
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Physics-Informed Deep
Learning for Computational
Fluid Flow Analysis
Coupling of physics-informed neural networks and autoencoders for
aerodynamic flow predictions on variable geometries

ME55035: Master Thesis Report
Author: Samarth Kakkar (3ME)

Physics-Informed Deep
Learning for

Computational
Fluid Flow Analysis

Coupling of physics-informed neural networks and
autoencoders for aerodynamic flow predictions on

variable geometries

by

Author: Samarth Kakkar
Student Name Student Number

Samarth Kakkar 5274435

Academic Supervisor and Chairman (3ME TU Delft) : Prof. Rene Pecnik
Academic Supervisor (EEMCS TU Delft) : Dr. Matthias Möller
Industry Supervisor (Monolith AI) : Dr. William Jennings
Committee Member (EEMCS TU Delft) : Dr. Deepesh Toshniwal
Committee Member (3ME TU Delft) : Dr. Jurriaan Peeters
Project Duration : November 2021 - August 2022,
Defence Date : 24th August 2022
Faculty : Faculty of 3ME (Process and Energy), TU Delft

Acknowledgement
I am deeply elated as I got this opportunity to pursue my masters at an internationally distinguished
university like TU Delft in my favourite field of thermo-fluids engineering. I would like to thank my par-
ents Mr. Sanjay Kakkar and Mrs. Sangeeta Kakkar for their constant encouragement and support
throughout my life and for motivating me during the difficult phases of my studies. I would also like to
thank my academic supervisor, Dr. Matthias Möller for introducing me to the world of scientific machine
learning through his courses and generating my interest in this field, in addition to his guidance during
my master thesis. Also, I am highly obligated to my faculty supervisor Dr. Rene Pecnik for helping
me enhance my skills in the fields of turbomachinery and numerical techniques for CFD through his
courses as well as through his guidance during my thesis related simulations.

Author: Samarth Kakkar
Delft, August 2022

i

Summary
The main objective of this thesis was to explore the capabilities of neural networks in terms of rep-
resenting governing differential equations, primarily in the purview of fluid/aero dynamic flows. The
governing differential equations were accommodated within the loss functions for training the neural
networks, thereby making them ’physics-informed’. Subsequently, this idea of physics-informed neural
networks (PINNs) was extended to parameterized geometries generated with the help of commercial
auto-encoders developed by the UK based company Monolith AI pvt. ltd. because neural networks
have the capability to learn the desired PDEs over variable/parameterized geometries without the need
to recompute the solution for every minor change in the input geometry, which proves out to be a huge
advantage over classical numerical techniques. The advantages, limitations and scope for further
research in the field of physics-informed deep learning have been discussed in the contents of the
underlying thesis report.

ii

Contents

Preface i

Summary ii

1 Introduction 1

2 Theory on Physics Informed Neural Networks (PINNs) 5
2.1 Deep Neural Networks . 5

2.1.1 Training of Neural Networks . 7
2.1.2 Challenges for Overfitting and Underfitting of Neural Networks 7

2.2 Physics-Informed Neural Networks (PINNs) . 8
2.2.1 Training of PINNs . 9
2.2.2 Loss Functions for PINNs . 11
2.2.3 Applications of PINNs . 11
2.2.4 Advanced Concepts and Solvers for PINNs . 21
2.2.5 Convergence of PINNs . 24

3 Operator Learning 25
3.1 DeepONets . 25
3.2 Physics Informed DeepONets . 29
3.3 Fourier Neural Operators . 30
3.4 Physics Informed Neural Operator (PINO) . 32

4 Generative Modelling for Geometry 33
4.1 Auto-encoders . 33
4.2 Generative Adversarial Networks . 35

5 Parametrized PINNs for the Poisson Equation 37
5.1 Coordinate Transformation . 38
5.2 Solution for a Single Geometry . 39
5.3 Solution for Parameterized Variable Geometry . 42

6 Parameterized PINNs for the Stokes Equations 45
6.1 Numerical Solution for Airfoil Geometry . 46
6.2 Deep Learning Solution for Single Airfoil Geometry . 48
6.3 Deep Learning Solution for Variable Airfoil Geometry . 50

7 Parameterized PINNs for the Navier Stokes Equations 53
7.1 Solution for single airfoil geometry . 55
7.2 Solution for symmetric airfoils of varying thickness . 56
7.3 Solutions for further cases of parameterization . 58

7.3.1 Variation of Angle of Attack . 59
7.3.2 Variation of camber parameters . 60
7.3.3 Variation of angle of attack and thickness of symmetric airfoils 61

8 Coupling of parameterized PINN and auto-encoder for the Navier Stokes Equation 64

9 Conclusions and Recommendations 70

References 72

A Source Codes 75
A.1 Fenics Codes (Numerical Codes) . 75

A.1.1 Fenics Code Stokes Flow . 75
A.1.2 Fenics Code Navier Stokes Flow . 77

iii

Contents iv

A.2 Deep Learning Codes . 79
A.2.1 Unparameterized Poisson Equation Code . 79
A.2.2 Parameterized Poisson Equation . 82
A.2.3 Poisson PINN Postprocessing Script . 85
A.2.4 Unparameterized Airfoil Stokes Flow Code . 87
A.2.5 Parameterized Airfoil Stokes Flow Code . 91
A.2.6 Unparameterized Airfoil Navier Stokes Flow Code 96
A.2.7 Parameterized Airfoil Navier Stokes Flow Code 100
A.2.8 Airfoil Navier Stokes Flow Post Processing Script 105
A.2.9 Autoencoder Parameterized PINN for Navier Stokes 107
A.2.10 Coupled Autoencoder and PINN Post Processing Script for Latent Space Defined

Geometries . 113
A.2.11 Coupled Autoencoder and PINN Post Processing Script for NACA Geometries . 116

1
Introduction

The past couple of decades have witnessed an exponential growth in various fields of technology, ow-
ing to the research and development in computational sciences and applied mathematics. Most of the
physical systems surrounding us like electrodynamical and thermo-fluidic systems can now be simu-
lated on computers using a system of partial differential equations, solved with the help of numerical
techniques. This methodology has enhanced the scope of design, analysis and optimization of techni-
cal systems to a much greater extent while minimizing the need for building physical prototypes, saving
this process solely for final testing and validation.

The domain of engineering which has been studied in this thesis is that of computational fluid dy-
namics (CFD), which is the process of simulating fluid/aerodynamic flows by solving the well-known
Navier Stokes equations. The general workflow of a CFD simulation is illustrated in figure 1.1.

Figure 1.1: General workflow of a CFD/Numerical Simulation
Image Source: Computational Fluid Dynamics for Engineers [2]

1

2

The algorithmic steps explained in figure 1.1 can be easily understood with the help of a sample
simulation on airfoil flow which has been performed and used for validating the simulations of this thesis.
The details of this simulation are explained in what follows.

1. Geometry Modelling: This is the starting phase of any numerical simulation where the desired
geometry is prepared as an error-free CADmodel, compatible to be read by the desired numerical
solver, for example ANSYS Fluent.

Figure 1.2: Prepared CAD geometry for airfoil simulation

2. GridGeneration: This is the process where the desired geometry is divided into smaller elements
in order to facilitate the conversion of desired governing PDEs into a system of linear equations of
the form Ax = b, using one of the many discretization techniques such Finite Difference Methods
(FDM), Finite Volume Methods (FVM) or Finite Element Methods (FEM).

Figure 1.3: Prepared mesh/grid for airfoil simulation

3. Defining Models and Parameters: After successfully generating a high-quality smooth mesh or
grid, we can setup our simulation by defining a suitable turbulence model/laminar flow setting and
the fluid flow parameters like compressibility condition, gas model, viscosity model, etc.

4. Setting Up Boundary Conditions: Any solution method (analytical or numerical) for a system
of PDEs cannot provide the complete problem specific solution without providing it with the ap-
propriate boundary conditions, and in case of time dependent problems the initial conditions. For
example, in CFD simulations, we usually specify the velocity magnitudes at flow inlets, the static
pressure values at flow outlets and the conventional no slip boundary condition persists on the
wall boundaries.

5. Solver Schemes: After prescribing all the boundary conditions and the associated flow parame-
ters, the linear system of equations generated via discretization of the flow domain and lineariza-
tion of the nonlinear terms if any, can be solved by either direct or iterative numerical schemes.
Iterative solver schemes are preferred over direct solvers for large problems due to computational
memory limitations. The most common iterative solver algorithms used in CFD are the SIMPLE
algorithm and the pressure velocity coupled algorithm.

6. Post Processing: After the solver scheme has converged to a desirable error limit, we can extract
and compute the desired quantitative variables like lift and drag and plot various solution contours
like velocity and pressure.

3

(a) Pressure contours (b) Velocity contours

Figure 1.4: Results after post processing

It can be observed that the above mentioned methodology for simulating physics via numerical
simulation has an inherent dependence on the grid generated after the discretization, which directly
influences the system of linear equations derived from the discretized governing PDEs. Hence, clas-
sical numerical simulation techniques cannot accommodate even very minute changes in the input
geometry, compelling the need to perform a new simulation for each geometry.

The past couple of decades have witnessed an advent rise in the popularity of data-driven tech-
niques to perform various technological and scientific tasks. The ever-increasing computational hard-
ware and software capabilities have made it possible for computers to perform tasks which conven-
tionally require abstract thinking at human level rather than some quantitative formulations which could
be hard-coded in computers. These developments in the field of artificial intelligence have generated
vast technological leaps in the field of computer vision, voice/speech recognition, image classification,
object detection and so on. One of the main advantages of data-driven techniques is their ability to
generate outputs almost instantaneously for new inputs after sufficient training, without human inter-
vention. This capability is now starting to attract the communities involved in scientific computing to
explore these data-driven techniques either as a replacement or as an aid to the classical numerical
methods. In the framework of classical numerical methods, redundant and repetitive simulations are
needed to be performed even for minute changes in geometry, domain shapes or initial and boundary
conditions, making the iterative design process computationally very expensive. With a fully trained
data-driven pipeline, we expect to remove the need for such time consuming simulations while simul-
taneously ensuring the physical validity of the results generated. We restrict ourselves to the deep
learning domain for our current study, many of which have been summarised by Calzolari and Liu [4].
The distinction among artificial intelligence (AI), machine learning (ML) and deep learning (DL) can be
appreciated from figure 1.5

Figure 1.5: Distinction among AI, ML and DL
Image Source: MIT Deep Learning 6.S191 [1]

Asmentioned before, the main strength of data-driven techniques like deep learning is their ability to
map a set of input and output spaces, as an abstract relationship is learned during the training process
for a deep learning pipeline, without needing to know the relationship in advance. This advantage in
the field of image/speech recognition turns into a disadvantage while dealing with scientific computing,
where maintaining a physically consistent relationship between the inputs and outputs defined by gov-

4

erning differential equations is of utmost importance. Therefore, the main challenge that the research
community is striving to overcome in the field of scientific machine learning (SciML) is to integrate the
correct physical relationships into deep learning mechanisms and side by side utilising the potential of
reduced redundancy in deep learning methods compared to numerical simulations. A large variety of
deep learning architectures have been explored in this thesis pertaining to fluid flow simulations. In
a broad sense, these architectures are used mainly for two major tasks: generation of domains and
geometries of interest, and solution of governing differential equation on the generated domains.

In this thesis, an extensive study has been performed to explore the capabilities and limitations of
physics-informed neural networks (PINNs) with parameterized geometry inputs either as a replacement
or as an aid to classical numerical techniques for simulating physical systems. In chapter 2, we study
the theory behind PINNs, whereas chapter 3 provides insights into an advanced methodology of PINNs
called operator learning, which is capable of learning a general operator as opposed to a fixed PDE.
In chapter 4, we explore various techniques of generative modelling which can be used to generate
parameterized forms of complex geometries, suitable to be fed as inputs to PINNs. Subsequently in
chapters 5, 6 and 7, we perform simulations with PINNs for self-parameterized geometry parameters
over Poisson, Stokes and Navier Stokes equations, respectively. Finally we conclude with chapter
8 where we combine generative modelling techniques for abstract geometry parameterization of cam-
bered airfoils via autoencoders with the PINN framework for Navier Stokes equations. The conclusions
and recommendations with some insightful discussion of the results found while pursuing this thesis
have also been discussed in chapter 9. The simulation codes developed for numerical simulations as
well as PINN models have been provided in the respective appendices.

2
Theory on Physics Informed Neural

Networks (PINNs)

2.1. Deep Neural Networks
Deep neural networks form the fundamental architecture of deep learning. It can be argued that they
take inspiration from a human nervous system where a biological neuron is replaced by a perceptron
as follows:

(a) Perceptron

(b) Output evaluation in a neuron/perceptron of a
neural network

Figure 2.1: Structure of perceptron
Image Source: MIT Deep Learning 6.S191 [1]

5

2.1. Deep Neural Networks 6

It can be inferred from figure 2.1 that the inputs x1, x2, ..., xm are multiplied with a respective weight
valuew1, w2, ..., wm and added together along-with an additional biasw0, and the result is fed into a non-
linear function called an activation function g. This sequence of operations maps the given inputs to the
output ŷ. Most common activation functions used in deep learning are sigmoid, relu, tanh (hyperbolic
tangent) etc. These nonlinear activation functions inherently provide the neural networks capability to
represent complex nonlinear functions. Details of these activation functions have been given in figure
2.2.

Figure 2.2: Commonly used activation functions
Image Source: MIT Deep Learning 6.S191 [1]

A large number of these perceptrons subsequent to the input layer form a hidden layer. The number
of perceptrons in a hidden layer define its ’width’. A neural network as shown in figure 2.3, with a single
hidden layer, input layer and output layer is called a shallow neural network. When all the perceptrons
of each layer have connections to all the corresponding inputs/previous hidden layers, then such a
neural network is called fully connected neural network

Figure 2.3: A fully connected shallow neural network
Image Source: MIT Deep Learning 6.S191 [1]

We can also stack multiple hidden layers in between the input layer and output layer. Such a neural
network having more than one hidden layer is called deep neural network, and the number of hidden
layers in such a neural network define the ’depth’ of the neural network. One of the main reasons for
the success of fully connected deep neural networks in modern data-driven techniques comes from the
following theorem given by Cybenko [10] in 1989.

Universal Approximation Theorem: A shallow neural network can be used to approximate any con-
tinuous function to any desired precision.

2.1. Deep Neural Networks 7

This capability of shallow neural networks to be able to approximate any continuous function has
brought them at the forefront of all data-driven methods. The main challenge that still poses one of the
biggest questions in the world of deep learning is to figure out the desired number of neurons in the
hidden layer of a shallow network, in order to be able to approximate a particular function with a desired
accuracy. Moreover, switching to deep (more than one hidden layer) neural networks can also make
it easier to train complex functions with steep gradients [25]. The depth and width of a neural network
are among the most important hyperparameters to which detailed studies can be dedicated, although
we do not pursue that direction of research in our current work.

2.1.1. Training of Neural Networks
The weights and biases of a neural network (wi for i = 0, 1, ...,m) are the variables of the neural network
which are randomly initialised and need to be trained in order to be able to correctly map the inputs
to outputs in a desired manner. This training procedure may be supervised (with the help of some
available data with known output labels) or unsupervised (without any help from data). The ultimate
aim of the training process of a neural network is to minimize a quantity called loss function, which
defines a measure of deviation of the neural network output from the true/desired output. This can
be framed as an optimization problem with the sole objective to minimize the loss function. The most
widely used optimization algorithm for this task is based on the gradient descent principle, which is
summarised as follows:

Figure 2.4: Gradient descent algorithm for minimizing loss function J by updating weightsW
Image Source: MIT Deep Learning 6.S191 [1]

In figure 2.4, the parameter η is called the learning rate, which defines the stride length which the
algorithm takes in the direction opposite to the gradient. A large η may lead to faster convergence but it
can be prone to overstepping the actual minima, leading to oscillations in the loss value above the local
minima. A small η will ensure stability of the algorithm but it may prolong the convergence. Various
techniques have been developed to modify this learning rate during the training process to balance
the interplay of accelerated convergence along with stability. Some of these techniques are Nesterov
acceleration, momentum generation, learning rate scheduling etc., which can be studied in detail from
the work of Aston Zhang et al. [44]. The most commonly used gradient descent algorithm in deep
learning is the Adam optimizer, which uses an optimal combination of all the techniques mentioned
above for learning rate modification.
Another class of optimizers that can be used instead of gradient descent comes fromNewton’s optimiza-
tion algorithms, where the direction of descent is inferred by multiplying the gradient of the objective
function with an inverse hessian, provided it is positive definite [31]. Newton’s methods exhibit quadratic
rate of convergence, but are computationally expensive. This led to the development of a new class of
algorithms called quasi-Newton optimizers, which ensure a balance between accelerated convergence
and computational efficiency [31]. The most popular quasi-Newton method which is used in deep learn-
ing is the L-BFGS algorithm. The mathematical studies of this class of algorithms is beyond the scope
of this work, but interested readers can refer to the textbook on numerical optimization by Nocedal and
Wright [31] for a detailed explanation of such algorithms.

2.1.2. Challenges for Overfitting and Underfitting of Neural Networks
Themain aim of the neural network training process is to minimize the loss function, such that the neural
network becomes expressive enough to represent the correct output label/value for its corresponding

2.2. Physics-Informed Neural Networks (PINNs) 8

input, belonging to the training set as well as outside the training set. This means that the neural
network should be able to generalise for any data corresponding to its domain of application whether
it has been seen in the training process or not. If we train the neural network with sufficient amount
of data for large number of epochs/iterations such that the loss function residuals decrease to very
low values, the phenomenon of overfitting the data set comes into picture, where the neural network
learns to represent all the data points within the training set with very low errors but it does not produce
the desired output for unseen input values. Therefore, we need to minimize the loss without losing the
ability to properly handle the unseen data. This is ensured by simultaneously testing the neural network
on data which has not been used in training. As long as the errors for both the test data as well as
training data are reducing, we continue the training process. When the testing error starts to increase
while the training error is still reducing, we conclude the onset of overfitting in our training process and
stop the training of the neural network any further. This phenomenon is called early stopping, which is
visually represented in the following figure 2.5.

(a) Moving from underfitting to overfitting (left to right) during the training process

(b) Early Stopping

Figure 2.5: Underfitting, overfitting and early stopping
Image Source: MIT Deep Learning 6.S191 [1]

2.2. Physics-Informed Neural Networks (PINNs)
Physics-informed neural networks are deep learning architectures which use neural networks to solve
partial differential equations. These networks harness the power of automatic differentiation, which
can evaluate derivatives of the outputs of neural networks with respect to their inputs. The deriva-
tives evaluated using automatic differentiation are machine precision accurate and do not require any
discretisation. Therefore, such a PINN model that works on point-wise values is called the collocation-
based PINN, which can be used to evaluate the output for any resolution of grid after training without
the need for being retrained, making the entire framework mesh independent, unlike most classical
numerical techniques.

2.2. Physics-Informed Neural Networks (PINNs) 9

Figure 2.6: Backpropagation for automatic differentiation
Image Source: MIT Deep Learning 6.S191 [1]

As illustrated in figure 2.6, the derivative of the loss J is evaluated with respect to weight w1. Sim-
ilarly, the derivative of the neural network output ŷ with respect to an input x can be evaluated using
backpropagation, which is the repeated application of the chain rule. This ability of evaluating deriva-
tives can be used to construct PDE residuals which can be used as a loss metric to train the PINN frame-
work in a semi-supervised manner (when loss is a combination of PDE residual and mean squared error
in boundary conditions and/or initial conditions, along with some solution data if available). A typical
architecture for a PINN framework involving Burgers’ equation is illustrated in figure 2.7.

Figure 2.7: PINN architecture for Burgers’ equation
Image Source: Karniadakis et al. [19]

One of the first papers that brought PINNs into limelight was written by Raissi et al. [34] in 2019.
This work was later transformed into an open-source python library called DeepXDE [25]. Many such
open source libraries for PINNs were developed after this such as SciANN [13], NeuroDiffEq [5], Elvet
[3], NVIDIA Simnets (now known as Modulus) [14] and Julia based NeuralPDE [46] to name a few. The
main advantage of using data-driven techniques like PINNs is that not only can they be used to solve
PDEs (referred to as forward problem in literature), but also for inferring the differential equations from
the given solution data. This line of work was presented as deep hidden physics by Raissi [33] and
hidden fluid mechanics [35]. The study on inverse PINNs is not undertaken in our work, whereas the
idea of forward PINNs has been explored in great detail.

2.2.1. Training of PINNs
One of the main attractions for using PINNs to solve PDEs comes from its ability to utilise a combination
of available data as well as available knowledge of physical laws and constraints. The availability
of data may range from the small data regime, where only the initial and boundary value solutions
are known beforehand along with the governing differential equations, or the big data regime where
data is available in such an abundance that one might consider skipping the incorporation of physical

2.2. Physics-Informed Neural Networks (PINNs) 10

laws without losing any generalisation capabilities of the neural network [19]. In the practical world
of computational science and engineering, we usually lie in the ’small’ data regime (figure 2.8) or at
best in the ’some’ data regime where we have limited availability of training data due to computational
limitations of classical numerical techniques used in engineering simulations.

Figure 2.8: Data regimes for PINNs
Image Source: Karniadakis et al. [19]

The process of making a deep learning algorithm physically consistent involves the introduction
of various biases into the framework such as observational biases, inductive biases and learning bi-
ases[19]. The details of these biases are discussed as follows:

1. Observational Biases: this kind of biasing simply involves exposing the deep learning frame
work to more and more data, with the assumption that the larger the variety of data that is seen
during the training process, the better would be the generalisation capability of the network. It
assumes that as the real world data inherently agrees with the principles of physics, such physics
can be integrated into the neural networks with the help of ’big’ data. The most fundamental
limitation of this approach is the cost of generation of such huge amounts of data.

2. Inductive Biases: this kind of biasing involves the generation/manipulation of neural network
architectures in such a manner that suits the kind of physics it is being used to simulate. For
example, inductive biasing was used by Cranmer et al. [9] to simulate a system of 4 particles
interacting with each other. A corresponding graph neural network can be generated with exactly
4 nodes (mimicking those 4 particles) and the edges representing their mutual interactions as
shown in figure 2.9.

Figure 2.9: Design of graph neural network for particle interactions with inductive biasing
Image Source: Cranmer et al. [9]

3. Learning Bias: the method of inductive biasing has inherent limitations that we would need to de-
velop a new deep learning architecture to simulate a problem from every distinct field of physics,
and sometimes the prior knowledge of physics might not be sufficient to introduce inductive bias-
ing. Therefore we resort to a new school of thought termed as learning biasing, where we focus
on developing training algorithms which can simultaneously accommodate the available data as
well as the physical laws by penalising the loss functions, on a limited set of neural network ar-
chitectures (fully connected, convolutional and recurrant neural networks etc.). This is the most
favourable method of biasing due to the enhanced degree of freedom embedded in it. From this
point forward, we focus our study on the simulation of physical systems (mostly pertaining to fluid
flows) using this form of biasing.

2.2. Physics-Informed Neural Networks (PINNs) 11

2.2.2. Loss Functions for PINNs
As discussed in the previous subsection 2.2.1 that in learning bias, we need to accommodate the
available training data as well as the knowledge of physics into the loss function of a neural network.
We take an example of the Burgers’ equation in a dimensional coordinate (x) and time coordinate (t)
to solve for velocity (u). The Burgers’ equation is given as:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (2.1)

The corresponding loss functions can be given by the following expressions:

Ltotal = wdataLdata + wpdeLpde, (2.2)

where,

Ldata =
1

Ndata

Ndata∑
i=1

(u(xi, ti)− ui)
2,

Lpde =
1

Npde

Npde∑
j=1

(
∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2

)2

xj ,tj

,

Here, we have two sets of points termed as data points xi, ti, including initial/boundary condition
points and some training data if available, and collocation points xj , tj which lie in the interior of the
domain, where the PDE needs to be evaluated. The weights wdata and wpde which map the intensity
of contribution of their respective loss components, are also important hyperparameters which affect
the convergence of the PINN training process. Their impact on convergence would be studied in later
sections of this study.

2.2.3. Applications of PINNs
Burgers’ Equation
One of the first results using PINN approach for the Burgers’ equation was given by Raissi et al. [34]
for the following set of initial and boundary conditions:

∂u

∂t
+ u

∂u

∂x
=

0.01

π

∂2u

∂x2
: x ∈ [−1, 1], t ∈ [0, 1], (2.3)

u(0, x) = −sin(πx),

u(t,−1) = u(t, 1) = 0.

For the training process by Raissi et al. [34], the number of collocation points were set to 10000.
The quasi-Newton based L-BFGS optimizer was used to train the neural network. A parametric study
was performed by varying the number of hidden layers, neurons per layer and the number of data
points for the PINN, but the results represented in figure 2.10 have been obtained with 9 hidden layers,
20 neurons per layer and 100 data points corresponding to initial and boundary conditions. ’tanh’ was
used as activation function for all neurons.

2.2. Physics-Informed Neural Networks (PINNs) 12

Figure 2.10: Burgers’ equation solved using PINN
Image Source: Raissi et al. [34]

A parametric study was performed by varying the number of data points and the dimensions of the
neural network, the results of which have been summarized in figure 2.11. It is evident from the results
that the predictive accuracy increases by increasing all these parameters.

(a) Total loss with variation in number of data points

(b) Total loss with variation in hidden layers and neurons

Figure 2.11: Results of the parametric study by varying the neural network hyperparameters to study their impact on the final
minimum value of the loss function attained after the training process for the Burgers’ equation

Image Source: Raissi et al. [34]

Navier Stokes Equation (NSFNets)
One of the first attempts to solve Navier Stokes equations using PINNs was by Jin et al. [18] by de-
veloping a library called NSFNets (Navier Stokes Flow nets). This framework of PINNs is capable of
solving incompressible laminar as well as turbulent flows in fully unsupervised manner (the only training
data provided is for initial and boundary conditions). One of the key advantages of employing PINNs for
Navier Stokes equations comes from the use of automatic differentiation for evaluating analytical deriva-
tives with machine precision accuracy, which makes the framework independent from the resolution of
the input collocation and boundary points, unlike classical numerical methods, where the resultant sys-
tem of the discretized linear equations is a direct consequence of the input mesh/grid. Therefore, the
discretization errors in the form of numerical diffusion and dispersion errors can be avoided using this
approach. Two variants of Navier Stokes equations are simulated using this approach for comparison
in terms of convergence as well as accuracy: the VP formulation and the VV formulation. The VP formu-
lation of Navier Stokes evaluates the instantaneous velocity and pressure fields for the corresponding
space and time inputs using the vanilla form of Navier Stokes equations. Similarly the VV formulation
evaluates the vorticity field and the velocity field for the space and time inputs corresponding to the

2.2. Physics-Informed Neural Networks (PINNs) 13

vorticity equation. The VP formulation for the Navier Stokes reads:

∂u
∂t

+ (u.∇)u = −∇p+
1

Re
∇2u in Ω (momentum), (2.4)

∇.u = 0 in Ω (continuity), (2.5)
u = uΓ on ΓD, (2.6)

∂u
∂n

= 0 on ΓN . (2.7)

Here, all the variables t, u and p are in dimensionless form, normalised using their respective reference
conditions such as Uref, Dref for Re = UrefDref/ν

Figure 2.12: PINN framework for VP (velocity and pressure) formulation of Navier Stokes equations using NSFNets
Image Source: Jin et al. [18]

The fully connected network used for VP formulation can be inferred from figure 2.12. The neural
network uses ’tanh’ activation functions. The loss function for this framework is represented as follows:

L = Le + αLb + βLi, (2.8)

where,

Le =
1

Ne

4∑
i=1

Ne∑
n=1

|enV Pi|2,

Lb =
1

Nb

Nb∑
n=1

|un − un
b |2,

Li =
1

Ni

Ni∑
n=1

|un − un
i |2.

Here, Le, Lb and Li represent the pde loss, boundary condition loss and initial condition loss respec-
tively. Ne, Nb and Ni are the number of collocation/interior points, boundary points and initial condition
points. un

b and un
i are the given velocity vector data for boundary condition and initial condition, whereas

eV Pi represents the residual for its respective equation in the system. α and β are the weights for their
respective loss terms which have been dynamically updated during the training process using the strat-
egy proposed by Wang et al. [38], to obtain faster convergence. For the kth iteration, the weights αk

and βk can be modified as follows:

αk+1 = (1− λ)αk + λα̂k+1, βk+1 = (1− λ)βk + λβ̂k+1,

where,
α̂k+1 =

maxθ|∇θLe|
|∇θαkLb|

, β̂k+1 =
maxθ|∇θLe|
|∇θβkLi|

.

2.2. Physics-Informed Neural Networks (PINNs) 14

The mathematical details of this technique for updating the dynamic weights is beyond the scope of this
work, but it is essential to note that another hyperparameter λ is introduced in this framework. There
is no theory behind estimating an appropriate value for λ, however a value of λ = 0.1 has been used
in this case, which shows promising results. Moreover, to further accelerate the convergence, residual
based adaptive refinement (RAR) of collocation points was implemented [25],[27]. The concept behind
RAR is to add more collocation points during the training process in regions with higher residual values.
The solution accuracy can increase by upto 50 percent by using RAR in NSFNets. The analogous
PINN framework for the VV formulation is presented in figure 2.13, whereas the system of equations
describing the VV formulation are given as follows:

∂ω

∂t
+∇× (ω × u) = − 1

Re
∇×∇× ω in Ω, (2.9)

∇2u = −∇× ω in Ω, (2.10)
ω = ∇× u on Γ, (2.11)∮

ck

(
∂u
∂t

+ ω × u+
1

Re
∇× ω

)
. ds = 0, k = 1, ..., q, (2.12)

u = uΓ on ΓD, (2.13)
∂u
∂n

= 0 on ΓN , (2.14)

∇.u = 0 at one point on Γ, (2.15)
ω = ∇× u at t = 0 in Ω. (2.16)

Figure 2.13: PINN framework for VV (vorticity and velocity) formulation of Navier Stokes equations using NSFNets
Image Courtsey: Jin et al. [18]

The corresponding loss function is given by:

L = Le + αLb + βLi, (2.17)
where,

Le =
1

Ne

6∑
i=1

Ne∑
n=1

|enV V i|2,

Lb =
1

Nb

Nb∑
n=1

(
|un − un

b |2 + |ωn −∇× un
b |2 + |∇.un

b |2
)
,

2.2. Physics-Informed Neural Networks (PINNs) 15

Li =
1

Ni

Ni∑
n=1

(
|un − un

i |2 + |ωn −∇× un
i |2

)
,

where, ωn denotes the vorticity for the nth data point, the domain is q-multiply connected and cks are
the q independent contours.

The results for 3D unsteady Beltrami flow solved using both the formulations of NSFNets have been
illustrated in figure 2.15. Two stage optimization was used by starting with the Adam optimizer followed
by the L-BFGS optimizer. It was found that the VV formulation provides an order of magnitude more
accurate results compared to the VP formulation for this case, which has been illustrated in figure 2.16

Figure 2.14: DNS solution for Beltrami flow (t=1.0, z=0) for reference
Image Source: Jin et al. [18]

(a) Results for VP (b) Results for VV

Figure 2.15: Comparsion of velocity-pressure (VP) and vorticity-velocity (VV) formulations for Navier Stokes equations solved
using NSFNets for Beltrami Flow
Image Source: Jin et al. [18]

Figure 2.16: Errors for Beltrami flow obtained for VP and VV formulations of Navier Stokes equations using NSFNets
Image Source: Jin et al. [18]

2.2. Physics-Informed Neural Networks (PINNs) 16

Next, it was tested if NSFNets (only the VP formulation) are capable of sustaining turbulent flows
for a pipe at Re = 1000, for a subdomain of 190 x 200 x 210 in wall units. A local convective time
unit of simulation was defined as T+

c =L+
x /U(y)min (L+

x was the domain size in streamwise direction)
whose value was set at 12. 20000 collocation points were used along with 6644 boundary/initial points.
The results have been illustrated in figure 2.17, which show that NSFNets are capable of sustaining
turbulence with a good agreement with reference data.

