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Abstract
Learning curves display predictions of the cho-
sen model’s performance for different training set
sizes. They can help estimate the amount of data
required to achieve a minimal error rate, thus aid-
ing in reducing the cost of data collection. How-
ever, our understanding and knowledge of the var-
ious shapes of learning curves and their applica-
bility are still insufficient. Despite the presence
of a curve that demonstrates a high level of ac-
curacy on average, this parametric model can still
exhibit inadequate performance in certain scenar-
ios. Therefore, the objective of this research is to
identify specific patterns in the datasets that influ-
ence the selection of a particular parametric curve
model. To accomplish this, I conduct experiments
to assess the performance of different parametric
learning curves including power, exponential and
Morgan-Mercer-Flodin (mmf) based on the num-
ber of features, classes, outliers, and machine learn-
ing models. I find that mmf and exponential curves
outperform power law for all machine learning
models. All curves work best with Logistic Re-
gression, Bernoulli Naive Bayers and Multinomial
Naive Bayers models. Exponential and mmf curves
provide better results than power law for a small
number of classes. Mmf also outperforms power
law for the majority of numbers of features and out-
lier percentages.

1 Introduction
In the area of supervised machine learning, it is challenging
to get enough data to optimize the performance of the learn-
ing model. A learning curve serves as a valuable graphical
tool that allows us to gain insight into the learning behavior
by illustrating the relationship between generalisation perfor-
mance and the number of training samples [1] [2]. A typical
example of a learning curve can be seen in Figure 1. This
figure represents the error rate on the y-axis versus the train-
ing data size on the x-axis for the machine learning algorithm
called Gradient Boosting Classifier.

Figure 1: Example of a learning curve for Gradient Boosting Clas-
sifier

Learning curves provide an approximation of how much

data is needed to achieve an expected error rate. As data col-
lection is a costly process, using a minimal amount of data is
often desired. With the help of learning curves, the optimal
amount of data can be found, and thus we can reduce the cost
of data collection [3]. We also often want to find accurate and
fast machine learning algorithms, and learning curves pro-
vide insight into the performance of different algorithms [4].
Thus, learning curves lead to efficient solutions and effective
data usage.

Currently, many shapes of the learning curves have been
found and experimented with [2], leading to one of the
parametric curves outperforming the others on average.
However, average best performance does not lead to optimal
performance for many datasets. This means that some
datasets have poor performance using averagely the most
accurate learning curve. Therefore, a deeper analysis is
necessary to determine more precise signals for using a
specific parametric curve model.

The research question can be formulated as:
Which learning curve model provides the best fit in

what case?

To answer the research question, I use fitting results of
learning curves from the learning curve database (LCDB)
[2]. An analysis should be conducted on whether there are
characteristics of datasets such as a number of dimensions or
learning models which lead to choosing the same parametric
curve model.

There are multiple procedures available to identify whether
the learning curve performs well. In this research, I will
analyse mean squared error (MSE) and mean absolute er-
ror (MAE/L1) using LCDB datasets. I assume that the lower
MSE or MAE are, the better the learning curve fits. Then, us-
ing chosen metrics, an analysis will be conducted on whether
datasets with certain characteristics require the same learning
curve. If such patterns are identified, I will analyse them.

This paper consists of multiple chapters. Firstly, I will re-
late to the existing literature in Chapter 2, and explain current
limitations of existing work. Secondly, I will introduce the
methodology of this research in Chapter 3. Then, in Chap-
ter 4 experimental setup will be explained. The results of
the experiments will be discussed in Chapter 5, followed by
a discussion of the results in Chapter 6 and a conclusion in
Chapter 7. Lastly, I will argue about the reproducibility and
responsibility of this research in Chapter 8.

2 Related literature
Multiple other kinds of research were made to find the shape
of the curve that leads to the best predictions. For example,
in [5], Frey and Fisher conclude that power law fits best for
decision trees. The same is concluded by Gu et al. [6] us-
ing large datasets. Research by Mark Last [7] also concludes
that power law provides the best fit, although mentions that
for one of the training cases, exponential shape gives more
precise predictions. In [8] exponential curve provides better
predictions on average. At the same time, Singh [9] states
that in certain cases logarithmic learning curves outperform



power law.
Examined literature provides a lot of proof that different

parametric learning curve models should be used. How-
ever, there is no clear indication of which curve to use given
datasets characteristics. Another limitation of [2] is that fit-
ting was measured using mean squared error (MSE), which
can be not representative for some datasets [10]. According to
[10], R-squared, which is used in [5], may be more suitable.
However, it is not valid for non-linear learning curves [11] as
R-squared assumes that total variance of data equals the sum
of error variance and variance explained by the model. That
is not the case for non-linear data. Spiess & Neumeyer [12]
point out a poor performance of R-squared in their experi-
ment for non-linear data.

In [13], an analysis of MSE and MAE is also made. How-
ever, this analysis is limited, as the research considers only
classification and regression factors to choose whether to use
MSE or MAE. It also evaluates the most accurate parametric
curve model on average for classification and regression and
does not consider the characteristics of the datasets.

