
Line-Adaptive
Monte Carlo
Localization

Improving self-localization of a mobile robot in
barns

L.J. Bontan

Line-Adaptive
Monte Carlo
Localization

Improving self-localization of a mobile robot in
barns

by

L.J. Bontan
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday October 2, 2023 at 3:00 PM.

Student number: 5423805
Project duration: November 21, 2022 – October 2, 2023
Thesis committee: Dr. J.F.P. Kooij, TU Delft, supervisor

Dr. M. Kok, TU Delft
Ir. M. den Toom, Lely Technologies N.V.

This thesis is confidential and cannot be made public until August, 2025.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Robots are increasingly deployed in various locations to automate tasks, including in barns. However,
in barns cows can obstruct the sensors such as LiDAR or camera, leading to a lack of environmental
information. As a result, the robot’s localization system only relies on odometry at those moments,
introducing additional uncertainty to the robot’s pose. When the visibility of the environment is restored,
the robot may mistakenly believe it is in a location that does not correspond to its actual position.

The first contribution of this master thesis is a novel method for improving the self-localization in
barns by implementing a line detection algorithm which is called Line Adaptive Monte Carlo Localization
(LAMCL). The novelty is that only line segments are used to detect a localization error instead of corners
between different line segments. It also retains the robot’s current pose to filter out fault-detected
localization errors. In addition, the new approach is applied in a dynamic environment. The proposed
method combines the Split-and-Merge line detection algorithm with AMCL. The detected line segments
are compared with the walls in the environment to identify localization errors. When an error is detected,
the robot’s pose is adjusted by placing a section of the particles at the location of the error. In this way,
the robot can find its true location again.

The second contribution is a new dataset. This new dataset, called DataCow, consists of four
recorded routes in a barn with GT on a handful of spots to evaluate the self-localization. DataCow
includes the pseudo-2D LiDAR scans and the odometry of a robot driving through a barn. This dataset
is used to evaluate the new self-localization method LAMCL. Through the experiments, it has been
discovered that this new method improves the system’s recovery ability, but the accuracy and precision
are compromised. The influence of the hyperparameters of the new method is also tested.

Keywords: self-localization, AMCL, line detection, mobile robot, agriculture robotics

iii

Preface
This master thesis is the final project to complete my Master Robotics at The Technical University in
Delft which took place from November 2022 to August 2023. I would like to thank some people who
helped me fulfill this project. First, I would like to thank the people at Lely Technologies who made it
possible to do my thesis there. Especially product developer Matthijs den Toom for the guidance and
support. It was nice to be able to talk to someone about the technical content of the project. Secondly,
I would like to thank my supervisor from TU Delft, Julian Kooij. It was good to be able to talk with him
about the process of doing research with experiments to support the findings. Thirdly, I would like to
thank my parents for their support during my time as a student. Finalizing my master’s thesis means
the end of my time as a student. The past years gave me the opportunity to broaden my knowledge
and I would like to thank everyone who helped me accomplish this.

L.J. Bontan
Maassluis, August 2023

v

Nomenclature
𝐴𝑀𝐶𝐿 Adaptive Monte Carlo Localization

𝐺𝑇 Ground Truth

𝐼𝐶𝑃 Iterative Closest Point

𝐼𝐸𝑃𝐹 Iterative end-point fit

𝐾𝐹 Kalman Filter

𝐿𝐴𝑀𝐶𝐿 Line Adaptive Monte Carlo Localization

𝐿𝑖𝐷𝐴𝑅 Light Detection and Ranging

𝑀𝐴𝐸 Mean absolute error

𝑀𝐶𝐿 Monte Carlo Localization

𝑅𝐵𝑃𝐹 Rao-Blackwellized particle filter

𝑅𝑀𝑆𝐸 Root Mean Squared Error

vii

Contents

Abstract iii

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2
1.3 Research questions . 4
1.4 Document structure . 4

2 Related work 5
2.1 Localization error improvement . 5

2.1.1 Change of localization method. 5
2.1.2 Other studies . 7
2.1.3 Features usage in self-localization. 7
2.1.4 To sum up. 7

2.2 Line algorithms . 7
2.2.1 Type measurement errors . 8
2.2.2 Structure in measurements points LiDAR . 9
2.2.3 To sum up. 11

2.3 Performance evaluation . 12
2.3.1 Metrics . 12
2.3.2 Usage of a dataset . 13
2.3.3 To sum up. 14

2.4 Thesis contributions . 15

3 Methods 17
3.1 Line detection. 17

3.1.1 The algorithm . 18
3.1.2 Parameter description . 19

3.2 Line-wall comparison . 20
3.2.1 The algorithm . 20
3.2.2 Parameters description. 22

3.3 Localization modification . 23
3.3.1 The algorithm . 23
3.3.2 Parameters description. 23

4 Experiments 25
4.1 Barn dataset: DataCow . 25

4.1.1 Setup data recording . 25
4.1.2 Routes . 26

4.2 Parameters . 27
4.2.1 Line detection. 27
4.2.2 Line-wall comparison . 28
4.2.3 Localization modification . 28

4.3 Recovery ability. 29
4.3.1 Experiment setup . 29
4.3.2 Measurement bias error compensation . 30
4.3.3 Results . 31

4.4 Accuracy . 38
4.4.1 Experiment setup . 38
4.4.2 Results . 39

ix

x Contents

4.5 Precision . 40
4.5.1 Experiment setup . 40
4.5.2 Results . 40

4.6 Real world setting . 43
4.6.1 Experiment setup . 43
4.6.2 Results . 43
4.6.3 Real world recovery example . 49

5 Conclusion 51
5.1 Quality of robot self-localization . 51

5.1.1 Precision . 51
5.1.2 Accuracy . 51
5.1.3 Recovery ability. 52

5.2 Effect of parameters . 52
5.2.1 Change in line detection . 52
5.2.2 Change in part of particles from line detection error 52
5.2.3 Change of weights of added particles . 52
5.2.4 Change of history queue size . 52
5.2.5 Change of standard deviation of added particles 53

5.3 To conclude . 53
5.4 Future work . 53

A Barn layout 55

B Parameters 57

C Recovery experiment result overview 59

D Accuracy experiment result overview 61

E Precision experiment all plots 63

F Real world experiment result overview 69

List of Figures

1.1 Pipeline of the localization system. The green box is included in the AMCL algorithm . . 2
1.2 Black line represents the wall with the green dots measurements of the wall. Both sit-

uations have a total error of 12 although the actual location of the robot is completely
different . 3

1.3 Top view of the map with the robot, particles, and measurement points. The particles
are represented in red with the robots’ transform frames on top. the green and orange
dots are planar lidar measurement points at respectively a height of 0.2m and 0.7m. The
map is a combination of obstacles represented at a height of 0,2m and 0,7m 3

1.4 Location could not be restored because particles are too dense 3

2.1 Unscented transform (UT), the idea behind unscented sampling, figure 1 of [61] 6
2.2 Rao-Blackwellized filter compared to Extended KF and a particle filter. Figure 1 in [26] . 6
2.3 Types of different distribution likelihood errors. In each diagram, the horizontal axis cor-

responds to the measurement 𝑧𝑘𝑡 , the vertical to the likelihood. 𝑧𝑘∗𝑡 represents the true
range of the object. Figure 6.2 in [56] . 8

2.4 The combined likelihood of measuring 𝑧𝑘∗𝑡 along the range of the beam. Figure 6.3 in [56] 9
2.5 (a) measurements of an object plotted with the real distance on the horizontal axis and

the differences between the measurement and the true distance on the vertical axis. (b)
measurements after filtering the bias. Figure 2 in [9] . 10

2.6 LT and IEPF algorithm for line extraction. Figure 6 in [9] 10
2.7 ‘Ours’ is the last namedmethod above with the undirected graph. The comparison shows

that it has the highest correctness and accuracy. These higher values are a trade-off
against speed. Table II in [31] . 11

2.8 Positioning precision visualized: Fifteen images recorded from a stationary camera over-
laid in positioning accuracy test. Figure 1 in [47] . 13

2.9 Screenshots of the different datasets . 14

3.1 Pipeline of LAMCL with AMCL in green and the added functionality in red. AMCL has
the odometry, map, and planar scan as input. The same map and planar scan are used
for the newly added line detection and line-wall comparison. 17

3.2 Split and Merge example with perfect data [55]. The black dots are the data point. The
blue line segments are the split black EndPointFit-line 19

3.3 Two of the situations of the projection of a line segment with a wall. In big black the
wall, red is the line segments, the dotted line is the projection, the dashed black line
is the compared orientation of the wall, and the dashed blue is the distance of the line
segment to the wall. 21

3.4 The functions used to check if there is enough improvement in algorithm 2 line 13 and
14. For example, if the distance gets worse by 2 meters, there needs to be a minimum
improvement of 30 degrees in the angle between the line segment and the wall. 21

3.5 Calculation process of the localization error. The black line represents the wall, the red
line is the detected line, and the green the robot. Note: The wall itself is not moved in
the figures . 22

4.1 TF tree of the robot with map, odom, and baselink . 26
4.2 Routes in the barn. The dots represent the position where the robot stood still. The

colors of the routes are for indication in order to better follow the trajectory when the
localization pose is staggered. 27

xi

xii List of Figures

4.3 Top-view of the start situation of recovery experiment. The green box on the right is the
robot. The green dots represent the measurements. The red lines are the found line
segments in the measurements with their compared walls in green. 30

4.4 GT test of the pseudo-LiDAR measurements. In blue are the pseudo-LiDAR measure-
ments, in green are the averages, and in red are the polynomial of the averages. 31

4.5 Difference when compensated for bias error. In black the true ’trajectory’ of the robot . . 31
4.6 Difference between with and without line algorithm of one test 32
4.7 Difference in negative and positive localization error. The green box is the robot, and

the red line segments are the detected lines in the measurements, which are the green
dots. The green lines are the wall to which the line segments are compared to. In figure
A all three line segments are taken into account by calculating the pose error. In figure
B only 1 line segment is taken into account since the others are in the wall 33

4.8 The number of meters the robot drove before the error is <0.1m. The dots are the mea-
surement points. Each test is performed three times, and the data points represent the
average distance from the tests that were passed. The green, blue, magenta and red
dots indicate respectively 3, 2, 1, or 0 successful recoveries. For these tests, the dis-
tance the robot drove before recovery is set to 5 meters when no recovery succeeded. . 34

4.9 The number of meters the robot drove before the error is <0.1m. The dots are the mea-
surement points. Each test is performed three times, and the data points represent the
average distance from the tests that were passed. The green, blue, magenta and red
dots indicate respectively 3, 2, 1, or 0 successful recoveries. For these tests, the dis-
tance the robot drove before recovery is set to 5 meters when no recovery succeeded. . 35

4.10 In the GT plot the robot looks like it is recovered, but the 2D plot shows differently. The
colors of the routes are for indication in order to better follow the trajectory when the
localization pose is staggered. 35

4.11 The number of meters the robot drove before the error is <0.1m. The dots are the mea-
surement points. Each test is performed three times, and the data points represent the
average distance from the tests that were passed. The green, blue, magenta and red
dots indicate respectively 3, 2, 1, or 0 successful recoveries. For these tests, the dis-
tance the robot drove before recovery is set to 5 meters when no recovery succeeded. . 36