One of the most important training strategies which is useful for turbulent flows is transfer learning.
This is useful if one needs to change the Reynolds number of the flow for a fully trained neural network. It
was found that by initialising the network on the trained weights for a particular flow conditions (Reynolds
number) and further training them for a different Reynolds number is a computationally much faster
process compared to training from scratch for each Reynolds number.

Figure 2.17: Results obtained by using NSFNets on turbulent Beltrami flow using velocity-pressure (VP) formulation of Navier
Stokes equations

Image Source: Jin et al. [18]

Vortex Induced Vibrations
Vortex induced vibrations (VIV) are caused in a solid structure exposed to external fluid flow as a result
of the shed vortices from the fluid. For example, a flow past a cylinder generates Von Karman vortex
shedding, which in turn imposes resultant lift and drag forces, causing the cylinder to oscillate. This
phenomenon typically occurs at a Strouhal number (fL/U , f being the frequency of vortex shedding, L
being the characteristic length scale and U being the free stream velocity) of 0.2, and was investigated
with the help of a PINN frame work by Raissi et al. [36] in the laminar flow regime. In this framework,
one way fluid-structure interaction (FSI) was employed to study the resultant oscillations of a cylinder
imposed by the flow field surrounding it. A 2D flow was studied over an elastically mounted cylinder,
which was free tomove only in the cross stream (y coordinate) direction, which was the primary direction
for VIV. The flow field surrounding it was an incompressible flow governed by the Navier Stokes, with
the streamwise direction being the x coordinate. This translated to a classical mass-spring-damper
system with the cylinder displacement being given as η.

ρηtt + bηt + kη = fL, (2.18)
where ρ, b and k are the mass, damping coefficient and stiffness respectively. fL gives the fluid lift force
which forces the VIV to occur. Four variables were evaluated namely u, v, p and η, therefore a system
of four equations was needed to close the problem. This was achieved by tracking the transport of a
given scalar quantity c in the flow field along with the Navier Stokes equations.

2.2. Physics-Informed Neural Networks (PINNs) 17

ut + uux + vuy = −px +Re−1(uxx + uyy), (2.19)
vt + uvx + vvy = −py +Re−1(vxx + vyy) + ηtt, (2.20)

ux + vy = 0, (2.21)
ct + ucx + vcy = Pe−1(cxx + cyy), (2.22)

where Pe represents the Peclet number, which is defined as LU/D, where L is the characteristic length
scale, U is the flow velocity and D is the mass-diffusion coefficient. Given the data for transport of c,
the velocities and pressure were inferred by using a PINN framework. The lift and drag forces for the
given velocity and pressure data can be evaluated as follows:

FD =

∮ (
−pnx + 2Re−1uxnx +Re−1(uy + vx)ny

)
ds, (2.23)

FL =

∮ (
−pny + 2Re−1vyny +Re−1(uy + vx)nx

)
ds. (2.24)

Here, (nx, ny) represent the outward normal for a cylinder at point (x, y), while ds is the arc length on
the cylinder surface. The neural network shown in figure 2.18 used the ’sine’ activation functions and
the Adam optimizer for training. The dimensions of the neural network were chosen to be 10 hidden
layers and 160 neurons per layer. The training data in the loss function consisted of initial and boundary
conditions for the velocities and some measured data for the scalar concentrations cn and the cylinder
displacements ηn.

Figure 2.18: PINN framework for simulating vortex induced vibration
Image Source: Raissi et al. [36]

Loss =

N∑
n=1

(
|c(tn, xn, yn)− cn|2 + |η(tn)− ηn|2

)
+

M∑
m=1

(
|u(tm, xm, ym)− um|2 + |v(tm, xm, ym)− vm|2

)
+

4∑
i=1

N∑
n=1

(
|ei(tn, xn, yn)|2

)
.

The results obtained after training the PINN have been summarized in figure 2.19. It must be noted
that the accuracy of the results is not as high as expected but the main takeaway from this study is that
PINNs can also be used for one-way coupled FSI simulations.

2.2. Physics-Informed Neural Networks (PINNs) 18

(a) Results for velocity contours

(b) Results for force predictions

Figure 2.19: PINN results for vortex induced vibrations
Image Source: Raissi et al. [36]

High Speed Flows
High speed aerodynamic flows can be modelled by using the Euler equations, which lead to discontinu-
ities in the solution in the presence of shocks. A study for solution of such high speed flows using PINNs
was performed by Mao et al. [27]. The governing equations for conservation of mass, momentum and
energy for high speed compressible flows are as follows:

∂tU +∇.f(U) = 0, x ∈ Ω ⊂ Rd, d = 1, 2 t = [0, T], (2.25)
where for the 1D case,

U =

 ρ
ρu
ρE

 , f(U) =

 ρu
ρu2 + p

u(ρE + p)

 ,

2.2. Physics-Informed Neural Networks (PINNs) 19

and for the 2D case,

U =


ρ

ρu1

ρu2

ρE

 , f = (G1, G2), Gi(U) =


ρui

ρu1ui + δi1p
ρu2ui + δi2p
ui(ρE + p)

 , i = 1, 2

. Here, ρ represents the density of the fluid, p gives the pressure, ui gives the velocity component in
each dimension, E gives the total energy and δij represents the Kronecker delta. To close this system
of equations, we require an equation of state relating pressure to total energy. This equation of state
is one possibility given as follows:

p = (γ − 1)

(
ρE − 1

2
ρ||u||2

)
. (2.26)

The aim of this study was to learn the density, velocity and pressure fields using a PINN framework
by minimizing the loss function incorporating some training data (ICs/BCs and experimental/numerical
data if available) and the governing Euler equations presented above.

Figure 2.20: PINN framework for euler equations
Image Source: Mao et al. [27]

A simulation for the 1D unsteady Euler equation was performed using the above architecture, where
collocation points NF = 1000, boundary points NBC = 60 and initial points NIC = 60 were used. Two
approaches were used for distribution of collocation points: random distribution and clustering near the
expected shock as shown in figure 2.21. Two kinds of architectures were tested and compared which
were named as HyperPa I: with 7 hidden layers and 20 neurons per layer. The second architecture
named HyperPa II: with 4 hidden layers and 40 neurons per layer. tanh activation function was used
for both the architectures. Two stage training strategy was adopted by using the Adam optimizer for
the initial training and the L-BFGS optimizer for the final training. The computational domain was
set to [0, 1], with an initial shock being given at x = 0.5, and the left and right states being given by
(ρl, ul, pl) = (1.4, 0.1, 1.0)) and (ρr, ur, pr) = (1.0, 0.1, 1.0)). Figure 2.21 depicts the results obtained
after evaluating the solutions from the trained PINN.

2.2. Physics-Informed Neural Networks (PINNs) 20

(a) Collocation points distribution strategies

(b) Results obtained after training the PINN

Figure 2.21: PINN framework for high speed flow results using Euler equations
Image Source: Mao et al. [27]

It can be clearly seen that the clustering of the collocation points in the domain gives better results for
the shock prediction, without any diffusive errors as opposed to randomly distributed collocation points.
The results for the prediction of the desired variables, have been illustrated in figure 2.22. It can be
inferred that indeed the performance of PINNs on the clustered domain was way better compared to
the domain with random distribution of the collocation points. It was proposed that there was a need
to develop a strategy for adaptive clustering of collocation points during the training process, near the
region of occurrence of the shock. Development in this field for high speed flows would be useful as
the position and orientation of shock is not always known a priori, such that the collocation points could
be clustered beforehand accordingly. Two methodologies which the authors Mao et al. [27] believe
could be useful in this regard are residual based adaptive refinement (RAR), where more points are
iteratively added in the regions of high residual values, and addition of more points in regions of high
gradients of solution.

Figure 2.22: Data values obtained from the PINN trained for depicting the Euler equations
Image Source: Mao et al. [27]

2.2. Physics-Informed Neural Networks (PINNs) 21

2.2.4. Advanced Concepts and Solvers for PINNs
Conservative PINNs
From the previous section, it is evident that the regions of high gradients in the PINN solution need spe-
cial treatment, such as increasing the density of collocation points in those regions, for better accuracy
and easier convergence of the solution. Moreover, it is widely established in literature that deep neural
networks (with a large number of hidden layers) are better suited for approximating complex functions
with steep or rapidly changing gradients [17]. This gives rise to the need for domain decomposition
while performing simulations with PINNs, where we can employ deeper neural networks in regions of
steep/rapidly changing gradients and comparatively shallower networks in remaining regions. This ap-
proach is better than employing a single deep neural network for the entire domain, as deeper neural
networks are in general harder to train due the vanishing gradients problem [29]. Therefore, to imple-
ment this idea of employing different neural networks to various subdomains of the desired domain,
the concept of conservative PINNs (cPINNs) was put forth by Jagtap et al. [17]. This approach simply
involves stitching of all the subdomains together by including a conservative flux term inside the loss
function:

L = Wup
MSEup

+WFp
MSEFp

+WIp(MSEflux +MSEavg) p = 1, 2, ..., Nsd,

where,

MSEup
=

1

Nup

Nup∑
i=1

|ui − u(xi
up
)|2,

MSEFp
=

1

NFp

NFp∑
i=1

|Fp(x
i
Fp
)|2,

MSEflux =
1

NIp

NIp∑
i=1

|fp(u(xi
Ip)).n− fp+(u(xi

Ip)).n|
2,

MSEavg =
1

NIp

NIp∑
i=1

|up(x
i
Ip)− {{u(xi

Ip)}}|
2.

Here, Nsd is the number of subdomains (a sample representation has been given in figure 2.23), F is
the residual of governing PDEs, Wup , Wfp and WIp are the weights for boundary/initial condition loss,
residual loss and interface loss respectively. fp.n represents the interface flux for a subdomain p (and
all surrounding domains being p+). up, uF and uI represent the training points/BCs and ICs, collocation
points and interface points. The average velocity is given by:

{{u}} =
up + u+

p

2

Figure 2.23: Illustration of a typical complex domain suited for cPINN formulation. The complex domain can be represented as
a combination of distinct simpler domains represented in different colours and separated by interface points (yellow). A

different neural network architecture can be used to train a constituent domain depending on the complexity of the expected
solution in each domain

Image Source: Jagtap et al. [17]

2.2. Physics-Informed Neural Networks (PINNs) 22

NVIDIA SimNets
NVIDIA SimNets is a recent development by the team of NVIDIAwhich is quoted to be an ’AI accelerated
multiphysics simulation framework’. It uses PINNs to solve multiphysics problems, transient problems
as well as parameteric PDEs in a fully unsupervised manner, developed by Hennigh et al. [14]. It
claims to be the first PINN framework that is capable of solving RANS turbulence equations using
a zero equation turbulence model, which are usually hard to converge due to chaotic fluctuations in
the flow field [14]. This has been demonstrated by solving a turbulent heat transfer problem coupled
with fluid dynamics, for a Reynolds number Re = 1329. One way coupling is ensured by training two
separate networks, one for fluid flow, which is trained first and one for heat transfer which is trained
subsequently. The SimNet architecture and the results of this simulation are depicted in figure 2.25.
The main advantage of NVIDIA SimNets is that it can be readily used as an opensource software
(like OpenFoam for CFD) for performing simulations by the mechanism of PINNs in fully unsupervised
manner for various kinds of physics and their combinations. The details of operating NVIDIA SimNets
can be found in [37].

Figure 2.24: SimNets structure
Image Source: Hennigh et al. [14]

Figure 2.25: SimNet based solution for a turbulent multiphysics channel flow using Navier Stokes equations for a coupled
fluid-dynamic and heat transfer problem. The velocity(u) contours and the Temperature (T) contours have been illustrated. A
comparison of solution contours predicted by SimNets has been shown with respect to the results from numerical simulation

performed using OpenFoam.
Image Source: Hennigh et al. [14]

Bayesian PINNs and Uncertainty Quantification
Uncertainty quantification is an important parameter to quantify whether the predictions made by a sur-
rogate model (neural network mapping inputs to outputs) are trustworthy or not. Any trained neural
network model has two fundamental types of uncertainties: Aleatoric uncertainty and epistemic uncer-
tainty. Aleatoric uncertainy is due to noise in the training data, and cannot be eliminated by introducing
more training data. This type of uncertainty is easy to estimate by analysing the data itself, but its

2.2. Physics-Informed Neural Networks (PINNs) 23

elimination/minimization is a tedious process as it might require improving the accuracies of sensors
and other hardware used for gathering the data. Epistemic uncertainty is the uncertainty of the trained
neural network model itself. It is hard to predict but it can be minimized by introducing more and more
training data. Liu et al. [41] have developed B-PINNs, standing for Bayesian physics-informed neu-
ral networks, which are capable of estimating the uncertainty of a surrogate model. The basic high
level concept of B-PINNs is to replace all the deterministic individual weight values by some probabil-
ity distributions, which are initialised as ’priors’ P (θ). After introducing the training data in the form of
’evidence’ for modifying the prior, we obtain the likelihood P (D|θ). After training, the probability distribu-
tion of the weights obtained is termed as ’posterior’ distribution. Once trained, repeated evaluations are
performed (sampling) by passing the input space through the neural network (Monte Carlo dropouts
are also used [41]) and the mean and variance of the scattered output data is calculated. A detailed
analysis of Bayesian PINNs is out of scope of this work but can be found in [41].

Figure 2.26: Framework of bayesian PINNs
Image Source: Liu et al. [41]

Further, it is important to highlight various aspects which contribute to epistemic uncertainty, which
can be classified to three broad categories of errors, namely the approximation error, generalization
error and optimization error [25]. Approximation error highlights the difference between the actual
output for a function u and the closest approximate output uF which can be provided by the neural
network formulation of that function, given the limited dimensions of the neural network. Here F denotes
the family of all functions that can be represented by the neural network. Generalization error represents
the capacity of this family F . Finally, the optimization error highlights the error between the true minima
for the loss function compared to the minima achieved during the training process.

Figure 2.27: Errors contributing to epistemic uncertainty in PINNs
Image Source: Lu et al. [25]

2.2. Physics-Informed Neural Networks (PINNs) 24

2.2.5. Convergence of PINNs
Some important considerations which influence the convergence of PINNs are summarized as follows:

1. Frequency Principle: This principle states that neural networks learn solutions starting from
lower frequencies to higher frequencies. Thereby, a neural network needs to be trained longer to
obtain high frequency features in the solution. This phenomenon has been studied by Zhang et al.
[45] and also pointed out by Markidis [29]. Lu et.al [25] concluded that existence of higher order
derivatives in the governing equation might refute this principle and even higher frequencies are
learnt almost simultaneously with the lower frequencies.

2. Adaptive Activation Functions: This concept was proposed by Jagtap et al. [16], where the
convergence of the training process of a PINN can be accelerated by introducing two new hyper-
parameters, a constant n with a fixed value greater than 1 (typically less than 5), and another
trainable parameter a, which is initialised as 1/n and it’s value is updated at every iteration during
the training process by the optimizer, along with the weights of the neural network. The modified
activation function switches from tanh(x) to tanh(nax). This enhances the representation power
of the neural network as the activation functions are allowed the freedom to adjust their slope for
more accurate prediction of the output. This idea was further extended by Jagtap et al. [15] to
’locally’ adaptive functions, where each neuron is allowed to have a separate value of n and a.
This further enhances the representation power and degree of freedom of the neural network but
also increases the computational requirements manifold.

3. Gradient Enhanced PINN: This concept was proposed by Yu et al. [43], who conducted a study
and concluded that the convergence rate for training a PINN could be increased by minimizing the
gradient of the PDE residual along with the PDE residual itself in the loss function. For example,
for training a Poisson equation, the loss function would contain an addition of mean squared
errors of the PDE residual ∆u− f and the gradient of this PDE residual, that is ∇3u−∇f .

4. Dimensions of PINNs: The number of hidden layers and neurons per layer are important hy-
perparameters which determine the successful convergence as well as accuracy of the PINN
solutions. In general, from the author’s understanding and experience, an optimal PINN architec-
ture comprises a very large number of neurons per hidden layer (width) compared to the number
of hidden layers used (depth). This can be attributed to two main observations that can be made
from the available literature: deeper neural networks are harder to converge subject to the van-
ishing gradients problem [29] and deep neural networks with infinitely many neurons per layer
converge to Gaussian processes (Wang et al. [40]), which helps in evaluating the convergence
characteristics of PINNs. Moreover, an empirical relation of 32 neurons per output variable was
proposed by Raissi et al. [36] whereas the number of hidden layers were kept limited to 10. Usu-
ally, the width of a PINN network is of the order of 100s of neurons, whereas the number of hidden
layers are limited to less than 10.

3
Operator Learning

In the previous chapter, we have focused on the analysis of PINNs, which are capable of represent-
ing one particular instance of a PDE or a system of PDEs by learning the mappings between finite
dimensional Euclidean spaces (Rinput dim) to (Routput dim). Thereby, such frameworks are limited to one
particular value of source function and boundary/initial conditions. On the contrary, if we could learn an
operator itself, which can provide mapping between infinite dimensional function spaces, our surrogate
model would not be limited to only one particular instance of PDE, it could rather represent a family of
PDEs. For example, if we consider an example of Poisson equation, by using a PINN framework, we
can learn an equation ∆u = f , for one particular mapping between a given source function f and its
solution u. On the other hand if we learn the Laplacian operator∆ itself, we can map any given function
f to its corresponding solution output u by passing it through the Laplacian operator, thereby having
the capability to represent a large family of PDEs. This concept has given rise to research in the field of
neural operators. There are two main schools of thought for using neural operators: DeepONets given
by Lu et al. [26] and Fourier Neural Operators given by Kovachki et al. [20] and further extended by Li
et al. [21].

3.1. DeepONets
The core idea of DeepONet framework for operator learning was derived from the work of Chen and
Chen [6], which proved that neural networks were capable for representing operators, which can be
inferred from the following:

Theorem 1 - Universal Approximation Theorem for Operator : Suppose that X is a Banach
space and σ is a continuous non-polynomial Banach space,K1 ⊂ X,K2 ⊂ Rd are two compact sets in
X and Rd, respectively. V is a compact set in C(K1),G is a nonlinear continuous operator, which maps
V into C(K2). Here C(K) represents the Banach space of all continuous functions defined on K with
norm ‖f‖C(K) = maxx∈K |f(x)|. Then for any ϵ > 0,there are positive integers n, p and m, constants
cki , ξkij , θki , ζk ∈ R, wk ∈ Rd, xj ∈ K1, i = 1, ..., n, k = 1, ..., p and j = 1, ...,m, such that:∣∣∣∣∣∣∣∣∣∣

G(u)(y)−
p∑

k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju(xj) + θki


︸ ︷︷ ︸

branch

σ(wk.ẏ + ζk)︸ ︷︷ ︸
trunk

∣∣∣∣∣∣∣∣∣∣
< ϵ,

holds for all u ∈ V and y ∈ K. Here, C(k) is the Banach space of all continuous functions defined on
K with norm ||f ||C(K) = maxx∈K |f(x)|.
The proof of theorem 1 can be found in [6]. An extension to this theorem (sharing the same notations)
was given as theorem 2 by Lu et al. [24], and its proof can also be found in [24].

Theorem 2 - Generalized Universal Approximation Theorem for Operator : Suppose that X is
a Banach space , K1 ⊂ X, K2 ⊂ Rd are two compact sets in X and Rd, respectively, V is a compact
set in C(K1). Assume that G : V −→ C(K2) is a nonlinear continuous operator. Then for any ϵ > 0,

25

3.1. DeepONets 26

there exist positive integers m, p, continuous vector functions g : Rm −→ Rp, f : Rd −→ Rp and
x1, x2, ..., xm ∈ K1, such that∣∣∣∣∣∣G(u)(y)− 〈g(u(x1), u(x2), ..., u(xm))︸ ︷︷ ︸

branch

, f(y)︸︷︷︸
trunk

〉

∣∣∣∣∣∣ < ϵ,

holds for all u ∈ V and y ∈ K2, where 〈·, ·〉 denotes the standard inner product in Rp. Furthermore,
the functions g and f can be chosen as diverse classes of neural networks, which satisfy the classical
universal approximation theorem of functions, for example, (stacked/unstacked) fully connected neural
networks, residual neural networks and convolutional neural networks.

On the basis of the Theorem 1 and Theorem 2 shown above, the neural network structure of Deep-
ONets was framed as a juxtaposition of two neural networks, namely branch net, which acts as a func-
tional mapping between function spaces as G(u) (G is the operator and u is the input function), and a
trunk net, which evaluates the real value for the function output of the branch net at a given input point
y. The resulting architecture that was proposed for DeepONets has been illustrated in figure 3.1. The
stacked DeepONet architecture was inspired by Theorem 1 having one trunk network and p branch net-
works, whereas Theorem 2 gave rise to the unstacked DeepONet architecture having one trunk network
and correspondingly one branch network. DeepONets are trained using supervised learning, by apply-
ing mean squared error between the DeepONet output and the training data ([u(x1), u(x2)..u(xm)],y)
in the loss function.

Figure 3.1: DeepONet framework
Image Source: Lu et al. [26]

DeepM&MNet: A DeepONet application
The concept of DeepM&MNets was given by Mao et al. [28], where M&M stands for multiphysics and
multiscale problems. In this approach, multiple DeepONets are trained for different types and scales
of physics, and combined together to generate the overall deep learning architecture. The problem
taken up by Mao et al. to demonstrate this architecture pertained to hypersonic flows, where various
kinds of dissociative reactions take place in the flow at the atomic level, which in turn influence the
composition of the gas and subsequently its properties like viscosity, specific heat capacity (Cp) , ratio

3.1. DeepONets 27

of heat capacities (γ) etc. The change in these fluid properties also influence the flow properties at
macroscopic level, particularly the velocity U and temperature T .

Figure 3.2: Hypersonics multiphysics coupling
Image Source: Mao et al. [28]

To study the coupled dynamics between fluid flow and chemical reactions, two kinds of DeepONets
were trained independently: GU,T : (U, T) −→ ρi i = N,NO,O,N2, O2 for evaluating fluid gas proper-
ties from flow parameters and Gρi

: ρi −→ (U, T) i = N,NO,O,N2, O2 for the opposite relation/map-
ping. These individual DeepONets can be used as building blocks to construct the desired coupled
physics for hypersonic flows.

(a) Structure of individual DeepM&MNet network

(b) Types of DeepM&MNets used

Figure 3.3: DeepM&MNet architectures trained for their respective uncoupled physics for flow properties as well as gas
reactions for a hypersonic flow
Image Source: Mao et al. [28]

The constituent DeepONets were trained via supervised learning using mean squared error loss
metric. Once trained, the DeepONets were combined to represent the complete coupled physics. The
architecture used for combining DeepONets depends on the availability of training data. If data is
available for densities as well as flow characteristics namely velocity and temperature (U, T), one may
use a parallel combination of DeepONets. A more realistic hypothesis would be that only the flow data
is available for training purpose (U, T) as these observations can be made easily at macroscopic level.
This formulation would require the use of a series of combinations of DeepONets, where the densities
predicted from GU,T are fed as inputs directly to Gρi

. In addition to the respective mean square losses,
an additional term can be added to the loss which ensures continuity that is, ρU(x) = constant. This
term may be turned on/off using it’s weight coefficient wG. The results for both the formulations have
been illustrated in figures 3.4 and 3.5. It can be seen that the results generated by both formulations

3.1. DeepONets 28

agree reasonably well with the real physics. The inherent disadvantage of using DeepONets in this
case is the need for training data for several variables, which might be very expensive to generate
(computationally for simulations as well financially for experiments) for hypersonic flows. A formulation
to overcome this limitation is discussed in the next section.

(a) Structure of parallel network for coupling of various physical phenomena (fluid flow and gas reactions) to represent hypersonic flows

(b) Results from parallel network for coupled reactive flow physics for hypersonic flows

Figure 3.4: Parallel DeepM&Mnet architecture and results obtained for the target variables for a coupled reactive hypersonic
flow

Image Source: Mao et al. [28]

3.2. Physics Informed DeepONets 29

(a) Structure of series network for coupling of various physical phenomena (fluid flow and gas reactions) to represent hypersonic flows

(b) Results from series network for coupled reactive flow physics for hypersonic flows

Figure 3.5: Series DeepM&Mnet architecture and results obtained for the target variables for a coupled reactive hypersonic
flow

Image Source: Mao et al. [28]

3.2. Physics Informed DeepONets
The concept of physics-informed DeepONets was introduced by Wang et al. [39] to overcome the
limitation of DeepONets being solely dependent on supervised training. The fundamental principle
which has driven this idea is the concept of automatic differentiation. The output of a DeepONetG(u)(y)
is differentiable with respect to it’s inputs, therefore a PDE residual can be generated for the loss

3.3. Fourier Neural Operators 30

function for training the DeepONet. This makes DeepONets essentially similar to PINNs, only the
neural network architecture between the inputs and the outputs being different. The loss function is
similar to that of PINNs and comprises of boundary/initial condition loss with the given corresponding
data labels, and the residual PDE loss. The use of this approach was experimented with the reaction
diffusion equation:

∂s

∂t
= D ∂2s

∂2x
+ ks2 + u(X) (x, t) ∈ (0, 1]× (0, 1], (3.1)

where D = 0.01 is the diffusivity,k = 0.01 is the reaction rate, u(x) is the source function and s(x) is the
solution. The physics informed DeepONet architecture along with the results obtained for the above
stated equation 3.1 are shown in figure 3.6. This methodology seems very promising as it seems to
combine the best of both worlds pertaining to data independence of PINNs and better generalization
ability of DeepONets’ operator approach.

(a) Structure of physics informed DeepONet

(b) Results for reaction diffusion equation

Figure 3.6: Physics informed DeepONets
Image Source: Wang et al. [39]

3.3. Fourier Neural Operators
A second school of thought that put forth the idea of using neural operators for mapping function spaces
in scientific simulations was given by Kovachki et al. [20]. The fundamental principle of this approach
relied on establishing an analogy with classical neural networks which are used to map functions be-
tween Euclidean spaces, using linear algebraic equations inside nonlinear activation functions for a
series of hidden layers. Such neural networks are capable of representing any non-linear functions as
established by the Theorem 1 by Chen and Chen [6].

ŷ = σ(wi+1(σ(wizi−1 + bi) + bi+1)...

Similarly, it is possible to represent nonlinear operators (analogous to nonlinear functions) by stack-
ing linear operators (analogous to linear algebraic equations) inside nonlinear activation functions σ.
Some theoretical concepts about linear operators are presented in brief as follows. We assume L is a
linear operator, for example Laplacian ∆, that maps a solution u(x) to an output function/source term
f(x):

L(u) = f,

3.3. Fourier Neural Operators 31

then, to recover the solution u from the source function f , we can apply a reverse linear operator
L−1 (if it exists at all, that is when there are no non-trivial solutions for the equation L(u) = 0) on
the source function f . This is again analogous to recovery of solution x from a system of equations
Ax = b by equating x = A−1b (or using pseudo inverse A+). In linear operators, the process of solving
for L−1f can be substituted by performing a convolutional integral on the source function f with an
appropriate Green’s function G over the entire domain D, provided the solution has homogeneous
boundary conditions:

u = N−1f =

∫
D
G(·, y)f(y) dx, (3.2)

for example, for Poisson equation −∆u = f , with homogeneous boundary conditions in domain x ∈
(0, 1), the corresponding Green’s function is given as:

G =
1

2
(x+ y − |y − x|)− xy (x, y) ∈ [0, 1]. (3.3)

This Green’s function can be substituted by a kernel operator in the neural network framework having
weights θ according to Kovachki et al. [20]:

K(f) =

∫
D
κθ(·, y)f(y) dy.

Now, we also know that a convolution operation in a given space is equivalent to a simple multiplication
operation inside the corresponding transformed Fourier space. Thereby, according to Kovachki et al.
[20], the kernel κθ could be replaced by a simple matrix Rϕ which can be multiplied to the Fourier
transformed input (using fast Fourier transform FFT for discrete inputs) and subsequently one can
apply inverse Fourier transform (iFFT) to get back to the original solution space. This gave rise to
Fourier neural operators [21]. The structure of a single hidden Fourier layer is given in figure 3.7. An
additional matrix W is added to map the inputs to outputs to increase the representation power of the
Fourier layers such as for non-periodic solutions. Also the simulation results obtained by using Fourier
neural operators have been presented for the vorticity variant of transient Navier Stokes. Also, to test
whether the hypothesis of assuming that the neural network kernel κθ actually assumes the role of
Green’s function, the trained kernel for poisson equation has been compared to the Green’s function
(3.3) in figure 3.8.

(a) Structure of fourier neural network

(b) Results from fourier neural network for vorticity equation

Figure 3.7: Fourier Neural Operator Networks
Image Source: Li et al. [21]

3.4. Physics Informed Neural Operator (PINO) 32

Figure 3.8: Validation of green’s function hypothesis: Left Image represents the learned kernel function while the Right Image
illustrates the analytical green’s function.

Image Source: Kovachki et al. [20]

3.4. Physics Informed Neural Operator (PINO)
Fourier Neural Operators like conventional DeepONets also have the limitation of being dependent on
supervised learning. This limitation was overcome by the work of Li et al. [22] by developing physics
informed neural operators (PINOs). In this framework, a two stage training process was prescribed for
embedding the knowledge of physics into the PINO framework. First, some training data or PDE loss
(residual defined using automatic differentiation) was used to train the neural operator for representing
a family of PDEs. Next, this trained neural operator was used as ansatz to further train for a particular
PDE instance of interest. The second step enhanced the accuracy of the prediction but could be
avoided as well. This formulation was tested on chaotic Kolmogorov flow (Re = 500) and lid driven
cavity flow, the results for which have been summarized in the following figure 3.9

Figure 3.9: Physics Informed Neural Operators
Image Source: Li et al. [22]

4
Generative Modelling for Geometry

This domain of deep learning is used to generate low dimensional representations of various geome-
tries into latent space vectors, thereby enabling the generation of a wide range of geometries solely
by manipulating the latent space variables. Generative modelling can broadly be classified into two
techniques: auto-encoders and generative adversarial networks.

4.1. Auto-encoders
Auto-encoders (AE): The vanilla formulation of auto-encoders essentially consists of two component
networks namely an encoder and a decoder. An encoder maps an input of given dimensions onto a
latent space of significantly less dimensions. The decoder on the other hand maps the latent space
vector onto an output of same dimensions as the input, such that it mimicks the input. The training
process can be carried using the conventional MSE (mean squared error) loss between input and
output vector. After training the auto-encoder framework, the encoder is capable of generating the
original input solely from the latent space, therebymaking the low dimensional latent space fully capable
of representing a significantly higher dimensional entity.

