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Summary

Spectral elements with mass lumping allow for explicit time stepping and are therefore attractive for

modelling seismic wave propagation. Their formulation on rectangular elements is straighforward, but

for tetrahedra only elements up to degree 3 are known. To preserve accuracy after mass lumping, these

elements require additional nodes that make them computationally more expensive. Here, we propose a

new, less restrictive accuracy condition for the construction of these continuous mass-lumped elements.

This enables us to construct several new tetrahedral elements. The new degree-2 and degree-3 elements

require 15 and 32 nodes, while the existing ones have 23 and 50 nodes per element, respectively. We

also developed degree-4 tetrahedral elements with 60, 61, or 65 nodes per element. Numerical examples

confirm that the various mass-lumped elements maintain the optimal order of accuracy and show that the

new elements are significantly more efficient in terms of accuracy versus compute time than the existing

ones.

Topics:

1.25 Seismic Modelling;

6.03 High-performance Computing for Geoscience Applications

Main objectives:

The development of robust finite element methods with minimal computational cost for solving wave

propagation problems.

New aspects covered:

We found a new accuracy condition for the development of mass-lumped elements, which led to new

tetrahedral elements of degree 2 and 3 with less nodes than the existing ones and therefore significantly

more efficient. We also found several new mass-lumped tetrahedral elements of degree 4.
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Introduction

Spectral finite elements with mass lumping are attractive for the simulation of seismic wave propagation

because they are accurate and allow for explicit time stepping. Their construction is straightforward for

quadrilaterals and hexahedra, but not for triangles or tetrahedra. For the latter, mass lumping reduces

the accuracy when using standard Lagrangian basis functions. Fried and Malkus (1975) showed that

the accuracy can be restored by enriching the interior of the degree-2 triangular element with a bubble

function—a cubic function that vanishes on all edges. Taking the product of the bubble function with

higher-degree polynomials enabled the construction of triangular elements of degree 3 (Cohen et al.,

1995, 2001), 4 (Mulder, 1996), 5 (Chin-Joe-Kong et al., 1999), 6 (Mulder, 2013), and 7 to 9 (Liu et al.,

2017; Cui et al., 2017). In 3D, elements of degree 2 (Mulder, 1996) and 3 (Chin-Joe-Kong et al., 1999)

could be constructed by augmenting the polynomial space for the basis functions with higher-degree

face and internal bubble functions.

Here, we show that the accuracy requirement for the construction of those elements was too strong and

that the number of auxiliary bubble functions for higher-degree tetrahedral elements can be significantly

reduced. The new accuracy condition enabled us to construct new elements of degree 2 and 3 with less

nodes than the known ones, as well as three new elements of degree 4. The new elements were tested

on a 3-D homogeneous acoustic problem with a point source for which the exact solution is readily

available. The numerical examples show that these new elements are more efficient than the current

ones. We also include a more realistic elastic problem.

Method

We consider tetrahedral elements with a Lagrangian basis. Mass-lumping is done by using an inexact

quadrature rule of which the quadrature points are the same as the nodes of the basis functions. For

stability, it is necessary that all the weights of the quadrature rule are strictly positive. To also maintain

the order of accuracy, it was required that for elements of degree p, the quadrature rule for the mass

matrix is exact for polynomials up to degree p+ p′ − 2 (Ciarlet, 1978), where p′ > p is the highest

degree of the enriched basis functions.

For p ≥ 2, however, this requirement is too strong. Instead, we derived that it is sufficient if the quadra-

ture rule is exact for all functions in Ue ⊗Pp−2, where Ue is the element space of polynomials up to

degree p enriched with higher-degree bubble functions, and Pp−2 is the set of polynomials up to degree

p−2.

With this new condition, we were able to construct several new mass-lumped tetrahedral elements.

To describe their quadrature rules, let x1, x2, x3, x4, with x1 + x2 + x3 + x4 = 1, be the barycentric

coordinates of the element. The quadrature rules consist of basic symmetric quadrature rules of the

form {(x1,x2,x3)}. By this, we mean the quadrature point with barycentric coordinates x1, x2, x3, and

x4 = 1−x1−x2−x3 and all equivalent points obtained by permuting the four barycentric coordinates and

taking the first 3 coordinates. For example, {(α ,0,0)} denotes the twelve interior edge points that have

barycentric coordinates α , 0, 0, and 1−α . Table 1 lists the 11 equivalence classes on the tetrahedron

together with the number of nodes per class and a brief description.

Table 1 The 11 equivalence classes for quadrature nodes on the tetrahedron.

1 {(0,0,0)} 4 vertices 7 {( 1
4
,

1
4
,

1
4
)} centre of tetrahedron

2 {( 1
2
,0,0)} 6 edge midpoints 8 {(α ,α ,α)} 4 interior points

3 {(α ,0,0)} 12 interior edge points 9 {(α ,α ,
1
2
−α)} 6 interior points

4 {( 1
3
,

1
3
,0)} 4 face centres 10 {(α ,α ,β )} 12 interior points

5 {(α ,α ,0)} 12 interior face points 11 {(α ,β ,γ)} 24 interior points

6 {(α ,β ,0)} 24 interior face points
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Table 2 Mass-lumped finite elements. The first column contains the basic polynomial degree p of the

element, the second the number of nodes n per element, the third the element space and the last the

quadrature rule configuration. The older elements are marked by an asterisk.

