliminary results in Lemmas 3.7 and 3.6. Observe that the projection
error is rn := (ρ?, u?) − ΠUn(ρ?, u?) =

(
0, u? − ΠUn(u?)

)
, resulting in

〈
rn, c

〉
= 0.

Thanks to this observation, Lemma 3.6, the assertion of Theorem 3.3 translates to

0 ≤ JAC − JAC
n = Jn − J ≤

〈
rn,A∗y?n − c

〉
=
〈
Arn, y?n

〉
≤ ‖I −Q‖ ‖rn‖L ‖y?n‖W

≤ (1 + max{LQ, 1})‖u? −ΠUn(u?)‖L.

Observe that if from the beginning we consider the norm ‖ · ‖∞ on the spaces
X and B, it is not difficult to see that the operator norm in Lemma 3.6 simplifies
to 2 (recall that Q is a stochastic kernel). Thus, the semi-infinite bound reduces
to JAC − JAC

n ≤ 2‖u? − ΠUn(u?)‖∞. One may arrive at this particular observation
through a more straightforward approach: Using the shorthand notation (Q− I)u :=
Qu− u, we have

JAC − JAC
n ≤ min

k∈K

((
Q− I

)
u?(k) + ψ(k)

)
−min
k∈K

((
Q− I

)
ΠUn(u?)(k) + ψ(k)

)
≤ max

k∈K

(
Q− I

)(
u? −ΠUn(u?)

)
(k) ≤

∥∥(Q− I)(u? −ΠUn(u?)
)∥∥
∞

≤ 2
∥∥u? −ΠUn(u?)

∥∥
∞.

Theorem 3.3 is a generalization to the above observation in two respects:
• It holds for a general LP that, unlike the AC problem (2.2), may not neces-

sarily enjoy a min-max structure.
• The result reflects how the bound on the decision space (i.e., θP in Pn)

influences the dual optimizers as well as the approximation performance in
generic normed spaces.

The latter feature is of particular interest as the boundedness of the decision space
is often an a priori requirement for optimization algorithms; see, for instance, [37]
and the results in section 5. The approximation error from the original infinite LP to
the semi-infinite version is quantified in terms of the projection residual of the value
function. Clearly, this is where the choice of the finite dimensional ball Un plays a
crucial role. We close this section with a remark on this point.

Remark 3.10 (projection residual). The residual error
∥∥u? − ΠUn(u?)

∥∥
L

can be
approximated by leveraging results from the literature on universal function approxi-
mation. Prior information about the value function u? may offer explicit quantitative
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bounds. For instance, for MDP under Assumption 2.1 we know that u? is Lipschitz
continuous. For an appropriate choice of basis functions, we can therefore ensure a
convergence rate of n−1/ dim(S), where dim(S) is the dimension of the state-action set
S; see, for instance, [22] for polynomials and [41] for the Fourier basis functions.

4. Semi-infinite to finite programs: Randomized approach. We study
conditions under which one can provide a finite approximation to the semi-infinite pro-
grams of the form Pn that are in general known to be computationally intractable—
NP-hard [4, p. 16]. We approach this goal by deploying tools from two areas, leading
to different theoretical guarantees for the proposed solutions. This section focuses
on a randomized approach and the next section is dedicated to an iterative gradient-
based descent method. The solution of each of these methods comes with a priori as
well as a posteriori performance certificates.

4.1. Randomized approach. We start with a lemma suggesting a simple bound
on the norm of the operator An in (3.2). We will use the bound to quantify the ap-
proximation error of our proposed solutions.

Lemma 4.1 (semi-infinite operator norm). Consider the operator An : Rn → B
as defined in (3.2). Then,

‖An‖ := sup
α∈Rn

‖Anα‖
‖α‖R

≤ ‖A‖%n, %n := sup
‖α‖R≤1

‖α‖`1 ,(4.1)

where the constant %n is the equivalence ratio between the norms ‖ · ‖R and ‖ · ‖`1 .1

Proof. See [34, Lemma 4.1]. The proof follows directly from the definition of the
operator norm, that is,

‖Anα‖ =
∥∥∥ n∑
i=1

αiAxi
∥∥∥ ≤ ‖A‖∥∥∥ n∑

i=1

αixi

∥∥∥,
together with the inequality

∥∥∑n
i=1 αixi

∥∥ ≤ ‖α‖`1 maxi≤n ‖xi‖ = ‖α‖`1 , which con-
cludes the proof.

Since K is a closed convex cone, then K∗∗ = K [1, p. 40], and as such the conic
constraint in program Pn can be reformulated as

Anα �K b ⇐⇒
〈
Anα− b, y

〉
≥ 0 ∀y ∈ K := E{y ∈ K∗ : ‖y‖∗ = 1},(4.2)

where E{B} denotes the extreme points of the set B, i.e., the set of points that
cannot be represented as a strict convex combination of some other elements of the
set. Notice that the norm constraint as well as the restriction to the extreme points
in the definition of K in (4.2) do not sacrifice any generality, as conic constraints are
homogeneous. These restrictions are introduced to improve the approximation errors.
In what follows, however, one can safely replace the set K with any subset of the cone
K∗ whose closure contains K. This adjustment may be taken into consideration for
computational advantages. Let P be a Borel probability measure supported on K,
and {yj}j≤N be independent, identically distributed (i.i.d.) samples generated from
P. Consider the scenario counterpart of the program Pn defined as

Jn,N :=


min
α∈Rn

α·c
s. t. α·A∗nyj ≥ 〈b, yj〉, j ∈ {1, . . . , N},

‖α‖R ≤ θP ,
(Pn,N )

1The constant %n is indexed by n as it potentially depends on the dimension of α ∈ Rn.
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FROM INFINITE TO FINITE PROGRAMS 1981

where the adjoint operator A∗n : B → Rn is introduced in (3.2). The optimization
problem Pn,N is a standard finite convex program and thus computationally tractable
whenever the norm constraint ‖α‖R ≤ θP is tractable. Program Pn,N is a relaxation of
Pn, i.e., Jn ≥ Jn,N ; note that Jn,N is a random variable, and therefore the relaxation
error Jn − Jn,N can only be interpreted in a probabilistic sense.

Definition 4.2 (tail bound). Given a probability measure P supported on K,
we define the function p : Rn × R+ → [0, 1] as

p(α, ζ) := P
[
y : σK(−Anα+ b) <

〈
−Anα+ b, y

〉
+ ζ
]
,

where σK(·) := supy∈K
〈
·, y
〉

is the support function of K. We call h : Rn×[0, 1]→ R+

a tail bound (TB) of the program Pn,N if ∀ ε ∈ [0, 1] and α we have

h(α, ε) ≥ sup
{
ζ : p(α, ζ) ≤ ε

}
.

The TB function in Definition 4.2 can be interpreted as a shifted quantile function
of the mapping y 7→

〈
− Anα + b, y

〉
on K—the “shift” is referred to the maximum

value of the mapping which is σK(−Anα+ b). TB functions depend on the probability
measure P generating the scenarios {yj}j≤N in the program Pn,N , as well as the
properties of the optimization problem. Definition 4.2 is rather abstract and not
readily applicable. The following example suggests a more explicit, but not necessarily
optimal, candidate for a TB.

