Behaviour of Offshore Structures,

Elsevier Science Publishers B.V., Amsterdam, 1985 — Printed in The Netherlands

A JACKET LAUNCH COMPUTER PROGRAM COMPARED WITH TWO FULL-SCALE LAUNCHES

Christian Aage', Poul Erik Christiansen® and Jakob Moller?

'The Technical University of Denmark, Dept. of Ocean Engineering, DK-2800 Lyngby, Denmark
“Farl & Wright Ltd., Victoria Station House, 191 Victoria St., London SWIE, U.K.
SMersk Olie og Gas A/S, Esplanaden 50, DK-1263 Copenhagen, Denmark

SUMMARY
A 3-dimensional mathematical model and a

computer program able of simulating the Taunch

of a jacket from a barge are described. The
launch is divided into four dynamically dis-
tinct phases, each characterized by the de-
grees of freedom. It has been attempted to
take all important parameters into account,
such as the variation of drag coefficients
with respect to Reynolds' number and slamming
on jacket members.

The computer results are compared with
measurements of two different full-scale
launches, the GORM C in 39m water depth and
the BERYL B in 119m water depth, both in the
North Sea. The full-scale launch photographic
recording and analyzing methods are described
and tentative conclusions are drawn as to the
proper choice of hydrodynamic coefficients
for launch calculations.

1.  INTRODUCTION

During the development of the Danish oil
-and gas fields in the North Sea a need arose
for launch simulation programs which could
predict with great accuracy the minimum bot-
tom clearance of jackets launched frombarges.
The water depth in the Danish fields is about
40m and the bottom clearance for the largest
jackets during the launch is only 3-5m.

To obtain the desired degree of accuracy
fully three-dimensional mathematical models
and computer programs had to be developed,
especially because unsymmetrical and damaged
conditions (e.g. a flooded buoyancy tube)
had to be considered. The computer programs
should preferably be verified against full-
scale launch measurements.

To promote this development Marsk O0lie og
Gas A/S decided to carry out full-scale
measurements of the GORM C jacket launch
which took place on September 3rd, 1980. The
total mass of the jacket was 4000t and the
water depth was 39m . In 1981-83 a 3-D

mathematical launch model and a computer pro-
gram were developed at the Technical Univer-
sity of Denmark by two of the authors. By the
kind support of Mobil North Sea Limited the
University had the opportunity to carry out
full-scale measurements on the BERYL B jacket
launch in the British sector of the North Sea
on May 8th, 1983. The total mass of this
jacket was 14000t and the water depth was
119m . The two jackets represent nearly the
lower and upper limits for Taunched jackets
and so constitute an excellent material for
comparison with the computer program.

Several launch simulation programs are
commercially available, but very 1ittle has
been published on the subject. Hambro (1982)
describes a method of launch simulation by
differentiation of constraints and compares
the simulation with model test results. To
the authors' knowledge, comparisons between
computer simulations and full-scale jacket
launches have not been published before.

23 LAUNCH DESCRIPTION

A jacket launch defines the event when a
jacket starts sliding under its own weight
down the sliding beams on a ballasted and
pretrimmed launch barge. The sliding can be
initialized by either removing the last sea
fastening to the jacket if the barge trim
angle is large enough, or by jacking the
jacket to overcome the static friction. The
launch is completed when the jacket has come
to rest in a stable equilibrium position.
Normally the jacket/barge system will go
through four dynamically distinct phases
during the launch.

Phase 1. The jacket slides down the deck
of the barge towards the rocker beams. The
jacket has only one degree of freedom rela-
tive to the barge.

Phase 2. The jacket slides on the rocker
beams which rotate relative to the barge,
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hence the number of relative degrees of free-
dom for the jacket are two.

Phase 3. As Phase 2 but the jacket starts
1ifting off one of the rocker beams giving
one translational and two rotational degrees
of freedom for the jacket relative to the
barge. For a jacket/barge system with lat-
eral symmetry this phase will normally not
be entered. Both of the recorded full-scale
launches went directly from Phase 2 to 4.

Phase 4. The jacket has separated from the
barge and the two bodies move completely in-
dependent of each other, each body having
six degrees of freedom.

The launch characteristics have great im-
pact on the jacket design. For shallow water
jackets the auxiliary buoyancy configuration
will be determined solely to provide satis-
factory bottom clearance during launch. For
medium and deep water jackets the launch
loads become increasingly important and will
be the governing design loads for a signifi-
cant number of jacket members.

