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SUMMARY

Electron tomography is a powerful tool in materials science to characterize nanostruc-
tures in three dimensions (3D). In scanning transmission electron microscopy (STEM),
the sample under study is exposed to a focused electron beam and tilted to obtain two-
dimensional (2D) projections at different angles; many imaging modes are available
such as high-angle annular dark-field (HAADF). In tomography, the collection of projec-
tions is called a tilt-series, from which we can reconstruct a 3D image that represents the
sample. While HAADF tomography can clearly reveal the inner structure of the sample,
it cannot directly provide compositional information. To better understand nanomateri-
als with more types of elements, spectral imaging techniques like energy dispersive X-ray
spectroscopy (EDS) must be pursued. EDS tomography, however, is currently hampered
by slow data acquisition, resulting in a small number of elemental maps with low signal-
to-noise ratio (SNR).

Electron tomography, especially EDS tomography, is an ill-posed inverse problem
whose solution is not stable and unique. Although advanced reconstruction techniques
may yield a more accurate result by incorporating prior knowledge, they also involve
fine-tuning parameters that highly influence the reconstruction quality. Furthermore,
while great efforts have been dedicated to developing tomography techniques for im-
age enhancement, directly combining reconstruction volumes at hand has still not been
widely considered to the best of our knowledge.

In this thesis, we first pave the way for automatic no-reference single-parameter se-
lection to prevent the tedious and time-consuming hand-tuning for advanced recon-
struction techniques. To begin with, we propose an image quality metric, which quan-
tifies the reconstruction quality through cross-atomic contamination and noise, to de-
termine the optimal weighting factor for HAADF-EDS bimodal tomography. Then, we
move on to find the optimal regularization parameter for two regularized reconstruction
algorithms: total variation (TV) and total nuclear variation (TNV). The regularization
strength is measured by the sum of the Gaussian gradient magnitude for TV and the ori-
ented structure strength, which is described by the highest two responses in orientation
space, for TNV. Simulation and/or experimental results of nanoparticles show that all
three metrics can replace the full-reference metrics in practice. Therefore, they can be
used by non-experts if a reference is unaccessible.

Then, we present a HAADF-EDS cross-modal fusion framework that has no fine-
tuning parameter to simultaneously achieve high SNR and high elemental specificity.
Based on simulated and experimental datasets of semiconductor devices that have more
complex structures and more types of elements, we demonstrate that our algorithm
can produce continuous edges, homogeneous foreground and clean background in its
element-specific reconstructions. More importantly, it stably delivers results with high
fidelity even for limited and noisy EDS datasets. This property is highly desired in the
semiconductor industry where acquisition time and sample damage are essential.






SAMENVATTING

Elektronen tomografie is een krachtig techniek in materiaalkunde om nanostructuren te
karakteriseren in drie dimensies (3D). In scannende transmissie elektronen microscopie
(STEM) wordt de sample blootgesteld aan een gefocuste elektronen bundel en gekan-
teld om twee dimensionele (2D) projecties te verkrijgen onder verschillende hoeken; er
zijn veel verschillende beeldvorming modi beschikbaar zoals high-angle annular dark-
field (HAADF). In tomografie wordt de verzameling van projecties een kanteling-serie
genoemd, waarvan we een representatieve 3D afbeelding van de sample kunnen re-
construeren. Hoewel HAADF tomografie duidelijk de innerlijke structuur van de sam-
ple weergeeft, is het niet mogelijk om direct informatie over de atomaire compositie te
verkrijgen. Om een beter begrip van nanomaterialen te krijgen met meer verschillende
elementen zijn spectrale beeldvormings technieken zoals energy dispersive X-ray spec-
troscopy (EDS) nodig. EDS tomografie wordt echter momenteel belemmerd door trage
data acquisitie, dit resulteert in een lage hoeveelheid afbeeldingen per element met een
lage signaal ruis verhouding (SNR).

Elektronen tomografie, en vooral EDS tomografie, is een ondergedetermineerd in-
vers probleem waarvan de oplossing niet stabiel en uniek is. Alhoewel geavanceerde re-
constructie technieken een meer accurate resultaat kunnen opleveren door voorkennis
te gebruiken, omvatten ze ook fine-tuning parameters die een grote invloed hebben op
de reconstructie kwaliteit. Bovendien, ondanks dat er grote inspanningen zijn geleverd
voor het ontwikkelen van tomografische technieken voor beeldverbetering, is het direct
combineren van reconstructievolumes nog niet eerder gedaan, naar ons beste weten.

In dit proefschrift ontwikkelen we eerst een methode voor automatische geen-refere-
ntie enkele-parameter selectie om de langdradig en tijdrovende taak van handmatig pa-
rameter tuning te voorkomen voor geavanceerde reconstructie technieken. Om te be-
ginnen stellen we een beeld kwaliteit metriek voor, deze kwantificeert de reconstructie
kwaliteit door middel van kruis-atomisch contaminatie en ruis, om te bepalen wat de
optimale wegingsfactoren zijn voor HAADF-EDS bimodale tomografie. Waarna we de
optimale regularisatie parameter proberen te vinden voor twee geregulariseerde recon-
structie algoritmes; totale variatie (TV) en totale nucleaire variatie (TNV). De regular-
isatie sterkte wordt gemeten door de sommatie van de Gausische gradiént magnitude
voor TV en de georiénteerde structuur sterkte, welke worden beschreven door de hoog-
ste twee reacties in oriéntatie ruimte. Simulatie en/of experimentele resultaten van nan-
odeeltjes laten zien dat in de praktijk alle drie de metrieken de volle-referentie metrieken
kunnen vervangen. Daardoor kunnen ze gebruikt worden door niet-experts als een ref-
erentie ontoegankelijk is.

Daarna presenteren we een HAADF-EDS kruis-modaal fusie geraamte, dat geen af-
stembare parameter heeft, om simultaan een hoge SNR en hoge element specificiteit te
behalen. Gebaseerd op gesimuleerde en experimentele datasets van halfgeleider appa-
raten die meer complexe structuren en meer verschillende elementen hebben demon-
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streren we dat onze algoritme continue randen, homogene voorgrond en een schone
achtergrond kan produceren in element-specifieke reconstructies. Belangrijker is dat
het stabiele resultaten biedt met een hoge betrouwbaarheid, zelfs voor gelimiteerde en
ruizige EDS datasets. Deze kenmerken zijn zeer gewenst in de halfgeleider industrie,
waar acquisitietijd en sample schade essentieel zijn.



1

INTRODUCTION
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The PhD research conducted in this thesis focuses on developing image process-
ing techniques to characterize hard nanomaterials, such as heterogeneous catalysts and
semiconductor devices. In this chapter, we first introduce scanning transmission elec-
tron microscopy, which is a popular two-dimensional (2D) imaging technique in materi-
als science. Then, we move on to its three-dimensional (3D) extension: electron tomog-
raphy. Finally, we state the objectives of the PhD research and give an overview of the
thesis.

1.1. INSIDE SCANNING TRANSMISSION ELECTRON MICROSCOPE

Scanning transmission electron microscopy (STEM') enables materials scientists to an-
alyze a wide range of inorganic specimens on the nanoscale. As shown in Fig. 1.1, a
typical STEM is a conventional transmission electron microscope (TEM) equipped with
additional deflection scan coils and detectors [1]. The scan coils help to focus the elec-
tron beam to an atomic-sized probe where the beam is parallel to the optical axis in a
raster scan; hence, STEM imaging can be considered as a serial recording using parallel
beams. The detectors form images in an annular dark-field (ADF) or a bright-field (BF)
mode, depending on the scattering angle of the transmitted electron beam.

Electron Gun

—— System of condenser lenses
Condenser aperture

Deflection scan coils

Upper-objective polepiece

amplification,
modulation,
computer display

BF image | DF image

(@) (b) (c)

Figure 1.1: (a) A FEI Titan S/TEM, from [2]. (b) Schematic of a STEM and (c) STEM mode, adapted from
wikipedia.org. Scan coils focus the electron beam to an atomic-sized probe, and detectors form images.

The ADF detector collects scattered electrons. Moreover, one can use an ADF de-
tector with a sufficiently large inner angle (> 50 mrad = 3° [1]) to collect only the in-
coherently scattered electrons. Images formed by such a high-angle annular dark-field
(HAADF) detector are also called Z-contrast images, because the intensity of HAADF-
STEM approximately varies with the atomic number Z of a chemical element as ~ Z".

UIn this thesis, we use the same acronym or initial to denote both the technique (microscopy) and the instru-
ment (microscope).
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Theoretically, n = 2 [3] but practically n = 1.6 — 1.9, because the Coulomb potential of
the bare nucleus is screened by the electron cloud [4]; the exact value of n also depends
on the inner and outer angles of the detector, see [4, Fig. 6]. Since our eyes can detect
intensity changes larger than 5% - 10% [1, Chapter 22], HAADF images can yield con-
trast in samples that consist of high- and low-Z elements (e.g., platinum nanoparticles
supported on a carbon grid [5], Zpy = 78, Z¢ = 6). However, when the atomic numbers
of these elements become closer (e.g., nickel and manganese in lithium ion batteries [6],
Zyi = 28, Zun = 25), HAADF images may no longer be able to discriminate one element
from another.

e beam

Figure 1.2: Schematic of simultaneous HAADF and EDS imaging in STEM. A focused electron beam scans
over the sample. A HAADF detector with an inner angle 6, (> 50 mrad) and outer angle Ooy+ collects highly
scattered electrons; four symmetrically deployed EDS detectors collect emitted characteristic X-rays.

To better understand nanomaterials with more complex compositions, STEM can
be further coupled with two spectroscopic techniques: energy dispersive X-ray spec-
troscopy (EDS) and electron energy loss spectroscopy (EELS). The former uses an X-ray
spectrometer to detect characteristic X-rays emitted by the atoms in the sample upon
electron ionization [6]; the latter uses an electron spectrometer to measure the amount
of energy that electrons lose after inelastic scattering [7]. Although both techniques are
adopted to analyze chemical compositions, EDS is more suitable for heavy elements
with high Z because it has a more constant (and higher) peak-to-background ratio than
EELS [6, 8].

Throughout this thesis, we focus on HAADF and EDS because they are more com-
monly employed to study hard nanomaterials [6, 9-11]. These two imaging modalities
can be simultaneously acquired in STEM, see Fig. 1.2. A HAADF detector collects the
highly scattered electrons, and four symmetrically positioned EDS detectors collect the
emitted characteristic X-rays [6]. To improve collection efficiency, these individual spec-
tral images are later combined into one spectrum, from which the final EDS elemental
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maps are extracted by integrating the number of X-ray counts (above background) over
a certain energy range [12]. HAADF and EDS provide complementary information of the
sample. The former characterizes the structure with high signal-to-noise ratio (SNR) but
little chemical information, and the latter, conversely, reveals compositions with high el-
emental specificity but low SNR. While the HAADF projections and EDS maps can reveal
valuable structural and compositional information, they lack sensitivity in the third di-
mension [6]. Therefore, electron tomography must be pursued to fully analyze (thicker)
nanomaterials with more complex morphology and chemistry [3].

1.2. ELECTRON TOMOGRAPHY FOR THREE-DIMENSIONAL CHAR-

ACTERIZATION

As a powerful tool in materials science for 3D characterization, electron tomography
involves many steps between (the first) sample preparation and (the last) data interpre-
tation [13]. In this section, we mainly focus on data acquisition and tomographic recon-
struction, see Fig. 1.3. During data acquisition, the sample is tilted to obtain a series of
2D HAADF projections (and/or EDS maps) at different angles. With tomographic recon-
struction, we can compute a 3D image that represents the sample from the collection of
(aligned) projections, namely a tilt-series.

Q0 1 W

(a) (b)

Figure 1.3: Simplified schematic of electron tomography, adapted from [14]. During (a) data acquisition, a 3D
sample is tilted to obtain 2D projections at different angles. With (b) tomographic reconstruction, a 3D image
that represents the sample is computed from the collection of projections.

1.2.1. DATA ACQUISITION

In STEM, the sample is placed in a specialized tomography holder whose type deter-
mines the maximum tilt angle a [15]. For instance, a traditional single-axis holder lim-
its a to ~ £70° due to mechanical constraints. Since information beyond « is missing,
reconstructions are elongated in the direction perpendicular to the tilt axis; this prob-
lem is termed “missing wedge" [15]. Compared to the single-axis holder, an improved
dual-axis holder has a second tilt axis orthogonal to the first [15]; therefore, one can re-
duce the “missing wedge" to a “missing pyramid" by recording a second (orthogonal)
tilt-series, see Fig. 1.4. Moreover, 360° data acquisition can be achieved through on-axis
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rotation tomography holders and pillar-shaped samples [16]; these advanced rotation
holders will eventually replace the traditional ones to avoid losing any information. Fig.

a
tilt axis 1 % tilt axis 2
tilt axis 2
tilt axis 1 tilt axis 1

(@ (b)
Figure 1.4: Graphical illustration of data sampling in Fourier space, adapted from [17]. « is the maximum

tilt angle, and B is the increment between consecutive projections. The “missing wedge" in (a) single-axis
tomography can be reduced to a “missing pyramid" in (b) dual-axis tomography.

1.5 shows examples of the three aforementioned holders.

\

(@ (b) (c)

Figure 1.5: Examples of tomography holders, adapted from [18]: (a) single-axis with missing wedge, (b) dual-
axis with missing pyramid, and (c) on-axis that allows 360° rotation.

The total amount of electron dose delivered to the sample should be as low as possi-
ble to avoid damaging the sample, even though a high value is preferred to increase the
SNR of projections. For the simultaneous HAADF and EDS imaging, the overall electron
dose is usually limited to ~ 10° e/nm? [6, 9, 10, 19]. Given a fixed electron dose, one
can either increase the number of tilts with a small increment § yet only collect noisy
projections, or increase the signal at each angle with a large  yet limit the number of
projections. Both might be problematic for an accurate alignment in the subsequent
step. Furthermore, a small f may take longer acquisition time, because after each tilt
one needs to readjust the sample, refocus and wait for the sample to stop drifting; a
large f may reduce the reconstruction quality, because data might be too insufficiently
sampled in the Fourier space to achieve accuracy. As a rule of thumb, § € [1°,10°] in the
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conventional step-by-step acquisition process [6, 10, 13, 19, 20]. Note that an alterna-
tive continuous approach has also gained attention in TEM tomography to reduce time
[21-23], in which the sample is continuously rotated during data acquisition and the
electrons are detected by an advanced direct (electron) detection camera [22, 23]. How-
ever, this continuous tilting scheme is not considered in this thesis where we focus on
STEM as the method of choice to enable EDS spectroscopic mapping.

Mathematically, tomographic reconstruction implies that each pixel in the tilt-series
is an integral (or a sum) through the sample [24]. However, such linear requirement may
not be satisfied in STEM, because the resulting signal not only depends on the nuclei (or
say, the atomic number Z) but also on the form of the beam reaching a voxel [25]. Fortu-
nately, in practice if the deviation from linearity is known, one only needs to guarantee
that the detected signal is a monotonic function with some physical properties of the
sample and use the deviation information to correct the nonlinearity in post-processing
[26]. In the rest of this section, we will describe when the HAADF projections and EDS
maps fulfill the projection requirement, when they fail, and what to do for the correction.

Let us assume that the sample has thickness ¢, (homogeneous) density p, and a num-
ber of E different chemical elements making up an element set &. Moreover, it is thin
enough (# < 100 nm) to assume that most electrons either undergo a single-scattering
event or are not scattered [1, Chapter 3]. Let Iy be the total electron dose. The number
of electrons directed and scattered to low angles < 3° is [1]

I=1Iy-e Nt (1.1)

in which N is the number of atoms per unit volume and o is the single-atom scattering
cross section [1, Eq. (22.6)]. Assuming that electrons rarely scatter to an angle higher
than the outer angle of the HAADF detector (i.e., Oyt in Fig. 1.2), the intensity of HAADF
projections is

"=1y-T1=1Iy-(1-e N, (1.2)

which, for small Not<1,is
"~ I, -Not. (1.3)

While Eq. (1.3) shows a linear relationship between I " and Not, the HAADF sig-
nal contains nonlinearities. For instance, the contrast of light elements (e.g., crystalline
silicon, Zs; = 14) may be substantially enhanced in zone-axis projections due to elec-
tron channeling [27]; in practice, these projections are excluded for reconstruction to
avoid the channeling effect [28]. Moreover, the detected signal at greater thickness may
be damped, because multiple scattered electrons may not fall onto the HAADF detec-
tor. The damping effect and associated cupping artifacts in the reconstruction can be
automatically corrected by an iterative linearization scheme [29]. In [25], Aveyard et al.
demonstrated how the microscope parameters (e.g., accelerating voltage, detector ge-
ometry) influence the linear relationship and explored the optimal experimental design
for a broad range of nanomaterials with different types, atomic numbers and thickness.

For a thin sample where X-ray absorption and fluorescence are negligible (i.e., thin-
foil criterion [1]), the intensity of EDS maps for element e € & is [12]

e Ce
I"=1Ip- ,
(¢pt

(1.4)
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in which I is the total electron dose, C° is the weight fraction of e in the sample, and pt
is the mass-thickness. (° is a proportional factor connecting I° to C® and pt, which is
dependent on the ionization cross-section, the fluorescence yield, the relative transition
probability, the atomic weight, the detector collection-angle, and the detector efficiency
[12, Eq. (5)]. Since (¢ is independent of Iy, C® and pt, it can be experimentally deter-
mined by measuring the X-ray intensities of standard thin-films with known composi-
tions and thickness, namely the pure-element thin-film standards [12].

Similar to I" , the above I° is also sensitive to nonlinearities. For example, the in-
tegrated EDS signal varies with the tilt angle while using a single-axis holder, because
X-rays emitted from the sample are partially blocked by the penumbra of the holder (es-
pecially at lower angles) and hence “shadowed" from the detector [30]. To make the total
signal of each map the same, one can normalize the intensities of EDS maps or manu-
ally adjust the acquisition time at each angle [10]. In addition, Zanaga et al. used HAADF
projections as a supplement to compensate for the shadowing effect, thereby enabling a
more reliable EDS quantification [11]. Linearity is also invalid due to X-ray absorption,
which arises if one or more of the characteristic X-rays has an energy less than 3 keV, or
if the sample is too thick to validate the thin-foil criterion [1]. This can be corrected in
many ways [12, 31, 32], such as the conventional Cliff-Lorimer method or a newly pro-
posed (-factor method.

1.2.2. TOMOGRAPHIC RECONSTRUCTION

Before reconstruction, one needs to align the acquired tilt-series, that is, correct the
lateral shift and rotation among HAADF projections and/or EDS maps [13]. A com-
mon method to this end is image correlation, which uses a cross-correlation function
to match the patterns within images. Since this method does not need fiducial markers,
it can be applied to various samples; however, it may accumulate errors if the correlation
function exhibits a broad peak or high background noise [13].

After data alignment, let us move on to the mathematics and prior art on tomo-
graphic reconstruction. Note that we only use a 2D object and its one-dimensional (1D)
parallel beam projections to explain the mathematical basis. In fact, if we scan a 3D sam-
ple using parallel beam and rotate it on a single axis such as z-axis, the projection data
of its xy-slices are mutually independent. Consequently, the 2D reconstruction scheme
can be easily extended to 3D by stacking a set of xy-slices at different heights along the
z-axis [24].

