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Abstract

Peer-to-peer technology has produced thriving communities in which peers
contribute bandwidth to each other. However, when free riding occurs, these
communities will not be able to sustain themselves without incentives to enforce
this contribution. This thesis presents Supervised Teaming, a peer-to-peer transfer
protocol that gives uploading peers, called supervisors, control over a team of
downloading peers, called team members. The team members are given an
incentive to transfer data among each other, effectively reducing the upload cost
of the supervisors to one piece of data while still duplicating this piece to every
team member. Using transport efficiency, time efficiency, and sharing ratio as
performance metrics, we prove that Supervised Teaming performs equally to
BitTorrent under best-case scenarios and several factors better, depending on the
chosen team size, under flash crowds and free riding scenarios. Furthermore, we
have implemented a peer-to-peer client that can use both the BitTorrent protocol
and a simplified version of the Supervised Teaming protocol. The experiments
we have performed with this client verify that Supervised Teaming performs as
expected.
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Chapter 1

Introduction

Take the first step, and your mind will mobilize all its forces to your aid.
But the first essential is that you begin. Once the battle is started,

all that is within and without you will come to your assistance.
- Robert Collier

Currently, a lot of people have come into contact with peer-to-peer systems.
BitTorrent [7], developed by Bram Cohen, is easily the most used protocol at this
time. Studies [15, 19] show that in the year 2004, BitTorrent was responsible for
roughly 30% of all internet traffic. Since this time the popularity of BitTorrent has
only increased. Traditionally, peer-to-peer systems have been used to give a large
community an easy way to access files. These files can range from music tracks of
a few megabytes to DVD copies of several gigabytes.

Looking at the history of peer-to-peer systems we can see that a lot has changed:
the number of users has increased, the amount of traffic has grown by 8% per month
since 1997 [1], and the type of data has shifted from mostly music to the larger
video files. However, these changes did not require the development of new peer-
to-peer systems. It is the attitude of users towards peer-to-peer systems that causes
problems that force peer-to-peer systems to either adapt or go extinct. This thesis
will focus on a solution to the following three problems: flash crowds, where large
numbers of peers join in a short amount of time; free riding, where peers reduce
their bandwidth cost as much as possible; and initial risk, which is a form of free
riding where generosity towards new peers is exploited. We present the Supervised
Teaming protocol and prove, using both theory and practical experiments, that it is
capable of handling these problems in a scalable and low-risk way. However, first
these three problems will be discussed in detail.
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Introduction

1.1 Problem description

There are many methods to exploit a peer-to-peer system and we believe, as peer-
to-peer communities continue to increase in size, that the current problems will
also increase. Among these problems we believe that flash crowds, free riding
and initial risk are good representatives of what peer-to-peer systems are currently
facing. Therefore, we will use these three problems to assess the effectiveness of
both the BitTorrent and the Supervised Teaming protocol.

Flash crowd. Peer-to-peer systems ideally contain thousands of peers sharing
millions of files. However, these files usually originate from a single peer called
the initial seeder. When a peer wants to introduce a new file, this file must be
transferred to the community as quickly as possible to increase the chances of other
peers retrieving this data fast and reliably. When the file is very popular, the number
of peers who are trying to retrieve data can grow very large in a short amount of
time, which is known as the flash crowd problem.

Free riding. Our second problem only recently became a problem. At the dawn
of peer-to-peer technology the applications connecting the peers could be trusted
due to the novelty of peer-to-peer systems. This made it possible to have all peers
behave altruistically. However, this has changed. Modern peer-to-peer systems are
either open source or reverse engineered, allowing the development of alternative
peer-to-peer clients. These clients will only follow the prescribed protocol when
they are given sufficient incentives. In other words: we have to assume that peers,
in a modern peer-to-peer system, behave selfishly.

A selfish peer that is downloading more than her ‘fair share’ is said to be free
riding. This definition is as broad as it is vague. However, the general idea is as
follows: in a peer-to-peer community, each peer should contribute something back
to the system in order to keep it going. When resources of a community are used
beyond what it can sustain, the tragedy of the commons [14] occurs. There are
numerous ways that a peer can free ride, perhaps the client allows its upload rate
to be set to a low value, or fake information can be introduced in the system. The
options vary depending on the peer-to-peer system that is used.

No system to date had been able to completely eliminate free riding, nor do
we believe that such a system will ever emerge. In a peer-to-peer system there
will always be peers who upload more—and consequently, other peers will upload
less—than their fair share. A peer who introduces a file will only be able to upload
and the last peer will not be able to upload simply because there is no one left who
is interested. Another complication originates from the topology of the internet
itself, when two peers are behind a Network Address Translation (NAT) or firewall
any communication between them is difficult and in some cases even impossible.
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Initial risk. Our third problem involves a specific form of free riding. Several
peer-to-peer systems use incentives to convince peers to help share a resource.
Tit-for-tat and counting the number of bytes received and sent between peers, all
come down to the simple: ‘You scratch my back and I’ll scratch yours’ principle.
However, this concept has a drawback: who scratches first? Or in other words: who
will take the initial risk.

When two peers encounter each other for the first time, one will have to take some
initial risk. Because the number of peers in a peer-to-peer system can be very large,
it is likely that a lot of unknown peers are encountered. And each encounter results
in at least some initial risk. This problem is even larger in peer-to-peer systems
where no user identification is required; in these cases the whitewashing [9] attack
is an easy way for a free rider to continuously take advantage of initial risk.

The challenge of this thesis is to design a peer-to-peer system that must be able
to cope with the above three problems. Our protocol must be efficient to those who
are willing to share and able to ensure that all peers are uploading at least some
data. Our solution, called Supervised Teaming, is a protocol that ensures this with
the cooperation of peers in small teams. These teams consist of team members
who are peers that are interested in downloading a specific piece. Furthermore,
the team members follow the instructions of the supervisor, who is the peer that
has the piece that the team members are going to download. There is always one
supervisor and one or more team members. The team size is the number of peers
who are cooperating to download a specific piece, therefore, the team size does
not include the supervisor. Each team member receives blocks of data from the
supervisor and must forward those blocks to the other team members. An incentive
for this forward is provided in the form of a reward that contains the offset of the
data block. Without this offset, the block is useless. And without forwarding, a
peer will never receive the reward.

Throughout this thesis we will use transport efficiency, time efficiency, and
sharing ratio to compare the protocols that are discussed. The transport efficiency
is the ratio of the useful data to all the used bandwidth, expressed as a percentage,
where useful data is the data that is intended to be received by the downloading peer
and, therefore, does not include the overhead from additional messages or message
headers. The time efficiency is the ratio of the minimal transfer time to the actual
transfer time, expressed as a percentage, where the minimal transfer time is the time
it takes to transfer the data that is actually part of the file. The sharing ratio is the
ratio of the upload cost to the download cost. However, because an initial seeder
has no or very low download cost, we define the download cost for an initial seeder
to be the size of the file that is shared. In short, the transport efficiency and the
time efficiency indicate how efficiently a protocol handles message overhead and
latency, whereas the sharing ratio indicates the distribution of cost between peers
in a swarm.
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Introduction

1.2 Thesis outline

This thesis is organized as follows. In Chapter 2, the BitTorrent protocol is
introduced. Because the BitTorrent protocol is one of the leading peer-to-peer
protocols at this time, it offers a valuable reference point against which we can
measure the performance of our protocol. In this chapter we will present a short
history and a detailed discussion of the BitTorrent protocol. This is followed with
an analysis where the transport efficiency, the time efficiency, and the sharing ratio
are presented. We conclude this chapter by assessing to what extent the BitTorrent
protocol offers protection against the three problems that are posed in the previous
section.

In Chapter 3 the Light Supervised Teaming protocol is introduced, which is
an implementation of the Supervised Teaming protocol where a supervisor has
authority over a teams consisting of two team members. Having two team
members allows simplifications in the protocol that made it possible to implement
this protocol within the time that we wanted to spend on the verification of our
theoretical results. In this chapter we will present a detailed discussion and analysis
of the Light Supervised Teaming protocol, for which we use the transport efficiency,
the time efficiency, and the sharing ration. We also assess to what extent the three
problems, that are posed in the previous section, are solved by Light Supervised
Teaming.

In Chapter 4 the Extended Supervised Teaming protocol is introduced. In
contrast to the Light Supervised Teaming protocol, the Extended Supervised
Teaming protocol is not restricted to a team size of two. Instead a supervisor
can create a team with any number of team members and can add and remove
team members when required. How this influences the protocol is discussed in the
protocol description and performance analysis, where we calculate the transport
efficiency, the time efficiency, and the sharing ratio. Finally, we discuss how the
Extended Supervised Teaming protocol addresses the problems of flash crowd, free
riding, and initial risk.

In Chapter 5 we will present several experiments we have performed using our
peer-to-peer client, BitTorrent, and Light Supervised Teaming implementations.
This chapter will show the similarity between theory and practice in addition to
experiments that show the difference between BitTorrent and Light Supervised
Teaming in flash crowd, free riding, and initial risk situations.

Finally, we present our conclusions in Chapter 6.
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Chapter 2

BitTorrent

Why is it that, as we grow older, we are so reluctant to change?
It is not so much that new ideas are painful, for they are not.

It is that old ideas are seldom entirely false, but have truth, great truth in them.
The justification for conservatism is the desire to preserve the truths and

standards of the past;
its dangers, of which we are seldom aware, is that in preserving those values,

we may miss the infinitely greater riches that lie in the future.
- Dale E. Turner

The BitTorrent protocol plays an important role in this thesis. First of all, our
Supervised Teaming protocol uses a similar torrent, piece, and block structure.
Secondly, BitTorrent is currently the dominant peer-to-peer system in the world [15,
19] and is therefore a good candidate with which our own Supervised Teaming
approach can be compared.

Section 2.1 gives a short history of the BitTorrent protocol. Section 2.2 explains
how the protocol works. Section 2.3 discusses the three performance metrics that
are used, throughout this thesis, to evaluate the different protocols. Section 2.4
discusses how efficient the protocol is in terms of the transport efficiency, the time
efficiency, and the sharing ratio. And finally in Section 2.5 we assess how the
BitTorrent protocol handles flash crowd, free riding, and initial risk problems.

2.1 History

After the introduction of BitTorrent in 2004 by Bram Cohen, this peer-to-peer
system has become one of the most popular protocols for mass file sharing on
the internet. One of the reasons for the popularity is the good scaling that the
protocol provides. With a traditional client/server approach the cost for a server
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increases linearly with the population, making the server the bottleneck of the
system. However, with the BitTorrent protocol the collective upload bandwidth
increases with the population, removing this bottleneck.

BitTorrent is peer-to-peer system that gives users an incentive to provide
bandwidth to each other. This incentive is based on a strategy called tit-for-tat.
In 1981 Axelrod [3] organized a tournament involving several players who could
choose whether they wanted to cooperate with each other or not. The results from
this tournament, presented in the Evolution of Cooperation, indicated that tit-for-tat
was both the best and one of the simplest submitted strategies to solve this, what
we now call, Prisoners Dilemma [8]. The tit-for-tat strategy had two basic rules:
cooperate on the first round and continue to do whatever the other player did in the
preceding round.

Axelrod concluded that the success of tit-for-tat could be traced back to three
rules: never be the first to stop cooperating, retaliate after the other player does not
cooperate, and forgive when the other player starts cooperating again. Tit-for-tat
remained one of the most effective strategies to solve the Prisoner Dilemma until
cooperation between a select group of players was used to boost the score of a
single player [21]. By sacrificing the other players in the group, one player could
be more effective than a player using tit-for-tat. This cooperation is often seen in
attempts to bypass trust systems and is called collusion [8].

2.2 Protocol description

The general idea of BitTorrent is, in short, break a file into pieces and let the
different peers download each piece separately. Once a peer has downloaded
a piece, she can start contributing to the collective bandwidth of the swarm by
uploading that piece to other peers. This lets the available upload bandwidth scale
with the number of available peers, preventing bottlenecks and problems with flash
crowds. Choosing which piece to download first is important to increase the chance
that, during the lifetime of the swarm, no pieces are lost. Different piece picking
policies [7] can be used depending on how much the peer has downloaded so far
and how much of the data is available.

Once peers are connected, they continually inform each other of the pieces that
they have. Using this knowledge peers can ask other peers for bytes from a piece
that they have available. Transferring a single piece between peers is divided into
two different phases. First is the information phase, and second the transfer phase.
We will continue with a detailed description of these phases. Flow diagrams for
the seeder and leecher are given in Figures 2.1 and 2.2, respectively. A detailed
description of the messages that are used, including size and payload, are given in
Appendix A.1.
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Figure 2.1: The flow diagram for seeders.

Information phase

BitTorrent uses a pulling strategy, meaning that a peer needs to request transfers
from other peers. However, before data can be requested, a peer needs to know
what data is available on the other peers. This knowledge is gathered using HAVE
and BITFIELD messages.

When a connection is first established between peers the BITFIELD message
may be sent. One such message will contain a bit for each piece in the torrent and
each bit indicates whether the peer has this piece by either setting or unsetting this
bit. While a connection exists between peers, the HAVE message is sent to indicate
the availability of newly acquired pieces at a peer.

When peer A receives a BITFIELD or a HAVEmessage that indicates that peer B
has a piece that A still needs, then A can send an INTERESTED message to B to
indicate that A would like to start downloading from B. From this point on A will
be called the leecher and B will be called the seeder.

When a seeder receives an INTERESTED message, she can decide whether or
not to allow a download. This can be based on current bandwidth usage, or part of
a strategy that finds better peers to cooperate with. When the seeder decides that
she can provide the leecher with some data she sends an UNCHOKE message back.
Otherwise no action is taken.
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Transfer phase

Once a leecher receives an UNCHOKE message the transfer phase begins. This
UNCHOKE message indicates that the seeder is willing to upload data to the leecher,
all that remains is for the leecher to tell the seeder what data she requires.

The leecher sends one or more REQUEST messages to the seeder and the seeder
sends PIECE messages back containing the requested data. This continues until
either the leecher sends a NOT INTERESTED message, indicating that she no
longer wants any data from the seeder; or until the seeder sends a CHOKE message,
telling the leecher that no further data will be uploaded.

A leecher usually has several outstanding requests at a seeder because this
allows the seeder to provide a continuous stream of data, reducing latency and
therefore increasing the time efficiency of the protocol. This is further discussed in
Section 2.4.2.

2.3 Performance metrics

Throughout this thesis we will use the transport efficiency, the time efficiency,
and the sharing ratio to evaluate and compare the performance of the BitTorrent
protocol, the Light Supervised Teaming protocol, and the Extended Supervised
Teaming protocol. What these performance metrics are is discussed in the
following three sections.

2.3.1 Transport efficiency

The transport efficiency is the ratio of the useful data to the used bandwidth,
expressed as a percentage, where the useful data is every byte that is intended to be
received by the downloading peer or peers. The transport efficiency is calculated
for the transfer of a single piece of data from a single source-peer to one or more
destination peers. Using the transport efficiency we can see how efficiently the
available bandwidth is used.

For the BitTorrent protocol the useful data is every byte that is part of the shared
file. The used bandwidth is every byte that is transferred. Because there are exactly
two peers involved in the transfer of a piece of data, the seeder and the leecher, the
useful data and the used bandwidth are the same for both these peers. Therefore
the transport efficiency for the seeder is the same as that of the leecher when the
BitTorrent protocol is used.