4.12 The number of meters the robot drove before the error is <0.1m. The dots are the mea-
surement points. Each test is performed three times, and the data points represent the
average distance from the tests that were passed. The green, blue, magenta and red
dots indicate respectively 3, 2, 1, or 0 successful recoveries. For these tests, the dis-
tance the robot drove before recovery is set to 5 meters when no recovery succeeded. . 37

4.13 The number of meters the robot drove before the error is <0.1m. The dots are the mea-
surement points. Each test is performed three times, and the data points represent the
average distance from the tests that were passed. The green, blue, magenta and red
dots indicate respectively 3, 2, 1, or 0 successful recoveries. For these tests, the dis-
tance the robot drove before recovery is set to 5 meters when no recovery succeeded. . 38

4.14 The route of the accuracy test with start point A and endpoint B. The colors of the route
are for indication in order to better follow the trajectory when the localization pose is
staggered. 39

4.15 Accuracy difference between with and without line algorithm. The Euclidean distance
between the Δx and Δy of the tests in table 4.4. 39

4.16 Route and environment of precision experiment. The route with the waypoints for the
front of the robot is represented in green. The red lines are the outline of the robot in its
charging pose. The size of the grid is 1x1m. 40

4.17 Precision experiment with and without line algorithm in open-loop. Cropped figures of
the corner at the top of the route. In black is the corner of the environment. 41

4.18 Precision experiment with vs without line algorithm in closed-loop 42
4.19 Precision experiment parameter set 20 . 43
4.20 Routes in the barn with all particle resamples from line algorithm. The dots represent the

position where the robot stood still. The colors of the routes are for indication in order to
better follow the trajectory when the localization pose is staggered. 44

List of Figures xiii

4.21 Cutout top right corner of route 4 in the barn with different parameter sets/index. The
colors of the routes are for indication in order to better follow the trajectory when the
localization pose is staggered. The red dots is where the robot stood still in real life. The
blue dots are where the self-localization thinks the robot stood still. 45

4.22 Real-world experiments in which 4 different routes were driven in the barn. The routes
are shown in figure 4.2 . 46

4.23 Real-world experiments in which 4 different routes were driven in the barn. The routes
are shown in figure 4.2 . 46

4.24 Real-world experiments in which 4 different routes were driven in the barn. The routes
are shown in figure 4.2. 47

4.25 Real-world experiments in which 4 different routes were driven in the barn. The routes
are shown in figure 4.2 . 48

4.26 Real-world experiments in which 4 different routes were driven in the barn. The routes
are shown in figure 4.2 . 49

4.27 Process of recovery in the barn during route . 49

A.1 The layout of the barn. Route 1 and 3 were driven on the left wing and route 2 and 4
on the right hand-side. The start pose of the robot in the routes is visible in green at the
bottom. 55

List of Tables

2.1 The different datasets most suitable to a crowed dynamic environment 14

3.1 Parameters description line algorithm . 19
3.2 Parameters description line-wall comparison . 22
3.3 Parameters description localization modification . 24

4.1 Line algorithm parameter values with experiments. See appendix B for an overview of
the parameters. 28

4.2 Line-wall compare algorithm parameter values experiments. See appendix B for an
overview of the parameters. 28

4.3 Localizationmodification parameter values experiments. See appendix B for an overview
of the parameters. 29

4.4 The pose difference of the 3 different accuracy tests with and without line algorithm. The
average is the average of the three numbers in the column above. According to the
coordinate system of figure 4.14. 40

B.1 All the parameter sets and their changes relative to the default parameter set 0 in bold. 57

C.1 Results recovery experiment. Recovery is when the robot location is within an error of
0.1m. Successes are the number of times out of 3 tests. Distance is the distance [m]
traveled before recovery. *(recovery by change of AMCL, not lines algorithm). The tens
in the numbers of the parameter sets are an indicator of what is being varied in those
parameter sets by that decimal. 59

D.1 Pose B of accuracy experiment with in bold the most important comparison of the accu-
racy experiment . 61

D.2 Accuracy experiment results. Six different tests including 3 with line algorithm and 3
without. The values in bold are the most important values of the table to compare the
accuracy between with and without the addition of adding particles based on the detected
line error. 61

F.1 The average of the absolute localization errors compared to the GT in the barn. The
parameters per parameter set can be found in appendix B. 69

xv

1
Introduction

1.1. Background
The world’s population is expected to increase by nearly 2 billion persons in the next 30 years according
to the United Nations [57] and conservative estimates show that demand for food will increase 70%
over the next 30 years [30]. To meet this demand, more food must be produced in the future. Lely is
a robotics company that focuses on farming innovations. The automation of the first link of the food
chain is the beginning to meet the increasing demand for food. One of Lely’s robots drives around
autonomously in a barn to keep the barn clean with pre-programmed routes. However, to operate
properly the robots need to localize with reference to a map. This is challenging in barns because cows
are able to move around freely and might obscure the view of the surrounding area as a group. The
environment is also characterized by long corridors that look mostly the same which makes it difficult
to determine the location from a glance. More specifically, in this thesis project a barn of approximately
600m2 with 120 cows is considered. The robot itself is 1.2m wide, 1.5m depth, and 2m high and
is programmed to drive to certain waypoints with the two wheels it has, which makes it a holonomic
system. For localization, the robot currently uses a stereo camera which produces a 3D point cloud.
An algorithm converts the point cloud to a planar LiDAR scan. A 2D map is the input of the Adaptive
Monte Carlo Localization (AMCL) algorithm together with the planar LiDAR scan and odometry of the
robot. Odometry is the movement of the robot seen from within the robot itself. This is done with a
combination of IMU data and the displacement of the wheels. To understand why AMCL struggles with
the barn environment, the next section will give a more detailed explanation of its components, and
why they can fail in dynamic barn environments. For generalization, Lely’s robot is referred to as a
mobile robot in a barn in the rest of this thesis project.

Adaptive Monte Carlo Localisation
AMCL (Adaptive Monte Carlo Localisation)[1] is an algorithm used by robots to find their own location in
a known environment. Figure 1.1 shows the system with its inputs, internal AMCL process, and output.
AMCL is a modified version of MCL which consists of three steps: the motion update, sensor update,
and resampling. In the beginning, the first step is different from the motion update. Instead of using a
motion update, a large number of particles are spread across the map. These particles represent the
poses where the robot might be. Besides the change in the first step in the initiation, the sensor update
and resampling are the same.

1. Themotion update is the first step. All particles are moved with the motion measured by odom-
etry and an extra Gaussian noise. These particles are called the prior of the algorithm.

2. The sensor update uses the sensor measurements to iterate over all the particles and checks the
probability of the robot being in each particle’s place. Each particle is given a weight to represent
how well the particle matches the sensor measurements with the given map. Since the particles
are now compared with the likelihood of being in a particular pose the particles are now called the
posteriors. When there are too few measurement points available the uncertainty in the location
grows. When this occurs the particle cloud will spread.

1

2 1. Introduction

3. With resampling, new particles are generated based on the old ones to represent the highest-
scoring particles after which another iteration starts with the motion update.

Figure 1.1: Pipeline of the localization system. The green box is included in the AMCL algorithm

An important feature of this algorithm is that the robot can autonomously locate itself. This can
be done even when the localization has gone wrong a couple of meters after the robot has been in
operation for several hours. Finding its own location again is useful if a robot has to drive autonomously
all the time. In fact, a localization error does not require a person to assist in order to get the robot
operational again.

The mobile robot drives around in a barn with cows. This is an indoor and dynamic environment. A
barn with cows has the characteristic that there are many long straight stretches with the same kind of
walls of about 0.2m or 0.7m high. There are also fences to stop the cows which also have a bar at 0.7m.
So the cows walk freely in the barn, making the environment dynamic. Many cows can stand together
in certain places, for example near the milking robot. In these places, the robot loses its external sensor
information. Only with the internal sensors, there is uncertainty in the robot’s movement. The longer the
interruption of the external sensors, the greater the uncertainty of self-localization becomes. With too
much uncertainty, the robot may be unable to find back where it is and has to do a so-called recovery.

1.2. Problem statement
The robot only knows it is at a different position from the one received from AMCL when it runs into
a wall or takes a turn too tightly. This is not desirable, because a recovery from an incorrect location
estimate takes time. To identify the main causes of these temporal location errors, a day’s worth of
data from the robot navigating independently through the barn with cows was examined. During this
analysis, the causes, as well as the consequences of a localization error were investigated.

The two main problems are shown in figure 1.3 and 1.4. Figure 1.3a shows that the measurements
are in a straight line and represent the wall. Themeasurements are rotated relative to the wall. However
since the robot does not have particles that are in the right spot, AMCL does not correct this. In figure
1.3b the particle cloud is split into two parts. This may have occurred because AMCL has had to make
a decision before and, for example, mistook a cow for a wall. Given the localization, the other cluster
would be a better choice from an external point of view. However, the algorithm does not know the
difference in the rotation if the total error is the same as shown in figure 1.2. In the situation of figure
1.3b the rotated chosen cluster has a lower error than the cluster parallel to the wall. The right cluster
is too dense and is too much forwards to correct to the right spot. This is also seen in figure 1.4 where
the wall and corners are visible in the measurements for a human eye, but the robot has no particles
in the right place to correct this.

1.2. Problem statement 3

Figure 1.2: Black line represents the wall with the green dots measurements of the wall. Both situations have a total error of 12
although the actual location of the robot is completely different

(a) Measurements, as seen from particle cloud, are rotated (b) Particle cloud broke up, but the wrong cluster is chosen

Figure 1.3: Top view of the map with the robot, particles, and measurement points. The particles are represented in red with the
robots’ transform frames on top. the green and orange dots are planar lidar measurement points at respectively a height of 0.2m
and 0.7m. The map is a combination of obstacles represented at a height of 0,2m and 0,7m

(a) Corner measurements do not overlap with the map (b) Wall measurements do not overlap with the map

Figure 1.4: Location could not be restored because particles are too dense

The challenge is that this robot only has a stereo camera and a map of its environment to determine
its position. So when cows walk in front of the robot, no fixed barn structures can be seen. AMCL is
specialized in cases when there is uncertainty in the measurements. The particle cloud will expand
when the uncertainty of the localization grows. However, the algorithm converges too fast to a specific
spot in some cases where enough measurements are available again. This results in situations where
there are no particles in the real location of the robot later in the route. This causes situations where

4 1. Introduction

the measurements can not be in line with the map of the environment and AMCL does not restore the
localization.

In the related work chapter, the possibilities of re-initializing particles at the location of the robot
will be investigated. Additionally, other ways to improve localization are being explored. To improve
localization, it is possible to look at how the measurement points can be used to modify the particle
cloud when it is not spread enough to correct the error. Therefore, a part of the research will focus on
how the information about the measurement points can be extracted from the measurement points and
used to reduce localization offsets by adjusting the particles’ location while resampling.

1.3. Research questions
The robot in the barn uses pseudo planar LiDAR, which means the measurements are a 2D LiDAR
scan converted from a stereo camera point cloud. In order to make the final result work with this limited
input and process power, the focus will only be on planar LiDAR to narrow down the scope of this
master thesis.

