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ON LARGE SUBSETS OF Fnq WITH NO THREE-TERM ARITHMETIC
PROGRESSION

JORDAN S. ELLENBERG AND DION GIJSWIJT

Abstract. In this note, we show that the method of Croot, Lev, and Pach can be used to
bound the size of a subset of Fnq with no three terms in arithmetic progression by cn with
c < q. For q = 3, the problem of finding the largest subset of Fn3 with no three terms in
arithmetic progression is called the cap problem. Previously the best known upper bound for
the affine cap problem, due to Bateman and Katz [BK12], was on order n−1−ε3n.

The problem of finding large subsets of an abelian group G with no three-term arithmetic
progression, or of finding upper bounds for the size of such a subset, has a long history in
number theory. The most intense attention has centered on the cases where G is a cyclic
group Z/NZ or a vector space (Z/3Z)n, which are in some sense the extreme situations. We
denote by r3(G) the maximal size of a subset of G with no three-term arithmetic progression.
The fact that r3((Z/3Z)n) is o(3n) was first proved by Brown and Buhler [BB82], which was
improved to O(3n/n) by Meshulam [Mes95]. The best known upper bound, O(3n/n1+ε), is
due to Bateman and Katz [BK12]. The best lower bound, by contrast, is around 2.2n [Ede04].

The problem of arithmetic progressions in (Z/3Z)n has sometimes been seen as a model
for the corresponding problem in Z/NZ. We know (for instance, by a construction of
Behrend [Beh46]) that r3(Z/NZ) grows more quickly than N1−ε for every ε > 0. Thus it is
natural to ask whether r3((Z/3Z)n) grows more quickly than (3 − ε)n for every ε > 0. In
general, there has been no consensus on what the answer to this question should be.

In the present paper we settle the question, proving that for all odd primes p, r3((Z/pZ)n)1/n

is bounded away from p as n grows.
The main tool used here is the polynomial method, in particular the use of the polynomial

method developed in the breakthrough paper of Croot, Lev, and Pach [CLP16], which
drastically improved the best known upper bounds for r3((Z/4Z)n). In this case, they show
that a subset of G with no three-term arithmetic progression has size at most cn for some
c < 4. In the present paper, we show that the ideas of their paper can be extended to vector
spaces over a general finite field.

Remark 1. The ideas of this paper were developed independently and essentially simultaneously
by the two authors. Since the arguments of our two papers were essentially identical, we
present them as joint work.

We begin with a slight generalization of Lemma 1 of [CLP16]. Let Fq be a finite field and
let n be a positive integer. Let Mn be the set of monomials in x1, . . . , xn whose degree in
each variable is at most q − 1, and let Sn be the Fq-vector space they span.
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Observe that the evaluation map e : Sn → FFn
q
q given by e(p) := (p(a))a∈Fn

q
is a linear

isomorphism. Indeed, both spaces have dimension qn and the map e is surjective since for
every a ∈ Fnq the polynomial

∏n
i=1(1− (xi − ai)q−1) is mapped to the indicator function of

point a.
For any real number d in [0, (q − 1)n], let Md

n be the set of monomials in Mn of degree at
most d and Sdn the subspace of Sn they span. Write md for the dimension of Sdn. By a slight
abuse of notation, we use “polynomial of degree at most d” to mean an element of Sdn.

Proposition 2. Let Fq be a finite field and let A be a subset of Fnq . Let α, β, γ be three
elements of Fq which sum to 0.

Suppose P ∈ Sdn satisfies P (αa+βb) = 0 for every pair a, b of distinct elements of A. Then
the number of a ∈ A for which P (−γa) 6= 0 is at most 2md/2.

Remark 3. The proof of Proposition 2 is essentially the same as that of Lemma 1 of Croot-
Lev-Pach [CLP16], which proves the proposition in the case (α, β, γ) = (1,−1, 0). In the
γ = 0 case, the conclusion of the proposition is that P (0) = 0 once |A| > 2md/2; it turns out
to be essential for the present application to have the added flexibility of forcing P to vanish
at a larger set of places.

Proof. Any P ∈ Sdn is a linear combination of monomials of degree at most d, so we can write

(1) P (αx+ βy) =
∑

m,m′∈Md
n : deg(mm′)≤d

cm,m′m(x)m′(y).