For the Supervised Teaming protocol, where two or more peers are involved in
the transfer of a piece of data, the definition of useful data is more complex. The
useful data to a team member is every byte that is part of the shared file which is
received. However, the useful data to a supervisor is every byte that is part of the
shared file which is received by, possibly, several team members. Therefore, when
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a 1MB piece is transfered from a supervisor to four team members, the useful data
is 1MB and 4MB for each of the team members and the supervisor, respectively.

2.3.2 Time efficiency

The time efficiency is the ratio of minimal transfer time to the actual transfer
time, expressed as a percentage, where the minimal transfer time is the theoretical
minimum amount of time that the transfer will take given a certain latency and
bandwidth. The time efficiency is calculated for the transfer of a single piece of
data from a single source-peer to one of more destination peers. Using the time
efficiency we can see the affect of the connection speed and latency.

2.3.3 Sharing ratio

The sharing ratio is the ratio of the number of uploaded bytes to the number of
downloaded bytes. However, while the transport and time efficiency refer to the
efficiency for the transfer of a single piece, the sharing ratio is calculated for the
distribution of an entire file in an entire swarm consisting of multiple peers. Using
the sharing ratio we can see how the bandwidth cost is distributed between seeders,
leechers, and free riders.

Predicting the efficiency for an entire swarm is difficult. The piece picking policy,
the number of concurrent up and downloads, different bandwidth and latency
between different peers, connectability, and many other factors affect the sharing
ratio. Therefore, we will simplify the sharing ratio by not including any overhead
from additional messages or message headers. Neither will the latency be included
in the sharing ratio calculation.

Sharing ratio will be based on the size of the file that is shared, the number of
peers and the amount of available upload bandwidth that these peers have available.
Furthermore, because no overhead is present, we can assume that both the leechers
and the free riders download no more than the file that is shared. For a similar
reason, the seeders will download nothing at all. Therefore, when calculating the
sharing ratio for seeders, we define the number of downloaded bytes to be the size
of the file that is shared.

2.4 Performance analysis

To get a reference point for the performance of the Supervised Teaming protocol,
which is the main focus of this thesis, we compare it against the performance of
the popular BitTorrent protocol. Therefore, this section will present an analysis of
the performance of the BitTorrent protocol. The comparisons between Supervised
Teaming and BitTorrent will be presented in Sections 3.2 and 4.2 for the Light
Supervised Teaming and Extended Supervised Teaming protocols, respectively.
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Symbol Meaning Unit
B Size of block kB
F Size of torrent or file kB*
L Latency ms
M Number of team members
NF Number of free riders
NL Number of leechers
NS Number of initial seeders
P Size of piece kB*
RF Sharing ratio of free riders
RL Sharing ratio of leechers
RS Sharing ratio of initial seeders
SF Upload speed of free riders kB/s
SL Upload speed of leechers kB/s
SS Upload speed of initial seeders kB/s
T Time s

*Given in MB when otherwise specified

Table 2.1: The symbols used throughout this thesis.

The equations and parameters used throughout this thesis use the notation
presented in Table 2.1. Furthermore, we have performed several experiments using
our own peer-to-peer client and protocol implementations to verify that the results
from the theories presented in this thesis correspond with an actual file transfer.
These experiments are presented and discussed in Chapter 5.

2.4.1 Transport efficiency

During the transfer of a file, any number of connection failures or deviations from
the protocol can occur. To simplify we will not take into account any such failures
or deviations and assume that the transfer takes place as described in the protocol
description in Section 2.2.

The transport efficiency depends on four factors: connection failures, deviations
from the protocol, size of pieces, and size of blocks. Since we will not take the first
two factors into account, we are left with the size of both the pieces and the blocks.
The best efficiency can be attained by having large pieces and blocks because this
will reduce the overhead of request and message headers. Therefore, from a purely
transport efficiency point of view, the best piece and block size would equal the
size of the entire file that is shared. However, this would remove any possibility
for trading during transfer, and since this is the strongest aspect of a peer-to-peer
system this is not desired.

Because the .torrent file is hosted at central servers, and these servers have limited
available bandwidth, it is preferred to have relatively small .torrent files. Because
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Seeder Leecher
Message Upload Download Upload Download

(bytes) (bytes) (bytes) (bytes)
Information phase
HAVE 9 0 0 9
INTERESTED 0 9 9 0
UNCHOKE 5 0 0 5
Transfer phase (x128)
REQUEST 0 2,176 2,176 0
PIECE 4,195,968 0 0 4,195,968
Total

4,195,982 2,185 2,185 4,195,982
Efficiency
Total bandwidth 4,198,167 4,198,167
Overhead 3,863 3,863
Transport efficiency 99.91% 99.91%

Table 2.2: The transport efficiency. [P=4MB, B=32kB]
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the size of the .torrent file is directly dependent on the number of pieces in a
torrent, the piece size is therefore constrained by the practical maximum size of
a .torrent file. While there is no general agreement on a specific piece size, the
most commonly encountered piece sizes, for torrents of several gigabytes, are 1MB,
2MB, and 4MB.

There are no general agreements for the block size either. However, there are two
limits: the length of the piece and the maximum message length. The length of the
piece might, from a technical point of view, be used as a block size. The maximum
message length, which is over 4GB, is obviously not used. In the end it comes
down to what the BitTorrent clients choose to allow. Commonly encountered block
sizes are 8kB, 16kB, and 32kB.

An efficiency computation for the transfer of a single 4MB piece from a seeder to
a leecher using 32kB blocks can be seen in Table 2.2. The table shows the various
messages that are sent during transfer and their respective sizes including the five
byte message headers. When we look at the bottom of the table we can see that the
resulting efficiency is a little under 100% for both the seeder and the leecher, which
means that the BitTorrent protocol adds little overhead to the 4MB that the seeder
allowed to upload and what the leecher wanted to download.

The efficiency result that is shown in Table 2.2 can be repeated for many
different piece and block size combinations. By collecting the results of several
combinations we can create an overview of the transport efficiency for the
BitTorrent protocol under different circumstances. This overview is presented in
Figure 2.3. This figure shows that changing the piece size hardly changes the
efficiency at all, changing the block size, on the other hand, does change the
efficiency. When choosing a piece and block size it should be taken into account
that a big block size increases the risk of free riding, and a small block size increases
the overhead.

To explain the somewhat surprising similarity between the different piece sizes
in Figure 2.3 we will look at two cases in detail. In the first case we transfer a 8MB
piece by sending 4096 blocks of 2kB. For the second case we transfer a 265kB piece
by sending 128 blocks of 2kB. It is clear that the first case gives more overhead,
however, this overhead is relatively small compared to the piece size. Therefore,
this has only a small effect on the efficiency. For this reason the first case is slightly
more efficient at 98.56% than case two at 98.55%. Such differences are too small,
except for the area that is enlarged, to show in the figure.

2.4.2 Time efficiency

The time efficiency depends on six factors: connection failures, deviations from the
protocol, size of pieces, size of blocks, latency of the connection, and bandwidth
of the connection. As explained in the previous section, we will not take into
account any connection failures or deviations from the protocol. The piece and
block size affects the time efficiency in the same way as described in the previous
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Message Latency time Transfer time
(milliseconds) (milliseconds)

Information phase
HAVE 200 0.29
INTERESTED 200 0.29
UNCHOKE 200 0.16
Transfer phase (x128)
REQUEST 200 70.83
PIECE 200 136587.50
Total

1000 136659.08
Efficiency
Total in seconds 1.00 136.66 137.66
Overhead in seconds 0.80 0.13 0.93
Time efficiency 99.33%

Table 2.3: The time efficiency. [P=4MB, B=32kB, L=200ms, SS=SL=30kB/s]
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section. Furthermore, we will assume that the transfer takes place as described in
Section 2.2.

The latency of a connection is the time that it takes between sending the first
byte of a message and receiving this first byte at the other end of the connection.
Having a low latency will decrease this delay thus increasing the efficiency. The
bandwidth of a connection indicates the number of bytes that can be sent through
the connection in a certain amount of time. Having a high bandwidth will allow
more data to travel from one peer to the other in less time, thus increasing
the efficiency. While not all peers have the same up and download bandwidth,
we will simplify our analysis and use the same latency and bandwidth for both
communicating peers.

An efficiency prediction for the transfer of a single 4MB piece in 32kB blocks
with a 200ms latency and using a bandwidth of 30kB/s can be seen in Table 2.3.
The table shows the various messages that are sent during transfer and the
corresponding latency and transfer time delays. When we assume that the optimal
transfer of 4MB of data at 30kB/s takes 136 seconds, then we can calculate the
efficiency for the actual transfer. The resulting efficiency of 99.33% is shown at
the bottom of the table. Having such a high efficiency means that the BitTorrent
protocol adds little additional delay to the transfer.

One of the reasons for this high efficiency is that a peer will always attempt to
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queue several requests. This allows the seeder to send a continuous stream of data,
eliminating any additional delay due to latency. Not using a request queue would
result in a latency time increase of 2 × 200 for each block. This would result in
over 50 seconds additional delay. Thus, by having a request queue the latency
hardly affects the time efficiency of the BitTorrent protocol.

The efficiency result that is shown in Table 2.3 can be generated for many
different piece, block, latency and bandwidth combinations. By generating the
efficiency values for several combinations we can plot an overview of the time
efficiency for the BitTorrent protocol under different circumstances. This overview
is presented in Figure 2.4. The four lines, indicating different latency values, clearly
show a difference in efficiency. As could be expected, better efficiency can be
achieved with a lower latency. However, as the bandwidth increases, the efficiency
decreases. Even though this is somewhat counterintuitive it can be explained
simply because as the bandwidth increases, the norm—the optimal transfer time
that can only be achieved in theory—increases even more because no protocol
overhead is used in this optimal value.

A more intuitive way of looking at the time efficiency is how much time it takes
to transfer a piece with a certain block, latency, and bandwidth. These values are
generated and plotted in Figure 2.5. In contrast to the time efficiency, where a
higher bandwidth seemed to cause a negative effect, the transfer time reacts positive
as the bandwidth increases. In this figure we can see that the latency does not have
much affect on the transfer time.

2.4.3 Sharing ratio

The sharing ratio, for the initial seeder, leechers, and free riders in a swarm, can
be expressed by the following equations which maximize the usage of the available
bandwidth:

T =
F × (NL + NF )

SS ×NS + SL×NL
(2.1)

RS =
SS × T

F
(2.2)

RL =
SL× T

F
(2.3)

RF =
0
F

= 0 (2.4)

However, these equations do not take into account that the initial seeder is
required to upload the file at least once. Therefore, these equations are only valid
when SS×NS×T ≥ F . The equations that generate the swarm efficiency figures
in this thesis are slightly different to take this into account.

To clarify the strength and weakness of BitTorrent we show two extreme cases
where a single initial seeder has the task of uploading a file to a swarm. In the
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Figure 2.6: The sharing ratio. [F=100MB, NS=1, SS=SL=SF=128kB/s]

first case 5% of the swarm consists of free riders while in the second case 95% of
the swarm consists of free riders. For each case we calculate the sharing ratios,
using the above equations, with a varying swarm size. The resulting graphs are
shown in Figure 2.6. These figures show the swarm size, which includes the single
initial seeder, on the horizontal axis. The vertical axis shows the corresponding
sharing ratios for the initial seeder, the leechers, and the free riders. These figures
were generated for a 100MB file and an upload bandwidth of 128kB/s for the initial
seeder, the leechers, and the free riders.

The strength of BitTorrent, or any peer-to-peer system for that matter, is shown in
Figure 2.6(a). From this figure we see that, as the swarm size increases, the sharing
ratio for the initial seeder and the leechers remains more or less equal to one. In
other words, the bandwidth cost is spread more or less equally between the peers,
with the exception of the few free riders who do not upload anything at all.

Unfortunately, the sharing ratio for a swarm that consists for 95% of free riders
requires a much higher sharing ratio from the initial seeder and leechers. This
worst-case scenario is shown in Figure 2.6(b). That the sharing ratio, for the initial
seeder and the leechers, approaches 20 is caused by the available leechers. A
swarm consisting entirely of free riders would require the initial seeder to upload
everything and hence have a sharing ratio of 1:∞, which is similar to what is seen
in a traditional client/server approach.
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2.5 Concerning the problem statement

The previous chapter stated the three problems that we will address in this thesis.
This section will describe how BitTorrent deals with these problems.

Flash crowd. A simple solution to the flash crowd problem, or in other words,
dealing with large numbers of leechers with relatively few seeders, is the super
seeding [4, 5, 24] strategy. This strategy ensures two things: first, the seeder does
not choke a leecher until that has downloaded a partial piece. This ensures that
the leecher is able to upload a completed piece to other peers. Second, the seeder
prevents premature serving of duplicate pieces to maximize the diversity of the
available pieces. The super seeding strategy has proven itself for giving a noticeable
improvement to the bandwidth utilization of seeders.

Free riding. BitTorrent has proven itself to be resilient against free riding, even
though there are several strategies that free riders can use [17, 18]. As long as there
are enough altruistic peers, both the cooperating and the free riding peers, will be
able to complete their download, keeping the swarm healthy [13]. However, as
more free riding approaches are incorporated into user friendly BitTorrent clients,
the number of free riders will increase.

One such user friendly free riding application is RatioMaster [2]. This program
uses a HTTP proxy to spoof the statistics that are sent to the tracker, making it
possible to fool a private tracker into believing that the user is a great benefit to the
community. Another strategy to start free riding is to limit the upload bandwidth—
an option that all well known peer-to-peer clients now provide—coupled with
increasingly selfish and aggressive implementations, also limits the amount of
bandwidth that a free rider will contribute to the peer-to-peer community.

It is our belief that the BitTorrent protocol will not be able to cope with a high
number of free riders in the network, resulting in more independent swarm failures.
Currently most peers behave as the protocol desires. However, the protocol does
not have any options to make it harder for free riders and because of this lack of
control the BitTorrent protocol will eventually collapse under a growing number of
selfish users.

Initial risk. One of the reasons that free riding can be achieved in a BitTorrent
swarm is the initial risk. A new peer can only upload a piece once it is completely
downloaded, therefore, an uploading peer risks an entire piece worth of bandwidth
before the new peer is able to provide her upload bandwidth to the community.

One might argue that this initial risk can be reduced by decreasing the size of the
pieces, while this is true, this has several disadvantages: smaller pieces will require
a larger BITFIELD message, more HAVE messages to be sent between peers, and
the .torrent file will grow larger because of the additional hash values that have to
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be stored. However, even small pieces will not remove the initial risk because the
BitTorrent protocol does not require a peer to upload any data. While the tit-for-tat
policy suggests that uploading will increase the download performance, a peer is
not guaranteed that this will actually be the case. While the optimistic unchoke
is designed to find peers where this will be the case, this also gives free riders
opportunities to receive free data.
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Chapter 3

Light Supervised Teaming

When the solution is simple, God is answering.
- Albert Einstein

In order to verify the performance of the Supervised Teaming protocol, we have
implemented a peer-to-peer client that is able to use both BitTorrent and Supervised
Teaming. However, we decided to distinguish between a light and an extended
version of the Supervised Teaming protocol. The difference between these versions
is that the Light Supervised Teaming protocol, which is discussed in this chapter,
is restricted to a team size of two, whereas the Extended Supervised Teaming
protocol, which is discussed in the following chapter, is able to handle teams of any
size. The experiments that are performed with the BitTorrent and Light Supervised
Teaming protocols are presented in Chapter 5.