The main research question is:

Does using extracted lines from a planar LiDAR improve the accuracy, precision, and
robustness of self-localization with AMCL for a mobile robot in a barn?

The research question is separated into multiple sub-questions to answer the main research ques-
tion.

1. Can the localization with AMCL be improved by correcting for offsets by resampling particles
through additional line extraction and matching between those line segments and map?

2. How can the accuracy, precision, and robustness of self-localization be tested and evaluated in
a real-world barn environment?

3. How sensitive is the new self-localization method to hyperparameter choices?

1.4. Document structure
Chapter 2 has an overview of methods that have been done to improve self-localization. This also
covers different line algorithms that could be used and methods to evaluate the performance of a
localization system. This is also where the research gap in the literature becomes clear and what this
master thesis will add. Chapter 3 explains the three parts of the contribution with why they are needed,
what they do, how they do it, and a description of the parameters they use. In Chapter 4, the new
dataset and experiments are described, explained, and their results are shown. Finally, Chapter 5
discusses the results and draws conclusions closing with recommendations on what could be done to
improve it even further.

2
Related work

In this section, three topics are covered to see what related research has been done. The first topic is
improving localization inMCL. This is examined because the robot uses AMCLwhich is an improvement
to MCL. These findings can be used to see what other improvements have been made. Secondly,
different line algorithms are examined because the goal is to improve localization with extracted lines.
The lines are extracted from pseudo-LiDAR, so the different factors that can cause errors are also
examined. Thirdly, we will look at how the performance of the self-localization can be tested and
evaluated to eventually compare the new method with the current method.

2.1. Localization error improvement
Self-localization is widely used for robots that need to drive autonomously in an environment [28, 50,
40]. The robot in the barn uses AMCL which is a modified method compared to MCL. Likewise, there
are other methods of self-localization that have an adjustment with the goal of improving localization.
The current algorithm works with particles, hence variations of self-localization methods related to the
update step of the particles will be considered first. Thereafter, other possible methods will also be
discussed.

2.1.1. Change of localization method
Adaptive Monte Carlo localization
AMCL [21] is a variation on MCL. Instead of using variations in the order of the algorithm, AMCL
changes the way the particle update state works. MCL has a fixed number of particles throughout
the whole localization which is dependent on the computer power. So, when there is a high certainty
the robot is in a specific spot, the particles are close together. In situations with low certainty, the
particle cloud is less dense, because of its spread. AMCL tries to solve this problem by dynamically
changing the number of particles in the algorithm. When the uncertainty becomes larger, the number
of particles increases as well. This means that the density of the particle cloud is quite constant when
the uncertainty in the localization rises. Fox [21] shows that this adapting sample size needs 12 times
fewer particles on average to achieve the same error as the MCL approach.

Biased Monte Carlo localization
Biased Monte Carlo difference from MCL in the way it samples particles [56]. Where MCL places
new samples at possible locations, Biased-MCL takes into account the extra probability of the robots’
dimensions. Given the fact that a robot can not locate itself into the wall, those particles will be filtered
out right when the new samples are thrown. This could even end up taking into account the properties
of the environment. Such as if the robot is charging, a quite specific pose should be provided to do so.
Other non-charging poses are then excluded from the probability of particles.

Unscented Monte Carlo localization
Another variation of MCL that affects the particles is Unscented Monte Carlo localization [18]. The idea
of unscented sampling is that samples are drawn with sigma points instead of based on the mean of

5

6 2. Related work

the samples. Figure 2.1 gives the idea behind this method. Fei J. et al. [19] discovered that adding
this method to MCL outperforms regular MCL and Rao-Blackwellized (EPF-MCL). It has an average
position error of 0.10m whereas MCL has an average position error of 0.15m both with 15 particles.
Even with fewer particles, Unscented-MCL shows better results than MCL.

Figure 2.1: Unscented transform (UT), the idea behind unscented sampling, figure 1 of [61]

Rao-Blackwellized particle filter
By adding a Rao-Blackwellized (RB) particle filter [26, 44, 27] to MCL, a new type of MCL is created
which has a change in the way the particles update. With an RB particle filter, the pose is split into
a non-linear position and linear orientation. The basics of an RBPF are compared with EKF and the
regular particle filter in figure 2.2. With the computational efficiency of the particle filter and the update
steps of an Extended KF the RB particle filter extends the regular MCL and EKF in performance

Figure 2.2: Rao-Blackwellized filter compared to Extended KF and a particle filter. Figure 1 in [26]

Normal distributions transform Monte Carlo localization
Normal distributions transform Monte Carlo localization (NDT-MCL) [46] is a variation on MCL with a
likelihood field model that changes the way the map is represented. Instead of a grid with a defined
grid size, the obstacles are represented as a normal distribution. This continuous representation of the
map instead of discrete gives the sensor model a more precise error, which results in more continuous
errors for the particles. Here regular MCL has an error of 0.054m, NDT-MCL has an error of 0.014m.

Dual-timescale normal distributions transform Monte Carlo localization
Dual-timescale normal distributions transform Monte Carlo localization [58] is an advanced version of
NDT-MCL. It adds a new feature to the map which improves the beam measurements. It keeps track
of a dynamically changing second map beside the regular map. This map is updated when there are
measurements in a specific spot for some time. This is especially useful in warehouses where there
are multiple robots driving through a semi-dynamic environment due to the moving boxes.

2.2. Line algorithms 7

2.1.2. Other studies
Liu [33] introduces a new method for accurately locating 3D LiDAR-equipped robots without relying on
GNSS. It uses AMCL and multiple sensors, including 3D LiDAR, IMU, and a wheel speed odometer.
The method combines data from the wheel speed odometer and IMU to achieve better accuracy using
the Extended Kalman Filter. This fused sensor data helps predict the robot’s initial position in the AMCL
algorithm. Then, the AMCL output at different time points is used in the PL-ICP algorithm to align the
3D laser point cloud. The PL-ICP algorithm also calculates a 3D laser odometer, which corrects the
AMCL’s initial prediction. This method enhances the performance of 3D LiDAR-based robot localization
without the need for GNSS.

Tang [54] published a new algorithm with the addition of a grid. This algorithm shares similarities
with MCL, but it differs in how it selects the sampling area and sets up the prediction grid. The key
distinction lies in how it constructs anchor boxes and sample boxes while utilizing node mobility to
minimize the sampling area. This area is then divided into smaller cells using the prediction grid. The
grid is updated based on information gathered from the seed node, and as long as this seed node data
is available, the original MCL algorithm is applied. The main change is that each sample now receives
the weight of the grid cell it corresponds to. In simpler terms, the algorithm uses a modified version
of MCL, adjusting the sampling area and grid setup to enhance localization accuracy based on data
obtained from the seed node.

A more basic approach by sampling particles in an area is augmented MCL [56]. Random particles
are placed in the particle cloud such that the possibility of particles’ absence at the true pose of the
robot is reduced. The random particles are sampled from either a uniform distribution of the pose space
or the posterior distribution of the measurement [12].

Other studies that improve localization are for example Miguel [35] and Obregon [38] where they use
additional GNSS information or Liu [32] which uses neural networks to merge vision and the 2D laser
data. Ge [24] uses a text-based MCL method to extract additional information from the environment
and use it to improve localization. Where Portugal [42] uses a combination of sensor data fusion and
scan matching techniques to make the system perform more smoothly.

2.1.3. Features usage in self-localization
The features found in the measurement points can be used to improve the self-localization of the robot.
Kang et al. [28] uses the extracted lines in the LiDAR measurements to improve the localization. By
matching the detected lines with the map the error in the self-localization can be corrected. Due to the
error in the measurements themselves, it is not possible to exclude the complete localization error.

Another way in which features from LiDAR data can be used is for mapping an unknown environ-
ment. By converting the data points to lines, the layout of the environment is determined and the walls
are located. This map can eventually be used for localization or navigation, for example. In the planar
LiDAR data, in addition to walls, corners can also be used for features. Amin et al.[3] have a state-of-
the-art method of determining corners independently of the line extraction, making their method faster
than the standard corner detection in IEPF. When data does need to be clustered it is impossible to
find out in advance how many lines there are exactly. Yang et al.[63] comes up with a method that
solves this problem so that it is not necessary to know in advance how many different lines there are.
However, this method is especially suitable when the data points are not delivered as a planar LiDAR
scan, but as a 2D point cloud. Another approach is done by Ravankar et al.[45]. They use a hopping
method through the points combined with Hough transform-based algorithm to determine the lines.

2.1.4. To sum up
There are several variations of Monte Carlo Localization which show an improvement in the localization
of a mobile robot. In section 2.1.1, the variations discussed are adaptations of MCL based on a change
in how to deal with the particles. Similarly, MCL has already been improved by combining additional
sensors or handling input data in a smarter way. Furthermore, Kang et al. [28] showed that localization
can be improved by using features such as walls and corners in the measurement points.

2.2. Line algorithms
The first sub-question is about line detection algorithms that can be used to extract line structures from
planar LiDAR measurements. Before explaining the different methods it is important to understand

8 2. Related work

what LiDAR is and what influences the structure of the planar LiDAR measurement.
Light Detection And Ranging (LiDAR) is an active sensor that uses the time between outgoing and

incoming laser signals to calculate how far the near obstacle in a given direction is [15]. These points
can be converted to 2D measurement points in the map that can be used as input for self-localization.
In the Introduction is mentioned that, when an error in self-localization occurs it could be that the particle
cloud converges too quickly to a location that is correct for the algorithm. In those situations, there are
no particles in the real location of the robot anymore and the measurement points can no longer be
viewed from locations other than those of the particles. Still, it can be seen in figures 1.3 and 1.4 that a
good measurement is clearly visible to the human eye. However, this human-observed information is
not available to the localization algorithm. In situations where there is a structure in the measurement
points visible to the human eye, the algorithm could use this information to find the right pose if the
algorithm could also extract this information.

2.2.1. Type measurement errors
In order to find structure in measurement points, it is important to know how the measurement points
may differ from the actual situation measured. The measurement points may contain measurement
errors that can be divided into four different categories: small measurement noise, errors due to unex-
pected objects, errors due to failures to detect objects, and random unexplained noise [56].

Figure 2.3: Types of different distribution likelihood errors. In each diagram, the horizontal axis corresponds to the measurement
𝑧𝑘𝑡 , the vertical to the likelihood. 𝑧𝑘∗𝑡 represents the true range of the object. Figure 6.2 in [56]

1. Small measurement noise is shown in figure 2.3a. The probability of measuring the object at the
true range of the object has a Gaussian distribution named 𝑝ℎ𝑖𝑡. This is mainly due to the accuracy
of the sensor. This 𝑝ℎ𝑖𝑡 due to the noise in measurement is important while finding structure in
the measurement points. Then the Gaussian distribution of the 𝑝ℎ𝑖𝑡 has a higher variance a struc-
ture could be found in more noisy measurements. The mobile robot in the barn converts stereo
camera images into LiDAR measurements, which adds extra uncertainty to the measurements.
Measurements further away from the robot have a higher variance in the Gaussian distribution of
the 𝑝ℎ𝑖𝑡 due to the pixel size in the cameras.