Example 4.3 (TB candidate). Let g : R+ → [0, 1] be a nondecreasing function
such that for any κ ∈ K we have g(γ) ≤ P

[
Bγ(κ)

]
, where Bγ(κ) is the open ball

centered at κ with radius γ; note that function g depends on the choice of the norm
on Y. Then, a candidate for a TB function of the program Pn,N is

h(α, ε) := ‖Anα− b‖g−1(ε) ≤
(
%n‖A‖‖α‖R + ‖b‖

)
g−1(ε),

where the inverse function is understood as g−1(ε) := sup{γ ∈ R+ : g(γ) ≤ ε}, and
%n is the constant ratio defined in (4.1).

To see this note that according to Definition 4.2 we have

p(α, ζ) = P

[
y : sup

κ∈K

〈
−Anα+ b, κ− y

〉
< ζ

]
= inf
κ∈K

P
[
y :

〈
−Anα+ b, κ− y

〉
< ζ
]

≥ inf
κ∈K

P [y : ‖Anα− b‖‖y − κ‖∗ < ζ] = inf
κ∈K

P
[
Bγ(ζ)(κ)

]
≥ g(γ(ζ)),

where γ(ζ) := ζ‖Anα− b‖−1. Thus, if p(α, ζ) ≤ ε, then g(γ(ζ)) ≤ ε and by con-
struction of the inverse function g−1 we have ζ‖Anα − b‖−1 ≤ g−1(ε). In view of
Definition 4.2, this observation readily suggests that the function h(α, ε) := ‖Anα −
b‖g−1(ε) is indeed a TB candidate, and the suggested upper bound follows readily
from Lemma 4.1.

Theorem 4.4 (randomized approximation error). Consider the programs Pn
and Pn,N with the associated optimum values Jn and Jn,N , respectively. Let Assump-
tion 3.1 hold, α?N be the optimizer of the program Pn,N , and the function h be a TB
as in Definition 4.2. Given ε, β in (0, 1), we define

N(n, ε, β) := min
{
N ∈ N :

n−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β

}
.(4.3)D
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1982 MOHAJERIN ESFAHANI, SUTTER, KUHN, AND LYGEROS

For all positive parameters ε, β, and N ≥ N(n, ε, β) we have

PN
[
0 ≤ Jn − Jn,N ≤ θDh

(
α?N , ε

)]
≥ 1− β,(4.4a)

where the constant θD is defined as in (3.3). In particular, suppose the function h is
the TB candidate from Example 4.3 with corresponding g function, and

N ≥ N
(
n, g(znε), β

)
, zn :=

(
θD
(
θP%n‖A‖+ ‖b‖

))−1

,(4.4b)

where %n is the ratio constant defined in Lemma 4.1. We then have

PN
[
0 ≤ Jn − Jn,N ≤ ε

]
≥ 1− β .(4.4c)

Theorem 4.4 extends the result [35, Theorem 3.6] in two respects:
• The bounds (4.4) are described in terms of a generic norm and the corre-

sponding dual optimizer bound.
• Through the optimizer of Pn,N , the bounds involve an a posteriori element

(cf. (4.4a) to (4.4c)).
Before proceeding with the proof, we first remark on the complexity of the a pri-
ori bound of Theorem 4.4, its implications for an appropriate choice of θP , and its
dependence on the dual pair norms.

Remark 4.5 (curse of dimensionality). The TB function h of Example 4.3 may
grow exponentially in the dimension of the support set K (i.e., h(α, ε) ∝ ε− dim(K)).
Since N(n, ·, β) admits a linear growth rate, the a priori bound (4.4c) effectively leads
to an exponential number of samples in the precision level ε, an observation related to
the curse of dimensionality [35, Remark 3.9]. To mitigate this inherent computational
complexity, one may resort to a more elegant sampling approach so that the required
number of samples N has a sublinear rate in the second argument; see [36].

Remark 4.6 (Optimal choice of θP). In view of the a priori error in Theorem 4.4,
the parameter θP may be chosen so as to minimize the required number of samples.
To this end, it suffices to maximize zn defined in (4.4b) over all θP > ‖b‖γ−1 (see
Assumption 3.1(ii)), where θD is defined in (3.3). One can show that the optimal
choice in this respect is analytically available as

θ?P :=
‖b‖
γ

+

√(‖b‖
γ

+
‖b‖

%n‖A‖

)(‖b‖
γ
− JLB

n

‖c‖R∗

)
,

where JLB
n is a lower bound on the optimal value of Pn used in (3.3).

Remark 4.7 (norm impact on finite approximation). In addition to what has al-
ready been highlighted in Remark 3.4, the choice of norms in the dual pairs of normed
vector spaces also has an impact on the function g−1(ε). More specifically, the stronger
the norm in the space B, the larger the balls in the dual space Y, and thus the smaller
the function g−1.

To prove Theorem 4.4 we need a few preparatory results.

Lemma 4.8 (perturbation function). Given δ ∈ B, consider the δ-perturbed
program of Pn defined as

Jn(δ) :=


inf
α∈Rn

α·c
s. t. Anα �K b− δ,

‖α‖R ≤ θP .
(Pn(δ))D
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Under Assumption 3.1, we then have Jn − Jn(δ) ≤
〈
δ, y?n

〉
, where y?n is an optimizer

of Dn.

Proof. For the proof we first introduce the dual program of Pn(δ):

J̃n(δ) :=

{
sup
y

〈
b− δ, y

〉
− θP‖A∗ny − c‖R∗

s. t. y ∈ K∗.
(Dn(δ))

We then have

Jn − Jn(δ) = J̃n − Jn(δ) =
〈
b, y?n

〉
− θP‖A∗ny?n − c‖R∗ − Jn(δ)

=
〈
δ, y?n

〉
+
〈
b− δ, y?n

〉
− θP‖A∗ny?n − c‖R∗ − Jn(δ)

≤
〈
δ, y?n

〉
+ J̃n(δ)− Jn(δ) ≤

〈
δ, y?n

〉
,

where the first line follows from the strong duality (gap-free) between Pn and Dn
by Proposition 3.2. The third line is due to the fact that y?n is a feasible solution of
Dn(δ), and the last line follows from weak duality between Pn(δ) and Dn(δ).

Lemma 4.9 (perturbation error). Let α?N be an optimal solution of Pn,N and
assume that δ ∈ B satisfies the conic inequality Anα?N �K b − δ. Then, under As-
sumption 3.1, we have 0 ≤ Jn − Jn,N ≤

〈
δ, y?n

〉
.

Proof. The lower bound on Jn − Jn,N is trivial since Pn,N is a relaxation of Pn.
For the upper bound the requirement on δ in the program Pn(δ) implies that α?N is
a feasible solution of Pn(δ). We then have Jn,N ≥ Jn(δ), and thus 0 ≤ Jn − Jn,N ≤
Jn − Jn(δ). Applying Lemma 4.8 completes the proof.

The following fact follows readily from Definition 4.2; see [34, Lemma 4.10] for a
formal proof in this regard.

Fact 4.10 (TB lower bound). If α ∈ Rn satisfies P
[
y :
〈
Anα− b, y

〉
< 0
]
≤ ε,

for any TB function in the sense of Definition 4.2 we have σK(−Anα+ b) ≤ h(α, ε).

We follow our discussion with a result from randomized optimization in a convex
setting.