Even with the existence of mentioned literature, many
works contradict each other by stating that different para-
metric models work best. Thus, there is no consensus yet
reached. Also, all mentioned work concentrates on finding
overall average patterns and does not analyse specific dataset
characteristics which may influence behaviour of learning
curves. In this research, I will provide an analysis of the pat-
terns that lead to a certain parametric curve model, instead
of looking at average performance. I will also analyse which
types of accuracy measures should be used, as current related
work does not provide reasoning for choosing one measure
over the other.

3 Methodology
This research paper examines whether there are patterns to
the best fit for a learning curve. This means that datasets
with certain characteristics, such as the number of features,
classes, the percentage of outliers, or the use of a machine
learning model, may lead to the choice of an identical learn-
ing curve parametric model. To identify such patterns, I col-
lected fitting results from LCDB and determined which met-
ric to use to measure performance. Then, using this metric,
I determined if there were patterns when a certain learning
curve provided the best performance.

3.1 Fitting results collection
Firstly, I collected fitting results from LCDB. Since LCDB
contains 246 datasets, 16 learning curves models, and 20 ma-
chine learning models, I decided to proceed with the existing
data instead of gathering new fitting results.

The data I collected includes the characteristics of the
datasets, such as the number of features and the number of
classes. Additionally, I required fitting results from each ex-
periment. I collected the results for each dataset and included
the performance of each parametric model. To preprocess the
data, I grouped collected results by dataset, learning curve,
and machine learning model. LCDB provided results for mul-
tiple anchor points used for training and testing to indicate

the accuracy of the machine learning model when trained on
a specific sample size. I averaged both the MSE and MAE
of each learning curve for all numbers of training anchors.
I also extracted the fields that I will use in the future exper-
iment setup, including prediction on the learning curve and
real value of the data point.

3.2 Determining which metric to use to measure
performance

There were two metrics available directly from fitting results,
which I decided to analyse. To do this, I examined both for-
mulas:

MSE =

D∑
i=1

(xi − yi)
2 (1)

MAE =

D∑
i=1

|xi − yi| (2)

where:
D - number of observations
xi - actual value of observation
yi - predicted value of observation

From the formulas, I saw that both metrics avoid cancella-
tion of negative errors by squaring in 1 and taking absolute
value in 2. The biggest difference is that MSE penalizes large
errors disproportionately and more severely than smaller er-
rors, as it takes squared difference and sums the result, while
MAE does not square difference. Thus, if we do not want to
penalize outliers, we can use the MAE metric.

While depending on the situation, outliers can be penalized
or tolerated, I analysed possible explanations for outliers’ ap-
pearance.

3.3 Analysis on outlier appearance
To explain possible causes of a high number of outliers, I
stated a hypothesis:

If there are a lot of outliers in the features of the dataset,
then there are a lot of outliers in predictions of the learning
curve.

To test this hypothesis, I first calculated the percentage
of outliers in features. To do this, I used the interquartile
range rule (IQR) [14]. This method calculates the range be-
tween the first quartile (Q1) and the third quartile (Q3) of the
data. Then it assumes that every point of data that is less than
Q1− (1.5 ·range) or more than Q3+(1.5 ·range) is an out-
lier. Some features were categorical, so I could not directly
find outliers. For them, I used one-hot encoding to represent
categorical data as numerical. One-hot encoding represents
categorical variables as binary vectors and each unique cate-
gory is represented by a separate binary column. A value of
1 in a column indicates the presence of that category, while
0 indicates its absence. To better understand how it works,
Popov [15] provides a detailed example of a one-hot encoding
technique. According to [16], one-hot encoding is a leading
technique to deal with categorical data due to its consistent
and accurate performance.

Then, I calculated the percentage of outliers in predictions
using the IQR method. I found a correlation between two



Table 1: Chosen parametric curve models for experiments

Model Name Formula
exp4 c− exp(−axd + b)
pow4 a− b(d+ x)−c

mmf4 (ab+ cxd)/(b+ xd)
a, b, c, d - are hyperparameters of the curve

groups of outliers. As I wanted to test that increase in fea-
ture outliers leads to an increase in the prediction outliers, I
used the linear Pearson correlation coefficient. It measures
the strength of the linear relationship between two variables
by calculating their standard deviations and covariance [17].

3.4 Find patterns for best learning curve model
For all the characteristics a similar procedure was applied. I
chose four characteristics: machine learning algorithm, num-
ber of features, classes, and outliers. Mohr & van Rijn [4]
state that a learning curve can help choose an algorithm to
use. However, in case of the limited time available, we may
want to know which learning curve works best for a specific
algorithm to evaluate it. Huang & Guan [18] mention that
classification in a large number of classes can be challenging.
It may require more time and data than datasets with a few
number of classes. Thus, I would like to find out if there is
a difference in the performance of multiple learning curves
for a number of classes. In [19], Bui introduces a hypothe-
sis that dimensionality may influence the shape of a learning
curve. Although the research was inconclusive, I decided to
check if certain dimensionality leads to the high performance
of specific parametric models. Lastly, as I already analysed
outliers, I wanted to check if a certain parametric model is
robust to feature outliers or, vice versa, produces specifically
bad results.