Variational Auto-encoders (VAE): The classic auto-encoder is not robust enough to be able to work
on representations of the latent space which have not been seen during the training process. This
limitation is overcome by introducing variational auto-encoders, where the deterministic weights of the
latent layer are replaced by a probability distribution, represented by a mean µ and variance σ. This
makes the auto-encoder more robust and capable of generating similar images based on similar latent
space settings which have not been seen during the training process. For an input x, latent vector z
and output x̂, the encoder now represents a probability distribution qϕ(z|x) and the decoder represents
the probability distribution pθ(x|z) [1]. The loss function is now given as:

Loss(θ, ϕ, x) = reconstruction loss + regularization loss,

where, reconstruction loss is the same as that used in classic auto-encoder (mean squared error) and
regularization loss tries to match the probability distributions, the prior distribution p(z) and encoder dis-
tribution qϕ(z|x). This can be achieved by minimizing the Kullback-Leibler (KL) divergence [1] between
these probability distributions:

DKL(qϕ(z|x) ‖ pθ(z)) =
∑
z

qϕ(z|x)log
(
qϕ(z|x)
pθ(z)

)
. (4.1)

The KL divergence basically quantifies the difference in two probability distributions. For example,
KL divergence between two Gaussian distributions of slightly different means and variances would be
close to zero, whereas it would be a very large value when computed over a Gaussian and a uniform
probability distribution.

Conditional Variational Auto-encoders (CVAE): These auto-encoders have additional nodes at en-
coder input as well as decoder input so that the images generated by the CVAEs conform to this ad-
ditional information given in the form of labels. The use of auto-encoders for parametrization of airfoil

33

4.1. Auto-encoders 34

geometries was studied by Yonekura et al. [42]. Yonekura et al. [42] demonstrated the use of CVAEs
for the generation of auto-encoders where lift coefficients CL were given as conditional labels

Figure 4.1: Illustration of different auto-encoder types
(a) Auto-encoder (b) Variational auto-encoder (c) Conditional variational auto-encoder

Image Source: Yonekura et al. [42]

(a) Training Phase

(b) Testing Phase

Figure 4.2: Blue dashed curves represent the inputs for training the auto-encoder, while the red curves are the corresponding
outputs generated by the trained auto-encoder for airfoil geometry prediction.

Image Source: Yonekura et al. [42]

DeepSDF
DeepSDF is a ready to use library which can be used for generative modelling of complex geometries
using auto-encoders. DeepSDF was developed by Park et al. [32]. The main advantage of using
DeepSDF comes from its ability to work with very complex geometries by representing them as signed
distance functions (SDFs). SDFs inherently use binary classification of coordinate points as lying out-
side the geometry (SDF > 0) or inside the geometry (SDF < 0). Thereby, the contour SDF = 0 gives
the shape of the geometry. This approach can be easily extended to 2D as well as 3D geometries.

4.2. Generative Adversarial Networks 35

Figure 4.3: Representation of complex geometry using signed distance function (SDF)
Image Source: Park et al. [32]

Another interesting contribution that was given by Park et al. [32] was pertaining to auto-encoders,
where they proposed to train an encoder less network called auto-decoder. In a conventional auto-
encoder, the encoder is rendered useless after training as the decoder along with the latent space
vector can successfully generate the desired outputs. Thereby, one can simply train the latent space
vector with the decoder in a supervised manner by initialising the decoder weights and keeping them
as constant.

Figure 4.4: Architecture of auto-encoder and auto-decoder
Image Source: Park et al. [32]

4.2. Generative Adversarial Networks
Generative Adversarial Networks (GANs) were proposed by Goodfellow et al. [12] for generative mod-
elling. This formulation involves two networks: generator G and discriminatorD. The role of the genera-
tor is to generate new data which should mimic a given reference dataset. The role of the discriminator
is to successfully distinguish between the data generated by the generator and the actual reference
dataset. Therefore, it can be concluded that the training has converged, when the generator is able to
successfully fool the discriminator as described in figure 4.5. The objective function for training a gen-
erative adversarial network is given by evaluating the value function V as a function of the generator
and the discriminator probability distributions G and D respectively :

min
G

max
D

V (D,G) = Ex≈pdata(x)[log D(x)]︸ ︷︷ ︸
Discriminator’s prediction on real data x

+ Ez≈pz(z)[log(1−D(G(z))))]︸ ︷︷ ︸
Discriminator’s prediction on fake data produced by generator G(z)

.

(4.2)

4.2. Generative Adversarial Networks 36

The objective function represented in equation 4.2 is used for training generative adversarial net-
works. The goal of the discriminator is to maximize the given value function V , to be able to successfully
distinguish between the real data and the fake generated data. On the other hand, the goal of the gen-
erator is to minimize the value function V so that it can successfully fool the discriminator into predicting
that the fake data coming from the generator is a part of the actual real dataset.

Figure 4.5: GANs training process where the discriminative distribution is given by the blue dashed line, the data distribution is
given by the black dotted line and the generative distribution is the green solid line. As the training process proceeds from (a) to

(d), the generative distribution moves closer to the data distribution and the discriminative distribution becomes a uniform
distribution, making it hard for the discriminator to differentiate between the actual data and generated data, making the

discriminative probability 1/2.
Image Source: Goodfellow et al. [12]

These GANs were successully used by Chen et al. [7] for generating airfoil shapes. The main
shortcoming of using this approach is that it gives discrete outputs, as this framework was developed
for working with pixelated images. This might lead to inappropriate shapes being generated for airfoils
which are not continuous or sufficiently smooth. To overcome this shortcoming, one can use bezier
curves [8], which are capable of generating sufficiently smooth functions subject to a set of given control
points. Thereby, the discrete outputs generated from GANs can be fed into the bezier framework as
control points, thereby ensuring a smooth and continuous geometry being generated for the resultant
airfoils.

Figure 4.6: Image Source: Chen et al. [7]

5
Parametrized PINNs for the Poisson

Equation
In the previous chapters 1,2,3 and 4, an extensive literature study was presented to summarize the
work done by various researchers around the world in the fields of physics informed machine learning
and generative modelling. From now on, that is in chapters 5, 6, 7 and 8, the details regarding the
work carried out by the author as a part of the undertaken thesis have been given. The first case that
was explored for solving a parametrized system using PINNs was that of the two dimensional Poisson
equation, solved over a unit square domain in ξ, η coordinates,

∂2u

∂ξ2
+

∂2u

∂η2
= f(ξ, η). (5.1)

To attain a formulation with parametrized domain for the given Poisson equation, a coordinate trans-
formation was performed, to convert the system domain from a unit square to an arbitrary rectangular
domain, defined by its geometrical parameters namely the horizontal dimension (length) X0 and the
vertical dimension (height) Y0. This process is visualised in figure 5.1.

Figure 5.1: Transformation scheme for converting the Poisson equation from the unit square coordinate system to a
generalised rectangular coordinate system

(a) Unit square solution (b) Transformed rectangular solution

Figure 5.2: Analytical solutions for original unit square domain and transformed rectangular domain

37

5.1. Coordinate Transformation 38

Source Function
For a given variable u(ξ, η) in the unit square domain Ω̂ = (0, 1)× (0, 1), for the given Poisson equation
(5.1), we assume the solution to be:

u(ξ, η) = sin(πξ)sin(πη), (5.2)

Thereby, the desired source function f to satisfy the given solution for the Poisson equation can be
derived as follows:

∂u

∂ξ
= πcos(πξ)sin(πη),

∂2u

∂ξ2
= −π2sin(πξ)sin(πη),

similarly,
∂2u

∂η2
= −π2sin(πξ)sin(πη),

Therefore,

f(ξ, η) =
∂2u

∂ξ2
+

∂2u

∂η2
= −2π2sin(πξ)sin(πη) = −2π2u. (5.3)

5.1. Coordinate Transformation
To convert the Poisson equation from the original unit square domain to any given rectangular domain
of arbitrary dimensions defined by parametersX0 and Y0, we can perform the coordinate transformation
as follows:

x = ξX0, ξ ∈ [0, 1], (5.4)

y = ηY0, η ∈ [0, 1]. (5.5)

The derivatives can be converted between the two coordinate systems using the chain rule of deriva-
tives:

∂u

∂x
=

∂u

∂ξ
.
∂ξ

∂x
=

∂u

∂ξ
.
1

X0
,

∂2u

∂x2
=

1

X0
.
∂

∂x

(
∂u

∂ξ

)
=

1

X0
.
∂

∂ξ

(
∂u

∂x

)
,

=
1

X0
.
∂

∂ξ

(
∂u

∂ξ
.
1

X0

)
=

1

X2
0

.
∂2u

∂ξ2
,

∂2u

∂ξ2
= X2

0 .
∂2u

∂x2
.

Similarly,
∂2u

∂η2
= Y 2

0 .
∂2u

∂y2
.

Therefore, the corresponding governing equation in the transformed coordinates can be written as:

X2
0

∂2u

∂x2
+ Y 2

0

∂2u

∂y2
= f(

x

X0
,
y

Y0
), (5.6)

with the corresponding solution being

u = sin(π x

X0
)sin(π y

Y0
).

It should be noted that the assumed solution in both the coordinate systems inherently ensures a
homogenous Dirichlet boundary condition, therefore it has not been explicitly mentioned.

5.2. Solution for a Single Geometry 39

5.2. Solution for a Single Geometry
The first formulation of the deep learning pipeline was developed to solve the given Poisson equation
(5.6) on a single rectangular geometry, with the intention of subsequently being extended to accommo-
date variable geometries parametrized by their dimensions X0 and Y0, respectively. For this case, the
geometry parameters were set to (X0, Y0) = (2, 1).

Mesh
The mesh in this context refers to the set of input points that the neural network would receive during
the training process for learning the desired Poisson equation. The mesh needs to be divided into
two main groups of points, namely interior (or collocation) points and the boundary points. The interior
points ensure that the neural network is able to learn the desired PDE throughout the interior of the
domain, whereas the boundary points are provided to impose the desired boundary condition in addition
to the interior PDE solution. The different groups of mesh points have been illustrated in figure 5.3. A
standardised mesh resolution of 20X0 × 20Y0 collocation points and 50X0 × 50Y0 boundary points was
used for all the test cases.

Figure 5.3: Distribution of interior and boundary points for the input mesh

Neural Network
As explained in chapter 2 and depicted in figure 2.7 for PINNs, the neural network for a PINN formulation
consists of two parts, where the first part maps the input mesh points (x and y along with other inputs if
necessary) to the desired solution variable (single variable u in the present case) and the second part
formulates the desired PDE by taking analytical derivatives of the output variables, and formulating the
loss function in the form of a PDE residual (explained in the upcoming section). The (representative)
structure of the solution mapping part of the neural network is illustrated in figure 5.4. For capturing the
solution over a single geometry, we simply need to map the coordinates (x and y) of the mesh points to
the solution u. The network dimensions were finalised to be 8 hidden layers with 40 neurons per layer,
obtained via a parametric study. ’Tanh’ was used as the activation function to allow for the calculation
of second order derivatives via automatic differentiation to define the PDE residual as loss function.

Figure 5.4: Solution mapping fully connected neural network architecture for a fixed geometry. This is a representative neural
network to show the mapping from inputs to outputs, the actual neural network contained 8 hidden layers with 40 neurons per

layer

5.2. Solution for a Single Geometry 40

Loss Function Formulation
Ideally the loss functions for physics informed neural networks should eliminate the need to using any
sorts of training data, as such data for training neural networks to learn PDEs would be needed to be
generated via classical numerical techniques, thereby defeating the entire purpose of attempting to
replace classical numerical solver schemes with physics informed deep learning. The neural network
has to decode two types of input data points, namely the interior/collocation points and the boundary
points. The solution values at the collocation points need to be obtained by solving the desired PDE,
whereas the boundary points come with their prescribed data values (assuming only Dirichlet bound-
ary conditions throughout the scope of this thesis) which also need to be learnt and satisfied by the
underlying neural network simultaneously with the PDE solution. Therefore, as described in chapter 2
the global loss function formulations for PINNs are usually a weighted superposition of two loss formu-
lations, namely and PDE loss (for the interior points) and a data loss (for boundary points as well as
some interior data points if training data is available). In our case, we assume the weights of PDE loss
and data loss should add to unity. Therefore our loss formulation becomes a slightly modified version
of equation 2.2

Ltotal = wLPDE + (1− w)Ldata. (5.7)

The PDE loss would simply be the residual of the governing equation 5.1.

Lpde =
1

Npde

Npde∑
j=1

(
X2

0

∂2uj

∂x2
+ Y 2

0

∂2uj

∂y2
− f(

xj

X0
,
yj
Y0

)

)2

interior points j

, (5.8)

Ldata =
1

Ndata

Ndata∑
i=1

(u(xi, yi)− ui)
2
boundary points i. (5.9)

Training of Neural Network
The weight w used for the loss function was set to the value of 0.01, considering that it is quite difficult
for the PINN to satisfy the homogeneous Dirichlet boundary conditions along with the interior PDE
solution, which may vary from case to case. The learning rate was set to be 0.0001. The total number
of iterations was set to be 100000. Moreover, the set of input mesh points (interior and boundary
points) were regenerated randomly after every 5 iterations, thereby increasing the overall resolution of
the input mesh without increasing the computational load for a single iteration. It should be noted that
this technique of super-resolution by periodic perturbation of the input mesh is a distinct advantage of
neural network based techniques over classical numerical methods, which also help in convergence to
very low loss functions values, along-with ensuring a regularisation mechanism against overfitting on
a fixed mesh.

(a) Loss variation with iterations/epochs (b) Loss values attained in final result

Figure 5.5: Loss variation during training for Poisson equation on a fixed geometry

5.2. Solution for a Single Geometry 41

Results
As depicted in figure 5.5, the loss converged quite smoothly to a very low value of the order O(1e− 7),
during the training process, owing to the optimal selection of parameters (attained after repetitive hit
and trial while varying the various hyperparameters such as loss weights, learning rate, width and depth
of the network etc.) in addition to the perturbation strategy of mesh points. Therefore, the final results
from the trained PINN were expected to be highly accurate, which have been illustrated in figure 5.6
as follows. It can be observed that the point wise errors never exceed O(1e − 4), thereby making the
predictions reasonably accurate and reliable.

(a) Deep learning based solution contours

(b) True solution contours

(c) Point wise error variation

Figure 5.6: PINN based results for Poisson equation on a single transformed domain

5.3. Solution for Parameterized Variable Geometry 42

5.3. Solution for Parameterized Variable Geometry
After successfully obtaining more than satisfactory results for training a PINN on a Poisson equation
for a fixed geometry, the next step was taken to build a deep learning pipeline capable of producing
instantaneous results upon training for a given equation (Poisson equation) on a variable geometry,
parametrized by its dimensions X0 and Y0, without the need for performing repeated simulations for
each geometry as opposed to classical numerical techniques. It was decided to include the geometry
parameters X0 and Y0 also in the input, expecting the neural network to be able to capture the relation-
ship of the mesh points with their respective geometries. This approach/architecture shown in figure
5.7 turned out to be successful in capturing various geometries for the given Poisson equation, when
used in conjunction with the same hyper-parameters and training strategy as used for the previous
case with fixed geometry.

Figure 5.7: Solution mapping fully connected neural network architecture for parametrized varying geometry. This is a
representative neural network to show the mapping from inputs to outputs, the actual neural network contained 8 hidden layers

with 40 neurons per layer

Figure 5.8: Results for trained PINN on new architecture (figure 5.7) for different geometry inputs without repetitive simulations

5.3. Solution for Parameterized Variable Geometry 43

Test Cases
The geometries for input meshes were generated by randomly picking the dimensions X0 and Y0 dur-
ing the perturbation steps within the training process as explained in the previous section. Both X0

and Y0 were independently assigned a dimension unit from a given selection of values, for example
one of the sample sets being an integer among {1, 5, 9}, called the ’wide’ sample set, as the given
subsequent values differ by a margin of 4 units. Similarly, a ’narrow’ sample set with the dimension
values comprising {1, 3, 5, 7, 9} was also tested. The goal of this study was to determine the impact of
the frequency of the geometry parameters responsible for generating the training data points on the
interpolation capability of the neural network, as ideally we would prefer to be able to train the neural
network on limited geometry parameter values, without compromising with our interpolation accuracy of
the trained PINN. The final result of the study was that the underlying PINN which was trained with the
’wide’ sample set of parameter values performed better on domains which it had seen during the train-
ing (for example (X0, Y0) = (5, 1)), whereas the PINN trained with the ’narrow’ sample set performed
better during interpolation on domains which had not been seen during the training process by either
of the PINNs. But we witness a compromise on the overall accuracy of the PINN results compared to
the case for fixed geometry. This behaviour of the PINNs could be attributed to the fact that we are
trying to accommodate more geometry-solution pairs on a given neural network of fixed dimensionality
(weights and biases), thereby compromising the the accuracy of the solution for a single geometry.

(a) Results for a geometry not seen during training
on wide sample set

(b) Results for a geometry not seen during training
on wide sample set

Figure 5.9: Comparison of results between PINNs trained on wide and narrow sample sets for a geometry not seen during
training

5.3. Solution for Parameterized Variable Geometry 44

(a) Results for a geometry seen during training on wide sample set (b) Results for a geometry seen during training on wide sample set

Figure 5.10: Comparison of results between PINNs trained on wide and narrow sample sets for a geometry seen during
training

6
Parameterized PINNs for the Stokes

Equations
The Stokes equations (in two dimensions), ideally used for simulating very low Re (UrefLref/ν) flows,
are given as follows:

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
=

∂p

∂x
, (6.1)

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
=

∂p

∂y
, (6.2)

∂u

∂x
+

∂v

∂y
= 0. (6.3)

It can be seen that equations (6.1) and (6.2) represent the x and y momentum terms respectively
for the Stokes equations, which are derived by ignoring the inertial terms from Navier-Stokes. It must
be noted that these equations are in dimensionless form as the diffusion terms have been normalised
by the Reynolds number Re. It is significant to use dimensionless equations while training PINNs
or any simple neural network to ensure better convergence and ease of training, which is ensured
when the neural networks are required to map inputs and output values of a limited range ([0, 1] 7→
[−1, 1]) [30]. In our case, to make the conversion between dimensional and dimensionless forms of the
equations easy, we have chosen the free stream reference velocity (Uref) as 1 m/s and the free stream
reference pressure as gauge 0. The chord length of the airfoil (Lref) being 1 m makes the Reynolds
number the inverse of the kinematic viscosity Re = 1/ν. The equation (6.3) is the continuity equation
suitable for incompressible flows. Therefore, in this particular test case, our goal is to solve a system of
three equations simultaneously using physics informed neural networks, first on a single NACA airfoil
geometry (sample geometry in figure 6.1) and subsequently extend it to a collection of airfoil geometries
parameterized by NACA 4 digit series formulation such as,

NACA CPTT

eg.

NACA 4812

Where,

1. The first digit C stands for the magnitude of maximum camber as a percentage of chord length.
2. The second digit P signifies the position of the maximum camber from the leading edge as a

percentage of chord length.
3. The last two digits TT define the maximum thickness of the airfoil as a percentage of chord length.

45

6.1. Numerical Solution for Airfoil Geometry 46

Figure 6.1: NACA 4 series airfoil naming convention
Image Source: en.wikipedia.org

6.1. Numerical Solution for Airfoil Geometry
The first test case for training a PINN architecture with the system of Stokes equations was applied to
NACA 4812 airfoil. The numerical solution to aid as reference for the given equations (6.1), (6.2) and
(6.3) was obtained via the FEniCS [23] finite element library in Python, and the code for this purpose
was inspired from the tutorial given in [11]. The geometry used for solving the Stokes flow is given in
figure 6.2.

Figure 6.2: Simulation geometry for airfoil flow

Parameter Value/Strategy:
Velocity Inlet Condition Prescribed Dimensionless Velocity (1)
Pressure Outlet Condition Prescribed Pressure (0 gauge)
Aerodynamic Body Airfoil (no slip u = 0)
Kinematic Viscosity (ν) 1.5e− 2 m2/s
Airfoil Chord Length 1m
Angle of Attack 5 deg
Reynolds Number 66.67

Table 6.1: Parameters used for numerical solution of airfoil flow using Stokes equations

By setting up the free stream velocity to 1 m/s and chord length to 1 m, the Reynolds number is sim-
ply the reciprocal of the kinematic viscosity, thereby the resulting equations are identical in dimensional
as well as dimensionless format, which makes things easier for training as well as for post processing
purposes. The Reynolds number has been kept very low to justify the use of the Stokes equations.
The simulations for the single geometry case were performed for the airfoil NACA 4812, the results for
which are illustrated in figure 6.3.

6.1. Numerical Solution for Airfoil Geometry 47

The FEniCS package provides numerical solutions for the desired PDEs using the finite element
methodology, for which we need to convert the given system of equations into a weak formulation,
which is obtained by introducing a weighting function and integrating the product of our desired PDE
with the weighting function over each mesh element. The general formulation of a weak formulation is
given by [11]:

a((u, p), (v, q)) = L((v, q)), (6.4)
where a is referred to as a bi-linear form and L is the linear form. The unknowns namely velocity

vector u and pressure p, are referred to as trial functions (as they are assumed to vary linearly or via a
defined polynomial between the element nodes) and v, q are the corresponding test/weight functions.
The function space of the test functions used determines the type of finite element method that is
formulated, for example Galerkin method or Ritz method etc. The corresponding weak formulation for
the Stokes equation comes out to be:

a((u, p), (v, q)) =
∫
Ω

(∇u : ∇v− p∇.v+ q∇.u) dV, (6.5)

L((v, q)) =
∫
Ωp

p0n.v dS = 0, (p0 = 0). (6.6)

These equations along with the boundary conditions were coded into the FEniCS framework, the
code for which can be referred from the appendix A section A.1. The numerical results for the fluid
flow simulation using this FEM formulation have been illustrated in the following figure 6.3, where the
pressure contours are given in figure 6.3b and the velocity contours are given in figure 6.3c. The
reader can refer to [11] for more details on finite element method and its practical application in fluid
flow simulations, as this is beyond the scope of the current thesis.

(a) FEniCS mesh for airfoil simulation

(b) FEniCS solution contours for pressure (c) FEniCS solution contours for velocity

Figure 6.3: FEniCS based results for Stokes equations on a single airfoil domain

6.2. Deep Learning Solution for Single Airfoil Geometry 48

6.2. Deep Learning Solution for Single Airfoil Geometry
The deep learning formulation for solving the system of Stokes equations was first implemented to
solve for a single airfoil geometry at a given angle of attack. The methodology used for developing
such a pipeline was quite similar to the case of Poisson equations, requiring some modifications which
have been highlighted as follows.

Mesh
As explained in the previous chapters, the mesh for a PINN formulation requires two sets of input
points, namely the interior points and the prescribed boundary points (figure 6.4). However, when the
case of Poisson equation was implemented using the same strategy as Poisson equation (that is fully
unsupervised training), the neural network failed to converge. Therefore, it was decided to include some
training data for ease of training and convergence. Therefore in the present case for solving Stokes
equation via PINNs, the input mesh consists of the interior points as usual, and a set of ’data points’,
comprising both the boundary points as well as some mesh points in the interior of the domain with
prescribed velocity and pressure values. Thereby, the training strategy in this case converts from fully
unsupervised to semi-supervised, having both data loss and PDE loss within the global loss function.
The input data mesh and the prescribed data values were imported from the numerical solver FEniCS.
Therefore, the input mesh for this case was a combination of randomly generated collocation points
with the resolution of 20X0 × 20Y0 along with the FEniCS mesh points imported as it is. Moreover, a
for loop was implemented to generate the airfoil cavity by eliminating the collocation points lying within
the airfoil contour.

Figure 6.4: Distribution of interior and boundary points for the input mesh of airfoil Stokes flow

Neural Network
The neural network for this case was formulated on the same principles as for the single fixed geometry
case for the Poisson equation, mapping the input mesh coordinate points x and y to the output values
u (x velocity component), v (y velocity component) and pressure p. Since there are three outputs
required in this neural network, the number of neurons per hidden layer were taken to be 100, whereas
4 hidden layers were generated within the neural network. The ’tanh’ activation function was used as
in the Poisson case.

6.2. Deep Learning Solution for Single Airfoil Geometry 49

Figure 6.5: Neural network architecture for a fixed airfoil geometry. This is a representative neural network to show the
mapping from inputs to outputs, the actual neural network contained 4 hidden layers with 100 neurons per layer

Loss Function Formulation
The loss function consisted of the PDE loss and the data loss as described in equation 5.7. The data
loss was simply the mean squared error of the PINN output values with respect to the FEniCS solution
values. The PDE loss for this case consisted of a combination of 3 PDE residuals as shown in the
following equations. The weight function w to balance the PDE and data losses was kept at 0.6 (in
favour of data loss, finalised after a parametric study).

e1 =
1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
− ∂p

∂x
, (6.7)

e2 =
1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
− ∂p

∂y
, (6.8)

e3 =
∂u

∂x
+

∂v

∂y
, (6.9)

LPDE = e21 + e22 + e23. (6.10)

Training of the Neural Network
The neural network was trained following the same approach that was adopted for Poisson equation in
chapter 5. The collocation points were regenerated randomly after every 5 iterations, to achieve faster
convergence and attain lower loss values by using the principle of super-resolution. The learning rate
was set to 0.0001 while the number of iterations were set to 1 million.

Results
The loss function after the completion of 1 million iterations came out to be of the order O(1e − 4). It
should be noted that the purpose of simulating Stokes flow over airfoils via PINNs was merely as a
preparation for understanding the framework to implement Navier Stokes. The conclusions and learn-
ings from the analysis of Stokes flow have been used to develop the algorithm for the implementation
of Navier Stokes, and all the measures to improve accuracy and reduce the residual loss function are
taken up while training those PINNs respectively. The results of the Stokes simulation for NACA 4812
have been illustrated in figure 6.6. It can be observed from the figures that the PINN estimations for
velocity match really well with the expected numerical solution, although the pressure predictions are
highly inaccurate, thereby generating a need for providing a stronger weight value in favour of the
training data loss for more accurate predictions of the desired pressure contours.

6.3. Deep Learning Solution for Variable Airfoil Geometry 50

Figure 6.6: Velocity and pressure contours for the solution of Stokes equation via PINN

Figure 6.7: FEniCS based results for Stokes equations on a single airfoil domain

6.3. Deep Learning Solution for Variable Airfoil Geometry
After successfully developing a deep learning network for representing Stokes flow for a single airfoil
geometry, the next step was to understand if the neural network would be able to learn the parame-
terized formulation of NACA airfoils and correspondingly be trained for representing the Stokes flow
solution for multiple geometries. As discussed in the case for Poisson equation, additional input pa-
rameters were defined for the neural network, namely the camber, camber position, airfoil thickness
and the angle of attack α, as shown in figure 6.8. For the current case, to keep things simple for the
very first simulation of such kind, the study was performed only for symmetric airfoils where the airfoil
thickness was varied as the geometry parameter. The formulation developed here would be used for
parametric studies of more complex cambered airfoils along with varying angles of attack for the final
case with Navier Stokes equations. The simulation was performed over NACA 0006, 0010, 0014 and
0018 at 5 degrees angle of attack. The loss function after training converged to the order O(1e− 4).

Figure 6.8: Neural network architecture for a varying airfoil geometry.This is a representative neural network to show the
mapping from inputs to outputs, the actual neural network contained 4 hidden layers with 100 neurons per layer

6.3. Deep Learning Solution for Variable Airfoil Geometry 51

Results
After training the neural network for the parameterized formulation of Stokes equations, it was found
that the neural network was able to learn the NACA parameterisation of symmetric airfoils. The results
for both seen and unseen geometries are illustrated in the following figures.

Figure 6.9: Velocity and pressure contours for the solution of Stokes equation via PINN for a seen geometry NACA 0014

Figure 6.10: FEniCS based results for Stokes equations on NACA 0014

Figure 6.11: Velocity and pressure contours for the solution of Stokes equation via PINN for an unseen geometry NACA 0012

Figure 6.12: FEniCS based results for Stokes equations on NACA 0012

6.3. Deep Learning Solution for Variable Airfoil Geometry 52

It can be observed that the PINN formulation has indeed learned to identify an airfoil geometry
and adjust the solution accordingly. To further test if the PINN is actually sensitive to the geometry
input parameters, we can perform a test by inputting a cambered airfoil (NACA 4812), for which this
particular neural network was not trained. We can observe from figure 6.13 that the solution contours
give nonphysical results upon receiving completely unusual geometry parameters, which is expected.

Figure 6.13: Velocity and pressure contours for the solution of Stokes equation via PINN for an unseen geometry NACA 4812

As a result, our formulation of parameterized PINN over the Stokes equations has provided the fol-
lowing observations and conclusions, which have been used for developing our final PINN formulation
using Navier Stokes:

1. The major constraint of PINN visualization accuracy is posed by pressure contour results, there-
fore a higher weight towards data loss is required.

2. Longer training processes for more iterations need to be performed, to achieve lower (more ac-
curate) residual loss values.

3. The PINN formulation is capable of learning NACA airfoil parameterization which are provided
along with the mesh coordinates as additional inputs to the neural network.

7
Parameterized PINNs for the Navier

Stokes Equations
After successfully developing the framework for representing Stokes equations using PINNs in chapter
6, we can now move on to simulate Navier Stokes equations using the same methodology by making
some minor changes. The Navier Stokes equations are the fundamental governing equations for fluid
flow simulations, which can be arrived at by including the inertial terms in the Stokes equations.

u
∂u

∂x
+ v

∂u

∂y
=

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
− ∂p

∂x
, (7.1)

u
∂v

∂x
+ v

∂v

∂y
=

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
− ∂p

∂y
, (7.2)

∂u

∂x
+

∂v

∂y
= 0. (7.3)

Our choice of parameters and boundary conditions is identical to those for Stokes equation as shown
in table 6.1, making the equation identical in dimensional and dimensionless form (as the Reynolds
number is the inverse of the kinematic viscosity ν). The only parameter that has been altered is the
kinematic viscosity ν which has been changed to 1.5e−3, to increase the Reynolds number by a factor
of 10, making the newRe = 666.67. The corresponding numerical solution from FEniCS solver can also
be obtained by adding the inertial term in the weak formulation of the governing equations for Stokes
flow. The weak form for Navier Stokes equations is given as [11]:∫

Ω

(∇u : ∇v+ (u.∇u).v− p∇.v+ q∇.u) dV = 0. (7.4)

Since, now the most common governing equation for CFD, i.e. incompressible Navier Stokes was
simulated, we had the opportunity for validating our FEniCS code with a standardised commercial
solver, like ANSYS Fluent in order to compare the force computation algorithm written in FEniCS (which
was not present in the code for Stokes equations) with a standardised industrial solver. The same
simulation parameters as stated in table 6.1 were used in ANSYS Fluent. An unstructured fine mesh
was generated as shown in figure 7.1, without any additional features like boundary layer inflation
as they were not available and hence never used for FEniCS simulation. As a result, the solution
predictions in terms of velocity and pressure contours along with lift and drag were found to be similar
for the FEniCS solver as well as ANSYS Fluent, as shown in figure 7.2 and figure 7.3. Since the
Navier Stokes solver in the FEniCS framework is almost exactly similar to the Stokes solver as well,
with the exception of the additional inertial term, we assume that since the FEniCS solver is producing
accurate results for the Navier Stokes flow, the corresponding solution for the Stokes flow should also
be accurate.