Theoretically, a parallel projection is a collection of (parallel) line integrals [24]. De-
note the object as a continuous function f(x,y) in a xy-Cartesian coordinate system
centered at the rotation axis, see Fig. 1.6. Given an arbitrary line L(0,1): t = xcosf +
ysind in the system, the line integral Py () of f(x, y) for a constant 0 is

+00 p+oo
Pg([):f f f(x,y)6(xcosO+ ysinf —t)dxdy, (1.5)

which is also known as the Radon transform.

Practically, signals are detected in a discrete manner. To formulate this, we discretize
f(x,y) into a total number of N pixels and assume that each has a constant intensity
value x,, n=1,---,N, see Fig. 1.7. Since now a ray is defined as a “fat" line running
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L(8,t)
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f(xy)
x
(7]
t
Pg(2)

Figure 1.6: Schematic of the continuous forward projection. Given a 2D object f(x, y), its forward projection
for an arbitrary line L(6, ) is modeled as the line integral Pg(#) of f along the line, i.e., the Radon transform.

through the xy-plane, the (continuous) line integral becomes a (discrete) ray-sum [24]:
N

Pm= ) WmnXp, m=1,-,M, (1.6)
n=1

in which M is the total number of rays and w,;,, is the intersected area between the
m-th ray and n-th pixel. Specifically, for the HAADF projection and EDS map of e € &

| §
m N fy)
)
Y
I\
\\\xw
e

|:| P Pm+1

Figure 1.7: Schematic of the backward modeling for tomographic reconstruction. Discretize the unknown 2D
object f(x,y) into a number of N pixels, and assume that each has a constant intensity value x,, n=1,---, N.
The ray-sum p;; models the measured intensity corresponding to the m-th ray at the detector.
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(explained in 1D in this section), this discrete modeling is

N

ph=Y wh,x" m=1,--,M", (1.7)
n=1
N

pz/l: Z wsflnx}?l) m:]-)"')Me) (18)
n=1

respectively. Note that M " is not equal to M? if the number of projections in the HAADF
tilt-series is different from the EDS. Let us define p“ = [p7,--- ,p]L\‘/[u]T e RM“*! for the
projections, x* = [x{,-- ,x]l(,]T e RNV*! for the sample, and W* = {w); .} € RM“*N for the
projection matrix. Then, we can rewrite Eq. (1.7) and Eq. (1.8) to

pY =W"", (1.9)

in which u € {h, e} symbolizes which modality is being used.

Tomographic reconstruction aims to estimate the unknown x“ from the projection
data p“. This inverse problem, however, is ill-posed because p“ is inevitably corrupted
by noise (e.g., Poisson noise, readout noise, etc. [24]) during the measurement; such
ill-posedness becomes even severer for electron tomography where the number of pro-
jections is much smaller than the number of pixels to be reconstructed. Accordingly, the
solution of x* may not be stable and unique. In this section, we refer to algorithms that
concurrently couple multiple tilt-series in a joint reconstruction framework as “multi-
channel" and “single-channel" otherwise.

SINGLE-CHANNEL

Single-channel approaches having been developed so far are either analytical or alge-
braic. Analytical algorithms such as the classical filtered backprojection are based on the
Fourier slice theorem, which relates the Fourier transform of a projection to the Fourier
transform of the object along a radial line [24], see Fig. 1.8. Since these algorithms rely
on interpolation in the Fourier space and directly calculate the reconstruction in a single
step, they produce thin streaks if the number of projections is small, or if the projections
are not uniformly distributed over 180° [24]. Therefore, analytical algorithms are inferior
for electron tomography because the projections are (often) noisy and limited. Algebraic
algorithms, on the contrary, iteratively minimize the data discrepancy 2(W"x",p“) be-
tween the reprojected W*x" and the original p“

x* = argmin2(W“x"% p*), ue{h,ej, (1.10)
xu

assuming that the projection requirement is fulfilled. In practice, they produce less arti-
facts for noisy and/or limited datasets [33].

The definition of 2(W“x",p"“) depends on the statistical properties of p* [34]. For
instance, if the number of detected X-ray/photon counts is so low that the dominant
noise in p“ is Poisson-distributed, then 2 is modeled as a nonquadratic functional, such
as Kullback-Leibler divergence and negative log-likelihood [35]. While most algorithms
in this category were originally proposed for emission tomography where the unknown
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Figure 1.8: Graphical illustration of the Fourier slice theorem, which relates the Fourier transform of a parallel
projection to the Fourier transform of the object along a radial line. In other words, the Fourier transform of
Py (1) gives the values of F(u, v) along line AB.

emitter density follows a Poisson distribution (e.g., the maximum likelihood reconstruc-
tion [36], the maximum a posteriori estimation [37]), they have also been adapted to
electron tomography [34]. Moreover, if p* is mainly limited by Gaussian noise, then 2
is often defined as a quadratic functional: |[W“x"—p"* ||§, i.e., the squared I, norm of
W“x" — p". Many reconstruction techniques have been proposed for this category, such
as the classical ray-by-ray algebraic reconstruction technique (ART) and all-inclusive
simultaneous iterative reconstruction technique (SIRT). Other variants also exist (e.g.,
simultaneous algebraic reconstruction technique (SART), ordered subset convex algo-
rithm, etc. [38]), which aim for a much faster convergence within only a few iterations.

To further improve the reconstruction quality, one can incorporate various types of
prior knowledge into the (conventional) algebraic algorithms. For example, Batenburg
and Sijbers added extra discretization steps to the normal SART routine and developed
discrete algebraic reconstruction technique (DART), assuming that the sample under
study has only a few chemical elements and hence the reconstructed image has only a
few discrete intensity levels [39]. In addition, /; regularization techniques were also in-
vestigated because they could approximate the unknown x* by only using a small set of
the basis functions [40-43]. Regularized algebraic reconstruction algorithms are formu-
lated as

x* = argmin@ W*x*, p*) + A Z(x"), ue€{h,e}, (1.11)
xu

in which the regularization term 2 (x") is weighted by an extra parameter A. A common
choice of Z(x") is the popular total variation regularization (TVR). For instance, Goris et
al. [40] linked TVR in SIRT to compensate for the missing wedge, and Zhuge et al. [41]
combined TVR and DART in TVR-DART to reduce the number of fine-tuning parameters.
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MULTICHANNEL

In electron tomography, multichannel algorithms are either “unimodal” or “bimodal",
depending on whether they use more than one modality (i.e., either & or e, or both)
for reconstruction. One example of the (multichannel) unimodal algorithms is total
nuclear variation (TNV) regularized EDS tomography, in which Zhong et al. [34] em-
ployed TNV to couple multiple EDS datasets so as to encourage common edges in the
joint EDS reconstructions. Bimodal algorithms in electron tomography mostly combine
the HAADF-STEM projections and EDS maps for integrating their complementary infor-
mation [11, 19, 34, 44]. For instance, a manual parameter was introduced to weigh the
HAADF and EDS channels for effectively suppressing noise and enhancing contrast [19].
Furthermore, regularizations such as the aforementioned TVR and TNV have also been
considered [34, 44]. Since these regularization-aided (bimodal) techniques are so com-
plicated that their performance highly depends on the assumptions and conditions of
different datasets, it is necessary to provide a comprehensive guideline [34] for helping
users to prepare for a suitable algorithmic recipe.

1.3. CHALLENGES AND OBJECTIVES

As mentioned in Section 1.1, if the HAADF projections have low Z-contrast, then EDS
mapping becomes necessary to provide the valuable compositional information of the
sample. However, this technique has been hampered by a low detection efficiency and
slow data acquisition. For instance, the Super-X configuration depicted in Fig. 1.2 can
only detect approximately 7% of the generated X-rays with its large solid angle detectors
(Q2=0.9 sr [6] versus 47 = 12.6 st of the entire sphere). Consequently, in order to achieve
an acceptable SNR for the subsequent reconstruction, acquisition usually takes 300 s [6]
and may vary from 236 s to 895 s [10] per spectrum. A very high total amount of electron
dose may increase the X-ray detection, but it also damages the sample. As a result, the
overall dose is practically limited to ~ 10° e/nm? [6, 9, 10, 19, 20], resulting in a small
number of elemental maps with low SNR (e.g., 47 EDS maps with max. 30 X-ray counts
per pixel versus 221 HAADF projections with up to 10° electron counts per pixel [20]).

Many post-processing steps are available to increase the SNR of the spectral images
and/or EDS maps. For instance, binning helps to increase the number of X-ray counts
per pixel but at the cost of decreasing the spatial resolution [10]. Moreover, one can
employ smoothing filters for denoising (e.g., moving average filter [6], edge-preserving
filter [9]) but may also degrade the resolution or even produce negative intensities [10].
While multivariate statistical analysis can be an effective tool to separate the noise from
the spectral data [32, 45], it becomes ineffective if the noise is dominant.

Given a limited set of noisy EDS maps, advanced techniques (see Section 1.2.2) may
yield a more accurate reconstruction thanks to the incorporation of prior knowledge.
However, they also involve extra parameters that highly influence the reconstruction
quality. For example, the TV-, HOTV- and TNV-regularized techniques require addi-
tional parameters to determine the strength of regularization. Since over-regularization
blurs fine structures and under-regularization leaves the image too noisy, it is very im-
portant to properly choose these parameters. While one may compute reconstructions
for a large set of candidate values and compare them to a reference image, such method
becomes infeasible with limited computational resource and/or without a reference. In
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addition, although great efforts have been dedicated to developing advanced tomogra-
phy techniques, directly combining reconstruction volumes at hand has still not been
broadly considered to the best of our knowledge.

To address the issues discussed above, in this thesis we aim to:

1. automatically assess the image quality of the reconstructed volume so as to de-
termine the parameters for advanced tomography techniques without a reference
image;

2. design fine-tuning-free fusion algorithms to combine the HAADF and EDS recon-
structions for higher image quality;

3. further reduce the number of EDS maps and/or the amount of X-ray counts to
(implicitly) decrease the acquisition time and/or electron dose.

1.4. THESIS OUTLINE

In Chapter 2, we introduce an image quality metric, which assesses the reconstruction
quality through cross-atomic contamination and noise, to automatically determine the
optimal weighting factor for HAADF-EDS bimodal tomography [19]. Moreover, we ef-
fectively reduce the computational time” to 10%° by approximating the curve of metric
versus weighting factor to a parabola using polynomial fitting.

Chapter 3 provides another image quality metric to measure the strength of regular-
ization for TNV-based bimodal tomography [44]. Specifically, we use the oriented struc-
ture strength, which is described by the highest two responses in orientation space, to
concurrently quantify the sharpness and noisiness of reconstructions. Similarly, observ-
ing that the curve of metric versus regularization parameter is unimodal with a distinct
maximum, we adopt golden section search for the optimum of the regularization pa-
rameter and reduce the computational time by 85%.

Since reconstructions in electron tomography are preferably done in 3D [34], a 3D
metric that can incorporate the information in all directions is favored to quantify the
reconstruction quality. In Chapter 4, we use the easy-to-implement 3D Gaussian gradi-
ent magnitude to measure the regularization strength for the popular TV-aided recon-
struction technique. In this case, reconstruction-assessment pipeline is accelerated by
approximating the curve of the sum of gradient magnitude versus regularization param-
eter via spline interpolation.

Chapters 5 and 6 present a HAADF-EDS cross-modal fusion framework that does not
require any fine-tuning to simultaneously achieve high SNR and high elemental speci-
ficity. In Chapter 5, we demonstrate our initial algorithm on simulated and experimental
datasets of semiconductor devices and show that it can produce continuous edges, ho-
mogeneous foreground and clean background in its element-specific reconstructions.
More importantly, it stably delivers results with high fidelity even for limited and noisy
EDS datasets. In Chapter 6, we further add a weighted mask to the earlier framework to
enable light element fusion. This modified algorithm is evaluated on an experimental
dataset of a nanowire device that has more complex structures and more types of ele-

2Cornputational time refers to the amount of time spent on iterative reconstruction and quality assessment.
3Time reduction is compared between exhaustive search (for the optimum of the weighting factor or regular-
ization parameter) and polynomial fitting/golden section search/spline interpolation.
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ments.
Finally, Chapter 7 summarizes the work presented in this thesis and provides recom-
mendations for future research.
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NO-REFERENCE WEIGHTING
FACTOR SELECTION FOR BIMODAL
TOMOGRAPHY

Bimodal tomography introduces a weighting factor « to incorporate X-ray data into pro-
jection images acquired from scanning transmission electron microscope (STEM) so as
to achieve an atom-specific three-dimensional (3D) reconstruction of an object on the
nanoscale. Currently its value is chosen by computing reconstructions for a large range of
a € (0,1) and comparing them to a hand-segmented ground truth with the mean square
error (MSE). Since this is infeasible for an industrial application, in this paper we pro-
pose an image quality metric to quantify the quality of tomograms in terms of cross-
atomic contamination and noise for selecting the weighting factor without a ground truth.
Numerical results demonstrate that our framework can determine the close-to-optimal
weighting factor within an accuracy of £0.03. Moreover, approximating the shape of the
minimum by a parabola effectively reduces the computational time by 90%.

Published in Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 1243-1247, 2018 [1].
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2.1. INTRODUCTION

Electron tomography (ET) is essential for studying specimens in materials science, as it
reveals the 3D structure of an object from a series of its two-dimensional (2D) projections
on the nanoscale [2]. In STEM, projections formed by a high-angle annular dark-field
(HAADF) detector have high signal-to-noise ratio (SNR) but only contain aggregated in-
formation of all chemical elements along the projection direction [2]; projections ob-
tained from energy dispersive X-ray spectroscopy (EDS) accomplish an atom-specific
reconstruction but suffer from low SNR [3]. In order to simultaneously exploit these two
complementary techniques, HAADF-EDS bimodal tomography (HEBT) proposed in [4]
introduces a weighting factor a to link both modalities into one reconstruction. The
choice of a depends on the noise level and influences the reconstruction result. How-
ever, there is no a priori way to determine the “best" value. In [4], the optimal «a is found
by computing reconstructions over the whole range of a € (0,1) and comparing them to
a hand-segmented ground truth with the MSE. Since this is inapplicable for an indus-
trial application, a quantitative quality control for reconstructions in the absence of a
reference image is desired.

In recent years, no-reference image quality assessment has been widely investigated
for different application scenarios [5, 6]. Proposed algorithms can be generally divided
into two categories: (i) distortion-specific, that is, algorithms are designed specifically
for one distortion. For instance, the framework presented in [7] uses Gabor filter to eval-
uate the streak (ringing) artifacts resulting from the iterative image restoration; (ii) non-
distortion-specific, i.e., algorithms are generic and can respond to multiple degrada-
tions. Besides applications in computer vision, a lot of efforts have also been dedicated
to developing assessment algorithms in the field of ET, such as evaluating the perfor-
mance of tomographic reconstruction algorithms and/or the quality of tomograms. In
[8], the length of phase boundary was treated as a quantitative morphological image
characteristic to compare the commonly adopted filtered backprojection algorithm and
the DIRECTT technique. In [9], Okariz et al. statistically analyzed the intensity profiles
at the edge of objects in the reconstructed volume to set the number of iterations used
for the simultaneous iterative reconstruction technique.

In this paper, we propose an image quality metric to choose the close-to-optimal
weighting factor a for HEBT by means of quantifying the reconstruction quality of a
core-shell nanoparticle consisting of gold (Au) and silver (Ag). It can replace the MSE
adopted in [4] if no ground truth is available. To begin with, Section 2.2 introduces the
HEBT reconstruction technique and the methodology for deciding the optimal a with a
hand-segmented ground truth. Related image quality assessment algorithms are briefly
reviewed in Section 2.3 as prior work, followed by our proposed quality metric, and re-
sults are presented in Section 2.4. Section 2.5 summarizes our work and discusses pos-
sible future extensions.

We use the following notations throughout this paper. Bold uppercase W and low-
ercase w represent matrices and column vectors, respectively, while non-bold letters W
and w are scalars. Operators (-)T and = stand for transpose and convolution. R""*" de-
notes the space of all m x n matrices with real-valued elements.
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2.2. HAADF-EDS BIMODAL TOMOGRAPHY

Let us assume that a specimen has a number of E different chemical elements. Each
element e = 1,---, E is associated with an unknown volumetric object x'© € R¥*! where
N is the total number of equally-spaced voxels to be reconstructed. Let HAADF-STEM
and EDS-STEM images be p" € RM*! and p'@ € RM*!, respectively, in which M is the to-
tal number of pixels in one projection image. In [4], HAADF-EDS bimodal tomographic

reconstruction is defined as a least squares minimization problem

B 2

p -y wx@
1

x* = argmin a®
X e=

E
+U-w? Y [|[r9p@ -wx@|7, (2.1)
2 e=1

in whichx = [x(l)T, .. ,x(E)T] T, and each entry w,,, in We RM*EN js determined by the

intersected area between the m-th ray integral and n-th voxel [10]. The response ratio
factor r'@ for element e is calculated as

E
pZ?:Zr(e)pgﬁ), m=1,---, M. 2.2)
e=1

In Eq. (2.1), a weighting factor a € (0,1) is introduced to balance the residue terms of
HAADF-STEM and EDS-STEM. In principle, @ can be arbitrarily chosen between 0 and
1, whereas in practice it can neither be too small nor too large. The former makes the
influence from HAADF-STEM hardly observable, and the latter leads the minimization
of EDS-STEM residue term to become inefficient.

(a) GT (b) @=0.5 (©)a=0.7 (d) a=0.9

Figure 2.1: Au (upper) and Ag (lower) images at slice 150. The size of the reconstructions is 300 x 300 x 300 voxels.
(a) ground truth (GT); (b)-(d) HEBT reconstruction results with .4/ = 100 iterations and weighting factors a €
{0.5,0.7,0.9}, respectively. For better visualization, we perform percentile contrast stretching from 0 to 87%.

We consider the same core-shell nanoparticle as in [4] that consists of Au (core) and
Ag (shell). Fig. 2.1 depicts HEBT reconstruction results for 4" = 100 iterations and dif-
ferent weighting factors a € {0.5,0.7,0.9} at slice 150 along the z-axis. The size of the
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reconstructions is 300 x 300 x 300 voxels. Two binary images in the first column are the
hand-segmented ground truth with homogeneous intensity. For a = 0.5, A4 =100 intro-
duces overfitting, that is, the least squares optimization fits to the noise rather than true
patterns; thus, reconstructions in Fig. 2.1(b) are noisier with perceptible streaks showing
up. In Fig. 2.1(d), @ = 0.9 is too large and hence Au leaks into the background of Ag re-
construction and vice versa. In order to find the “best" value of a beforehand, Zhong et
al. computed the reconstruction x for a large range of a € (0,1) and compared it to the
hand-segmented ground truth x, (see Fig. 2.1(a)) via

MSE(x;,x) = min [[x; — cxll5 (2.3)

where c is a scaling factor [4]. Since this is not feasible for an industrial application, an
image quality metric to quantify the quality of reconstructions is desired, such that a can
be determined without a hand-segmentation.

2.3. DETERMINE WEIGHTING FACTOR WITHOUT REFERENCE

According to Fig. 2.1(a), ideal reconstructions of the core-shell nanoparticle should be
binary with homogeneous foreground and zero-valued background. Inspired by the
analysis of Fig. 2.1, we build our non-distortion-specific quality metric on concurrently
assessing: (i) cross-atomic contamination, that is, how much Au is showing up in Ag
regions and vice versa; (ii) inhomogeneity of the extracted fore- and background, and
(7ii) noise. In this section, we first present metrics that separately evaluate the afore-
mentioned three, followed by our quality metric for choosing the close-to-optimal a for
Au in the absence of its ground truth. The analysis of Ag follows the same principle.