In each summand of (1), at least one of m and m′ has degree at most d/2. We can therefore
write (not necessarily uniquely)

P (αx+ βy) =
∑

m∈Md/2
n

m(x)Fm(y) +
∑

m∈Md/2
n

m(y)Gm(x)

for some families of polynomials Fm, Gm indexed by m ∈Md/2
n .

Now let B be the A× A matrix whose a, b entry is P (αa+ βb). Then

Bab =
∑

m∈Md/2
n

m(a)Fm(b) +
∑

m∈Md/2
n

Gm(a)m(b).

This is an expression of B as a sum of 2md/2 matrices, each one of which visibly has rank at
most 1. Thus the rank of B is at most 2md/2.

On the other hand, our hypothesis on P forces B to be a diagonal matrix. The bound on
the rank of B now implies that at most 2md/2 of the diagonal entries of B are nonzero. This
completes the proof.

�

Theorem 4. Let α, β, γ be elements of Fq, not all zero, such that α + β + γ = 0, and let A
be a subset of Fnq such that the equation

αa1 + βa2 + γa3 = 0

has no solutions (a1, a2, a3) ∈ A3 apart from those with a1 = a2 = a3. As above, let md be the
number of monomials in x1, . . . , xn with total degree at most d and in which each variable
appears with degree at most q − 1.

Then |A| ≤ 3m(q−1)n/3.
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Proof. Without loss of generality we may assume γ 6= 0.
Let d ∈ [0, (q − 1)n]. The space V of polynomials in Sdn vanishing on the complement of
−γA has dimension at least md − qn + |A|.

View the elements of V as functions on Fnq and let P ∈ V have maximal support. Let
Σ := {a ∈ Fnq : P (a) 6= 0} be the support of P . We have |Σ| ≥ dimV for otherwise, there
would exist a nonzero Q ∈ V vanishing on Σ. But then the support of P +Q would strictly
contain Σ, contradicting the choice of P .

Write S(A) for the set of all elements of Fq of the form αa1 + βa2, with a1 and a2 distinct
elements of A. Then S(A) is disjoint from −γA by hypothesis, so P vanishes on S(A). By
Proposition 2, we know that P (−γa) is nonzero for at most 2md/2 points a of A, hence
|Σ| ≤ 2md/2.

It follows that

md − qn + |A| ≤ dimV ≤ |Σ| ≤ 2md/2

whence

|A| ≤ 2md/2 + (qn −md).

We note that qn−md is the number of q-power-free monomials whose degree is greater than
d; these are naturally in bijection with those monomials whose degree is less than (q−1)n−d,
of which there are at most m(q−1)n−d.

Taking d = 2(q − 1)n/3, we thus have

|A| ≤ 2m(q−1)n/3 + (qn −m2(q−1)n/3) ≤ 3m(q−1)n/3

as claimed. �

It is not hard to check that m(q−1)n/3/q
n is exponentially small as n grows with q fixed. We

can be more precise. Let X be a variable which takes values 0, 1, . . . , q − 1 with probability
1/q each. Then m(q−1)n/3/q

n is the probability that n independent copies of X have mean at
most (q − 1)/3. By symmetry, this equals the probability that n independent copies of X
have mean at least 2(q− 1)/3. This is an example of a large deviation problem. By Cramér’s
theorem [RAS15, §2.4], we have

lim
n→∞

1

n
log(m(q−1)n/3/q

n) = −I(2(q − 1)/3)

where I is the rate function of the random variable X, calculated as follows: I(x) is the
supremum, over all θ in R, of

(2) θx− log((1 + eθ + · · ·+ e(q−1)θ)/q).

We note that (2) takes the value 0 at θ = 0 and has nonzero derivative at θ = 0 unless
x = (q− 1)/2, so the supremum of (2) is positive; this shows that m(q−1)n/3 = O(cn) for some
c < q.

Corollary 5. Let A be a subset of (Z/3Z)n containing no three-term arithmetic progression.
Then |A| = o(2.756n).

Proof. Taking q = 3 and x = 4/3, the supremum in (2) is attained when eθ = (
√

33 + 1)/4
and we obtain the bound 3e−I(4/3) < 2.756. The theorem now follows by applying Theorem 4
with α = β = γ = 1. �
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