Section 3.1 explains how the Light Supervised Teaming protocol works and
which messages are used to communicate between the peers. Section 3.2 discusses
how efficient the protocol is in terms of the transport efficiency, the time efficiency,
and the sharing ratio. And finally in Section 3.3 we assess how the Light Supervised
Teaming protocol handles flash crowd, free riding, and initial risk problems.

3.1 Protocol description

The problems that are presented in Section 1.1, flash crowds, free riding, and initial
risk, can be partially solved by increasing the upload efficiency and by reducing
risk. These two goals, efficient uploading and risk reduction, form the basis for
Supervised Teaming.
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Sally

(a) Three peers are connected with
each other.

Alice Bob

Sally

#1 #2

(b) Supervisor transfers data.

Alice Bob
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#2 #1

(c) Supervisor transfers rewards.

Alice Bob#1

#2

Sally

(d) Team members exchange data.

Alice Bob#2

#1
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(e) Team members exchange rewards.

Alice Bob

Sally

#2 #1

(f) Supervisor receives confirmation.

Figure 3.1: The strategy of the Light Supervised Teaming protocol.
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3.1.1 Protocol design

Reducing the risk that a peer takes while cooperating with other peers in the
community is achieved in two ways. The first is a tried and proven approach,
namely, to cut the data into smaller blocks and upload one block at a time. When
a peer feels—for any reason—that she is being cheated, she stops uploading.
For the second approach we have to realize that, after receiving data, a peer is
usually not required—and can certainly not be forced—to upload any data in return.
Supervised Teaming will reduce this risk by making sure that a peer is unable to
use a received block of data without a special key. This key, in the form of a reward,
provides an incentive to forward a block of data.

The second aspect of Supervised Teaming is that the transport efficiency for
altruistic peers is increased. This increased efficiency must logically come at the
expense of the downloading peers. However, this requires a strong incentive or
otherwise the downloading peers will not cooperate. Traditionally only two peers
cooperate, up and download, with each other. However, this is not always possible.
Not all peers have data that they can exchange and seeders have no interest in
downloading any data at all. To solve this dilemma, Supervised Teaming allows
more than two peers to cooperate with each other.

To incorporate these two aspects, the Supervised Teaming protocol will use
small groups, consisting of a supervisor and a team with two team members,
who are committed to the distribution of a single piece. The supervisor, who is
required to have completely downloaded this piece, is given authority over the team.
Furthermore, the team members, who are attempting to download this piece, must
be willing to contribute some of their upload bandwidth.

Once a team is created and all the team members are connected to the supervisor
and each other, the supervisor divides the piece into smaller blocks and starts
transferring them to the team members. However, the supervisor does not reveal
the offsets of the blocks. By giving the offsets to the opposite team member, who
will only reveal this information after receiving this block in a forward, an incentive
is created to forward the blocks between the team members. The supervisor will
only send the next block when it is confirmed that the previous block has been
forwarded. This is repeated until the entire piece is distributed among the team
members. This strategy is illustrated in Figure 3.1 with the transfer and forward of
two blocks from the supervisor Sally to the team members Alice and Bob.

Using this strategy, the supervisor has to upload every block only once while
these blocks are received by two team members. This effectively doubles the
transport efficiency for the supervisor. Furthermore, because the forward of every
block must be confirmed, the initial risk is reduced to the size of a single block.
Because a team member is unlikely to benefit from downloading a block without
actually forwarding it, we can assume that the initial risk is actually much lower.

It should be noted that any peer can act as a supervisor for any piece that she
has completely downloaded. Furthermore, a peer can be a team members in any
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number of teams at the same time.

3.1.2 Message flow

A description of the messages that are used to accomplish the above strategy is
given in this section. Figures 3.2 and 3.3 show the message flows for the supervisor
and the team members, respectively. A detailed description of the messages that
are used, including size and payload, are given in Appendix A.2.

The Light Supervised Teaming protocol consists of three distinct phases. First
the information phase, second the setup phase, and third the transfer phase. We will
now discuss these three phases.

Information phase

Light Supervised Teaming uses a pushing strategy, meaning that when a peer is
willing to share a certain piece, she will contact other peers to see if they are willing
to receive it. In order to do this, each peer must know what pieces the other peers
are interested in.

For example, when Sally has completed a piece she can contact two other peers
who are interested in this piece and ask them if they want to be in a team with her
as supervisor and them as team members.

To know which peers are interested in which pieces, the messages TEAM
INTERESTED, TEAM NOT INTERESTED, and TEAM INTERESTED FIELD
are used.

Setup phase

The setup phase starts when a potential supervisor has discovered two potential
team members. Each of these potential team members is contacted using TEAM
REQUEST messages. The supervisor waits until either both team members have
given a reply, or until a timeout has occurred.

For the team members the setup phase starts when they receive a TEAM
REQUEST message. Because all team members need to be connected to each other,
the team members will not reply until these connections are established. Depending
on the connectability of the team members, the team request is accepted or declined
by sending a TEAM REPLY message back to the potential supervisor.

When the potential supervisor receives accepting messages from both team
members, she can start to prepare the piece for transfer. The piece is divided into
blocks, and each block is given a unique and random identifier. The blocks are
then randomly and evenly assigned to the team members. When the number of
blocks is uneven, one of the team members is chosen randomly and is assigned one
additional block.
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Figure 3.2: The flow diagram for supervisors.
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Figure 3.4: The message flow between a supervisor and two team members.

In the last step of the setup phase, the supervisor sends a TEAM REWARD and
TEAM FORWARD message to each team member. The reward message provides
the offset for one or more blocks, and the forward message contains the data for a
single block. Each team member is sent the rewards for the blocks that are assigned
to the other team member. For example, supervisor Sally has assigned block #2 to
team member Alice. Thus Sally will send the data for block #2 to Alice, and the
reward for this block to Bob who is the other team member; see Figure 3.4.

Transfer phase

The transfer phase consists of a simple algorithm that repeats until either all the
blocks have been sent, or something goes wrong. The start of this phase is initiated
with the first TEAM FORWARD messages that the supervisor sends to the team
members.

A TEAM FORWARD message, because it consists of only an identifier and a
stream of bytes, is in itself useless to a team member. The TEAM REWARD
message with the same identifier contains the byte offset for that block, so only
after receiving both the TEAM FORWARD and the TEAM REWARD messages, can
a team member store the data.

Therefore, upon receiving a TEAM FORWARD message from the supervisor, this
message is forwarded to the other team member. When this message is received,
the associated TEAM REWARD is sent back. Furthermore, a confirmation message,
in the form of a TEAM REWARD is also sent to the supervisor to indicate that the
data was properly forwarded. This provides the team members with an incentive to
forward the data because otherwise they will not receive the reward.

When the supervisor receives the confirmation message, she can send the next
TEAM FORWARDmessage containing a new block. This process repeats itself until
all the blocks have been transfered.

At any time during the transfer phase a timeout or disconnect can occur. When
this occurs at a team member, the supervisor is notified with a TEAM REPLY
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message. When this occurs at the supervisor, the remaining team members are
notified with a TEAM REPLY message indicating that the team will be disbanded.

3.2 Performance analysis

The Light Supervised Teaming protocol is designed to be efficient for uploading to
other peers, and to reduce risk when transferring data to other, possibly unknown,
peers. To achieve this, several control messages are used. In this section we will
determine how the messages and their payload affect the efficiency of the Light
Supervised Teaming protocol. As with the BitTorrent protocol, we will express the
performance using the transport efficiency, the time efficiency, and the sharing ratio
which are defined in section 2.3.

3.2.1 Transport efficiency

The setup for the transport efficiency calculations are the same as previously for the
BitTorrent protocol in Section 2.4.1. Thus we are dependent on connection failures,
deviations from the protocol, the size of pieces, and the size of blocks; and we will
not take into account the connection failures and deviations from the message flow
as it is presented in Section 3.1.2.

In contrast to the BitTorrent protocol, where both up and downloading peers
share the same transport efficiency, the Light Supervised Teaming protocol results
in different efficiencies for supervisors and team members. It is even possible that
both team members have different transport efficiencies. Such a difference occurs
when a piece is divided in an uneven number of blocks or when, because of block
alignment, one block has a different size. In either of these cases it is impossible
to evenly divide the forwarding load between the team members, therefore, we
distinguish between a lucky and an unlucky team member.

Figure 3.5 shows the transport efficiency for the lucky and unlucky team
members, and the average between these two for the transfer of a 4MB piece with
different block sizes. Fortunately, the supervisor can almost always select the block
size in such a way that it aligns with the piece size. The only likely circumstance
when a difference between lucky and unlucky team members occurs is with the
last piece in the torrent. Therefore we simplify our analysis by using the average
transport efficiency of the lucky and unlucky team members.

An efficiency prediction for the transfer of a single 4MB piece from a supervisor
to two team members using 32kB blocks can be seen in Table 3.1. This table shows
the various messages that are sent during the transfer and their respective sizes
including the five byte message headers. When we look at the bottom of the table
we can see that the resulting efficiency for the supervisor is a little under 200%
which indicates that the benefit—two peers have received 4MB worth of data—for
the supervisor is almost twice as high as her costs.
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Figure 3.5: The transport efficiency for lucky and unlucky team members. [P=4MB]

Supervisor Average team member
Message Upload Download Upload Download

(bytes) (bytes) (bytes) (bytes)
Information phase
TEAM INTERESTED 0 18 9 0
Setup phase
TEAM REQUEST 78 0 0 39
TEAM REPLY 0 20 10 0
TEAM REWARD 658 0 0 329
Transfer phase (x64)
TEAM FORWARD 4,195,584 0 2,097,792 4,195,584
TEAM REWARD 0 1,280 1,536 896
Total

4,196,320 1,318 2,099,347 4,196,848
Efficiency
Total bandwidth 4,197,638 6,296,195
Overhead -4,190,970 2,101,891
Transport efficiency 199.84% 66.62%

Table 3.1: The transport efficiency. [P=4MB, B=32kB]
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Figure 3.6: The transport efficiency for supervisors.

The table further shows that the efficiency for the team members is calculated at
roughly 66%. With the 66% efficiency, the Light Supervised Teaming protocol
compares badly with the nearly 100% efficiency that the BitTorrent protocol
provides. This is the result of forcing the team members to upload while they
download, increasing their own bandwidth costs to reduce the bandwidth cost of
the supervisor.

The efficiency result that is shown in Table 3.1 can be generated for many
more piece and block size combinations. By collecting the results of several
combinations we can generate an overview of the transport efficiency for the Light
Supervised Teaming protocol under different circumstances. These overviews are
shown in Figures 3.6 and 3.7 for the supervisor and team members, respectively.
In these figures we can see that the piece size has little or no effect on the transport
efficiency. We can also see that when we increase the block size, the transport
efficiency is also increased. Unfortunately we can not increase the block size
indefinitely, we are always limited by the piece size, and the number of blocks
that would result. Having only a few blocks will increase the chance that a peer can
guess the reward, instead of having to upload her share to earn it.
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Figure 3.7: The transport efficiency for team members.

3.2.2 Time efficiency

The setup for the time efficiency calculations are the same as with the BitTorrent
protocol in Section 2.4.2. Thus we are dependent on connection failures, deviations
from the protocol, size of pieces, size of blocks, latency of the connection, and
bandwidth of the connection; and we will not take into account the connection
failures and deviations from the message flow as it is presented in Section 3.1.2.

Table 3.2 shows the messages with the respective latency and bandwidth time that
is required when transferring a 4MB piece in 32kB blocks, having a 200ms latency
and a bandwidth of 30kB/s. To clarify, we will explain the difference between the
two TEAM FORWARD messages. The first TEAM FORWARD in the table accounts
for the transfer from the supervisor to the team members. This transfer takes longer
because two transfers are occurring at the same time. The second TEAM FORWARD
accounts for the exchange between team members. This exchange is much faster
because the team members are uploading to each other, allowing both their upload
bandwidth to be used.

Assuming that the optimal theoretical transfer of 4MB to two peers takes 136
seconds at 30kB/s—this optimal transfer can be achieved by having the seeder
transfer to the first leecher, and having the first leecher transfer to the second leecher
as each byte is received—then we can calculate the efficiency for the transfer with
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Message Latency time Transfer time
(milliseconds) (milliseconds)

Information phase
TEAM INTERESTED 200 0.29
Setup phase
TEAM REQUEST 200 2.54
TEAM REPLY 200 0.33
TEAM REWARD 200 21.42
Transfer phase (x64)
TEAM FORWARD 12800 136575.00
TEAM FORWARD 12800 68287.50
TEAM REWARD 12800 20.83
Total

39200 204907.91
Efficiency
Total in seconds 39.20 204.91 244.11
Overhead in seconds 38.80 68.37 107.17
Time efficiency 56.10%

Table 3.2: The time efficiency. [P=4MB, B=32kB, L=200ms, SS=SL=30kB/s]

the Light Supervised Teaming protocol. The resulting efficiency of 56.10% is
shown at the bottom of the table. The decrease in efficiency, compared to the
BitTorrent protocol, is caused by latency from additional control messages and the
forward to the other team member.

When we generate the time efficiency values for several piece, block, latency,
and bandwidth combinations we get the overview presented in Figure 3.8. Similar
to the results for BitTorrent the efficiency decreases as the bandwidth increases.
However, we will focus on the more intuitive transfer time shown in Figure 3.9
where the transfer of a 4MB piece in 32kB blocks is presented.

While the latency has almost no effect on the BitTorrent protocol, see Figure 2.5,
it does have a significant effect on the Light Supervised Teaming protocol. The risk
reducing strategy of Light Supervised Teaming dictates that the supervisor must
wait with the transfer of the next block until the appropriate confirmation message
has been received. While this does reduce the risk that is taken, it is the cause of the
additional latency delay. However, because a peer is allowed to be a team member
in several teams at the same time, the drop in bandwidth usage should be filled with
the bandwidth for another team.

3.2.3 Sharing ratio

The sharing ratio, which is presented in this section, is used for the comparison
between the BitTorrent protocol and the Light Supervised Teaming protocol.
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Figure 3.10: The sharing ratio. [F=100MB, NS=1, SS=SL=SF=128kB/s]

Furthermore, it is used as a baseline for the experiments that are done in Chapter 5.
Because of the simplifications, which are discussed in section 2.3.3, the swarm
efficiency can be expressed by the following equations:

T =
F × (NL + NF )− 0.5× F ×NF

SS ×NS + SL×NL
(3.1)

RS =
SS × T

F
(3.2)

RL =
SL× T

F
(3.3)

RF =
0.5× F

F
(3.4)

However, these equations do not take into account that the initial seeder is
required to upload the entire file at least once. Therefore, these equations are only
valid when SS ×NS × T ≥ F . The figures that are presented in this section are
generated with slightly different equations that take this into account.