I decided to explore in detail three learning curves:
Morgan-Mercer-Flodin (mmf4), power (pow4), and expo-
nential (exp4). The formulas can be found in the Table 1.
I chose specifically these curves, as mmf4 produces the best
results on average [2], while power and exponential curves
often appear in related literature.

I started by analysing learning curves individually based
on one of the chosen characteristics. To do this, I calculated
the median MSE/MAE per each characteristic type. I chose
to calculate median over a mean as I could not assume normal
distribution. Visual comparison of precision measures would
not show whether the difference was indeed significant, so
I used statistical tests to compare medians. As I dealt with
multiple groups, I needed to use a test suitable for multiple
groups. Such tests show if there is a significant difference be-
tween groups. To determine which groups differ, I proceeded
with a post-hoc test pairwise. If the test showed significant
difference, I compared medians of the error measures, and
determined when a learning curve works best.

I also wanted to compare curves mentioned in Table 1. For
this, I plotted the medians of the curves for each characteristic
and conducted statistical tests to determine significant differ-
ences. That showed me which curve out of three behaves best
depending on a characteristic.

4 Experimental Setup
In this section, I will explain the setup of experiments that are
used for achieving tasks discussed in the methodology.

4.1 Experiment 1: Correlation between number of
outliers in features and predictions

To understand whether a high number of outliers in features
of datasets leads to many outliers in learning curve predic-
tions, I used a pre-calculated percentage of feature outliers. I
calculated a number of prediction outliers by grouping LCDB
data by dataset id and combining all differences between ac-
tual and predicted values in one array. On that array, I ran
the IQR method to detect outliers. As a distribution of dif-
ferences had long tails, I increased a constant from 1.5 to
10 and considered a data point an outlier if it laid outside
[Q1− (10 · IQR);Q3+ (10 · IQR)] range. Then, I ran Pear-
son correlation from pandas in Python. It assessed whether
large percentage of feature outliers leads to large percentage
of prediction outliers. As Pearson correlation assesses only
linear relationships, I also created a plot of feature outliers
percentages and prediction outliers percentages. Using it, I
assessed whether there is a visible non-linear correlation be-
tween the two variables.

4.2 General setup for finding patterns that lead to
the best performance of certain parametric
learning curve model

To experiment based on a characteristic, I grouped processed
fitting results by that characteristic and collected MSE and
MAE metrics. The data I used included infinity MSE val-
ues for some of the observations. To perform chosen sta-
tistical test, I needed the same number of observations, so
I could not delete a row. Instead, I replaced the infinity value
with 100000, which was appropriate, as such MSE is consid-
ered very high. To achieve precise results, I also eliminated
outlier MSE/MAE observations and instead imputed values
using linear interpolation from pandas. As I dealt with a
large number of observations, such interpolation worked fast
and provided smooth and continuous estimates between data
points. Then, depending on a characteristic, different statis-
tical analysis was made which will be described in the next
paragraphs.

4.3 Experiment 2: Analysis of curves based on
machine learning model

While the datasets used for all models were identical, I
needed to use a paired statistical test to find out if there is
a significant difference. I had a group of observations, and
I could not assume a normal distribution, hence I used the
Friedman test. This is a non-parametric statistical test that is
used on a group of data of 3 or more measurements to deter-
mine if there is a significant difference across a group. It is
a paired test, which means there is a dependent variable: the
same dataset. The test assigns ranks to each of the observa-
tions, and calculates the test-statistic and p-value. Detailed
examples of using the Friedman test can be found in [20].
If the p-value is less than chosen significance level α (0.05),



then we found a significant difference within a group of ob-
servations. If the p-value is greater, then no difference was
found. For this experiment, I used existing Friedman test im-
plementation in Python from spicy.stats.

Then, if there was a difference, I needed to compare ob-
servations pairwise to find which groups differ. For this I
used Wilcoxon signed rank test. It calculates the differences
between the pairs of observations of compared groups and
assigns a rank to each of the differences. Then it calculates
the test statistic and p-value [21]. If the p-value is less than
the significance level, I conclude that the pair is significantly
different. I used an existing method from scipy.stats. As
the test makes multiple comparisons within the group, I cor-
rected the significance level using Holm’s method. It adjusts
α to minimize the probability of falsely identifying significant
differences. To apply Holm’s correction, I used statsmod-
els.stats.multitest.multipletests.

If a pairwise significant difference was found, I assigned
ranks to each of the models. The pairwise test did not give
me a result of which algorithm worked best, so I collected all
MSE/MAE medians and compared pairs that had p-value <
0.05. If the median of one model was less than the median of
another, I added an edge from the worse performer to the bet-
ter one and vice versa. This way I created a directed graph.
Lastly, I assigned the ranks based on the number of outgo-
ing edges: models with the least number of outgoing edges
received the best rank of 1.