Equally important are the behaviour and
the loads experienced by the barge. Calcula-
tion of barge bending moments and determina-
tion of the maximum barge keel immersion
during launch are standard requirements for
launch preparations.

For jacket designers the main information
about the launch behaviour is obtained by
performing model tests and simulations with
2- or 3-dimensional launch computer programs.
Model testing involves a number of scale ef-
fects, where especially the overprediction
of drag forces due to the low Reynolds number
in model testing is significant. For that
reason good correlation between model test
results and computer simulations can not be
expected.

3.  3-DIMENSIONAL MATHEMATICAL LAUNCH MODEL
The mathematical model used in this com-
parison with the two full-scale launch record-
ings is a 3-dimensional model developed and
implemented on a main frame computer by the

authors.

3.1 Jacket/barge model description

The mathematical representation of the
jacket is set up by a normal 3-dimensional
stick model, where jacket members are refer-
enced to predefined nodes. The model operates
with four different types of modelling el-
ements: Cylinder, sphere, line, and point el-
ements. Cylinder and sphere elements are used
to model real jacket members of the same
types. Line and point elements are used for
modelling either mass, inertia, buoyancy, or
hydrodynamic properties or any combination of
these to suit arbitrary jacket members. The
hydrodynamic properties can be specified in-
dividually in the three local member direc-
tions. The model accounts for jacket framing
as brace members are stopped at the surface
of chord members to ensure correct buoyancy of
each node.

The barge model is defined by length,
breadth and depth assuming the barge is box
shaped. Additional information about sliding
plane and rocker beam location is provided
together with mass properties and hydrody-
namic coefficients.

3.2 Equations of motion

Four reference co-ordinate systems have
been adopted as shown in Figure 1. A space-
fixed global system with the xo,-yo plane
coinciding with the sea surface. A jacket-
fixed system with the origin at the jacket
CoG (Center of Gravity) and a similar barge-
fixed system also with the origin at the CoG.
Finally a rocker-beam-fixed system with ori-
gin at the rocker pin.

Figure 1.

Launch model co-ordinate systems.




Initially the axes of the jacket-, the
barge-, and the rocker-fixed systems will be
parallel with the z-axis normal to the skid
surface on the barge, and the x-axis in the
skid direction of the jacket, which is also
the orientation of the global x-axis. The
space-fixed system has been chosen as refer-
ence system for the equations of motion.

Both bodies are assumed to be rigid, hence
Newton's second law of motion can be applied
for each body at the CoG.

- (mmi})
d

% (1)

where m is the mass of the body, E 1is the
3x3 unity matrix and [I] is the inertia
matrix. Neglecting wind and assuming calm
water the forces {F} are composed of

{F} (1)

{1} (2)

{F} = {W} + {B} + {H} + (P} + {K) (3)
where

{W} = Gravity force

{B} = Buoyancy force

{H} = Hydrodynamic force

{P} = Interaction force between the

two bodijes
{K} = External forces, i.e. mooring

lines, tugger Tines etc.

{M} represents the moments of the same
forces about the CoG.

For small displacements the buoyancy force
can be linearized by including the hydro-
static stiffness matrix [S], where ~ des-
ignates linearized values:

{B} {Ax} {8}
o e Lt 0

Closed form expressions for five fundamen-
tal different locations of tubes with respect
to the water surface have been established
for buoyancy, center of buoyancy, waterplane
area and center of floatation, from which the
buoyancy force vector and stiffness matrix
can be calculated. :

Morison's equation is applied to describe
the hydrodynamic forces on' the jacket. Lin-
earized they can be expressed as:

The added mass matrix [C;] 1is estab-
lished by the technigue described by Hooft
(1972), which effectively is an expansion of
Morison's equation to the general 3-dimen-
sional case using the projected acceleration
perpendicular to the member method. The two
damping matrices [Cpl; and [Cpl: are con-
structed in a similar manner using the pro-
Jected velocity method, however due to the
velocity square term in the Morison damping
term the velocity has been Taylor expanded
which produces the additional [Cpl. matrix.
When calculating the damping matrices a lin-
early varyingcurrent velocity can be included.
The slamming forces are included by the

[ACh] matrix, defined as:
[Cm]t e [Cm]to
[QCM] = t v tO (6)

The 3-component interaction force {P}
can be expressed from the interaction force
in jacket-fixed y- and z-directions.