The strong aspects of peer-to-peer networks—that they scale with the number
of peers that participate in the network—is also present in the Light Supervised
Teaming protocol. Figure 3.10(a) shows that the sharing ratio for the initial seeder
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Figure 3.11: Comparing the sharing ratio for the initial seeder in a worst-case scenario
for Light Supervised Teaming and BitTorrent. [F=100MB, NS=1, SS=SF=128kB/s]

and the leechers stays around 1:1. Because these figures were generated using the
same parameters as those for BitTorrent in Figure 2.6, we can compare them to
each other. Therefore, we can conclude that for the best-case scenario, where only
5% of the swarm consists of free riders, the Light Supervised Teaming protocol
performs equally well as BitTorrent as the swarm size increases.

Figure 3.10(b), which shows the worst-case scenario where 95% of the swarm
consists of free riders, shows that the sharing ratio for the initial seeder and the
leechers approaches 1:10.5 as the swarm size increases. While this sharing ratio
is high, it is almost half that of the sharing ratio for BitTorrent under similar
circumstances. Therefore, in a worst-case scenario, the Light Supervised Teaming
protocol performs roughly twice as good than the BitTorrent protocol.

This increased performance is caused by the relatively small amount of data that
each free rider is forced to upload. This causes each free rider to have a sharing ratio
of 1:0.5 and allows the initial seeder to save a considerable amount of bandwidth.
Figure 3.11 shows the sharing ratios that a single initial seeder can expect in the
worst-case scenario when 95% of the swarm consists of free riders. From this figure
it is clear that Light Supervised Teaming performs twice as good than BitTorrent.
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3.3 Concerning the problem statement

In Section 1.1 we presented the problems that we want to address in this thesis. This
section presents the solutions that the Light Supervised Teaming protocol brings to
these three problems.

Flash crowd. The problem with flash crowds can be solved by transferring all the
data from the initial seeder into the community as quickly and as evenly as possible.
Because the Light Supervised Teaming protocol has a high transport efficiency—
from the supervisors point of view—and transfers the data to more than one peer at
the same cost, it is ideally suited to solve the flash crowd problem.

As stated before, at the cost of uploading a single piece once, the data is
duplicated to two peers. Effectively doubling the upload for the supervisor, thereby
doubling the chance that either of the two peers will act as a supervisor for that piece
themselves. Unfortunately the time efficiency of the Light Supervised Teaming
protocol is lower than that of the BitTorrent protocol. However, this loss can be
minimized by acting as a supervisor for more pieces at the same time and/or acting
as a team member in more then one team at the same time.

Furthermore, the super seeding strategy that BitTorrent uses to allow seeders to
more evenly distribute the data is inherent to the Supervised Teaming protocol, as
it uses a pushing strategy instead of a pulling strategy.

Free riding. The problem of free riding is not solved. solving free riding is,
in our opinion, impossible [23] with the current internet infrastructure. However,
enforcing two team members to cooperate with each other will ensure that even free
riders have a minimal sharing ratio of 1:0.5, whereas with the BitTorrent protocol,
a free rider could manage a sharing ratio of 1:0.

Similar to BitTorrent, a peer has no direct benefit from being a seeder, or in the
case of Supervised Teaming a supervisor. Therefore, a peer that acts like one is
considered to behave altruistically. However, peers can maintain a credit count and
use this to prefer peers in their teams that have acquired the most credits. This
credit count can either be based on a global—and thus insecure—value or a local—
and thus incomplete—value. We believe that a perfect peer-to-peer system is
impossible, enforcing a 1:0.5 sharing ratio is a step forward. The protocol presented
in the following chapter will allow us to further increase this sharing ratio.

Initial risk. Uploading in a peer-to-peer system is usually done because the
uploader hopes to get something in return. However, because of inherent limitations
to the internet, it is impossible to ensure that any bandwidth is returned at all.
Some peer-to-peer systems try to solve this with certified credits, or with a globally
maintained history, and others will only look at personal interaction with fellow
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peers. In the end, each technique can only hope to minimize the risk that is taken
when helping someone else. This is also the case with Light Supervised Teaming.

When all peers follow the protocol correctly a piece is transferred. In this case
the supervisor will get nothing except perhaps, if a team member remembers,
something in the future. However, when one of the team members stops forwarding
there will be the risk of bandwidth loss. The supervisor risks losing two blocks
worth of bandwidth—one for each team member—and each team member risks
losing one block worth of bandwidth.

Thus, from the supervisors point of view it will be rewarding to have each peer
remember who has been her supervisor, so they can attempt to get them as their
team member in the future. This allows for the same tit-for-tat strategy that is
used in BitTorrent. With the exception that not one, but two peers can remember
the supervisor. Doubling the supervisors chance of being invited back as a team
member.
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Chapter 4

Extended Supervised Teaming

Aim at perfection in everything, though in most things it is unattainable.
However, they who aim at it, and persevere, will come much nearer to it than
those whose laziness and despondency make them give it up as unattainable.

- Lord Chesterfield

One of the most important aspects of the Supervised Teaming protocol is the
ability to increase the transport efficiency for altruistic peers. The previous chapter
achieved roughly 200% efficiency for such peers by having them supervise teams
consisting of two team members. In this chapter we will present the Extended
Supervised Teaming protocol where larger teams are allowed, thereby increasing
the transport efficiency further.

Section 4.1 discusses the challenges that the Extended Supervised Teaming
protocol faces because of the increased team size. Section 4.2 discusses how
efficient the protocol is in terms of the transport efficiency, the time efficiency, and
the sharing ratio. And finally in Section 4.3 we assess how the Extended Supervised
Teaming protocol handles flash crowd, free riding, and initial risk problems.

4.1 Protocol description

In the design of the Light Supervised Teaming protocol we deliberately limited
the team size to two. This simplification allowed us to simply disband the team
whenever something went wrong. However, the Extended Supervised Teaming
protocol allows larger teams, and disbanding an entire team because of a problem
with a single team member is no longer an option. This section will present several
issues that Extended Supervised Teaming will therefore have to deal with, and will
describe how it affects the protocol.
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4.1.1 NAT and firewall traversal

The Supervised Teaming protocol requires that the supervisor and all the team
members are connected with each other. In terms of connectability, this means
that only the supervisor or one of the team members can have a Network
Address Translation (NAT) or firewalled connection. How many peers in a peer-
to-peer system are unreachable depends on the social makeup of the swarm,
measurements [6, 16, 20, 25] indicate that 25% to 76% of the peers are connectable.

Having non connectable peers is disastrous for the Supervised Teaming protocol.
However, there are several options available that alleviate this problem:

• Use one of the many NAT and firewall traversal techniques [10, 12].
• Instead of communicating with TCP sockets use UDP messages. Several

techniques are available that allow UDP messages to pass through a NAT or
firewall [10, 12, 22].

• The IPv6 protocol [11], that should become the standard internet
communication protocol, promises to solve NAT traversal problems by
supplying each individual computer with a unique address.

• Reducing the team size will increase the chance for an unconnectable peer to
find a team which has no unconnectable supervisor or team members so far.

While NAT and firewall traversal may be the biggest drawback of Supervised
Teaming we believe that the technical aspects that are involved in solving NAT and
firewall traversal are out of the scope of this thesis.

4.1.2 Forwarding incentive

The forwarding incentive that is used in Light Supervised Teaming—giving one
team member the reward, and the other the data—will not function with larger
teams. In Extended Supervised Teaming a team member requires an incentive to
forward the data to all the other team members. Therefore, instead of one reward,
each team member, except the one that is forwarding, will have part of the reward.
Similar to the Light Supervised Teaming protocol, we choose to use the data offset
as the reward, dividing this reward between the team members can be accomplished
by giving each a value that, when added together, results in the correct offset. For
example, dividing a reward for offset 1024 between 3 peers can be done by having
one reward set to 1280, the second set to 768, and the third to -1024.

The supervisor should not be predictable when dividing a block offset into
rewards. For example, dividing the offset uniformly, where 1024 becomes 341,
341, and 342, makes it possible to guess the offset using only a single reward.
However, this thesis will not discuss the benefits of different dividing techniques.

Figure 4.1 presents the different steps that are part of the Extended Supervised
Teaming protocol. To reduce the number of links in this figure, only the forward
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Figure 4.1: The strategy of the Extended Supervised Teaming protocol.

41



Extended Supervised Teaming

from a single team member, called Alice, is displayed. However, it should be noted
that Bob and Carol also receive a block of data from Sally and that they are expected
to forward their data to the other team members as well.

Giving each team members part of the reward ensures that team members have
an incentive to forward the data to all the other team members. However, it does
require that additional TEAM REWARD messages are sent during transfer. How this
affects the efficiency of the Extended Supervised Teaming protocol is discussed in
Section 4.2.

4.1.3 Team size

The efficiency of the Supervised Teaming protocol increases with the team size.
However, there are certain limitations to the team size. In an old swarm there will
be relatively few new peers, the older peers will have already downloaded pieces
that this new peer still requires. However, because there are no or only a few
other peers that also require these highly available pieces, forming a large team
will not be possible. Therefore, smaller teams—perhaps even a team size of one—
should be allowed. Incidentally, when the team size is one, the supervisor will
be uploading to a single team member which is effectively the same as using the
BitTorrent protocol.

The optimal team size depends largely on the progress of all the peers in the
swarm. Creating a large team in a recently created swarm will be both efficient and
easy because the availability of pieces is low and we can therefore expect peers to
put more effort into their downloads. However, as the swarm ages the availability
will increase and the possibility to find team members that require the same pieces
decreases. We will not give an exact value for the optimal team size, however,
we believe that it is possible for peers to estimate this value based on the TEAM
INTERESTED messages that are send between peers in a swarm.

In a swarm the altruistic peers will choose to supervise a team, thereby giving
them the ability to decide how much effort the team members must put into
obtaining their data. This gives uploading peers the ability to decide the effort that
is required from downloading peers. A peer who is not willing to put this effort
into her download can wait until more peers have acquired that data and the effort
that they demand from their team members decreases.

4.1.4 Incomplete transfer

Until now we have assumed that a peer has either downloaded nothing or everything
from a piece. Obviously this is not always the case. To allow the Extended
Supervised Teaming protocol to efficiently handle this situation the team members
must inform the supervisor of their download progress when they join the team. In
certain situations a supervisor can use this information to reduce bandwidth usage.
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For example, if a team member Alice informs supervisor Sally that she already
has block #42, then Sally can assign the forward of block #42 to Alice, and refrain
from uploading this block herself. If the supervisor is lucky enough she might
find herself in a team where she does not have to upload any significant amount
of data at all, the role of the supervisor then changes to simple delegation. In this
case, the supervisor has to instruct which team members have to forward which
blocks between each other. Because this can not be accomplished with regular
TEAM FORWARD message, the TEAM DELIVER message is introduced. Instead
of a block-id/data pair, this message contains a block-id/offset pair.

When one or more of the team members already have some parts of the piece, it
is unnecessary for the other team members to forward their assigned blocks to these
team members. To make this possible, the supervisor must inform the forwarding
peer to which team members the block should be forwarded. Consequently, the
supervisor should also take into account that only the peers that still require a block
will actually receive part of the reward. To inform a forwarding peer of her targets a
delivery bitfield is added to the TEAM FORWARD and TEAM DELIVER messages.
This bitfield will contain one bit for each team member, where a set and unset will
indicate a required forward or no forward, respectively.

The number of bytes that is used for this bitfield is directly influenced by the
maximum size of a team. Therefore, the number of bytes that is assigned to
this delivery bitfield depends on the team size. To allow each team member to
determine this, the maximum team size is defined during the setup phase. Using
this maximum, each team member knows how large the delivery bitfield will be.

4.1.5 Transfer speed requirements

Because a supervisor waits with the forward of new blocks until all the confirmation
messages have been received, the team will progress at the speed of the slowest
team member. However, these confirmation messages also allow the supervisor
to estimate how much time it took a team member to forward her block, thereby
indicating which team member is the so called weakest link.

To avoid a team member from slowing down a team, the Extended Supervised
Teaming protocol must allow the supervisor to remove a team member while
the remaining team members can continue with as little disruption as possible.
Extended Supervised Teaming is able to achieve this by having the supervisor
reallocate the blocks from the removed team member to the remaining team
members.

Because team members can leave during the existence of a team, it becomes
inadvisable to transfer all of the allocated rewards during the setup phase. Instead
the rewards should be sent in separate TEAM REWARD messages as the transfer
progresses, this will leave the removed peer with little or no information concerning
the remaining blocks.
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However, finding a weakest link is not an easy task because the estimated transfer
speed depends on third party information, namely the team members who send the
confirmation messages. This is shown in Figure 4.2 where Sally, our supervisor,
sends a block to Alice. Alice forwards this block to Bob who sends the confirmation
message back to Sally. The estimation that Sally makes can be influenced by
both Alice and Bob. Alice can influence the speed of her forward by allocating
more or less bandwidth to it, and Bob can influence the estimation by sending the
confirmation message too soon or too late. Some of these four cases, when applied
to a large team, will present Sally with an inaccurate estimation. Unfortunately it is
impossible for Sally to blame either Alice or Bob because she in unaware of what
happens between these two team members. When Bob is delaying confirmation
messages this might even implicate himself as the delaying factor. However, this
is also the case when Alice decides to decrease the transfer speed for the forward
to Bob. Fortunately the knowledge of team member performance grows with each
transferred and confirmed block, this can be used to slowly build trust between
peers.

While transferring the entire torrent, a peer is likely to encounter many peers
with different up and download speeds. These peers will also be active in several
different teams. Furthermore, because each team progresses at the speed of
its slowest member, it is unlikely that a team will have a high transfer speed.
Therefore, it is likely that the overall transfer speed will not depend on the speed of
a single team but on the number of teams in which a peer can participate. To allow
peers to decide whether to accept or decline a request to join a team, the request
should state the minimal bandwidth that should be available to join a team. Should
the supervisor estimate that a peer falls below this requirement, the team member
should be removed from the team.

However, participating in several teams at the same time, and with different teams
having different transfer speed requirements, may be problematic with a traditional
transfer protocol where a single message is sent through a connection at a time.
For example, Alice and Bob are both part of the same two teams, illustrated in
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Figure 4.4: The additional transport overhead by switching channels every n bytes.

Figure 4.3. The first team requires a transfer speed of 4kB/s and the second team
requires 1kB/s. Because Alice has an available upload bandwidth of 5kB/s she
decided that she can join both teams. Using her available upload bandwidth it
takes Alice 6.5 seconds to transfer a 32kB block to Bob. The supervisor for the
fast team expects a forward to take 8 seconds and the supervisor for the slow team
expects a forward to take 32 seconds. If the message for the slow team is sent
along the connection first, this will arrive well within the 32 second limit. The
second message, containing the forward for the fast team, will arrive another 6.4
seconds later, effectively after 12.8 seconds. Given that it was promised to take no
more than 8 seconds, it was delivered 4.8 seconds behind schedule.

This problem can be solved by allowing both messages to be transferred through
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the connection in parallel. However, this requires a change in the transfer protocol.
We propose to divide each connection into 256 channels that can be used more or
less simultaneously. Each message is split into channel-blocks that are n bytes
long. Each channel-block is preceded with a single byte indicating one of the
256 channels. Now channel-blocks from different channels can follow each other,
allowing semi-parallel communication. The order of the channel-blocks is based
on the required transfer speed of the messages that the channel belongs to. For the
example in the previous paragraph, where the one team is four times faster than
the other, the density of the channel-blocks for the fast message are four times
as high as the slow message. The resulting overhead that channels have on the
communication depends on n and follow the formula: O = 100/n. Figure 4.4
shows that the resulting overhead is small.