2. Errors due to unexpected objects are shown in figure 2.3b. Especially in a dynamic environ-
ment, an object could block the view of the known object given the map. Unknown dynamic
obstacles shave the property that they cause the range to be shorter than 𝑧𝑘∗𝑡 , surely not longer.
This likelihood probability is called 𝑝𝑠ℎ𝑜𝑡.

2.2. Line algorithms 9

3. Errors due to failures to detect objects are shown in figure 2.3c. Here, the obstacle at 𝑧𝑘∗𝑡 is
not detected and the max range of the sensor is used to fill the gap of the not reflecting beam.
This likelihood of missing the obstacle and adding the max range likelihood is called the uniform
distribution 𝑝𝑚𝑎𝑥. With LiDAR this could be caused by the fact that the beam could sense a black,
light-absorbing object or when measuring objects in bright light. The mobile robot in the barn uses
a stereo camera and uses similarities in the two images to gain the depth image which is used to
create the point cloud and a planar LiDAR scan. A failure in this system could be that similarity is
not found, so no depth can be calculated in a specific region which results in no measured point
of the obstacle.

4. Random unexplained noise is shown in figure 2.3d. There is a possibility 𝑝𝑟𝑎𝑛𝑑 over the whole
range of the beam that a random error occurs that gives measurement 𝑧𝑘∗𝑡 another range. In the
case of a mobile robot with a camera, this could be a light reflection on the ground.

By combining the four distributions of the different errors the combined likelihood of measuring 𝑧𝑘𝑡
at 𝑧𝑘∗𝑡 is shown in figure 2.4.

Figure 2.4: The combined likelihood of measuring 𝑧𝑘∗𝑡 along the range of the beam. Figure 6.3 in [56]

In conclusion, there are different types of noise/errors that can occur in the range of a beam. By
comparing the LiDAR beams with the stereo camera-generated ones, the 𝑝ℎ𝑖𝑡 distribution could be
more spread. And since there is a comparison between the two images of the stereo camera, which
could fail, the 𝑝𝑚𝑎𝑥 can also occur more than in LiDAR-generated beams.

2.2.2. Structure in measurements points LiDAR
Themeasurement points of the LiDAR consist of points in the 2Dmap. The first thing to do is distinguish
between real measurement points and noise. This can be done using, for example, beam skipping [56].
If a certain beam for all particle filters has an error greater than the preset beam skip threshold, but the
rest of the beams are within the margin, this is an indication of the quality of the beam. For example,
this beam may be a dynamic obstacle that is not known on the map. By filtering out these anomalous
beams, faulty measurements have less influence on determining the robot’s pose. Borges et al. [8,
9] evaluate the noise present at the measurement points depending on the distance from the object.
Shown in Figure 2.5a. Once the bias error at the different distances has been measured by testing,
the new measurements can be corrected for this. Borges et al. filter out a bias error of up to 0.15m
depending on the distance to the measured object. The residual noise due to the absence of high
accuracy is shown in figure 2.5b.

10 2. Related work

Figure 2.5: (a) measurements of an object plotted with the real distance on the horizontal axis and the differences between the
measurement and the true distance on the vertical axis. (b) measurements after filtering the bias. Figure 2 in [9]

The structures found in the measurements point are lines and angles [8, 10, 9, 6, 31, 36, 37]. The
lines, visible in the measurement points of the planar LiDAR, are the walls near the sensor. There are
several state-of-the-art methods [31] to extract this line structure from the measurement points.

Successive Egde Following
Successive Egde Following(SEF) [49] is the most basic algorithm. All it does is connect all points in
one line to create a line. However, this is not desirable for feature extraction of walls because it includes
noise and dynamic objects. Besides, there are no obvious lines that could be detected as walls. It is a
simple and efficient method, but sensitive to noise.

Line Tracking
Line Tracking (LT) [59, 8, 9] begins with the first two points and draws a line between them, the third
point is added when the distance from the line to the third point is within threshold 𝑇𝑛. This continues
until the distance is larger than 𝑇𝑚𝑎𝑥, then a new line is started. See figure 2.6a.

Iterative end-point fit
Iterative end-point fit (IEPF) [16] takes a subset of the measurements and defines it into two new
different subsets. As long as 𝑇𝑛 > 𝑇𝑚𝑎𝑥 the algorithm will split the two subsets again. When 𝑇𝑛 ≤ 𝑇𝑚𝑎𝑥
is satisfied the algorithm is done. See figure 2.6b. It is robust against noise and can overcome gaps in
the line segments. Meanwhile, it is sensitive to outliers and computationally more expensive compared
to other methods.

Figure 2.6: LT and IEPF algorithm for line extraction. Figure 6 in [9]

Split-And-Merge
Split-And-Merge (SAM) [41, 8, 9, 23] has the same principle as IEPF by splitting a line until 𝑇𝑛 ≤ 𝑇𝑚𝑎𝑥.
It has an additional step of filtering out outliers and combining split lines based on similarities and the
requested number of groups. It can handle complex structures since it can deal with the presence of
noise and gaps. All the complexity is handled by quite some parameter that needs to be chosen.

2.2. Line algorithms 11

Random Sample Consensus
Random Sample Consensus (RANSAC) [36, 37] is a robust algorithm for fitting a model in data with
outliers. The features in the planar LiDAR data are the walls. These are represented by straight lines
in the measurement points with a certain variation. These lines can be considered first-order linear
models. The noise of the sensor are outliers in the data. RANSAC can filter these out by fitting a linear
line in the data to distinguish the noise from the measurement points representing a wall. It is robust
against outliers and noise but needs parameter tuning to get the best result.

Hough Transform
Hough Transform (HT) [39] is about rotating a line through every measurement point. The right angle
between the line and the origin has a distance and angle regarding the origin. This distance against
the angle is plotted for every point. In the end, the most fitted line through the points is highlighted in
the graph and can be used to draw a line through the points. It needs quite some computation power
since it draws a rotating line through every point to find the best-fitting line.

Over-segmentation, undirected graph, and line extraction
Over-segmentation, undirected graph, and line extraction [31] is an improvement on IEPF with a combi-
nation of an undirected graph. In IEPF the threshold is automatically adjusted according to the number
of points in the group. This results in a better and quicker process. The undirected graph is to find out
the relations between the different groups. This helps to merge lines with similarities.

Compared to the other state-of-the-art methods the undirected graph method has the highest correc-
tion and accuracy with differences up to 200%. Adding an undirected graph increases the computation
time, but it can still run in real time. In figure 2.7 a comparison is made between the different line extract
methods. It is given that HT and RANSAC based on the speed, correctness, point- and edge error are
not the methods to choose since they score lower than the other methods. The ‘ours’ method (undi-
rected graph method) outperforms the other methods in correctness and accuracy error. Split-merge
and IEPF are behind the ‘our’ performance and form the high middle mode in the performance of line
detection algorithms.

Figure 2.7: ‘Ours’ is the last named method above with the undirected graph. The comparison shows that it has the highest
correctness and accuracy. These higher values are a trade-off against speed. Table II in [31]

2.2.3. To sum up
The first sub-question is about lines in planar LiDAR measurements which could contribute to more
robustness. In conclusion, while searching for lines in the planar LiDAR measurement points, it is
important to take into account the noise that may occur in the measurement points. The bias noise can
be tested for filtering out in the future. Determining the maximum variance in the remaining noise can be
used to determine whether a measurement represents a wall or noise. This is especially important with
the stereo camera because the variance in the measurement points of a wall increases with distance.
Several line segment extraction methods have been examined and compared. Split-Merge, IEPF, and
the variation on it from Li et al. with the graph are the best options according to the correctness,
accuracy, and computation time.

12 2. Related work

2.3. Performance evaluation
The second research question pertains to testing and the evaluation of self-localization. There are
different metrics to test the performance.

2.3.1. Metrics
There are different metrics of an algorithm that can be measured to determine its performance:

1. Accuracy is about how well the result is compared with the true value. Accuracy is hard to test in
self-localization because you do not know the true location of the robot. Therefore a ground truth
is needed which provides an absolute measure of accuracy [5]. By comparing the algorithm’s es-
timated positions with the ground truth, it can be measured how much the algorithm’s estimates
differ from the actual locations. This allows us to make fair comparisons between different al-
gorithms and understand their strengths and weaknesses. Without ground truth, evaluating the
algorithm would rely on subjective judgments or indirect measurements, which makes it hard to
know how well the algorithm actually performs. The quantitative evaluation can be done with
error metrics like mean error or root mean square error, to measure how closely the estimated
positions match the true locations [60]. This precise evaluation helps to understand how reliable
the algorithm is and whether it consistently provides accurate estimates in different situations
and environments. Additionally, ground truth helps assess the robustness of self-localization al-
gorithms. By comparing the algorithm’s performance in challenging conditions, such as when
the environment is partially blocked or when there’s noise in the sensor data. Ground truth data
gives the ability to analyze algorithm failures more effectively and develop strategies to make the
algorithm more adaptable and reliable.
Without ground truth, alternative evaluation methods like using surrogate measurements or re-
lying exclusively on sensor data can be used, but they have their limitations [53]. Surrogate
measurements, such as using an external tracking system or trusting the accuracy of other sen-
sors, can introduce additional errors or inaccuracies that affect the evaluation results. A method
for external tracking is the use of beacons [17] where they measure the Euclidean distance to
the robot. By 3 or more different beacons the 2D position of the robot can be measured. When
the evaluation only depends on sensor data for evaluation it lacks a benchmark for comparison
and makes it hard to know how well the algorithm is actually performing. Another method is with
a landmark. The relative position of the robot can be compared with the true pose in this way.
With for example a line marked on the ground of the exact route which the robot has to follow,
the precision can be measured. Ground truth errors could occur due to the marking process or
map distortions [25]. Wang et al. [62] use two known points in the environment where the robot
has to drive from one to the other. The error regarding the second point can be measured.

2. Precision is about how constant the result is when the process is repeated. The precision in
self-localization can be compared with the variation in paths when a specific trajectory is driven
a couple of times. In [47] the robot drives a specific route a couple of times. After every route, an
image is made from the same point of view. If the robot overlaps perfectly in the combined images
it has high precision. Figure 2.8 shows the difference in the precision of the two algorithms. Note
that this does not give information about the accuracy. In the comparison of [60] they use the
root-mean-squared error (formula (2.1)) and the max error to evaluate the algorithms.
In [47, 60, 27, 18, 26] the robot drives a specific route a couple of times as well, but the evaluation
of the precision is done by plotting all the routes on another to visually present the variation in the
different routes.

𝑅𝑀𝑆𝐸 = √
∑𝑁𝑖=1 ‖𝑦(𝑖) − 𝑦(𝑖)‖

2

𝑁 (2.1)

𝑦(𝑖) : Ground truth (GT) pose of the robot
𝑦(𝑖) : Calculated pose of the robot
𝑁 : Number of poses

2.3. Performance evaluation 13

Figure 2.8: Positioning precision visualized: Fifteen images recorded from a stationary camera overlaid in positioning accuracy
test. Figure 1 in [47]

3. Latency [37, 6] is about how fast the input data such as odometry and sensor measurements
are processed in one iteration. The amount of iterations per second is also referenced as speed
in Hz. It could also be how fast the algorithm converges to the right pose of the robot pose from
an unknown start location if the algorithm is able to do so. The time to find the right beginning
location is connected to the processing power on the system. The location can be found faster
with more particles, but this requires more processing power.