53

54

(a) FEniCS mesh (b) Ansys mesh

Figure 7.1: Mesh comparison for Navier-Stokes simulation on NACA 0012

(a) FEniCS velocity contour (b) Ansys velocity contour

Figure 7.2: Velocity contours’ comparison for Navier-Stokes simulation on NACA 0012

(a) FEniCS pressure contour (b) Ansys pressure contour

Figure 7.3: Pressure contours’ comparison for Navier-Stokes simulation on NACA 0012

Parameter Value ANSYS Value FEniCS
Horizontal Force (Fx) 0.07135 N 0.07173 N
Vertical Force (Fy) 0.15376 N 0.15089 N

Table 7.1: Force values comparison between ANSYS Fluent and FEniCS

7.1. Solution for single airfoil geometry 55

7.1. Solution for single airfoil geometry
The very first simulation for solving Navier Stokes equations via PINNs was setup for solving a fixed
geomerty of airfoil NACA 4812, while deriving all the simulation strategies and parameters from the
Stokes flow PINN as shown in chapter 6, including the same neural network architecture as in figure
6.5. The only difference was in terms of the Reynolds number being 10 times higher (Re = 666.67 and
kinematic viscosity ν = 1.5e-3), the weight parameter between PDE and data loss being 0.8, in favour
of the data loss, to accomodate for better prediction of pressure, and slight change in the PDE loss
formulation as depicted in the following equations:

e1 =
1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
− ∂p

∂x
− u

∂u

∂x
− v

∂u

∂y
, (7.5)

e2 =
1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
− ∂p

∂y
− u

∂v

∂x
− v

∂v

∂y
, (7.6)

e3 =
∂u

∂x
+

∂v

∂y
, (7.7)

LPDE = e21 + e22 + e23. (7.8)

The learning rate was set to 0.0001, and the maximum number of iterations were set to be 1 million.
After training, the loss function reached to O(1e− 5). The final results are portrayed in figures 7.4 and
7.5.

Figure 7.4: Velocity and pressure contours for the solution of Navier Stokes equation via PINN

Figure 7.5: FEniCS based results for Navier Stokes equations on a single airfoil domain NACA 4812

It can be observed that the results attained for the velocity contours are almost identical, whereas
the results obtained for the pressure contours are much better than seen in the case of Stokes flow.
This could be attributed to the higher weight used in the favour of data loss and the global loss attaining
a much lower value (by an order of magnitude) at the end of the training process for the Navier Stokes
flow compared to Stokes flow.

7.2. Solution for symmetric airfoils of varying thickness 56

7.2. Solution for symmetric airfoils of varying thickness
After successfully demonstrating the ability of PINNs to learn the solution to the Navier Stokes equation
on a single cambered airfoil geometry, the next task was undertaken to test whether such neural network
can learn the solutions for multiple airfoil geometries simultaneously and hence be able to predict the
flow field of the Navier Stokes equations over similar unseen geometries. The airfoil geometries used
for training this neural network were NACA 0006, 0010, 0014 and 0018. The angle of attack (AoA)
was fixed at 5 degrees. The neural network architecture used for this case (and all the subsequent
cases) was the one for Stokes equation for varying geometries, as shown in figure 6.8. The maximum
number of iterations were now set to 4 million, to allow the neural network to converge to lower loss
values. The learning rate was also set to adaptively reduce by a factor of 10 after every million iterations,
starting with the value of our default learning rate of 0.0001. A slight modification was made for the
loss function to improve the pressure prediction capabilities of the neural network. We introduce two
weight parameters, one weight wdata for weighting the PDE loss and data loss, and the other weight
wpressure for weighting the respective root mean square loss between velocity data Ldata(Velocity) and
the corresponding root mean square loss for pressure data Ldata(Pressure) after bifurcating the velocity
and pressure data separately. The values of both the weights wdata and wpressure were set to be 0.8 each
in the favour of data loss and pressure data loss respectively.

Loverall = (1− wdata) ∗ LPDE + wdata((1− wpressure) ∗ Ldata(Velocity) + wpressure ∗ Ldata(Pressure)).

After training, the final loss values were still of the order O(1e− 5) but they were much lower com-
pared to the single airfoil geometry case with non-adaptive learning rate and 1 million iterations. The
results for various seen and unseen geometries predicted from the trained PINN have been illustrated
in figures 7.6 and 7.7.

Figure 7.6: Navier Stokes solution via PINN on a seen thin airfoil NACA 0006

Figure 7.7: FEniCS based results for Navier Stokes equations on NACA 0006

7.2. Solution for symmetric airfoils of varying thickness 57

Figure 7.8: Navier Stokes equation via PINN on a seen thick airfoil NACA 0018

Figure 7.9: FEniCS based results for Navier Stokes equations on NACA 0018

Figure 7.10: Navier Stokes solution via PINN on an unseen thin airfoil NACA 0008

Figure 7.11: FEniCS based results for Navier Stokes equations on NACA 0008

7.3. Solutions for further cases of parameterization 58

Figure 7.12: Navier Stokes equation via PINN on an unseen thick airfoil NACA 0016

Figure 7.13: FEniCS based results for Navier Stokes equations on NACA 0016

It can be observed from the above results that the neural network has been successful in learning
the Navier Stokes solutions for multiple symmetric airfoil geometries and is also capable of interpolating
the results for unseen geometries. The pressure predictions for this case do not seem to be significantly
more accurate than the previous case without data bifurcation, but this approach has been adopted as
standard for future simulations nonetheless. Moreover, it can be observed that the pressure predictions
become more accurate for thicker airfoils compared to thinner airfoils.

7.3. Solutions for further cases of parameterization
After attaining successful results for simulating a single cambered and parameterized symmetric airfoils
on a single angle of attack with Navier Stokes equations using PINNs, we can now move forward to
explore more aspects of parameterization which are possible. We explore three such cases for now:

1. Variation of angle of attack for a single airfoil (NACA 4812)
2. Variation of camber magntitude and camber positions (first two NACA digits) for an airfoil of same

thickness (12%)
3. Variation of angle of attack and thickness of symmetric airfoils simultaneously, along with the

study of validation loss.

The above mentioned studies were performed in order to understand the underlying requirements
and challenges for training a PINNwith different forms and levels of parameterization, and the outcomes
of these studies are used to design the final deep learning pipeline capable of predicting the Navier
Stokes solution for any shape of a NACA airfoil (symmetric as well as cambered) determined by an
autoencoder, at any angle of attack before separation. It should be noted that the simulation parameters,
boundary conditions, mesh resolution and training strategies are the same for the upcoming simulation
studies as explained above for the case of symmetric airfoils with parameterized thickness.

7.3. Solutions for further cases of parameterization 59

7.3.1. Variation of Angle of Attack
An important parameterization for flow around an airfoil comes from varying the angle of attack of
the airfoil. The analysis was carried on NACA 4812 airfoil for the angles of attack being 0, 4 and 8
degrees respectively. Training was performed for 4 million iterations, reaching the loss value of the
order O(1e− 5). The results obtained are given in figures 7.14, 7.15, 7.16 and 7.17.

Figure 7.14: Navier Stokes equation via PINN on an angle of attack 8 degrees (as seen during the training) for NACA 4812

Figure 7.15: FEniCS based results for Navier Stokes equations on NACA 4812 angle of attack 8 degrees

Figure 7.16: Navier Stokes equation via PINN on an unseen angle of attack 3 degrees for NACA 4812

Figure 7.17: FEniCS based results for Navier Stokes equations on NACA 4812 angle of attack 3 degrees

7.3. Solutions for further cases of parameterization 60

It can be seen from the results in the figures 7.16 and 7.17 that the velocity predictions, in terms of
the maximum velocity attained, is quite inaccurate for the case of 3 degrees angle of attack. On the
other hand, the pressure contours for both the cases are quite well predicted. This might be a short
coming of having a higher weightage for pressure loss in the bifurcated pressure and velocity data.
Therefore, to ensure accurate flow field predictions for all possible angles of attack by the PINN, the
number of training iterations should be increased further, which has been done in the final case study
given in chapter 8.

7.3.2. Variation of camber parameters
After analysing the geometric variation of symmetric airfoils, we are now in a position to extend our
study to cambered airfoils, where we can vary the first two digits of a NACA airfoil, namely the camber
magnitude and the maximum camber position. The first case was setup in a very simple manner,
where we trained the neural network for NACA airfoils 0012, 2412 and 4812 on 5 degrees angle of
attack, to see how well it could capture the camber information from these limited number of cases.
The training was performed for 4 million iterations. The neural network completely failed to provide
results for unseen airfoils using this set of training data.

Figure 7.18: Navier Stokes equation via PINN on an unseen cambered airfoil NACA 4412

Therefore, a better training strategy needed to be evolved for representing cambered airfoils via
PINNs. It was decided to use 6 different geometries of NACA airfoils, namely NACA 0012, 2412, 4412,
6412, 4812, 4212 and 4612, thereby ensuring multiple camber magnitudes for a given camber position
and vice versa. This approach worked very well for training the PINN on unseen cambered airfoils, at
a fixed angle of attack 5 degrees, the results for which have been visualised in figures 7.19 and 7.20.

Figure 7.19: Navier Stokes equation via PINN on an unseen cambered geometry NACA 3612

7.3. Solutions for further cases of parameterization 61

Figure 7.20: FEniCS based results for Navier Stokes equations on NACA 3612 angle of attack 5 degrees

It can be observed in this case that the results are not highly accurate but that can be solved by
increasing the number of iterations, as will be demonstrated in chapter 8. The main takeaway from this
experiment is that PINNs can be trained for cambered airfoils by providing sufficient number of training
geometries, especially by having multiple camber values for a given camber position and vice versa.

7.3.3. Variation of angle of attack and thickness of symmetric airfoils
All the cases we explored till now involved the parameterization of either one component of the geometry
(thickness or camber) or varying the angles of attack. In the present case, we tried to build a highly
robust PINN framework that could be trained on variable geometry (thickness for symmetric airfoil)
and the angle of attack. This study was supposed to act as a precursor towards our final goal of
simulating cambered airfoils of complex shapes with varying angles of attack after coupling with the
auto-encoder. All the learnings from the previous experiments have been used for setting up this
formulation. Moreover, we introduced another parameter for studying the effectiveness of the training
process, called the validation loss. The motivation behind studying the validation loss was to study the
impact of physics-informed loss formulation in preventing the overfitting of the PINN. The phenomena
of overfitting and underfitting were explained in chapter 2 under the section 2.1.2. Seeing the erroneous
velocity profile results in some previous simulations as a result of weighted data loss bifurcation in favour
of pressure data, the number of training iterations were raised from 4 million to 5 million. Moreover,
in this case the training dataset is much larger compared to previous cases due to more levels of
parameterization, thereby justifying the use of more iterations. The training data consisted of airfoils
NACA 0010, 0014, 0018 and 0022, each with angles of attack ranging 0, 4, 8 and 12 degrees. The
testing/validation dataset consisted of airfoils not seen during the training, namely NACA 0012, 0016
and 0020 at the angle of attack 5 degrees. The comparative plot of loss function variation and validation
loss variation with iterations is illustrated in figure 7.21. The final value of loss function after training
was attained to be of the order O(1e− 5).

Figure 7.21: Loss variation with iterations for parameterized Navier Stokes

7.3. Solutions for further cases of parameterization 62

It can be inferred from figure 7.21 that the validation loss follows almost a similar variation as the
training loss, thereby suggesting no overfitting during the training process. This could be attributed to
the fact that as the training loss approaches zero, the PINN not only learns to fit the desired training
data, but also the corresponding governing equations that have been used to generate the training as
well as validation data. The simulation results for this case over an unseen airfoil geometry and angle
of attack are illustrated in figures 7.22, 7.23, 7.24 and 7.25.

Figure 7.22: Navier Stokes equation via PINN on an unseen geometry NACA 0016 at 7 deg angle of attack

Figure 7.23: FEniCS based results for Navier Stokes equations on NACA 0016 at 7 deg angle of attack

Figure 7.24: Navier Stokes equation via PINN on an unseen geometry NACA 0020 at 1 deg angle of attack

Figure 7.25: FEniCS based results for Navier Stokes equations on NACA 0020 at 1 deg angle of attack

7.3. Solutions for further cases of parameterization 63

It can be observed from these results that pressure prediction still continues to be inaccurate,
whereas the velocity predictions seem to be quite accurate. Nonetheless, the PINN has successfully
demonstrated its capability in terms of parameterized learning of PDEs, and this methodology would
also be used for our final case on cambered airfoils by using PINNs coupled with auto-encoders.

8
Coupling of parameterized PINN and
auto-encoder for the Navier Stokes

Equation
In the previous chapters 5, 6 and 7, we used well defined parameters to describe our geometries
of interest due to their simplicity, for example the dimensions of a rectangular domain (chapter 5) or
the NACA airfoil parameters (chapters 6 and 7). However, in many use cases of practical interests,
geometries cannot be parameterized via classical polynomials. Deep learning architectures called auto-
encoders, discussed in chapter 4 on generative modelling can be used for compressing the geometric
representations to a limited number of parameters. These parameters are stored in the latent space
vector of the auto-encoder. The first part of the auto-encoder, called the encoder, bridges the actual
geometry to the latent space vector, whereas the second part called the decoder, can be used to
interpret the actual geometry defined by the latent space parameters. In the present case, we use
this auto-encoder framework, developed by Monolith AI pvt. ltd., to parameterize the set of cambered
NACA airfoils into three latent space parameters (as we already know that NACA airfoils require three
defining parameters) to demonstrate the coupling capability of PINNs and auto-encoders for simulating
complex geometry beyond classical parameterization techniques. The latent space parameters are
called z1, z2 and z3 and they are fed as inputs to the PINN framework, as opposed to the camber,
camber position and airfoil thickness while using the standard NACA parameterization. The neural
network architecture used for the PINN is shown in figure 8.1.

Figure 8.1: Neural network architecture (PINN part) for the auto-encoder based parameterized airfoils.This is a representative
neural network to show the mapping from inputs to outputs, the actual neural network contained 4 hidden layers with 100

neurons per layer.

64

65

The auto-encoder was trained on 500 randomly generated NACA airfoil geometries for latent space
spanned by 3 parameters, namely z1, z2 and z3. The model converged upto a loss value of the order
O(1e−6). After training, the encoder can be used to find the latent space parameterization of a desired
NACA airfoil, whereas the decoder can be used to formulate the corresponding airfoil geometry of an
arbitrary selection of latent space parameters. It must be noted that parameterization of NACA airfoils
with the help of auto-encoders is done only to demonstrate the proof of concept for coupling PINNs and
auto-encoders for complex geometries, otherwise NACA airfoils are self parameterized.

(a) Decoding of airfoil for [z1,z2,z3] = [0,0,0] (b) Reconstruction (encoding + decoding) of NACA 4612

Figure 8.2: Results for reconstruction and simple decoding of airfoils from the trained auto-encoder

For training the PINN framework on auto-encoder based parameterization of cambered airfoils, us-
ing our standard training data for conventional NACA airfoils, we need to generate a database which
contains the latent space parameterization of our well defined NACA airfoils. It must be noted that dur-
ing training the PINN, it is extremely important for the PINN to learn the latent space parameterization
of the NACA airfoils, that is the decoder part of the corresponding auto-encoder, in order to be able to
interpret the desired geometry correctly and solve the corresponding Navier Stokes equations around
it. In the present case, the encoder was used to generate a database of z parameters corresponding
to the NACA airfoils to be used for training and the corresponding data structure was exporting to the
PINN training code, as opposed to actually coupling the PINN and the auto-encoder.

Figure 8.3: Training pipeline for auto-encoder parameterized airfoils

After training, we can either couple the whole auto-encoder (encoder + decoder) with the trained
PINN to test its performance over a predefined NACA airfoil, or we can use only the decoder in case
we want to generate solution data from PINNs for unconventional latent space parameterized airfoils.
The results for this trained PINN for our standard NACA 4812 airfoil are illustrated in figure 8.4.

66

Figure 8.4: Velocity and Pressure contours for auto-encoder parameterized PINN on standard NACA 4812 airfoil at 5 deg
angle of attack.

Figure 8.5: Architecture for evaluating results on NACA airfoil with latent space parameterized PINN

Figure 8.6: Architecture for evaluating results on latent space parameterized PINN

The final results for auto-encoder based parameterized cambered airfoil geometries for PINNs
trained for Navier Stokes equations are depicted in figures 8.7 and 8.8.

67

Figure 8.7: Results from coupling of PINN and decoder according to architecture in figure 8.6

68

Figure 8.8: Results from coupling of PINN and decoder according to architecture in figure 8.6

Lift and Drag Computation
The lift and drag computations over the airfoil results can be performed by making use of equations
(2.23) and (2.24) as mentioned in chapter 2. It must be noted that the angle of attack variation was
neglected for ease of computation and in this case the drag and lift simply mean the horizontal and
vertical forces on the airfoil respectively, as we only needed a quantitative measure to compare the

69

force computation which could be compared even by neglecting the orientation of the components of
the resultant overall force. It was found that although the trained PINN is able to provide reasonably
accurate velocity and pressure contours for a wide range of airfoil geometries and angles of attack, it
fails completely while computing the corresponding forces imparted by the fluid over the airfoils. This is
due to the fact that unlike numerical methods, in deep learning formulations, the boundary conditions
are supposed to be ’learnt’ by the neural network and cannot be prescribed exactly. For example over
the airfoil surface, the no slip boundary condition would dictate zero velocity, but the velocity values
learnt by the PINN are close to zero, for example 0.05 m/s or 0.001 m/s etc. This could explain why
even though the contours provided by the PINN are reasonably accurate (as in a contour colour scheme
there would not be much difference between 0 m/s and 0.001 m/s) but the force computations are
completely unreliable. These observations suggest that the developed PINN-auto-encoder framework
is useful for the quick qualitative analysis of geometries under fluid flow, but not (yet) mature enough
for a quantitative analysis including force computations for lift and drag.

9
Conclusions and Recommendations

In the preceding chapters, an extensive study has been provided on the relatively new research di-
rection of embedding first-principle physics into neural networks and coupling them with autoencoders
to achieve the objectives of computational fluid dynamics on parameterized variable geometries while
removing the redundancies associated with classical numerical analysis. It has been concluded that
deep learning methods, at least with the formulation studied in this thesis, are probably only suitable to
study the target variable contours (which also has its own significance in industrial, especially aerody-
namic applications) but not reliable enough for force (drag and lift) computations. The main findings of
this thesis are as follows:

• If the input mesh (boundary plus collocation points) is regenerated randomly after every few train-
ing iterations, the PINN converges easily as it gets to witness a large variety of sample points
during the whole training process. This is probably the biggest advantage of neural networks
that instead of defining a very fine mesh to enhance accuracy throughout all the iterations (as in
numerical analysis), we can achieve the same objectives by providing the dense mesh points in
batches, hence making the PINN more robust as well as computationally efficient. Moreover, we
can train the PINN on a coarse mesh and evaluate the results on a fine mesh, which is referred
to as ’super-resolution’.

• Pressure prediction is quite hard with the adopted formulation of the fluid flow PINNs (Stokes
as well as Navier Stokes) even after heavy biasing in the loss function towards pressure data.
Although no quantitatively conclusive remarks can be made in this regard but it might be worth-
while to experiment with different governing equation formulations or neural network architectures,
for example a dedicate neural network for each variable such as velocity components u, v and
pressure p, respectively.

• Excessive training to achieve lower loss values does not lead to overfitting on training data due
to the presence of the PDE residual in the loss function. It has been observed that by accommo-
dating information regarding physics (governing differential equations), the loss corresponding to
training data as well as that for validation data maintain the same order of magnitude throughout
the training process. This might be explained from the fact that via PINN formulation, the neural
network is not only learning the solution mapping for the given set of data points but also the de-
sired instances of PDEs for both the training data as well as validation data set. The loss variation
patterns that signify this fact have been illustrated in figure 9.1. For the case of physics informed
learning, both the training and validation losses follow the same order of magnitude with the mini-
mal values being attained of the O(1e−5). Whereas, for the case with purely data based training,
the validation loss is an order of magnitude higher O(1e− 5) than the training loss O(1e− 6).

• Parameterization suffers from the curse of dimensionality, the required training data increases
exponentially with the number of parameters, as the network learns to parameterize the system
when provided with sufficient data for variation of each parameter in isolation while keeping all
the others constant.

• The neural network in PINN should be capable of learning the decoder part of the auto-encoder
for the successful coupling of PINNs and autoencoders. This might require deviating from simple

70

71

feed forward architectures for the PINN for dealing with parameterization of complex 3D geome-
tries with the autoencoder, which are much more advanced than cambered NACA airfoils.

• Drag and lift or other force computations are not feasible on PINN results in our simulations due
to their lack of accuracy in predicting the boundary data.

Figure 9.1: Comparison of training and validation data losses for the final 1 million training iterations

References
[1] Alexander Amini and Ava Soleimany. MIT Deep Learning 6.S191, 2020. URL: introtodeeplea

rning.com.
[2] Bengt Andersson et al.Computational Fluid Dynamics for Engineers. CambridgeUniversity Press,

2011. DOI: 10.1017/CBO9781139093590.
[3] Jack Y Araz, Juan Carlos Criado, and Michael Spannowsky. “Elvet–a neural network-based dif-

ferential equation and variational problem solver”. In: arXiv preprint arXiv:2103.14575 (2021).
[4] Giovanni Calzolari and Wei Liu. “Deep learning to replace, improve, or aid CFD analysis in built

environment applications: A review”. In: Building and Environment 206 (Dec. 2021), p. 108315.
ISSN: 0360-1323. DOI: 10.1016/J.BUILDENV.2021.108315.

[5] Feiyu Chen et al. “NeuroDiffEq: A Python package for solving differential equations with neural
networks”. In: Journal of Open Source Software 5.46 (2020), p. 1931.

[6] T. Chen and H. Chen. “Approximations of continuous functionals by neural networks with appli-
cation to dynamic systems”. In: IEEE Transactions on Neural Networks 4.6 (1993), pp. 910–918.
DOI: 10.1109/72.286886.

[7] Wei Chen, Kevin Chiu, and Mark Fuge. “Aerodynamic design optimization and shape exploration
using generative adversarial networks”. In: AIAA Scitech 2019 Forum. 2019, p. 2351.

[8] J Austin Cottrell, Thomas JR Hughes, and Yuri Bazilevs. Isogeometric analysis: toward integra-
tion of CAD and FEA. John Wiley & Sons, 2009.

[9] Miles Cranmer et al. “Discovering symbolic models from deep learning with inductive biases”. In:
arXiv preprint arXiv:2006.11287 (2020).

[10] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Mathematics of
control, signals and systems 2.4 (1989), pp. 303–314.

[11] Asger Bolet Gaute Linga. PROJECT IN CONTINUUM MECHANICS: Simulating Fluid Flow in
Complex Geometries using FEniCS. 2016.

[12] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information processing
systems 27 (2014).

[13] Ehsan Haghighat and Ruben Juanes. “Sciann: A keras/tensorflow wrapper for scientific computa-
tions and physics-informed deep learning using artificial neural networks”. In: Computer Methods
in Applied Mechanics and Engineering 373 (2021), p. 113552.

[14] Oliver Hennigh et al. “NVIDIA SimNet™: An AI-AcceleratedMulti-Physics Simulation Framework”.
In: International Conference on Computational Science. Springer. 2021, pp. 447–461.

[15] Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. “Locally adaptive activation
functions with slope recovery for deep and physics-informed neural networks”. In: Proceedings
of the Royal Society A 476.2239 (2020), p. 20200334.

[16] Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. “Adaptive activation functions
accelerate convergence in deep and physics-informed neural networks”. In: Journal of Computa-
tional Physics 404 (2020), p. 109136.

[17] Ameya D Jagtap, Ehsan Kharazmi, andGeorge EmKarniadakis. “Conservative physics-informed
neural networks on discrete domains for conservation laws: Applications to forward and inverse
problems”. In: Computer Methods in Applied Mechanics and Engineering 365 (2020), p. 113028.

[18] Xiaowei Jin et al. “NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for
the incompressible Navier-Stokes equations”. In: Journal of Computational Physics 426 (2021),
p. 109951.

72

introtodeeplearning.com
introtodeeplearning.com
https://doi.org/10.1017/CBO9781139093590
https://doi.org/10.1016/J.BUILDENV.2021.108315
https://doi.org/10.1109/72.286886

References 73

[19] George Em Karniadakis et al. “Physics-informed machine learning”. In: Nature Reviews Physics
3.6 (2021), pp. 422–440.

[20] Nikola Kovachki et al. “Neural operator: Learning maps between function spaces”. In: arXiv
preprint arXiv:2108.08481 (2021).

[21] Zongyi Li et al. “Fourier neural operator for parametric partial differential equations”. In: arXiv
preprint arXiv:2010.08895 (2020).

[22] Zongyi Li et al. “Physics-informed neural operator for learning partial differential equations”. In:
arXiv preprint arXiv:2111.03794 (2021).

[23] Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. Automated Solution of Differential Equa-
tions by the Finite Element Method. Ed. by Anders Logg, Kent-Andre Mardal, and Garth N. Wells.
Springer, 2012. ISBN: 978-3-642-23098-1. DOI: 10.1007/978-3-642-23099-8.

[24] Lu Lu, Pengzhan Jin, and George Em Karniadakis. “Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators”. In:
arXiv preprint arXiv:1910.03193 (2019).

[25] Lu Lu et al. “DeepXDE: A deep learning library for solving differential equations”. In: SIAMReview
63.1 (2021), pp. 208–228.

[26] Lu Lu et al. “Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators”. In: Nature Machine Intelligence 3.3 (2021), pp. 218–229.

[27] Zhiping Mao, Ameya D Jagtap, and George Em Karniadakis. “Physics-informed neural networks
for high-speed flows”. In: Computer Methods in Applied Mechanics and Engineering 360 (2020),
p. 112789.

[28] Zhiping Mao et al. “DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate
chemistry behind a normal shock using neural-network approximation of operators”. In: arXiv
preprint arXiv:2011.03349 (2020).

[29] Stefano Markidis. “The old and the new: Can physics-informed deep-learning replace traditional
linear solvers?” In: Frontiers in big Data (2021), p. 92.

[30] Dr. Miguel Mendez. Hands on Machine Learning for Fluid Dynamics. 2022.
[31] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Research and

Financial Engineering. Springer New York, 2006. ISBN: 9780387400655. URL: https://books.
google.nl/books?id=VbHYoSyelFcC.

[32] Jeong Joon Park et al. “Deepsdf: Learning continuous signed distance functions for shape repre-
sentation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2019, pp. 165–174.

[33] Maziar Raissi. “Deep hidden physics models: Deep learning of nonlinear partial differential equa-
tions”. In: The Journal of Machine Learning Research 19.1 (2018), pp. 932–955.

[34] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations”. In: Journal of Computational Physics 378 (2019), pp. 686–707.

[35] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. “Hidden fluid mechanics: A Navier-
Stokes informed deep learning framework for assimilating flow visualization data”. In: arXiv preprint
arXiv:1808.04327 (2018).

[36] Maziar Raissi et al. “Deep learning of vortex-induced vibrations”. In: Journal of Fluid Mechanics
861 (2019), pp. 119–137.

[37] SimNet, ANeural Network Based Partial Differential Equation Solver, User Guide, Releasev21.06,
June 2021.

[38] SifanWang, Yujun Teng, and Paris Perdikaris. “Understanding andmitigating gradient flow patholo-
gies in physics-informed neural networks”. In: SIAM Journal on Scientific Computing 43.5 (2021),
A3055–A3081.

https://doi.org/10.1007/978-3-642-23099-8
https://books.google.nl/books?id=VbHYoSyelFcC
https://books.google.nl/books?id=VbHYoSyelFcC

References 74

[39] Sifan Wang, Hanwen Wang, and Paris Perdikaris. “Learning the solution operator of parametric
partial differential equations with physics-informedDeepOnets”. In: arXiv preprint arXiv:2103.10974
(2021).

[40] Sifan Wang, Xinling Yu, and Paris Perdikaris. “When and why pinns fail to train: A neural tangent
kernel perspective”. In: arXiv preprint arXiv:2007.14527 (2020).

[41] Liu Yang, Xuhui Meng, and George Em Karniadakis. “B-PINNs: Bayesian physics-informed neu-
ral networks for forward and inverse PDE problems with noisy data”. In: Journal of Computational
Physics 425 (2021), p. 109913.

[42] Kazuo Yonekura and Katsuyuki Suzuki. “Data-driven design exploration method using conditional
variational autoencoder for airfoil design”. In: Structural and Multidisciplinary Optimization 64.2
(2021), pp. 613–624.

[43] Jeremy Yu et al. “Gradient-enhanced physics-informed neural networks for forward and inverse
PDE problems”. In: arXiv preprint arXiv:2111.02801 (2021).

[44] Aston Zhang et al. “Dive into Deep Learning”. In: CoRR abs/2106.11342 (2021). arXiv: 2106.
11342. URL: https://arxiv.org/abs/2106.11342.

[45] Tongtao Zhang et al. “Frequency-compensated PINNs for Fluid-dynamic Design Problems”. In:
arXiv preprint arXiv:2011.01456 (2020).