Theorem 4.11 (finite-sample probabilistic feasibility [10, Theorem 1]). Assume
that the program Pn,N admits a unique minimizer α?N .2 If N ≥ N(n, ε, β) as defined
in (4.3), then with confidence at least 1− β (across multiscenarios {yj}j≤N ⊂ K) we
have P

[
y :

〈
AnαN − b, y

〉
< 0
]
≤ ε.

We are now in a position to prove Theorem 4.4.

Proof of Theorem 4.4. By definition of the support function we know that σK(δ) =
σconv(K)(δ), where conv(K) is the convex hull of K. Recall that by definition of the set
K in (4.2), we also have y/‖y‖∗ ∈ conv(K) for any y ∈ K∗. Thus, for any δ ∈ B and
y ∈ K∗ we have

〈
δ, y
〉
≤ ‖y‖∗σK(δ). This leads to

0 ≤ Jn − Jn,N ≤
〈
−Anα?N + b, y?n

〉
≤ ‖y?n‖∗σK(−Anα?N + b),

where the second inequality is due to Lemma 4.9 as δ = −Anα?N + b clearly satisfies
the requirements. By Fact 4.10 and Theorem 4.11, we know that with probability at
least 1− β we have σK(−AnαN + b) ≤ h(αN , ε), which in conjunction with the dual

2The uniqueness assumption may be relaxed at the expense of solving an auxiliary convex pro-
gram; see [35, section 3.3].
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optimizer bound in Proposition 3.2 results in (4.4a). Now using the TB candidate
in Example 4.3 immediately leads to the first assertion of (4.4c). Recall that the
solution Pn,N obeys the norm bound ‖α?N‖R ≤ θP . Thus, by employing the triangle
inequality together with Lemma 4.1 we arrive at the second assertion (4.4c).

Theorem 4.4 quantifies the approximation error between programs Pn and Pn,N
probabilistically in terms of the TB functions as introduced in Definition 4.2. The
natural question is under what conditions the proposed bound can be made arbitrarily
small. This question is intimately related to the behavior of TB functions. For the
TB candidate proposed in Example 4.3, the question translates to when the measure
of a ball Bγ(κ) ⊂ K has a lower bound g(γ) uniformly away from 0 with respect to
the location of its center: the answer to this question also depends on the properties
of the norm on (B,Y, ‖ · ‖). A positive answer to this question requires that the set
K can be covered by finitely many balls, indicating that K is indeed compact with
respect to the (dual) norm topology. In the next subsection we study this requirement
in more detail in the MDP setting.

4.2. Randomized results in the MDP setting. We return to the MDP set-
ting and discuss the implication of Theorem 4.4 as the bridge from the semi-infinite
program Pn to the finite counterpart Pn,N . Recall the dual pairs of vector spaces set-
ting in (3.7) with the assigned norms (3.8). To construct the finite program Pn,N , we
need to sample from the set of extreme points of P(K), i.e., the set of point measures

K := E
(
P(K)

)
=
{
δδδ(s,a) : (s, a) ∈ K

}
,

where δδδ(s,a) denotes a point probability distribution at (s, a) ∈ K. In this view, in
order to sample elements from K it suffices to sample from the state-action feasible
pairs (s, a) ∈ K.

Corollary 4.12 (MDP finite randomized approximation error). Let {(sj , aj)}j≤N
be N i.i.d. samples generated from the uniform distribution on K. Consider the
program

−JAC
n,N =


inf

(ρ,α)∈Rn+1
−ρ

s. t. ρ+
n∑
i=1

αi
(
ui(sj)−Qui(sj , aj)

)
≤ ψ(sj , aj) ∀j ≤ N,

‖α‖R ≤ θP .

(4.5)

where the basis functions {ui}i≤n introduced in (3.9) are normalized (i.e., ‖ui‖L = 1).
Let LQ be the Lipschitz constant from Assumption 2.1(ii), and define the constant

zn :=
(
θP%n(max{LQ, 1} + 1) + ‖ψ‖L

)−1
, where %n is the ratio constant introduced

in (4.1). Then, ∀ ε, β in (0, 1) and N ≥ N
(
n+ 1, (znε)

dim(K), β
)

defined in (4.3), we
have PN [0 ≤ JAC

n,N − JAC
n ≤ ε] ≥ 1− β.

Proof. Let (ρ?N , α
?
N ) be the optimal solution for (4.5). Observe that in the MDP

setting, Assumption 2.1(ii) implies

‖Anα?N − b‖ =
∥∥∥− ρ?N +

n∑
i=1

α?N(i)(Q− I)ui + ψ
∥∥∥

L

≤ (max{LQ, 1}+ 1)
∥∥∥ n∑
i=1

α?N(i)ui

∥∥∥
L

+ ‖ − ρ?N + ψ‖L

≤ (max{LQ, 1}+ 1)θP%n

(
max
i≤n
‖ui‖L

)
+ ‖ψ‖L,(4.6)
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where the equality ‖ − ρ?N + ψ‖L = ‖ψ‖L leading to (4.6) follows from the fact that
ψ and ρ? are nonnegative (note that α = 0, ρ = 0 is a trivial feasible solution for
(4.5)). In the second step, we propose a TB candidate in the sense of Definition 4.2.
Note that for any k, k′ ∈ K, by the definition of the Wasserstein norm we have
‖δδδ{k} − δδδ{k′}‖W = min{1, ‖k − k′‖∞}. Thus, generating samples uniformly from K
leads to

P
[
Bγ(κ)

]
≥ P

[
Bγ(k)

]
≥ γdim(K) ∀κ ∈ K, ∀k ∈ K,(4.7)

where, with slight abuse of notation, the first ball Bγ(κ) is a subset of the infinite
dimensional space Y with respect to the dual norm ‖ · ‖W, while the second ball
Bγ(k) is a subset of the finite dimensional space K whose respective norm is ‖ · ‖∞.
The relation (4.7) readily suggests a function g : R+ → [0, 1] for Example 4.3, which
together with (4.6) and the fact that the basis functions are normalized yields

h(α, ε) := ‖Anα− b‖g−1(ε) ≤
(
θP%n(max{LQ, 1}+ 1) + ‖ψ‖L

)
ε1/ dimK .

Recall from Lemma 3.7 that the dual multiplier bound is θD = 1, and feasible solution
α is bounded by θP . Finally, note that the decision variable of the program (4.5) is
the n + 1 dimensional pair (ρ, α). Given all the information above, the claim then
readily follows from the second result of Theorem 4.4 in (4.4c).

To select θP , one may minimize the complexity of the a priori bound in Corol-
lary 4.12, which is reflected through the required number of samples. At the same
time, the impact of the bound θP on the approximation step from infinite to semi-
infinite in Corollary 3.9 should also be taken into account. The first factor is mono-
tonically decreasing with respect to θP , i.e., the smaller the parameter θP , the lower
the number of the required samples. The second factor is presented through the pro-
jection residual (cf. Remark 3.10). Therefore, an acceptable choice of θP is an upper
bound for the projection error of the optimal solution onto the ball Un uniformly in
n ∈ N, i.e.,

θP ≥ sup

{
‖α?‖R : ΠUn(x?) =

n∑
i=1

α?i ui, n ∈ N
}
.(4.8a)

The above bound may be available in particular cases, e.g., when ‖ · ‖R = ‖ · ‖`2 it
yields the bound

‖α?‖`2 =

√∫
S

u?2(s)ds ≤ ‖u?‖L ≤ max{LQ, 1}‖ψ‖∞,(4.8b)

where LQ is the Lipschitz constant in Assumption 2.1(ii). We note that the first
inequality in (4.8b) follows since S is a unit hypercube, and the second inequality
follows from [19, Lemma 2.3]; see also [19, section 5] for further detailed analysis.