4. Qualitative analysis can also be used to evaluate the performance of the robot. By counting
the wrong positions of the robot by observing the robot during its route. Such observation is also
done in the analysis in chapter 1.2 to find the most common error. Features in the environment
seen by the camera can be used here. When the robot is not in the right place, the measurement
points do not overlap the map properly, this error can be calculated. In this way, accuracy can
also be analyzed.

To conclude, there are different ways to evaluate the performance of a self-localization algorithm.
Performance in driving can be analyzed by accuracy or precision. A ground truth is necessary when
evaluating the accuracy of a mobile robot. This can be done by marking known positions in the real
world and letting the robot drive through them. Another simple method is analyzing the time needed
for the calculations. In this way, it can be verified whether the algorithm can be used in real time.

2.3.2. Usage of a dataset
Datasets allow comparisons between different self-localization methods. By evaluating multiple meth-
ods using the same dataset, the performance can objectively be assessed and evaluated which ones
work best in different situations. This helps understand the strengths and weaknesses of each ap-
proach [13]. Datasets could reflect real-world situations as well, including various lighting conditions,
sensor noise, and other factors that affect the self-localization accuracy. By evaluating a system on
these datasets, it can be seen how well it handles different real-world conditions. This is important
for making sure the algorithm works well in practical applications [20]. Using datasets also promotes
transparency and reproducibility. When the dataset is available to others, it enhances the replication of
experiments and validation of results. No datasets are available for self-localization in a barn. However,
there are datasets used for self-localization in self-driving cars and other studies.

RAWSEEDS
The RAWSEEDS dataset [60, 13, 20] includes in- and outdoor datasets created to evaluate the differ-
ent methods for self-localization with mobile robots. It is also used for simultaneous localization and
mapping (SLAM) [29] which adds an extra step to localization by mapping the unknown environment
with the images of the stereo camera. The dataset contains data from LiDARs, odometry, cameras,
and ground truth. The ground truth (GT) is in self-localization the most important data because it is nec-
essary to evaluate the accuracy of the system. The precision and accuracy of the sensor, which is used
to get the GT, affected the error in the GT. Therefore, evaluating using the RAWSEEDS dataset will

14 2. Related work

include some inaccuracy in the error of the result. The disadvantage is that the dataset was recorded
in 2009, which at the time of writing was 14 years ago. This is reflected in the quality of the images
from the 0.3MP camera. In comparison, the camera of the mobile robot is 1.2MP which shows less
noise.

Crowed
The environment of the mobile robot is seen as crowded. JackRabbot Dataset and Benchmark (JRDB)
[34] and Robocentric Indoor Crowd Analysis (RICA) [48] are datasets with data from places with many
people, but are mainly focused on detecting people and do not have a map available as input for the
self-localization.

COLD
Another dataset called CoSy Localization Database (COLD) [43] is mainly focused on classifying in
which space the robot is located. The authors are in the process of releasing more comprehensive
sub-datasets including localization data based on the camera and LiDAR [4]. This new data set is
unavailable at the time of writing.

(a) Screenshot of RAWSEEDS
dataset

(b) Screenshot of JRDB with pose
estimation (c) Screenshot of RICA dataset (d) 4 screenshots of COLD dataset

Figure 2.9: Screenshots of the different datasets

Dataset Sensors Environment Number of samples Extra info

RAWSEED (2009) [60, 13, 20]

- Binocular (B/W) 0.3MP
- Mono-camera 0.3MP
- LiDAR
- IMU

- Indoor, hallways
- Dynamic - 15 fps camera’s -Low-resolution camera

JRDB (2019) [34]
- RGB-D stereo 0.25MP
- LiDAR
- IMU

- Indoor and outdoor
- Static and dynamic

- 58K depth, 15 fps
- 51k LiDAR, 15 fps

- Low-resolution camera
- Focus on human detection

RICA (2020) [48]
- RGB-D 0.25MP
- LiDAR
- IMU

- Indoor
- Dynamic

- 40k depth, 9 fps
- 51k LiDAR, 12 fps

- Low-resolution camera
- Focus on human detection

COLD (2009) [43]
- Stereo RGB 0.3MP
- LiDAR
- IMU

- Indoor
- Static - 16k camera, 5 fps - Low-resolution camera

- Focus on room recognition

Table 2.1: The different datasets most suitable to a crowed dynamic environment

In conclusion, datasets are vital for evaluating self-localization systems. They enable comparisons,
capture real-world conditions, provide measures for performance analysis, and add transparency to
the comparison due to equal input. There is no dataset that represents the barn use case. Therefore
a new dataset will be created in a barn with ground truth. In this way, the different algorithms can be
evaluated under the same conditions.

2.3.3. To sum up
There are different metrics to evaluate the performance of a self-localization algorithm, such as accu-
racy, precision, latency, and qualitative analysis. These help to compare the different self-localization
methods. A dataset can be used for a fair comparison between the methods by giving each the same
input, but there is no dataset that represents a barn use case. The accuracy of the self-localization
method can be compared to the output of the algorithm with the ground truth. This ground truth can
be measured by external sensors such as beacons, GPS, and LiDAR in the environment [17, 53]. An-
other method is internal data like cameras in combination with SLAM, landmarks, or onboard LiDAR
with more precision than the sensor for the localization of the robot [5, 60].

2.4. Thesis contributions 15

2.4. Thesis contributions
The representative paper by Kang [28] shows that the accuracy of self-localization can be improved by
extracting lines and corner points from the LiDAR scan and matching them with the map. In the study,
the robot drives in a static environment with a nearly 360-degree LiDAR. This differs from the robot in
a barn driving in a dynamic environment using pseudo-LiDAR with only a field of view in front of the
robot. If due to the smaller field of view there will be much less data available per scan than in Kang’s
study so corners will not be visible very often. Instead, Kang uses these to find the x- and y-error in
the localization. In this thesis project, the 2D error will be extracted from the line segments themselves
to find the necessary localization error when no corners are available. When Kang has found an error
in the localization, the position is adjusted by the average of all errors of the corners. However, this is
only possible if you are confident that the lines found also represent the walls. When the robot drives
around in a static environment this will be the case, but not in the dynamic environment of the barn
with cows. It is chosen to adjust a part of the particle positions with the error obtained from the line
algorithm, because it is not certain, in a dynamic environment, that the obtained error is correct.

The newly proposed method to improve the self-localization, called LAMCL (Line Adaptive Monte
Carlo localization), will consist of 3 parts:

1. Detecting the line segments in the pseudo-LiDAR scan. This will be done by the standard split
and merge algorithm. Research has proved that this works well and it is easy to implement with
the given examples on the internet. However, the parameters will be tweaked because they are
made for normal LiDAR which has less noise than the pseudo-LiDAR used by the robot. The
implementation of M. Gallant [22] will be used, but adapted so it can be used in ROS2.

2. The second part is finding which wall best corresponds to a found line segment as well as deter-
mining the difference between that wall and line segment in terms of distance and rotation. A new
method will be created for this because, in the representative paper, this is done with the corners
of the measurement points, which are not available from the line detection algorithm. This will be
done based on the distance and rotation of a line segment from the wall.

3. The third part is about improving the location based on the given error according to the comparison
of the line segments with the walls. The representative paper does so by moving the position of
the robot based on the error without considering the probability of the error. In LAMCL a fraction
of the particles will be resampled based on the localization error instead of moved. The effect of
this fraction will also be tested.

To test the LAMCL, a new dataset called DataCow will be created. This dataset will consist of four
different routes in a barn with cows with the corresponding ground truth recorded at 7 to 9 different
points per route. The dataset allows for comparison between different settings of LAMCL. Chapter
2.2.1 states that there will be noise in the measurement points. Therefore, the additional noise in the
pseudo-LiDARmeasurement points will be examined in order to compensate for this in the experiments.

3
Methods

In chapter 1.2, it has been explained that the main issue is the absence of particles at the location of the
robot. The availability of particles in the actual position of the robot is crucial to determine the robot’s
pose. Therefore, particles need to be placed around the robot’s actual pose if absent. One possibility,
as suggested in the related work section 2.1.2, is to add random particles at each iteration with a
standard deviation based on the current posterior pose of the robot. This increases the likelihood of
having a particle at the robot’s pose where previously there was none. Another approach is to identify
the localization error and add particles at that location specifically. Kang [28] has demonstrated the
feasibility of this through the detection of lines and corners in the LiDAR scan.

The proposed localization method is thus a combination of AMCL with a line detection algorithm
and is called LAMCL (Line Adaptive Monte Carlo Localization). It consists of three parts that each do
their own task, but depend on each other to make the whole system work. The three different parts
and their relationship to each other are shown in figure 3.1 in red. The rest of chapter 3 will discuss
what the different parts do and how they work.

Figure 3.1: Pipeline of LAMCL with AMCL in green and the added functionality in red. AMCL has the odometry, map, and planar
scan as input. The same map and planar scan are used for the newly added line detection and line-wall comparison.

3.1. Line detection
To place new particles based on the error in localization, this error needs to be measured. This can be
done by comparing the robot’s view of the world to that of the map. In the map, all walls are defined
as line segments. By examining whether line segments can be found in the LiDAR scan, they can be
compared with the walls on the map. When a line segment does not correspond in position on the map
with a wall, it indicates a probable localization error. Therefore, it is desirable to detect an identified wall

17

18 3. Methods

in the LiDAR scan as a single line segment in order to limit additional comparisons between numerous
line segments andwalls. A standard Split-and-Merge algorithm [7] is chosen for detecting line segments
in the LiDAR scan. This algorithm starts with one line segment which is split into several line segments
depending on certain conditions. Finally, matching line segments are merged and a better fit is made
to the measurements to which the line segments belong. Being able to detect multiple line segments
is important because multiple walls are commonly spotted in a LiDAR scan. In the comparison with the
map, these must all be compared separately for the best results. However, not too many line segments
should be created to minimize the comparison made later between the line segments and the walls.

3.1.1. The algorithm
For the application of the line detection algorithm, the implementation by M. Gallant [22] was used and
adapted to ROS2. Algorithm 1 provides the pseudocode for this algorithm. The input is the LiDAR scan
with all the data points from the environment. First, these points are filtered in L2-L11 based on range
and whether they are outliers. The EndPointFit-line is used for this purpose, which is a line segment
from the starting point of the measurement points to the last point, shown in figure 3.2 in the upper right
corner in black. After filtering the measurements, an EndPointFit-line segment is used and split, in L13
of the algorithm. When the perpendicular distance of a measurement to the line segment is too large
according to the threshold, the line segment is split at that point. The line segment is also split if the
distance between two consecutive measurement points is larger than the set threshold. Once the line
segments no longer meet the split criteria, the line segments which are too small are filtered out in L17
of the algorithm, based on their length and the number of points associated with each line segment.
The remaining line segments are fitted to their corresponding points. Finally, the line segments that are
sufficiently aligned are merged based on the Chi-squared method [14]. This method measures how
much two lines differ from each other. If the difference is small enough, they are merged.