[46] Kirill Zubov et al. “NeuralPDE: Automating physics-informed neural networks (PINNs) with error
approximations”. In: arXiv preprint arXiv:2107.09443 (2021).

https://arxiv.org/abs/2106.11342
https://arxiv.org/abs/2106.11342
https://arxiv.org/abs/2106.11342

A
Source Codes

A.1. Fenics Codes (Numerical Codes)
A.1.1. Fenics Code Stokes Flow

1 from dolfin import *
2 from mshr import *
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import matplotlib.tri as mtri
6 from airfoils import Airfoil
7

8 ## Simulation Parameters
9 alfa = 5
10 u_stream = 1
11 chord = 1
12 kinematic_visc = 1.5e-2
13 Re = Constant(u_stream * chord / kinematic_visc)
14 p_right = Constant(0)
15

16

17 airfoil_name = '4812'
18 x_0 = 5
19 y_0 = 3
20 points = 200 # keep it even
21 foil = Airfoil.NACA4(airfoil_name, n_points=points)
22 data = foil.all_points.T
23 data[points:,:] = np.flip(data[points:,:],0)
24 data = np.flip(data,0)
25 domain_vertices = []
26

27 for i in range(2*points):
28 domain_vertices.append(Point(data[i,0]+x_0/4,data[i,1]+y_0/2))
29 domain = Rectangle(Point(0, 0), Point(x_0, y_0)) - Polygon(domain_vertices)
30 mesh = generate_mesh(domain,60)
31

32 plt.figure(1, figsize = (2*x_0, 2*y_0))
33 plot(mesh)
34

35 # Making a mark dictionary
36 # Note: the values should be UNIQUE identifiers.
37 mark = {"generic": 0,
38 "wall": 1,
39 "left": 2,
40 "right": 3,
41 "airfoil" : 4
42 }
43

44 subdomains = MeshFunction("size_t", mesh, 1)
45 subdomains.set_all(mark["generic"])
46

75

A.1. Fenics Codes (Numerical Codes) 76

47 class Left(SubDomain):
48 def inside(self, x, on_boundary):
49 return on_boundary and near(x[0], 0)
50

51 class Right(SubDomain):
52 def inside(self, x, on_boundary):
53 return on_boundary and near(x[0], x_0)
54

55 class Wall(SubDomain):
56 def inside(self, x, on_boundary):
57 return on_boundary and (near(x[1], 0) or near(x[1], y_0))
58

59 class Airfoil(SubDomain):
60 def inside(self, x, on_boundary):
61 return on_boundary and x[0]>x_0/6 and x[0]<2*x_0/3 and x[1]>y_0/4 and x[1]<3*y_0/4
62

63 left = Left()
64 left.mark(subdomains, mark["left"])
65

66 right = Right()
67 right.mark(subdomains, mark["right"])
68

69 wall = Wall()
70 wall.mark(subdomains, mark["wall"])
71

72 airfoil = Airfoil()
73 airfoil.mark(subdomains, mark["airfoil"])
74

75 # Define function spaces
76 V = VectorElement("CG", triangle, 2)
77 P = FiniteElement("CG", triangle, 1)
78 W = FunctionSpace(mesh, V*P)
79

80 # Define variational problem
81 (u, p) = TrialFunctions(W)
82 (v, q) = TestFunctions(W)
83

84 dx = Measure("dx", domain=mesh, subdomain_data=subdomains) # Volume integration
85 ds = Measure("ds", domain=mesh, subdomain_data=subdomains) # Surface integration
86

87 # Surface normal
88 n = FacetNormal(mesh)
89 alfa = np.deg2rad(alfa)
90 # Pressures. First define the numbers (for later use):
91 u_left = Expression(('cos(alfa)','sin(alfa)'),degree=2,alfa = alfa, u_stream = u_stream)
92

93

94

95 a = (1/Re)*inner(grad(u), grad(v))*dx - p*div(v)*dx + q*div(u)*dx
96 L = inner(Constant((0, 0)), v)*dx
97

98

99 noslip = Constant((0.0, 0.0))
100 slip_wall = Expression(('cos(alfa)','sin(alfa)'),degree=2,alfa = alfa, u_stream = u_stream)
101 bc_wall = DirichletBC(W.sub(0), slip_wall, subdomains, mark["wall"])
102 bc_cylinder = DirichletBC(W.sub(0), noslip, subdomains, mark["airfoil"])
103 bc_left = DirichletBC(W.sub(0), u_left, subdomains, mark["left"]) # Velocity Inlet BC
104 bc_right = DirichletBC(W.sub(1), p_right, subdomains, mark["right"])
105 bcs = [bc_wall,bc_cylinder,bc_left, bc_right]
106

107 # Compute solution
108 w = Function(W)
109 solve(a == L, w, bcs)
110

111 # Split using deep copy
112 (u, p) = w.split(True)
113

114 # Plot solution
115 plt.figure(2, figsize = (2*x_0, 2*y_0))
116 plot(u, title="Velocity")
117 plt.colorbar(plot(u))

A.1. Fenics Codes (Numerical Codes) 77

118

119 plt.figure(3, figsize = (2*x_0, 2*y_0))
120 plot(p, title="Pressure")
121 plt.colorbar(plot(p))
122

123 # Magnitude function
124 def magnitude(vec):
125 return sqrt(vec**2)
126 plt.figure(4, figsize = (2*x_0, 2*y_0))
127 plot(magnitude(u), title="Speed", cmap = 'brg')
128 plt.colorbar(plot(magnitude(u)))

A.1.2. Fenics Code Navier Stokes Flow
1 from dolfin import *
2 from mshr import *
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import matplotlib.tri as mtri
6 from airfoils import Airfoil
7

8 airfoil_name = '0012'
9 alfa = 5
10

11

12 u_stream = 1
13 chord = 1
14 kinematic_visc = 1.5e-3
15 Re = Constant(u_stream * chord / kinematic_visc)
16 p_right = Constant(0)
17

18

19 x_0 = 5
20 y_0 = 3
21 points = 200 # keep it even
22

23 foil = Airfoil.NACA4(airfoil_name, n_points=points)
24 data = foil.all_points.T
25 data[points:,:] = np.flip(data[points:,:],0)
26 data = np.flip(data,0)
27 domain_vertices = []
28

29 for i in range(2*points):
30 domain_vertices.append(Point(data[i,0]+x_0/4,data[i,1]+y_0/2))
31

32

33 domain = Rectangle(Point(0, 0), Point(x_0, y_0)) - Polygon(domain_vertices)
34 mesh = generate_mesh(domain,60)
35 plt.figure(1, figsize = (2*x_0, 2*y_0))
36 plot(mesh)
37

38 # Making a mark dictionary
39 # Note: the values should be UNIQUE identifiers.
40 mark = {"generic": 0,
41 "wall": 1,
42 "left": 2,
43 "right": 3,
44 "airfoil" : 4
45 }
46

47 subdomains = MeshFunction("size_t", mesh, 1)
48 subdomains.set_all(mark["generic"])
49

50 class Left(SubDomain):
51 def inside(self, x, on_boundary):
52 return on_boundary and near(x[0], 0)
53

54 class Right(SubDomain):
55 def inside(self, x, on_boundary):
56 return on_boundary and near(x[0], x_0)

A.1. Fenics Codes (Numerical Codes) 78

57

58 class Wall(SubDomain):
59 def inside(self, x, on_boundary):
60 return on_boundary and (near(x[1], 0) or near(x[1], y_0))
61

62 class Airfoil_bd(SubDomain):
63 def inside(self, x, on_boundary):
64 return on_boundary and x[0]>x_0/6 and x[0]<2*x_0/3 and x[1]>y_0/4 and x[1]<3*y_0/4
65

66 left = Left()
67 left.mark(subdomains, mark["left"])
68

69 right = Right()
70 right.mark(subdomains, mark["right"])
71

72 wall = Wall()
73 wall.mark(subdomains, mark["wall"])
74

75 airfoil = Airfoil_bd()
76 airfoil.mark(subdomains, mark["airfoil"])
77

78 # Define function spaces
79 V = VectorElement("P", mesh.ufl_cell(), 2)
80 P = FiniteElement("P", mesh.ufl_cell(), 1)
81 TH = MixedElement([V, P])
82 W = FunctionSpace(mesh, TH)
83

84 # Define variational problem
85 v, q = TestFunctions(W)
86 w = Function(W)
87 u, p = split(w)
88

89

90 dx = Measure("dx", domain=mesh, subdomain_data=subdomains) # Volume integration
91 ds = Measure("ds", domain=mesh, subdomain_data=subdomains, subdomain_id = mark["airfoil"]) #

Surface integration
92

93 # Surface normal
94 n = FacetNormal(mesh)
95 alfa = np.deg2rad(alfa)
96 u_left = Expression(('cos(alfa)','sin(alfa)'),degree=2,alfa = alfa, u_stream = u_stream)
97

98

99 a = dot(dot(grad(u),u), v)*dx + (1/Re)*inner(grad(u), grad(v))*dx - p*div(v)*dx - q*div(u)*dx
100

101

102 noslip = Constant((0.0, 0.0))
103 slip_wall = u_left
104 bc_wall = DirichletBC(W.sub(0), slip_wall, subdomains, mark["wall"])
105 bc_cylinder = DirichletBC(W.sub(0), noslip, subdomains, mark["airfoil"])
106 bc_left = DirichletBC(W.sub(0), u_left, subdomains, mark["left"]) # Velocity Inlet BC
107 bc_right = DirichletBC(W.sub(1), p_right, subdomains, mark["right"])
108 bcs = [bc_wall,bc_cylinder,bc_left, bc_right]
109

110 # Compute solution
111 solve(a == 0, w, bcs, solver_parameters={"newton_solver":{"relative_tolerance":1e-8},"

newton_solver":{"maximum_iterations":200}})
112

113 # Split using deep copy
114 (u, p) = w.split(True)
115

116

117 # Plot solution
118 plt.figure(2, figsize = (2*x_0, 2*y_0))
119 plot(u, title="Velocity")
120 plt.colorbar(plot(u))
121

122

123 plt.figure(3, figsize = (2*x_0, 2*y_0))
124 plot(p, title="Pressure")
125 plt.colorbar(plot(p))

A.2. Deep Learning Codes 79

126

127 # Magnitude function
128 def magnitude(vec):
129 return sqrt(vec**2)
130 plt.figure(4, figsize = (2*x_0, 2*y_0))
131 plot(magnitude(u), title="Velocity Magnitude", cmap = 'brg')
132 plt.colorbar(plot(magnitude(u)))
133

134 ## Force Computations
135 ds_airfoil = Measure("ds", subdomain_data=subdomains, subdomain_id=mark["airfoil"])
136 n = FacetNormal(w.function_space().mesh())
137 force = -p*n + kinematic_visc*dot(grad(u), n)
138 F_D = assemble(-force[0]*ds_airfoil)
139 F_L = assemble(-force[1]*ds_airfoil)
140

141 print(F_D)
142 print(F_L)

A.2. Deep Learning Codes
A.2.1. Unparameterized Poisson Equation Code

1 import torch
2 from torch import pi, sin, cos
3 import numpy as np
4 from collections import OrderedDict
5 from random import randint
6

7 ## CUDA support
8 if torch.cuda.is_available():
9 device = torch.device('cuda')
10 else:
11 device = torch.device('cpu')
12

13 ## Hyperparameters
14

15 x_0 = 1
16 y_0 = 2
17 max_epochs = 1000000
18 num_variables = 2
19 num_inputs = 4
20 num_layers = 8
21 num_neurons = 40
22 u_array = np.ones(num_layers + 2) * num_neurons
23 u_array[0] = num_inputs
24 u_array[-1] = 1
25 u_array = np.ndarray.tolist(u_array.astype(int))
26 nxp = 50
27 nyp = 50
28 nbxp = 100
29 nbyp = 100
30 nx = int(nxp * x_0)
31 ny = int(nyp * y_0)
32 nbx = int(nbxp * x_0)
33 nby = int(nbyp * y_0)
34 learning_rate = 0.0001
35 iteration = 0
36 lamda = 0.01
37

38

39 ## Neural Network
40 class neural_net(torch.nn.Module):
41 def __init__(self, layers):
42 super(neural_net, self).__init__()
43

44 # parameters
45 self.depth = len(layers) - 1
46

47 # set up layer order dict
48 self.activation = torch.nn.Tanh

A.2. Deep Learning Codes 80

49

50 layer_list = list()
51 for i in range(self.depth - 1):
52 layer_list.append(
53 ('layer_%d' % i, torch.nn.Linear(layers[i], layers[i + 1]))
54)
55 layer_list.append(('activation_%d' % i, self.activation()))
56

57 layer_list.append(
58 ('layer_%d' % (self.depth - 1), torch.nn.Linear(layers[-2], layers[-1]))
59)
60 layerDict = OrderedDict(layer_list)
61

62 # deploy layers
63 self.layers = torch.nn.Sequential(layerDict)
64

65 def forward(self, x):
66 out = self.layers(x)
67 return out
68

69

70 u_net = neural_net(u_array).to(device)
71

72 if torch.cuda.device_count() > 1:
73 print("Let's use", torch.cuda.device_count(), "GPUs!")
74 # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
75 model = torch.nn.DataParallel(u_net)
76

77 u_net.to(device)
78

79 ## Load Model
80 #FILE = 'u_net_para_perturbed_low_BC.pth'
81 #FILE = 'u_net_hpc.pth'
82 #FILE = '/home/nfs/skakkar/model_data/poisson_init.pth'
83 #u_net.load_state_dict(torch.load(FILE))
84 #u_net.eval()
85

86 ###
87

88

89 ## Generating Data Points
90 def interior_points(nx, ny, x_0, y_0):
91 xy = torch.rand(nx * ny, num_variables).float()
92 xy[:, 0] *= x_0
93 xy[:, 1] *= y_0
94

95 x_0_array = x_0 * torch.ones((len(xy[:, 0]), 1)).float()
96 y_0_array = y_0 * torch.ones((len(xy[:, 1]), 1)).float()
97

98 xy = torch.from_numpy(np.hstack((xy, x_0_array)))
99 xy = torch.from_numpy(np.hstack((xy, y_0_array))).to(device)
100

101 return xy
102

103

104 ## Generating Boundary Points
105 def bound_points(nbx, nby, x_0, y_0):
106 xb = torch.rand(nbx, 1) * x_0
107 yb = torch.rand(nby, 1) * y_0
108

109 xy_b_1 = torch.hstack((xb, y_0 * torch.ones((nbx, 1))))
110 xy_b_2 = torch.hstack((xb, torch.zeros((nbx, 1))))
111 xy_b_3 = torch.hstack((x_0 * torch.ones((nby, 1)), yb))
112 xy_b_4 = torch.hstack((torch.zeros((nby, 1)), yb))
113

114 xy_b = torch.vstack((xy_b_1, xy_b_2, xy_b_3, xy_b_4)).float()
115

116 x_0_array = x_0 * torch.ones((len(xy_b[:, 0]), 1)).float()
117 y_0_array = y_0 * torch.ones((len(xy_b[:, 1]), 1)).float()
118

119 xy_b = torch.from_numpy(np.hstack((xy_b, x_0_array)))

A.2. Deep Learning Codes 81

120 xy_b = torch.from_numpy(np.hstack((xy_b, y_0_array))).to(device)
121

122 return xy_b
123

124

125 xy = interior_points(nx, ny, x_0, y_0)
126 xy_b = bound_points(nbx, nby, x_0, y_0)
127 optimizer = torch.optim.Adam(u_net.parameters(), lr=learning_rate)
128 f_source = -2 * pi * pi * sin(pi * xy[:, 0]/x_0) * sin(pi * xy[:, 1]/y_0).float().to(device)
129

130

131 def f_pde(XY):
132 x = torch.tensor(XY[:, 0], requires_grad=True).float().cpu()
133 y = torch.tensor(XY[:, 1], requires_grad=True).float().cpu()
134 x_0 = np.asscalar(XY[0, 2].cpu().numpy())
135 y_0 = np.asscalar(XY[0, 3].cpu().numpy())
136 xy_pde = torch.hstack((torch.reshape(x, (-1, 1)), torch.reshape(y, (-1, 1)))).float()
137 x_0_array = x_0 * torch.ones((len(xy_pde[:, 0]), 1)).float()
138 y_0_array = y_0 * torch.ones((len(xy_pde[:, 1]), 1)).float()
139

140 xy_pde = torch.hstack((xy_pde, x_0_array))
141 xy_pde = torch.hstack((xy_pde, y_0_array)).to(device)
142

143 u = u_net(xy_pde)
144 x.to(device)
145 y.to(device)
146

147 u_x = torch.autograd.grad(
148 u, x,
149 grad_outputs=torch.ones_like(u),
150 retain_graph=True,
151 create_graph=True
152)[0]
153 u_xx = torch.autograd.grad(
154 u_x, x,
155 grad_outputs=torch.ones_like(u_x),
156 retain_graph=True,
157 create_graph=True
158)[0]
159 u_y = torch.autograd.grad(
160 u, y,
161 grad_outputs=torch.ones_like(u),
162 retain_graph=True,
163 create_graph=True
164)[0]
165 u_yy = torch.autograd.grad(
166 u_y, y,
167 grad_outputs=torch.ones_like(u_y),
168 retain_graph=True,
169 create_graph=True
170)[0]
171

172 f = u_yy + u_xx
173 return f.to(device)
174

175 def loss_func(XY, XY_b, f_rhs, weight):
176 pde_loss = f_pde(XY) - f_rhs
177 bc_loss = u_net(XY_b)
178 loss_val = weight * torch.mean(pde_loss ** 2) + (1 - weight) * torch.mean(bc_loss ** 2)
179

180 return loss_val
181

182

183 epoch = 0
184 loss = loss_func(xy, xy_b, f_source, lamda)
185

186 ## Training Loop
187 while epoch <= max_epochs and loss.item() > 1e-6:
188 # Perturbation
189 if epoch % 5 == 0:
190

A.2. Deep Learning Codes 82

191 xy = interior_points(nx, ny, x_0, y_0)
192 xy_b = bound_points(nbx, nby, x_0, y_0)
193

194 f_source = -2 * pi * pi * sin(pi * xy[:, 0]/x_0) * sin(pi * xy[:, 1]/y_0).float().to(
device)

195

196 # forward and loss
197 loss = loss_func(xy, xy_b, f_source, lamda)
198

199 # backward
200 loss.backward()
201

202 # update
203 optimizer.step()
204

205 if epoch % 500 == 0:
206 print(f'epoch: {epoch}, loss: {loss.item()}', flush = True)
207

208 optimizer.zero_grad()
209 epoch += 1
210

211 ###
212

213 FILE = '/home/nfs/skakkar/model_data/u_net_unparametrized_long.pth'
214 #FILE = 'poisson_init.pth'
215 torch.save(u_net.state_dict(), FILE)

A.2.2. Parameterized Poisson Equation
1 import torch
2 from torch import pi, sin, cos
3 import numpy as np
4 from collections import OrderedDict
5 from random import randint
6

7 ## CUDA support
8 if torch.cuda.is_available():
9 device = torch.device('cuda')
10 else:
11 device = torch.device('cpu')
12

13 ## Hyperparameters
14

15 x_0 = 1
16 y_0 = 2
17 int_array = np.arange(1,11,2)
18 max_epochs = 1000000
19 num_variables = 2
20 num_inputs = 4
21 num_layers = 8
22 num_neurons = 40
23 u_array = np.ones(num_layers + 2) * num_neurons
24 u_array[0] = num_inputs
25 u_array[-1] = 1
26 u_array = np.ndarray.tolist(u_array.astype(int))
27 nxp = 50
28 nyp = 50
29 nbxp = 100
30 nbyp = 100
31 nx = int(nxp * x_0)
32 ny = int(nyp * y_0)
33 nbx = int(nbxp * x_0)
34 nby = int(nbyp * y_0)
35 learning_rate = 0.0001
36 iteration = 0
37 lamda = 0.01
38

39

40 ## Neural Network
41 class neural_net(torch.nn.Module):

A.2. Deep Learning Codes 83

42 def __init__(self, layers):
43 super(neural_net, self).__init__()
44

45 # parameters
46 self.depth = len(layers) - 1
47

48 # set up layer order dict
49 self.activation = torch.nn.Tanh
50

51 layer_list = list()
52 for i in range(self.depth - 1):
53 layer_list.append(
54 ('layer_%d' % i, torch.nn.Linear(layers[i], layers[i + 1]))
55)
56 layer_list.append(('activation_%d' % i, self.activation()))
57

58 layer_list.append(
59 ('layer_%d' % (self.depth - 1), torch.nn.Linear(layers[-2], layers[-1]))
60)
61 layerDict = OrderedDict(layer_list)
62

63 # deploy layers
64 self.layers = torch.nn.Sequential(layerDict)
65

66 def forward(self, x):
67 out = self.layers(x)
68 return out
69

70

71 u_net = neural_net(u_array).to(device)
72

73 if torch.cuda.device_count() > 1:
74 print("Let's use", torch.cuda.device_count(), "GPUs!")
75 # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
76 model = torch.nn.DataParallel(u_net)
77

78 u_net.to(device)
79

80 ## Load Model
81 #FILE = 'u_net_para_perturbed_low_BC.pth'
82 #FILE = 'u_net_hpc.pth'
83 #FILE = '/home/nfs/skakkar/model_data/poisson_init.pth'
84 #u_net.load_state_dict(torch.load(FILE))
85 #u_net.eval()
86

87 ###
88

89

90 ## Generating Data Points
91 def interior_points(nx, ny, x_0, y_0):
92 xy = torch.rand(nx * ny, num_variables).float()
93 xy[:, 0] *= x_0
94 xy[:, 1] *= y_0
95

96 x_0_array = x_0 * torch.ones((len(xy[:, 0]), 1)).float()
97 y_0_array = y_0 * torch.ones((len(xy[:, 1]), 1)).float()
98

99 xy = torch.from_numpy(np.hstack((xy, x_0_array)))
100 xy = torch.from_numpy(np.hstack((xy, y_0_array))).to(device)
101

102 return xy
103

104

105 ## Generating Boundary Points
106 def bound_points(nbx, nby, x_0, y_0):
107 xb = torch.rand(nbx, 1) * x_0
108 yb = torch.rand(nby, 1) * y_0
109

110 xy_b_1 = torch.hstack((xb, y_0 * torch.ones((nbx, 1))))
111 xy_b_2 = torch.hstack((xb, torch.zeros((nbx, 1))))
112 xy_b_3 = torch.hstack((x_0 * torch.ones((nby, 1)), yb))

A.2. Deep Learning Codes 84

113 xy_b_4 = torch.hstack((torch.zeros((nby, 1)), yb))
114

115 xy_b = torch.vstack((xy_b_1, xy_b_2, xy_b_3, xy_b_4)).float()
116

117 x_0_array = x_0 * torch.ones((len(xy_b[:, 0]), 1)).float()
118 y_0_array = y_0 * torch.ones((len(xy_b[:, 1]), 1)).float()
119

120 xy_b = torch.from_numpy(np.hstack((xy_b, x_0_array)))
121 xy_b = torch.from_numpy(np.hstack((xy_b, y_0_array))).to(device)
122

123 return xy_b
124

125

126 xy = interior_points(nx, ny, x_0, y_0)
127 xy_b = bound_points(nbx, nby, x_0, y_0)
128 optimizer = torch.optim.Adam(u_net.parameters(), lr=learning_rate)
129 f_source = -2 * pi * pi * sin(pi * xy[:, 0]/x_0) * sin(pi * xy[:, 1]/y_0).float().to(device)
130

131

132 def f_pde(XY):
133 x = torch.tensor(XY[:, 0], requires_grad=True).float().cpu()
134 y = torch.tensor(XY[:, 1], requires_grad=True).float().cpu()
135 x_0 = np.asscalar(XY[0, 2].cpu().numpy())
136 y_0 = np.asscalar(XY[0, 3].cpu().numpy())
137 xy_pde = torch.hstack((torch.reshape(x, (-1, 1)), torch.reshape(y, (-1, 1)))).float()
138 x_0_array = x_0 * torch.ones((len(xy_pde[:, 0]), 1)).float()
139 y_0_array = y_0 * torch.ones((len(xy_pde[:, 1]), 1)).float()
140

141 xy_pde = torch.hstack((xy_pde, x_0_array))
142 xy_pde = torch.hstack((xy_pde, y_0_array)).to(device)
143

144 u = u_net(xy_pde)
145 x.to(device)
146 y.to(device)
147

148 u_x = torch.autograd.grad(
149 u, x,
150 grad_outputs=torch.ones_like(u),
151 retain_graph=True,
152 create_graph=True
153)[0]
154 u_xx = torch.autograd.grad(
155 u_x, x,
156 grad_outputs=torch.ones_like(u_x),
157 retain_graph=True,
158 create_graph=True
159)[0]
160 u_y = torch.autograd.grad(
161 u, y,
162 grad_outputs=torch.ones_like(u),
163 retain_graph=True,
164 create_graph=True
165)[0]
166 u_yy = torch.autograd.grad(
167 u_y, y,
168 grad_outputs=torch.ones_like(u_y),
169 retain_graph=True,
170 create_graph=True
171)[0]
172

173 f = u_yy + u_xx
174 return f.to(device)
175

176 def loss_func(XY, XY_b, f_rhs, weight):
177 pde_loss = f_pde(XY) - f_rhs
178 bc_loss = u_net(XY_b)
179 loss_val = weight * torch.mean(pde_loss ** 2) + (1 - weight) * torch.mean(bc_loss ** 2)
180

181 return loss_val
182

183

A.2. Deep Learning Codes 85

184 epoch = 0
185 loss = loss_func(xy, xy_b, f_source, lamda)
186

187 ## Training Loop
188 while epoch <= max_epochs and loss.item() > 1e-6:
189 # Perturbation
190 if epoch % 5 == 0:
191

192 if epoch % 100 == 0:
193 x_0 = np.random.choice(int_array)
194 y_0 = np.random.choice(int_array)
195 nx = int(nxp * x_0)
196 ny = int(nyp * y_0)
197 nbx = int(nbxp * x_0)
198 nby = int(nbyp * y_0)
199 xy = interior_points(nx, ny, x_0, y_0)
200 xy_b = bound_points(nbx, nby, x_0, y_0)
201

202 f_source = -2 * pi * pi * sin(pi * xy[:, 0]/x_0) * sin(pi * xy[:, 1]/y_0).float().to(
device)

203

204 # forward and loss
205 loss = loss_func(xy, xy_b, f_source, lamda)
206

207 # backward
208 loss.backward()
209

210 # update
211 optimizer.step()
212

213 if epoch % 500 == 0:
214 print(f'epoch: {epoch}, loss: {loss.item()}', flush = True)
215

216 optimizer.zero_grad()
217 epoch += 1
218

219 ###
220

221 FILE = '/home/nfs/skakkar/model_data/u_net_unparametrized_long.pth'
222 #FILE = 'poisson_init.pth'
223 torch.save(u_net.state_dict(), FILE)

A.2.3. Poisson PINN Postprocessing Script
1 import torch
2 from torch import pi, sin, cos
3 import numpy as np
4 from collections import OrderedDict
5 import matplotlib.pylab as plt
6 from random import randint
7

8

9 ## CUDA support
10 if torch.cuda.is_available():
11 device = torch.device('cuda')
12 else:
13 device = torch.device('cpu')
14

15 ## Hyperparameters
16 x_0 = 4
17 y_0 = 2
18 num_variables = 2
19 num_inputs = 4
20 num_layers = 8 #4 for u_net_para, 8 for perturbed
21 num_neurons = 40 #50 for u_net_para, 20 for perturbed
22 u_array = np.ones(num_layers + 2) * num_neurons
23 u_array[0] = num_inputs
24 u_array[-1] = 1
25 u_array = np.ndarray.tolist(u_array.astype(int))
26 nx = int(150*x_0)

A.2. Deep Learning Codes 86

27 ny = int(150*y_0)
28 nbx = int(250*x_0)
29 nby = int(250*y_0)
30

31

32 ## Neural Network
33 class neural_net(torch.nn.Module):
34 def __init__(self, layers):
35 super(neural_net, self).__init__()
36

37 # parameters
38 self.depth = len(layers) - 1
39

40 # set up layer order dict
41 self.activation = torch.nn.Tanh
42

43 layer_list = list()
44 for i in range(self.depth - 1):
45 layer_list.append(
46 ('layer_%d' % i, torch.nn.Linear(layers[i], layers[i + 1]))
47)
48 layer_list.append(('activation_%d' % i, self.activation()))
49

50 layer_list.append(
51 ('layer_%d' % (self.depth - 1), torch.nn.Linear(layers[-2], layers[-1]))
52)
53 layerDict = OrderedDict(layer_list)
54

55 # deploy layers
56 self.layers = torch.nn.Sequential(layerDict)
57

58 def forward(self, x):
59 out = self.layers(x)
60 return out
61

62 u_net = neural_net(u_array).to(device)
63

64 ## Load Model
65 #FILE = 'u_net_parallel_integer.pth'
66 #FILE = 'u_net_parallel_narrow_latest.pth'
67 FILE = 'u_net_parallel_wide_latest.pth'
68 u_net.load_state_dict(torch.load(FILE))
69 u_net.eval()
70

71 ## Plotting
72 nx_plot = 200
73 ny_plot = 200
74 x = torch.linspace(0, x_0, nx_plot)
75 y = torch.linspace(0, y_0, ny_plot)
76

77

78 X, Y = np.meshgrid(x,y)
79

80 X_pred = torch.from_numpy(np.hstack((X.flatten()[:,None], Y.flatten()[:,None])))
81

82 x_0_array = x_0*torch.ones((len(X_pred[:,0]),1)).float()
83 y_0_array = y_0*torch.ones((len(X_pred[:,1]),1)).float()
84

85 X_pred = torch.from_numpy(np.hstack((X_pred, x_0_array)))
86 X_pred = torch.from_numpy(np.hstack((X_pred, y_0_array))).to(device)
87

88 # Deep Learning Solution
89 u_pred = u_net(X_pred)
90

91 u_numpy = np.reshape(u_pred.detach().cpu().numpy(), (nx_plot, ny_plot))
92

93 plt.ion()
94 plt.figure(figsize=(4*x_0, 4*y_0))
95 plt.clf()
96

97 plt.subplot(1,3,1)

A.2. Deep Learning Codes 87

98 plt.imshow(np.flip(u_numpy, 0), extent=[0, x_0, 0, y_0])
99 plt.xlabel('X')
100 plt.ylabel('Y')
101 plt.colorbar(orientation='horizontal')
102 plt.title('Deep Learning Solution')
103 plt.show()
104 #plt.savefig('poisson_rectangle.jpg')
105

106 # Analytical Solution
107 u_pred = sin(pi*X_pred[:,0]/x_0)*sin(pi*X_pred[:,1]/y_0)
108 u_actual = np.reshape(u_pred.detach().cpu().numpy(), (nx_plot, ny_plot))
109

110 #plt.ion()
111 plt.figure(figsize=(4*x_0, 4*y_0))
112 #plt.clf()
113

114 plt.subplot(1,3,2)
115 plt.imshow(np.flip(u_actual, 0), extent=[0, x_0, 0, y_0])
116 plt.xlabel('X')
117 plt.ylabel('Y')
118 plt.colorbar(orientation='horizontal')
119 plt.title('Analytical Solution')
120 plt.savefig('poisson_analytical_unit.jpg')
121 plt.show()
122

123 plt.figure(figsize=(4*x_0, 4*y_0))
124 plt.subplot(1,3,3)
125 plt.imshow(np.flip(abs(u_actual-u_numpy), 0), extent=[0, x_0, 0, y_0])
126 plt.xlabel('X')
127 plt.ylabel('Y')
128 plt.colorbar(orientation='horizontal')
129 plt.title('Error')
130 plt.show()

A.2.4. Unparameterized Airfoil Stokes Flow Code
1 import torch
2 from torch import pi, sin, cos
3 import numpy as np
4 from collections import OrderedDict
5 from random import randint
6 from airfoils import Airfoil
7 import matplotlib.pyplot as plt
8 from matplotlib import patches
9

10 ## CUDA support
11 if torch.cuda.is_available():
12 device = torch.device('cuda')
13 else:
14 device = torch.device('cpu')
15

16 x_0 = 5
17 y_0 = 3
18 nxp = 20
19 nyp = 20
20 num_variables = 2
21 max_epochs = 1000000
22 num_variables = 2
23 num_inputs = 6 # x,y,alfa,airfoil name (3)
24 num_outputs = 3
25 num_layers = 4 # default 4
26 num_neurons = 20 # default 100
27 u_array = np.ones(num_layers + 2) * num_neurons
28 u_array[0] = num_inputs
29 u_array[-1] = num_outputs
30 u_array = np.ndarray.tolist(u_array.astype(int))
31 nx = int(nxp * x_0)
32 ny = int(nyp * y_0)
33

34 airfoil_name = '4812'

A.2. Deep Learning Codes 88

35 mesh_file_name = '/home/nfs/skakkar/jupyter_codes/
mesh_data_stokes_correctedpressure_53_4812_lowRe.npy'

36 sol_file_name = '/home/nfs/skakkar/jupyter_codes/
solution_data_stokes_correctedpressure_53_4812_lowRe.npy'

37 alfa = 5 # degrees
38 u_stream = 1 # m/s
39 learning_rate = 0.0001 # default = 0.0001
40 data_lamda = 0.6 # default 0.6
41 chord = 1 # m
42 kin_viscosity = 1.5e-2 # m^2/s
43 Re = chord * u_stream / kin_viscosity
44

45

46 ## Neural Network
47 class neural_net(torch.nn.Module):
48 def __init__(self, layers):
49 super(neural_net, self).__init__()
50

51 # parameters
52 self.depth = len(layers) - 1
53

54 # set up layer order dict
55 self.activation = torch.nn.Tanh
56

57 layer_list = list()
58 for i in range(self.depth - 1):
59 layer_list.append(
60 ('layer_%d' % i, torch.nn.Linear(layers[i], layers[i + 1]))
61)
62 layer_list.append(('activation_%d' % i, self.activation()))
63