p n Ue node pattern K = {K1,K2, . . . ,K11}

1 4∗ P1 {1,0,0, 0,0,0, 0,0,0,0,0}
2 15 P2 ⊕B f ⊕Bi {1,1,0 ,1,0,0, 1,0,0,0,0}
2 23∗ P2 ⊕B f P1 ⊕Bi {1,1,0, 0,1,0, 1,0,0,0,0}
3 32 P3 ⊕B f P1 ⊕BiP1 {1,0,1, 0,1,0 ,0,1,0,0,0}
3 50∗ P3 ⊕B f P2 ⊕BiP2 {1,0,1, 0,2,0, 0,1,1,0,0}
4 60 P4 ⊕B f P2 ⊕Bi

(

P2 ⊕B f

)

{1,1,1, 0,2,0, 0,2,1,0,0}
4 61 P4 ⊕B f P2 ⊕Bi

(

P2 ⊕B f ⊕Bi

)

{1,1,1, 0,2,0, 1,2,1,0,0}
4 65 P4 ⊕B f

(

P2 ⊕B f

)

⊕Bi

(

P2 ⊕B f ⊕Bi

)

{1,1,1, 1,2,0, 1,2,1,0,0}

To describe the basis functions on the elements, let B f := {x1x2x3,x1x2x4,x1x3x4,x2x3x4} denote the

four face bubbles, Bi := {x1x2x3x4} the interior bubble, and define B f Pk := B f ⊗Pk, BiPk := Bi ⊗Pk.

Table 2 provides an overview of the existing and new tetrahedral elements. The node pattern K =
{K1,K2, . . . ,K11} defines the number of independent nodes per equivalence class, modulo permutations.

From the node pattern K and the specification Ue of the basis functions, we could solve for the nodal

positions and quadrature weights by requiring exact quadrature for all functions in Ue ⊗Pp−2.

The new elements require less nodes. Stability analysis shows that they also allow for larger time steps.

Results

We start with an accuracy test of the old and new mass-lumped tetrahedral element methods on a

constant-density acoustic model, using a structured mesh that consists of cubes divided into 6 hexahe-

dra. The domain is [−2,2]3 km3 and the acoustic wave speed 2km/s. A 3.5-Hz Ricker wavelet, starting

from the peak, is placed at (0,0,1000)m, and 78 receivers are placed on a line between xr =−1925 and

xr = +1925m with a 50-m interval at yr = 0m and zr = 800m. Data were recorded for 0.6s, counting

from the time at which the wavelet peaked.

The simulations were carried out with OpenMP on 24 Intel R© Xeon R© E5-2680 v3 cpus running at

2.50GHz. Figure 1 shows the the observed root mean square (RMS) errors for the various schemes

against the number of degrees of freedom N and against wall clock time. The latter should not be taken

too literal because it depends on code implementation, compiler and hardware. It can be further reduced

by going to single precision, but then it becomes more difficult to measure the errors when they become

small. Therefore, we ran a double-precision version of the code when preparing these figures.

Fourth-order time stepping was used for degrees higher than one (Dablain, 1986). For degree 4, we also

considered 6th-order time stepping, but the errors were nearly the same as with 4th-order time stepping

for the current example.

Power-law fits show that the RMS errors converge with the optimal order p+ 1 and thus confirm that

the new elements maintain their order of accuracy. Figure 1 also shows that the new mass-lumped

methods require less degrees of freedom and computation time for the same accuracy. For the degree-2

methods, the difference in wall clock time is one order of magnitude, while for the degree-3 methods

this difference is around a factor 2. The degree-4 methods become more efficient for errors below 10−3.

We also tested the methods on the more realistic salt model from Kononov et al. (2012), made elastic

by replacing the water layer at the top by rock. Figure 2 displays vertical cross sections through the

3-D vertical displacement wavefield, clipped at 10% of its maximum amplitude with red for positive and

blue for negative values. Small amplitudes were replaced by the P-velocity to give an impression of the

model. A vertical force source was placed on the surface at (2000,2200,0)m. The wavelet was a 12-Hz
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Figure 1 RMS errors as a function of the cube root of the number of degrees of freedom (a) and as a

function of the wall clock time (b). The legend contains element degree, order of time-stepping scheme

and the number of nodes per element. The older elements, apart from the one with degree 1, have degree

2 with 23 nodes and degree 3 with 50 nodes and two variants called a and b.

Ricker. The top layer causes strong reverberations.
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Figure 2 Vertical cross section at y =2km of the P-velocity with a superimposed snapshot of the vertical

displacement after 0.5s (a), 1.0s (b), 1.5s (c) and 2.0s (d).

Conclusions

We developed a less restrictive accuracy condition for the construction of continuous mass-lumped ele-

ments, which enabled us to construct several new tetrahedral elements. The new degree-2 and degree-3

tetrahedra require 15 and 32 nodes, while the current tetrahedra require 23 and 50 nodes per element, re-

spectively. We also developed degree-4 tetrahedra with 60, 61, and 65 nodes per element. Mass-lumped

tetrahedra of this degree did not exist so far. Numerical examples confirm that the new mass-lumped
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methods maintain an optimal order of accuracy and show that the new elements are significantly more ef-

ficient than the existing ones. We have only considered tetrahedral elements, but the accuracy condition

might also lead to more efficient triangular elements.
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