5. Semi-infinite to finite program: Structural convex optimization.
This section approaches the approximation of the semi-infinite program Pn from an
alternative perspective relying on an iterative first-order descent method. As opposed
to the scenario approach presented in section 4, which is probabilistic and starts from
the program Pn, the method of this section is deterministic and starts with the dual
counterpart Dn, in particular a regularized version whose solutions can be computed
efficiently. It turns out that the regularized solution allows one to reconstruct a
nearly feasible solution for both programs Pn and Dn, offering a meaningful perfor-
mance bound for the approximation step from the semi-infinite program to a finite
program.
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5.1. Structural convex optimization. The basis of our approach is the fast
gradient method that significantly improves the theoretical and, in many cases, also
the practical convergence speed of the gradient method. The main idea is based
on a well-known technique of smoothing nonsmooth functions [38]. To simplify the
notation, for a given θP we define the sets

A :=
{
α ∈ Rn : ‖α‖R ≤ θP

}
, Y :=

{
y ∈ K∗ : ‖y‖∗ ≤ θD

}
,

where θD is the constant defined in (3.3). Recall that in the wake of Proposition 3.2
we know that the decision variables of the dual program Dn may be restricted to the
set Y without loss of generality. We modify the program Dn with a regularization
term scaled with the nonnegative parameter η and define the regularized program

J̃n,η := sup
y∈Y

{〈
b, y
〉
− θP‖A∗ny − c‖R∗ − ηd(y)

}
,(Dn,η)

where the regularization function d : Y → R+, also known as the prox-function, is
strongly convex. The choice of the prox-function depends on the specific problem
structure and may have significant impact on the approximation errors. Given the
regularization term η and the parameter α ∈ Rn, we introduce the auxiliary quantity

y?η(α) := arg max
y∈Y

{〈
b−Anα, y

〉
− ηd(y)

}
.(5.1)

It is computationally crucial for the solution method proposed in this part that the
prox-function allows us to have access to the auxiliary variable y?η(α) for each α ∈ Rn.
This requirement is formalized as follows.

Assumption 5.1 (Lipschitz gradient). Consider the adjoint operator A∗n in (3.2)
and the optimizer y?η(α) of the auxiliary quantity (5.1). We assume that for each
α ∈ A the vector A∗ny?η(α) ∈ Rn can be approximated to an arbitrary precision, and

the mapping α 7→ A∗ny?η(α) is Lipschitz continuous with a constant L
η , i.e.,

‖A∗ny?η(α)−A∗ny?η(α′)‖R∗ ≤
L

η
‖α− α′‖R ∀α, α′ ∈ A .

Let ϑ > 0 be the strong convexity parameter of the mapping α 7→ 1
2‖α‖

2
R with

respect to the R-norm. We then define the operator T : Rn × Rn → Rn as

T(q, α) := arg min
β∈A

{
q·β +

1

2ϑ
‖β − α‖2R

}
.(5.2)

More generally, a different norm can be used in the second term in (5.2) when ϑ is
a different strong convexity parameter. However, we forgo this additional generality
to keep the exposition simple. The operator T is defined implicitly through a finite
convex optimization program whose computational complexity may depend on the
R-norm through the constraint set A . For typical norms in Rn (e.g., ‖ · ‖`p) the
pointwise evaluation of the operator T is computationally tractable. Furthermore, if
‖ · ‖R = ‖ · ‖`2 , then the definition of (5.2) has an explicit analytical description for
any pair (q, α) as follows.

Lemma 5.2 (explicit description of T). Suppose in the definition of the operator
(5.2) the R-norm is the classical `2-norm. Then, the operator T admits the analytical
description T(q, α) = ξ (α− q), where ξ := min

{
1, θP‖q − α‖−1

`2

}
.
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FROM INFINITE TO FINITE PROGRAMS 1987

Algorithm 1. Optimal scheme for smooth convex optimization.

Choose some w(0) ∈ A
For k ≥ 0 do

1. Define r(k) := η
L

(
c−A∗ny?η(w(k))

)
;

2. Compute z(k) := T
(∑k

j=0
j+1

2 r(j), 0
)
, α(k) := T

(
1
ϑr

(k), w(k)
)
;

3. Set w(k+1) = 2
k+3z

(k) + k+1
k+3α

(k).

Proof. See [34, Lemma 5.2].

Algorithm 1 exploits the information revealed under Assumption 5.1 as well as the
operator T to approximate the solution of the program Dn. The following proposition
provides explicit error bounds for the solution provided by Algorithm 1 after k iter-
ations. The result is a slight extension of the classical smoothing technique in finite
dimensional convex optimization [38, Theorem 3] where the prox-function is not nec-
essarily uniformly bounded, a potential difficulty in infinite dimensional spaces. We
address this difficulty by considering a growth rate for the prox-function d evaluated
at the optimal solution y?η . We later show how this extension will help in the MDP
setting.

Theorem 5.3 (smoothing approximation error). Suppose Assumption 5.1 holds
with constant L and ϑ is the strong convexity parameter in the definition of the oper-
ator T in (5.2). Given the regularization term η > 0 and k iterations of Algorithm 1,
we define

α̂η := α(k), ŷη :=

k∑
j=0

2(j + 1)

(k + 1)(k + 2)
y?η(w(j)).

Under Assumption 3.1, the optimal value of the program Pn is bounded by JLB
n,η ≤

Jn ≤ JUB
n,η , where

JLB
n,η :=

〈
b, ŷη

〉
− θP‖A∗nŷη − c‖R∗ , JUB

n,η := α̂η·c + sup
y∈Y

〈
b−Anα̂η, y

〉
.(5.3)

Moreover, suppose there exist positive constants c, C such that

C max
{

log
(
cη−1

)
, 1
}
≥ d
(
y?η(α)

)
∀η > 0 ∀α ∈ A ,

and, given an a priori precision ε > 0, the regularization parameter η and the number
of iterations k satisfy

η ≤ ε

2C max{2 log(2cCε−1), 1}
, k ≥ 2θP%n

√
CLmax{2 log(2cCε−1), 1}√

ϑ ε
,(5.4)

where %n is the constant defined in (4.1). Then, after k iterations of Algorithm 1 we
have JUB

n,η − JLB
n,η ≤ ε.