2.3.1. CROSS-ATOMIC CONTAMINATION METRIC Qcc

In order to measure the cross-atomic contamination, we first generate a binary mask By,
for Au slice by slice based on the edge candidate points that are found in its volumetric
reconstruction. In [11], edges are extracted by a scale-normalized differential entity

@g’e

gt = 0g(L5+L2) (2.4)

with L = f = gz (;0¢), such that the scale at which an edge being detected can be auto-
matically selected. Edge strength is defined as the gradient magnitude of a smoothed
image L, which is obtained by convolving the input image f(x, y) with a Gaussian kernel
8g(;0¢) whose standard deviation is 0. Finally, we calculate the cross-atomic contam-
ination metric Q¢c by averaging the intensity of pixels outside the mask.

2.3.2. INHOMOGENEITY METRICS Q1g,1 AND Q1g2

We evaluate the inhomogeneity of a non-ideal gray-scaled Au reconstruction by compar-
ing it to its binary mask By,. In [12], similarity between two images f; and f, is measured
by the Pearson coefficient

PC = Yilfi— )i = f2)

= (2.5)
\/Zi(fl,i — 12X (i — f2)?
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where fi; and f; are the intensity values of the i-th pixel, f; and f> the average inten-
sities over all pixels in fj and f5, respectively. When f; and f, are not subtracted, a new
coefficient, the so-called overlap coefficient

0C = Yifiif
\/Zifl,iZZifZ,iz

is defined. We denote our two inhomogeneity metrics as Qg1 = 1 —PC and Q2 =
1 - 0C, respectively.

(2.6)

2.3.3. NOISE METRICS Qy 1 AND Qy 2
We investigate the noise level of Au reconstructions by computing the amount of streaks
and oriented structures they contain. It is based on the previous work in [7] and [13].

In [7], streak artifacts are analyzed by a 2D Gabor filter, which can be regarded as
modulating a Gaussian envelope by a sinusoidal wave with fixed frequency. Given a spe-
cific orientation 8, the corresponding Gabor response for an input image f(x, y) is

0 .
4 :f*g(',(P;Y»O';Fg;H); (27)

in which ¢ is the phase offset, y and o the spatial aspect ratio and standard deviation of
the Gaussian envelope, and Fg and 6 the central frequency and orientation of the Gabor
filter, respectively. Method in [7] works as follows:
1. decompose f(x, y) using Gabor filter w.r.t. different orientations to obtain ¢ o u,v);
2. for each row i (or column j) in %6, calculate the maximum oscillation strength S;
(or S;), which is defined as the response difference between the local maximum
and its neighboring local minimum;
3. compute the overall metric value for streak artifacts by finding the maximum oscil-
lation strength S among all rows and columns and averaging over all orientations
0.
Since we do not have a priori knowledge of the width of streaks, we further extend the
original module to a filter bank-based version. Its design involves two important param-
eters: Fg and 6. The former is determined by the central frequency of the filter at the
highest frequency (Fyy), the ratio between two neighboring central frequencies (F;) and
the number of frequencies (INp), and the latter by the number of orientations (Np). We
calculate our first noise metric Qy, 1 by modifying the algorithm proposed in [7] as: oscil-
lation strength calculation and maximum value extraction are performed not only over
all rows and columns but also over all frequency bands.
In [13], oriented structures are extracted by a Gaussian profile with orientation selec-
tivity. A linear orientation space for a specific angle ¢ is defined as

H% = f % h(; Ny, Fn, By, §) (2.8)

where h(-; Ny, Fi, By, ¢) is obtained by rotating the orientation selective template filter
h(-; Ny, F, B) over ¢p. Np, which relates to the orientation selectivity, is the number
of filters along the ¢-axis, and Fj, and By, the central frequency and bandwidth of the
Gaussian profile, respectively. After constructing the orientation space, we further find
the maximum response over ¢ and denote it as our second noise metric Qy 5.
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2.3.4. PROPOSED METHOD: A COMBINATION OF INDIVIDUALS

To find a proper combination for the aforementioned individual metrics, we first eval-
uate their own properties for different a € [0.1,0.9] with a step size of 0.01 at slice 150.
Table 2.1 lists all important parameters, for choosing which we follow the guideline in
[7, 13, 14] without fine-tuning.

Table 2.1: Parameters for reconstruction quality assessment

Ref. Parameter Symbol | Value
7] Phase offset ) 0
Spatial aspect ratio Y 0.5
Central frequency of filter at the highest frequency Fy V2/4
[14] Frequency ratio F, V2
Number of orientations Ny
Number of frequencies Np 3
Number of filters Ny, 33
(3] Central frequency of Gaussian profile Fy, 0.15
Bandwidth of Gaussian profile By, 0.5F;,

As illustrated in Fig. 2.2, the background of Au reconstruction gets more contamina-
tion from Ag when «a is increasing as it increases the ratio of HAADF-STEM term that
contains aggregated information. Moreover, inhomogeneity and noise metrics have a
clear unique minimum. We define our quality metric Q as the product of all individual
metrics, namely

Q= Qcc x Q1,1 % Q1,2 X Q1 X Q2. (2.9)

Note that we do not normalize the individual metrics to [0, 1]; otherwise, the minimum of
each curve at zero would automatically dictate the minima of the multiplication. Fig. 2.3
depicts MSE and the combinational quality metric Q for Au w.r.t. different weighting
factor @ and number of iterations ./, in which Fig. 2.3(a) is the same as Fig. 7 in [4]. It
can be observed that there is a relatively large range of a(~ 0.18) within an uncertainty
of £0.03, see red dash-dot lines in Fig. 2.3(a). Although parabolic curves in Fig. 2.3(b) are
slightly different from the ones in Fig. 2.3(a), the optimal values of @ around the minima
of parabolas are almost the same.

2.4. RESULTS

Since HEBT takes only one « value as the input but reconstructs both Au and Ag as
the output, we consider them simultaneously in this section by summing up their MSE
(or Q) values to find the minima. Note that it takes around two hours to generate one
parabolic curve in Fig. 2.3(b), during which CPU time is mainly occupied for noise analy-
sis. Therefore, we choose 8 equidistant samples for a from 80 points in total and perform
polynomial fitting to predict parabolas and reduce the computational time by 90%.

Fig. 2.4 depicts the optimal values of « for different number of iterations .4 at slice
150, which are found by MSE, true and predicted quality metric Q, respectively. It demon-
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Figure 2.2: Metric values of cross-atomic contamination, inhomogeneity and noise versus weighting factor
a €[0.1,0.9] for Au with 100 iterations adopted for HEBT at slice 150.
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Figure 2.4: Weighting factor a versus number of iterations .4 adopted for HEBT at slice 150.

strates that besides a obtained from MSE, the other two also tend to increase with the
increment of 4. The reason is that for large .4/, large a guarantees that it converges
to the true pattern rather than noise. Moreover, a from both true and predicted quality
metric values achieve an uncertainty of +0.03 independent of the number of iterations
A adopted for HEBT.

Fig. 2.5 illustrates the consistency of the optimal a w.r.t. different slices while Au and
Ag are being considered simultaneously. Note that our quality metric Q is the closest to
MSE at slice 150 because it is in the middle of the reconstruction stack (300 x 300 x 300)
and thus suffers the least from boundary artifacts. However, even in the worst case where
Q being the furthest to MSE, i.e., slices 80 and 170, a calculated and/or predicted by our
quality metric still achieves an accuracy of +0.03.

2.5. CONCLUSION

In this paper, we propose a no-reference quality metric for HEBT to automatically deter-
mine its weighting factor @ by quantitatively evaluating the quality of tomograms. Fur-
thermore, approximating the parabola by polynomial fitting reduces the computational
time to 10%, which makes our quality metric more promising. As for future work, we
consider embedding the proposed assessment module into a learning system, such that
a can be chosen in real-time without the need to perform reconstruction.
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PARAMETER SELECTION FOR
TNV-REGULARIZED ELECTRON
TOMOGRAPHY

Regularization has been introduced to electron tomography for enhancing the reconstruc-
tion quality. Since over-regularization smears out sharp edges and under-regularization
leaves the image too noisy, finding the optimal regularization strength is crucial. To this
end, one can either manually tune regularization parameters by trial and error, or com-
pute reconstructions for a large set of candidate values and compare them to a reference
image. Both are cumbersome in practice. In this paper, we propose an image quality
metric Q to quantify the reconstruction quality for automatically determining the opti-
mal regularization parameter A without a reference image. Specifically, we use the ori-
ented structure strength, which is described by the highest two responses in orientation
space, to simultaneously measure the sharpness and noisiness of reconstruction images.
We demonstrate the usefulness of Q on a recently introduced total nuclear variation regu-
larized reconstruction technique using simulated and experimental datasets of core-shell
nanoparticles. Results show that it can replace the full-reference correlation coefficient to
find the optimal A. Moreover, observing that the curve of Q versus A has a distinct maxi-
mum attained for the best quality, we adopt the golden section search for the optimum to
effectively reduce the computational time by 85%.

Published in Proceedings of the Scandinavian Conference on Image Analysis, pp. 452-464, 2019 [1].
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3.1. INTRODUCTION

Electron tomography enables materials scientists to characterize nanoparticles in three
dimensions (3D) [2]. Scanning transmission electron microscopy (STEM) has many imag-
ing modes such as high-angle annular dark-field (HAADF) [2], in which the sample under
study is exposed to a focused electron beam and tilted to obtain two-dimensional (2D)
projections at different angles. In tomography, the collection of projections is called a
tilt-series, from which we can reconstruct a 3D image that represents the sample. Al-
though HAADF tomography can clearly reveal the inner structure of the sample, it can-
not explicitly provide the compositional information. To better understand samples with
more complex chemical compositions, spectral imaging techniques like energy disper-
sive X-ray spectroscopy (EDS) [3] must be pursued. EDS tomography, however, is cur-
rently hampered by slow data acquisition, resulting in a limited number of elemental
maps with low signal-to-noise ratio (SNR) [3].

Electron tomography is an ill-posed inverse problem whose solution is not stable and
unique. Therefore, /; regularizations (e.g., total variation (TV) [4], higher order total vari-
ation (HOTV) [5, 6]) have been introduced to enhance the reconstruction quality. How-
ever, regularizations, especially the common TV, inevitably aggravate jaggy edges and
staircase artifacts when being applied to the (noisy) EDS datasets. To alleviate such ar-
tifacts but still benefit from regularization, Zhong et al. incorporated the HAADF-STEM
projections with high SNR into EDS maps using total nuclear variation (TNV) to en-
force anti-/parallel gradients and common edges in joint reconstructions [7]. Like other
regularization-based approaches, TNV also requires a fine-tuning parameter A to deter-
mine the strength of regularization. The “best" A is now chosen by computing recon-
structions for a large set of candidate values and comparing them to a reference image
with the correlation coefficient [7]. Since this is infeasible if the reference is unavailable,
we need to automatically measure the reconstruction quality for determining the opti-
mal A.

So far, many no-reference quality assessment algorithms have been proposed to set
appropriate parameters for inverse problems. For instance, Zhu and Milanfar developed
a structure tensor based image content index to optimize denoising algorithms [8]. Since
this index is easy to compute, it has also been adopted to determine the optimal regu-
larization parameter for the TV reconstruction technique [9]. Applications dedicated to
electron tomography also exist [10, 11]. For example, Okariz et al. derived the optimal
number of iterations for simultaneous iterative reconstruction technique (SIRT) by sta-
tistically analyzing the edge profile of reconstructions [11]. Furthermore, we recently
proposed a non-distortion-specific image quality metric to quantify the cross-atomic
contamination and noise so as to select the optimal weighting factor for bimodal to-
mography [10]. However, automatically selecting parameters for regularized electron
tomography has still not been widely investigated to the best of our knowledge.

In this paper, we aim to automatically find the optimal regularization parameter 1
for TNV in the absence of a reference image. Specifically, we extend the concept of im-
age content index [8] to orientation space (OS) [12], in which we develope a metric Q
to assess the reconstruction quality regarding the sharpness and noisiness. We demon-
strate our Q on simulated and experimental datasets of core-shell nanoparticles con-
taining gold and silver. Results show that this OS-based Q is more robust to noise than
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the original tensor-based version. Moreover, it can replace the full-reference correla-
tion coefficient used in [7] to determine the optimal A. In Section 3.2, we introduce the
TNV-regularized reconstruction technique and its relations to TV. Section 3.3 elaborates
the orientation space as prior work, followed by our quality assessment framework for
parameter determination. We present the experiments and results in Section 3.4 and
summarize our work in Section 3.5.

3.2. TNV-REGULARIZED ELECTRON TOMOGRAPHY

Originally proposed for color images [13], total nuclear variation (TNV) has later been
applied to multi-channel spectral CT data for encouraging common edge locations and a
shared gradient direction among different channels [14]. Let us assume that an arbitrary
3D image A has a number of L channels, in which A, = [AE}),--- ,AElL)]T € RE*! is the
intensity value tuple of its n-th voxel. Given the Jacobian matrix of A as

va(L), vyA(L), VZA(L)

then TNV of A is
TNV(A) = )_ J,All, (3.2)
n

where [|J,All 4, the nuclear norm of J ;A, is the sum of its singular values [14]. When L =1,
TNV reduces to the isotropic (lo-norm) TV [7].

We consider a specimen with a number of E different chemical elements. Each el-
ement e = 1,---, E has its EDS map p(e) e RM“*1 and is associated with one unknown
reconstruction volume x®@ € RNV*!, M€ is the number of pixels in the map and N the

Rthl RN*1

number of discretized voxels to be reconstructed. Similarly, let p € andx”" €
be the projection and volumetric reconstruction of HAADE respectively. Note that M h
the number of pixels in the HAADF projection, is not equal to M* if the HAADF tilt-series
has more acquisition angles than the EDS.

Given A, as a two-channel image A;, = [x,(f),xfj T i.e., one element of interest plus
HAADE the TNV-regularized EDS and HAADF joint tomography is [7]

. 2 2
x9* %" = argmin |p'® - W@x@ | 1 th _whxh Hz +ATNVE D, xM.  (3.3)
h

x(@ x

Extending A,, to multiple channels with more than one element is also possible, as long

as they share common edges [7]. In Eq. (3.3), W € RM™*N and W" ¢ RM"*N are the
projection matrices of the EDS and HAADE, respectively, whose entries w'?, and wfl,m
are determined by the intersected area between the m-th ray integral and n-th voxel.
When the HAADF term is removed and A,, = xﬁf), Eq. (3.3) reduces to the TV-regularized
EDS tomography [4].

The parameter A in Eq. (3.3) determines the strength of TNV regularization. A large
A may blur sharp edges and produce an over-smoothed reconstruction, whereas a small

one may make the regularization ineffective. To choose this crucial parameter, Zhong
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et al. computed the reconstructions x'©* for a large set of A (e.g., 100 values uniformly
sampled from 1073 to 10! on the logarithmic scale) and compared them to a noise-free
image using the correlation coefficient [7]. Since this is infeasible in industry, we need
a no-reference quality metric to quantify the reconstruction quality so as to (blindly)
determine the optimal A.

3.3. NO-REFERENCE REGULARIZATION PARAMETER DETERMI-
NATION

Considering that the effect of regularization varies spatially, we propose to use the lo-
cal oriented structure strength (OSS) to measure the image quality; it has large values
for well structured patches containing lines and edges and small values for blurry/noisy
ones. In this section, we first introduce the concept of orientation space [12] and then
present our OSS-based quality assessment framework.

3.3.1. ORIENTATION SPACE
The linear orientation space of a 3D input image /(x) can be constructed as

In(x,¢,0) = I(X) * h(x;¢,0) (3.4)

where x is the Cartesian coordinate tuple containing x, y and z. Operator * denotes con-
volution. h(x;¢,0) is obtained by rotating an elongated template filter 4(x) over angles
¢ and @ in a unit sphere. ¢ € [0,27) is the counter-clockwise angle measured from the
positive x-axis in the xy-plane; 0 € [0, ) is the angular distance from the positive z-axis
[12]. One promising candidate for h(x) is a Gabor filter [15]; however, it cannot produce
a zero response to a constant signal. Therefore, we use a similar filter which is zero for a
constant signal [12].

According to van Ginkel et al., the choice of the template filter k() is largely free, as
long as the scale and orientation can be dealt with separately [16]. To this end, Faas and
van Vliet constrained the Fourier transform of /(x) to have separable radial and angular
parts, that is,

Fihx)}=H® = Hrad(f) Hang((P’ 0) (3.5)

where f is the polar coordinate tuple containing f, ¢» and 0 in the Fourier domain [12].
The radial component Hyraq(f; fc, by) is a Gaussian-like bandpass filter where f. and by
are the central frequency and bandwidth of the Gaussian profile, respectively. It reaches
its maximum for f = f. and goes to zero for f = 0. The angular component Hang (¢, 0; N)
relies on a parameter N to control the orientation selectivity, which is the number of
orientations in the upper half of the unit sphere formed by ¢ and 0. For details of math-
ematical expressions see [12]. When 6 is removed, H(f) becomes the 2D filterbank pre-
sented in [16].
I1,(x,¢,0) has a number of peaks. The amplitude of the strongest peak

Al x) = H(;%X”h(x»(P,@” (3.6)

captures highly regular regions with one single orientation; the amplitude of the second
strongest peak A, (x) highlights special patterns such as deformation and bifurcation;
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the remaining peaks and noise are described by a residue term R(x, ¢,0) which reflects
chaoticregions [16]. Intuitively, alarge A; and a small A, indicate a prominent elongated
structure.

3.3.2. RECONSTRUCTION QUALITY ASSESSMENT USING ORIENTATION SPACE
Our patch-based quality assessment algorithm consists of three steps: (i) construct an
orientation space; (ii) compute the local and (iii) global quality metrics, see Fig. 3.1. Note
that this method is currently implemented and discussed here in 2D in a first result.

P
Image I(x,y) 0t eee %
\L Patch Structure Local
Orientation Biodk Py detector Qx Global
space > 'I”I‘t“ Averaging > metric
construction o y Q
Strength
estimator
Py Qk

Figure 3.1: Framework for reconstruction quality assessment. Details in Section 3.3.2.

CONSTRUCT ORIENTATION SPACE

For each reconstruction slice I(x,y), we first construct its orientation space I (x, y, )
using Eq. (3.4). Then, we extract the amplitudes of the two strongest peaks A; (x, y) and
Az(x,y). Throughout this paper, Ij(x,y,¢), A;1(x,y) and Ay (x, y) are computed with the
open source DIPimage toolbox [17]. Moreover, we set f. =0.25, by = 0.8 f; and N =8, so
that the template filter h(x, y; fc, b £ N) behaves like a line/edge detector [16].