4.1.6 Endgame

The BitTorrent protocol uses a so called endgame [7] strategy to increase the
download speed in the final stage of the transfer. Using this strategy the remaining
blocks are requested from several peers at the same time. This strategy can also be
applied with Supervised Teaming, however, the cost is higher because the peer will
need to be part of more than one team for the same piece.

Aside from this, the Supervised Teaming protocol has a second endgame
problem. While the BitTorrent protocol uses a pulling mechanism where request
messages are sent that indicate exactly what is required, the Supervised Teaming
protocol uses a pushing mechanism where one peer asks other peers to join a team
for a specific piece. However, the effectiveness of this pushing mechanism goes
down as the availability of a piece goes up because many supervisors are requesting
peers to join their teams. The following two examples show that the chance to form
a team decreases as the availability of pieces increases.

In our first example we have a swarm with 1000 peers. In this swarm there is
one seeder while the remaining 999 peers are leechers. When the seeder tries to
create a team with two team members this will not be a problem because none of
999 leechers in the swarm are currently in a team and will all accept the invitation
to join. In this case the chance to form a team is 100%.

In our second example we again have a swarm with 1000 peers. However, in
this swarm there are 998 seeders who are trying to create a team with two team
members. Now the two leechers will each receive 998 requests to join a specific
seeder in her team. The chance that both the remaining peers select the same seeder
is 1/998× 100 = 0.1002%.

This problem can be solved on two sides: at the potential supervisors and at
the potential team members. Solving this problem on the side of potential team
members can be accomplished by letting the potential team members discuss
among each other to which TEAM REQUEST they prefer to respond positively.
Unfortunately, this requires additional messages to be sent, further increasing
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Figure 4.5: Choosing teams using eager values.

complexity and communication overhead. Therefore, we will focus on the
supervisor side solution.

The potential supervisors can reduce the problem by coordinating the number of
TEAM REQUEST messages that are sent to potential team members. One way to
achieve this is to give supervisors a preference when creating a team. For example,
if Sally has both piece #2 and #3 and both pieces have the same availability she can
choose either piece #2 or #3 randomly or based on some mathematical function that
uses her IP address or peer id.

Additionally a difference between supervisors can be created by including some
value in the TEAM REQUEST message. This value can indicate how eager a peer
is to supervise that piece. Peers that receive TEAM REQUEST messages from
multiple peers can simply select the supervisor with the highest eager value. Note
that this eager value should include, at least some, randomness to avoid peers in
a similar situation to constantly have the same eager value. An example of this is
given in Figure 4.5 where the three supervisors Sally, Sadie, and Seline attempt
to create a team using eager values of 9, 7, and 5, respectively. Alice can choose
between three offers and chooses Sally because she gave the highest eager value.
Seline, with the lowest eager value, might not start her team because only two out
of four peers replied positively to her request.
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4.2 Performance analysis

This section will present the performance analysis for the Extended Supervised
Teaming protocol. Similar to the analysis for the BitTorrent and Light Supervised
Teaming protocols, we distinguish between transport efficiency, time efficiency,
and sharing ratio.

Several assumptions are made for these performance analyses. The TEAM
MEMBER message will send the IP address of the team members as an IPv4
address. None of the team members will have any part of the piece that they
are downloading, therefore the bitfield in the TEAM REPLY message that
is sent in response to the TEAM MEMBER message will be empty. We will use
a 5 byte message header and we will not use the channels that are proposed in
Section 4.1.5. Furthermore, instead of 32kB blocks—which were used for the
performance analyses for both the BitTorrent and the Light Supervised Teaming
protocols—we will use 16kB blocks to ensure that each team member will still
have several blocks to trade, even with the increased team size.

4.2.1 Transport efficiency

The transport efficiency is calculated in the same way as in the previous two
chapters. However, the Extended Supervised Teaming protocol has one additional
variable that affects the efficiency of the protocol, namely the team size. And
because the Extended Supervised Teaming protocol allows a team size that is higher
then two we are not limited to one lucky and one unlucky team member, as is the
case with the Light Supervised Teaming protocol. For example, transferring a 4MB
piece to a size three team, in 14kB blocks will require roughly 292.6 blocks. This
means that one lucky team member is required to forward 97 blocks, while the
two other unlucky team members have to forward 98 blocks. However, one block
is only 8kB large. Therefore, instead of forwarding 98 blocks, one unlucky team
member is required to forward 97 14kB blocks and one 8kB block. We call this
team member less lucky.

Similarly to the previous two chapters we calculate the transport efficiency under
different piece, block, and team sizes to produce Figure 4.6. In this figure the
efficiencies for lucky, less lucky, and unlucky team members is given for the
transfer of a 4MB piece to a size three team. The figure shows that, as the block
size increases, the difference in efficiency also increases. Having a smaller block
size will result in more and smaller blocks that the team members are required to
forward. This reduces the difference between lucky, less lucky, and unlucky team
members. To keep the difference between the team members as small as possible
the choice of block size—depending on the piece size and the team size—is very
important. In the best-case the supervisor is able to both align the block to the piece
size and evenly distribute the blocks among the team members. However, this may
not always be possible. In the remainder of this chapter we will use the average
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Figure 4.7: The transport efficiency. [M=8]

49



Extended Supervised Teaming

Supervisor Average team member
Message Upload Download Upload Download

(bytes) (bytes) (bytes) (bytes)
Information phase
TEAM INTERESTED 0 72 9 0
Setup phase
TEAM REQUEST 168 0 0 21
TEAM REPLY 0 80 10 0
TEAM MEMBER 1,744 0 0 218
TEAM REPLY 0 80 10 0
TEAM REWARD 1,352 0 0 169
Transfer phase (x32)
TEAM FORWARD 4,197,120 0 3,672,480 4,197,120
TEAM REWARD 0 17,920 24,192 21,952
Total

4,200,384 18,152 3,696,701 4,219,480
Efficiency
Total bandwidth 4,218,536 7,916,181
Overhead -29,335,896 3,721,877
Transport efficiency 795.40% 52.98%

Table 4.1: The transport efficiency. [P=4MB, B=16kB, M=8]

efficiency instead of separate values for the lucky, less lucky, and unlucky team
members.

To illustrate how we calculate the transport efficiency, we present Table 4.1 where
the required bandwidth for the distribution of a 4MB file in 16kB blocks from a
supervisor to a size eight team is given. this figure shows that the supervisor has,
with 795.40%, a very high efficiency. This is caused by the difference between the
benefit—eight peers receive a piece—and the cost—one piece is uploaded—is very
high. The team members, with 52.98%, do most of the work. Their total bandwidth
is almost twice the piece size.

The previous two chapters showed that the piece size barely affects the transport
efficiency of either the BitTorrent or the Light Supervised Teaming protocol. This
also holds for the Extended Supervised Teaming protocol. This is shown in
Figures 4.7(a) and 4.7(b) where the efficiencies for the different piece sizes are
shown for a size eight team and a varying block size. As with BitTorrent and Light
Supervised Teaming the efficiencies overlap for the most part. Because this has
already been discussed in the previous chapters we will not go into this any further,
instead we will focus on the effect that the team size has on the transport efficiency.

We perform our efficiency calculation on the transfer of a 4MB piece. Because
the Extended Supervised Teaming protocol is based on sharing between team
members, it is essential that there are enough blocks. Therefore, in contrast to
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Message Latency time Transfer time
(milliseconds) (milliseconds)

Information phase
TEAM INTERESTED 200 0.29
Setup phase
TEAM REQUEST 200 5.47
TEAM REPLY 200 0.33
TEAM MEMBER 200 56.77
TEAM REPLY 200 0.33
TEAM REWARD 200 44.01
Transfer phase (x32)
TEAM FORWARD 6400 136625.00
TEAM FORWARD 6400 17078.12
TEAM REWARD 6400 72.92
Total

20400 153883.24
Efficiency
Total in seconds 20.40 153.88 174.28
Overhead in seconds 18.80 17.35 36.15
Time efficiency 79.26%

Table 4.2: The time efficiency. [P=4MB, B=16kB, L=200ms, S=30kB/s, M=8]

the previous two chapters where we let the block size grow to 4MB, we choose to
limit the block size to 128kB. With 32 team members this gives each team member
a single block. While this should not be used during an actual transfer, it shows the
limits of the efficiency. Figures 4.8 and 4.9 show the transport efficiencies, using
different team sizes, for the supervisor and team members, respectively.

From these figures we see that the efficiency for the supervisor grows linearly
with the size of the team. In the efficiency for the team members two characteristics
can be seen. For small blocks the efficiency is relatively low. This is primarily
caused by the overhead of the many TEAM REWARD messages that are sent
between the team members. As the block size increases, the number of blocks
and the overhead decreases, resulting in a higher efficiency. At the larger block
sizes, where this overhead is relatively low, we see the second characteristic, which
is that the efficiency has a lower bound of 50%. Having a transport efficiency of
50% is the same as uploading the same amount as you download, or in other words,
having a sharing ratio of 1:1.

4.2.2 Time efficiency

The time efficiency and how it is calculated for the transfer of a 4MB piece in
16kB blocks with a latency of 200ms, a bandwidth of 30kB/s to a size eight team
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Figure 4.10: The time efficiency and the transfer time. [P=4MB, B=16kB, M=8]

is given in Table 4.2. When we compare this table with Table 3.2, where the time
efficiency for the Light Supervised Teaming protocol is presented, we see that the
Extended Supervised Teaming protocol is almost 70 seconds faster. This is caused
by the second TEAM FORWARD entry in the table. This entry indicates the time that
it takes the team members to forward their assigned blocks to each other, having
more team members provides more bandwidth that can be used in parallel, resulting
in a faster distribution of the data.

The effect that the bandwidth and the latency have on the time efficiency
and the resulting transfer time is presented in Figures 4.10(a) and 4.10(b),
respectively. Compared to Light Supervised Teaming the Extended Supervised
Teaming protocol has a higher time efficiency and therefore a better transfer time.
However, the effect that the latency and the bandwidth have on these values is the
same as with the Light Supervised Teaming protocol. Therefore, we will not go
into this subject again.

We calculate the time that the transfer of a single 4MB piece takes when
transferred using 16kB blocks and 200ms latency. The resulting transfer time, for
several different team sizes, is presented in Figure 4.11. The figure shows that
having more peers in the team will decrease the transfer time. When Figure 4.11
is compared with Figure 2.5, which shows the transfer time for the BitTorrent
protocol, it shows that, as the size of the team increases, the transfer time of the
Extended Supervised Teaming protocol approaches that of the BitTorrent protocol.
A single team is effectively behaving as a small BitTorrent swarm. With each
peer—or team member—the collective bandwidth of the swarm—or team—is
increased. However, the lifetime of a team, and the authority that the supervisor
has over the team members reduces risk and increases the control of seeders when
compared to the BitTorrent protocol.

A fair comparison, on piece level, between BitTorrent and Extended Supervised
Teaming is difficult because of the different rates at which the two protocols
duplicate data. While with BitTorrent, a piece is duplicated from one peer to
another, the Extended Supervised Teaming protocol duplicates a piece from one

53



Extended Supervised Teaming

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20  40  60  80  100  120  140  160  180  200

T
ra

ns
fe

r 
tim

e 
(s

ec
on

ds
)

Bandwith (kilobytes per second)

Team size 2
Team size 4
Team size 8

Team size 16
Team size 32

Figure 4.11: The transfer time. [P=4MB, B=16kB, L=200ms]

Duplication: f(1) = 1 f(2) = 3 f(3) = 7

C

G

F

E

DB

A

Seeder

Figure 4.12: Duplication of data using the BitTorrent protocol.
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Figure 4.13: The transfer time of Extended Supervised Teaming compared with that of
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supervisor to two or more team members. The rate at which the BitTorrent protocol
duplicates data follows equation:

f(n) =

{
1 if n = 1
2f(n− 1) + 1 if n > 1

(4.1)

In this equation n is the number of rounds. The resulting speed of duplication
is displayed graphically in Figure 4.12. From Equation 4.1 follows that, for a fair
comparison between BitTorrent and Extended Supervised Teaming, we need to use
3, 7, 15, 31, etc. leechers. The Extended Supervised Teaming protocol can achieve
this by using a team size of 3, 7, 15, 31, etc. The associated transfer times for these
team sizes and peer counts are presented in Figure 4.13. This figure shows that, for
a swarm with 7 or 15 peers, the Extended Supervised Teaming protocol duplicates
the data faster than the BitTorrent protocol. Even with a swarm of 3 peers, the
Extended Supervised Teaming protocol is faster at a bandwidth that is lower than
55kB/s. As explained in Section 3.2.2, this is caused by the parallel transfers that
are part of the Extended Supervised Teaming protocol.
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Figure 4.14: The sharing ratio. [F=100MB, NS=1, SS=SL=SF=128kB/s]

4.2.3 Sharing ratio

The following equations are used to generate the sharing ratio for the Extended
Supervised Teaming protocol. Similar to the equations used to generate the sharing
ratio for BitTorrent and Light Supervised Teaming, these equations are only valid
when SS ×NS × T ≥ F . The equations are as follows:

T =
F × (NL + NF )− (F/M)× (M − 1)×NF

SS ×NS + SL×NL
(4.2)

RS =
SS × T

F
(4.3)

RL =
SL× T

F
(4.4)

RF =
(F/M)× (M − 1)

F
(4.5)

The sharing ratios that are presented in Figure 4.14 are generated using the same
values as the swarm efficiencies for BitTorrent and Light Supervised Teaming. In
the best-case scenario 5% of the swarm consists of free riders. In the worst-case
scenario 95% of the swarm consists of free riders. The figures are generated using
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a team size of 8 in the best-case scenario, and a team size of 32 in the worst-case
scenario.

Figure 4.14(a), where the best-case scenario is shown, is very similar to those
of the BitTorrent and Light Supervised Teaming protocols. The only difference
that can be seen are with the smaller swarms. Therefore, the Extended Supervised
Teaming protocol handles the best-case scenario just as efficiently.

The worst-case scenario, which is displayed in figure 4.14(b), shows that the free
riders have a sharing ratio that is almost 1:1. This reduces the number of bytes
that the initial seeder and the remaining leechers are required to upload, effectively
giving them a 1:1.6 sharing ratio. When we compare this sharing ratio with the
1:20 that results from using BitTorrent, then we can clearly see the advantage of
using Supervised Teaming in a worst-case scenario.

To further illustrated the difference between BitTorrent and Extended Supervised
Teaming, we show the sharing ratios for an initial seeder in a worst-case scenario
in Figure 4.15. In this figure we see that changing the team size allows great
control over the resulting sharing ratio for the supervisors. Furthermore, we see
that the Supervised Teaming protocol clearly results in a better sharing ratio that
the BitTorrent protocol.
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4.3 Concerning the problem statement

The first chapter in this thesis presents three problems that should at least partially
be solved by using the Supervised Teaming protocol. In this section we will again
look at these problems and describe how they are handled and whether they remain
a problem.

Flash crowd. The best way for a peer-to-peer system to handle a large number
of peers in a short amount of time is to use the bandwidth from as many peers
as possible. Unfortunately, not all peers are able and willing to provide their
bandwidth, furthermore, each peer in the swarm is likely to have a different
bandwidth. Because it is very hard, if not impossible, to determine which peers are
able and willing to upload, it is unavoidable that bandwidth is ‘wasted’ on peers
that are only downloading.