Proof. Observe that the bounds JLB
n,η and JUB

n,η in (5.3) are the values of the pro-
grams Dn and Pn evaluated at ŷη and α̂η, respectively. As such, the first assertion
follows immediately. Toward the second part, thanks to the compactness of the set
A , the strong duality argument of Sion’s minimax theorem [45] allows us to describe
the program Dn,η through
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1988 MOHAJERIN ESFAHANI, SUTTER, KUHN, AND LYGEROS

J̃n,η := sup
y∈Y

〈
b, y
〉
−
[

sup
α∈A

〈
Anα, y

〉
− α·c + ηd(y)

]
= inf
α∈A

α·c + sup
y∈Y

[〈
b−Anα, y

〉
− ηd(y)

]
= inf
α∈A

α·c +
〈
b−Anα, y?η(α)

〉
− ηd

(
y?η(α)

)
,(5.5)

where the last equality follows from the definition in (5.1). Note that the problem
(5.5) belongs to the class of smooth and strongly convex optimization problems and
can be solved using a fast gradient method developed by [38]. For this purpose, we
define the function

φη(α) := α·c +
〈
b−Anα, y?η(α)

〉
− ηd

(
y?η(α)

)
.(5.6)

Invoking techniques similar to [38, Theorem 1], it can be shown that the mapping
α 7→ φη(α) is smooth with the gradient ∇φη(α) = c−A∗ny?η(α). The gradient ∇φη(α)

is Lipschitz continuous by Assumption 5.1 with constant L
η . Thus, following similar

arguments as in the proof of [38, Theorem 3] we have

(5.7)

0 ≤ JUB
n,η − JLB

n,η ≤
L‖α?‖2R

ϑ(k + 1)(k + 2)η
+ ηd

(
y?η(α∗)

)
≤ L(θP%n)2

ϑk2η
+ Cηmax

{
log(cη−1), 1

}
.

Now, it is enough to bound each of the terms in the right-hand side of the above
inequality by 1

2ε. It should be noted that this may not lead to an optimal choice of
the parameter η, but it is good enough to achieve a reasonable precision order with
respect to ε. To ensure η log(η−1) ≤ ε for an ε ∈ (0, 1) , it is not difficult to see that
it suffices to set η ≤ ε

2 log(ε−1) . In this observation if we replace η and ε with 1
cη and

1
2cC ε, respectively, we deduce that the second term on the right-hand side in (5.7) is
bounded by 1

2ε. Thus, the desired assertion follows by equating the first term on the
right-hand side in (5.7) to 1

2ε while the parameter η is set as just suggested.

Remark 5.4 (computational complexity). Adding the prox-function to the prob-
lem Dn ensures that the regularized counterpart Dn,η admits an efficiency estimate
(in terms of iteration numbers) of the order O(

√
L
η ε
−1). To construct a smooth ε-

approximation for the original problem Dn, the Lipschitz constant L
η can be chosen

of the order O(ε−1log(ε−1)). Thus, the presented gradient scheme has an efficiency
estimate of the order O

(
ε−1
√

log(ε−1)
)
; see [38] for a more detailed discussion along

similar objective.

Remark 5.5 (inexact gradient). The error bounds in Theorem 5.3 are introduced
based on the availability of the exact first-order information, i.e., it is assumed that
at each iteration the vector r(k) that due to the bilinear form potentially involves a
multidimensional integration can be computed exactly. In general, the evaluation of
those vectors may only be available approximately. This gives rise to the question of
how the fast gradient method performs in the case of inexact first-order information.
We refer the interested reader to [15] for further details.

The a priori bound proposed by Theorem 5.3 involves the positive constants c, C,
which are used to introduce an upper bound for the proxy-term. These constants
potentially depend on θD, the size of the dual feasible set, hence also on θP . Therefore,
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FROM INFINITE TO FINITE PROGRAMS 1989

unlike the randomized approach in section 4, it is not immediately clear how θP can
be chosen to minimize the complexity of the proposed method, which in this case is
the required number of iterations k suggested in (5.4) (cf. Remark 4.6). In the next
section, we shall discuss how to address this issue in the MDP setting for particular
constants c, C.

5.2. Structural convex optimization results in the MDP setting. To link
the approximation method presented in section 5.1 to the AC program in (3.9), let
us recall the dual pairs (3.7) equipped with the norms (3.8). To simplify the analysis,
we refine the assertion in Lemma 3.7 and argue that the dual optimizers are indeed
probability measures, i.e.,

Y :=

{
y ∈M+(K) : ‖y‖W = θD = 1

}
.(5.8)

To see this, one can consider the norm ‖(ρ, α)‖ := ‖α‖R and follow similar arguments
in the proof of Proposition 3.2. Strictly speaking, this is not a true norm on Rn+1

but it does not affect the technical argument, in particular strong duality between
Pn and Dn. The details are omitted here in the interest of space. We consider the
prox-function as a relative entropy defined by

d(y) :=

{ 〈
log
(

dy
dλ

)
, y
〉
, y � λ,

∞ otherwise,
(5.9)

where λ is the uniform measure supported on the set K and dy
dλ ∈ F+(K) is the

Radon–Nikodym derivative between two measures y and λ. One can inspect that the
prox-function (5.9) is indeed a nonnegative function. The optimizer of the regularized
program Dn,η for the AC program (3.9) is

y?η(ρ, α) := arg max
y∈Y

{〈
−ψ + ρ−

n∑
i=1

αi(Q− I)uiy

〉
− η
〈

log
(

dy
dλ

)
, y
〉}

.(5.10)

To see (5.10), check (5.1) together with the definitions of the operator An in (3.2)
and the AC problem parameters in (2.3). The main reason for such a choice of the
regularization term is the fact that the optimizer of the regularized program (5.10)
admits an analytical expression.

Lemma 5.6 (entropy maximization [12]). Given a (measurable) function g :
K → R and the set Y ⊂M+(K) as defined in (5.8) we have

y?(dk) := arg max
y∈Y

{〈
g, y
〉
− ηd(y)

}
=

exp
(
η−1g(k)

)
λ(dk)〈

exp
(
η−1g(k)

)
, λ
〉 .

Thanks to Lemma 5.6, the analytical description of the dual optimizer in (5.10)
is readily available by setting

g(k) := [b−Anα](k) = −ψ(k) + ρ−
n∑
i=1

αi(Q− I)ui(k).(5.11)

The last requirement to implement Algorithm 1 is to verify Assumption 5.1, i.e., we
need to compute the Lipschitz constant of the mapping (ρ, α) 7→ A∗ny?η(ρ, α) in which
the respective norm is ‖(ρ, α)‖ := ‖α‖R. By definition of the adjoint operator A∗n in
(3.2), it is not difficult to observe that
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1990 MOHAJERIN ESFAHANI, SUTTER, KUHN, AND LYGEROS

A∗ny?η(ρ, α) =


〈
− 1, y?η(ρ, α)

〉〈
(Q− I)u1, y

?
η(ρ, α)

〉
...〈

(Q− I)un, y
?
η(ρ, α)

〉
 =


−1〈

(Q− I)u1, y
?
η(ρ, α)

〉
...〈

(Q− I)un, y
?
η(ρ, α)

〉
 .(5.12)

The next lemma addresses the requirement of Assumption 5.1 for the mapping (5.12).

Lemma 5.7 (Lipschitz constant in MDP). Consider the entropy maximizers in
Lemma 5.6 with g as defined in (5.11) and the adjoint operator in (5.12). An upper
bound for the Lipschitz constant in Assumption 5.1 is L ≤ 4%2

n, where the constant
%n is the equivalence ratio between the norms ‖ · ‖R and ‖ · ‖`1 introduced in (4.1).

Proof. See [34, Lemma 5.7].

The performance of Algorithm 1 can now be characterized through the following
corollary.