Algorithm 1 Line detection algorithm Split and Merge
1: Inputs:

2D LiDAR scan
2: for measurement ∈ 2D LiDAR scan do
3: if range measurement <𝑚𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 or > 𝑚𝑎𝑥 𝑟𝑎𝑛𝑔𝑒 then
4: Filter out measurement.
5: end if
6: if distance to neighbors > 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑑𝑖𝑠𝑡 then
7: if distance to EndPointFit-line segment > 𝑚𝑖𝑛 𝑠𝑝𝑙𝑖𝑡 𝑑𝑖𝑠𝑡 then
8: Filter out measurement.
9: end if
10: end if
11: end for
12: while max distance to EndPointFit-line segment > 𝑚𝑖𝑛 𝑠𝑝𝑙𝑖𝑡 𝑑𝑖𝑠𝑡 or max distance between mea-

surements > 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑑𝑖𝑠𝑡 do
13: Split line segment into two line segments at point where split criterion is met.
14: end while
15: for line ∈ line segments do
16: if line segment length <𝑚𝑖𝑛 𝑙𝑖𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ or number of points of line segment <𝑚𝑖𝑛 𝑙𝑖𝑛𝑒 𝑝𝑜𝑖𝑛𝑡𝑠

then
17: Delete line segment.
18: else
19: Fit line segment with least square error using 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞 𝑟𝑎𝑑𝑖𝑢𝑠 𝑡ℎ𝑟𝑒𝑠ℎ and

𝑙𝑒𝑎𝑠𝑡 𝑠𝑞 𝑎𝑛𝑔𝑙𝑒 𝑡ℎ𝑟𝑒𝑠ℎ.
20: end if
21: end for
22: if Chi-squared of two line segments < 3 then
23: Merge line segments
24: end if

3.1. Line detection 19

Figure 3.2: Split and Merge example with perfect data [55]. The black dots are the data point. The blue line segments are the
split black EndPointFit-line

3.1.2. Parameter description
The line algorithm has several parameters that determine when a line segment is detected in the 2D
LiDAR scan. The parameters ensure that it also utilizes when there is more noise than normal, for
example with pseudo-LiDAR. For this purpose, there is the 𝑟𝑎𝑛𝑔𝑒_𝑠𝑡𝑑_𝑑𝑒𝑣 that determines how much
standard deviation is allowed in the measurement points by which it can still be seen as a line segment.
The rest of the parameters are explained in table 3.1.

Parameter name Description
Line algorithm

bearing std dev The standard deviation of bearing uncertainty in the laser
scans [rad]

range std dev The standard deviation of range uncertainty in the laser
scans [m]

least sq angle thresh Change in angle [rad] threshold to stop iterating least
squares (least sq radius thresh must also be met)

least sq radius thresh Change in radius [m] threshold to stop iterating least
squares (least sq angle thresh must also be met)

max line gap The maximum distance between two points in the same
line [m]

min line length Lines shorter than this are not published [m]
min range Points closer than this are ignored [m]
max range Points farther than this are ignored [m]

min split dist
When performing ”split” step of split and merge, a split
between two points results when the two points are at
least this far apart [m]

outlier dist Points who are at least this distance from all their
neighbours are considered outliers [m]

min line points Lines with fewer points than this are not published

Table 3.1: Parameters description line algorithm

20 3. Methods

3.2. Line-wall comparison
The line-wall comparison algorithm is the second part of what has been added to AMCL. The inputs
are the wall lines in the map and the detected line segments from the line algorithm. The output is
the average localization error according to the lines relative to the walls. Comparing the lines with the
walls is essential because from just the line segments no information can be extracted about whether
there is a localization error. No external algorithms were used to create the line-wall algorithm and it is
created from scratch.

3.2.1. The algorithm
The line-wall comparison algorithm can be seen in Algorithm 2. During initialization, the map of the
environment is requested. It contains all the walls used during the comparison with the line segments.
For each LiDAR scan, the algorithm considers the error according to the line segments obtained from
the line algorithm. These line segments are created from the robot’s perspective and thereforemust first
be converted to the coordinate system of the walls. A LiDAR scan can contain several line segments,
therefore for each line separately the comparison is made with the walls what the possible localization
error is. When a line segment is compared to a wall, it is first calculated whether the projection of the
line falls within the walls, see figure 3.3.

Algorithm 2 Line-wall comparison algorithm
1: Initialize:

Get map
2: Inputs:

Line segments extracted from pseudo-LiDAR scan
3: if 𝑓𝑟𝑎𝑚𝑒 of line segments is not 𝑚𝑎𝑝_𝑓𝑟𝑎𝑚𝑒 then
4: Transform line segments to map frame
5: end if
6: for line segment ∈ line segments do
7: for wall ∈ map do
8: Calculate line-wall info
9: Check |line segment - wall| < |line segment - current best wall|
10: Check ∠(line segment, wall) < ∠(line segment, current best wall)
11: wall-best wall difference = |line segment - wall| - |line segment - current best wall|
12: Δ∠ = ∠(line segment, current best wall) - ∠(line segment, wall)
13: Check if (L9 is 𝑓𝑎𝑙𝑠𝑒) and (L12 > 𝑎𝑛𝑔𝑙𝑒 𝑒𝑛𝑑−𝑎𝑛𝑔𝑙𝑒 𝑠𝑡𝑎𝑟𝑡

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑒𝑛𝑑−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑡𝑎𝑟𝑡 * | L11|) and (| L11| <
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑒𝑛𝑑)

14: Check if (L10 is 𝑓𝑎𝑙𝑠𝑒) and (L11 > 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑒𝑛𝑑−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑡𝑎𝑟𝑡
𝑎𝑛𝑔𝑙𝑒 𝑒𝑛𝑑−𝑎𝑛𝑔𝑙𝑒 𝑠𝑡𝑎𝑟𝑡 * | L12|) and (| L12| <

𝑎𝑛𝑔𝑙𝑒 𝑒𝑛𝑑)
15: if (9 and 10) or (10 and 13) or (9 and 14) is 𝑡𝑟𝑢𝑒 then
16: Wall is new best wall
17: end if
18: end for
19: Calculate additional displacement due to rotation of line segment
20: Add line error to separated x, y and theta history queue
21: end for
22: if average line segment error of x, y, or theta > 𝑚𝑎𝑥_𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 then
23: Publish average line segment error
24: end if

Figure 3.3 shows two different line situations (the 3rd is when both projections are outside the wall,
but it is the same as when one projection is outside the wall). For line 1, both projections are inside the
wall. In this situation, the angle relative to the wall is calculated and the center of the line is used for the
distance from the line to the wall. For line number 2, one of the projections lies outside the wall. In this
situation, the angle relative to the wall is calculated the same. However, the distance is not calculated
from the center, but the end of the line furthest from the wall is used for the distance after rotating with

3.2. Line-wall comparison 21

the angle. This ensures that the line is completely inside the wall with rotation and displacement. From
the displacement of the line segment, the Euclidean distance is used to check if the current wall being
compared is better than the currently best wall along with the angle. When the distance and angle are
both smaller it is clear that the current wall is better.

Figure 3.3: Two of the situations of the projection of a line segment with a wall. In big black the wall, red is the line segments, the
dotted line is the projection, the dashed black line is the compared orientation of the wall, and the dashed blue is the distance of
the line segment to the wall.

It can also happen that the distance gets better, only the angle gets worse (bigger), or vice versa. In
these cases, there must be a minimal improvement in one when the other gets worse. This relationship
is included in the enough-improvement function, plotted in figure 3.4. This is checked in Algorithm 2
L13 and L14.

Figure 3.4: The functions used to check if there is enough improvement in algorithm 2 line 13 and 14. For example, if the distance
gets worse by 2 meters, there needs to be a minimum improvement of 30 degrees in the angle between the line segment and
the wall.

When the best matching wall is chosen for a line segment, the displacement, and rotation of the line

22 3. Methods

segment relative to the wall are known. However, the robot is at a distance from that line segment, and
while rotating the line segment relative to the wall, there is an additional displacement that the robot
must undergo to match the line segment with the wall. This is L19 of algorithm 2 and is visualized in
figure 3.5.

(a) Begin situation

(b) The robot is rotated and moved with the
radius to the line segment around the middle
point of the line

(c) The robot is moved with the displace-
ment of the line segment to the compared
wall

Figure 3.5: Calculation process of the localization error. The black line represents the wall, the red line is the detected line, and
the green the robot. Note: The wall itself is not moved in the figures

The calculated displacement per line segment is then added to the history queue on L20 of algorithm
2. When the average displacement of x, y, or heading exceeds the set threshold, the average estimated
pose error is published.

3.2.2. Parameters description
For the line-wall comparison algorithm, there are several parameters which are explained in table 3.2.
As mentioned before you can see that the x, y, and angle all have their own threshold. The start and
end values of the distance and angle of the plots in figure 3.4 can be adjusted with the distance and
angle start and end values.

Parameter name Discription
Line-wall compare

wall max history The maximum amount of lines used to calculate the mean
position error

max allowed angle difference Only poses with more rotational error then this are
published for correction [degrees]

max allowed pose difference x Only poses with more error in x-axis then this are published
for correction [m]

max allowed pose difference y Only poses with more error in y-axis then this are published
for correction [m]

distance start Start distance that defines where the betterwall-function
begins [m]

distance end End distance that defines where the betterwall-function
ends [m]

angle start Start angle that defines where the betterwall-function starts
[degrees]

angle end End angle that defines where the betterwall-function ends
[degrees]

Table 3.2: Parameters description line-wall comparison

3.3. Localization modification 23

3.3. Localization modification

Now, the possible localization error of the robot is known. As indicated in earlier sections, the correct
pose can be restored by regaining particles at the robot’s pose. It has been chosen to use the localiza-
tion error to place particles at the location of the error as a replacement for part of the current particle
cloud. This will allow AMCL to view the LiDAR scans from these poses and evaluate whether those
new particles are a better representation of the robot pose.

3.3.1. The algorithm

The particle place algorithm is shown in Algorithm 3. The input is the localization error from the line-
wall compare algorithm. Only when enough time has passed between the last modification and the
current time, this localization error is used. When sufficient time has passed, a new particle cloud
is filled with samples from the error location with a standard distribution. The new particle cloud is
filled until the preset percentage of the total particle cloud is filled. This percentage is the parameter
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝑙𝑖𝑛𝑒 𝑒𝑟𝑟𝑜𝑟. The weight of each added new particle is set to 1 and divided
by the preset division value. The rest of the new particle cloud is resampled by the standard AMCL
method by resampling from the current particle cloud.

Algorithm 3 Localization modification algorithm
1: Inputs:

Estimated localization error
2: if (current time - time last modification) > 𝑚𝑖𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑎𝑚𝑐𝑙 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠 then
3: Get pose robot
4: while new particle cloud size < (particle cloud size * 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝑙𝑖𝑛𝑒 𝑒𝑟𝑟𝑜𝑟) do
5: Sample new particle from normal distribution with 𝑠𝑡𝑑𝑑𝑒𝑣... around (pose robot - localization
error)

6: New particle weight = 1/𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑑𝑑𝑒𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
7: Add new particle to the new particle cloud
8: end while
9: Tell AMCL to resample with partly filled new particle cloud
10: end if

3.3.2. Parameters description

Table 3.3 shows all the key parameters related to the placement of particles around the error location.
The minimum time between two placements of particles at the error location is chosen to give AMCL
time to consider the newly placed particles when evaluating the robot’s location. The standard deviation
of the standard distribution of the particles is because there is an inaccuracy in identifying the lines in
the pseudo-LiDAR. It is not certain that the error is also exactly the localization error. The weights of
the particles from the line algorithm are not the same as the sampled ones from the previous particle
cloud. This is related to the fact that it is not sure that these particles are correct. With the sameweights,
the position could jump to a false location due to a dynamic obstacle being mistaken as a wall. With
lowering the weights, the AMCL has more time to check that this is not the case. The most important
addition is that not all new particles are sampled from the localization error. The percentage ensures
that not all odometry information from the past is forgotten. So, the majority of the new particles are
sampled from the current position of the robot.