COMPUTE LOCAL METRIC

Divide I(x, y) into a number of K non-overlapped rectangular patches Py, k=1,---,K;
each goes through two modules: structure detector and strength estimator. The struc-
ture detector determines whether Py contains any prominent structure (e.g., edges) by
measuring its contrast. To eliminate outliers such as noise, we define the contrast of Py
as the interquartile range (75 percentile minus 25 percentile) rather than the full range
(maximum minus minimum) of its pixel intensities. We set is_stru; = 1 if the contrast of
Py is larger than the average intensity of I1(x, y) and is_stru = 0 otherwise. The strength
estimator quantifies the saliency of patch Py, for which the gradient structure tensor has
been considered earlier. For instance, Zhu and Milanfar proposed the image content

index [8]
$1— 982

=5 (3.7)
9 ! S1+ 82
where s; and s, are the singular values of the 2 x 2 tensor matrix. In this paper, we replace

s1 and sy by the amplitudes A; and A, because the latter two are more sensitive to fine
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structures under noise [18]. Consequently, the oriented structure strength of Py is given

by

_ geomean{q;} gi = Ay —Agi
mean{q;} ' VTALi+Asy

in which geomean{-} and mean/{-} represent the geometric and arithmetic mean, respec-
tively. The underlying rationale is that the more “spiky" g is, the stronger the oriented
structure in Py will be. Moreover, if Py is constant or exactly at the boundary between
two orientation fields (i.e., A;; = A2; =0o0r Ay ; = Ay ;, Vi € Py [16]), we set OSSy = 0.
Finally, we compute the local quality metric by multiplying the outputs of the two inde-
pendent modules: Qy = is_struy x OSSy.

0SS, =1 , 1€ Py, (3.8)

COMPUTE GLOBAL METRIC
We define the global quality metric Q as the geometric mean of all nonzero Qy, that is,

Q =geomean{Qy}, Qx#0, k=1,---,K. (3.9)

We do not consider the arithmetic mean because it (unwanted) gives higher weight to
Qy with larger numeric range.

3.4. EXPERIMENTS AND RESULTS

In this section, we demonstrate that our quality metric Q can select a close-to-optimal
A for the TNV-regularized reconstruction technique. Hereinafter, we consider simulated
and experimental datasets of core-shell nanoparticles containing gold (Au) in the core
and silver (Ag) in the shell. These two chemical elements have distinct atomic numbers
(Zna =79, Zpg = 47) and hence can produce high Z-contrast HAADF-STEM projections
for the TNV to augment EDS maps. Moreover, the TNV-regularized tomography was re-
alized by Douglas-Rachford primal-dual splitting algorithm with the operator discretiza-
tion library [19]. We set 400 iterations to guarantee convergence and sampled 100 points
for A, which were uniformly distributed between 0.001 and 1.0 on the logarithmic scale.

3.4.1. SIMULATED DATASET

(a) Atomic design (b) HAADF (c) EDS map

Figure 3.2: (a) Atomic design of a core-shell nanoparticle consisting of gold (Au, yellow) and silver (Ag, white).
(b) Simulated HAADF-STEM projection and (c) superposed EDS map at 7.5°.

To begin with, we simulated a noise-free multislice dataset using an Au-Ag nanopar-
ticle in a box with a size of 40 nm x40 nm x40 nm, see Fig. 3.2(a). For details of simulation
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see [20]. HAADF-STEM projections and EDS maps with a size of 128 pixel x 128 pixel
(= 4A/pixel) were simulated in every 2.5° over [0°,180°). We used a focused electron
beam normalized to an intensity of 1, a convergence angle of 10 mrad, and a detector
with an inner angle of 90 mrad and outer 230 mrad. Since we did not include any (spher-
ical) aberration, we set the accelerating voltage to 120 kV rather than 200 kV [3] for a
broader beam.

Then, we introduced several post-processing steps to make this noiseless dataset
more realistic. HAADF-STEM projections were blurred by Gaussian smoothing (o0 = 1.0
pixel) and corrupted by Poisson noise with a mean of the number of electron counts (up
to 10° per pixel) and Gaussian noise with a standard deviation of 0.2. Projections suffer-
ing from the channeling effect were removed [21]. For EDS maps, we set the maximum
X-ray count per pixel to 4 for Au and 3 for Ag, so that the total number of X-ray counts per
angle were comparable to real experimental data [3]. Since EDS maps were much nois-
ier, we employed a Gaussian filter (o = 1.0 pixel) for denoising. Finally, we subsampled
the EDS tilt-series by a factor of 2, as in practice the number of EDS maps is typically
smaller than HAADF projections due to acquisition time. The resulting HAADF-STEM
and EDS data are shown in Fig. 3.2.
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Figure 3.3: Au (upper) and Ag (lower) xy-slices for the simulated dataset at z = 24. (a) Ground truth, seg-
mented from SIRT reconstructions with 100 iterations using 72 elemental maps between [0, 180°); (b)-(d) TNV
reconstructions with regularization parameter A € {0.001,0.1233,0.1748}. The size of the reconstructions is
128 x 128 x 128 voxels.

Fig. 3.3 illustrates the xy-slices of Au and Ag at z = 24, which are reconstructed with
TNV using different A. Two binary images in Fig. 3.3(a) are the ground truth segmented
from SIRT reconstructions with 100 iterations given the full-view noiseless EDS maps.
Fig. 3.3(b) shows 16 patches with four different types of structures: object (P;1), back-
ground (P4, P1g), background with streak artifacts (P;, Py3), and edge (Ps, Ps, P19, P12)-
For A = 0.001, a weak regularization leads to an overall noisy reconstruction. However,
when A is increased up to a certain level (e.g., A = 0.1748), strong regularization starts to
nonuniformly degrade the sharp edges, see yellow circles in Fig. 3.3(d).




34 3. PARAMETER SELECTION FOR TNV-REGULARIZED ELECTRON TOMOGRAPHY

06 [ !
05 1 0
04 : ‘ 1
1
1
0

10°
06 [
05 |
04 ‘

10°
0.8 ‘
06 | |I——k=6 ﬁ
04 :

10

1072 107 10
: 1

06 | - 1 ——
1072 107

Local quality metric

Oriented structure strength

04 L
10°

3 10

A A

(a) OSSy (b) Qg
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noise realizations.

Fig. 3.4(a) plots the oriented structure strength (OSS) as a function of A for four
patches selected from Fig. 3.3. OSS curves of the background patches P; and P4 (w/ and
w/o perceptible streak artifacts) are decreasing when A is increasing, because stronger
regularization can more effectively suppress the noise. In addition, OSS curves of the
edge (Pg) and object (P;1) patches are similar, whereas the former has a clearer unique
maximum. Fig. 3.4(b) shows the corresponding local quality metrics, in which only Qg
with is_strug = 1 is nonzero.
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Figure 3.5: Global quality metric Q and correlation coefficient versus A for the simulated dataset at z = 24.
Q is derived either from the orientation space (OS) or structure tensor (ST); CC is obtained by comparing
reconstructions to the ground truth in Fig. 3.3(a). Results are averaged over ten noise realizations.
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Fig. 3.5 depicts our main result, in which we plot the global quality metric Q and
correlation coefficient (CC) as a function of A. Q is derived either from our orientation
space (OS) or from the structure tensor (ST) [8]; CC is calculated by comparing recon-
structions to the binary segmentation of the noiseless SIRT reconstruction. It can be
observed that our OS-based Q has a very good agreement with CC for the optimal 1, i.e.,
A values around the maxima of OS-based Q and CC are almost the same. Moreover, our
OS-based Q has a higher dynamic range than the ST-based version especially for Ag, see
Fig. 3.5(b). As a result, it would be more robust to small fluctuations such as noise in
practice.

Note that TNV is an iterative technique that takes significant amount of time for re-
construction. For example, it took 10 hours to compute reconstructions for 100 different
A. Many efficient one-dimensional search algorithms are available for time reduction,
and we choose the golden section search [22]. This algorithm assumes that the objective
function is unimodal within a certain range and evaluates it at triples of points whose
values form the golden ratio [22]. Since the golden section search can narrow the origi-
nal 100 values of A down to no more than 15, it would effectively reduce the total com-
putational time by approximately 85%.

3.4.2. EXPERIMENTAL DATASET

(a) HAADF-STEM (b) EDS map

Figure 3.6: Experimental (a) HAADF-STEM projections and (b) superposed EDS maps of a Au-Ag core-shell
nanoparticle at —45° and +45°.

Our experimental Au-Ag core-shell nanoparticle was scanned in a FEI Tecnai Osiris
microscope, which was operated with an accelerating voltage of 120 kV and equipped
with four Super-X energy dispersive silicon drift detectors [23]. HAADF-STEM projec-
tions with a size of 300 pixel x 300 pixel were acquired at 31 tilt angles, ranging from —75°
to +75° with an increment of 5°. In addition, one X-ray spectral image has also been
recorded at each angle for 300 seconds. The raw dataset was then processed before re-
construction. The HAADF-STEM tilt-series was aligned using cross-correlation; X-ray
spectral images were denoised by principal component analysis and deconvolved into
two equi-sized elemental maps, one for Au and the other for Ag [23]. Fig. 3.6 gives an
example of the post-processed experimental projections, for which we hand-segmented
the HAADF reconstruction to obtain the ground truth of EDS.

Fig. 3.7 shows the variation of the optimal A w.r.t. different slices. A values found by
our no-reference metric Q and the full-reference metric CC are comparable, considering
that the search space spans over 3 orders of magnitude. Moreover, golden section search
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Figure 3.7: Optimal regularization parameter A versus slice index for the experimental dataset. The size of the

reconstructions is 300 x 300 x 300 voxels.

and exhaustive search lead to the same A most of the time, though the former may termi-
nate at the local maximum before reaching the global one (e.g., slice number 81 in Fig.
3.7(a)). Note that Fig. 3.7(b) has two “outliers", and we show the details of slice num-
ber 91 in Fig. 3.8. It is obvious that the Ag reconstruction computed from Q maintains
finer structure than the one from CC, especially at the edges of the outer ring. From Fig.
3.8(d) we can see that the curve of CC strangely “jumps" after a certain A, even though
the underlying structures have already been smeared out. This shows that even using CC
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Figure 3.8: (a) Ag TNV reconstructions at z = 91 with A found by quality metric Q and correlation coefficient
(CC), compared to the hand-segmented ground truth (GT). The corresponding curves of Q and CC versus A

are shown in (b).
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as a metric to choose the optimal A for the TNV-regularized electron tomography is not
always reliable.

3.5. DISCUSSION AND CONCLUSION

In this paper, we developed a no-reference quality metric Q to score the oriented struc-
ture strength of reconstruction images for detecting over- and under-regularization. Bas-
ed on simulated and experimental datasets of Au-Ag core-shell nanoparticles, we demon-
strated that our Q can replace the full-reference correlation coefficient to automatically
determine the optimal regularization parameter A for the recently proposed TNV re-
construction technique. Since the original experimental dataset was noisy, we further
binned the tilt-series by a factor of 3 to increase the SNR. Consequently, the size of the
reconstructions was reduced from 300 x 300 x 300 voxels to 100 x 100 x 100 voxels, for
which Q still achieved a relatively high accuracy in terms of parameter determination.
More interestingly, the optimal A found in this case became larger, probably because
the dataset with less noise did not produce severe paintbrush/staircase artifacts under a
stronger regularization.

Compared to the iterative TNV reconstruction, time spent for the quality assessment
is minor, e.g., 10 hours versus 5 minutes for 100 different A on a desktop equipped with
eight Intel Xeon X5550 CPU cores (24 GB RAM) and one NVIDIA GeForce GTX670 GPU
(4 GB memory). Considering that the curve of reconstruction quality versus A is uni-
modal with a distinct maximum, we adopted the golden section search to “predict” the
optimal A, which effectively reduced the total computational time (reconstruction plus
assessment) by 85%.

As for future work, we consider testing the applicability of our quality metric on other
iterative reconstruction techniques with (e.g., TVand HOTV) and/or without (e.g., SIRT)
regularizations. Moreover, we will also extend the current framework to 3D.
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In this chapter, we propose an efficient approach to automatically select the regu-
larization parameter A for the popular total variation (TV) minimization reconstruction
technique [1]. Since reconstructions in electron tomography are preferably done in three
dimensions (3D) [2], a 3D metric that can incorporate the information in all directions is
also favored to quantify the reconstruction quality. To this end, we use the 3D Gaussian
gradient magnitude because this easy-to-implement metric is mathematically related to
the TV regularization term, namely the /;- or l,-norm of the gradient of reconstruction
[3]. Furthermore, considering that 3D TV reconstruction is time-consuming, and that
the reconstructed images change smoothly with respect to A [4], we adopt spline inter-
polation to approximate the curve of the sum of gradient magnitude versus A so as to
reduce the computational time'.

We evaluate our method on five experimental HAADF tilt-series of different nanopar-
ticles, three of which consist of gold and the other two gold (Au) and silver (Ag). Since
Au and Ag are well-separated in the latter two nanoparticles and have substantially dif-
ferent atomic numbers (Zy, = 79, Zjg = 47), HAADF-STEM tomography with its high
Z-contrast is good enough to discriminate Au from Ag without EDS [5]. Results show
that our method is able to quantify the strength of TV regularization and find a bal-
ance between noise suppression and structure blurring without a reference image. The
aforementioned spline interpolation helps to accelerate the reconstruction-assessment
pipeline.

This chapter is organized as follows. In Section 4.1, we introduce the TV regular-
ized reconstruction technique and a few existing methods for automatic regularization
parameter selection. Then, we present our own method in Section 4.2, followed by ex-
periments and results in Section 4.3. Finally, Section 4.4 summarizes the work and draws
conclusions.

4.1. TV-REGULARIZED ELECTRON TOMOGRAPHY

Total variation (TV) minimization in compressed sensing assumes that the image to be
reconstructed has a sparse representation in a specific base [1, 6]. Observing that the
gradient of nanostructured materials is often sparse, Goris et al. incorporated TV regu-
larization in simultaneous iterative reconstruction technique (SIRT) to reduce missing
wedge artifacts [1]. Letp € RM*1 and x € RV*! be the (vectorized) projection and recon-
struction, respectively, in which M is the number of rays and N the number of discretized
unknown voxels. The TV regularized reconstruction technique extends the standard /-
norm reconstruction in the following form [1]

x* = argmin {% |wx—p|3 + ATVEo } (4.1)
X

where W € RM*Y is the projection matrix, whose entries w,,, are determined by the

intersected area between the m-th ray integral and n-th voxel. Since Eq. (4.1) simulta-
neously minimizes the data fidelity term (i.e., the distance between the projection p and
reconstruction x) and the total variation of x, it prefers sharp transitions between spe-

1Throughou’( this chapter, computational time refers to the amount of time spent on reconstruction and as-
sessment.
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cific gray values over gradual changes in x* [1]. The regularization term TV(x) is defined
as the /;- or [,-norm of the gradient of x, that is,

TV;, (%) = IVxll; = ) [V,

n

or TV, ® =Vxly = /Y (Vxn)? 4.2)
n

in which Vx,, = [0%n/ax,%n/dy, 0xn/oz] " is the discrete gradient of the n-th voxel [3]. Note
that the /;- and lr-norm TV are also called anisotropic and isotropic TV, because the
former encourages horizontal and vertical edges and the latter, conversely, is rotation
invariant.

The parameter A in Eq. (4.1) determines the regularization strength of TV(x). A large
A may result in over-regularization that blurs high frequency details, whereas a small one
may lead to under-regularization that lets noise and missing wedge artifacts pass [1]. A
few approaches exist to automatically set this crucial parameter [4, 7-9]. For instance,
Hansen and O’Leary chose the “optimal" A such that the log-log curve of the data fidelity
term and regularization term has the maximal curvature [9]. Moreover, if a reference im-
age such as hand-segmented ground truth is accessible, one may compare the computed
reconstructions to the reference using correlation coefficient, root mean squared error
(RMSE), or segmentation error [3, 4, 10]. However, these methods are hindered for in-
dustrial applications because: (i) reference images are mostly unavailable; (i7) TV, as an
iterative algorithm, takes a long time to compute reconstructions x* for a large set of A;
(iii) A values found by the methods mentioned above can vary a lot if application-spe-
cific properties of the reconstruction are not taken into account. Therefore, in the next
section we present an effective no-reference 3D image quality metric to automatically
find a proper value for A.

4,2, AN EFFECTIVE REGULARIZATION PARAMETER SELECTION
METHOD

To describe our method, we use the same experimental dataset asin [11, Sec. 4.2], which
is a core-shell nanoparticle consisting of Au and Ag. Fig. 4.1 shows the central orthoslices
of its TV reconstructions computed with 300 iterations, /;-norm, and different A values.
The image in the first column is the hand-segmented ground truth that has only three
intensity values [5]: 0 (background), 1 (Ag), and 2 (Au). Note that these values are not
weighed by the HAADF-STEM response factors of Au and Ag [12]. For A = 1073, TV
reconstruction resembles SIRT; hence, the discontinuous foreground may make auto-
matic segmentation far from straightforward [13]. For A = 10°3!, a strong regularization
deforms the interface between Au and Ag, see the red circle in Fig. 4.1(d).

In Fig. 4.2(a), the blue line plots the sum of the 3D Gaussian gradient magnitude
(o =1 voxel) of TV reconstructions for 100 A values, which are uniformly distributed be-
tween 10~ and 10! on the logarithmic scale. This continuous curve has a clear bending
point Apeng With the maximal curvature. Therefore, we empirically define Apeng as the
“ideal" regularization parameter because when A > Apeng, regularization starts to blur
the edges as no noise is left. Intuitively, one may choose the second derivative to com-
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Figure 4.1: Central orthoslices for the Au-Ag core-shell nanoparticle in [11, Sec. 4.2]. (a) Ground truth, hand-
segmented from SIRT reconstructions [5]; (b)-(d) TV, reconstructions computed with 300 iterations and dif-
ferent regularization parameter A. The size of the image is 300 x 300 x 300 voxels.
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Figure 4.2: (a) Sum of 3D Gaussian gradient magnitude of TV}, reconstruction versus regularization parameter
A. Full curve is plotted with 100 A values uniformly distributed on the logarithmic scale, ten of which are used
for spline interpolation. We define the bending point Apenq as the “ideal” A. (b) Curvature of the full curve
computed using the proposed sliding window approach.

pute the curvature and find Apeng. Nevertheless, this simple technique is not suitable
for our case because it only considers the current point A; and the adjacent A;_; and
Ai+1. To include more neighbors, we use a sliding window approach that has a size of
2w + 1. For each A;, we first rotate the arc in [1;_,,A;+,] so that it either opens up-
wards or downwards depending on its convexity. Then, we approximate it to a parabola
p2X? + p1x+ po and define p» as the curvature of the arc; the result is shown in Fig. 4.2(b)
where the fluctuation near 10~% and 10' is due to boundary artifact. Finally, we find
Abend that has the highest p,.
w:@bend isi 1dlespendent 203r51 the vgrggow size: the larger w- is, the .higher J.Lf)‘;nfi will be (e.g.,

Apong =107 "% and Ay P = 107°°°). To make our algorithm window size-independent,
we modify it as follows:

1. set [wr, wy] as the range for w and compute the corresponding Af)”e Ln d and /1{)‘:3 ’;’1 &

2. compute the distance from each A; € [)Lt’ﬁE Ln & /1{;; "{1 4 to the line segment that con-

nects 1,** and 1,7

bend bend” . .
3. return A; with the maximum distance as the desired Apeng.
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Moreover, considering that 3D TV reconstruction is time-consuming especially for a
large set of A, and that the curve of the sum of Gaussian gradient magnitude versus A
is smooth, we adopt interpolation methods to speed up the reconstruction-assessment
process. The red dashed line in Fig. 4.2(a) shows an example of spline interpolation that
uses only ten equidistant samples; normalized RMSE between the full curve and its in-
terpolation is 1.36 x 10™%. Fig. 4.3 illustrates how our algorithm works.