Corollary 5.8 (MDP smoothing approximation error). Consider the opera-
tor (3.2) with the parameters described in (2.3) for the semi-infinite AC program
(3.9). Given this setting and the Lipschitz constant in Lemma 5.7, we run Algorithm
1 for k iterations using the entropy function (5.9) with analytical solution (5.10) as
the prox-function. We define the constants

C1 := 2 e
(
%nθP(max{LQ, 1}+ 1) + ‖ψ‖L

)
, C2 := 4θP%

2
n

√
2 dim(K)

ϑ
.

For every ε ≤ C1 we set the smoothing factor η and the number of iterations k by

η ≤ ε

4 dim(K) log(C1ε−1)
, k ≥ C2

√
log(C1ε−1)

ε
.

Then, the outcome of Algorithm 1 as defined in (5.3) is an ε approximation of the
optimal value JAC

n in the sense of Theorem 5.3.

Corollary 5.8 requires one to compute the constants c, C to quantify the a priori
bounds. The following two technical lemmas provide supplementary materials to
address this issue.

Lemma 5.9. Let K ⊆ [0, 1]m and g : K → R be a Lipschitz continuous function
with constant Lg > 0 (with respect to the `∞-norm) and the maximum value gmax :=
maxk∈K g(k). Then, for every η > 0 we have∫

K

exp
(
η−1

(
g(k)− gmax

))
dk ≥ min

{(mη
Lg

)m
, 1
}

exp
(
−min

{
m,Lgη

−1
})
.

Proof. Let us define the set Z(δ) := {k ∈ K : gmax − g(k) < δ}. Thanks to the
Lipschitz continuity of the function g, we have gmax − g(k) ≤ Lg‖k? − k‖`∞ , where
g(k?) = gmax. Thus, using this inequality one can bound the size of the set Z(δ) in
the sense of ∫

Z(δ)

dk ≥ min{(δL−1
g )m, 1} ∀δ ≥ 0.

By virtue of the above result, one can observe that for every δ > 0∫
K

exp
(
η−1

(
g(k)− gmax

))
dk ≥

∫
Z(δ)

exp
(
η−1

(
g(k)− gmax

))
dk

≥ exp(−η−1δ)

∫
Z(δ)

dk≥ exp(−η−1δ) min{(δL−1
g )m, 1}.D
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Maximizing the right-hand side of the above inequality over δ suggests to set δ =
min{mη,Lg}, which yields the desired assertion.

In light of Lemma 5.9, we can bound the entropy prox-function (5.9) evaluated
at the optimizer (5.10).

Lemma 5.10 (entropy prox-bound). Consider the prox-function (5.9) and let
y?η(ρ, α) be the optimizer of (5.10). Then, for every η > 0, ρ, and ‖α‖R ≤ θP , we

have d
(
y?η(ρ, α)

)
≤ C max

{
log(cη−1), 1

}
, where

C := dim(K), c :=
e

dim(K)

(
θP%n(max{LQ, 1}+ 1) + ‖ψ‖L

)
,

and %n is the equivalence ratio between the norms ‖ · ‖`1 and ‖ · ‖R as defined in (4.1).

Proof. The result is a direct application of Lemma 5.9. Consider the function g
as defined in (5.11) with Lipschitz constant Lg ≥ 0; note that the function g, as well
as its Lipschitz constant Lg, depends also on the pair (ρ, α). Observe that

d
(
y?η(ρ, α)

)
=
〈

log
(

exp(η−1g)
)
, y?η(ρ, α)

〉
− log

(〈
exp(η−1g), λ

〉)
=
〈
η−1g, y?η(ρ, α)

〉
− log

(〈
exp(η−1g), λ

〉)
=
〈
η−1g, y?η(ρ, α)

〉
− η−1gmax − log

(〈
exp(η−1(g − gmax), λ

〉)
≤ − log

(〈
exp(η−1(g − gmax)), λ

〉)
≤ − log

(
min

{(
dim(K)η

Lg

)dim(K)

, 1

}
exp

(
−min

{
dim(K), Lgη

−1
}))

(5.13)

≤ dim(K) max

{
log

((
eLg

dim(K)

)
η−1

)
, 1

}
,

where the inequality (5.13) follows from Lemma 5.9. Note also that the Lipschitz
constant Lg for the function g defined in (5.11) is upper bounded, uniformly in (ρ, α)
where ‖α‖R ≤ θP , by

Lg ≤ ‖g − ρ‖L ≤
∥∥∥ n∑
i=1

αi(Q− I)ui + ψ
∥∥∥

L
≤ (max{LQ, 1}+ 1)

∥∥∥ n∑
i=1

αiui

∥∥∥
L

+ ‖ψ‖L

≤ θP%n(max{LQ, 1}+ 1) + ‖ψ‖L.
We refer to the proof of Corollary 4.12, and in particular the paragraph following
(4.6), for further discussions regarding Lg. The desired assertion follows from the last
two inequalities and the definition of the constant θD in (5.8).

The proof of Corollary 5.8 follows by replacing the constants in Lemma 5.10 in
Theorem 5.3. By contrast to the randomized approach in Corollary 4.12 where the
computational complexity scales exponentially in dimensional of state-action space,
the complexity of the smoothing technique grows effectively linearly (more precisely
O
(
ε−1
√

log(ε−1)
)
; cf. Remark 5.4). The computational difficulty is, however, trans-

ferred to step 1 of Algorithm 1 for computation of A∗ny?η as defined in (5.12). The
following remark elaborates this.

Remark 5.11 (efficient computation of (5.12)). When the transition kernel Q and
the basis functions ui are such that the relation (5.12) involves integration of expo-
nentials of polynomials over simple sets (e.g., a box or a simplex), one may utilize
efficient methods that require solving a hierarchy of semidefinite programming prob-
lems to generate upper and lower bounds which asymptotically converge to the true
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value of integral; see [31, section 12.2] and [9]. It is also worth noting that a straight-
forward computation of (5.12) for a small parameter η may be numerically difficult
due to the exponential functions. This issue can, however, be circumvented by a
numerically stable technique presented in [38, p. 148].

Regarding the choice of θP , in a similar spirit to section 4, one can target minimiz-
ing the complexity of the a priori bound, in other words, the number of iterations k in
(5.4). In the setting of Corollary 5.8, one can observe that the smaller the parameter
θP , the lower the number of the required iterations, leading to the choice described
as in (4.8).

6. Full infinite to finite programs. The intention in this short section is to
combine the two-step process from infinite to semi-infinite programs in section 3 and
from semi-infinite to finite programs in sections 4 and 5 and hence establish a link
from the original infinite program to finite counterparts. We only present the final
result for the general infinite programs without discussing its implication in the MDP
setting, as it is essentially a similar assertion.

Theorem 6.1 (infinite to finite approximation error). Consider the infinite pro-
gram P with a solution {x?, J}, the finite (random) convex program Pn,N with the
(random) solution

{
α?N , Jn,N

}
, and the output of Algorithm 1 with values

{
JLB
n,η, J

UB
n,η

}
.