64 layer_list.append(
65 ('layer_%d' % (self.depth - 1), torch.nn.Linear(layers[-2], layers[-1]))
66)
67 layerDict = OrderedDict(layer_list)
68

69 # deploy layers
70 self.layers = torch.nn.Sequential(layerDict)
71

72 def forward(self, x):
73 out = self.layers(x)
74 return out
75

76

77 u_net = neural_net(u_array).to(device)
78

79 if torch.cuda.device_count() > 1:
80 print("Let's use", torch.cuda.device_count(), "GPUs!")
81 # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
82 model = torch.nn.DataParallel(u_net)
83

84 #FILE = 'airfoil_lowRe_31_stokes_myPC.pth'
85 #u_net.load_state_dict(torch.load(FILE))
86 #u_net.eval()
87

88 ## Generating Data Points
89 def interior_points(nx, ny, x_0, y_0, airfoil_name, alfa):
90

91 foil = Airfoil.NACA4(airfoil_name)
92 camber = int(airfoil_name[0])
93 camber_pos = int(airfoil_name[1])
94 thickness = int(airfoil_name[2:])
95

96 xy = np.random.rand(nx * ny, num_variables)
97 xy[:, 0] *= x_0
98 xy[:, 1] *= y_0
99

100 indices = []
101

102 for i in np.arange(len(xy[:,0])):
103 if xy[i,0]>=x_0/4:

A.2. Deep Learning Codes 89

104 if xy[i,0]<=x_0/4+1:
105 if xy[i,1]>=foil.y_lower(xy[i,0]-x_0/4)+y_0/2:
106 if xy[i,1]<=foil.y_upper(xy[i,0]-x_0/4)+y_0/2:
107 indices.append(i)
108

109 xy = np.delete(xy, indices, axis = 0)
110

111 xy = torch.from_numpy(xy).float()
112

113 cam_array = camber * torch.ones((len(xy[:, 0]), 1)).float()
114 cam_pos_array = camber_pos * torch.ones((len(xy[:, 1]), 1)).float()
115 thickness_array = thickness * torch.ones((len(xy[:, 0]), 1)).float()
116 alfa_array = alfa * torch.ones((len(xy[:, 0]), 1)).float()
117

118 xy = torch.from_numpy(np.hstack((xy, cam_array)))
119 xy = torch.from_numpy(np.hstack((xy, cam_pos_array)))
120 xy = torch.from_numpy(np.hstack((xy, thickness_array)))
121 xy = torch.from_numpy(np.hstack((xy, alfa_array))).to(device)
122

123 return xy
124

125 def mesh_points(file_name, airfoil_name, alfa):
126 foil = Airfoil.NACA4(airfoil_name)
127 camber = int(airfoil_name[0])
128 camber_pos = int(airfoil_name[1])
129 thickness = int(airfoil_name[2:])
130

131 xy_data = np.load(file_name)
132

133 cam_array = camber * torch.ones((len(xy_data[:, 0]), 1)).float()
134 cam_pos_array = camber_pos * torch.ones((len(xy_data[:, 1]), 1)).float()
135 thickness_array = thickness * torch.ones((len(xy_data[:, 0]), 1)).float()
136 alfa_array = alfa * torch.ones((len(xy_data[:, 0]), 1)).float()
137

138 xy_data = torch.from_numpy(np.hstack((xy_data, cam_array)))
139 xy_data = torch.from_numpy(np.hstack((xy_data, cam_pos_array)))
140 xy_data = torch.from_numpy(np.hstack((xy_data, thickness_array)))
141 xy_data = torch.from_numpy(np.hstack((xy_data, alfa_array))).float().to(device)
142

143 return xy_data
144

145 # Mesh Generation
146 xy = interior_points(nx, ny, x_0, y_0, airfoil_name, alfa)
147 xy_data = mesh_points(mesh_file_name, airfoil_name, alfa)
148 uvp_data = torch.from_numpy(np.load(sol_file_name)).to(device)
149

150

151 ## PINN Formulation
152 optimizer = torch.optim.Adam(u_net.parameters(), lr=learning_rate)
153

154 def interior_loss(XY, Re): # remember order of three outputs (u,v,p)
155 x = torch.tensor(XY[:, 0], requires_grad=True).float().cpu()
156 y = torch.tensor(XY[:, 1], requires_grad=True).float().cpu()
157 camber = np.asscalar(XY[0, 2].cpu().numpy())
158 camber_pos = np.asscalar(XY[0, 3].cpu().numpy())
159 thickness = np.asscalar(XY[0, 4].cpu().numpy())
160 alfa = np.asscalar(XY[0, 5].cpu().numpy())
161

162 xy_pde = torch.hstack((torch.reshape(x, (-1, 1)), torch.reshape(y, (-1, 1)))).float()
163 cam_array = camber * torch.ones((len(xy_pde[:, 0]), 1)).float()
164 cam_pos_array = camber_pos * torch.ones((len(xy_pde[:, 1]), 1)).float()
165 thickness_array = thickness * torch.ones((len(xy_pde[:, 1]), 1)).float()
166 alfa_array = alfa * torch.ones((len(xy_pde[:, 1]), 1)).float()
167

168 xy_pde = torch.hstack((xy_pde, cam_array))
169 xy_pde = torch.hstack((xy_pde, cam_pos_array))
170 xy_pde = torch.hstack((xy_pde, thickness_array))
171 xy_pde = torch.hstack((xy_pde, alfa_array)).to(device)
172

173 u = u_net(xy_pde)[:,0].to(device)
174 v = u_net(xy_pde)[:,1].to(device)

A.2. Deep Learning Codes 90

175 p = u_net(xy_pde)[:,2].to(device)
176 x.to(device)
177 y.to(device)
178

179 u_x = torch.autograd.grad(
180 u, x,
181 grad_outputs=torch.ones_like(u),
182 retain_graph=True,
183 create_graph=True
184)[0].to(device)
185 u_xx = torch.autograd.grad(
186 u_x, x,
187 grad_outputs=torch.ones_like(u_x),
188 retain_graph=True,
189 create_graph=True
190)[0].to(device)
191 u_y = torch.autograd.grad(
192 u, y,
193 grad_outputs=torch.ones_like(u),
194 retain_graph=True,
195 create_graph=True
196)[0].to(device)
197 u_yy = torch.autograd.grad(
198 u_y, y,
199 grad_outputs=torch.ones_like(u_y),
200 retain_graph=True,
201 create_graph=True
202)[0].to(device)
203

204 v_x = torch.autograd.grad(
205 v, x,
206 grad_outputs=torch.ones_like(v),
207 retain_graph=True,
208 create_graph=True
209)[0].to(device)
210 v_xx = torch.autograd.grad(
211 v_x, x,
212 grad_outputs=torch.ones_like(v_x),
213 retain_graph=True,
214 create_graph=True
215)[0].to(device)
216 v_y = torch.autograd.grad(
217 v, y,
218 grad_outputs=torch.ones_like(v),
219 retain_graph=True,
220 create_graph=True
221)[0].to(device)
222 v_yy = torch.autograd.grad(
223 v_y, y,
224 grad_outputs=torch.ones_like(v_y),
225 retain_graph=True,
226 create_graph=True
227)[0].to(device)
228

229 p_x = torch.autograd.grad(
230 p, x,
231 grad_outputs=torch.ones_like(p),
232 retain_graph=True,
233 create_graph=True
234)[0].to(device)
235

236 p_y = torch.autograd.grad(
237 p, y,
238 grad_outputs=torch.ones_like(p),
239 retain_graph=True,
240 create_graph=True
241)[0].to(device)
242

243 #f1 = p_xx + p_yy
244 f1 = u_x + v_y
245 f2 = u_xx/(Re) + u_yy/(Re) - p_x

A.2. Deep Learning Codes 91

246 f3 = v_xx/(Re) + v_yy/(Re) - p_y
247

248 loss1 = torch.mean(f1 ** 2)
249 loss2 = torch.mean(f2 ** 2)
250 loss3 = torch.mean(f3 ** 2)
251

252 return (loss1 + loss2 + loss3)
253

254 def loss_func(XY, data_weight, Re, XY_data, UVP_data):
255

256

257 data_supervised = u_net(XY_data) - UVP_data
258

259

260 loss_val = (1-data_weight)*interior_loss(XY, Re) + (data_weight)*torch.mean(
data_supervised**2)

261

262 return loss_val
263

264 epoch = 0
265 loss = loss_func(xy, data_lamda, Re, xy_data, uvp_data)
266

267 ## Training Loop
268 while epoch <= max_epochs and loss.item() > 1e-6:
269 # Perturbation
270 if epoch % 5 == 0:
271

272 xy = interior_points(nx, ny, x_0, y_0, airfoil_name, alfa)
273

274 # forward and loss
275 loss = loss_func(xy, data_lamda, Re , xy_data, uvp_data)
276

277 # backward
278 loss.backward()
279

280 # update
281 optimizer.step()
282

283 if epoch % 100 == 0:
284 print(f'epoch: {epoch}, loss: {loss.item()}, data_lamda = {data_lamda}, lr = {

learning_rate}', flush = True)
285

286 optimizer.zero_grad()
287 epoch += 1
288

289 FILE = '/home/nfs/skakkar/model_data/airfoil_stokes_correctedpressure_neur_20_53_4812.pth'
290 torch.save(u_net.state_dict(), FILE)

A.2.5. Parameterized Airfoil Stokes Flow Code
1 import torch
2 from torch import pi, sin, cos
3 import numpy as np
4 from collections import OrderedDict
5 import random
6 from airfoils import Airfoil
7 import matplotlib.pyplot as plt
8 from matplotlib import patches
9

10 ## CUDA support
11 if torch.cuda.is_available():
12 device = torch.device('cuda')
13 else:
14 device = torch.device('cpu')
15

16 x_0 = 5
17 y_0 = 3
18 nxp = 20
19 nyp = 20
20 num_variables = 2

A.2. Deep Learning Codes 92

21 max_epochs = 1000000
22 num_variables = 2
23 num_inputs = 6 # x,y,alfa,airfoil name (3)
24 num_outputs = 3
25 num_layers = 8 # default was 8 layers in generalised case
26 num_neurons = 20 # default 100
27 u_array = np.ones(num_layers + 2) * num_neurons
28 u_array[0] = num_inputs
29 u_array[-1] = num_outputs
30 u_array = np.ndarray.tolist(u_array.astype(int))
31 nx = int(nxp * x_0)
32 ny = int(nyp * y_0)
33

34 data_dict = {'mesh_data_stokes_correctedpressure_53_0006_lowRe.npy':'
solution_data_stokes_correctedpressure_53_0006_lowRe.npy',\

35 'mesh_data_stokes_correctedpressure_53_0010_lowRe.npy':'
solution_data_stokes_correctedpressure_53_0010_lowRe.npy',\

36 'mesh_data_stokes_correctedpressure_53_0014_lowRe.npy':'
solution_data_stokes_correctedpressure_53_0014_lowRe.npy',\

37 'mesh_data_stokes_correctedpressure_53_0018_lowRe.npy':'
solution_data_stokes_correctedpressure_53_0018_lowRe.npy'}

38

39 mesh_file_name, sol_file_name = random.choice(list(data_dict.items()))
40 airfoil_name = mesh_file_name[-14:-10]
41

42 mesh_file_name = '/home/nfs/skakkar/jupyter_codes/' + mesh_file_name
43 sol_file_name = '/home/nfs/skakkar/jupyter_codes/' + sol_file_name
44 alfa = 5 # degrees
45 u_stream = 1 # m/s
46 learning_rate = 0.0001 # default 0.0001
47 data_lamda = 0.6 # default 0.6
48 chord = 1 # m
49 p_outlet = 1 # scaled between 0-1
50 kin_viscosity = 1.5e-2 # m^2/s
51 Re = chord * u_stream / kin_viscosity
52

53

54 ## Neural Network
55 class neural_net(torch.nn.Module):
56 def __init__(self, layers):
57 super(neural_net, self).__init__()
58

59 # parameters
60 self.depth = len(layers) - 1
61

62 # set up layer order dict
63 self.activation = torch.nn.Tanh
64

65 layer_list = list()
66 for i in range(self.depth - 1):
67 layer_list.append(
68 ('layer_%d' % i, torch.nn.Linear(layers[i], layers[i + 1]))
69)
70 layer_list.append(('activation_%d' % i, self.activation()))
71

72 layer_list.append(
73 ('layer_%d' % (self.depth - 1), torch.nn.Linear(layers[-2], layers[-1]))
74)
75 layerDict = OrderedDict(layer_list)
76

77 # deploy layers
78 self.layers = torch.nn.Sequential(layerDict)
79

80 def forward(self, x):
81 out = self.layers(x)
82 return out
83

84

85 u_net = neural_net(u_array).to(device)
86

87 if torch.cuda.device_count() > 1:

A.2. Deep Learning Codes 93

88 print("Let's use", torch.cuda.device_count(), "GPUs!")
89 # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
90 model = torch.nn.DataParallel(u_net)
91

92 #FILE = 'airfoil_lowRe_31_stokes_myPC.pth'
93 #u_net.load_state_dict(torch.load(FILE))
94 #u_net.eval()
95

96 ## Generating Data Points
97 def interior_points(nx, ny, x_0, y_0, airfoil_name, alfa):
98

99 foil = Airfoil.NACA4(airfoil_name)
100 camber = int(airfoil_name[0])
101 camber_pos = int(airfoil_name[1])
102 thickness = int(airfoil_name[2:])
103

104 xy = np.random.rand(nx * ny, num_variables)
105 xy[:, 0] *= x_0
106 xy[:, 1] *= y_0
107

108 indices = []
109

110 for i in np.arange(len(xy[:,0])):
111 if xy[i,0]>=x_0/4:
112 if xy[i,0]<=x_0/4+1:
113 if xy[i,1]>=foil.y_lower(xy[i,0]-x_0/4)+y_0/2:
114 if xy[i,1]<=foil.y_upper(xy[i,0]-x_0/4)+y_0/2:
115 indices.append(i)
116

117 xy = np.delete(xy, indices, axis = 0)
118

119 xy = torch.from_numpy(xy).float()
120

121 cam_array = camber * torch.ones((len(xy[:, 0]), 1)).float()
122 cam_pos_array = camber_pos * torch.ones((len(xy[:, 1]), 1)).float()
123 thickness_array = thickness * torch.ones((len(xy[:, 0]), 1)).float()
124 alfa_array = alfa * torch.ones((len(xy[:, 0]), 1)).float()
125

126 xy = torch.from_numpy(np.hstack((xy, cam_array)))
127 xy = torch.from_numpy(np.hstack((xy, cam_pos_array)))
128 xy = torch.from_numpy(np.hstack((xy, thickness_array)))
129 xy = torch.from_numpy(np.hstack((xy, alfa_array))).to(device)
130

131 return xy
132

133 def mesh_points(file_name, airfoil_name, alfa):
134 foil = Airfoil.NACA4(airfoil_name)
135 camber = int(airfoil_name[0])
136 camber_pos = int(airfoil_name[1])
137 thickness = int(airfoil_name[2:])
138

139 xy_data = np.load(file_name)
140

141 cam_array = camber * torch.ones((len(xy_data[:, 0]), 1)).float()
142 cam_pos_array = camber_pos * torch.ones((len(xy_data[:, 1]), 1)).float()
143 thickness_array = thickness * torch.ones((len(xy_data[:, 0]), 1)).float()
144 alfa_array = alfa * torch.ones((len(xy_data[:, 0]), 1)).float()
145

146 xy_data = torch.from_numpy(np.hstack((xy_data, cam_array)))
147 xy_data = torch.from_numpy(np.hstack((xy_data, cam_pos_array)))
148 xy_data = torch.from_numpy(np.hstack((xy_data, thickness_array)))
149 xy_data = torch.from_numpy(np.hstack((xy_data, alfa_array))).float().to(device)
150

151 return xy_data
152

153 # Mesh Generation
154 xy = interior_points(nx, ny, x_0, y_0, airfoil_name, alfa)
155 xy_data = mesh_points(mesh_file_name, airfoil_name, alfa)
156 uvp_data = torch.from_numpy(np.load(sol_file_name)).to(device)
157

158

A.2. Deep Learning Codes 94

159 ## PINN Formulation
160 optimizer = torch.optim.Adam(u_net.parameters(), lr=learning_rate)
161

162 def interior_loss(XY, Re): # remember order of three outputs (u,v,p)
163 x = torch.tensor(XY[:, 0], requires_grad=True).float().cpu()
164 y = torch.tensor(XY[:, 1], requires_grad=True).float().cpu()
165 camber = np.asscalar(XY[0, 2].cpu().numpy())
166 camber_pos = np.asscalar(XY[0, 3].cpu().numpy())
167 thickness = np.asscalar(XY[0, 4].cpu().numpy())
168 alfa = np.asscalar(XY[0, 5].cpu().numpy())
169

170 xy_pde = torch.hstack((torch.reshape(x, (-1, 1)), torch.reshape(y, (-1, 1)))).float()
171 cam_array = camber * torch.ones((len(xy_pde[:, 0]), 1)).float()
172 cam_pos_array = camber_pos * torch.ones((len(xy_pde[:, 1]), 1)).float()
173 thickness_array = thickness * torch.ones((len(xy_pde[:, 1]), 1)).float()
174 alfa_array = alfa * torch.ones((len(xy_pde[:, 1]), 1)).float()
175

176 xy_pde = torch.hstack((xy_pde, cam_array))
177 xy_pde = torch.hstack((xy_pde, cam_pos_array))
178 xy_pde = torch.hstack((xy_pde, thickness_array))
179 xy_pde = torch.hstack((xy_pde, alfa_array)).to(device)
180

181 u = u_net(xy_pde)[:,0].to(device)
182 v = u_net(xy_pde)[:,1].to(device)
183 p = u_net(xy_pde)[:,2].to(device)
184 x.to(device)
185 y.to(device)
186

187 u_x = torch.autograd.grad(
188 u, x,
189 grad_outputs=torch.ones_like(u),
190 retain_graph=True,
191 create_graph=True
192)[0].to(device)
193 u_xx = torch.autograd.grad(
194 u_x, x,
195 grad_outputs=torch.ones_like(u_x),
196 retain_graph=True,
197 create_graph=True
198)[0].to(device)
199 u_y = torch.autograd.grad(
200 u, y,
201 grad_outputs=torch.ones_like(u),
202 retain_graph=True,
203 create_graph=True
204)[0].to(device)
205 u_yy = torch.autograd.grad(
206 u_y, y,
207 grad_outputs=torch.ones_like(u_y),
208 retain_graph=True,
209 create_graph=True
210)[0].to(device)
211

212 v_x = torch.autograd.grad(
213 v, x,
214 grad_outputs=torch.ones_like(v),
215 retain_graph=True,
216 create_graph=True
217)[0].to(device)
218 v_xx = torch.autograd.grad(
219 v_x, x,
220 grad_outputs=torch.ones_like(v_x),
221 retain_graph=True,
222 create_graph=True
223)[0].to(device)
224 v_y = torch.autograd.grad(
225 v, y,
226 grad_outputs=torch.ones_like(v),
227 retain_graph=True,
228 create_graph=True
229)[0].to(device)

A.2. Deep Learning Codes 95

230 v_yy = torch.autograd.grad(
231 v_y, y,
232 grad_outputs=torch.ones_like(v_y),
233 retain_graph=True,
234 create_graph=True
235)[0].to(device)
236

237 p_x = torch.autograd.grad(
238 p, x,
239 grad_outputs=torch.ones_like(p),
240 retain_graph=True,
241 create_graph=True
242)[0].to(device)
243

244 p_y = torch.autograd.grad(
245 p, y,
246 grad_outputs=torch.ones_like(p),
247 retain_graph=True,
248 create_graph=True
249)[0].to(device)
250

251 #f1 = p_xx + p_yy
252 f1 = u_x + v_y
253 f2 = u_xx/(Re) + u_yy/(Re) - p_x
254 f3 = v_xx/(Re) + v_yy/(Re) - p_y
255

256 loss1 = torch.mean(f1 ** 2)
257 loss2 = torch.mean(f2 ** 2)
258 loss3 = torch.mean(f3 ** 2)
259

260 return (loss1 + loss2 + loss3)
261

262 def loss_func(XY, data_weight, Re, XY_data, UVP_data):
263

264

265 data_supervised = u_net(XY_data) - UVP_data
266

267

268 loss_val = (1-data_weight)*interior_loss(XY, Re) + (data_weight)*torch.mean(
data_supervised**2)

269

270 return loss_val
271

272 epoch = 0
273 loss = loss_func(xy, data_lamda, Re, xy_data, uvp_data)
274

275 ## Training Loop
276 while epoch <= max_epochs and loss.item() > 1e-6:
277 # Perturbation
278 if epoch % 5 == 0:
279

280 mesh_file_name, sol_file_name = random.choice(list(data_dict.items()))
281 airfoil_name = mesh_file_name[-14:-10]
282 mesh_file_name = '/home/nfs/skakkar/jupyter_codes/' + mesh_file_name
283 sol_file_name = '/home/nfs/skakkar/jupyter_codes/' + sol_file_name
284 xy = interior_points(nx, ny, x_0, y_0, airfoil_name, alfa)
285 xy_data = mesh_points(mesh_file_name, airfoil_name, alfa)
286 uvp_data = torch.from_numpy(np.load(sol_file_name)).to(device)
287

288 # forward and loss
289 loss = loss_func(xy, data_lamda, Re , xy_data, uvp_data)
290

291 # backward
292 loss.backward()
293

294 # update
295 optimizer.step()
296

297 if epoch % 100 == 0:
298 print(f'epoch: {epoch}, loss: {loss.item()}, data_lamda = {data_lamda}, lr = {

learning_rate}', flush = True)

A.2. Deep Learning Codes 96

299

300 optimizer.zero_grad()
301 epoch += 1
302

303 FILE = '/home/nfs/skakkar/model_data/
airfoil_stokes_generalised_correctedpressure_neur_20_53_06101418.pth'

304 torch.save(u_net.state_dict(), FILE)

A.2.6. Unparameterized Airfoil Navier Stokes Flow Code
1 #### HPC CODE ###############
2 import torch
3 from torch import pi, sin, cos
4 import numpy as np
5 from collections import OrderedDict
6 from random import randint
7 from airfoils import Airfoil
8 import matplotlib.pyplot as plt
9 from matplotlib import patches
10

11 ## CUDA support
12 if torch.cuda.is_available():
13 device = torch.device('cuda')
14 else:
15 device = torch.device('cpu')
16

17 x_0 = 5
18 y_0 = 3
19 nxp = 20
20 nyp = 20
21 num_variables = 2
22 max_epochs = 1000000
23 num_variables = 2
24 num_inputs = 6 # x,y,alfa,airfoil name (3)
25 num_outputs = 3
26 num_layers = 8 # default 4
27 num_neurons = 100 # default 100
28 u_array = np.ones(num_layers + 2) * num_neurons
29 u_array[0] = num_inputs
30 u_array[-1] = num_outputs
31 u_array = np.ndarray.tolist(u_array.astype(int))
32 nx = int(nxp * x_0)
33 ny = int(nyp * y_0)
34

35 airfoil_name = '4812'
36 mesh_file_name = '/home/nfs/skakkar/jupyter_codes/NS_mesh_data_53_4812_highRe.npy'
37 sol_file_name = '/home/nfs/skakkar/jupyter_codes/NS_solution_data_53_4812_highRe.npy'
38 alfa = 5 # degrees
39 u_stream = 1 # m/s
40 learning_rate = 0.0001 # default = 0.0001
41 data_lamda = 0.6 # default 0.6
42 chord = 1 # m
43 p_outlet = 1 # scaled between 0-1
44 kin_viscosity = 1.5e-3 # m^2/s
45 Re = chord * u_stream / kin_viscosity
46

47

48 ## Neural Network
49 class neural_net(torch.nn.Module):
50 def __init__(self, layers):
51 super(neural_net, self).__init__()
52

53 # parameters
54 self.depth = len(layers) - 1
55

56 # set up layer order dict
57 self.activation = torch.nn.Tanh
58

59 layer_list = list()
60 for i in range(self.depth - 1):

A.2. Deep Learning Codes 97

61 layer_list.append(
62 ('layer_%d' % i, torch.nn.Linear(layers[i], layers[i + 1]))
63)
64 layer_list.append(('activation_%d' % i, self.activation()))
65

66 layer_list.append(
67 ('layer_%d' % (self.depth - 1), torch.nn.Linear(layers[-2], layers[-1]))
68)
69 layerDict = OrderedDict(layer_list)
70

71 # deploy layers
72 self.layers = torch.nn.Sequential(layerDict)
73

74 def forward(self, x):
75 out = self.layers(x)
76 return out
77

78

79 u_net = neural_net(u_array).to(device)
80

81 if torch.cuda.device_count() > 1:
82 print("Let's use", torch.cuda.device_count(), "GPUs!")
83 # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
84 model = torch.nn.DataParallel(u_net)
85

86 #FILE = 'airfoil_lowRe_31_stokes_myPC.pth'
87 #u_net.load_state_dict(torch.load(FILE))
88 #u_net.eval()
89

90 ## Generating Data Points
91 def interior_points(nx, ny, x_0, y_0, airfoil_name, alfa):
92

93 foil = Airfoil.NACA4(airfoil_name)
94 camber = int(airfoil_name[0])
95 camber_pos = int(airfoil_name[1])
96 thickness = int(airfoil_name[2:])
97

98 xy = np.random.rand(nx * ny, num_variables)
99 xy[:, 0] *= x_0
100 xy[:, 1] *= y_0
101

102 indices = []
103

104 for i in np.arange(len(xy[:,0])):
105 if xy[i,0]>=x_0/4:
106 if xy[i,0]<=x_0/4+1:
107 if xy[i,1]>=foil.y_lower(xy[i,0]-x_0/4)+y_0/2:
108 if xy[i,1]<=foil.y_upper(xy[i,0]-x_0/4)+y_0/2:
109 indices.append(i)
110

111 xy = np.delete(xy, indices, axis = 0)
112

113 xy = torch.from_numpy(xy).float()
114

115 cam_array = camber * torch.ones((len(xy[:, 0]), 1)).float()
116 cam_pos_array = camber_pos * torch.ones((len(xy[:, 1]), 1)).float()
117 thickness_array = thickness * torch.ones((len(xy[:, 0]), 1)).float()
118 alfa_array = alfa * torch.ones((len(xy[:, 0]), 1)).float()
119

120 xy = torch.from_numpy(np.hstack((xy, cam_array)))
121 xy = torch.from_numpy(np.hstack((xy, cam_pos_array)))
122 xy = torch.from_numpy(np.hstack((xy, thickness_array)))
123 xy = torch.from_numpy(np.hstack((xy, alfa_array))).to(device)
124

125 return xy
126

127 def mesh_points(file_name, airfoil_name, alfa):
128 foil = Airfoil.NACA4(airfoil_name)
129 camber = int(airfoil_name[0])
130 camber_pos = int(airfoil_name[1])
131 thickness = int(airfoil_name[2:])

A.2. Deep Learning Codes 98

132

133 xy_data = np.load(file_name)
134

135 cam_array = camber * torch.ones((len(xy_data[:, 0]), 1)).float()
136 cam_pos_array = camber_pos * torch.ones((len(xy_data[:, 1]), 1)).float()
137 thickness_array = thickness * torch.ones((len(xy_data[:, 0]), 1)).float()
138 alfa_array = alfa * torch.ones((len(xy_data[:, 0]), 1)).float()
139

140 xy_data = torch.from_numpy(np.hstack((xy_data, cam_array)))
141 xy_data = torch.from_numpy(np.hstack((xy_data, cam_pos_array)))
142 xy_data = torch.from_numpy(np.hstack((xy_data, thickness_array)))
143 xy_data = torch.from_numpy(np.hstack((xy_data, alfa_array))).float().to(device)
144

145 return xy_data
146

147 # Mesh Generation
148 xy = interior_points(nx, ny, x_0, y_0, airfoil_name, alfa)
149 xy_data = mesh_points(mesh_file_name, airfoil_name, alfa)
150 uvp_data = torch.from_numpy(np.load(sol_file_name)).to(device)
151

152

153 ## PINN Formulation
154 optimizer = torch.optim.Adam(u_net.parameters(), lr=learning_rate)
155

156 def interior_loss(XY, Re): # remember order of three outputs (u,v,p)
157 x = torch.tensor(XY[:, 0], requires_grad=True).float().cpu()
158 y = torch.tensor(XY[:, 1], requires_grad=True).float().cpu()
159 camber = np.asscalar(XY[0, 2].cpu().numpy())
160 camber_pos = np.asscalar(XY[0, 3].cpu().numpy())
161 thickness = np.asscalar(XY[0, 4].cpu().numpy())
162 alfa = np.asscalar(XY[0, 5].cpu().numpy())
163

164 xy_pde = torch.hstack((torch.reshape(x, (-1, 1)), torch.reshape(y, (-1, 1)))).float()
165 cam_array = camber * torch.ones((len(xy_pde[:, 0]), 1)).float()
166 cam_pos_array = camber_pos * torch.ones((len(xy_pde[:, 1]), 1)).float()
167 thickness_array = thickness * torch.ones((len(xy_pde[:, 1]), 1)).float()
168 alfa_array = alfa * torch.ones((len(xy_pde[:, 1]), 1)).float()
169

170 xy_pde = torch.hstack((xy_pde, cam_array))
171 xy_pde = torch.hstack((xy_pde, cam_pos_array))
172 xy_pde = torch.hstack((xy_pde, thickness_array))
173 xy_pde = torch.hstack((xy_pde, alfa_array)).to(device)
174

175 u = u_net(xy_pde)[:,0].to(device)
176 v = u_net(xy_pde)[:,1].to(device)
177 p = u_net(xy_pde)[:,2].to(device)
178 x.to(device)
179 y.to(device)
180

181 u_x = torch.autograd.grad(
182 u, x,
183 grad_outputs=torch.ones_like(u),
184 retain_graph=True,
185 create_graph=True
186)[0].to(device)
187 u_xx = torch.autograd.grad(
188 u_x, x,
189 grad_outputs=torch.ones_like(u_x),
190 retain_graph=True,
191 create_graph=True
192)[0].to(device)
193 u_y = torch.autograd.grad(
194 u, y,
195 grad_outputs=torch.ones_like(u),
196 retain_graph=True,
197 create_graph=True
198)[0].to(device)
199 u_yy = torch.autograd.grad(
200 u_y, y,
201 grad_outputs=torch.ones_like(u_y),
202 retain_graph=True,

A.2. Deep Learning Codes 99

203 create_graph=True
204)[0].to(device)
205

206 v_x = torch.autograd.grad(
207 v, x,
208 grad_outputs=torch.ones_like(v),
209 retain_graph=True,
210 create_graph=True
211)[0].to(device)
212 v_xx = torch.autograd.grad(
213 v_x, x,
214 grad_outputs=torch.ones_like(v_x),
215 retain_graph=True,
216 create_graph=True
217)[0].to(device)
218 v_y = torch.autograd.grad(
219 v, y,
220 grad_outputs=torch.ones_like(v),
221 retain_graph=True,
222 create_graph=True
223)[0].to(device)
224 v_yy = torch.autograd.grad(
225 v_y, y,
226 grad_outputs=torch.ones_like(v_y),
227 retain_graph=True,
228 create_graph=True
229)[0].to(device)
230