24 3. Methods

Parameter name Description
Place particles on error pose

min time between lamcl resamples Minimum time between resamples using the estimated
localization error [sec]

std dev pose x Standard deviation of the placed particles in the x-axis
std dev pose y Standard deviation of the placed particles in the y-axis
std dev orientation Standard deviation of rotation of the placed particles
fraction resample from line error Percentage of particle cloud which comes from line error

division weight added particles Weight of added particles from line error will be divided by
this

Table 3.3: Parameters description localization modification

4
Experiments

The research questions revolve around the accuracy, precision, and robustness of the algorithm. To test
this, an experiment was conducted for each aspect. For accuracy, the same experiment as described
in Wang’s paper [62] is used, where the robot drives from location A to B, and the pose error at location
B is measured. For precision, the robot drives the same route multiple times, and by examining the
overlap of these routes, insights can be gained regarding the difference in precision between LAMCL
and AMCL. Robustness is assessed by observing if and how quickly the self-localization could recover
from a localization error. This is achieved by allowing the robot to drive towards a wall from a fixed
distance but indicating a deviation in distance. Finally, a test is conducted to evaluate how well the
algorithm performed in a barn environment with cows. Ground Truth data is recorded in this test at
specific points to measure the accuracy. In most experiments, the middle of the robot’s front is assumed
as the robot’s location since it represents the point that should align with the route when the robot drives
autonomously. Only in the experiment about the precision the middle point of the robot was used. For
the precision, robustness, and barn tests, rosbags were recorded and played back to test LAMCL
with different parameter sets. Further details can be found in chapter 4.1 and 4.2. By conducting the
experiments, it is possible to say something about the performance of the system and compare the
different configurations afterward.

4.1. Barn dataset: DataCow
In chapter 2.3.2, the importance of a dataset with ground truth is explained when evaluating self-
localization. There are several publicly available datasets such as RAWREEDS [60, 13, 20], JackRab-
bot Dataset and Benchmark (JRDB) [34], Robocentric Indoor Crowd Analysis (RICA) [48] and CoSy
Localization Database (COLD) [43]. The particular barn environment, setup, and sensory equipment
exhibit no similar properties as the ones used in these standardized datasets. Therefore a new dataset
was created to fulfill the properties of the barn robots’ situation: DataCow.

4.1.1. Setup data recording
DataCow is recorded in a barn with cows. The layout of the barn can be seen in appendix A. When
the robot drives a route, the localization algorithm affects how this route is taken. There are external
methods to record the GT of the robot, such as GPS, a motion capture system [51] and a total station
[52]. However, these are not suitable for the barn environment since it is indoor and the space is too
large to measure with an external sensor. Therefore, it was decided to manually guide the robot along
a route. In addition, this allows the robot to be temporarily paused at certain landmarks in the barn to
manually measure the pose for the ground truth measured to the nearest 0.005m. These landmarks
mainly consist of corners of the walls or measured distances from a wall corner. In this way, they can
be later drawn on the map to compare them with the calculated pose of self-localization methods with
varying parameters. See chapter 4.2 for the different parameters.

25

26 4. Experiments

4.1.2. Routes

DataCow contains four different routes in the barn and has the input for the self-localization. These
are the LiDAR scan and the Translation between Frames (TF). The TF gives the relation between the
origin of the map and the robot in 3 DOFs (x, y, theta). The TF contains the relationship between
map-odom and odom-base_link. See figure 4.1. Odom to base_link is determined by the robot’s
displacement based on wheel movements and the IMU (Inertial Measurement Unit) in the robot. The
map to odom relationship is initially fixed, but during motion, the localization algorithm can adjust this
relationship when the particles, according to self-localization, are not in the correct positions. This is
the most important output of the localization algorithm. In DataCow, only the initial position and the
odom-base_link relationship are stored in the TF. The map-odom relationship is eventually added by a
localization algorithm when tested.

Figure 4.1: TF tree of the robot with map, odom, and baselink

The DataCow dataset consists of 4 different routes, with two routes on each side of the barn. Route
4, in particular, exhibits a high level of dynamism, as it captures the cows returning from the pasture and
then standing at the feeding racks to eat. Figure 4.2 displays the routes. These routes are visualized
with the default 0 parameter set given in chapter 4.2. All the routes driven in the experiments are
plotted with changing colors over time to visualize the progression when the robot transitions or jumps
between locations. The blue dots indicating the locations where the robot stopped according to the
self-localization.

4.2. Parameters 27

(a) Barn route 1 (b) Barn route 2

(c) Barn route 3 (d) Barn route 4

Figure 4.2: Routes in the barn. The dots represent the position where the robot stood still. The colors of the routes are for
indication in order to better follow the trajectory when the localization pose is staggered.

4.2. Parameters
As discussed in Chapter 3, there are three different components in LAMCL, each of which has its own
parameters. Chapter 3 provides overviews of the different parameters and their meanings. Because of
the duration of 3 hours per parameter set, it was not possible to test all possible combinations. There-
fore, it was chosen to work with default values derived from a qualitative analysis of the 3 subsystems.
Quantitative was not possible given the absence of a test set and GT for the 3 components of LAMCL
separately and the available time which made it not possible to create one. From the default values it
was checked how the parameters affect the whole system by adjusting them one by one. When there
is no parameter value in the column of ”value (parameter set)” it means that the default value has been
used for all parameter sets. The complete overview of the parameter sets can be found in appendix B.

4.2.1. Line detection
As described in chapter 3.1, the standard algorithm Split-and-Merge was chosen to detect line seg-
ments in the LiDAR scan. This was originally used to detect line segments in a real LiDAR scan rather
than the pseudo-LiDAR scan which the robot in the barn has. The difference between LiDAR and
pseudo-LiDAR is that more noise is present in pseudo-LiDAR, especially as the distance from the de-
tected object increases. So for the line detection to work, a qualitative analysis was done on how it
works. The original values [22] that work for a normal LiDAR were also tested as parameter set 10.
However, no line segments were detected in the pseudo-LiDAR measurements. When testing and cal-
culating the default deviation a 𝑟𝑎𝑛𝑔𝑒 𝑠𝑡𝑑 𝑑𝑒𝑣 of 1 was chosen as default with 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞 𝑎𝑛𝑔𝑙𝑒 𝑡ℎ𝑟𝑒𝑠ℎ
and 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞 𝑟𝑎𝑑𝑖𝑢𝑠 𝑡ℎ𝑟𝑒𝑠ℎ of 0.1. At greater distances, the measurement points in the scan are
more spaced apart. To detect lines at large distances as well, 𝑡ℎ𝑒 𝑚𝑖𝑛 𝑠𝑝𝑙𝑖𝑡 𝑑𝑖𝑠𝑡, 𝑚𝑎𝑥 𝑙𝑖𝑛𝑒 𝑔𝑎𝑝 and

28 4. Experiments

𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑑𝑖𝑠𝑡 were also changed. The final default values became parameter set 0. The variations of
the line algorithm parameter values are shown in table 4.1.

Parameter name Default value Value (parameter set)
Line algorithm
bearing std dev 0,001
range std dev 1 0.02 (10)
least sq angle thresh 0,1 0.0001 (10,11)
least sq radius thresh 0,1 0.0001 (10,11)
max line gap 1 0.4 (10)
min line length 0,5
min range 0,1 0.4 (10)
max range 6,4
min split dist 0,5 0.05 (10), 0.3, (11)
outlier dist 0,6 0.05 (10)
min line points 6 9 (10)

Table 4.1: Line algorithm parameter values with experiments. See appendix B for an overview of the parameters.

4.2.2. Line-wall comparison
As discussed in Section 3.2, the line-wall comparison algorithm is self-written with the necessary pa-
rameters. The localization error is calculated over an average of a number of lines including those in
the past. The number of lines included in the average depends on the 𝑤𝑎𝑙𝑙 𝑚𝑎𝑥 ℎ𝑖𝑠𝑡𝑜𝑟𝑦. The default
value chosen for this is 80 lines. This is based on the fact that there are about 2 to 4 line segments per
LiDAR scan and the algorithm can run at 10 fps while driving. Thus, about 2 to 4 seconds of past view
are taken. To check the influence of the magnitude of the past, 5, 10, 20, and 150 line segments in the
history are also evaluated during testing.

The values that the localization error must satisfy before adding additional particles are chosen at
0.1 meter position difference or/and a rotation of 10 degrees. When there is no pose error it is not
necessary to add extra particles every time because the position where the robot might be becomes
more uncertain due to the standard distribution (section 4.2.3). The end distance and angle are set
such that there must be at least a 60 degree rotation improvement when a wall is 4 meters away from
the current best wall when comparing the line with all walls. Likewise, there must be at least a 4 meter
improvement when the rotation of the wall is 60 degrees worse compared to the current best walls
during the comparison with all walls. The line-wall comparison default values can be seen in table 4.2.

Parameter name Default value Value (parameter set)
Line-wall compare
wall max history 80 20 (40), 10 (41), 150 (42), 5 (43)
max allowed angle difference 10
max allowed pose difference x 0,1
max allowed pose difference y 0,1
distance start 0
distance end 4
angle start 0
angle end 60

Table 4.2: Line-wall compare algorithm parameter values experiments. See appendix B for an overview of the parameters.

4.2.3. Localization modification
The localization modification indicates how to respond if there is a localization error according to the
comparison of the line segments with the walls. This error is measured at 10 fps, however, it is not nec-
essary to modify the particles at every measured error. Therefore, there is the𝑚𝑖𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑎𝑚𝑐𝑙
𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠 that indicates how much time should pass before it resamples again based on the line-wall
localization error. This is set to 2 seconds by default. This gives the algorithm time to include the newly

4.3. Recovery ability 29

placed particles in a number of cycles to calculate the possibility of the robot pose. The localization
error is an average calculated over the past period depending on the 𝑤𝑎𝑙𝑙 𝑚𝑎𝑥 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 as discussed
in the previous section. A longer period is not desirable considering there are all localization errors of
around 0m in the history in the beginning. So it takes a while for an error of, let’s say, 0.6m to bring the
average up to 0.6m. However, an error localization is already issued at 0.1m which means that when a
longer 𝑚𝑖𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑎𝑚𝑐𝑙 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠 it will first issue a localization error of 0.1m and only much
later issue the correct one of 0.6m. As a result, the algorithm will not function optimally.

The default deviation of the added particles is by default set to 0.08. This means that there is a
<2% probability that particles will be placed with a Gaussian distribution with a radius >0.16m around
the corrected error location according to the line algorithm. This is based on the default distribution
used when the robot is at the charger and repositioning itself there. In addition, this also helps with the
uncertainty there is in the detected line segments given the variation in the measurement points.