Suppose Assumption 3.1 holds and assume further that there exists constant d,D so
that the projection residual of the optimizer x? onto the finite dimensional ball defined
in Theorem 3.3 is bounded by ‖rn‖ ≤ Dn−1/d ∀n ∈ N. Then, for any number of
scenario samples N and prox-term coefficient η, with probability 1− β we have

max
{
Jn,N , J

LB
n,η

}
−D

(
‖c‖∗ + θD‖A‖

)
n−1/d ≤ J ≤ min

{
JUB
n,η , Jn,N + θDh(α?N , ε)

}
,

where θD is as defined in (3.3) and the function h is a TB in the sense of Definition

4.2. Moreover, given an a priori precision level ε, if n ≥
(
D(‖c‖∗ + θD‖A‖)ε−1

)d
,

and the number samples N are chosen as in (4.4b) or the parameter η together with
the number of iterations of Algorithm 1 is chosen as in (5.4), then with probability
1− β we have

min
{
|J − Jn,N |, |J − JLB

n,η|
}
≤ ε .

The proof follows readily from the link between the infinite program P to the
semi-infinite counterpart Pn in Theorem 3.3, in conjunction with the link between Pn
to the finite programs Pn,N and Dn,η in Theorems 4.4 and 5.3, respectively.

The assertion of Theorem 6.1 can be readily translated into the MDP problem
by replacing the dual optimizer bound θD with 1 thanks to Lemma 3.7 and the term
(‖c‖∗ + θD‖A‖) with (1 + max{LQ, 1}) thanks to Corollary 3.9. In this case, the
requirement concerning the projection residual bound ‖rn‖ ≤ Dn−1/d is fulfilled due
to the Lipschitz continuity of the value function when d = dim(S) and the finite
dimensional approximation is generated by, among others, polynomials [22] or the
Fourier basis [41] (cf. Remark 3.10).

7. Numerical examples. We present two numerical examples to illustrate the
solution methods and corresponding performance bounds. Throughout this section
we consider the norm ‖ · ‖R = ‖ · ‖`2 , leading to %n =

√
n in (4.1), and we choose the

Fourier basis functions.

D
ow

nl
oa

de
d 

09
/1

2/
18

 to
 1

31
.1

80
.1

31
.2

42
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FROM INFINITE TO FINITE PROGRAMS 1993

7.1. Example 1: Truncated LQG. Consider the linear system

st+1 = ϑst + ρat + ξt, t ∈ N,

with quadratic stage cost ψ(s, a) = qs2 + ra2, where q ≥ 0 and r > 0 are given
constants. We assume that S = A = [−L,L] and the parameters ϑ, ρ ∈ R are known.
The disturbances {ξt}t∈N are i.i.d. random variables generated by a truncated normal
distribution with known parameters µ and σ, independent of the initial state s0. Thus,
the process ξt has a distribution density

f(s, µ, σ, L) =

{ 1
σφ( s−µσ )

Φ(L−µσ )−Φ(−L−µσ )
, s ∈ [−L,L],

0 otherwise,

where φ is the probability density function of the standard normal distribution, and Φ
is its cumulative distribution function. The transition kernel Q has a density function
q(y|s, a), i.e., Q(B|s, a) =

∫
B
q(y|s, a)dy ∀B ∈ B(S), that is given by q(y|s, a) =

f(y−ϑs−ρa, µ, σ, L). In the special case that L = +∞ the above problem represents
the classical LQG problem, whose solution can be obtained via the algebraic Riccati
equation [6, p. 372]. By a simple change of coordinates it can be seen that the
presented system fulfills Assumption 2.1. The following lemma provides the technical
parameters required for the proposed error bounds.

Lemma 7.1 (truncated LQG properties). The error bounds provided by Corol-

laries 4.12 and 5.8 hold with the norms ‖ψ‖∞ = L2(q+r), ‖ψ‖L = 4L2
√
q2 + r2, and

the Lipschitz constant of the kernel is LQ = 2Lmax{ϑ,ρ}
σ2
√

2π(Φ(L−µσ )−Φ(−L−µσ ))
.

Proof. In regard to Assumption 2.1(i), we consider the change of coordinates
s̄t := st

2L + 1
2 and āt := at

2L + 1
2 . In the new coordinates, the constants of Lemma 7.1

follow from a standard computation.

For the simulation results we choose the numerical values ϑ = 0.8, ρ = 0.5, σ = 1,
µ = 0, q = 1, r = 0.5, and L = 10. In the first approximation step discussed in section
3.3, we consider the Fourier basis u2k−1(s) = L

kπ cos
(
kπs
L

)
and u2k(s) = L

kπ sin
(
kπs
L

)
.

Randomized approach. We implement the methodology presented in section
4.2, resulting in a finite random convex program as in (4.5), where the uniform dis-
tribution on K = S × A = [−L,L]2 is used to draw the random samples. Fig-
ures 2(a), 2(b), and 2(c) visualize three cases with different number of basis functions
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(a) n = 2 basis functions.
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(b) n = 10 basis functions.

100 101 102 103 104 105

100

102

104

106

N

J
A

C
n
,N

θP in (4.8b)

θP =∞
JAC

(c) n = 100 basis functions.

Fig. 2. The quantity JAC
n,N is computed using (4.5). The optimal value JAC (red dotted line)

is approximated by n = 103 and N = 106.
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n ∈ {2, 10, 100}, respectively. To show the impact of the additional norm constraint,
in each case two approximation settings are examined: the constrained (regularized)
one proposed in this article (i.e., θP <∞) and the unconstrained one (i.e., θP =∞).
In the former we choose the bound suggested by (4.8b). In the latter, the result-
ing optimization programs of (4.5) may happen to be unbounded, particularly when
the number of samples N is low; numerically, we capture the behavior of the un-
bounded θP through a large bound such as θ = 106. In each subfigure, the colored
tubes represent the results of 400 independent experiments (shaded areas) as well as
the mean value across different experiments (solid and dashed lines) of the objective
performance JAC

n,N as a function of the sample size N .
All the results in Figure 2 are obtained based on 400 independent simulation ex-

periments. It is perhaps not surprising that the optimal value depicted by the red
dotted line is very close to the classical LQG example whose exact solution is analyt-
ically available. It can be seen that the randomized approximations asymptotically
converge, as suggested by Theorem 6.1.

The simulation results suggest three interesting features concerning n, the number
of basis functions: The higher the number of basis functions,

(i) the smaller the approximation error (i.e., asymptotic distance for N →∞ to the
red dotted line),

(ii) the lower the variance of approximation with respect to the sampling distribution
for each N , and

(iii) the slower the convergence behavior with respect to the sample size N .
Features (i) and (ii) are positive impacts of increasing the number of basis functions.
While (i) is predicted by Corollary 3.9, since the error due to the projection term
becomes smaller, it is not entirely clear how to formally explain (ii). On the contrary,
feature (iii) is indeed a negative impact, as a high number of basis functions requires
a large number of samples N to produce reasonable approximation errors. This phe-
nomena can be justified through the lens of Corollary 4.12, where the approximation
errors grows proportionally to n.

Structural convex optimization. Algorithm 1 is implemented with the pa-
rameters described in Corollary 5.8 leading to deterministic upper and lower bounds
(JUB
n,η and JLB

n,η, respectively) for the cost function JAC
n ; see also Theorem 5.3. These

bounds are computationally appealing as they provide a posteriori bounds on the
approximation error that often is significantly smaller than the a priori bounds given
by Theorem 5.3. This behavior can be seen in the simulation results summarized in
Figure 3, where the number of basis functions is n = 10. Similar to Figure 2, the red
dotted line is the optimal value of the original infinite program P, which we approx-
imated by using 103 basis functions and 106 iterations of Algorithm 1; it coincides
with the one from the randomized method.