The method that the Extended Supervised Teaming protocol uses to increase the
transport efficiency of seeding or supervising peers, achieves two things: the data
is duplicated to more than one peer at the same bandwidth costs, and downloading
peers are guaranteed to provide part of their bandwidth to the community.

While this will not solve the problem of flash crowds, it does reduce it by several
factors. Because this factor depends on the team size, it is possible to change the
factor as required. In case of flash crowds, where a few seeding peers are required
to provide data to a relatively large number of downloading peers, a larger team size
can be chosen to optimally use the few available seeders and altruistic peers. As the
swarm matures, and more seeding or supervising peers become available, the team
size can be reduced to compensate for the difficulty of finding team members.

Free riding. Using Extended Supervised Teaming a supervisor can ensure that
team members achieve a certain sharing ratio. For example, transferring a 4MB
piece in 16kB blocks with team sizes: 2, 4, 8, 16, or 32 will ensure that the team
members have sharing ratio 1:0.5, 1:0.75, 1:0.88, 1:0.94, or 1:0.97, respectively.
Because we can hardly consider a peer with a sharing ratio of 1:0.88 or more to be
a free rider, we feel that free riding has been solved.

However, by involving more than two peers in the transfer process, we have
introduced the possibility of collusion [8]. Collusion occurs when two or more
peers cooperate to gain an unfair advantage over other peers in the community.
Unfortunately, collusion can be used to mislead the Supervised Teaming protocol.
We distinguish between the following four forms of collusion:

• Collusion by a single user owning several team members.
When all the team members are at the same physical location, the cost of
forwarding the data between them is more or less nothing. However, this
collusion will only benefit the colluder if she owns all team members, see
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Figure 4.16: Collusion by a single user.
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Figure 4.17: Collusion by two users.
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Figure 4.16(a). This collusion will no longer work when a regular peer
is introduced in the team. Figure 4.16(b) shows Alice—a regular peer—
and Carol—the colluder—who are in a team. In this case Carol is still
required to forward one block of data from each colluding peer that she owns.
Furthermore, Alice forwards the same block to every colluding peer, wasting
bandwidth. In this case there is no benefit for the colluder.

When a colluder is part of a team with two or more non colluding peers,
shown in Figure 4.16(c), the colluder is required to upload even more than
the non colluding peers. Therefore, collusion by a single user is only useful
when the colluder is able to own all the team members. The supervisor can
make this difficult by selecting a team that includes at least two different IP
addresses. We believe that this collusion technique is unlikely to occur.

• Collusion by several users owning several team members.
When several users are willing to collude together the possibility of a team
consisting entirely of colluders will increase. However, such a team will not
benefit the colluders when they are required to actually forward data to each
other.

For example, Figure 4.17 shows several peers owned by Carol and Charlie
forming a team with Sally the supervisor. Sally starts sending blocks of
data to the colluding team members, however, instead of forwarding the
data, the colluding peers only send token messages to each other. After
receiving these token messages, a confirmation message is sent to Sally. This
way the colluders are only required to transfer small control messages while
the supervisor supplies the data. The colluders can join several teams, and
indicate which blocks they have, to eventually download the entire piece
without uploading any blocks themselves.

This strategy has the same drawbacks as the previous strategy, namely:
colluders still have to upload to non colluding team members. Unfortunately,
the only protection against this strategy is the chance that this may occur.
When enough users use this strategy, the Supervised Teaming protocol is
reduced to a classic server/client architecture.

• Collusion by influencing team member selection.
The previous two collusion strategies show how important it is for colluders
to influence the supervisor in her choice of team members. One of the
few sources of information that influence this choice is the performance
of previously known team members. A peer that has been part of many
failed teams is less likely to accept invitations from someone with whom a
team previously failed then from someone with whom past interaction went
smoothly.

A colluder can increase her success rate simply by following the protocol
and forwarding blocks. While the cost of this is high, it will result in a
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higher chance to be invited to teams. If the colluder owns several peers with
a high success rate, the chance that her peers are selected for the same team,
or a team with other colluders, also increases. Once a high success rate is
achieved, the collusion attack can take place, without the supervisor realizing
what is happening. Again, the chance to be invited to a team with fellow
colluders depends on the size of the swarm and the percentage of colluders.

A less expensive method to increase the chance to be invited to a team
containing only colluders, is to decrease the success ratio of teams that
contain non colluding team members. This can be accomplished in two ways:
1) delay or do not send a confirmation message, 2) delay or do not send a
forward message. The supervisor will not be able to blame any specific team
member, and is therefore forced to blame everyone. Blame can be shifted in
favor of the colluders when several colluders agree to drop the confirmation
messages for a specific team member. A colluding peer that becomes useless
because it has been involved in too many failed teams can be replaced with a
new and often free peer, this is known as whitewashing [9].

• Collusion by influencing the team size.
Because the size of the team is directly responsible for the number of blocks
that a team member is required to upload, a free rider will try to reduce the
team size. This can be achieved by making it look like other team members
are not following the protocol. The two methods to achieve this have been
discussed in the previous collusion strategy.

A supervisor can counter this attack by refusing to supervise a team that is
smaller than a certain number of team members. This minimum team size is
communicated to each team member when they are invited to join the team.
A team where too many members have left or were removed for any reason,
should be disbanded, resulting in no benefit to the colluder.

Unfortunately it is impossible to completely solve these forms of collusion.
However, the effectiveness of these collusion attacks will decrease dramatically
when there are cooperating peers in the team. A supervisor that suspects collusion
can increase the team size to increase the chance that non colluding peers are invited
in a team. Other than this, the effectiveness of collusion depends on the number of
colluders that are present in the swarm.

Initial risk. The initial risk that peers take is equal to the number of bytes that
they give freely before they expect some bytes in return. The risk that the Extended
Supervised Teaming protocol takes is equal to the size of the blocks that are
transferred. A supervisor will risk, at most, one block for each member in the team.
A team member will risk one block for each other member in the team. Initial risk
can be reduced by using smaller blocks, however, this has the disadvantage of less
efficiency, as described in Section 4.2.1.
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It is possible for a free rider to take advantage of initial risk. When a free rider
joins a team, she will receive one block from the supervisor and one block from
each team member. Instead of forwarding her data, the free rider can leave the
team. By repeating this, the free rider will eventually gather all the blocks from
the piece. Because the free rider has the hash value of the completed piece, each
combination of the blocks can be attempted. This brute force attack, while very
inefficient, will allow the free rider to save upload bandwidth. However, the risk of
downloading duplicated blocks is very high.

A free rider that, when she joins a team, indicates that only one or two blocks
are still required, will not have to use an expensive brute force attack to find
the locations of received blocks. In this case the supervisor is responsible for
scheduling these blocks behind one or more blocks that the potential free rider
is responsible for forwarding. This will remove any advantage that the free rider
may have.
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Chapter 5

Experiments and evaluation

Theory: when we know everything, but nothing works.
Practice: when everything works, but no one knows why.

We incorporate both theory and practice:
Nothing works, and no one knows why.

- Unknown

To prove that Supervised Teaming is not only a theoretical solution, we have
implemented a peer-to-peer client that is capable of using both the BitTorrent
and the Light Supervised Teaming protocol. This new implementation gives us
complete knowledge of the source code and, furthermore, we have the ability
to extract information about connection statistics and performance during our
experiments. Our client is written in the programming language Python, which
is the same language that Bram Cohen used to write his original BitTorrent client.
Unfortunately it took far more time to implement this peer-to-peer client than we
anticipated. We have spent more than 50% of our time working on it. However, we
are satisfied with the resulting application and have used it to run the experiments
that are discussed in this chapter.

Section 5.1 shows the similarity between the results from our implementation
and the theory in Chapters 2 and 3. Section 5.2 gives the settings that are used
for the experiments that are performed. Section 5.3 evaluates several experiments
with varying numbers of leechers. Section 5.4 evaluates several experiments with
varying numbers of free riders. And finally Section 5.5 evaluates an experiment
where protocol violation is used.
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Theory Experiment Difference
(1 piece) (10 pieces) (10 pieces)

Bytes uploaded by seeder 4,195,982 41,959,760 -60
Bytes downloaded by seeder 2,185 21,923 73
Byte efficiency for seeder 99.91% 99.91% 0%
Bytes uploaded by leecher 2,185 21,923 73
Bytes downloaded by leecher 4,195,982 41,959,760 -60
Byte efficiency for leecher 99.91% 99.91% 0%

Theory Experiment Difference
(1 piece) (10 pieces) (10 pieces)

Time in seconds 137.66 1,370.00 -6.60
Time efficiency 99.33% 99.67% 0.34%

Table 5.1: BitTorrent: theory versus practice. [P=4MB, B=32kB, L=200ms,
SS=SL=30kB/s]

5.1 Verify the setup environment

Ideally theory and practice give the same results, however, this is usually not the
case. This section will verify how closely a small experiment with the peer-to-peer
client will match with the theory of the BitTorrent and Light Supervised Teaming
protocols that have been presented in Sections 2.4 and 3.2 respectively.

In order to make this comparison between theory and practice possible, we
extended the peer-to-peer client with a flexible statistics gathering module. This
module, called progress, connects with a special progress server and continuously
transfers all statistics that are generated by the client. Each statistics message
contains a timestamp, key, and value. Using these statistics it is possible to, for
example, piece together the exact number of data transfers between different peers,
how fast these transfers were going, and how much a peer has transferred in a
specific time period.

5.1.1 Verify setup: BitTorrent protocol

To verify the predicted transport and time efficiency of the BitTorrent protocol, we
have run an experiment with two peers. We let the experiment mimic the settings
that are used to generate the transport efficiency and time efficiency presented in
Tables 2.2 and 2.3, respectively. The results from theory and practice should now
correspond with each other.

After running the experiment and analyzing the statistics from the progress
server, we find that a total of 41,981,683 bytes are required to transfer the 40MB
from the seeder to the leecher. This allows us to determine that the transport
efficiency for the experiment is 99.91%. This is the value that is predicted in
Section 2.4. For convenience we present a summary of the theoretical prediction
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Figure 5.1: The upload speed during transfer using Light Supervised Teaming. [F=40MB,
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Figure 5.2: The number of bytes transfered using Light Supervised Teaming. [F=40MB,
P=4MB, B=32kB, SS=SL=30kB/s]

from Table 2.2 and the results from the experiment in Table 5.1.

From the analysis of the experiment we also know that it takes 1370 seconds for
the transfer to be completed. This allows us to determine that the time efficiency
for the experiment is 99.67%. This is almost the same as the predicted 99.33%. For
convenience these values are also presented in Table 5.1.

Differences between the theory and the experiment do exist, for example,
the theory does not account for a handshake nor for any keep alive messages.
However, the experiment shows that these differences have virtually no effect when
transferring a 40MB file. Whether or not the comparison between the predicted
and measured time efficiency can be trusted is cast into doubt because of the
contradictory results from the same comparison for the Light Supervised Teaming
protocol. The reasons for these doubts are described in the following section.
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Theory Experiment Difference
(1 piece) (10 pieces) (10 pieces)

Bytes uploaded by supervisor 4,196,320 41,963,350 150
Bytes downloaded by supervisor 1,318 13,340 160
Byte efficiency for supervisor 199.84% 199.84% 0%
Bytes uploaded by team member 2,099,347 20,993,715 245
Bytes downloaded by team member 4,196,848 41,968,720 240
Byte efficiency for team member 66.62% 66.62% 0%

Theory Experiment Difference
(1 piece) (10 pieces) (10 pieces)

Time in seconds 244.11 1,556.00 -885.10
Time efficiency 56.10% 88.76% 32.66%

Table 5.2: Light Supervised Teaming: theory versus practice. [P=4MB, B=32kB,
L=200ms, SS=SL=30kB/s]

5.1.2 Verify setup: Light Supervised Teaming protocol

Our second experiment intends to verify the predicted transport efficiency and
time efficiency of the Light Supervised Teaming protocol that is described in
Section 3.2. Again the experiment will mimic the settings from the theory presented
in Tables 3.1 and 3.2 as much as possible. Because the theory is based on single
pieces, we will allow the supervisor to supervise only one group at a time.

By plotting the upload speed statistics that were gathered during the experiment,
Figure 5.1 is generated. It is clear that the supervisor is uploading at twice the
speed of the team members. The figure clearly shows the ten distinct transfer
phases separated by each setup phase where the transfer speed slows down. The
number of bytes that are transferred between the three peers is also gathered by our
progress logger, and is displayed in Figure 5.2. This figure confirms that the upload
enforcement has the desired effect on the bandwidth usage of the team members.

As with the previous section, we summarize the difference between the theory
and the experiment in Table 5.2. Because we know the amount of bandwidth that
the supervisor used during the experiment, we can calculate the transport efficiency
to be 199.84% which equals the value that is predicted in Section 3.2.1. Similarly
we can calculate that the transport efficiency for the team members was 66.62%
during the experiment, which also equals the predicted efficiency.

While not exactly visible in Figure 5.1, the transfer, of ten pieces, took 1556
seconds or 155.6 seconds for a single piece. This is much shorter than the 244.13
seconds that is predicted in Section 3.2.2. This is somewhat surprising because
we expected that the theoretical transfer time would be shorter than the transfer
time of our experiment. However, there are several factors that can account for
discrepancies between the theory and our experiment:

• When running an application, the computer will add some delay to the
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execution time, and thus the transfer time. Unfortunately we can not
accurately measure how much time is added. From the statistics that are sent
to the progress logger we know that the CPU load never exceeded the point
where any process had to wait. However, it remains a multitasking system,
thus delays must be introduced. Using a faster programming language or a
more efficient implementation can reduce this influence, although it can not
remove it. Note that this argument can only make the difference between the
theory and the results of our experiment larger.

• Even though communication on local sockets is fast, there is still some delay
that is introduced by the TCP stack. TCP uses complex algorithms that
should enhance the throughput of data. However, we can only guess how this
affects the transfer time. Again, this argument can only make the difference
between the theory and our experiment larger.

• The theory uses a latency of 200 milliseconds which is not present in the
experiment. The experiment is conducted on a single computer, removing
most, if not all, latency cost. When we subtract the 39.20 seconds that was
predicted to be the delay due to latency cost, the theoretical transfer time
becomes 204.91 seconds with a 66.63% time efficiency. Unfortunately this
still leaves a difference or 22.13% between the theory and our experiment.

• The peer-to-peer implementation is responsible for maintaining the
bandwidth limit. It is possible that this mechanism is not acurate enouth,
allowing the transfer at ‘peak’ values to be higher than the maximum allowed
30kB/s. The values that make up Figure 5.1 are refreshed every five seconds,
however, when we increased the frequency to one second the maximum
upload speed of 30kB/s was never reached either. The peer-to-peer client
should limit the bandwidth based on a time window of maximal 1 second. It
is likely that this window is to large.

Out of these factors, the last most likely explains the time discrepancy between
the prediction and our experiment. However, increasing the acuracy of the
bandwidth limiter would require either a complete rewrite of this mechanism or
would result in higher CPU load. Unfortunately, we did not have the time to
experiment with this further.