231 p_x = torch.autograd.grad(
232 p, x,
233 grad_outputs=torch.ones_like(p),
234 retain_graph=True,
235 create_graph=True
236)[0].to(device)
237

238 p_y = torch.autograd.grad(
239 p, y,
240 grad_outputs=torch.ones_like(p),
241 retain_graph=True,
242 create_graph=True
243)[0].to(device)
244

245 #f1 = p_xx + p_yy
246 f1 = u_x + v_y
247 f2 = u_xx/(Re) + u_yy/(Re) - p_x - u*u_x - v*u_y
248 f3 = v_xx/(Re) + v_yy/(Re) - p_y - u*v_x - v*v_y
249

250 loss1 = torch.mean(f1 ** 2)
251 loss2 = torch.mean(f2 ** 2)
252 loss3 = torch.mean(f3 ** 2)
253

254 return (loss1 + loss2 + loss3)
255

256 def loss_func(XY, data_weight, Re, XY_data, UVP_data):
257

258

259 data_supervised = u_net(XY_data) - UVP_data
260

261

262 loss_val = (1-data_weight)*interior_loss(XY, Re) + (data_weight)*torch.mean(
data_supervised**2)

263

264 return loss_val
265

266 epoch = 0
267 loss = loss_func(xy, data_lamda, Re, xy_data, uvp_data)
268

269 ## Training Loop
270 while epoch <= max_epochs and loss.item() > 1e-6:
271 # Perturbation
272 if epoch % 5 == 0:

A.2. Deep Learning Codes 100

273

274 xy = interior_points(nx, ny, x_0, y_0, airfoil_name, alfa)
275

276 # forward and loss
277 loss = loss_func(xy, data_lamda, Re , xy_data, uvp_data)
278

279 # backward
280 loss.backward()
281

282 # update
283 optimizer.step()
284

285 if epoch % 100 == 0:
286 print(f'epoch: {epoch}, loss: {loss.item()}, data_lamda = {data_lamda}, lr = {

learning_rate}', flush = True)
287

288 optimizer.zero_grad()
289 epoch += 1
290

291 FILE = '/home/nfs/skakkar/model_data/airfoil_navier_stokes_highRe_layers_8_53_4812.pth'
292 torch.save(u_net.state_dict(), FILE)

A.2.7. Parameterized Airfoil Navier Stokes Flow Code
1 #### HPC CODE ###############
2 import torch
3 from torch import pi, sin, cos
4 import numpy as np
5 from collections import OrderedDict
6 import random
7 from airfoils import Airfoil
8 import matplotlib.pyplot as plt
9 from matplotlib import patches
10

11 ## CUDA support
12 if torch.cuda.is_available():
13 device = torch.device('cuda')
14 else:
15 device = torch.device('cpu')
16

17 x_0 = 5
18 y_0 = 3
19 nxp = 20
20 nyp = 20
21 num_variables = 2
22 max_epochs = 4000000
23 num_variables = 2
24 num_inputs = 6 # x,y,alfa,airfoil name (3)
25 num_outputs = 3
26 num_layers = 4 # final value 4
27 num_neurons = 100 # final value 100
28 u_array = np.ones(num_layers + 2) * num_neurons
29 u_array[0] = num_inputs
30 u_array[-1] = num_outputs
31 u_array = np.ndarray.tolist(u_array.astype(int))
32 nx = int(nxp * x_0)
33 ny = int(nyp * y_0)
34

35 data_dict = {'NS_mesh_data_BC_53_AOA_5_0012_highRe.npy':'
NS_solution_data_BC_53_AOA_5_0012_highRe.npy',\

36 'NS_mesh_data_BC_53_AOA_5_2412_highRe.npy':'
NS_solution_data_BC_53_AOA_5_2412_highRe.npy',\

37 'NS_mesh_data_BC_53_AOA_5_4412_highRe.npy':'
NS_solution_data_BC_53_AOA_5_4412_highRe.npy',\

38 'NS_mesh_data_BC_53_AOA_5_6412_highRe.npy':'
NS_solution_data_BC_53_AOA_5_6412_highRe.npy',\

39 'NS_mesh_data_BC_53_AOA_5_4812_highRe.npy':'
NS_solution_data_BC_53_AOA_5_4812_highRe.npy',\

40 'NS_mesh_data_BC_53_AOA_5_4212_highRe.npy':'
NS_solution_data_BC_53_AOA_5_4212_highRe.npy',\

A.2. Deep Learning Codes 101

41 'NS_mesh_data_BC_53_AOA_5_4612_highRe.npy':'
NS_solution_data_BC_53_AOA_5_4612_highRe.npy'}

42

43 mesh_file_name, sol_file_name = random.choice(list(data_dict.items()))
44 airfoil_name = mesh_file_name[-15:-11] # for lowRe, will become -15:-11 for highRe
45 alfa = int(mesh_file_name[-17]) # degrees for highRe
46

47 mesh_file_name = '/home/nfs/skakkar/jupyter_codes/' + mesh_file_name
48 sol_file_name = '/home/nfs/skakkar/jupyter_codes/' + sol_file_name
49

50 u_stream = 1 # m/s
51 learning_rate = 0.0001 # final value starting 0.0001
52 data_lamda = 0.8 # final value 0.2 changed to 0.8
53 pres_lamda = 0.8
54 chord = 1 # m
55 p_outlet = 1 # scaled between 0-1
56 kin_viscosity = 1.5e-3 # m^2/s
57 Re = chord * u_stream / kin_viscosity
58

59

60 ## Neural Network
61 class neural_net(torch.nn.Module):
62 def __init__(self, layers):
63 super(neural_net, self).__init__()
64

65 # parameters
66 self.depth = len(layers) - 1
67

68 # set up layer order dict
69 self.activation = torch.nn.Tanh
70

71 layer_list = list()
72 for i in range(self.depth - 1):
73 layer_list.append(
74 ('layer_%d' % i, torch.nn.Linear(layers[i], layers[i + 1]))
75)
76 layer_list.append(('activation_%d' % i, self.activation()))
77

78 layer_list.append(
79 ('layer_%d' % (self.depth - 1), torch.nn.Linear(layers[-2], layers[-1]))
80)
81 layerDict = OrderedDict(layer_list)
82

83 # deploy layers
84 self.layers = torch.nn.Sequential(layerDict)
85

86 def forward(self, x):
87 out = self.layers(x)
88 return out
89

90

91 u_net = neural_net(u_array).to(device)
92

93 if torch.cuda.device_count() > 1:
94 print("Let's use", torch.cuda.device_count(), "GPUs!")
95 # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
96 model = torch.nn.DataParallel(u_net)
97

98 #FILE = 'airfoil_lowRe_31_stokes_myPC.pth'
99 #u_net.load_state_dict(torch.load(FILE))
100 #u_net.eval()
101

102 ## Generating Data Points
103 def interior_points(nx, ny, x_0, y_0, airfoil_name, alfa):
104

105 foil = Airfoil.NACA4(airfoil_name)
106 camber = int(airfoil_name[0])
107 camber_pos = int(airfoil_name[1])
108 thickness = int(airfoil_name[2:])
109

110 xy = np.random.rand(nx * ny, num_variables)

A.2. Deep Learning Codes 102

111 xy[:, 0] *= x_0
112 xy[:, 1] *= y_0
113

114 indices = []
115

116 for i in np.arange(len(xy[:,0])):
117 if xy[i,0]>=x_0/4:
118 if xy[i,0]<=x_0/4+1:
119 if xy[i,1]>=foil.y_lower(xy[i,0]-x_0/4)+y_0/2:
120 if xy[i,1]<=foil.y_upper(xy[i,0]-x_0/4)+y_0/2:
121 indices.append(i)
122

123 xy = np.delete(xy, indices, axis = 0)
124

125 xy = torch.from_numpy(xy).float()
126

127 cam_array = camber * torch.ones((len(xy[:, 0]), 1)).float()
128 cam_pos_array = camber_pos * torch.ones((len(xy[:, 1]), 1)).float()
129 thickness_array = thickness * torch.ones((len(xy[:, 0]), 1)).float()
130 alfa_array = alfa * torch.ones((len(xy[:, 0]), 1)).float()
131

132 xy = torch.from_numpy(np.hstack((xy, cam_array)))
133 xy = torch.from_numpy(np.hstack((xy, cam_pos_array)))
134 xy = torch.from_numpy(np.hstack((xy, thickness_array)))
135 xy = torch.from_numpy(np.hstack((xy, alfa_array))).to(device)
136

137 return xy
138

139 def mesh_points(file_name, airfoil_name, alfa):
140 foil = Airfoil.NACA4(airfoil_name)
141 camber = int(airfoil_name[0])
142 camber_pos = int(airfoil_name[1])
143 thickness = int(airfoil_name[2:])
144

145 xy_data = np.load(file_name)
146

147 cam_array = camber * torch.ones((len(xy_data[:, 0]), 1)).float()
148 cam_pos_array = camber_pos * torch.ones((len(xy_data[:, 1]), 1)).float()
149 thickness_array = thickness * torch.ones((len(xy_data[:, 0]), 1)).float()
150 alfa_array = alfa * torch.ones((len(xy_data[:, 0]), 1)).float()
151

152 xy_data = torch.from_numpy(np.hstack((xy_data, cam_array)))
153 xy_data = torch.from_numpy(np.hstack((xy_data, cam_pos_array)))
154 xy_data = torch.from_numpy(np.hstack((xy_data, thickness_array)))
155 xy_data = torch.from_numpy(np.hstack((xy_data, alfa_array))).float().to(device)
156

157 return xy_data
158

159 # Mesh Generation
160 xy = interior_points(nx, ny, x_0, y_0, airfoil_name, alfa)
161 xy_data = mesh_points(mesh_file_name, airfoil_name, alfa)
162 uvp_data = torch.from_numpy(np.load(sol_file_name)).to(device)
163

164

165 ## PINN Formulation
166 optimizer = torch.optim.Adam(u_net.parameters(), lr=learning_rate)
167

168 def interior_loss(XY, Re): # remember order of three outputs (u,v,p)
169 x = torch.tensor(XY[:, 0], requires_grad=True).float().cpu()
170 y = torch.tensor(XY[:, 1], requires_grad=True).float().cpu()
171 camber = np.asscalar(XY[0, 2].cpu().numpy())
172 camber_pos = np.asscalar(XY[0, 3].cpu().numpy())
173 thickness = np.asscalar(XY[0, 4].cpu().numpy())
174 alfa = np.asscalar(XY[0, 5].cpu().numpy())
175

176 xy_pde = torch.hstack((torch.reshape(x, (-1, 1)), torch.reshape(y, (-1, 1)))).float()
177 cam_array = camber * torch.ones((len(xy_pde[:, 0]), 1)).float()
178 cam_pos_array = camber_pos * torch.ones((len(xy_pde[:, 1]), 1)).float()
179 thickness_array = thickness * torch.ones((len(xy_pde[:, 1]), 1)).float()
180 alfa_array = alfa * torch.ones((len(xy_pde[:, 1]), 1)).float()
181

A.2. Deep Learning Codes 103

182 xy_pde = torch.hstack((xy_pde, cam_array))
183 xy_pde = torch.hstack((xy_pde, cam_pos_array))
184 xy_pde = torch.hstack((xy_pde, thickness_array))
185 xy_pde = torch.hstack((xy_pde, alfa_array)).to(device)
186

187 u = u_net(xy_pde)[:,0].to(device)
188 v = u_net(xy_pde)[:,1].to(device)
189 p = u_net(xy_pde)[:,2].to(device)
190 x.to(device)
191 y.to(device)
192

193 u_x = torch.autograd.grad(
194 u, x,
195 grad_outputs=torch.ones_like(u),
196 retain_graph=True,
197 create_graph=True
198)[0].to(device)
199 u_xx = torch.autograd.grad(
200 u_x, x,
201 grad_outputs=torch.ones_like(u_x),
202 retain_graph=True,
203 create_graph=True
204)[0].to(device)
205 u_y = torch.autograd.grad(
206 u, y,
207 grad_outputs=torch.ones_like(u),
208 retain_graph=True,
209 create_graph=True
210)[0].to(device)
211 u_yy = torch.autograd.grad(
212 u_y, y,
213 grad_outputs=torch.ones_like(u_y),
214 retain_graph=True,
215 create_graph=True
216)[0].to(device)
217

218 v_x = torch.autograd.grad(
219 v, x,
220 grad_outputs=torch.ones_like(v),
221 retain_graph=True,
222 create_graph=True
223)[0].to(device)
224 v_xx = torch.autograd.grad(
225 v_x, x,
226 grad_outputs=torch.ones_like(v_x),
227 retain_graph=True,
228 create_graph=True
229)[0].to(device)
230 v_y = torch.autograd.grad(
231 v, y,
232 grad_outputs=torch.ones_like(v),
233 retain_graph=True,
234 create_graph=True
235)[0].to(device)
236 v_yy = torch.autograd.grad(
237 v_y, y,
238 grad_outputs=torch.ones_like(v_y),
239 retain_graph=True,
240 create_graph=True
241)[0].to(device)
242

243 p_x = torch.autograd.grad(
244 p, x,
245 grad_outputs=torch.ones_like(p),
246 retain_graph=True,
247 create_graph=True
248)[0].to(device)
249

250 p_y = torch.autograd.grad(
251 p, y,
252 grad_outputs=torch.ones_like(p),

A.2. Deep Learning Codes 104

253 retain_graph=True,
254 create_graph=True
255)[0].to(device)
256

257 #f1 = p_xx + p_yy
258 f1 = u_x + v_y
259 f2 = u_xx/(Re) + u_yy/(Re) - p_x - u*u_x - v*u_y
260 f3 = v_xx/(Re) + v_yy/(Re) - p_y - u*v_x - v*v_y
261

262 loss1 = torch.mean(f1 ** 2)
263 loss2 = torch.mean(f2 ** 2)
264 loss3 = torch.mean(f3 ** 2)
265

266 return (loss1 + loss2 + loss3)
267

268 def loss_func(XY, data_weight,pres_weight, Re, XY_data, UVP_data):
269

270

271 data_supervised_vel = u_net(XY_data)[:,0:2] - UVP_data[:,0:2]
272 data_supervised_pres = u_net(XY_data)[:,2] - UVP_data[:,2]
273

274

275 loss_val = (1-data_weight)*interior_loss(XY, Re) + (data_weight)*(pres_weight*torch.
mean(data_supervised_pres**2) +\

276 (1-pres_weight)*torch.mean(
data_supervised_vel**2))

277

278 return loss_val
279

280 epoch = 0
281 loss = loss_func(xy, data_lamda,pres_lamda, Re, xy_data, uvp_data)
282

283 ## Training Loop
284 while epoch <= max_epochs and loss.item() > 1e-6:
285 # Perturbation
286 if epoch % 5 == 0:
287

288 mesh_file_name, sol_file_name = random.choice(list(data_dict.items()))
289 airfoil_name = mesh_file_name[-15:-11] # for lowRe, change for highRe
290 alfa = int(mesh_file_name[-17]) # degrees for highRe
291 mesh_file_name = '/home/nfs/skakkar/jupyter_codes/' + mesh_file_name
292 sol_file_name = '/home/nfs/skakkar/jupyter_codes/' + sol_file_name
293 xy = interior_points(nx, ny, x_0, y_0, airfoil_name, alfa)
294 xy_data = mesh_points(mesh_file_name, airfoil_name, alfa)
295 uvp_data = torch.from_numpy(np.load(sol_file_name)).to(device)
296

297 if (epoch % 1000000 == 0) and (epoch != 0):
298 learning_rate = learning_rate/10
299 optimizer = torch.optim.Adam(u_net.parameters(), lr=learning_rate)
300

301

302 # forward and loss
303 loss = loss_func(xy, data_lamda,pres_lamda, Re , xy_data, uvp_data)
304

305 # backward
306 loss.backward()
307

308 # update
309 optimizer.step()
310

311 if epoch % 100 == 0:
312 print(f'epoch: {epoch}, loss: {loss.item()}, data_lamda = {data_lamda}, lr = {

learning_rate}', flush = True)
313

314 optimizer.zero_grad()
315 epoch += 1
316

317 FILE = '/home/nfs/skakkar/model_data/
airfoil_navier_stokes_cambered_finalised_highRe_53_00244864.pth'

318 torch.save(u_net.state_dict(), FILE)

A.2. Deep Learning Codes 105

A.2.8. Airfoil Navier Stokes Flow Post Processing Script
1 import torch
2 from torch import pi, sin, cos
3 import numpy as np
4 from collections import OrderedDict
5 from random import randint
6 from airfoils import Airfoil
7 import matplotlib.pyplot as plt
8 from matplotlib import patches
9

10 ## CUDA support
11 if torch.cuda.is_available():
12 device = torch.device('cuda')
13 else:
14 device = torch.device('cpu')
15

16 x_0 = 5
17 y_0 = 3
18

19 num_variables = 2
20 num_variables = 2
21 num_inputs = 6 # x,y,alfa,airfoil name (3)
22 num_outputs = 3
23 num_layers = 4
24 num_neurons = 100
25 u_array = np.ones(num_layers + 2) * num_neurons
26 u_array[0] = num_inputs
27 u_array[-1] = num_outputs
28 u_array = np.ndarray.tolist(u_array.astype(int))
29

30

31 airfoil_name = '0020'
32 alfa = 1 # degrees
33 chord = 1 # m
34

35

36

37 ## Neural Network
38 class neural_net(torch.nn.Module):
39 def __init__(self, layers):
40 super(neural_net, self).__init__()
41

42 # parameters
43 self.depth = len(layers) - 1
44

45 # set up layer order dict
46 self.activation = torch.nn.Tanh
47

48 layer_list = list()
49 for i in range(self.depth - 1):
50 layer_list.append(
51 ('layer_%d' % i, torch.nn.Linear(layers[i], layers[i + 1]))
52)
53 layer_list.append(('activation_%d' % i, self.activation()))
54

55 layer_list.append(
56 ('layer_%d' % (self.depth - 1), torch.nn.Linear(layers[-2], layers[-1]))
57)
58 layerDict = OrderedDict(layer_list)
59

60 # deploy layers
61 self.layers = torch.nn.Sequential(layerDict)
62

63 def forward(self, x):
64 out = self.layers(x)
65 return out
66

67

68 u_net = neural_net(u_array).to(device)
69

A.2. Deep Learning Codes 106

70 if torch.cuda.device_count() > 1:
71 print("Let's use", torch.cuda.device_count(), "GPUs!")
72 # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
73 model = torch.nn.DataParallel(u_net)
74

75 #FILE = '
airfoil_navier_stokes_generalised_highRe_adaptive_long_wt_80_pres_part_long_53_18222630.
pth'

76 #FILE = '
airfoil_navier_stokes_generalised_highRe_adaptive_long_wt_80_pres_part_long_53_06101418.
pth'

77 #FILE = 'airfoil_navier_stokes_generalised_highRe_adaptive_long_second_53_06101418.pth'
78 #FILE = 'airfoil_navier_stokes_generalised_highRe_adaptive_long_wt_80_53_06101418.pth'
79 #FILE = 'airfoil_stokes_corrected_BC_100_neur_4_layers_wt_60_53_4812.pth'
80 #FILE = 'airfoil_navier_stokes_aoa_wide_highRe_53_048.pth'
81 #FILE = 'airfoil_navier_stokes_cambered_varying_thickness_53_48_10141822.pth'
82 #FILE = 'airfoil_navier_stokes_cambered_highRe_53_002448.pth'
83 #FILE = 'airfoil_navier_stokes_cambered_finalised_highRe_53_00244864.pth'
84 FILE = 'airfoil_navier_stokes_fully_final_validation_long_53_10141822.pth'
85 #FILE = 'airfoil_stokes_correctedpressure_default_53_4812.pth'
86 #FILE = 'airfoil_stokes_generalised_correctedpressure_default_53_06101418.pth'
87 #FILE = 'airfoil_navier_stokes_highRe_wt80_53_4812.pth'
88 #FILE = 'airfoil_navier_stokes_fully_final_long_53_10141822.pth'
89 u_net.load_state_dict(torch.load(FILE))
90 u_net.eval()
91

92

93 # Plotting
94

95 nx_plot = 300
96 ny_plot = 300
97 x = torch.linspace(0, x_0, nx_plot)
98 y = torch.linspace(0, y_0, ny_plot)
99 foil = Airfoil.NACA4(airfoil_name)
100 camber = int(airfoil_name[0])
101 camber_pos = int(airfoil_name[1])
102 thickness = int(airfoil_name[2:])
103

104 X, Y = np.meshgrid(x,y)
105

106 X_pred = np.hstack((X.flatten()[:,None], Y.flatten()[:,None]))
107

108 X_pred = torch.from_numpy(X_pred).float()
109

110 cam_array = camber * torch.ones((len(X_pred[:, 0]), 1)).float()
111 cam_pos_array = camber_pos * torch.ones((len(X_pred[:, 0]), 1)).float()
112 thickness_array = thickness * torch.ones((len(X_pred[:, 0]), 1)).float()
113 alfa_array = alfa * torch.ones((len(X_pred[:, 0]), 1)).float()
114

115

116 X_pred = torch.from_numpy(np.hstack((X_pred, cam_array)))
117 X_pred = torch.from_numpy(np.hstack((X_pred, cam_pos_array)))
118 X_pred = torch.from_numpy(np.hstack((X_pred, thickness_array)))
119 X_pred = torch.from_numpy(np.hstack((X_pred, alfa_array))).to(device)
120

121 # Deep Learning Solution
122 u_pred = torch.sqrt(u_net(X_pred)[:,0]**2 + u_net(X_pred)[:,1]**2)
123 p_pred = u_net(X_pred)[:,-1]
124

125 u_numpy = np.reshape(u_pred.detach().cpu().numpy(), (nx_plot,ny_plot))
126 p_numpy = np.reshape(p_pred.detach().cpu().numpy(), (nx_plot, ny_plot))
127

128

129 points = 200
130 foil = Airfoil.NACA4(airfoil_name, n_points = points)
131 data = foil.all_points.T
132 data[points:,:] = np.flip(data[points:,:],0)
133 data = np.flip(data,0)
134 data[:,0] += x_0/4
135 data[:,1] += y_0/2
136

A.2. Deep Learning Codes 107

137

138 poly1 = patches.Polygon(data, facecolor = 'white', edgecolor = 'k', linewidth = 2)
139 poly2 = patches.Polygon(data, facecolor = 'white', edgecolor = 'k', linewidth = 2)
140

141 plt.ion()
142 plt.figure(figsize=(4*x_0, 4*y_0))
143 plt.clf()
144

145 plt.subplot(1,2,1)
146 plt.imshow(np.flip(u_numpy, 0), extent=[0, x_0, 0, y_0])
147 plt.gca().add_patch(poly1)
148 plt.xlabel('X')
149 plt.ylabel('Y')
150 plt.colorbar(orientation='horizontal')
151 plt.title('Deep Learning Solution - Velocity Magnitude')
152 #plt.show()
153 #plt.savefig('poisson_rectangle.jpg')
154

155 #plt.figure(figsize=(4*x_0, 4*y_0))
156 plt.subplot(1,2,2)
157 plt.imshow(np.flip(p_numpy, 0), extent=[0, x_0, 0, y_0])
158 plt.gca().add_patch(poly2)
159 plt.xlabel('X')
160 plt.ylabel('Y')
161 plt.colorbar(orientation='horizontal')
162 plt.title('Deep Learning Solution - Pressure')
163 plt.show()

A.2.9. Autoencoder Parameterized PINN for Navier Stokes
1 #### HPC CODE ###############
2 import torch
3 from torch import pi, sin, cos
4 import numpy as np
5 from collections import OrderedDict
6 import random
7 from airfoils import Airfoil
8 import matplotlib.pyplot as plt
9 from matplotlib import patches
10

11 ## CUDA support
12 if torch.cuda.is_available():
13 device = torch.device('cuda')
14 else:
15 device = torch.device('cpu')
16

17 x_0 = 5
18 y_0 = 3
19 nxp = 20
20 nyp = 20
21 num_variables = 2
22 max_epochs = 5000000
23 num_variables = 2
24 num_inputs = 6 # x,y,alfa,airfoil name (3)
25 num_outputs = 3
26 num_layers = 4 # final value 4
27 num_neurons = 100 # final value 100
28 u_array = np.ones(num_layers + 2) * num_neurons
29 u_array[0] = num_inputs
30 u_array[-1] = num_outputs
31 u_array = np.ndarray.tolist(u_array.astype(int))
32 nx = int(nxp * x_0)
33 ny = int(nyp * y_0)
34

35 ## Simulation Parameters
36 valid_airfoil_cambers = ['00','26', '22', '48']
37 valid_airfoil_thicknesses = ['12', '16', '20', '24']
38 valid_airfoil_names = []
39

40 for valid_airfoil_camber in valid_airfoil_cambers:

A.2. Deep Learning Codes 108

41 for valid_airfoil_thickness in valid_airfoil_thicknesses:
42 valid_airfoil_name_val = valid_airfoil_camber + valid_airfoil_thickness
43 valid_airfoil_names.append(valid_airfoil_name_val)
44

45 airfoil_cambers = ['00','24', '44', '42', '64', '46', '48']
46 airfoil_thicknesses = ['10', '14', '18', '22']
47 airfoil_names = []
48

49 for airfoil_camber in airfoil_cambers:
50 for airfoil_thickness in airfoil_thicknesses:
51 airfoil_name_val = airfoil_camber + airfoil_thickness
52 airfoil_names.append(airfoil_name_val)
53

54 airfoil_name = random.choice(airfoil_names)
55 alfa = random.choice(['00','04','08'])
56

57 airfoil_latent_data = {'0010': [-0.6596158742904663, -1.52833092212677,
0.9524492621421814],

58 '0012': [-0.7612241506576538, -1.2206069231033325, 0.8008520007133484],
59 '0014': [-0.8675788640975952, -0.9109957218170166, 0.6440109610557556],
60 '0016': [-0.9889535307884216, -0.5921140313148499, 0.47418004274368286],
61 '0018': [-1.105587363243103, -0.28051847219467163, 0.3102298378944397],
62 '0020': [-1.2086365222930908, 0.018362203612923622, 0.18606562912464142],
63 '0022': [-1.304009199142456, 0.3306569755077362, 0.10021809488534927],
64 '0024': [-1.3908438682556152, 0.6727849245071411, 0.026510173454880714],
65 '2210': [0.11811462044715881, -1.3414424657821655, 1.1414552927017212],
66 '2212': [0.038074791431427, -1.0323399305343628, 1.0091665983200073],
67 '2214': [-0.046844109892845154, -0.7240248322486877, 0.8723058104515076],
68 '2216': [-0.13896270096302032, -0.4172692596912384, 0.7273876070976257],
69 '2218': [-0.24476927518844604, -0.10955093055963516, 0.5754779577255249],
70 '2220': [-0.350607693195343, 0.21484485268592834, 0.45308536291122437],
71 '2222': [-0.4248036742210388, 0.5542337894439697, 0.37878525257110596],
72 '2224': [-0.4812098741531372, 0.9119169116020203, 0.3088846504688263],
73 '2410': [0.8199985027313232, -1.1582105159759521, 1.2965266704559326],
74 '2412': [0.7554594278335571, -0.8424240350723267, 1.1838085651397705],
75 '2414': [0.6957219243049622, -0.5209964513778687, 1.0823055505752563],
76 '2416': [0.6317368745803833, -0.21112176775932312, 0.9724076390266418],
77 '2418': [0.5705732703208923, 0.08479166030883789, 0.8617393970489502],
78 '2420': [0.5197797417640686, 0.39344969391822815, 0.7782306671142578],
79 '2422': [0.4537320137023926, 0.7428445816040039, 0.6980561017990112],
80 '2424': [0.397599995136261, 1.0913816690444946, 0.6249390244483948],
81 '2610': [1.4744316339492798, -1.0117841958999634, 1.4661911725997925],
82 '2612': [1.4168353080749512, -0.6963366270065308, 1.3756537437438965],
83 '2614': [1.3596229553222656, -0.38328906893730164, 1.2880265712738037],
84 '2616': [1.3085203170776367, -0.0814577266573906, 1.2024937868118286],
85 '2618': [1.258837342262268, 0.2248709797859192, 1.1287785768508911],
86 '2620': [1.2078857421875, 0.5453170537948608, 1.063645601272583],
87 '2622': [1.1824116706848145, 0.8681461811065674, 0.9859014749526978],
88 '2624': [1.1369116306304932, 1.2177963256835938, 0.9152663350105286],
89 '4410': [0.5521025657653809, -1.416182041168213, 0.5152968764305115],
90 '4412': [0.4818824529647827, -1.1100090742111206, 0.38052666187286377],
91 '4414': [0.41211169958114624, -0.8039820194244385, 0.2461097538471222],
92 '4416': [0.3441205620765686, -0.4986405670642853, 0.11174564808607101],
93 '4418': [0.278931200504303, -0.2064802646636963, -0.013988763093948364],
94 '4420': [0.21971362829208374, 0.06446453928947449, -0.12193141132593155],
95 '4422': [0.16691040992736816, 0.37098559737205505, -0.19668009877204895],
96 '4424': [0.11524598300457001, 0.7092867493629456, -0.2573535144329071],
97 '4210': [-0.030042901635169983, -1.470795750617981, 0.7521668076515198],
98 '4212': [-0.11681389808654785, -1.165541648864746, 0.6092405319213867],
99 '4214': [-0.20626066625118256, -0.8594645261764526, 0.4649921655654907],
100 '4216': [-0.3003275990486145, -0.5506353974342346, 0.3178010880947113],
101 '4218': [-0.4089584946632385, -0.23580028116703033, 0.16623751819133759],
102 '4220': [-0.5053760409355164, 0.04962416738271713, 0.04146712273359299],
103 '4222': [-0.575164258480072, 0.3692358136177063, -0.03879170119762421],
104 '4224': [-0.6272857189178467, 0.7224670052528381, -0.11474796384572983],
105 '6410': [0.2077949047088623, -1.6443651914596558, -0.18043068051338196],
106 '6412': [0.12505307793617249, -1.3446606397628784, -0.3285021483898163],
107 '6414': [0.04139922186732292, -1.0458341836929321, -0.4760527014732361],
108 '6416': [-0.042650021612644196, -0.7489229440689087, -0.6232290267944336],
109 '6418': [-0.11326076090335846, -0.4711480438709259, -0.7427667379379272],
110 '6420': [-0.16893139481544495, -0.22356154024600983, -0.8342057466506958],

A.2. Deep Learning Codes 109

111 '6422': [-0.23072992265224457, 0.04906310886144638, -0.9354248046875],
112 '6424': [-0.29119643568992615, 0.36464574933052063, -1.020395040512085],
113 '4610': [1.060377836227417, -1.4079362154006958, 0.2931698262691498],
114 '4612': [0.9925789833068848, -1.110345482826233, 0.16980434954166412],
115 '4614': [0.9277621507644653, -0.8131468892097473, 0.05033652111887932],
116 '4616': [0.8681806325912476, -0.517879843711853, -0.0674424022436142],
117 '4618': [0.8196607828140259, -0.22987797856330872, -0.16609537601470947],
118 '4620': [0.7808578014373779, 0.04395593702793121, -0.2566536068916321],
119 '4622': [0.7552579641342163, 0.334025114774704, -0.3284453749656677],
120 '4624': [0.7265974283218384, 0.6591168642044067, -0.385637104511261],
121 '4810': [1.5547513961791992, -1.440292239189148, 0.10100625455379486],
122 '4812': [1.498142123222351, -1.1450642347335815, -0.01623530685901642],
123 '4814': [1.4510027170181274, -0.8445427417755127, -0.12679888308048248],
124 '4816': [1.4071964025497437, -0.5509340763092041, -0.23745934665203094],
125 '4818': [1.3673973083496094, -0.26776471734046936, -0.3373967409133911],
126 '4820': [1.3424327373504639, 0.007963575422763824, -0.4251900017261505],
127 '4822': [1.3268382549285889, 0.29495349526405334, -0.4953930377960205],
128 '4824': [1.314286231994629, 0.6019899845123291, -0.5496833324432373]}
129

130 mesh_file_name = '/home/nfs/skakkar/jupyter_codes/Database/' + 'NS_mesh_data_BC_53_AOA_' +
alfa + '_' + airfoil_name + '_highRe.npy'

131 sol_file_name = '/home/nfs/skakkar/jupyter_codes/Database/' + 'NS_solution_data_BC_53_AOA_' +
alfa + '_' + airfoil_name + '_highRe.npy'

132

133 alfa = int(alfa)
134

135 u_stream = 1 # m/s
136 learning_rate = 0.0001 # final value starting 0.0001
137 data_lamda = 0.99 # final value 0.8
138 pres_lamda = 0.5 # default 0.8
139 chord = 1 # m
140 p_outlet = 1 # scaled between 0-1
141 kin_viscosity = 1.5e-3 # m^2/s
142 Re = chord * u_stream / kin_viscosity
143

144

145 ## Neural Network
146 class neural_net(torch.nn.Module):
147 def __init__(self, layers):
148 super(neural_net, self).__init__()
149

150 # parameters
151 self.depth = len(layers) - 1
152

153 # set up layer order dict
154 self.activation = torch.nn.Tanh
155

156 layer_list = list()
157 for i in range(self.depth - 1):
158 layer_list.append(
159 ('layer_%d' % i, torch.nn.Linear(layers[i], layers[i + 1]))
160)
161 layer_list.append(('activation_%d' % i, self.activation()))
162

163 layer_list.append(
164 ('layer_%d' % (self.depth - 1), torch.nn.Linear(layers[-2], layers[-1]))
165)
166 layerDict = OrderedDict(layer_list)
167

168 # deploy layers
169 self.layers = torch.nn.Sequential(layerDict)
170

171 def forward(self, x):
172 out = self.layers(x)
173 return out
174

175

176 u_net = neural_net(u_array).to(device)
177

178 if torch.cuda.device_count() > 1:
179 print("Let's use", torch.cuda.device_count(), "GPUs!")