(a) Our method (b) CC (c) Seg. error

Figure 4.4: Central orthoslices of TVZ2 reconstructions for the Au-Ag core-shell nanoparticle in [11, Sec. 4.2].

“Optimal" regularization parameter 1 € 110799 107917 107979} which are respectively found by (a) our
method, (b) correlation coefficient (CC), and (c) segmentation error (Seg. error).

We compare our no-reference metric to two full-reference metrics: correlation coef-
ficient [3]
2 n(Xn—X)(8n—§)

CC= -
VEn G =02 L 0 (gn— 8)?

4.3)

and segmentation error [10, 14]

>nlSn—&nl

, (4.4)
21 8&n

Seg. error =
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in which x,, g, and s, denote the n-th voxel of the gray-scaled reconstruction, hand-
segmentation and the image segmented from x using (multilevel) Otsu’s method [15]. We
do not consider the RMSE because intensities of the reference image in Fig. 4.1(a) does
not involve the interaction between the atoms and the incident electron beam. Fig. 4.4
shows the reconstruction slices computed with the optimal A found by the three metrics;
visually, our result is comparable with the other two. However, different methods return
different A values, depending on whether they consider application-specific properties
of the reconstruction (e.g., segmentation error); this is also in line with the observation
in [4].

4.3. EXPERIMENTS AND RESULTS

In this section, we evaluate our method on four other HAADF tilt-series. An Au tetrahe-
dron, an Au pentagon platelet, an Au sphere, and an Au-Ag core-shell tetrahedron were
scanned in an aberration-corrected Thermo Fisher Scientific Titan S/TEM, which was
operated with an accelerating voltage of 300 kV, a beam current of 50 pA and a dwell
time of 1 us. HAADF-STEM projections were acquired from —75° to +75° with an incre-
ment of 3°. Fig. 4.5 gives an example of the experimental projections, and Fig. 4.6 shows
their x y-slices at different z reconstructed with SIRT using 100 iterations. Since the sam-
ple rotation is limited to +75°, SIRT reconstructions are more elongated in the direction
of the missing wedge.

@ (b) (© (d)

Figure 4.5: Experimental HAADF-STEM projections of four nanoparticles at 0°: (a) Au tetrahedron, (b) Au
pentagon platelet, (c) Au sphere, and (d) Au-Ag core-shell tetrahedron. The size of the projections is 384 x 384,
352 x 352, 192 x 192, and 320 x 320 pixels (3.86 A/pixel).

(@) (b) (© (d)

Figure 4.6: Central orthoslices of SIRT reconstructions for the four new datasets (see Fig. 4.5). The size of the
image is (a) 384 x 384 x 384, (b) 352 x 352 x 352, (c) 192 x 192 x 192, and (d) 320 x 320 x 320 voxels.
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4.3.1. IMPLEMENTATION DETAILS

Throughout this chapter, we use a primal-dual hybrid gradient (PDHG) method [16]
provided in the operator discretization library [17] to compute TV reconstructions. In
order to ensure convergence, we set the primal and dual step sizes as 7 = 0.1/|j| and
o = 0.99/7|L)2, respectively, in which L is an operator related to the PDHG implementa-
tion [4]. Moreover, we normalize the regularization parameter A to A = AIVI/jwj for scal-
ing the data fidelity term and regularization term to the same range [4]; hence, Eq. (4.1)
becomes

1 [Wx=pl; .+ 19xl

x* =aremin{ - +A . (4.5)
& {2 W vl }

This normalized A will be referred to as the regularization parameter hereinafter.

Given the number of iterations A" = 300, this implementation takes ~16 h to com-
pute 100 reconstructions with a size of 320 x 320 x 320 voxels, using Python 3.6.0 on a
high performance compute server equipped with two Intel E5-2670 v3 CPUs” and four
NVIDIA Tesla K40c GPUs’. Therefore, the idea of interpolation (see Section 4.2) is cer-
tainly attractive to reduce the computational time.

4.3.2. RESULTS

Fig. 4.7 depicts the sum of the Gaussian gradient magnitude of l,-norm regularized TV
reconstructions as a function of A, in which the full curve computed with 100 A points
and the spline interpolation with only 10 samples are almost the same. Quantitatively,
the normalized RMSE between the two curves is 7.84 x 10~ for Au tetrahedron, 8.68 x
10~* for Au platelet, 5.95 x 10~ for Au sphere, and 3.91 x 10™* for Au-Ag tetrahedron.

We use the interpolated approximation to find Apeng. Fig. 4.8 gives an example of ten
TV reconstructions for an Au-Ag tetrahedron, which are computed with the first nine 1
samples in Fig. 4.7(d) and Apeng, respectively. Visually, we can see that the “optimal" A
should lie in [10"1'22, 10"0'78] where noise is gradually decreasing and structure main-
taining; Apend = 10~ found by our approach has this trade-off between noisiness and
sharpness.

Fig. 4.9 shows the central orthoslices of TV reconstructions for four datasets. The
resulting reconstructions, whether are based on /;- or l;-norm TV, do not have perceiv-
able noise nor blurry edges. Furthermore, the anisotropic /;-norm generally results in
smaller A because it has stronger regularization strength given the same A, see Eq. (4.2).
Since no reference image is available, we cannot compute the correlation coefficient and
segmentation error for comparison.

4.4, DISCUSSION AND CONCLUSION

In this chapter, we used the simple sum of the 3D Gaussian gradient magnitude as an ef-
fective metric to automatically find a proper regularization parameter for the TV-based
reconstruction technique. We demonstrated it on five experimental HAADF tilt-series of
different nanoparticles and showed that it can find the balance between noise reduction

248 cores in total and 256 GB RAM, with one core being used to 100% and ~1.6% memory occupied.
3Each GPU has 12 GB dedicated memory, only used to create the forward operator with ASTRA CUDA [18],
which is supported in ODL [17] as back-end.
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Figure 4.7: Sum of 3D Gaussian gradient magnitude of TV}, reconstructions versus A and the spline interpola-
tion for (a) Au tetrahedron, (b) Au pentagon platelet, (c) Au sphere, and (d) Au-Ag tetrahedron.
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Figure 4.8: Central orthoslices of ten TV}, reconstructions for an Au-Ag tetrahedron; computed with the first

nine A samples in Fig. 4.7(d) and Apepq, respectively.
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Figure 4.9: TV reconstructions regularized with (upper) /;-norm and (lower) /2-norm; computed with 300
iterations and the Apepq found by our method. Volume size see Fig. 4.6.

and edge blurring without any reference. Compared to the 3D iterative reconstruction,
time spent for magnitude quantification is minor, e.g., 16 h versus 5 min (details see Sec-
tion 4.3.1); hence, we adopted spline interpolation to approximate the curve of the sum
of gradient magnitude versus regularization parameter to accelerate the reconstruction-
assessment pipeline.

While the first results look promising, we note that our method should be further
tested on a broader scale of experimental data. On the one hand, despite different ge-
ometries, all samples are homogeneous with very few high spatial frequency compo-
nents; on the other hand, they were imaged under the same or similar microscope set-
tings. As a result, it is very important to evaluate our method on other experimen-
tal datasets of inhomogeneous samples with more high spatial frequency components
and/or acquired under different microscope settings.
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HAADF-EDS CROSS-MODAL
FUSION FOR ELECTRON
TOMOGRAPHY

In this paper, we present a multichannel cross-modal fusion algorithm to combine two
complementary modalities in electron tomography: X-ray spectroscopy and scanning tran-
smission electron microscopy (STEM). The former reveals compositions with high elemen-

tal specificity but low signal-to-noise ratio (SNR), while the latter characterizes structure
with high SNR but little chemical information. We use multivariate regression to build a
cross-modal fusion framework for these two modalities to simultaneously achieve high el-

emental specificity and high SNR for a target element chosen from the sample under study.

Specifically, we first compute three-dimensional tomograms from tilt-series datasets of X-

ray and STEM using different reconstruction algorithms. Then, we generate many feature
images from each tomogram. Lastly, we adopt partial least squares regression to assess
the connection between these feature images and the reconstruction of the target element.

Based on simulated and experimental datasets of semiconductor devices, we demonstrate
that our algorithm can not only produce continuous edges, homogeneous foreground and
clean background in its element-specific reconstructions, but also more accurately pre-

serve fine structures than state-of-the-art tomography techniques. Moreover, we show that
it can deliver results with high fidelity even for X-ray datasets with limited tilts or low

counts. This property is highly desired in the semiconductor industry where acquisition

time and sample damage are essential.

Published in IEEE Trans. Image Process., vol. 28, pp. 4206-4218, 2019 [1].
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5.1. INTRODUCTION

Electron tomography is a powerful tool in materials science to characterize the complex
three-dimensional (3D) structure of inorganic specimens on the nanoscale [2]. In trans-
mission electron microscopy (TEM), the sample under study is exposed to an electron
beam and tilted to obtain two-dimensional (2D) projection images at different angles.
Several imaging modalities exist, such as bright-field TEM [3] and high-angle annular
dark-field scanning transmission electron microscopy (HAADF-STEM) [4]. In tomog-
raphy, these projections are called a tilt-series, from which we can reconstruct a vol-
ume representing the sample [2]. Since the intensity of HAADF-STEM scales with the
atomic number Z of the element (~ Z", n = 1.6 — 1.9, depending on the inner and outer
detector angles [5]), it can also indirectly reveal the compositional information of the
sample. However, when the sample has elements with close atomic numbers, HAADF-
STEM images may no longer be distinctive for these elements. To better understand
more complex compositions, spectral imaging techniques like energy dispersive X-ray
spectroscopy (EDS) [5] must be pursued.

Tomographic reconstruction is anill-posed inverse problem because of the inevitable
noise in the measurements such as Poisson noise and readout noise [6]; reconstruction
becomes even more problematic for electron tomography where the number of projec-
tions is much smaller than the 3D volume [7]. Consequently, its solution might not be
stable and unique. So far, dozens of reconstruction techniques have been proposed, and
the classical filtered backprojection (FBP) is still frequently applied in practice thanks to
its simplicity and speed [8]. Alternatively, iterative algorithms (e.g., simultaneous itera-
tive reconstruction technique (SIRT) and its variants [9]) have also attracted large atten-
tion as they produce less artifacts for noisy datasets [2]. Moreover, prior knowledge has
been incorporated to further enhance the reconstruction quality [7, 10-13]. For instance,
assuming that the sample of interest has piecewise constant structures, Goris et al. incor-
porated total variation regularization into SIRT and effectively reduced missing wedge
artifacts in the reconstruction [7]. While conventionally only a single modality and/or
tilt-series is used in a reconstruction algorithm, advanced approaches tend to combine
two (or more) datasets from multiple modalities for integrating complementary infor-
mation [14-16]. Bimodal tomography [15], for example, links HAADF-STEM and EDS
projections into a joint reconstruction scheme. The former modality is at atomic res-
olution with high signal-to-noise ratio (SNR) but not intrinsically element-specific, and
the latter, conversely, is rich in chemical information but suffers from low SNR. Although
great efforts have been dedicated to improving reconstruction techniques, directly com-
bining reconstruction volumes at hand has still not been widely considered, to the best
of our knowledge.

To generate a composite image benefiting from different modalities and/or recon-
struction algorithms, one can employ various statistical approaches that project high-
dimensional inputs onto low-dimensional outputs. With the capability of reducing re-
dundancies yet highlighting similarities and differences, statistical methods have been
broadly investigated and applied in multimodal image fusion, that is, multiple input im-
ages of different modalities are fused into a single output. For example, many infrared
and visible image fusion frameworks have incorporated principal component analysis
(PCA) for decorrelation [17]. As part of these methods, regression techniques can not
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only decompose two sets of input images into lower dimensions but also assess their
connections. For instance, with partial least squares (PLS) regression, van de Plas et
al. built a linear model to fuse data obtained from mass spectrometry and optical mi-
croscopy for studying protein, peptide, lipid, and drug distributions in tissues [18].

Recently, we extended the concept of multimodal fusion to electron tomography
[19]. Specifically, we adopted and modified the regression-based cross-modality mod-
eling of van de Plas [18] to fuse X-ray and electron tomograms for reconstructing bi-
elemental nanomaterials. We demonstrated our method on an experimental dataset of
a core-shell nanoparticle (consisting of gold and silver with distinct atomic numbers of
79 and 47, respectively) and showed that it enabled reconstructions with sharper edges
and smoother fore- and background than bimodal tomography [15]. However, the ex-
tension to more complex multi-elemental nanostructures has still been lacking thus far.
Therefore, in this paper, we first present a 3D multichannel cross-modal fusion algo-
rithm based on our preliminary work in 2D [19]. Then, we validate it on simulated and
experimental datasets of semiconductor devices. In particular, we investigate the fusion
quality for a small number of EDS acquisition angles and low-dose EDS maps. EDS maps
with high SNR are currently hampered by slow data acquisition in practice, and hence
algorithms that can deal with lower SNR are desired.

The rest of this paper is organized as follows. In Section 5.2, we briefly review the
classical and state-of-the-art electron tomography along with statistical methods that
have been employed in multimodal image fusion. Section 5.3 introduces our six-step
cross-modal fusion framework and Section 5.4 the experimental setup, including simu-
lation and experimental datasets, and quantitative assessment procedures. Our results
are presented in Section 5.5 and discussed in Section 5.6. Finally, we draw conclusions
in Section 5.7.

5.2. CONTEXT AND PRIOR ART

5.2.1. ELECTRON TOMOGRAPHY
In this section, we refer to algorithms that jointly reconstruct a volume from multiple
modalities as “multichannel” and “single-channel" otherwise [20].

SINGLE-CHANNEL

Single-channel approaches are either analytical or iterative. Analytical algorithms are
based on the Fourier slice theorem and directly calculate the reconstruction in a sin-
gle step. While FBP is the most commonly employed, it aggravates thin streaks in the
reconstruction if the number of projections is low. To alleviate such artifacts yet pre-
serve desirable fine structures, Jin et al. trained a convolutional neural network to regress
the FBP results towards a ground truth image [21]. Although the authors demonstrated
the proposed FBPConvNet on sparse-view X-ray projections, they stressed that it could
be generalized to other modalities. Iterative algorithms, however, formulate the recon-
struction problem as a large under-determined linear system and solve it iteratively [6].
Common methods include algebraic reconstruction technique (ART), simultaneous iter-
ative reconstruction technique (SIRT), simultaneous algebraic reconstruction technique
(SART), and maximum likelihood expectation-maximization (ML-EM) [9]. With the ca-
pability of incorporating various types of prior knowledge, iterative methods are more
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robust to deal with ill-posed inverse problems. For instance, assuming that the sample
under study only consists of a few elements, that is, the reconstruction only has a few
discrete intensity levels, Batenburg and Sijbers developed discrete algebraic reconstruc-
tion technique (DART) to achieve a more accurate reconstruction from limited and/or
noisy projections [10]. Furthermore, inspired by /; regularization in compressive sens-
ing, Goris et al. combined the popular total variation regularization (TVR) with SIRT
and proposed total variation minimization (TVM) reconstruction to compensate for the
missing wedge in electron tomography [7]. TVR was also combined with DART, such
that the TVR-DART would require less tuning parameters [11]. Alternative /; regulariza-
tion approaches, such as higher order total variation (HOTV) [12, 13], have also been
investigated. Since the solution of HOTV-based reconstruction algorithm is not limited
to a piecewise constant function, it could more effectively recover fine features than the
common TV [12].

MULTICHANNEL

In general, multichannel algorithms that simultaneously couple datasets from multiple
sources are applied either in multispectral or multimodality reconstruction. In electron
tomography, most methods combine the complementary information of HAADF-STEM
and EDS projections. For example, Zanaga et al. used HAADF-STEM to supplement
EDS for improving its shadowing effects and lower spatial resolution, thereby enabling
a more reliable EDS quantification [14]. Zhong et al. introduced a manual parameter
to weigh the HAADF-STEM and EDS channels in bimodal tomography for effectively
suppressing noise and enhancing contrast [15]. Regularizations, such as total nuclear
variation (TNV) derived from TV, have also been considered [16]. Different from TV that
only promotes sparse gradients in the EDS reconstructions, TNV further incorporates
HAADF-STEM to encourage anti-/parallel gradients for enforcing common edges in the
joint reconstructions [16].

Compared with zero- and single-parameter algorithms (e.g., FBP and SIRT), advanced
techniques may yield a more accurate result using a limited set of noisy projections.
Many of them, however, involve extra parameters that need to be carefully tuned. For
instance, the weighting factor a in bimodal tomography [15] is currently chosen by com-
paring reconstructions over the whole range of a € (0,1) to a hand-segmented ground
truth, which is very impractical.

5.2.2. STATISTICAL METHODS APPLIED TO MULTIMODAL IMAGE FUSION
According to Sui et al., statistical approaches applied to multimodal image fusion are
either driven by data or by hypotheses [22].

DATA-DRIVEN METHODS

Data-driven statistical methods include, but are not limited to, principal component
analysis (PCA), independent component analysis (ICA), and nonnegative matrix fac-
torization (NMF). PCA has been a common initializer for fusion algorithms in brain
imaging to effectively remove redundancies [22]. It was also improved to robust PCA
[23] and adopted to suppress noise yet retain useful information for infrared and visi-
ble image fusion [17]. As an extension of PCA, ICA can separate correlated input images
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into independent components. ICA-aided fusion algorithms usually involve other tech-
niques like multiscale transforms. For instance, Ghahremani and Ghassemian chose ICA
and curvelet transform to reduce the spectral distortion of pan-sharpened multispectral
bands [24]. Moreover, incorporating ICA into training-based algorithms is also popular,
in which a set of ICA bases are trained from patches with similar contents as the source
images [17]. Different from PCA, NMF only allows additive, not subtractive, combina-
tions due to its nonnegativity constraints [25]. As a result, it represents parts of the ob-
jects and corresponds better to the human perception mechanism. Wang et al. further
extended the traditional NMF to a nonnegative sparse representation (NNSR) model for
fusing infrared and visible images [26]. As the NNSR emphasizes not only the nonnega-
tivity but also sparsity of the coefficients, it can achieve a rational (only with nonnegative
intensities) and convenient (with just a few sparse components) image interpretation.

HYPOTHESES-DRIVEN METHODS

Hypotheses-driven statistical methods, such as regression, can characterize the relation-
ship among source images. In remote sensing, for instance, multivariate regression has
been a powerful tool to merge multispectral (MS) and panchromatic (PAN) images. The
former captures visible light in a small number of spectral bands at low resolution, and
the latter is sensitive to all wavelengths of the light at high resolution. In this case, re-
gression is adopted to estimate the weights between the MS channels and PAN image at
both the reduced [27] and full scale [28] for pansharpening. As a well-studied member in
the regression family, partial least squares (PLS) establishes a linear multivariate model
to relate the inputs [29]. It was first applied to multimodal fusion in neuroimaging by
Martinez-Montes et al. to concurrently analyze electroencephalography (EEG) and func-
tional magnetic resonance imaging (fMRI) data [30]. Since then, PLS has been broadly
employed for multimodal fusion not only in brain imaging [22] but also in biomedical
[18] and chemical imaging [31]. For instance, van de Plas et al. [18] chose this multi-
variate regression technique to fuse mass spectrometric and microscopic images. With
a series of case studies, they showed that the proposed modeling could maintain both
the high chemical specificity and high spatial resolution.