This allowed me to conduct individual analysis of learning
curves to understand whether they work better with certain
machine learning algorithms.

Then, I also compared 3 chosen learning curves to each
other depending on a model. I used the same setup as de-
scribed above, but this time I compared not models but 3
curves based on the model type. This gave me a result
of which of the three learning curves works best for which
learner.

4.4 Experiment 3: Analysis of curves based on the
number of features

As the number of samples presented for each number of fea-
tures differed, I divided the number of features using buck-
ets. I created 8 buckets of length 10, 9 buckets of length 200,
and 1 final bucket for datasets from 1080 to 100001 features.
Examining the number of features without buckets would be
inefficient since there were a lot of unique values, as well as
it is challenging to interpret the difference between individ-
ual numbers of features. Instead, I created groups to see how
learning curves behave on datasets with a small number of
features versus very large dimensionality.

Since each observation had different datasets, I used the
independent Kruskal-Willis test. It is a non-parametric test,
thus it can be used on skewed data. It is used to find whether
there is a significant difference for multiple groups. It sorts
observations of all groups and assigns ranks to them. Then, it
adds up the received ranks per group and calculates the test-
statistic. From this statistic, it calculates the p-value. For a
detailed explanation of this test, you can refer to [22]. I used
Kruskal-Wallis test from scipy.stats library.

If the p-value was less than 0.05, I set up post-hoc Dunn’s
test with Holm’s alpha correction. I chose this test as it is
non-parametric. It is also a rank-based test, so per each group
it calculates a mean rank. Then test-statistic and p-value are
calculated. In the end, it produces a list of pairs that show a
significant difference. A detailed example of Dunn’s test can
be seen in [23]. I used already existing implementation of
Dunn’s test from scikit posthocs.

After doing this, I received an indication of individual
curve performance. Then, I compared the three curves with
each other using the same buckets of features. I followed the
procedure discussed in 4.3 to determine whether one of the
curves performs better than others for a small or large num-
ber of features.

4.5 Experiment 4: Analysis of curves based on the
number of classes

To set up an experiment, I first needed to analyse the distri-
bution of a number of classes for the datasets I had. From
LCDB datasets, I had only 21 unique values for the number
of classes, so I started to assess them individually. I repeated a
procedure discussed in 4.4: I used Kruskal-Wallis and Dunn’s
test for individual comparison. Then, I did a group compari-
son using Friedman and Wilcoxon signed-rank tests.

However, the distribution of classes was not equal, for ex-
ample, I had 145 datasets with 2 classes and only 1 dataset
with 100 classes. Thus, I decided to create buckets to assess
a general pattern: the behaviour of the learning curves on the
datasets with relatively small and large number of classes. I
created the following buckets: [0, 5), [5, 10), [10, 20), [20,
30), [30, 50), [100, 355]. I compared buckets using the same
setup from 4.4.

4.6 Experiment 5: Analysis of curves based on the
percentage of outliers

As each dataset had a different number of outliers, assessing
them individually would not be an option. To get an impres-
sion of a general pattern, I first plotted all three curves with
their performance on the graph. However, some of the curves
were unpredictable in behaviour and I could not assess them
properly. Thus, I divided percentages of outliers into buck-
ets: [0, 0.5), [0.5, 1), [1, 3.5), [3.5, 6), [6, 18.61]. I processed
them the same way as in 4.4 both individually and group-
wise. This allowed me to say whether one curve behaves bet-
ter on datasets with a small percentage of outliers versus a
large percentage of outliers.

5 Experimental results
This section describes results for each of the experiments con-
ducted.

5.1 Experiment 1: Correlation between number of
outliers in features and in predictions

The examination was done using the percentages of outliers
in features and predictions. Pearson correlation coefficient
was r = 0.1011639, which indicated a weak linear relation-
ship. Using the coefficient, I could not state that high per-
centages of outliers in features led to outliers in predictions.



Figure 2: Correlation between outliers in features and outliers in
predictions

Figure 3: Comparison of mmf4, pow4 and exp4 learning curves us-
ing MSE based on machine learning models

Figure 2 also does not show any visible correlation between
two variables, so I rejected a hypothesis that outliers in fea-
tures lead to prediction outliers.

5.2 Experiment 2: Analysis of learning curves
based on machine learning model

The analysis started with representation of medians of MSE
for all three curves in Figure 3. It allowed me to see average
performance of learning curves, assess individual accuracy as
well as compare learning curves to each other. Similar graph
for MAE can be found in Figure 7 in Appendix A.

Individual assessment
Friedman test concluded that for every learning curve there’s
significant difference between learners. Table 2 represents
assigned ranks to every learner for a particular curve. The
smaller number of rank, the better result this learner produces
using MSE or MAE.