A.2. Deep Learning Codes 110

180 # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
181 model = torch.nn.DataParallel(u_net)
182

183 #FILE = 'airfoil_lowRe_31_stokes_myPC.pth'
184 #u_net.load_state_dict(torch.load(FILE))
185 #u_net.eval()
186

187 ## Generating Data Points
188 def interior_points(nx, ny, x_0, y_0, airfoil_name, alfa):
189

190 foil = Airfoil.NACA4(airfoil_name)
191 z1 = float(airfoil_latent_data[airfoil_name][0])
192 z2 = float(airfoil_latent_data[airfoil_name][1])
193 z3 = float(airfoil_latent_data[airfoil_name][2])
194

195 xy = np.random.rand(nx * ny, num_variables)
196 xy[:, 0] *= x_0
197 xy[:, 1] *= y_0
198

199 indices = []
200

201 for i in np.arange(len(xy[:,0])):
202 if xy[i,0]>=x_0/4:
203 if xy[i,0]<=x_0/4+1:
204 if xy[i,1]>=foil.y_lower(xy[i,0]-x_0/4)+y_0/2:
205 if xy[i,1]<=foil.y_upper(xy[i,0]-x_0/4)+y_0/2:
206 indices.append(i)
207

208 xy = np.delete(xy, indices, axis = 0)
209

210 xy = torch.from_numpy(xy).float()
211

212 z1_array = z1 * torch.ones((len(xy[:, 0]), 1)).float()
213 z2_array = z2 * torch.ones((len(xy[:, 0]), 1)).float()
214 z3_array = z3 * torch.ones((len(xy[:, 0]), 1)).float()
215 alfa_array = alfa * torch.ones((len(xy[:, 0]), 1)).float()
216

217 xy = torch.from_numpy(np.hstack((xy, z1_array)))
218 xy = torch.from_numpy(np.hstack((xy, z2_array)))
219 xy = torch.from_numpy(np.hstack((xy, z3_array)))
220 xy = torch.from_numpy(np.hstack((xy, alfa_array))).to(device)
221

222 return xy
223

224 def mesh_points(file_name, airfoil_name, alfa):
225 foil = Airfoil.NACA4(airfoil_name)
226 z1 = float(airfoil_latent_data[airfoil_name][0])
227 z2 = float(airfoil_latent_data[airfoil_name][1])
228 z3 = float(airfoil_latent_data[airfoil_name][2])
229

230 xy_data = np.load(file_name)
231

232 z1_array = z1 * torch.ones((len(xy_data[:, 0]), 1)).float()
233 z2_array = z2 * torch.ones((len(xy_data[:, 0]), 1)).float()
234 z3_array = z3 * torch.ones((len(xy_data[:, 0]), 1)).float()
235 alfa_array = alfa * torch.ones((len(xy_data[:, 0]), 1)).float()
236

237 xy_data = torch.from_numpy(np.hstack((xy_data, z1_array)))
238 xy_data = torch.from_numpy(np.hstack((xy_data, z2_array)))
239 xy_data = torch.from_numpy(np.hstack((xy_data, z3_array)))
240 xy_data = torch.from_numpy(np.hstack((xy_data, alfa_array))).to(device)
241

242 return xy_data
243

244 # Mesh Generation
245 xy = interior_points(nx, ny, x_0, y_0, airfoil_name, alfa).float()
246 xy_data = mesh_points(mesh_file_name, airfoil_name, alfa).float()
247 uvp_data = torch.from_numpy(np.load(sol_file_name)).to(device)
248

249

250 ## PINN Formulation

A.2. Deep Learning Codes 111

251 optimizer = torch.optim.Adam(u_net.parameters(), lr=learning_rate)
252

253 def interior_loss(XY, Re): # remember order of three outputs (u,v,p)
254 x = torch.tensor(XY[:, 0], requires_grad=True).float().cpu()
255 y = torch.tensor(XY[:, 1], requires_grad=True).float().cpu()
256 z1 = np.asscalar(XY[0, 2].cpu().numpy())
257 z2 = np.asscalar(XY[0, 3].cpu().numpy())
258 z3 = np.asscalar(XY[0, 4].cpu().numpy())
259 alfa = np.asscalar(XY[0, 5].cpu().numpy())
260

261 xy_pde = torch.hstack((torch.reshape(x, (-1, 1)), torch.reshape(y, (-1, 1)))).float()
262 z1_array = z1 * torch.ones((len(xy_pde[:, 0]), 1)).float()
263 z2_array = z2 * torch.ones((len(xy_pde[:, 1]), 1)).float()
264 z3_array = z3 * torch.ones((len(xy_pde[:, 1]), 1)).float()
265 alfa_array = alfa * torch.ones((len(xy_pde[:, 1]), 1)).float()
266

267 xy_pde = torch.hstack((xy_pde, z1_array))
268 xy_pde = torch.hstack((xy_pde, z2_array))
269 xy_pde = torch.hstack((xy_pde, z3_array))
270 xy_pde = torch.hstack((xy_pde, alfa_array)).to(device)
271

272 u = u_net(xy_pde)[:,0].to(device)
273 v = u_net(xy_pde)[:,1].to(device)
274 p = u_net(xy_pde)[:,2].to(device)
275 x.to(device)
276 y.to(device)
277

278 u_x = torch.autograd.grad(
279 u, x,
280 grad_outputs=torch.ones_like(u),
281 retain_graph=True,
282 create_graph=True
283)[0].to(device)
284 u_xx = torch.autograd.grad(
285 u_x, x,
286 grad_outputs=torch.ones_like(u_x),
287 retain_graph=True,
288 create_graph=True
289)[0].to(device)
290 u_y = torch.autograd.grad(
291 u, y,
292 grad_outputs=torch.ones_like(u),
293 retain_graph=True,
294 create_graph=True
295)[0].to(device)
296 u_yy = torch.autograd.grad(
297 u_y, y,
298 grad_outputs=torch.ones_like(u_y),
299 retain_graph=True,
300 create_graph=True
301)[0].to(device)
302

303 v_x = torch.autograd.grad(
304 v, x,
305 grad_outputs=torch.ones_like(v),
306 retain_graph=True,
307 create_graph=True
308)[0].to(device)
309 v_xx = torch.autograd.grad(
310 v_x, x,
311 grad_outputs=torch.ones_like(v_x),
312 retain_graph=True,
313 create_graph=True
314)[0].to(device)
315 v_y = torch.autograd.grad(
316 v, y,
317 grad_outputs=torch.ones_like(v),
318 retain_graph=True,
319 create_graph=True
320)[0].to(device)
321 v_yy = torch.autograd.grad(

A.2. Deep Learning Codes 112

322 v_y, y,
323 grad_outputs=torch.ones_like(v_y),
324 retain_graph=True,
325 create_graph=True
326)[0].to(device)
327

328 p_x = torch.autograd.grad(
329 p, x,
330 grad_outputs=torch.ones_like(p),
331 retain_graph=True,
332 create_graph=True
333)[0].to(device)
334

335 p_y = torch.autograd.grad(
336 p, y,
337 grad_outputs=torch.ones_like(p),
338 retain_graph=True,
339 create_graph=True
340)[0].to(device)
341

342 #f1 = p_xx + p_yy
343 f1 = u_x + v_y
344 f2 = u_xx/(Re) + u_yy/(Re) - p_x - u*u_x - v*u_y
345 f3 = v_xx/(Re) + v_yy/(Re) - p_y - u*v_x - v*v_y
346

347 loss1 = torch.mean(f1 ** 2)
348 loss2 = torch.mean(f2 ** 2)
349 loss3 = torch.mean(f3 ** 2)
350

351 return (loss1 + loss2 + loss3)
352

353 def loss_func(XY, data_weight,pres_weight, Re, XY_data, UVP_data):
354

355

356 data_supervised_vel = u_net(XY_data)[:,0:2] - UVP_data[:,0:2]
357 data_supervised_pres = u_net(XY_data)[:,2] - UVP_data[:,2]
358

359

360 loss_val = (1-data_weight)*interior_loss(XY, Re) + (data_weight)*(pres_weight*torch.
mean(data_supervised_pres**2) +\

361 (1-pres_weight)*torch.mean(
data_supervised_vel**2))

362

363 return loss_val
364

365 epoch = 0
366 loss = loss_func(xy, data_lamda,pres_lamda, Re, xy_data, uvp_data)
367

368 ## Training Loop
369 while epoch <= max_epochs and loss.item() > 1e-6:
370 # Perturbation
371 if (epoch % 5 == 0) and (epoch != 0):
372

373 airfoil_name = random.choice(airfoil_names)
374 alfa = random.choice(['00','04','08'])
375

376 mesh_file_name = '/home/nfs/skakkar/jupyter_codes/Database/' + '
NS_mesh_data_BC_53_AOA_' + alfa + '_' + airfoil_name + '_highRe.npy'

377 sol_file_name = '/home/nfs/skakkar/jupyter_codes/Database/' + '
NS_solution_data_BC_53_AOA_' + alfa + '_' + airfoil_name + '_highRe.npy'

378

379 alfa = int(alfa)
380

381 xy = interior_points(nx, ny, x_0, y_0, airfoil_name, alfa).float()
382 xy_data = mesh_points(mesh_file_name, airfoil_name, alfa).float()
383 uvp_data = torch.from_numpy(np.load(sol_file_name)).to(device)
384

385 if (epoch % 1000000 == 0) and (epoch != 0):
386 learning_rate = learning_rate/10
387 optimizer = torch.optim.Adam(u_net.parameters(), lr=learning_rate)
388

A.2. Deep Learning Codes 113

389

390 # forward and loss
391 loss = loss_func(xy, data_lamda,pres_lamda, Re , xy_data, uvp_data)
392

393 # backward
394 loss.backward()
395

396 # update
397 optimizer.step()
398

399 if (epoch % 100 == 0) and (epoch != 0):
400 valid_airfoil_name = random.choice(valid_airfoil_names)
401 valid_alfa = random.choice(['03', '05', '07'])
402 valid_mesh_file_name = '/home/nfs/skakkar/jupyter_codes/Validation_Database/' + '

NS_mesh_data_BC_53_AOA_' + valid_alfa + '_' + valid_airfoil_name + '_highRe.npy'
403 valid_sol_file_name = '/home/nfs/skakkar/jupyter_codes/Validation_Database/' + '

NS_solution_data_BC_53_AOA_' + valid_alfa + '_' + valid_airfoil_name + '_highRe.
npy'

404 valid_alfa = int(valid_alfa)
405 valid_xy = interior_points(nx, ny, x_0, y_0, valid_airfoil_name, valid_alfa).float()
406 valid_xy_data = mesh_points(valid_mesh_file_name , valid_airfoil_name, valid_alfa).

float()
407 valid_uvp_data = torch.from_numpy(np.load(valid_sol_file_name)).to(device)
408 valid_loss = loss_func(valid_xy, data_lamda,pres_lamda, Re , valid_xy_data,

valid_uvp_data)
409

410 print(f'epoch: {epoch}, loss: {loss.item()}, airfoil = {airfoil_name}, valid_loss = {
valid_loss}, valid_airfoil = {valid_airfoil_name} ,lr = {learning_rate}', flush =
True)

411

412 optimizer.zero_grad()
413 epoch += 1
414

415 FILE = '/home/nfs/skakkar/model_data/
airfoil_navier_stokes_fully_final_cambered_autoencoder_accurate_wt_99_53_10141822.pth'

416 torch.save(u_net.state_dict(), FILE)

A.2.10. CoupledAutoencoder and PINNPost Processing Script for Latent Space
Defined Geometries

1 import pyvista as pv
2 import numpy as np
3 from tqdm import tqdm
4 from ds_models_tf.sk_api.models.structured.ae.sk_sae_pca import SKSAEPCA
5 import matplotlib.pyplot as plt
6 import ipywidgets as wgt
7

8 from ds_models_tf.sk_api.models.structured.ae.sk_sae import SKSAE
9 from ds_models_tf.sk_api.models.structured.ae.sk_sae_pca import SKSAEPCA
10 from ds_models_tf.sk_api.models.structured.ae.sk_wsae_pca import SKWSAEPCA
11

12 from airfoils import Airfoil
13

14 import joblib
15

16 import torch
17 from torch import pi, sin, cos
18 import numpy as np
19 from collections import OrderedDict
20 import random
21 from matplotlib import patches
22

23 ## CUDA support
24 if torch.cuda.is_available():
25 device = torch.device('cuda')
26 else:
27 device = torch.device('cpu')
28

29 #FILE_AE = 'naca_ae_sym.joblib'

A.2. Deep Learning Codes 114

30 FILE_AE = 'naca_ae_cambered.joblib'
31 model = joblib.load(FILE_AE)
32

33 x_0 = 5
34 y_0 = 3
35

36 num_variables = 2
37 num_variables = 2
38 num_inputs = 6 # x,y,alfa,airfoil name (3)
39 num_outputs = 3
40 num_layers = 4
41 num_neurons = 100
42 u_array = np.ones(num_layers + 2) * num_neurons
43 u_array[0] = num_inputs
44 u_array[-1] = num_outputs
45 u_array = np.ndarray.tolist(u_array.astype(int))
46

47 def airfoil_decoder(airfoil_name, model):
48 foil = Airfoil.NACA4(airfoil_name, n_points=200)
49 data = foil.all_points.T
50

51 z_value = 0 #np.linspace(0,1,5)
52 data = np.vstack((
53 np.hstack((data,z_value*np.ones((len(data),1))))))
54

55 original_mesh = pv.PolyData(data)
56 latent_space_vals = model.encoder_predict([original_mesh])[0]
57

58 return latent_space_vals
59

60 airfoil_name = '0012'
61 airfoil_latent_vals = airfoil_decoder(airfoil_name, model)
62 #z1 = float(airfoil_latent_vals[0]); z2 = float(airfoil_latent_vals[1]); z3 = float(

airfoil_latent_vals[2])
63

64 z1_slider = wgt.FloatSlider(value = 0, min=-2.5, max=2.5, step=1e-4, description='z1',
disabled=False,continuous_update=True,

65 orientation = 'horizontal', readout = True, readout_format = '.4f'
,)

66 z2_slider = wgt.FloatSlider(value = 0, min=-2.5, max=2.5, step=1e-4, description='z2',
disabled=False,continuous_update=True,

67 orientation = 'horizontal', readout = True, readout_format = '.4f'
,)

68 z3_slider = wgt.FloatSlider(value = 0, min=-2.5, max=2.5, step=1e-4, description='z3',
disabled=False,continuous_update=True,

69 orientation = 'horizontal', readout = True, readout_format = '.4f'
,)

70 alfa_slider = wgt.FloatSlider(value = 4, min=0, max=10, step=0.1, description='alfa',disabled
=False,continuous_update=True,

71 orientation = 'horizontal', readout = True, readout_format = '.1f'
,)

72

73 #z1 = z1_slider; z2 = z2_slider ;z3 = z3_slider
74

75 alfa = alfa_slider # degrees
76 chord = 1 # m
77

78 ## Neural Network
79 class neural_net(torch.nn.Module):
80 def __init__(self, layers):
81 super(neural_net, self).__init__()
82

83 # parameters
84 self.depth = len(layers) - 1
85

86 # set up layer order dict
87 self.activation = torch.nn.Tanh
88

89 layer_list = list()
90 for i in range(self.depth - 1):
91 layer_list.append(

A.2. Deep Learning Codes 115

92 ('layer_%d' % i, torch.nn.Linear(layers[i], layers[i + 1]))
93)
94 layer_list.append(('activation_%d' % i, self.activation()))
95

96 layer_list.append(
97 ('layer_%d' % (self.depth - 1), torch.nn.Linear(layers[-2], layers[-1]))
98)
99 layerDict = OrderedDict(layer_list)
100

101 # deploy layers
102 self.layers = torch.nn.Sequential(layerDict)
103

104 def forward(self, x):
105 out = self.layers(x)
106 return out
107

108

109 u_net = neural_net(u_array).to(device)
110

111 if torch.cuda.device_count() > 1:
112 print("Let's use", torch.cuda.device_count(), "GPUs!")
113 # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
114 model = torch.nn.DataParallel(u_net)
115

116

117 FILE = 'airfoil_navier_stokes_fully_final_cambered_autoencoder_accurate_53_10141822.pth'
118

119 u_net.load_state_dict(torch.load(FILE))
120 u_net.eval()
121

122

123 # Plotting
124

125 def plotter(z1, z2, z3, alfa):
126 nx_plot = 300
127 ny_plot = 300
128 x = torch.linspace(0, x_0, nx_plot)
129 y = torch.linspace(0, y_0, ny_plot)
130 #foil = Airfoil.NACA4(airfoil_name)
131

132 X, Y = np.meshgrid(x,y)
133

134 X_pred = np.hstack((X.flatten()[:,None], Y.flatten()[:,None]))
135

136 X_pred = torch.from_numpy(X_pred).float()
137

138 z1_array = z1 * torch.ones((len(X_pred[:, 0]), 1)).float()
139 z2_array = z2 * torch.ones((len(X_pred[:, 0]), 1)).float()
140 z3_array = z3 * torch.ones((len(X_pred[:, 0]), 1)).float()
141 alfa_array = alfa * torch.ones((len(X_pred[:, 0]), 1)).float()
142

143

144 X_pred = torch.from_numpy(np.hstack((X_pred, z1_array)))
145 X_pred = torch.from_numpy(np.hstack((X_pred, z2_array)))
146 X_pred = torch.from_numpy(np.hstack((X_pred, z3_array)))
147 X_pred = torch.from_numpy(np.hstack((X_pred, alfa_array))).to(device)
148

149 # Deep Learning Solution
150 u_pred = torch.sqrt(u_net(X_pred)[:,0]**2 + u_net(X_pred)[:,1]**2)
151 p_pred = u_net(X_pred)[:,-1]
152

153 u_numpy = np.reshape(u_pred.detach().cpu().numpy(), (nx_plot,ny_plot))
154 p_numpy = np.reshape(p_pred.detach().cpu().numpy(), (nx_plot, ny_plot))
155

156

157 points = 200
158 #foil = Airfoil.NACA4(airfoil_name, n_points = points)
159 data = model.decoder_predict([[z1, z2, z3]])[0][:,0:2]
160 data[points:,:] = np.flip(data[points:,:],0)
161 data = np.flip(data,0)
162 data[:,0] += x_0/4

A.2. Deep Learning Codes 116

163 data[:,1] += y_0/2
164

165

166 poly1 = patches.Polygon(data, facecolor = 'white', edgecolor = 'k', linewidth = 2)
167 poly2 = patches.Polygon(data, facecolor = 'white', edgecolor = 'k', linewidth = 2)
168

169 plt.ion()
170 plt.figure(figsize=(4*x_0, 4*y_0))
171 plt.clf()
172

173 plt.subplot(1,2,1)
174 plt.imshow(np.flip(u_numpy, 0), extent=[0, x_0, 0, y_0])
175 plt.gca().add_patch(poly1)
176 plt.xlabel('X')
177 plt.ylabel('Y')
178 plt.colorbar(orientation='horizontal')
179 plt.title('Deep Learning Solution - Velocity Magnitude')
180 #plt.show()
181 #plt.savefig('poisson_rectangle.jpg')
182

183 #plt.figure(figsize=(4*x_0, 4*y_0))
184 plt.subplot(1,2,2)
185 plt.imshow(np.flip(p_numpy, 0), extent=[0, x_0, 0, y_0])
186 plt.gca().add_patch(poly2)
187 plt.xlabel('X')
188 plt.ylabel('Y')
189 plt.colorbar(orientation='horizontal')
190 plt.title('Deep Learning Solution - Pressure')
191 plt.show()
192

193 return
194

195 wgt.interact(plotter, z1 = z1_slider, z2 = z2_slider, z3 = z3_slider, alfa = alfa_slider)

A.2.11. Coupled Autoencoder and PINN Post Processing Script for NACA Ge-
ometries

1 import pyvista as pv
2 import numpy as np
3 from tqdm import tqdm
4 from ds_models_tf.sk_api.models.structured.ae.sk_sae_pca import SKSAEPCA
5 import matplotlib.pyplot as plt
6 import ipywidgets as wgt
7

8 from ds_models_tf.sk_api.models.structured.ae.sk_sae import SKSAE
9 from ds_models_tf.sk_api.models.structured.ae.sk_sae_pca import SKSAEPCA
10 from ds_models_tf.sk_api.models.structured.ae.sk_wsae_pca import SKWSAEPCA
11

12 from airfoils import Airfoil
13

14 import joblib
15

16 import torch
17 from torch import pi, sin, cos
18 import numpy as np
19 from collections import OrderedDict
20 import random
21 from matplotlib import patches
22

23 ## CUDA support
24 if torch.cuda.is_available():
25 device = torch.device('cuda')
26 else:
27 device = torch.device('cpu')
28

29 #FILE_AE = 'naca_ae_sym.joblib'
30 FILE_AE = 'naca_ae_cambered.joblib'
31 model = joblib.load(FILE_AE)
32

A.2. Deep Learning Codes 117

33 x_0 = 5
34 y_0 = 3
35

36 points = 200
37 num_variables = 2
38 num_variables = 2
39 num_inputs = 6 # x,y,alfa,airfoil name (3)
40 num_outputs = 3
41 num_layers = 4
42 num_neurons = 100
43 u_array = np.ones(num_layers + 2) * num_neurons
44 u_array[0] = num_inputs
45 u_array[-1] = num_outputs
46 u_array = np.ndarray.tolist(u_array.astype(int))
47

48 def airfoil_decoder(airfoil_name, model):
49 foil = Airfoil.NACA4(airfoil_name, n_points=200)
50 data = foil.all_points.T
51

52 z_value = 0 #np.linspace(0,1,5)
53 data = np.vstack((
54 np.hstack((data,z_value*np.ones((len(data),1))))))
55

56 original_mesh = pv.PolyData(data)
57 latent_space_vals = model.encoder_predict([original_mesh])[0]
58

59 return latent_space_vals
60

61 airfoil_name = '4812'
62 airfoil_latent_vals = airfoil_decoder(airfoil_name, model)
63 z1 = float(airfoil_latent_vals[0]); z2 = float(airfoil_latent_vals[1]); z3 = float(

airfoil_latent_vals[2])
64

65 #z1 = z1_slider; z2 = z2_slider ;z3 = z3_slider
66

67 alfa = 5 # degrees
68 chord = 1 # m
69

70 ## Neural Network
71 class neural_net(torch.nn.Module):
72 def __init__(self, layers):
73 super(neural_net, self).__init__()
74

75 # parameters
76 self.depth = len(layers) - 1
77

78 # set up layer order dict
79 self.activation = torch.nn.Tanh
80

81 layer_list = list()
82 for i in range(self.depth - 1):
83 layer_list.append(
84 ('layer_%d' % i, torch.nn.Linear(layers[i], layers[i + 1]))
85)
86 layer_list.append(('activation_%d' % i, self.activation()))
87

88 layer_list.append(
89 ('layer_%d' % (self.depth - 1), torch.nn.Linear(layers[-2], layers[-1]))
90)
91 layerDict = OrderedDict(layer_list)
92

93 # deploy layers
94 self.layers = torch.nn.Sequential(layerDict)
95

96 def forward(self, x):
97 out = self.layers(x)
98 return out
99

100

101 u_net = neural_net(u_array).to(device)
102

A.2. Deep Learning Codes 118

103 if torch.cuda.device_count() > 1:
104 print("Let's use", torch.cuda.device_count(), "GPUs!")
105 # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
106 model = torch.nn.DataParallel(u_net)
107

108

109 FILE = 'airfoil_navier_stokes_fully_final_cambered_autoencoder_accurate_53_10141822.pth'
110

111 u_net.load_state_dict(torch.load(FILE))
112 u_net.eval()
113

114

115 # Plotting
116

117

118 nx_plot = 300
119 ny_plot = 300
120 x = torch.linspace(0, x_0, nx_plot)
121 y = torch.linspace(0, y_0, ny_plot)
122 #foil = Airfoil.NACA4(airfoil_name)
123

124 X, Y = np.meshgrid(x,y)
125

126 X_pred = np.hstack((X.flatten()[:,None], Y.flatten()[:,None]))
127

128 X_pred = torch.from_numpy(X_pred).float()
129

130 z1_array = z1 * torch.ones((len(X_pred[:, 0]), 1)).float()
131 z2_array = z2 * torch.ones((len(X_pred[:, 0]), 1)).float()
132 z3_array = z3 * torch.ones((len(X_pred[:, 0]), 1)).float()
133 alfa_array = alfa * torch.ones((len(X_pred[:, 0]), 1)).float()
134

135

136 X_pred = torch.from_numpy(np.hstack((X_pred, z1_array)))
137 X_pred = torch.from_numpy(np.hstack((X_pred, z2_array)))
138 X_pred = torch.from_numpy(np.hstack((X_pred, z3_array)))
139 X_pred = torch.from_numpy(np.hstack((X_pred, alfa_array))).to(device)
140

141 # Deep Learning Solution
142 u_pred = torch.sqrt(u_net(X_pred)[:,0]**2 + u_net(X_pred)[:,1]**2)
143 p_pred = u_net(X_pred)[:,-1]
144

145 u_numpy = np.reshape(u_pred.detach().cpu().numpy(), (nx_plot,ny_plot))
146 p_numpy = np.reshape(p_pred.detach().cpu().numpy(), (nx_plot, ny_plot))
147

148

149 data = model.decoder_predict([[z1, z2, z3]])[0][:,0:2]
150 data[points:,:] = np.flip(data[points:,:],0)
151 data = np.flip(data,0)
152 data[:,0] += x_0/4
153 data[:,1] += y_0/2
154

155

156 poly1 = patches.Polygon(data, facecolor = 'white', edgecolor = 'k', linewidth = 2)
157 poly2 = patches.Polygon(data, facecolor = 'white', edgecolor = 'k', linewidth = 2)
158

159 plt.ion()
160 plt.figure(figsize=(4*x_0, 4*y_0))
161 plt.clf()
162

163 plt.subplot(121)
164 plt.imshow(np.flip(u_numpy, 0), extent=[0, x_0, 0, y_0])
165 plt.gca().add_patch(poly1)
166 plt.xlabel('X')
167 plt.ylabel('Y')
168 plt.colorbar(orientation='horizontal')
169 plt.title('Deep Learning Solution - Velocity Magnitude')
170 #plt.show()
171 #plt.savefig('poisson_rectangle.jpg')
172

173 #plt.figure(figsize=(4*x_0, 4*y_0))

A.2. Deep Learning Codes 119

174 plt.subplot(122)
175 plt.imshow(np.flip(p_numpy, 0), extent=[0, x_0, 0, y_0])
176 plt.gca().add_patch(poly2)
177 plt.xlabel('X')
178 plt.ylabel('Y')
179 plt.colorbar(orientation='horizontal')
180 plt.title('Deep Learning Solution - Pressure')
181 plt.show()

	Preface
	Summary
	Introduction
	Theory on Physics Informed Neural Networks (PINNs)
	Deep Neural Networks
	Training of Neural Networks
	Challenges for Overfitting and Underfitting of Neural Networks

	Physics-Informed Neural Networks (PINNs)
	Training of PINNs
	Loss Functions for PINNs
	Applications of PINNs
	Advanced Concepts and Solvers for PINNs
	Convergence of PINNs

	Operator Learning
	DeepONets
	Physics Informed DeepONets
	Fourier Neural Operators
	Physics Informed Neural Operator (PINO)

	Generative Modelling for Geometry
	Auto-encoders
	Generative Adversarial Networks

	Parametrized PINNs for the Poisson Equation
	Coordinate Transformation
	Solution for a Single Geometry
	Solution for Parameterized Variable Geometry

	Parameterized PINNs for the Stokes Equations
	Numerical Solution for Airfoil Geometry
	Deep Learning Solution for Single Airfoil Geometry
	Deep Learning Solution for Variable Airfoil Geometry

	Parameterized PINNs for the Navier Stokes Equations
	Solution for single airfoil geometry
	Solution for symmetric airfoils of varying thickness
	Solutions for further cases of parameterization
	Variation of Angle of Attack
	Variation of camber parameters
	Variation of angle of attack and thickness of symmetric airfoils

	Coupling of parameterized PINN and auto-encoder for the Navier Stokes Equation
	Conclusions and Recommendations
	References
	Source Codes
	Fenics Codes (Numerical Codes)
	Fenics Code Stokes Flow
	Fenics Code Navier Stokes Flow

	Deep Learning Codes
	Unparameterized Poisson Equation Code
	Parameterized Poisson Equation
	Poisson PINN Postprocessing Script
	Unparameterized Airfoil Stokes Flow Code
	Parameterized Airfoil Stokes Flow Code
	Unparameterized Airfoil Navier Stokes Flow Code
	Parameterized Airfoil Navier Stokes Flow Code
	Airfoil Navier Stokes Flow Post Processing Script
	Autoencoder Parameterized PINN for Navier Stokes
	Coupled Autoencoder and PINN Post Processing Script for Latent Space Defined Geometries
	Coupled Autoencoder and PINN Post Processing Script for NACA Geometries