e ~Hz| Py
Py = R] 17 OZJ{ “}'
0 114

[R][U]{iyj} (7)
4

n

where My is the friction coefficient for a
force in the y-direction and p, is the
friction coefficient for a force in the z-
direction. [R7] is the rotation matrix
that rotates a vector from the jacket-fixed
co-ordinate system to the space-fixed system.
Differentiating (1) and (2) with respect
to time and inserting the force expressions
(3) - (7) yields the following equation for
the jacket:
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IO + [Cp 2]
(0] (RIC1(RT (89}
[0] [0
[0] [[R31[131[R311 ‘ [RJ][IJJ[RJJ“]

(ol + [ACm]){{%ji} H [cnlz{{ﬁié}}

- {6 (867}
ax3y,  CED 1017, R3T (U] PYj}
+ 53{{A8j}} : {[Lj][E}J{ {Mg}{sz }
Wiy (83} (k33
- {{0} } . {{Mg}} " {{M%}} (8)

A similar equation exists for the barge.
Note that the matrix [L3] contains the
lever arms from the jacket CoG to the point
where the contact forces Pyj and Pzj are
assumed to act.

Let us resume the problem of determining
the motions in 3-dimensions for the two
bodies interacting with each other. This in-
volves finding 2x6 kinematic and 5 static un-
knowns:

{3}, {83} 6 kinematic DOF's for jacket
{x3}, {63} 6 kinematic DOF's for barge

P P
{ VJ} s -{ yb} 2 interaction forces
P

zj Pz
j b
M3} = -(Mp}
The equations of motion for the jacket
(8) and the similar ones for the barge pro-
vide a total of 12 simultaneous equations.

Hence 5 additional equation of constraints
will be necessary to solve the problem.

3.3 Equations of constraints

The equations of constraints are unique
for each phase of the launch as described
previously.

3.3.1 Phase 1. The jacket has only one degree
of freedom relative to the barge, hence the
jacket motions can be expressed by the barge
motions and the relative motion:

3 interaction moments

) = x°) + [RP)xE} (9)
(x3) = (B} + [RP1xd) + [RP1u] (10)
1) = 6° ¢ (1)

+ 20RP1.%) + [RP1L%P (11)

where {xg} denotes the vector from the
barge CoG to the jacket CoG. Note that {xg}
differentiated with respect to time, only has
a component in the direction of motion, i.e.
the barge x-direction, hence only the first
go]uTn]of [RP] should be used, indicated
¥ 1 -

Furthermore Phase 1 implies identical
rotations of the jacket and barge:

(861} = {a6") (12)
83y = (&%) (13)
)y = (") (14)

By substituting (9) - (14) into (8) the
jacket DOF's can be eliminated and the motion
problem is reduced to solving 9 simultaneous
equations with 9 unknowns, which are:

{(x°1 , (6°} 6 kinematic DOF's for

the barge
{§g) 1 relative jacket DOF
g 2 interaction forces

P )
Y3 z]
The equations of constraints change when

the contact moment about the rocker pin be-
comes positive and the jacket enters phase 2.

3.3.2 Phase 2. The relative number of the
jacket DOF's increases by one, as the jacket
starts rotating relative to the barge. The
jacket motions can again be expressed from
the barge and the relative motions:

7} = 6P + (RP10xE) - (RIS} (15)
=) = Py + (RP1)
- (R105) - IRVIKS (16)
9} = &) + [0 - R
- 2[R01%5 - (RS (17)
where {xE} is chosen to be the vector from

the barge CoG to the rocker pin in barge sys-
tem co-ordinates, and {x5} the vector from
the jacket CoG to the rocﬂer pin in jacket
system co-ordinates.

The jacket rotations can be expressed by
the barge rotations and the relative jacket
rotation about the rocker pin:

{867} = {26®) + [RP1,860 (18)
(833 = (8°) + [RP1.00] + [RP1A8  (19)
(893 = (%) + [R°),00)

+20R01,83 + [RP1,8  (20)




The static condition which states that the
interaction moment around the rocker pin (lo-
cal barge y-direction) is zero, is utilized
to obtain the last equation of constraint
necessary to balance out the number of un-
knowns:

(RP1T (M3} = [RP1T (MR} = O (21)

As in Phase 1 equations (15) - (21) can be
substituted into (19) eliminating the jacket
DOF's, giving 10 simultaneous equations with
10 unknowns:

{x®}, (6°1 6 kinematic DOF's of barge

i? 2 5g 2 relative jacket DOF's
Pyj, sz 2 interaction forces

The jacket leaves Phase 2 and goes to
Phase 4, separation, when either the contact
force between jacket and barge vanishes, or
the end of the jacket launch rail passes over
the rocker pin, allowing the rocker beam to
rotate to its maximum angle. Phase 3 can be
entered if the contact force on one of the
rocker beams vanishes.
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3.3.3 Phase 3. Similarly to Phases 1 and 2
the jacket motions are determined from the
barge and the relative motions:

o1 = o)+ () - IR
- (RI1G5) (22)
39y = P+ [RPI(xB) + [RE1XT)
¢ [RPMREIXEY - [R714x3)
- [R1155 (23)
6 = 6 5 @ 0h) + R )

+ 20RPIREIXE) + [RPIIRE) (x3)
- 65 - 2R, - (RIS (24)

{xX1 denotes the vector in rocker-beam-fixed
co-ordinates from the rocker pin, to the
point on the skid rail which the jacket ro-
tates about. {xB} is the vector from the
jacket CoG to the same point in jacket-fixed
co-ordinates. [R5l is the rotation matrix
that rotates a vector from the rocker-beam-
fixed system to the barge-fixed system.

The BERYL B jacket before the launch.
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The jacket rotations can be obtained from
the barge rotations, the rocker beam rotation
ABF and the jacket rotations relative to the
rocker beam A6].

(887} = (207} + [RP),00F + [RI1,00)  (25)
(89} = (&P} + [RP1,008 + [RP),6F

+ [RI1,08) + [RI1,6) (26)
{83} = (%1 + [RP1 008 + 2(RP] 68

+ [RP1LEE + (R1),00] + 20R%],6)
+ [lelﬁg- (27)

The last two equations of constraint are
made up of the static moment conditions,
saying that the moment about the axis of ro-
tation for the rocker beam, and the moment
about the point R on the launch rail which
the jacket pivots about are zero. Assuming
the interaction forces act at the point R
the equations of moment can be expressed as:

(R g3+ e{ ¥} = 0 (28)
zj

[RI1, (M3} = 0 (29)
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Figure 3.
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where [Lg] 1is a 3x2 matrix containing the
lever arms from the launch rail point R
down to the rocker pin.

The actual number of unknowns in Phase 3,
when equations (22) - (29) are incorporated
in (8), can be summerized as:

#°}, (8°} 6 kinematic DOF's for barge

%3, 6%, 53 3 kinematic relative jacket
DOF's

p p 2 interaction forces

yi® zj
3.3.4 Phase 4. As the jacket separates from
the barge, the equations of motion for the
jacket and the barge decouple, and the mo-
tions for the jacket are governed solely by
equation (8), the barge motions by a similar
equation.

3.4 The time integration procedure

The Taunch problem is determined by the
equations of motion together with the equa-
tions of constraint for each phase. The un-
knowns comprise the kinematic DOF's for the
barge and relative jacket DOF's, plus the
dependent unknowns of interaction forces.
Together they form a system of integro-dif-
ferential equations. The equations are highly
non-linear, hence a numerical solution to the
problem can only be obtained by a time step
integration procedure.

s g ¢ o o e § i o o € B S § T S 4 S S A § s § e &t e 5 ®

BERYL B launch computer simulation - time steps 4,0s.




The Newmark B method, Newmark (1959), has
been applied with § = 1/6, corresponding to
accelerations varying linearly over a time
step. The connections between positions, velo-
cities, and accelerations are as follows:

{Xeo} + {6%¢} (30)

{Xpo} + At{Xy,) + 3AL{AK,) (31)

{X¢}

{X¢)
{%e} = {Xpo) # At{Xg,} + 362 {HD
+ BAt*{AX.} (32)

where At=1t-t,.

Note the vector symbol { } denotes an
r-dimensional vector, r being the local num-
ber of independent DOF's in each phase.

Assuming the positions, velocities and ac-
celerations are known at time t,, the inte-
gration procedure of finding the same quan-
tities at time t can be summarized in these
five steps:

331

. Guess the acceleration at time t, for

instance assume them to be identical
with time to, 7i.e. {a%.}=(0}.

. Update positions and velocities using

(31) - (32)

. Calculate all the motion dependent

vectors and matrices on the basis of
these velocities and positions (i.e.
{8}, {K} , [R], [R), [L], [C,), [AC,],
[Cply, [Cplz, [S]).

. Solve the equations of motion (8) to-

gether with the respective equations of
constraint. The result is a correction
to the acceleration guess {AXy).

. Compare the correction with the re-

quired accuracy. Are the corrections
converging, update positions and vel-
ocities by (31) - (32) and go to the
next time step. Otherwise use (30)

with the improved guess and repeat from
2.