MMF4 Results
The mmf4 parametric curve shows the best results using

Logistic Regression, Bernoulli Naive Bayes and Multinomial
Naive Bayes algorithms. The worst results are reported using
Quadratic Discriminant Analysis. MSE and MAE are gener-
ally consistent, and produce similar ranking with a fluctuation

Table 2: Ranking of learners for mmf4 using MSE and MAE
(smaller rank corresponds to better performance)

mmf4 pow4 exp4
Learner Rank

MSE
Rank
MAE

Rank
MSE

Rank
MAE

Rank
MSE

Rank
MAE

Logistic Regression 1 1 1 1 1 1
Bernoulli Naive Bayes 1 1 1 1 1 1
Multinomial Naive Bayes 1 1 1 1 1 1
Passive Aggressive Classifier 1 2 2 2 2 2
Ridge Classifier 1 2 1 1 2 2
Linear Support Vector Classification
(SVC)

1 3 1 1 2 2

Polynomial SVC 1 3 2 2 2 2
Extra Trees Classifier 2 2 1 1 3 2
Perceptron 2 3 2 2 3 3
Linear Discriminant Analysis 2 4 2 5 2 3
KNeighbors Classifier 3 2 2 2 3 2
Random Forest Classifier 3 2 2 1 3 3
Decision Tree Classifier 3 3 2 2 3 5
Stochastic Gradient Descent Classi-
fier

4 3 2 2 4 6

Radial basis function SVC 4 3 2 2 3 5
Sigmoid SVC 4 3 4 4 3 3
Gradient Boosting Classifier 4 3 3 4 3 4
Extra Tree Classifier 5 5 3 3 5 7
Multi-layer Perceptron Classifier 5 6 2 3 3 7
Quadratic Discriminant Analysis 5 7 5 6 6 8

in Linear Discriminant Analysis.
POW4 Results
The pow4 parametric curve works best on Logistic Re-

gression, Bernoulli Naive Bayes, Multinomial Naive Bayes,
Ridge Classifier, Linear Support Vector Classification and
Extra Trees Classifier algorithms. The worst accuracy ap-
pears using Quadratic Discriminant Analysis. Findings of
MSE and MAE are similar, except of Linear Discriminant
Analysis, where MSE assigns rank 2 to the algorithm, while
MAE lowers it to 5.

EXP4 Results
The learning curve exp4 shows the best precision using Lo-

gistic Regression, Bernoulli Naive Bayes and Multinomial
Naive Bayes, while Quadratic Discriminant Analysis pro-
duces the worst results. MAE and MSE results slightly differ,
especially using Multi-layer Perceptron Classifier.

Group assessment
Friedman test confirmed that there is a difference between
parametric models for every learner. Then I proceeded with
pairwise comparison and interpreted it using Figure 3. I sum-
marised the comparison in Table 3.

Exponential and Morgan-Mercer-Flodin shapes outper-
form power law in all the scenarios. So, even though pow4
ranks some of the learners, such as Extra Trees Classifier,
higher than exp4 and mmf4, it shows poorest results com-
pared to other two learning curves. Figure 3 also confirms
that power law produces poor results for all the learners. In
most cases, mmf4 produces better on equally precise results
as exp4 with an exception of Linear Discriminant Analysis
using MAE, and Ridge Classifier using MSE.

5.3 Experiment 3: Analysis of learning curves
based on the number of features

Figure 4 represents MAE medians for each bucket of features.
A similar graph for MSE can be found in Figure 8 in Ap-
pendix A.



Table 3: Pairwise comparisons of learning curves using MSE and
MAE based on machine learning model. X denotes that no signifi-
cant difference was found between parametric models

MSE MAE
Learner mmf4

vs
pow4

mmf4
vs
exp4

exp4
vs
pow4

mmf4
vs
pow4

mmf4
vs
exp4

exp4
vs
pow4

Linear SVC mmf4 x exp4 mmf4 x exp4
Polynomial SVC mmf4 x exp4 mmf4 mmf4 exp4
Radial basis function SVC mmf4 mmf4 exp4 mmf4 mmf4 exp4
Sigmoid SVC mmf4 x exp4 mmf4 mmf4 exp4
Linear Discriminant Analysis mmf4 x exp4 mmf4 exp4 exp4
Quadratic Discriminant Analysis mmf4 mmf4 exp4 mmf4 mmf4 exp4
Extra Trees Classifier mmf4 mmf4 exp4 mmf4 mmf4 exp4
Gradient Boosting Classifier mmf4 mmf4 exp4 mmf4 mmf4 exp4
Random Forest Classifier mmf4 mmf4 exp4 mmf4 mmf4 exp4
Logistic Regression mmf4 mmf4 exp4 mmf4 mmf4 exp4
Passive Aggressive Classifier mmf4 mmf4 exp4 mmf4 mmf4 exp4
Perceptron mmf4 x exp4 mmf4 x exp4
Ridge Classifier mmf4 exp4 exp4 mmf4 mmf4 exp4
Stochastic Gradient Descent
Classifier

mmf4 mmf4 exp4 mmf4 mmf4 exp4

Bernoulli Naive Bayes mmf4 x exp4 mmf4 mmf4 exp4
Multinomial Naive Bayes mmf4 x exp4 mmf4 mmf4 exp4
KNeighbors Classifier mmf4 mmf4 exp4 mmf4 mmf4 exp4
Multi-layer Perceptron Classifier mmf4 mmf4 exp4 mmf4 mmf4 exp4
Decision Tree Classifier mmf4 mmf4 exp4 mmf4 mmf4 exp4
Extra Tree Classifier mmf4 mmf4 exp4 mmf4 mmf4 exp4