7.2. Example 2: A fisheries management problem. A natural approxima-
tion approach toward dynamic programming problems goes through a discretization
scheme (e.g., discretization of the state and/or action spaces). The main objective
of this example is to compare the proposed LP-based approximation of this arti-
cle with more standard discretization schemes. To this end, we borrow an example
from [25, section 1.3] and compare our results with the recent discretization method
proposed by [43]. Consider the population growth model, known as the Ricker model,

st+1 = ϑ1at exp(−ϑ2at + ξt), t ∈ N,
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(b) Posterior error bounds.

Fig. 3. The results and error bounds are obtained by Algorithm 1 with n = 10. The optimal
value JAC (red dotted line) is computed as indicated in Figure 2.

where ϑ1, ϑ2 ∈ R+, st is the population size in season t, and at is the population to
be left for spawning for the next season, i.e., the difference st − at is the amount of
fish captured in season t. The running reward function to be maximized is ψ(a, s) =
ϕ(s − a), where ϕ is the so-called shifted isoelastic utility function ϕ(z) := 3(z +
0.5)1/3−(0.5)1/3 [16], [13, section 4.1]. The state space is S = [κ, κ] for some κ, κ ∈ R+.
Since the population left for spawning cannot be greater than the total population, for
each s ∈ S, the set of admissible actions is A(s) = [κ, s]. To fulfill Assumption 2.1(i),
following the transformation suggested by [43], we equivalently reformulate the above
problem using the dynamics

st+1 = ϑ1 min(at, st) exp(−ϑ2 min(at, st) + ξt), t ∈ N,

where the admissible actions set is now the state-independent set A = [κ, κ], and the
running reward function is ψ(a, s) = ϕ(s − a)1{s≥a}. The noise process (ξt)t∈N is a
sequence of i.i.d. random variables which have a uniform density function g supported
on the interval [0, λ]. Thus, the corresponding kernel is

Q(B|s, a) =

∫
B

g
(

log ξ − log
(
ϑ1 min(a, s)

)
+ ϑ2 min(a, s)

)1

ξ
dξ ∀B ∈ B(R) .

Note that to make the model consistent, we must have ϑ1a exp(−ϑ2a+ξ)∈ [κ, κ] ∀ (a, ξ)
∈ [κ, κ]×[0, λ]. By defining an appropriate change of coordinate similar to Lemma 7.1,
Assumption 2.1 is fulfilled; we refer the reader to [43, section 7.2] for further informa-
tion and detailed analysis.

The chosen numerical values are λ = 0.5, ϑ1 = 1.1, ϑ2 = 0.1, κ = 7, and
κ = 0.005.

Randomized approach. We implement the methodology presented in section
4.2, resulting in a finite random convex program (4.5), where the uniform distribution
on K = S × A = [κ, κ]2 is used to draw the random samples. Figure 4 illustrates
three cases with the number of basis functions n ∈ {2, 10, 100} and the bound (4.8b).
The colored tubes represent the results between [10%, 90%] quantiles (shaded areas)
as well as the means (solid lines) across 400 independent experiments of the objective
performance JAC

n,N as a function of the sample size N . It is interesting to note that
in this example the optimal solution is captured even with two basis functions and
only N = 20 random samples. This becomes even more attractive when we compare
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Fig. 4. The quantity JAC
n,N is computed using (4.5). The optimal value JAC is approximated by

n = 103 and N = 106, which amounts to 0 as also reported in [43].

the results with a direct discretization scheme depicted in [43, Figure 2]. The numer-
ical simulations concerning the structural convex optimization (Algorithm 1 and the
bounds in Corollary 5.8) are reported in [34, Figure 5].

Appendix A. Infinite-horizon discounted-cost problems. In the MDP
setting, introduced in section 2.1, let us consider long-run τ -discounted cost (DC)
problems with the discount factor τ ∈ (0, 1) and initial distribution ν ∈ P(X) de-

scribed as JDC(ν) := infπ∈Π limn→∞ Eπν[
∑n−1
t=0 τ

tψ(xt, at)].
As in the AC setting, in section 2, we assume that the control model satisfies

Assumption 2.1. We refer to [25, Chapter 4] and [27, Chapter 8] for a detailed ex-
position and required technical assumptions in more general settings. As for the AC
problems, it is well known that the DC problem can be alternatively characterized by
means of infinite LPs (P) and (D) introduced in section 3.1, where

(X,C) = (C(S),M(S)), c(B) = −ν(B), B ∈ B(S),
(B,Y) = (C(K),M(K)), b(s, a) = −ψ(s, a),
K = C+(K), A : X→ B, Ax(s, a) = −x(s) + τQx(s, a),
K∗ =M+(K), A∗ : Y→ C,A∗y(B)=y(B ×A)− τyQ(B).

(A.1)

Theorem A.1 (LP characterization [25, Theorem 6.3.8]). Under Assumption
2.1, the optimal value JDC of the DC problem can be characterized by the LP problem
(P) in the setting (A.1), in the sense that J = −JDC.

It is known that under similar conditions as in Assumption 2.1 on the control
model, the value function u? in the τ -DC optimality equation is Lipschitz continuous;
see [23, section 2.6] or [17, Theorem 3.1]. We use the norms similar to the AC setting
(3.7). The next step toward studying the approximation error (3.5) for the DC setting
readily follows by Theorem 3.3 combined with the following lemma.

Lemma A.2 (DC semi-infinite regularity). For the DC problem, characterized
by the dual-pair vector spaces in (A.1), under Assumption 2.1 we have the operator
norm ‖A‖ ≤ 1 + max{LQ, 1}τ , the inf-sup constant of Assumption 3.1(ii) γ = 1− τ ,
and the dual optimizer norm

‖y?‖W ≤ θD =
θP + (1− τ)−1‖ψ‖∞

(1− τ)θP − ‖ψ‖L
.(A.2)D
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Proof. With the norms considered and following a proof similar to Lemma 3.6,
the operator norm ‖A‖ can be upper bounded as ‖A‖ ≤ 1 + τ. The inf-sup condition,
Assumption 3.1(ii), holds with γ = 1− τ , since

inf
y∈K∗

sup
x∈Xn

〈
Ax, y

〉
‖x‖‖y‖W

≥ inf
y∈K∗

(1− τ)
〈
1, y
〉

‖y‖W
= 1− τ.

Moreover ‖ν‖W = 1 since it is a probability measure. Thus, given the lower bound
for the optimal value JDC

n ≥ −(1− τ)−1‖ψ‖∞, the assertion of Proposition 3.2 (i.e,
the dual optimizers bound in (3.3)) leads to the desired assertion (A.2).

Note that when the norm constraint is neglected, the dual program enforces that
any solution y?n in the program Dn satisfies

〈
x,A∗y?n − c

〉
= 0 ∀x ∈ Xn (cf. the

program D). Assume that a constant function belongs to Xn. Then, the constraint
evaluated at the constant function reduces to (1−τ)

〈
1, y?n

〉
= (1−τ)‖y?n‖W = 1. It is

worth noting that this observation can consistently be captured by Lemma A.2 when
θP tends to ∞, in which the bound (A.2) reduces to ‖y?n‖W ≤ (1− τ)−1.
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