5.2 Experiment setup

The Supervised Teaming protocol is designed to be strong in the face of several
specific problems. With these strengths we believe that Supervised Teaming is
able to outperform the widely used BitTorrent protocol in the three problematic
circumstances that are described in the introduction of this thesis. Namely: flash
crowd, free riding, and initial risk. To provide a proof of concept for Supervised
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Teaming, several experiments are done with both the Light Supervised Teaming and
the BitTorrent protocol for each of the three problems. Because these experiments
are done in largely the same way, we discuss the general setup of these experiments
here.

An experiment with one initial seeder, two leechers, and four free riders will be
indicated as 1-2-4. This notation is used in the remainder of this chapter. An
initial seeder begins with all data as opposed to leechers and free riders who start
with no data. With BitTorrent a free rider will never unchoke a connection and
with Light Supervised Teaming a free rider will never supervise a team. Seeders
and leechers will not be this selfish and will upload to other peers according to the
design of the protocol.

Each experiment will transfer 100MB from one initial seeder to a varying number
of leechers and free riders. To reduce file system overhead, this data is not read
from or written to disk. A piece size of 256kB is used, giving the peer-to-peer
clients many opportunities to trade with each other, this should benefit the tit-
for-tat strategy used by the BitTorrent protocol. For the block size we use 8kB,
this relatively small value should benefit risk reduction for the Light Supervised
Teaming protocol. Furthermore, all leechers and free riders are allowed to upload
at a rate of 100kB/s and download at a rate of 512kB/s. The initial seeders are
allowed to upload and download at both 512kB/s.

At first we wanted to run experiments with hundreds of peers. However, with
the current implementation of the Light Supervised Teaming protocol this proved
to be a problem. The pushing strategy, that is used by Light Supervised Teaming
is very effective when there are relatively few supervising peers. However, as time
progresses, the number of supervisors grows. Near the end of the experiment,
each peer that still requires data receives numerous offers for a team. However,
a team can only be created when both potential team members accept the offer
from the same supervisor. Therefore, the chance that a team is created decreases
exponentially as the number of supervisors grows. Because of this, we decided
to limit our experiments to around 50 peers. How this problem can be solved, is
discussed in Section 4.1.6.

Furthermore we should note that the peer-to-peer client, the Light Supervised
Teaming protocol, and the BitTorrent protocol were implemented in no more than
six months by a single person. This is much less development time than commercial
BitTorrent clients receive. We can only assume that these commercial applications
will be faster and more efficient than the implementation that we are using. This has
two consequences. The first is that the statistics that we present—the time required
to complete a download and the amount of used bandwidth—is not always based
on 100% of the peers completing 100% of the download, this is indicated by a ‘*’
behind the experiment indicator like 1-8-0*. And the second consequence is that
the results of the experiments should be seen as a proof of concept.
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(b) Light Supervised Teaming.

Figure 5.3: The transfer time for the first and last completed peer. [F=100MB, P=256kB,
B=8kB, SS=512kB/s, SL=100kB/s]

5.3 Flash crowd

With the first experiment we will try to show the robustness of the Light Supervised
Teaming protocol in the face of a flash crowd. We have performed six experiments
for both the BitTorrent and the Light Supervised Teaming protocols. In each
experiment one initial seeder will transfer a file to a varying number of leechers.
The number of leechers will increase exponentially with each experiment. By
analyzing the statistics that are gathered during the experiments, the time to
completion for each leecher can be retrieved. The times when the first and the
last leecher completed the download is plotted in Figure 5.3.

As a reference the theoretical transfer time is also plotted in Figure 5.3. This
theoretical transfer time represents the minimal time it takes to transfer the file to
every leecher using the combined upload speed of the initial seeder and all the
leechers and is obtained from the equations that are used to calculate the sharing
ratio which are presented in Sections 2.4.3 and 3.2.3 for the BitTorrent and Light
Supervised Teaming protocols, respectively.

Unfortunately not all of the leechers in the BitTorrent experiments 1-8-0*
and 1-32-0* were able to completely download the entire file. In the case of
experiment 1-8-0* all of the leechers downloaded at least 99.5% of the file
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while 75% of the leechers were able to download 100% of the file. In the case
of experiment 1-32-0* all of the leechers downloaded at least 98.75% of the file
while 93.75% of the leechers were able to download 100% of the file. Because only
a small fraction of the download failed, we decided that it was not worth redoing
the experiments.

When we look at Figure 5.3(a) we see that the difference between the theoretical
transfer time and the transfer time that is measured in our BitTorrent experiments
continues to increase. This is not what we were hoping to see. BitTorrent is
known to have problems in flash crowd situations, this has already been addressed
and several BitTorrent clients allow a special initial seeding mode to be used that
alleviates this problem. However, the exponential increase in transfer time that we
see in Figure 5.3(a) indicates that more is going on. The speed at which the transfers
can occur is highly dependent on details in the implementation. Given the relatively
short development time of our implementation, we can assume that there are much
more efficient implementations available. Given our limited remaining time for
this thesis, we decided against further experiments with an alternative BitTorrent
client. We will therefore not compare the results of our Light Supervised Teaming
protocol with those of our BitTorrent protocol.

Now that a comparison between the transfer times with the BitTorrent and the
Light Supervised Teaming protocols has been ruled out, only the comparison
between the theoretical transfer time and the experiments remain, which are shown
in Figure 5.3(b). This figure shows that the difference between transfer times of the
theory and experiments remains roughly the same. Were this to hold true for larger
peer-to-peer communities, the Light Supervised Teaming protocol will definitely
scale with the number of peers, providing a valuable solution to the flash crowd
problem.

For completeness, we have provided graphs, showing the up and download
speed for all the peers in all the experiments that were done in this chapter, in
Appendix B. Looking at these figures, we see that there certainly is room to
improve the implementation for both our BitTorrent and Light Supervised Teaming
clients. When, for example, we look at the upload speed of the initial seeder
during experiment 1-2-0 with the Light Supervised Teaming protocol, we see in
Figure B.7(a) that she is uploading at her full capacity. However, during experiment
1-4-0 we see, in Figure B.8(a), that the initial seeder can no longer maintain her
maximum allowed upload speed for the duration of the experiment. While this does
reduce her bandwidth cost, it also increases the transfer time. We believe that this
drop in upload speed is caused by the limited upload bandwidth of the leechers. The
peer-to-peer client currently accepts all team requests and can therefore be in many
teams, thus using a lot of upload bandwidth. Furthermore, each leecher is allowed
to create several teams herself, using even more upload bandwidth. It would be an
improvement if the leechers would choose whether to create or join a team, based
on their remaining up and download bandwidth. However, there was not enough
time remaining to implement these improvements.
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Figure 5.4: Sharing ratio with the BitTorrent protocol. [F=100MB, P=256kB, B=8kB,
SS=512kB/s, SL=SF=100kB/s]

5.4 Free riding

In the experiments from the previous section, all peers were willing to upload to
each other. However, this is not the case in an actual peer-to-peer community where
not only the willingness, but also the available bandwidth can be different for each
peer. There may be many peers that will attempt to download using as little upload
bandwidth as possible. While the lack of upload bandwidth from these peers—
who we call free riders—is often balanced by other altruistic peers, it can become
a significant problem when the number of free riders increase, resulting in higher
download times for every peer in the swarm. In this section we will show the true
strength of Supervised Teaming, namely the ability to force free riders to contribute
part of their bandwidth to the community, thereby reducing the bandwidth cost for
initial seeders and altruistic peers.

All experiments in this section will involve one initial seeder and 50 downloading
peers who are distributed between leechers and free riders. With each new
experiment the number of leechers will decrease exponentially. Because there
are 50 downloading peers, a total of 5000MB must be uploaded during each
experiment. By analyzing the statistics from each experiment, we know how
much of this data is uploaded by each peer. The resulting average sharing ratio
for the initial seeder, the leechers, and the free riders are shown in Figures 5.4(a)
and 5.5(a), for the BitTorrent and Light Supervised Teaming protocols, respectively.
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Figure 5.5: Sharing ratio with the Light Supervised Teaming protocol. [F=100MB,
P=256kB, B=8kB, SS=512kB/s, SL=SF=100kB/s]

The sharing ratio that is predicted by the theory from Sections 2.4.3 and 3.2.3 is
presented in Figures 5.4(b) and 5.5(b), respectively.

Unfortunately, only four of the seven experiments that we intended to perform
with the BitTorrent protocol were able to complete even though we let them run
for more then 12 hours. From these four experiments there was only one where all
peers were able to completely download the entire file. From the experiments that
were unable to complete, the worst experiment was still able to let 94% of the peers
download 99.5% of the file. The low sharing ratio in the four experiments, that
were more or less able to complete, indicate that the initial seeder seems especially
reluctant to upload any data. While we can verify this with the upload speed figures
from Appendix B we have not been able to find the cause, and because we have
limited time available for this thesis, we decided not to attempt to solve this issue.
Instead we will compare the performance of the Light Supervised Teaming protocol
against the theoretical sharing ratio.

When we compare the results from our experiments with the Light Supervised
Teaming protocol, in Figure 5.5(a), with the optimal results from our theory, in
Figure 5.5(b), we see the similarities. The only visible difference lies in the sharing
ratio for the initial seeder which is lower in the experiment. This difference is
caused by a reluctance to upload data. Unfortunately, we do not know the cause of
this reluctance.

When we compare the results from the Light Supervised Teaming experiments
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with the theoretical sharing ratio of the BitTorrent protocol, it is clear that the
mechanism that forces peers to upload, when they are part of a team, helps reduce
the pressure on the initial seeder and altruistic leechers. This is clearly seen in the
1-0-50 experiment where the initial seeder would have a sharing ratio of 1:50
with BitTorrent and only 1:25 with Light Supervised Teaming, effectively saving
2500MB worth of bandwidth. Therefore, the Supervised Teaming protocol is better
equipped to handle free riding situations than the BitTorrent protocol.

So far all the peers have followed the prescribed protocols. However, free riders
are known for their inventive ways to elude or even break a protocol. How this
affects the performance is described in the following section.

5.5 Initial risk

Free riding can be achieved in many ways. One well known method is
whitewashing, where a free rider continually exploits an initial seeder or a fellow
leecher. Supervised Teaming was designed to alleviate this problem by reducing the
amount of data that can be acquired for free, see Section 3.3. To view the effects of
this mechanism, we will introduce free riders who are willing to perform protocol
violation. Because BitTorrent is not designed to reduce free riding, we believe that
a comparison between BitTorrent and Light Supervised Teaming would be unfair.
However, it should be mentioned that, with the BitTorrent protocol, the free riders
are not punished in any way, and will be able to download what they are interested
in without uploading any data themselves. Even though the tit-for-tat mechanism
will ensure that free riders will not have a high priority on the upload lists of the
other peers in the swarm.

Our experiment will contain one initial seeder who will upload data to two
leechers and two free riders. These free riders will not forward any data to their
team member, thereby violating the protocol. Instead they will do nothing. Not
receiving a confirmation message, the supervisor will—after a few seconds—
disband the team. We specifically chose the 1-2-2 structure to keep the
experiment small enough so we can clearly see the specific data flows between
peers while we still have leechers who should be able to complete the file despite
the presence of the free riders.

We stopped the experiment after the two leechers completed the download. The
data flows that occurred during this time are shown in Figure 5.6. Because the
free riders did not send more than 800 bytes to any of the other peers, we have
chosen not to display these data flows in order to simplify the resulting figure.
The figure shows that both the leechers and free riders were able to acquire data.
However, the free riders received less team requests because each peer registers
protocol violations, and protocol violations involving the free riders occurred more
often. When the initial seeder creates a team with leecher A and free rider B, no
conformation message will be received, however, there is no information available
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Seeder
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 52,586,141 bytes 

 45,441 bytes  176,673 bytes 

 71,766 bytes 

 52,586,141 bytes 

 20,646 bytes  151,868 bytes 

Figure 5.6: The number of bytes transferred during a 1-2-2 experiment with protocol
violation. [F=100MB, P=256kB, B=8kB, SS=512kB/s, SL=SF=100kB/s]

to tell which one of the team members violated the protocol. It is for this reason,
that the initial seeder and the leechers continue to invite the free riders to join a
group. Each peer should choose how often they invite peers that may be involved
in protocol violation.
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Conclusion

A conclusion is simply the place where someone got tired of thinking.
- Arthor Bloch

This thesis presents solutions to the problems of flash crowds, free riding, and
initial risk by introducing the Supervised Teaming protocol. This protocol uses one
peer, the supervisor, who has authority over several other peers, the team members.
To download a piece, a peer has to be invited by a supervisor to join a team. Once a
team is created, the supervisor will send blocks of data to the team members who,
because of an incentive, forward these blocks to each other. While downloading,
a peer will have to join a team for each piece in the file. A peer can increase her
chance of being invited to join a team, by supervising teams for pieces that they
have downloaded.

To evaluate the performance of the Supervised Teaming protocol, we use the
transport efficiency, the time efficiency, and the sharing ratio. Using these metrics,
we have determined that our protocol is just as efficient as the BitTorrent protocol
when no free riding occurs. However, we have also determined that Supervised
Teaming outperforms BitTorrent when free riders are present in the swarm.

To verify that the presented theories hold true in practice, we have implemented
a fully functional peer-to-peer client that is able to use both the BitTorrent protocol
and a simplified version of the Supervised Teaming protocol, where the simplified
version is restricted to a team size of two. Our first experiment shows that our
protocol takes a more or less constant amount of time more to distribute a file than
is predicted by the theory. Our second experiment shows that our protocol ensures
that every peer, even free riders, have a sharing ratio of at least 1:0.5 when the
team size is two, thereby reducing the bandwidth cost of the initial seeder by half.
Finally, our third experiment shows that a free rider will not obtain any benefits
from using protocol violation.
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The flash crowd problem, which occurs when large numbers of leechers join a
swarm in a short amount of time, can be solved by increasing the team size. This
reduces the bandwidth usage of the available seeders by using more bandwidth
from the team members. Increasing the team size can ensure that the team members
obtain a sharing ratio of almost 1:1, which is the best possible solution to a flash
crowd.

The free riding problem, which occurs when peers do not contribute a fair
amount—where fair indicates an amount equal to their benefit—of resources back
to the community, can be solved by having the supervisors control the sharing ratio
of their team members, which is possible by changing the team size. A large team
results in a high sharing ratio, and a small team results in a low sharing ratio for the
team members.

The initial risk problem, which occurs when a free rider receives data by
promising, without actually delivering, data in return, is often caused by the
inherent anonymity of the internet. This problem can be solved by ensuring that a
team member is unable to use a received block of data until the associated reward is
also received. An incentive is provided by giving the reward only after a successful
forward.

Supervised Teaming has two disadvantages. The first disadvantage is that a
supervisor relies on third party information, and is therefore unable to determine
with certainty, which of the team members is not performing correctly. Therefore,
the protocol becomes vulnerable to collusion attacks. However, collusion is only
successful when all the team members are colluding together. A team with a single
cooperating peer and several colluders results in no benefit to the colluders, and no
additional cost to either the supervisor or the cooperating peer. With two or more
cooperating peers in a team, collusion becomes more expensive than cooperation.
Unfortunately it is not possible to identify colluders, therefore, even though it is
unlikely, it is possible that a team consists entirely of colluders.

The second disadvantage of Supervised Teaming is that it requires the supervisor
and every team member to be connected to each other. Therefore, there can only be
a single peer, either the supervisor or one of the team members, that is behind a NAT
or firewalled connection. However, we believe that this can be solved with proper
NAT and firewall traversal techniques, or the introduction of the IPv6 protocol.