Figure 4: Comparison of mmf4, pow4 and exp4 learning curves us-
ing MAE based on the grouped number of features

5.4 Individual assessment
Even though visually it seems that there is a significant dif-
ference, Kruskal-Wallis test considers different sample sizes,
and visual interpretation may not coincide with exact signif-
icance. For mmf4, p-values of 0.5494489 and 0.2746788
were obtained using MSE and MAE respectively. Power
law reported p-value 0.0937335 for MSE and 0.0908338 for
MAE. Lastly, p-value of exp4 was 0.4038479 for MSE and
0.4948854 for MAE. All p-values are greater than 0.05, thus
the test did not reveal any difference individually.

5.5 Group assessment
Using Friedman test, learning curves were compared by
bucket. I obtained the following results in Table 4. The
table shows that Morgan-Mercer-Flodin always outperforms
power law. On small number of dimensions n < 20 Morgan-
Mercer-Flodin also outperforms exponential curve. Exponen-
tial curve produces better results than power law on small di-
mensions, and on buckets [40, 60) for both MAE and MSE.
Visual difference can be seen in Figure 4 for buckets [280,
480), [480, 680), [680, 880), [880, 1880), but likely due to

Table 4: Pairwise comparisons for MSE and MAE based on num-
ber of features. X denotes that no significant difference was found
between parametric models

MSE MAE
Bucket (Fea-
tures)

mmf4
vs
pow4

mmf4
vs
exp4

exp4
vs
pow4

mmf4
vs
pow4

mmf4
vs
exp4

exp4
vs
pow4

[0, 10) mmf4 mmf4 exp4 mmf4 mmf4 exp4
[10, 20) mmf4 mmf4 exp4 mmf4 mmf4 exp4
[20, 30) mmf4 x x mmf4 x x
[30, 40) mmf4 mmf4 x mmf4 x x
[40, 50) mmf4 x exp4 mmf4 x exp4
[50, 60) mmf4 x exp4 mmf4 x exp4
[60, 70) mmf4 x exp4 mmf4 x x
[80, 280) mmf4 x x mmf4 x x
[1880, 100001) mmf4 x x mmf4 x x

Figure 5: Comparison of mmf4, pow4 and exp4 learning curves us-
ing MAE based on the grouped number of classes

the small number of samples, the test does not prove statisti-
cal difference.

5.6 Experiment 4: Analysis of learning curves
based on the number of classes

As there were not a lot of different classes, I assessed all of
them in Figure 5. Similar graph for MSE can be found in
Figure 9 in Appendix A.

Individual assessment
Kruskal-Wallis tests produced p-value of 0.6490089 and
0.4222196 for mmf4 using MSE and MAE respectively. For
pow4, the result was 0.2531694 for MSE and 0.2423912
for MAE. Lastly, exp4 produced p-value of 0.5277016 using
MSE and 0.9187818 using MAE. Thus, individually, I did not
find motivation to use a certain parametric model for specific
number of classes.

Group assessment
Treating each class individually, I obtained the following
comparisons in Table 5. For the classes with reported signif-
icant difference, Morgan-Mercer-Flodin always outperforms
power law. When grouping number of classes in Table 5,
Wilcoxon test reported that exponential curve outperforms
power law for number of classes < 10. Buckets [20, 30),
[30, 50), [100, 355] did not report any significant differ-
ence. Mmf also outperforms exponential curve for number
of classes < 5.



Table 5: Pairwise comparisons of learning curves using MSE and
MAE based on the number of classes. X denotes that no significant
difference was found between parametric models

MSE MAE
Number of classes mmf4

vs
pow4

mmf4
vs
exp4

exp4
vs
pow4

mmf4
vs
pow4

mmf4
vs
exp4

exp4
vs
pow4

2 mmf4 mmf4 exp4 mmf4 mmf4 exp4
3 mmf4 x x mmf4 x x
7 mmf4 x x mmf4 x x
10 mmf4 x x mmf4 x x
4, 5, 6, 9, 13, 17, 18, 20,
25, 26, 28, 30, 44, 50,
100, 102, 355

x x x x x x

Bucket of number of
classes
[0, 5) mmf4 mmf4 exp4 mmf4 mmf4 exp4
[5, 10) mmf4 x exp4 mmf4 x exp4
[10, 20) mmf4 x x mmf4 x x

Figure 6: Comparison of mmf4, pow4 and exp4 learning curves us-
ing MSE based on the grouped percentage of outliers

5.7 Number of outliers
No general visual pattern was found for all the learning curves
depending on the number of outliers. The corresponding
graphs can be found in Figures 10 and 11 in Appendix B.

After grouping percentage of outliers in buckets, visual dif-
ference can be seen in Figure 6. Similar Figure for MAE can
be found in Figure 12 in Appendix B.