5.3. METHOD

Let us assume that a sample has a number of E different chemical elements that make up
the element set &, and that its HAADF-STEM projections are acquired at a number of Py
angles. Meanwhile, X-ray spectral projections are recorded at a number of Pg angles and
deconvolved into a number of E EDS maps; each corresponds to one chemical element
e € &. Note that the spectral images usually have fewer tilts than the HAADF projections
(Pg < Py) and suffer from much lower SNR. Binning may effectively increase the number
of X-ray counts collected in EDS maps but also degrade their spatial resolution [32].

The proposed fusion algorithm has six steps, where the first five are illustrated in Fig.

1. compute multiple tomograms from HAADF and each EDS tilt-series using a num-
ber of N different reconstruction algorithms;

2. i) check visibility of all elements and select a target element e* for fusion;
ii) denoise the EDS reconstructions of e*;
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chemical elements &. Denote the target element chosen for fusion as e* and the rest é: e € &\ e*. Hsymbolizes
HAADF and E EDS. Details in Section 5.3.
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3. generate a number of M feature images for each HAADF reconstruction, and each
EDS reconstruction of é: e€ &\ e*;

4. (optional) upsample all EDS-related images if the X-ray spectral images have been
binned;

5. build a cross-modality model between the feature images and the denoised EDS
reconstruction of e*; apply the model for fusion;

6. evaluate the reliability of the fusion result.

5.3.1. STEP 1: COMPUTING TOMOGRAMS

Our fusion framework starts with tomographic reconstruction. To date, a range of soft-
ware packages have been issued for electron tomography, such as the open source AS-
TRA toolbox [33]. Given a HAADF tilt-series and a number of N available reconstruction
algorithms, we can compute N volumetric images xl,{l € [R{VHXI, n=1,---,N where V} is
the total number of voxels being reconstructed. Similarly, for each element e € &, we
can also reconstruct ng) e R"®*! with n=1,---, N. Note that Vg # V if the original X-ray
spectral images have been binned.

5.3.2. STEP 2: CHECKING VISIBILITY AND DENOISING

In principle, one can choose any element e € & as the fusion target e*; in practice, how-
ever, e* should be visible in the HAADF reconstructions for building a representative
cross-modality model. Our approach to measuring the visibility of x'¢ in x!! is taken
from [27]. First, we upsample x(ne) to igf) e RVE*L jf Vg # Vg using trilinear interpolation.

Then, we calculate visibility weights w,, Ve € & as

X = wo+ w g+ + wpxlP (5.1)
with ordinary least squares regression. Note that this only needs to be done once for any
reconstruction algorithm. Since the intensity of HAADF-STEM scales with the atomic
number of the element, we suggest that the weight of the chosen e* should be at least
three times as high as the light ones (e.g., N, O, etc.)

Once we select e*, we have N volumes ng*) at hand. Although they are computed
by N different reconstruction algorithms, they share common patterns. To capture the
most dominant structure among these reconstructions and reduce their pixel-specific
variations, one can choose any dimension reduction technique mentioned in Section
5.2.2. Since all intensity values in the output image are inherently nonnegative, we per-

*
form NMF over all the reconstructions of e* to obtain one denoised image xff ),

5.3.3. STEP 3: GENERATING FEATURE IMAGES

The third step aims to generate more information for building the model. In particular,
feature images of the N HAADF and N(E - 1) EDS reconstructions (with e* being ex-
cluded) are generated with several texture filters. In our case, we use the entropy, range,
standard deviation and Gaussian gradient magnitude filters; Table 5.1 lists the filter pa-
rameters. More filters could be included and provide the model with more feature im-
ages, namely higher degrees of freedom, to describe the denoised EDS reconstruction;
however, they may simultaneously introduce unwanted patterns. For example, an ori-
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entation filter may reproduce undesirable star-shaped streaks in the fusion result. One
can also extend the filtering operation to various scale spaces, and we choose a two-
level Gaussian scale space. Note that more filters and deeper scale spaces would lead to
higher computational costs both in time and memory.

Table 5.1: Filters and related parameters in step 3

Name of filter Parameter

Local entropy 3 x 3 x 3 neighborhood
Local range 3 x 3 x 3 neighborhood
Local standard deviation 3 x 3 x 3 neighborhood
Gaussian gradient magnitude Standard deviation o =1

5.3.4. STEP 4: RESAMPLING

EDS reconstruction of e* denoised in step (2) and feature images generated in step (3)
should be of the same size for establishing the final model. Similarly, if the spectral im-
ages have been binned, we use the trilinear interpolation to upsample all EDS-related
images at this stage.

5.3.5. STEP 5: BUILDING CROSS-MODALITY MODEL
We formulate the cross-modality modeling as a linear regression task

y=Xb+by+0 (5.2)

where X = [x1,---,Xp]l and b= (by,---, bp)T with P = M- N - E. Each predictor variable x,,
denotes one (vectorized) feature image, and the response y is the denoised EDS recon-
struction of e*. by, p=0,---, P are the scalar regression coefficients to be found, and 6 is
the mismatch term. We employ partial least squares (PLS) regression, which is different
from the ordinary least squares that directly establishes a linear model in the original
data space. By first performing PCA to project both the predictor and response vari-
ables to Nconp components in another space [29], PLS can produce stable results with
low variability even if the correlation among predictor variables is high. Since the vari-
ance explained in the response variable y increases with the number of PLS components
Neomp, We set Neopp t0 its maximum value Neoyp = P — 1 and solve this regression prob-
lem by plsregress() in MATLAB. Once we find all coefficients b, we fuse the image for
e* as .

x;e ) = by + byxy + -+ + bpxp, (5.3)
which is guaranteed to be the closest to the denoised EDS reconstruction xff*).
5.3.6. STEP 6: EVALUATING RELIABILITY

Lastly, we evaluate the reliability of the fusion result, considering that PLS will always
build a model regardless of whether there is a linear relationship, and that the PLS output
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is actually a prediction only. Specifically, we quantify the correspondence between the

fused image xée*) and the denoised xff*) using the proportion of variance explained and
the (Pearson) correlation coefficient. The former is returned by plsregress(), which is
the ratio between the sum of squares of y explained by the Ncoyp PLS components and

the total sum of squares of y [34]. The latter is calculated as
> i(xe i —x¢) (xq,i — Xg)

CC= ,
\/Zi(xf,i —X£)? Y. (xq,; — Xa)?

(5.4)

which measures how well the relative intensity distribution of x; matches x4 [18]. x¢;
and xg,; are the intensity values of the i-th voxel, x¢ and x4 the average intensities over
all voxels in x¢ and xg4, respectively.

5.4. EXPERIMENTS

Based on simulated and experimental datasets, we investigated the performance of our
method and compared it to other state-of-the-art reconstruction techniques.

5.4.1. SIMULATION AND EXPERIMENTAL DATASETS
We start with two noise-free multislice simulation datasets that were generated from two
semiconductor models. The first is a defective finFET structure with a size of 25 nm x

(a) Atomic design (b) HAADF-STEM (c) EDS maps

Figure 5.2: (a) Atomic design of a defective finFET structure. Tantalum (Ta, cyan) layer and hafnium (Hf, ma-
genta) in HfO, layer are shown for clarity. (b) HAADF-STEM projection and (c) superposed EDS maps at 2°.
Since the intensity of HAADF-STEM scales with the atomic number Z, only Ta (Z7, = 73) and Hf (Zyf = 72) are
visible but O (Zg = 8) is not. Details in Section 5.4.1.

25 nm x 25 nm [35]. It has crystalline silicon (Si) as its source-drain fin, on top of which
are oxygen (0O), hafnium dioxide (HfO,), tantalum (Ta), and titanium aluminum nitride
(TiAIN,). A few defects have been introduced, such as three pinholes in the HfO, layer
with diameters of 1, 2 and 3 nm allowing Ta to contact the fin. Moreover, a 7 nm ellipsoid
carbon contaminant is trapped between the HfO, and Ta layers. The atomic design of
Ta and Hf is shown in Fig. 5.2(a). HAADF-STEM images were simulated with an accel-
erating voltage of 200 kV, a focused electron probe normalized to a total intensity of 1, a
convergence angle of 10 mrad, and a detector with an inner angle of 90 mrad and outer
angle 230 mrad. For details of the simulation see [35]. X-ray maps were generated by
summing up the probability of characteristic emission. The raw tilt-series of this finFET
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structure consists of 180 projections, ranging from 0° to 358° with an increment of 2°
between consecutive projections. We only used the first 90 (unique) projections for re-
construction; each contains one HAADF-STEM image with a size of 128 pixel x 128 pixel
(= 2A/pixel) and eight elemental EDS maps of the same size and resolution. The sec-
ond model is a larger region of PMOS with a size of 70 nm x 70 nm x 70 nm. Besides
two Si fins, Ta metal gate and HfO, layer, a tungsten (W) contact was also added, see
Fig. 5.3(a). Projections of this PMOS device were simulated over [0°,180°) in every 2.5°
with the same parameters set for the previous case. At each angle, one HAADF-STEM
image with a size of 256 pixel x 256 pixel (= 3.8A/pixel) and the equi-sized EDS maps of
all chemical elements were recorded.

(a) Atomic design (b) HAADF-STEM (c) EDS maps

Figure 5.3: (a) Atomic design of a PMOS model where tantalum (Ta, cyan), hafnium (Hf, magenta) and tungsten
(W, yellow) are shown. (b) HAADF-STEM projection and (c) superposed EDS maps at 2.5°. Ta (Zr5 = 73), Hf
(Zue =72) and W (Zy = 74) are clearly visible in the HAADF-STEM image. Details in Section 5.4.1.

To produce projections that are more comparable to real experimental data, we per-
formed some post-processing steps on the simulated tilt-series. For HAADF-STEM im-
ages, we first applied Gaussian smoothing (o = 1.0 pixel) to simulate a less focused lens
system. Then, we added Poisson noise with a mean value of the HAADF intensity, and
Gaussian noise with a standard deviation of 0.2 to corrupt the noiseless dataset. Finally,
we excluded zone-axis projections (0° and 90°) because of the significant channeling ef-
fect present, as is custom in practice [36]. Compared to HAADF-STEM images, X-ray
counts collected in the spectral images are usually fewer (max. 30 per pixel [5]), resulting
in much noisier EDS maps. Therefore, we employed a Gaussian filter (o = 1.0 pixel) for
denoising. Moreover, since the number of EDS projections is always smaller than the
STEM projections (due to time) in real experiments [32], we subsampled the two EDS
tilt-series by factors of 3 and 2, respectively, assuming that they were recorded in every
6° and 5° over [0°,180°). Post-processed projections of the defective finFET structure
and PMOS model are shown in Fig. 5.2 and Fig. 5.3.

Our experimental dataset is a pillar-shaped semiconductor device comprised of eight
chemical elements: N, O, Al, Si, Ti, Hf, Ta and Co [37]. It was placed on a Fischione on-
axis rotation tomography holder allowing a 360° projection acquisition and scanned in a
FEI Titan electron microscope equipped with four Super-X energy dispersive silicon drift
detectors. The microscope was operated at an accelerating voltage of 120 kV with a beam
current of 280 pA and a convergence angle of 10 mrad. HAADF-STEM projection images
were acquired at 221 angles uniformly distributed between 0° and 220°. In addition, 47
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(a) HAADF-STEM

(b) Superposed EDS maps of Ta and Hf

Figure 5.4: Experimental (a) HAADF-STEM projections and (b) EDS maps of a pillar-shaped semiconductor
device at 0° (left) and 90° (right). Titanium with an atomic number of Zr; = 22 is surrounded by tantalum
(cyan, Zta = 73) and hafnium (magenta, Zys = 72). Details in Section 5.4.1.

full spectral images were recorded from 0° to 216° in approximately every 5°; each had
a constant acquisition time of 270 s. They were later deconvolved into eight EDS maps
corresponding to the eight aforementioned components in the sample. An example of
the experimental tilt-series is given in Fig. 5.4.

5.4.2. FUSION FRAMEWORK

Besides the widely used reconstructions via FBP and SIRT, we also added SART and ML-
EM to our fusion framework. The former combines the best of ray-by-ray ART and all-
inclusive SIRT and can yield reconstructions of good quality along with high numer-
ical accuracy in only a few iterations; the latter assumes the Poisson nature of elec-
tron/photon noise (rather than Gaussian) and inherently includes the nonnegativity con-
straint. For the EDS datasets, we chose Hanning window (rather than Ram-Lak filter) for
FBP to deemphasize high frequencies, and 50 iterations for SIRT to avoid reconstruc-
tions overfitting to the noise. Moreover, we set 5 and 50 iterations for SART and ML-EM,
respectively. For the less-noisy HAADF datasets, the number of iterations used for all
iterative algorithms were doubled. Although we only incorporated four reconstruction
techniques, we stress that our framework is general, and algorithms can be easily added
(or removed) if necessary. Throughout this paper, visibility weights were calculated us-
ing the SIRT reconstructions of EDS and HAADE
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5.4.3. TILT AND X-RAY COUNT SETTINGS

We used the simulated datasets to study the fusion accuracy of our method for two cases:
“limited-tilt" and “low-count". Compared to HAADF-STEM images, EDS spectra usually
require much longer acquisition time at each tilt angle to achieve an acceptable SNR.
Consequently, either case can effectively reduce the amount of time for nanomateri-
als being exposed to the electron beam and hence limit the sample damage. For the
“limited-tilt" case, we reduced the number of EDS elemental maps in the two datasets
from 30 and 36 to 8 and 9, respectively, guaranteeing that the remaining angles were
uniformly distributed between [0°,180°). For the “low-count” case, we fixed the num-
ber of tilt angles for both EDS datasets to 30 and 36 and lowered their elemental X-ray
counts by decreasing the maximal counts per pixel by three quarters. For the experimen-
tal dataset, we only considered the “limited-tilt" case by subsampling the original EDS
tilt-series with 47 projections to 25 and 14, respectively.

5.4.4. BENCHMARK ALGORITHMS AND EVALUATION METRICS
We compared our proposed scheme to the classical FBP (with Hanning window) and
SIRT (50 iterations), and two more advanced regularized approaches: TV and TNV, for
which we set 200 and 400 iterations to guarantee convergence [16]. Moreover, since re-
construction qualities of TV and TNV highly depend on the regularization coefficient, we
manually tuned their inputs for reasonable outputs, following the guidelines in [16].

We chose the structural similarity index (SSIM) and correlation coefficient to evalu-
ate the reconstruction quality. SSIM is defined as

SSIM(f,8) = I(f,8) xc(f,8) x s(f,8) (5.5)
where

2Urpe +Cy
I(f,8) =5 5—
uf+pg+C1
20704+ Cy
(f,8) =
af+0g+C2

B O'fg+C3

U8 = 0f0g+Cs

which measures the similarity between the reconstructed image f and ground truth g
in three aspects: luminance (/), contrast (c) and structure (s) [38]. A higher SSIM value
corresponds to a better reconstruction. py and g are the average intensity of f and g;
o r and 04 are the standard deviation; o 74 is the covariance between f and g. Moreover,
C1, C, and Cs are the constants introduced to avoid denominators being close to zero.
By default, C; = (0.01L)%, C, = (0.03L)? and C3 = C2/2 with L denoting the dynamic range
of f and g [38]. Note that s(f, g) reduces to the correlation coefficient in Eq. (5.4) if
Cs = 0. For the simulation datasets, the ground truth g was computed by SIRT with
100 iterations given the full-view noiseless (element-wise) EDS maps. We did not use
the mask generated from the atoms’ coordinates as reference image because it does not
involve the interaction between the atoms and the incident electron beam.
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5.5. RESULTS
5.5.1. SIMULATED FINFET DATASET

(a) 3D visualization of Ta (c) HAADF

Figure 5.5: (a) Volume rendering of the noiseless Ta (tantalum) reconstruction for the simulated finFET dataset;
SIRT with 100 iterations using 90 elemental maps between [0°,180°). Three arrows point to the Ta penetration
caused by the pinhole defects in the inner HfO» layer. (b) and (c) are the Ta and HAADF reconstruction xy-
slices at z = 37, corresponding to the first arrow in (a). Red rectangles indicate the defect.

For the first simulated dataset, we select Ta as the target e*, which has the highest
visibility weight wr, = 0.84. Fig. 5.5(a) shows a volume rendering of its noiseless recon-
struction, in which penetrations (indicated by red arrows) result from pinhole defects in
the inner HfO, layer. We consider this 3D volume as the ground truth. Fig. 5.5(b) shows
an orthoslice at location 1 and the red rectangle highlights an 1 nm defect. Since the
atomic numbers of Ta and Hf are close (Zr, = 73, Zys = 72), they yield similar Z-contrast
in the HAADF reconstruction and make discrimination difficult, see Fig. 5.5(c).

Fig. 5.6 depicts the xy-slices of Ta reconstructions at z = 37, which are generated by
FBP SIRT, TV, TNV and our fusion algorithm. Images in the last column are the (NMF de-
noised) response variable y in Eq. (5.2). In the first row, the number of used projections
and the maximal X-ray counts per pixel in the EDS datasets are 30 and 20, respectively.
We refer to this as the “normal” case for brevity because it is comparable to a typical ex-
periment. Moreover, the second and third rows show the “limited-tilt" and “low-count”
cases, in which either the number of projections or X-ray counts is reduced by three
quarters.

Although FBP successfully reproduces the penetration defect in the normal case (Fig.
5.6(a), top row), it also introduces visible line artifacts in the background. This can
be largely suppressed by SIRT (Fig. 5.6(b)). Tomograms from regularized TV and TNV
are visually indistinguishable regarding the continuity of edges and smoothness of fore-
ground. Our algorithm can not only get rid of background noise as TV and TNV, but
also keep the structural details of the Ta layer (e.g., rectangular ends) that are somewhat
smeared by the other two techniques. When the number of projections is reduced from
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Figure 5.6: Ta xy-slices of (a) FBP, (b) SIRT, (c) TV, (d) TNV, (e) fusion and (f) NMF denoising for the simulated finFET at z = 37 (the height of the first defect in Fig.
5.5(a)). The top row is the “normal” case where the number of EDS projections and the maximal X-ray counts per pixel are 30 and 20. Middle and bottom rows are the
limited-tilt case (with 8 projections) and low-count case (max. 5 X-ray counts). For better visualization, we perform percentile contrast stretching from 0 to 99%.
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30 to 8 (Fig. 5.6, middle row), FBP, SIRT and NMF deform the curved Ta layer because
of the limited tilts. Regularized TV and TNV manage to retain its shape but simultane-
ously introduce jaggy edges and paintbrush artifacts as both encourage piecewise con-
stant structures [16]. However, TNV better preserves the rectangular ends of the Ta layer
thanks to the augmentation from HAADF-STEM projections. The image computed by
our algorithm is visually pleasing due to its continuous edges and homogeneous fore-
ground. Additionally, it maintains the curved Ta layer to some extent even though it
highly relies on the NMF denoised reconstruction. The tiny defect can be seen in TV,
TNV, NMF and our fusion results, whereas it is distorted from a tip to a bulb in the former
two reconstructions and contaminated by streak artifacts in the third. For the low-count
case (Fig. 5.6, bottom row), classical FBP and SIRT, and the resulting NMF create a lot
of undesirable lines in their fore- and background due to the low signal. To significantly
restrain such artifacts, we set high regularization coefficients A for TV (Ary = 0.045) and
TNV (Ayv = 0.1), but inevitably distort the shape of the Ta layer and fail to satisfactorily
reconstruct the defect. Although the penetration in our fused image is mixed with noise
along the edges, one can still see it thanks to its relatively high intensity (at least three
times higher than the noise). From top to bottom conditions in Fig. 5.6, the correspond-
ing proportion of variance explained and correlation of the fusion to the denoised image
are (0.95, 0.98), (0.91, 0.96) and (0.83, 0.91), respectively.