Figure 4, GORM C launch computer simulation - time steps 7,0s.
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Figure 5. GORM C launch photographic
recording (7 out of 27 pictures).
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4. HYDRODYNAMIC COEFFICIENTS

The drag coefficient is calculated for
each jacket member at each time step as func-
tion of the momentary Reynolds' number. As
basis for the calculation a simplified version
of the curve in Miller (1977) Fig.8 has been
used with roughness parameter 0,4x107%. For
Re» 2x10° the drag coefficient is assumed con-
stant Cp=0,7.

The added mass coefficient is assumed con-
stant Cyp=1,0 for the circular cylinders.
For other bodies such as flat plates standard
values have been used.

As pointed out by Singh et al. (1982) the
sacrificial anodes may cause both an increase
and a decrease in the fluid lToading depending
on the flow direction relative to the anode
position. In this program the anodes are taken
into account simply as additions to the effec-
tive areas and volumes of the respective mem-
bers.

During the immersion of the members there
will even at low speed be large time deriva-
tives of the momentum of the added mass and
hence a force, here called the slamming force.
The program takes this force into account by
calculating the time derivative of the added
mass matrix.

The damping and added mass coefficient for
the barge have been taken from Vugts (1970)
p.41. The coefficients have been doubled for
the aft end sections of the barge that are to-
tally submerged, to provide for the water on
top of the deck.

Surface waves created by the jacket during
the launch and thereby wave damping are not
taken into consideration.

5. PHOTOGRAPHIC RECORDING AND ANALYSIS

A relatively simple photographic record-
ing and analysis method has been developed
by one of the authors who also carried out
the two full-scale measurements. Two inde-
pendent recording systems were used, still
photos and film, both of which could yield
the desired information: jacket position as
function of time.

The photo system consisted of a motor-
driven 35mm camera with zoom-lens, in one
case (GORM C) coupled to another camera pho-
tographing a stop watch, in the other case
(BERYL B) with a built-in clock as seen in
Fig.2. About 30- 40 photos with intervals of
1-2s are sufficient to describe the Taunch.
In both cases the observation platform was a
stand-by boat, situated 200- 300m from the
jacket. Colour diapositive film was used for
optimum resolution.

The film system was a 16mm colour film
camera with crystal-controlled film trans-
portation clock-work set at 25 frames per
second. So the film itself is a very accurate
time reference for the launch.

The analysis has been based on the photo
system alone because the photographs have a
slightly better resolution than single frames
of a 16mm film. The film, however, is a good
supplement to the photo series because it
represents the dynamics of the launch more
effectively than a series of still photos.
The analysis was made with the aid of an ac-
curate side-view drawing of the jacket. The
jacket positions were determined from the
photos by identifying the characteristic
nodes, beam ends, diagonal crossings etc.
close to the waterline and then plotting the
waterline position relatively to these points.
By using 4-5 points, the waterline position
could be determined quite precisely. Examples
are shown in Figs. 5-6.

The vertical, horizontal and angular mo-
tions and the important bottom clearance were
then plotted as functions of time. Velocities
and accelerations can be found by simple dif-
ference methods but the uncertainties will
increase.

6. RESULTS AND CONCLUSIONS

Two full-scale launch measurements, the
GORM C of 4000t and the BERYL B of 14000t,
have been compared with computer calculations
as seen in Figs. 7- 8. Generally the agreement
is very good.

For the GORM C jacket the calculated
deepest draught curve, which gives the import-
ant bottom clearance, comes very close to the
measured values whereas the computer calcula-
tion is about 4m on the safe side for the
BERYL B.

The calculations seem to have a somewhat
contracted time scale, more pronounced for the
small GORM C than for the larger BERYL B
jacket. An explanation to this phenomenon has
not yet been found. Increased added mass co-
efficients of 1,5 or 2,0 improve a bit on the
time scale, but the vertical and angular mo-
tions become less accurate. The theoretical
value of Cp=1,0 gives the best overall re-
sults.

For both calculations the damping seems to
be too small. It has been attempted to use a
constant drag coefficient equal to 0,7 instead
of the Re-dependent Cp. Surprisingly, this
means only a very insignificant change in the
results. The explanation must be that, the
dominating part of the damping forces on the
jacket are created at super-critical Reynolds'
numbers.

The added mass and damping forces on the
barge are calculated in a rather simple way.

A better description of the hydrodynamic be-
haviour of a partly submerged launch barge
would undoubtedly improve the calculations.
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