Individual assessment
Wilcoxon test produced the following results, when I assessed
a curve based on a bucket: mmf4 had a p-value of 0.2085195
and 0.5852067 for MSE and MAE respectively, so no sig-
nificant difference was found individually for mmf4. Power
curve reported p-value 0.0009052 for MSE and 0.0008275
for MAE, meaning that there is a difference. Lastly, exp4
produced a p-value of 0.0966195 using MSE and 0.0426948
using MAE. Thus, exp4 reported statistical difference using
MAE. After doing post-hoc Dunn’s test on median value per
bucket, I achieved significant difference before alpha correc-
tion. However, as alpha correction is obligatory for multiple
group comparison, I could not rely on those findings. All
found p-values with alpha correction were greater than 0.05,
and thus no direct indication on learning curve performance
per bucket of outliers could be made.

Group assessment
Comparing learning curves per bucket, I obtained results in
Table 6. Morgan-Mercer-Flodin outperforms power law in

Table 6: Pairwise comparisons of learning curves using MSE and
MAE based on the number of outliers. X denotes that no significant
difference was found between parametric models

MSE MAE
Bucket (outlier
percentage)

mmf4
vs
pow4

mmf4
vs
exp4

exp4
vs
pow4

mmf4
vs
pow4

mmf4
vs
exp4

exp4
vs
pow4

[0, 0.5) mmf4 exp4 exp4 mmf4 mmf4 exp4
[0.5, 1) mmf4 x exp4 mmf4 x exp4
[1, 3.5) mmf4 x x mmf4 x x
[3.5, 6) mmf4 x x mmf4 mmf4 x
[6, 18.61) mmf4 x exp4 mmf4 x exp4

all situations, and exponential curve also outperforms power
law with small percentage of outliers < 1 or very big per-
centage > 6. If we mesure precision using MSE, exponential
outperforms mmf4 for small percentage of outliers, while for
MAE the result is the opposite.

6 Discussion and Limitations
In this section, I will analyse the results I got and discuss the
limitations of this work.

6.1 General findings
The results section shows that the Morgan-Mercer-Flodin
learning curve outperforms power law in all experimented
scenarios where a significant difference was found, and often
outperforms exponential curve. It confirms that mmf4 works
generally best as stated in [2].

Exponential curve also outperforms power law for all ma-
chine learning algorithms, which coincides with [8]. Exam-
ined learning curves ranked algorithms similarly. This is ex-
pected since some machine learning algorithms work more
accurately and faster than others, and all learning curves re-
act to it by showing smaller MSE/MAE. We also saw that
MSE and MAE assign rank similarly, which means that many
datasets do not have a lot of large outliers. In some situa-
tions, MSE gives an algorithm a better rank than MAE, which
means that MSE penalizes other datasets which have outliers.
When MSE gives an algorithm a worse rank than MAE, it can
mean that dataset has many outliers, which MAE tolerates.

For the number of features and classes, I did not find any
difference in the individual behaviour of the learning curves.
However, it doesn’t mean that there is no difference, since
the results in Figures 4 and 5 show that performance differs,
especially for exponential curve. Statistical tests find no dif-
ference as there is a limited number of datasets available per
bucket or class number. It also reflects a comparison between
learning curves: the test can compare all 3 curves based on
dimensionality < 20 and number of classes < 5, as the ma-
jority of datasets have those characteristics. For a lot of fea-
tures and classes, no group difference was found, which can
be also explained by the lack of observations.

When considering the percentage of feature outliers, I
found out that for a very small percentage, exponential shape
outperforms mmf4 using MSE, while mmf4 provides better
results considering MAE. In this scenario, exponential shape
may produce less large outliers than mmf4.

Kruskal test also showed a significant difference in the
number of outliers, while Dunn’s test did not. Dunn’s test



makes multiple comparisons and adjusts p-values, which
minimizes the risk of false positives. P-values become big-
ger after adjustment, and no statistical difference is shown.

I also did not confirm a hypothesis that feature outliers lead
to prediction outliers. This means that when fitting learning
curve, it does not see feature outliers as specific values and
tries to fit outliers accurately. Thus, no prediction outliers are
created.

Lastly, as I consider the performance of the learning curve
based on MSE/MAE, I also need to consider that bigger er-
ror characteristics may be due to noise. To check it, a visual
investigation was made for the learning curves. An example
can be seen in Figures 13, 14, 15 in Appendix C. In some
examples, I saw that mmf4 provides the best fit, followed by
exp4 and pow4. However, it was not always the case. It can
be explained by the fact that I averaged MSE and MAE for all
the numbers of anchors, and they showed average behaviour
for all training/test set sizes.

6.2 Limitations and Future Work
The research provides insight into when to use which learn-
ing curves. However, no precise patterns are yet found. I
used LCDB data for this research, and while it contained 246
datasets, most of them had 2 classes and a small number of
dimensions. That is why comparative analysis could not be
fully completed. Even though I did not find precise patterns
for large dimensionality or a large number of classes, further
analysis should be conducted by comparing more datasets
with those characteristics.