There are many challenges that are yet to be solved. Therefore, we suggest the
following points of interest that can be researched in the future.

• Having connectable peers is very important for Supervised Teaming.
Therefore, one of the NAT and or firewall traversal techniques should be
implemented into the peer-to-peer client.

• Splitting up a connection into parallel channels is required when two or more
peers are cooperating with each other for the same team.
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• The team size is important for the transport efficiency and the sharing
ratio. While the team size can be chosen based on the available TEAM
INTERESTED, TEAM NOT INTERESTED, and TEAM INTERESTED
FIELD messages, this thesis does not discuss any equations or guidelines
to obtain an optimal team size from these messages.

• Using the confirmation messages, the supervisor is able to estimated the
transfer speed of individual team members. This transfer speed can be used to
guarantee specific download speeds which can be beneficial for the download
of real time video streams.

77



78



Bibliography

[1] Massive Scaling 2006. http://www.ams-ix.net/news/archive/2006/AMS-
IX Massive scaling GPF1 2006.pdf.

[2] RatioMaster. http://www.moofdev.org/ratiomaster.

[3] R. Axelrod and WD Hamilton. The evolution of cooperation. Science,
211(4489):1390, 1981.

[4] A.R. Bharambe, C. Herley, and V.N. Padmanabhan. Analyzing and Improving
a BitTorrent Network’s Performance Mechanisms. INFOCOM 2006. 25th
IEEE International Conference on Computer Communications. Proceedings,
pages 1–12, 2006.

[5] B. Bobier. BitTorrent’s Transfer Optimizations.

[6] Y. Chu, A. Ganjam, T.S.E. Ng, S.G. Rao, K. Sripanidkulchai, J. Zhan, and
H. Zhang. Early experience with an internet broadcast system based on
overlay multicast. Proceedings of the USENIX Annual Technical Conference
2004 on USENIX Annual Technical Conference table of contents, pages 12–
12, 2004.

[7] B. Cohen. Incentives Build Robustness in BitTorrent. Workshop on
Economics of Peer-to-Peer Systems, 6, 2003.

[8] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive techniques for
peer-to-peer networks. Proceedings of the 5th ACM conference on Electronic
commerce, pages 102–111, 2004.

[9] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica. Free-riding and
whitewashing in peer-to-peer systems. Selected Areas in Communications,
IEEE Journal on, 24(5):1010–1019, 2006.

[10] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer communication across
network address translators. Proceedings of the 2005 USENIX Annual
Technical Conference.

[11] G. Goth. Close to the edge: NAT vs. IPv6 just the tip of a larger problem.
Internet Computing, IEEE, 9(2):6–9, 2005.

79



Bibliography

[12] S. Guha and P. Francis. Characterization and measurement of tcp traversal
through nats and firewalls. ACM IMC, 2005.

[13] D. Hales and S. Patarin. How to cheat bittorrent and why nobody does.
Technical report, TR UBLCS-2005-12, Department of Computer Science
University of Bologna, May 2005.

[14] G.E.T.T. HARDIN. The Tragedy of the Commons. Science Magazine’s State
of the Planet 2006-2007, 2006.

[15] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos. File-
sharing in the Internet: A characterization of P2P traffic in the backbone.
University of California, Riverside, USA, Tech. Rep, 2003.

[16] S.D. Koolen. Creating and Maintaining Relationships in Social Peer-to-Peer
Networks.

[17] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploiting bittorrent for
fun (but not profit). Proc. 5th Itl. Workshop on Peer-to-Peer Systems (IPTPS),
2006.

[18] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free Riding in BitTorrent
is Cheap. Connections, 300(400):500.

[19] A. Parker. CacheLogic.

[20] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips. The bittorrent p2p
file-sharing system: Measurements and analysis.

[21] A. Rogers, RK Dash, SD Ramchurn, P. Vytelingum, and NR Jennings.
Coordinating team players within a noisy Iterated s Dilemma tournament.
Theoretical Computer Science, 377:243–259, 2007.

[22] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. RFC3489: STUN-
Simple Traversal of User Datagram Protocol (UDP) Through Network
Address Translators (NATs). Internet RFCs, 2003.

[23] P.B. Schoon. Stimulating fairness in peer to peer networks. Technical report.

[24] M. Siner. Verification of BitTorrent Seeder Utilization.

[25] W. Wang, H. Chang, A. Zeitoun, and S. Jamin. Characterizing guarded hosts
in peer-to-peer file sharing systems. Global Telecommunications Conference,
2004.

80



Appendix A

Messages used by the protocols

Throughout this thesis we describe the protocols for BitTorrent, Light Supervised
Teaming, and Extended Supervised Teaming. Because we calculate several
efficiencies for these protocols, it is important to know exactly which messages
there are and how large they can be. Therefore, the following sections will further
described the messages as they have been used throughout this thesis. These
messages are preceded with a message header containing a four byte message
length followed by one byte indicating the message identifier.

A.1 BitTorrent messages

The messages that are used by the BitTorrent protocol, which are described in this
section, are shown in Figure A.1.
BITFIELD: bitfield

The BITFIELD message consists of a bitfield. The length of this bitfield
depends on the number of pieces in the torrent. The first bit indicates whether the
sender has the first piece, the second bit indicates the same for the second piece,
etc. Any spare bits at the end of the bitfield should be set to zero.
HAVE: piece-id

The HAVE message is sent when a peer has completely downloaded a certain piece.
The piece-id consists of four bytes indicating the piece that the sender has
completed.
INTERESTED

The INTERESTED message has no payload and indicates that the sender is
interested in one or more pieces of the receiver.
NOT INTERESTED

The NOT INTERESTED message has no payload and indicates that the receiver
does not have any pieces that the sender is interested in.
UNCHOKE

The UNCHOKE message has no payload and indicates that the sender is willing
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offset

piece-id

datapiece-id

bitfield

HAVE

INTERESTED

BITFIELD

offset

piece-id lengthREQUEST

PIECE

no payload

NOT
INTERESTED

no payload

CHOKE no payload

UNCHOKE no payload

Figure A.1: The messages and their payload used by the BitTorrent protocol.

to upload data to the receiver. This message can, for instance, be sent after an
INTERESTED message is received.

CHOKE
The CHOKE message has no payload and indicates that the sender is no longer
willing to upload data to the receiver.

REQUEST: piece-id, offset, length
The REQUESTmessage is sent to a non choking peer that the sender is interested in.
The piece-id consists of four bytes that indicate the piece that the data should
come from. The offset consists of four bytes indicating the byte offset of the
required data, this offset is relative to the beginning of the piece-id. And the
length consists of four bytes indicating the length of the requested data.

PIECE: piece-id, offset, data
The PIECE message is sent in response to a REQUEST message and contains
the requested data. The name of this message is somewhat misleading because
this message only contains a small part of a piece, commonly referred to as a
block. The piece-id consists of four bytes indicating the requested piece. The
offset consists of four bytes indicating the offset of the requested data, relative
to the beginning of the piece. And the data consists of a certain number of bytes
containing the requested data.
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Figure A.2: The messages and their payload used by the Light Supervised Teaming
protocol.

A.2 Light Supervised Teaming messages

The messages that are used by the Light Supervised Teaming protocol, which are
described in this section, are shown in Figure A.2.

TEAM INTERESTED: [piece-id]+
The TEAM INTERESTED message consists of one or more piece-id’s. Each
piece-id is a four byte number that indicates that the peer is interested in
obtaining this piece.

TEAM NOT INTERESTED: [piece-id]+
The TEAM NOT INTERESTED message consists of one or more piece-id’s.
Each piece-id is a four byte number that indicates that the peer is not interested
in obtaining this piece.

TEAM INTERESTED FIELD: bitfield
The TEAM INTERESTED FIELD message consists of a bitfield. The length
of this bitfield depends on the number of pieces in the file. The first byte
represents whether the peer is interested in the first eight pieces, the second byte
represents the next eight pieces, etc. Any spare bits should be set to zero.

TEAM REQUEST: piece-id, block-size, ip, port, peer-id
The TEAM REQUEST message is used by a potential supervisor to contact
potential team members. The piece-id consists of four bytes indicating the
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piece that is offered. The block-size consists of four bytes indicating the
number of bytes in each block. And the ip, port, and peer-id consists of
four, two and twenty bytes respectively, and indicate the other peer that will be part
of the team.

TEAM REPLY: piece-id, result
The TEAM REPLY message is used in several situations. It is used by a potential
team member to reply to a TEAM REQUEST message. It is used by a team member
to tell the supervisor that the peer wishes to leave the team prematurely. And it
is used by the supervisor to tell team members that the team will be disbanded
prematurely. The piece-id consists of four bytes indicating the piece for which
the message is intended. The result consists of one byte and can indicate
different things depending on the situation that the message is used in, these specific
values will not be discussed here.

TEAM FORWARD: piece-id, block-id, data
The TEAM FORWARD message is used to send a block of data from one peer to
the other. The piece-id consists of four bytes indicating the piece that this
message belongs to. The block-id consists of one byte indicating the randomly
chosen identifier for this block. And the data contains a variable number of bytes
containing the data for this block.

TEAM REWARD: piece-id, [block-id, block-offset]+
The TEAM REWARD message is used to send the (block-id, block-offset)
pairs between the supervisor and the team members. Furthermore, when this
message is sent to the supervisor it is allowed to omit the block-offset for
the last pair in the message. The piece-id consists of four bytes indicating the
piece that this message belongs to. The block-id consists of one byte indicating
the randomly chosen identifier for this block. And the block-offset consists
of four bytes indicating the byte offset for the associated block relative to the start
of the piece.

A.3 Extended Supervised Teaming messages

The messages that are used by the Extended Supervised Teaming protocol, which
are described in this section, are shown in Figure A.3.

TEAM REQUEST: piece-id, eager-value, block-size,
min-team-size, max-team-size, min-upload-bandwidth,
min-download-bandwidth

The TEAM REQUEST message is used by a potential supervisor to contact
potential team members. While the Light Supervised Teaming version of the
TEAM REQUEST message included the IP address of the team member, with
the Extended Supervised Teaming version the addresses of the team members
are provided in a separate message that is sent after the potential team members
have accepted the conditions that are presented in this message. The piece-id
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Figure A.3: The messages and their payload used by the Extended Supervised Teaming
protocol.

consists of four bytes indicating the piece that will be transferred. The
eager-value consists of two bytes indicating how eager a peer is to supervise
this team. The first byte can be based on available bandwidth while the second
byte should be chosen randomly. The block-size consists of four bytes
indicating the number of bytes in each block. The min-team-size and
max-team-size both consist of one byte indicating the minimum and maximum
number of peers in the team respectively. The min-upload-bandwidth
and min-download-bandwidth both consists of two bytes indicating the
minimum upload bandwidth and minimum download bandwidth that the peer must
have available for the team.

TEAM MEMBER: piece-id, ip-version, [ip, port, peer-id]+
The TEAM MEMBER message is used to notify potential team members, that
replied positively to a TEAM REQUEST, who her team members will be. The
piece-id consists of four bytes indicating the piece that will be transferred. The
ip-version consists of one byte indicating either the IPv4 or IPv6 protocol.
When using the IPv4 protocol the ip, port, and peer-id consists of four,
two and twenty bytes respectively. When using the IPv6 protocol these items
are sixteen, two and twenty bytes respectively. The ip, port, and peer-id
represent the other peers that will be part of the team.

TEAM REPLY: piece-id, result, bitfield
The TEAM REPLY message is used in several situations. It is used by a potential
team member in reply to the TEAM REQUEST and TEAM MEMBERmessages. It is
used by a team member to tell the supervisor that the node wishes to leave the team
prematurely. And it is used by the supervisor to tell team members that the team
will be disbanded prematurely. The piece-id consists of four bytes indicating
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the piece for which the message is intended. The result consists of one byte
and can indicate different things depending on the situation in which the message
is used, these specific values will not be discussed here. The bitfield, which
is only used when replying to a TEAM MEMBER message, consists of a variable
number of bytes where each bit indicates whether the peer already has a block or
not. Sending a shorter bitfield or none at all is allowed. Any blocks that are
not indicated in the bitfield are believed to be required.

TEAM FORWARD: piece-id, block-id, delivery, data
The TEAM FORWARD message is used to send a block of data from supervisor to
team member and from team member to team member. The piece-id consists
of four bytes indicating the piece that this message belongs to. The block-id
consists of one byte indicating the randomly chosen identifier for this block. The
delivery consists of a variable number of bytes depending on the maximum
team size, and indicates the team members to where the data must be forwarded.
The bit for the team member that is forwarding is also set to indicate that she wants
to receive the associated TEAM REWARD messages. And the data consists of a
variable number of bytes containing the data for this block.

TEAM DELIVER: piece-id, block-id, delivery
The TEAM DELIVER message is sent by the supervisor to tell a team member to
forward a block of already downloaded data. The piece-id, block-id, and
delivery are the same as in the TEAM FORWARD message with the exception
that in the delivery the bit for the team member that is forwarding is not set
since she does not require the TEAM REWARD messages.
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Appendix B

Detailed experiment results

This appendix contains graphs displaying the up and download speed for all peers
during the experiments that are described in Chapter 5. The statistics for the flash
crowd, free riding, and initial risk experiments are combined in Figure 5.3, 5.4,
and 5.6, respectively.
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Figure B.1: Flash crowd experiment 1-2-0 using BitTorrent
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Figure B.2: Flash crowd experiment 1-4-0 using BitTorrent
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Figure B.3: Flash crowd experiment 1-8-0 using BitTorrent
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Figure B.4: Flash crowd experiment 1-16-0 using BitTorrent
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Figure B.5: Flash crowd experiment 1-32-0 using BitTorrent
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Figure B.6: Flash crowd experiment 1-64-0 using BitTorrent
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Figure B.7: Flash crowd experiment 1-2-0 using Light Supervised Teaming
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Figure B.8: Flash crowd experiment 1-4-0 using Light Supervised Teaming
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Figure B.9: Flash crowd experiment 1-8-0 using Light Supervised Teaming
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Figure B.10: Flash crowd experiment 1-16-0 using Light Supervised Teaming
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Figure B.11: Flash crowd experiment 1-32-0 using Light Supervised Teaming
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Figure B.12: Flash crowd experiment 1-64-0 using Light Supervised Teaming
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Figure B.13: Free riding experiment 1-32-18 using BitTorrent
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Figure B.14: Free riding experiment 1-16-34 using BitTorrent
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Figure B.15: Free riding experiment 1-8-42 using BitTorrent
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Figure B.16: Free riding experiment 1-4-46 using BitTorrent
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Figure B.17: Free riding experiment 1-32-18 using Light Supervised Teaming
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Figure B.18: Free riding experiment 1-16-34 using Light Supervised Teaming
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Figure B.19: Free riding experiment 1-8-42 using Light Supervised Teaming
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Figure B.20: Free riding experiment 1-4-46 using Light Supervised Teaming
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Figure B.21: Free riding experiment 1-2-48 using Light Supervised Teaming
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Figure B.22: Free riding experiment 1-1-49 using Light Supervised Teaming
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Figure B.23: Free riding experiment 1-0-50 using Light Supervised Teaming
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Figure B.24: Initial risk experiment 1-2-2 using Light Supervised Teaming
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