Table 5.2 summarizes the SSIM and correlation coefficient (CC) values of the five
aforementioned algorithms on the three settings in Fig. 5.6. Different noise realizations
do not change the values in Table 5.2 to the shown digits. Our scheme ranks the best in
all three cases. FBP falls far behind in SSIM due to the line artifacts visible in Fig. 5.6. The
two regularized techniques achieve similar quantitative performance, but are surpassed
by SIRT in terms of CC because regularizations may oversmooth the underlying structure
and make reconstructions less accurate. Note that our fusion algorithm can produce
stable results regardless of limited or noisy datasets, as demonstrated in Fig. 5.6 and
Table 5.2.

Table 5.2: Comparison of SSIM and correlation coefficient (CC) for Ta reconstruction of simulated finFET
dataset

(#tilts, counts) Metrics FBP SIRT TV TNV  Fusion

SSIM 033 0.81 087 0.88 0.96

(30, 20)
CC 095 097 090 090 0.98
SSIM 029 079 085 0.86 0.95
(8, 20)
CC 0.80 0.95 088 0.89 0.98
SSIM 0.22 0.70 080 0.80 0.95
(30, 5)

CC 0.86 093 090 091 0.98
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(b) EDS-Ta

(a) 3D visualization of Ta (c) HAADF

Figure 5.7: (a) Volume rendering of the noiseless Ta reconstruction for the simulated PMOS dataset; SIRT with
100 iterations using 72 elemental maps between [0°,180°). (b) and (c) are the Ta and HAADF reconstruction
xy-slices at z = 94, in which red rectangles encompass a fine structure indicated by the arrow in (a).

5.5.2. SIMULATED PMOS DATASET

The noiseless Ta reconstruction of the simulated PMOS dataset is rendered in 3D in Fig.
5.7(a), and its xy-slice at z = 94 depicted in Fig. 5.7(b). This uniformly distributed ele-
ment ranks second in the visibility check, surpassed by W (wr, = 0.42 and wy = 0.85).
Fig. 5.7(c) is the associated HAADF reconstruction where thin Ta/Hf layers, and two Si
fins are visible. Red rectangles encompass a fine structure that is pointed out by the red
arrow in Fig. 5.7(a).

Fig. 5.8 shows the corresponding xy-slices reconstructed by all techniques. As be-
fore, the top row is the normal case where the number of projections and the maximal
X-ray counts per pixel in the EDS tilt-series are 36 and 20, respectively; the middle row is
the limited-tilt case using only 9 projections, and the bottom the low-count case with no
more than 5 X-ray counts per pixel. As illustrated in Fig. 5.8(a), background of FBP re-
constructions are severely contaminated by lines if the sample of interest contains lam-
inate. SIRT can suppress such artifacts but fails to deliver clear edges. Despite that TV
and TNV achieve cleaner background than FBP and SIRT, they also noticeably smear
the Ta layer especially for the limited-tilt and low-count cases: rectangular corners are
rounded; laminate becomes thicker; line segments on the left are much shorter than
they are supposed to be, see Fig. 5.7(b). In general, such smearing effects are more pro-
nounced in TV than TNV because the latter can incorporate the edge information from
HAADF-STEM. Our fusion algorithm can generate a volume that is qualitatively compa-
rable to the ground truth for the normal case, see Fig. 5.7(b) and Fig. 5.8(e). In the other
two cases, fine structures are still kept intact even though they are corrupted by noise in
the regression targets; however, line artifacts in the background (with intensities no more
than 15% of the foreground) show up. Quantitative results in Table 5.3 confirm this, in
which our algorithm is in the top rank except for SSIM in the limited-tilt case. Outputs
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of the reliability validation for the aforementioned three cases are (variance explained,
correlation): (0.86, 0.94), (0.74, 0.88) and (0.61, 0.8), respectively. The low variance ex-
plained for the low-count case is due to the noisy NME but our fusion remains relatively
smooth and clear.

Table 5.3: Comparison of SSIM and correlation coefficient (CC) for Ta reconstruction of simulated PMOS
dataset

(#tilts, counts) Metrics FBP SIRT TV TNV  Fusion

SSIM 048 086 091 091 0.90

(36, 20)
CC 092 097 094 094 0.98
SSIM 0.37 0.80 0.90 0.90 0.83
(9, 20)
CC 068 092 090 092 0.93
SSIM 025 0.76 086 085 0.88
(36, 5)

CC 0.80 092 090 091 0.96

5.5.3. EXPERIMENTAL DATASET

Fig. 5.9 depicts an orthoslice of the HAADF reconstruction for the experimental dataset,
which clearly reveals the structural information of this pillar-shaped semiconductor de-
vice. For example, the dark contrast highlighted by the second red arrow possibly results
from a defect (void inside the laminate). However, since the innermost Ta layer and the
outermost Hf yield similar Z-contrast, directly discerning them from the HAADF recon-
struction without any chemical information would be challenging.

75 nm

Figure 5.9: An orthoslice of HAADF reconstruction for the experimental dataset. The first red arrow indicates
a squeezing feature, and the second a dark contrast possibly results from some void inside the laminate.
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Fig. 5.10 illustrates the Ta (cyan) and Hf (magenta) reconstructions generated by FBP,
SIRT, TV, TNV and our fusion algorithm using 47, 25 and 14 EDS projections; the last col-
umn shows the response variable y in Eq. (5.2). Visibility weights of Ta and Hf are 0.2
and 0.25, respectively, ranking behind Si with wgs; = 0.41. From top to bottom, the vari-
ance explained and the correlation to y are (0.88, 0.92), (0.84, 0.91) and (0.82, 0.90) for
Ta, and (0.89, 0.93), (0.84, 0.91) and (0.82, 0.90) for Hf. When the number of projections
is decreasing, thin streaks in FBP drastically degrade its reconstruction quality, because
the structure under study aligns with the projection direction, see Fig. 5.10(a); moreover,
the background of SIRT reconstructions is also obviously getting noisier. Note that such
noise is much lower in the resulting NME TV and TNV are also able to suppress the back-
ground noise; however, they simultaneously smear the Ta and Hf layers and make their
boundary almost indistinguishable, especially for the 14-tilt case. Despite the spotty
foreground in NME our fusion algorithm still achieves the best performance in noise
suppression and structure preservation (e.g., the squeezing pattern indicated by the first
arrow in Fig. 5.9) regardless of the number of projections. Moreover, it also maintains
the void observed in the HAADF reconstruction to some extent, which is almost unrec-
ognizable in the other five reconstructions. Therefore, our method can enable easier and
more accurate fault analysis in the subsequent process. As no ground truth is available
for this experimental dataset, we cannot compute the SSIM and correlation coefficient.

5.6. DISCUSSION

In the previous section, we demonstrated that our fusion algorithm is more robust for
the limited and noisy datasets than other state-of-the-art tomography techniques. For
the simulated datasets, we reduced either the number of EDS elemental maps or the
maximal X-ray counts per pixel to one quarter of the initial values and showed that
our method could deliver stable outputs which were visually consistent with the ground
truth of the Ta layer. We also fused Hf (for both finFET and PMOS) and W (only for PMOS)
and found that the homogeneously distributed W resulted in visually better fusion. Be-
cause Hf was mixed with the light element O (Zy = 8), its signals in the HAADF-STEM
projections were weaker (wys = 0.42 for finFET and wys = 0.18 for PMOS). Consequently,
fused Hf images were less smooth in the foreground and contaminated by the heavier Ta
(and W) in the background; such contamination could also be inferred from the low cor-
relation to the denoised Hf (e.g., only 0.68 in the low-count case for PMOS) because this
metric focuses on the relative pattern similarity [18]. For the experimental dataset, we
subsampled the EDS tilt-series to simulate the “limited-tilt" scenario. Our method could
reproduce fine structures and maintain clear boundaries between the Hf and Ta layers
even if only 14 tilts were available.

Since both TV and TNV noticeably distort fine details in their reconstructions, we
further tested HOTV [12] (online available [39]) on the simulated finFET dataset for re-
constructing Ta. We found that the performance of HOTV (second- or third-order with
regularization parameters as Eq. (15) in [12]) lies between SIRT and TV. That is, it could
better recover the penetration defect in Fig. 5.5(b) but could not adequately suppress
noise especially in the foreground. Consequently, desired fine features were mixed with
(undesired) noise and hence did not stand out.

All datasets we used have no missing wedge (sample rotation was not limited within a
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certain range in the electron microscope due to mechanical constraints, e.g., +70° [32]);
these pillar-shaped samples and rotation holders will eventually replace the traditional
tomography holders. However, we tested the robustness of the precedent 2D version [19]
on the missing wedge artifact using an experimental dataset of a core-shell nanoparticle
consisting of gold (Au) and silver (Ag), which only contained 31 tilts ranging from —75°
to +75° with an increment of 5° between the consecutive projections. Qualitatively, our
method outperformed HAADF-EDS bimodal tomography [15] in terms of the sharpness
of edges and smoothness of fore- and background. Quantitatively, it achieved higher cor-
relation coefficient between the reconstruction and the hand-segmented ground truth
both for Au and Ag.

One prerequisite for our cross-modality framework to work is that chemical element
chosen for fusion should be visible in the HAADF-STEM images; this is quantified by
the visibility weight w, in Eq. (2). Since light elements such as N and O never show up
in the HAADE we set the threshold for the target e* three times as high as the weights
of the light ones (e.g., O, 3 x wg = 0.15 for inFET). This limitation may be overcome by
incorporating other imaging modalities, such as bright-field and dark-field STEM with
different detector geometries.

In addition, we also validated whether the resulting model is representative (i.e.,
whether fused images can be relied upon) through the proportion of variance explained
and the correlation to the denoised image. For instance, if we try to fuse the carbon con-
taminant in Fig. 5.2 whose visibility weight is almost zero (even though its structure is
clearly sketched by the surrounding HfO, and Ta layers, see Fig. 5.2(b)), the correspond-
ing variance explained is only 0.17 and correlation coefficient 0.5. As a rule of thumb,
these two metrics should be above 0.6 and 0.8, respectively, to achieve a reliable fusion.

We further investigated how the choice of three popular 3D upsampling techniques:
nearest-neighbor, trilinear and tricubic, influences the fusion quality. Since the resolu-
tion of EDS reconstructions decreases rapidly with an increased binning ratio r, we only
considered r = 2 with Vg = 1/8V4. The nearest-neighbor interpolation produced the least
favorable result; therefore, we left it out even though it has the highest speed. Moreover,
we found that the trilinear and tricubic interpolation are comparable in terms of their
visually indistinguishable fusion results, and similar SSIM and CC values. We chose the
trilinear because it is slightly faster than tricubic interpolation.

Computational time of our fusion algorithm is mainly spent on computing tomo-
grams (step 1), generating feature images (step 2) and building cross-modality model
(step 5). In our case, for instance, it took 300 s for tomographic reconstruction, 25 s
for feature image generation, and another 300 s for cross-modal modeling for Ta in the
simulated finFET structure using MATLAB 2017a on a desktop equipped with eight Intel
Xeon X5550 CPU cores (24 GB memory) and NVIDIA GeForce GTX670 GPU (4 GB mem-
ory). Note that only the last 300 s (for building the model) are required to fuse any other
element in this sample. Throughout this paper, FBP, SIRT, SART and ML-EM reconstruc-
tions were computed with the ASTRA toolbox [33]; regularized TV and TNV algorithms
were realized by a Douglas-Rachford primal-dual splitting algorithm provided in the op-
erator discretization library [40]. Although our method is slower than FBP (3 s), SIRT (12
s) and TV (273 s), it is still much faster than TNV (~80 mins); manually tuning regulariza-
tion coefficients for TV and TNV to suppress noise yet avoiding over-regularization also
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consumes a lot of time. Moreover, considering that the acquisition time for each spectral
image varies from 236 s to 895 s [32], our algorithm is still quite appealing.

5.7. CONCLUSION

In this paper, we have presented a regression-based cross-modal fusion framework for
electron tomography, which does not require any fine-tuning parameter. We have adopt-
ed it to combine the EDS and HAADF reconstructions and investigated its performance
using simulated and experimental datasets of semiconductor devices that contain chem-
ical elements with close atomic numbers. Results have shown that our fusion algorithm
can consistently yield more accurate reconstructions than the conventional yet widely
employed FBP and SIRT, and the advanced regularization-based TV and TNV. Further-
more, it can still restore fine structures and achieve a high reconstruction quality even for
limited and noisy EDS datasets. Such properties are highly desired in the semiconductor
industry where the number of EDS maps is limited aiming for a shorter acquisition time,
and the incident electron dose is usually low to minimize the sample damage.
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In Chapter 5, we presented a HAADF-EDS cross-modal fusion framework to simul-
taneously achieve high signal-to-noise ratio (SNR) and high elemental specificity. While
the simulation and experimental results of semiconductor devices look promising, we
noted that if the target element has a low weight fraction in the sample (i.e., low ratio
and/or low atomic number), the fused image might be contaminated by other elements
in the background [1, Sec. VI].

In this chapter, we add a weighted mask to the earlier framework so as to suppress
the “cross-elemental contamination". We evaluate the modified algorithm on an exper-
imental dataset of a gate-all-around nanowire device that has more complex structures
and more element types [2, 3]. Fusion results are improved in three aspects: (i) reduced
contamination artifact; (i7) enabled three-dimensional (3D) interpretation; (iii) light el-
ement fusion becomes possible if it has a distinguishable shape in the sample.

This chapter is structured as follows. In Section 6.1, we illustrate the cross-elemental
contamination using a two-dimensional (2D) phantom. Section 6.2 and 6.3 present the
improved fusion framework, and experiments and results, respectively. Finally, we dis-
cuss our work and draw conclusions in Section 6.4.

6.1. WHAT IS CROSS-ELEMENTAL CONTAMINATION?

We use a simplified continuous two-dimensional (2D) phantom [4, Sec. 3.1.1] consisting
of Ag, Cu and Ti to elaborate on the cross-elemental contamination, see Fig. 6.1(a). The
intensity of the element in the HAADF phantom is weighed by Z”, in which Z is the
atomic number (Zyg =47, Zcy =29, Zr; = 22) and n = 1.7 [4]. Note that the composition
and/or structure of the phantom may not be realistic.

(a) Elemental distribution (b) HAADF phantom (c) HAADF reconstruction

Figure 6.1: Simplified continuous two-dimensional phantom, adapted from [4]. (a) Elemental distribution of
., Cu and .; the intensity of the element in (b) HAADF phantom is scaled by Z" where Z is the atomic
number (Zpg =47, Zcy =29, Zri =22) and n = 1.7 [4]. (c) HAADF reconstruction. Details on page 80.

One-dimensional HAADF projections and EDS maps were generated with a simpli-
fied forward projection model. Assuming that the imaging system allows a 360° pro-
jection acquisition, we simulated one HAADF and three EDS tilt-series over [0°,180°) in
every 2° and 6°, respectively, using the ASTRA toolbox [5]. Then, we scaled the intensity
values of the HAADF and EDS to be comparable to real experimental data. Finally, the
noiseless dataset was corrupted by Poisson noise with a mean value of the intensity and
Gaussian noise with a standard deviation of 0.2 [1].

Fig. 6.2(a) and 6.2(b) depict the Ag and Ti reconstructions computed by SIRT and our
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(a) SIRT (b) w/o mask (c) w/ mask

Figure 6.2: Ag (upper) and Ti (lower) reconstructions; computed with (a) SIRT, (b) fusion without and (c) with
a weighted mask. Yellow circles indicate the contamination by Ag, namely cross-elemental contamination.

(earlier) fusion algorithm [1]; the corresponding HAADF reconstruction is in Fig. 6.1(c).
Since Ag is heavier than Cu and Tij, it yields the highest Z-contrast in HAADF; thus, the
fine structures of Ag (e.g., the four holes) are well preserved in fusion but almost invisi-
ble in SIRT. Compared with Ag, Ti has a much lower weight fraction in the phantom and
produces much weaker signals in HAADF; consequently, the fused image is severely con-
taminated by Ag, see the yellow circles in Fig. 6.2. We name this artifact cross-elemental
contamination.

6.2. MODIFIED SEVEN-STEP FUSION FRAMEWORK
Considering that regions without the target element should also not be contained in
feature images, we add a weighted mask to the earlier fusion framework [1] in order to
suppress the cross-elemental contamination. The modified fusion algorithm has seven
steps; changed ones are in italics:
1. compute multiple tomograms from the HAADF and EDS tilt-series using different
reconstruction algorithms;
2. check visibility block by block for all chemical elements and select a target element
e* for fusion;
3. denoise the EDS reconstructions of e* and generate its weighted mask;
4. generate multiple feature images for each HAADF reconstruction, and each EDS
reconstruction except for e*;
5. (optional) upsampling;
6. build a cross-modality model between the masked feature images and the de-
noised EDS reconstruction of e* using partial least squares regression; apply the
model for fusion;
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7. evaluate the reliability of the fusion result.

STEP 3: GENERATING WEIGHTED MASK

The weighted mask is generated out of the EDS reconstruction of e*. Many options are
available: the reconstruction of a single algorithm (e.g., SIRT), the denoised image, an
over-regulated TV reconstruction, etc. We take the denoised image as an example. First,
we employ a Gaussian filter (o = 1 voxel) to smooth the denoised image even further.
Then, we compute its binary mask using hysteresis thresholding [6]; this technique con-
siders areas above a low threshold 7 to be the foreground if they are also connected to
areas above a higher and more stringent threshold 7. Finally, we smooth the binary
mask with a Gaussian filter (o = 1 voxel) to generate a gray-scaled one.

STEP 7: EVALUATING RELIABILITY

We now quantify the correspondence between the fusion result and the masked de-
noised image using the proportion of variance explained and the Pearson correlation
coefficient [1]. We choose the masked image instead of the original reconstruction to
reduce the interference from background noise.

Fig. 6.2(c) shows the fusion results with mask. On the one hand, this newly added
mask effectively suppresses the cross-elemental contamination and enhances the image
contrast for Ti; on the other hand, it inevitably decreases the amount of information for
building the model and hence has a negative impact on the visual quality of the fused Ag
image.

6.3. EXPERIMENTS AND RESULTS

In this section, we evaluate the modified fusion algorithm on a new experimental dataset
of a gate-all-around nanowire (NW) device [2, 3]. The volume of interest contains two
fins (i.e., two sets of NWs), two source/drain, and one gate [2, Fig. 2]. It was mounted on
a Fischione 2050 on-axis rotation tomography holder and scanned in a double-corrected
FEI Titan® G2 60-300 S/TEM. The microscope was operated with an accelerating voltage
of 120 kV, a beam current of 250 pA, and a convergence angle of 10 mrad. Projections of
the device were collected from —90° to +90° with an increment of 3°; at each angle, one
HAADEF-STEM image with a size of 512 x 512 pixels (7.8 A/pixel) and the equi-sized EDS
maps (net counts) of all chemical elements were recorded. Fig. 6.3 gives an example of
the experimental tilt-series.