I also used averaged fitting results for all numbers of an-
chors. However, there can be an optimal number of train-
ing anchors that leads to the best accuracy, and then the opti-
mal performance of the learning curve may be different from
the average one. In the future, further analysis may be con-
ducted about an optimal number of training anchors, and re-
sults should be also analysed using fitting data for optimal
training-test set size proportion.

Lastly, in this research, I inspect all the characteristics in-
dividually. Even though it provides an analysis per character-
istic, in the future, characteristics can be combined and anal-
ysed together. Then, additional more precise patterns may be
found.

7 Conclusion
To summarise, this report aims to find insights into the pat-
terns where specific learning curve works best. First, the ex-
amined literature showed that there is no consensus according
to each learning curve that works best. Then I analysed the
ways to measure the accuracy of the learning curve: MSE and
MAE. I found out that MSE penalizes outliers, while MAE
tolerates them. After this, I analysed outliers’ behaviour and
concluded that there is no evidence that outliers in features
lead to prediction outliers.

I examined the behaviour of three learning curves de-
pending on the machine learning model, number of features,
classes and outliers. I made both individual learning curve as-
sessments as well as compared learning curves to each other.
The result was that mmf4 and exp4 outperform pow4 for all

machine learning models. All curves rank models similarly,
meaning that they all work best with almost identical models.
For all dimensions where significant difference was found,
mmf4 outperformed pow4. There were no dimensions for
which exp4 worked better than mmf4. For a lot of classes,
no difference was found, likely due to data absence. For the
small number of classes < 10, mmf4 outperformed pow4.
For the number of classes < 5 mmf4 also produced better re-
sults than exp4, while exp4 outperformed pow4. Lastly, for
all the percentages of feature outliers, mmf4 outperformed
pow4.

Overall, this work confirms that mmf4 works best on av-
erage. However, no precise concrete patterns in the learning
curve comparison analysis were found. This can be explained
by insufficient amount of data, especially for a number of
classes and dimensions. I also used averaged MSE/MAE be-
tween all anchors, which may not be as representative of find-
ing an optimal combination of training/test set sizes. Deep
future research is still needed to address these limitations, as
well as combine multiple characteristics to uncover more spe-
cific patterns.

8 Responsible Research
In the section, I will elaborate to what extent this work is
reproducible and discuss possible risks.

Firstly, the data that I used comes from an open platform
OpenML. The data there is stored and existing data should
not updated. However, this is still an unlikely risk: OpenML
could delete a dataset or it can be adjusted. Still, according to
today’s policies of the website, stored datasets would be left
unchanged, meaning that there would not be added or deleted
data to them.

Secondly, the code that I used is stored on GitHub and is
open for viewing using the following link: GitHub Learning
Curves. While it may be updated, GitHub supports a feature
of viewing state of the repository on certain time, thus the
code that I used for this report can be viewed and used. All
the code that I wrote additionally is also stored on GitHub ,
and can be viewed and cloned freely.

Furthermore, all methods that I used are implemented in
the built libraries in Python. This way, I decrease the prob-
ability of making a mistake in the code, and make the code
more readable and easy to replicate. However, there is also a
risk that library’s developers discover bugs, and will change
their implementation. At the same time, the libraries that I use
are documented, and each update to them have descriptions.
Thus in case of reproducibility problems, documentation of
libraries can be addressed. All the methods and names of the
algorithms are also described in this paper.

Lastly, all the setup and experiments are conducted using
MacBook Pro (14-inch, 2023). This paper is also available in
the TU Delft education repository, which is open and free.

As for the other ethical considerations, this work is con-
cerned about Machine Learning optimisation. This can be
used maliciously, for example to develop deepfake technol-
ogy [24]. In Machine Learning field such risks are one the
primary focuses of current researches.

https://github.com/annakalandadze/learningcurves
https://github.com/annakalandadze/learningcurves
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A Representation of median performance of
the learning curves on machine learning
models, number of features, classes, and
outliers

Figure 7: Comparison of mmf4, pow4 and exp4 learning curves us-
ing MAE based on machine learning models

Figure 8: Comparison of mmf4, pow4 and exp4 learning curves us-
ing MSE based on number of features (divided in buckets)

Figure 9: Comparison of mmf4, pow4 and exp4 learning curves us-
ing MSE based on number of classes

B Representation of median performance of
the learning curves on the number of
outliers

Figure 10: Behaviour of learning curves depending on the percent-
age of outliers using MSE

Figure 11: Behaviour of learning curves depending on the percent-
age of outliers using MAE

Figure 12: Comparison of mmf4, pow4 and exp4 learning curves
using MAE based on the percentage of outliers



C Representation of mmf4, pow4 and exp4
for training and test anchors

Figure 13: Learning curve mmf4 for dataset 12 using Bernoulli
Naive Bayes

Figure 14: Learning curve pow4 for dataset 12 using Bernoulli
Naive Bayes

Figure 15: Learning curve exp4 for dataset 12 using Bernoulli Naive
Bayes
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