6.3.1. IMPLEMENTATION DETAILS

Throughout this chapter, we implemented the modified fusion framework in Python
3.7. For the unchanged steps, we used the same parameters as in [1, Sec. IV.B]; FBP,
SIRT, SART, and EM were computed with the ASTRA toolbox [5], feature images were
generated with the scikit-image package [7], and the regression problem was solved by
PLSRegression() in scikit-learn [8]. For the newly introduced mask, we set the low and
high threshold 77 and 7y to half of the maximum intensity of the Gaussian-filtered de-
noised image and the threshold computed by isodata algorithm [9], considering that all
the reconstructions of e* were stretched to [0,255] before denoising. Note that a lower
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Figure 6.3: Experimental HAADF projection and EDS maps of a gate-all-around nanowire device [2, 3]. Ger-
manium (Ge), the nanowire, is surrounded by hafnium dioxide (HfO3), which is a high-« dielectric material.

71 may include more fine details but at the expense of letting cross-elemental contami-
nation pass.

6.3.2. RESULTS

Fig. 6.4-6.6 plot the reconstruction slices of HAADE Ge, Hf, W and Ti in three directions:
across fins, along fins, and perpendicular to the z-axis. Since these four elements do
not spread across the sample but concentrate in a certain range, we divide the SIRT re-
constructions into 10 blocks in the z-direction and quantify the visibility weight block
by block, see Table 6.1. As shown in Fig. 6.4-6.6, fusion algorithm delivers more visu-
ally pleasing results (regarding, for example, edge continuity, foreground homogeneity,
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Table 6.1: Visibility weight of chemical elements chosen for fusion; computed by dividing SIRT reconstruc-
tions with a size of 512 x 512 x 512 voxels into 10 blocks in the z-direction. Bold numbers indicate where the
corresponding element is present in the sample.

Ti -0.03 -0.03 -0.02 0.02 0.20 0.22 0.23 0.27 0.20 0.20
Ge 091 091 083 0.78 047 007 -0.11 -0.07 -0.03 0.01
Hf  0.05 0.05 0.11 0.19 0.42 0.15 0.05 0.07 0.02 0.20
w 0.05 0.05 0.06 0.07 033 071 089 084 085 0.74

background cleanness, etc.) than SIRT for all the elements expect for Ti due to its low vis-
ibility weight (max. 0.27). Moreover, it reveals some fine structures that are almost hid-
den in SIRT. For instance, arrow 4 points to a brightness inversion between SIRT (bright)
and fusion (dark). Since dark contrast also appears in HAADE we may infer that there is
avoid in W.

While the first results look promising, the newly added mask cannot distinguish fea-
tures from noise. As a result, it may lead to missing low-contrast structures and/or close
small gaps. For example, W pointed by arrows 2 and 6 has moderate intensity in HAADF
and SIRT but is masked out in fusion; such artifacts can also be observed in Ti (arrow
3). Furthermore, HfO, layers (arrows 1 and 5), which should be thin and well-separated,
are connected in our results due to the low EDS spatial resolution. Note that these local
details cannot be reflected from the global reliability evaluation metrics (variance ex-
plained, correlation coefficient), which are (0.95, 0.97) for Ge, (0.89, 0.94) for Hf, (0.96,
0.98) for W, and (0.89, 0.95) for Ti.

6.4. DISCUSSION AND CONCLUSION

In this chapter, we added a weighted mask to our earlier fusion framework and eval-
uated its pros and cons on an experimental dataset of a complex Ge nanowire device.
Results showed that masking can enable light element fusion by suppressing the cross-
elemental contamination. However, it may also mask out desired features that have low
contrast in the EDS reconstructions.

As for computational time, it took ~15 mins for tomographic reconstruction and
~80 mins on average for the following fusion, using a high performance compute server
equipped with two Intel Gold 6148 CPUs' and four Tesla P100 GPUs”. Since compu-
tational resources (time and memory) were mainly spent on model building, namely
partial least squares regression, we suggest to divide large image volumes into smaller
blocks if the target element does not spread across the sample but concentrate in a cer-
tain range. Moreover, code optimization such as parallelism would greatly reduce the
computational complexity.

While we used the same parameters as before [1] for the modified framework, other
options are also feasible. For instance, if the EDS tilt-series has only a small number

180 cores in total and 384 GB RAM, with one core being used to 100%, ~5.3% memory occupied for feature
generation and ~32% for model building.

2Each GPU has 16 GB dedicated memory, only used for tomographic reconstruction with the ASTRA toolbox
[5].
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(a) HAADF (b) SIRT (c) Fusion

Figure 6.4: (a) A HAADF reconstruction slice across the fins. (b) and (c) are the corresponding EDS recon-
structions computed with SIRT and fusion. The newly added mask may close small gaps (arrow 1) and lead to
missing low-contrast structures (arrows 2 and 3).
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(a) HAADF (b) SIRT (c) Fusion

Figure 6.5: (a) A HAADF reconstruction slice along the fins. (b) and (c) are the corresponding EDS reconstruc-
tions computed with SIRT and fusion. A dark contrast can be observed in HAADF and fusion (arrow 4) but is
missing in SIRT.
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(a) HAADF (b) SIRT (c) Fusion

Figure 6.6: (a) A HAADF reconstruction slice perpendicular to the z-axis. (b) and (c) are the corresponding
EDS reconstructions computed with SIRT and fusion. Masking may connect thin layers (arrow 5) and mask
out low-contrast features (arrow 6).
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of elemental maps and/or low-dose, one can opt for an over-regulated TV reconstruc-
tion instead of the denoised image to generate a continuous mask. Furthermore, if the
tomography software does not offer multiple reconstruction algorithms, users can add
new filters, principal component analysis, and non-negative matrix factorization to step
(4) for feature expansion; note that this operation may put extra burden on computation.

The newly added mask is extracted by hysteresis thresholding, which is simple and
purely data-driven. Consequently, the result may be jaggy and not be able to distinguish
features from noise. To improve this, one can turn to model-driven segmentation ap-
proaches such as active contour, or user-interaction. Since users, in general, have con-
siderable prior knowledge of the sample under study, they can help to include or crop
certain areas in the initial mask.
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7.1. TECHNICAL DEVELOPMENTS AND FOLLOW-UP RESEARCH

In materials science, HAADF projections and EDS maps can be simultaneously acquired
in STEM to reveal the structural and compositional information of hard nanomateri-
als. The latter, however, suffer from a low SNR and hence require advanced tomography
techniques with hand-tuning parameters to enable a 3D element-wise reconstruction.
In this work, we first paved the way for automatic weighting factor (or regularization pa-
rameter) selection to prevent the tedious and time-consuming hand-tuning. Then, we
developed a fine-tuning-free approach that integrates the HAADF and EDS to concur-
rently accomplish high SNR and high elemental specificity.

7.1.1. PARAMETER SELECTION FOR RECONSTRUCTION TECHNIQUES

In Chapter 2, we introduced an image quality metric,which quantifies the quality of to-
mograms in terms of cross-atomic contamination and noise, to automatically find the
optimal weighting factor in HEBT. We evaluated our metric on an experimental dataset
of an Au-Ag core-shell nanoparticle and showed that it can replace the mean squared
error (MSE) used in [1] if no ground truth is available. Instead of exhaustive search (for
the optimum of the weighting factor), we adopted polynomial fitting to approximate the
curve of metric versus weighting factor; this results in the shortening of computational
time' to 10%.

Chapter 3 presented another no-reference image quality metric to detect under-
and over-regularization of TNV. Specifically, we used the oriented structure strength de-
scribed by the highest two responses in orientation space to simultaneously measure the
sharpness and noisiness of reconstruction images. Based on simulated and experimen-
tal datasets of Au-Ag core-shell nanoparticles, we showed that our metric can replace the
full-reference correlation coefficient in practice. In this case, we opted for golden section
search rather than brute-force search to reduce the computational time to 15%, as the
curve of metric versus regularization parameter has a distinct maximum attained for the
best reconstruction quality.

In Chapter 4, we considered the popular TV-aided reconstruction technique, for
which we used Gaussian gradient magnitude and spline interpolation to quantify the
regularization strength and reduce the computational time, respectively. Although ex-
perimental results of homogeneous samples (e.g., Au nanotriangle and nanosphere [2])
showed that our method is effective to find the sweet spot between noise suppression
and structure blurring, we noted that its robustness should be further explored on inho-
mogeneous samples with more high spatial frequency components.

All the metrics presented in Chapter 2-4 can select the close-to-optimal parameter
for advanced reconstruction techniques without any reference. Furthermore, polyno-
mial fitting, golden section search, and spline interpolation also help to accelerate the
reconstruction-assessment pipeline. While the first results look promising, a thorough
follow-up study is still needed to guarantee their reliability for industrial applications.

1. As we mainly considered homogeneous samples with very few high spatial fre-

quency components, the proposed quality metrics must be validated on more ex-
perimental datasets of nanomaterials with different geometries and/or acquired

1Computational time refers to the amount of time spent on reconstruction and assessment.
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under different microscope settings.

2. Parameter trimming [3] can help to reduce the computational time as well. By
embedding the developed assessment modules into the iterative reconstruction
procedure, one may directly monitor the image quality after each iteration and
then trim values that are unlikely to achieve the best quality upon convergence.

3. A comprehensive guideline is desired to support (image assessment) algorithm
developments because the “optimal" parameters are highly dependent on user re-
quirements, including but not limited to higher (gray-scaled) reconstruction qual-
ity, lower (binary) segmentation error, or both.

7.1.2. HAADF-EDS CROSS-MODAL FUSION

Although the proposed quality assessment algorithms can automatically select the weig-
hting factor or regularization parameter in an objective and repeatable manner, a fine-
tuning-free approach is still preferred. To this end, in Chapter 5 we presented a regres-
sion based cross-modal fusion framework that has no hand-tuning parameter. HAADF
and EDS were linked as follows: (i) compute multiple tomograms from HAADF and EDS
tilt-series using different reconstruction techniques; (ii) generate many feature images
from each tomogram; (iii) adopt partial least squares regression to assess the connec-
tion between these feature images and the reconstruction of the target element. Based
on simulated and experimental datasets of semiconductor devices consisting of chem-
ical elements with close atomic numbers, we demonstrated that our algorithm can not
only produce continuous edges, homogeneous foreground, and clean background in its
element-specific reconstructions, but also more accurately preserve fine structures than
state-of-the-art tomography techniques.

In Chapter 6, we further added a weighted mask to the earlier framework and ap-
plied it to a new experimental dataset of Ge nanowire device with more complex struc-
tures and more element types. Fusion results were improved in three aspects: (i) alle-
viated cross-elemental contamination; (ii) enabled interpretation across and along fins;
(ii) light element fusion became possible if it has a distinguishable shape in the sample.

While the modified algorithm can deal with more complex multi-elemental nanos-
tructures, there is still room for improvement. First, the newly added mask is computed
by a simple and purely data-driven segmentation approach; hence, it may be jaggy and
mask out low-contrast structures or close small gaps. To improve this, one can opt for
model-driven segmentation (e.g., active contour) or user-interaction. Since users typi-
cally have substantial prior knowledge of the device under study, they can roughly tell
whether a certain area should be included from the initial mask. Moreover, the current
framework uses reconstructions computed by the ASTRA toolbox [4] as its input for fu-
sion. Although we made it compatible with the outputs from Inspect3D [5], its portabil-
ity still needs to be tested on other open and commercial 3D tomography softwares.

7.2. OUTLOOK

According to Moore’s Law, the number of transistors in an integrated circuit (IC) would
double around every two years. To meet these expectations, electronic components used
to fabricate ICs have been dramatically decreased in size yet increased in complexity.
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While the innovative fin-based field-effect transistor (FinFET) is mainstream at present,
it will eventually be extended to gate-all-around (GAA) FET where lateral GAA (LGAA)
will be implemented first, followed by vertical GAA (VGAA) [6]. Moreover, other devices
have also been considered as candidates to go beyond the scaling limits of complemen-
tary metal-oxide-semiconductor (CMOS), namely “beyond CMOS" [6-8]. Although their
structures are not necessarily more complex than the VGAA, they are made of new ma-
terials, including graphene, carbon nanotubes and molybdenum disulfide (MoS,) [6,
Fig. 1].

As stated above, future semiconductor devices will be more complex in shape and/or
contain more (new) types of materials. In that case, the combined HAADF-EDS strategy
[9-11] is not sufficient for metrology [6] because (i) light elements can only produce very
low contrast in HAADF; (ii) high electron dose required to compensate the low SNR of
EDS cannot be performed on beam-sensitive materials. In this section, we first introduce
some emerging STEM imaging techniques that could meet the new demands (e.g., low
electron dose to prevent beam damage, low-contrast materials characterization). Then,
we discuss what opportunities they would bring to the subsequent image processing.

7.2.1. FUTURE OF IMAGING IN STEM

Undersampling (e.g., tilt- and image-undersampling [12]) that exploits the concept of
compressed sensing could lower the electron dose. For instance, Béché et al. measured a
subset of pixels in projections by placing a beam blanker to pseudorandomly deflect the
beam during raster scan [13]. While undersampling can be conveniently incorporated
in data acquisition, open questions still need to be answered. First, compressed sensing
assumes that the original image has a sparse representation in a specific base [13]. Since
the desired sparsity can be achieved in various ways such as random sampling [13] and
sparse gradient [14], it is very important to evaluate which method is more suitable to
what imaging modalities and samples. Moreover, undersampling may have a negative
effect on the subsequent tomography steps. For example, a very large increment be-
tween consecutive projections would result in inaccurate alignment and/or insufficient
amount of information for reliable reconstruction.

To reveal weakly scattering objects in STEM, coherent phase-contrast imaging has
been investigated [15-19]. However, the conventional annular bright-field mode [15, 16]
is experimentally demanding because it is intolerant to residual aberrations and sample
mistilt [19]. To generate linear phase contrast with high efficiency, Ophus et al. placed a
patterned phase plate in the probe-forming aperture and a pixelated detector below the
sample to record the transmitted beam at each scanning point [17]. This MIDI-STEM
(matched illumination and detector interferometry) approach was demonstrated on a
heterogeneous sample consisting of gold nanoparticles and amorphous carbon and de-
livered significantly more linear measurements than the traditional BF- and ADF-STEM
[17].

Electron ptychography also showed its great potential to produce strong contrast for
both heavy and light elements with much lower electron dose [18-20]. For instance, Yang
et al. achieved concurrent Z- and phase-contrast imaging by inserting a fast pixelated
camera in the ADF detector plane [18]. The authors reconstructed phase images from
the collected diffraction pattern and maximized its contrast through a post-acquisition
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correction for the lens aberrations [18]. Since this framework allows for simultaneous
coherent and incoherent imaging, it may be compatible with spectroscopy techniques
like EDS.

7.2.2. FUTURE OF IMAGE PROCESSING FOR STEM TOMOGRAPHY

Over the past few years, deep learning has been vividly researched in the image pro-
cessing community to tackle a broad variety of problems, including but not limited to
recognition, segmentation, and multimodal fusion. It uses multiple processing layers
to progressively extract higher-level features from the raw pixel values [21]. Thus, it de-
pends less on feature extraction and selection than conventional machine learning [22].

Deep learning requires a large amount of data for training [22]; for instance, Ima-
geNet designed for object recognition contains more than 15 million labeled images be-
longing to over 22,000 categories [23]. However, datasets in the field of STEM tomog-
raphy are often confidential and have inadequate quantities. This problem might be
overcome by transfer learning, that is, reusing one network developed for a base dataset
as the starting point of another network to be trained on a target dataset [24]. Data aug-
mentation can also effectively multiply the amount of data via rotations, cropping, and
soon [22].

Deep learning is promising to deal with limited STEM data. In fact, it has already
been tested and validated in computed tomography where images are formed by X-rays
[25-27]. For instance, Pelt et al. evaluated their mixed-scale dense convolutional neu-
ral network on various common limitations, including limited number of projections,
missing wedge, and low-dose [27]. Nevertheless, the implementation for electron to-
mography has not caught up [2]. Note that deep learning can be performed at different
stages of tomography, for the purpose of preprocessing noisy projections, learning prior
knowledge, and enhancing the image quality of reconstructions computed by standard
algorithms.

Furthermore, deep learning may play an important role to automate the reconstruc-
tion process, i.e., blindly predicting parameters for advanced reconstruction techniques
through pre-built quality assessment models. This also raises a few questions and con-
cerns. First, conventional learning-based quality predictors designed for pictures [22]
are not suitable for STEM images. Second, collecting adequate quantities of expert-
labeled data is very difficult and time-consuming. Such paucity issue may be addressed
by transfer learning and data augmentation. Since STEM projections and reconstruc-
tions are not natural images, transformations (e.g., rotation, reflection, etc. [22]) would
not significantly degrade the perceived quality. Last but not least, how to build a general
assessment model that works for more reconstruction algorithms should be carefully in-
vestigated.

Finally, applying deep learning to multimodal fusion in STEM tomography is cer-
tainly attractive, considering its great success in many other application fields such as
medical imaging and remote sensing [28]. This can be implemented in two ways. On
the one hand, the element-wise information provided by one modality can be used to
separate the mixed signals from another modality (e.g., EDS and HAADF), namely un-
mixing. On the other hand, ADF and phase images [18], which respectively contain the
information of heavy and light elements, can be combined into a composite scene (i.e.,
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integration) to fully determine the sample structure. Although the image size in STEM
tomography is typically large (e.g., 512 x 512 x 512 voxels), we believe that parallel com-
puting and user-friendly libraries would make deep learning possible.
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accompanying the dissertation

IMAGE QUALITY ASSESSMENT AND IMAGE FUSION
FOR ELECTRON TOMOGRAPHY

by

Yan GUo

1. User expectation is the key to developing robust image quality assessment algo-
rithms. (this thesis)

2. Universally applicable tomographic reconstruction techniques do not exist.
3. No comment is better than incorrect comment.

4. While facing a problem, scientists want to understand it as deep as possible, whereas
engineers want to solve it as quick as possible.

5. Perfection should be pursued pragmatically if resources are limited.
6. The best friend is the most unlikely friend.

7. Too many choices lead to nothing.

8. “Save the earth" is a cover-up of “save ourselves".

9. “The first wealth is health." (Ralph Waldo Emerson)

10. The greatest risk of global catastrophe is a highly infectious virus. (Bill Gates, 2015)

These propositions are regarded as opposable and defendable, and have been approved
as such by the supervisor prof. dr. ir. B. Rieger.



10.

Stellingen

behorende bij het proefschrift

IMAGE QUALITY ASSESSMENT AND IMAGE FUSION
FOR ELECTRON TOMOGRAPHY

door

Yan GUo

. De verwachting van de gebruiker is de sleutel tot het ontwikkelen van robuuste

algoritmes die de kwaliteit van een afbeelding beoordelen. (deze dissertatie)
Universeel toepasbare tomografische reconstructietechnieken bestaan niet.
Geen commentaar is beter dan incorrect commentaar.

Geplaatst voor een probleem willen wetenschappers het zo goed mogelijk begrij-
pen, terwijl ingenieurs het zo snel mogelijk willen oplossen.

Perfectie zou pragmatisch nagestreefd moeten worden als bronnen gelimiteerd
beschikbaar zijn.

De beste vriend is de meest onwaarschijnlijke vriend.
Teveel keuze leidt tot niets.

“Red de aarde" is een verhulling van “red onszelf".
Gezondheid is het grootste goed. (no source)

Het grootste risico op een globale catastrofe is een zeer besmettelijk virus. (Bill
Gates, 2015)

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig

goedgekeurd door de promotor prof. dr. ir. B. Rieger.