When there is a localization error following the line algorithm, particles are placed at that location.
This still means that the same number of particles remain. A fraction of the number of particles in
the particle cloud is placed at the error location during resampling. This percentage is defined by
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝑙𝑖𝑛𝑒 𝑒𝑟𝑟𝑜𝑟 which defaults to 0.1. This means that 10% of the total particle
cloud during resampling does not come from the resample but is pre-filled by the error location from
the line algorithm if there is an error. The default 0.1 was chosen because the adjusted particles are an
addition and basic AMCL should be able to localize the pose properly. With a larger value, the influence
of the localization correction according to the line algorithm increases. To test this, different values are
being used in the experiments to evaluate the influence.

The detected line segments are seen as lines that represent walls in the measurement points.
However, this could also be a cow. In that case, LAMCL will give a localization error, even though the
localization of the robot could be good because a cow cannot be in the same position as a wall. This
means that there will be particles at the location where the robot is not. To minimize the consequences
of this error, the weights of the particles are divided by a default value of 8. This value is chosen
based on a qualitative analysis. The effect is evaluated by also taking a value of 1, 4, and 16 in the
experiments. An overview of the localization modification default parameters can be seen in table 4.3.
The overview of all the parameters can be seen in appendix B.

Parameter name Default value Value (parameter set)
Place particles on error pose
min time between lamcl resamples 2
std dev pose x 0,08 0.006 (50), 0.0006 (51), 0.2 (52)
std dev pose y 0,08 0.006 (50), 0.0006 (51), 0.2 (52)
std dev orientation 0,03 0.002 (50), 0.0002 (51), 0.2 (52)
fraction resample from line error 0,1 0.98 (20), 0.5 (21), 0.75 (22), 0.25 (23)
division weight added particles 8 1 (30), 4 (31), 16 (32)

Table 4.3: Localization modification parameter values experiments. See appendix B for an overview of the parameters.

4.3. Recovery ability
The research question includes the improvement of the robustness of the self-localization. Robustness
is defined according to the Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-
1990, as ”The degree to which a system or component can function correctly in the presence of invalid
inputs or stressful environmental conditions”. So, this section examines if and how quickly the self-
localization can perform a recovery when the robot is in the wrong position as in [2]. In this experiment
only driving to a wall is used. AMCL already has the ability to recover when the robot gets stuck or
collides with a wall by expanding its particle cloud to regain the correct position. However, in this
experiment, the focus is on whether the robot can perform the recovery before colliding with the wall
and how quickly the recovery takes place once the robot starts moving.

4.3.1. Experiment setup
The robot was placed 6.2 meters in front of the wall after which its location was adjusted in the software
so that the measurements of the farthest wall matched the map. See figure 4.3. Then the current pose

30 4. Experiments

according to the software was saved for start reference. This reference was used to have a GT of
the distance from the wall drove forwards with a constant speed of 0.2 m/s. This is the black line in
the figure 4.5 and 4.6. The position according to self-localization is stored 10 times per second. Each
experiment was done 3 times to eliminate accidental anomalous one-time behavior, with all parameters
and all distances with the line algorithm. This change of distances is 0, 0.25, 0.5, 1.0, -0.5, and -1.0
meters. The experiments without the line algorithm are done only 3 times with all distances and without
the change of parameters since the parameters only influence the line algorithm.

Figure 4.3: Top-view of the start situation of recovery experiment. The green box on the right is the robot. The green dots
represent the measurements. The red lines are the found line segments in the measurements with their compared walls in
green.

4.3.2. Measurement bias error compensation

Chapter 2.2.2 described how the different errors affect the reliability of the measurements. To see how
this relates to the pseudo-LiDAR scans of the stereo camera an extra experiment was done. The robot
was placed at 1, 2, 3, 4, and 5 meters from the wall after which the distance to the wall according to the
LiDAR scan was measured. This trend is shown in Figure 4.4 with the true distance on the x-axis and
the difference from the measurement on the y-axis. The blue points are the measured distances and
the green points are the averages per distance. The red line is the second-degree polynomial of the
averages. When this polynomial is extrapolated to 5.6 meters, the distance at which the robot starts
the robustness test, it can be seen that there is a bias error of -0.37m in the measurement.

4.3. Recovery ability 31

Figure 4.4: GT test of the pseudo-LiDAR measurements. In blue are the pseudo-LiDAR measurements, in green are the aver-
ages, and in red are the polynomial of the averages.

(a) Distance to the wall without compensation (b) Distance to the wall with compensation

Figure 4.5: Difference when compensated for bias error. In black the true ’trajectory’ of the robot

Figure 4.5 shows the difference between distances from the wall. In 4.5a, AMCL has set the robot
at the correct distance in front of the wall. However because the LiDAR scan was set parallel to the
wall at the start and the measurements, at that distance, 5.6 meters, it has a bias of -0.37m which can
be seen at the end. At the end of the test, 1 meter before the wall, there is no bias according to the GT
LiDAR measurements test in figure 4.4. Therefore, a difference in position can be seen at the end of
driving of 0.38m in figure 4.5a. When the distance is compensated with the polynomial of the GT LiDAR
measurements test, the distance of the robot goes identical to the real distance to the wall, shown in
figure 4.5b. This compensation was used for the rest of the recovery test in all experiments.

4.3.3. Results
Figure 4.6 shows the difference between with or without the addition of extra particles from the line
algorithm. If the error is small enough, 0.25 or 0.5 meters, AMCL can solve the localization error itself
in some cases (see Table C.1). The particles that are closest to the correct position get the highest
weights in AMCL. When resampling, more particles are placed around this position so that the particles
slowly converge to the correct position. When the distance becomes larger, this is no longer corrected
and the robot remains at the wrong location. The line algorithm shows that during testing with the

32 4. Experiments

default parameter set 0, the robot always converged to the correct position. Even with an error of 1.5
and -1.5 meters, LAMCL managed to perform a recovery.

(a) 0 meter difference (b) 0.25 meter difference

(c) 0.5 meter difference (d) 1.0 meter difference

(e) -0.5 meter difference (f) -1.0 meter difference

Figure 4.6: Difference between with and without line algorithm of one test

Figure 4.6 illustrates a distinction between positive and negative errors in the localization, which
can be attributed to the layout of the test environment shown in figure 4.7. In the scenario of positive
error (figure 4.7a), three lines are utilized to assess the localization error. However, due to two of
these lines being projected within the corresponding wall, the localization error in that direction remains
undetectable. Consequently, only one line contributes to recording the history of negative errors per
LiDAR scan, in contrast to the three lines in the positive situation. This discrepancy leads to a faster

4.3. Recovery ability 33

rate of change in the mean of the positive error compared to the negative localization error.

(a) 1.0 meter difference (b) -1.0 meter difference

Figure 4.7: Difference in negative and positive localization error. The green box is the robot, and the red line segments are
the detected lines in the measurements, which are the green dots. The green lines are the wall to which the line segments are
compared to. In figure A all three line segments are taken into account by calculating the pose error. In figure B only 1 line
segment is taken into account since the others are in the wall

The different parameter sets are divided into 5 changes compared to the default values of parameter
set 0: change in line detection, change in part of particles from line detection error, change in weight of
added particles, change in line error history, and change in the standard deviation of added particles.
The next sub-sections will discuss the influence of the different changes on the recovery ability.

Change in line detection

To test the effect of the line segments on the performance of the recovery ability, four different situations
were considered. The first situation is the baseline where the line algorithm is turned off. The second
situation called ’original’ in figure 4.8 (parameter set 10), is with the original parameters of the line
algorithm as used online by other researchers with a LiDAR scan [22]. The situation ’some’ (parameter
set 11) has to do with the increase in the default maximum allowed deviation of the measurement points
in the line segments. The name ’some’ is a reference to the amount of line segments detected by the
line algorithm. The ’default’ (parameter set 0) setting is the starting point to experiment with the other
parameter sets. The difference from the ’original’ set is that here the parameters have been changed
to filter out fewer outliers and given a wider area to merge lines back together.

The ’original’ settings are the parameters used with a real LiDAR. The robot in the barn uses pseudo-
LiDAR which has more noise in the measurement points so almost no line segments can be found with
the original parameters. This is also reflected in the results which on average are almost the same as
the test without the line algorithm. When the default deviation is changed to the ’some’ setting it can be
seen that indeed some line segments are detected and the recovery ability also improves. With further
adjustment of the parameters in the line algorithm, the recovery ability improves even more with for all
tests a lower driven distance before the recovery took place.

34 4. Experiments

Figure 4.8: The number of meters the robot drove before the error is <0.1m. The dots are the measurement points. Each test
is performed three times, and the data points represent the average distance from the tests that were passed. The green, blue,
magenta and red dots indicate respectively 3, 2, 1, or 0 successful recoveries. For these tests, the distance the robot drove
before recovery is set to 5 meters when no recovery succeeded.

Change in part of particles from line detection error

Parameter sets 20, 21, 22, and 23 deal with the difference in what percentage of the line detection
error should come during resampling. This is shown in figure 4.9. The plot shows that the higher the
percentage of resample coming from the line algorithm is, the more frequently the self-localization failed
to perform a recovery. It can also be seen that with the default setting of 10%, the success rate is the
highest.

4.3. Recovery ability 35

Figure 4.9: The number of meters the robot drove before the error is <0.1m. The dots are the measurement points. Each test
is performed three times, and the data points represent the average distance from the tests that were passed. The green, blue,
magenta and red dots indicate respectively 3, 2, 1, or 0 successful recoveries. For these tests, the distance the robot drove
before recovery is set to 5 meters when no recovery succeeded.

Figure 4.10a indicates that the recovery succeeded according to the GT plot. However, the 2D plot,
figure 4.10b shows that this is not the case. The robot should drive straight ahead in one straight line
and end at y position 3.7m. This behavior is visible at a particle percentage of 98% and 75% which
means that this range of values is not suitable for reliable localization. Only at max 25% particles from
the line algorithm, LAMCL can recover the location almost all the time. Contrary to all recovery at
the default setting with a rate of 10%. So, this shows that not all particles can be used from the line
algorithm during resampling.

(a) GT plot (b) 2D plot position

Figure 4.10: In the GT plot the robot looks like it is recovered, but the 2D plot shows differently. The colors of the routes are for
indication in order to better follow the trajectory when the localization pose is staggered.

Change of weights of added particles
Parameter sets 30, 31, and 32 are about the difference in weight that the added particles from the line
error have compared to the other resampled particles during resampling. It can be seen in figure 4.11
that with a larger weight division, the time to recover increases. This is due to the fact that the particles

36 4. Experiments

that first have a lower weight take longer to become the particles with the highest weight before LAMCL
assigns it as the correct pose. This suggests that a lower division in the weight of the added particles
is better.

Figure 4.11: The number of meters the robot drove before the error is <0.1m. The dots are the measurement points. Each test
is performed three times, and the data points represent the average distance from the tests that were passed. The green, blue,
magenta and red dots indicate respectively 3, 2, 1, or 0 successful recoveries. For these tests, the distance the robot drove
before recovery is set to 5 meters when no recovery succeeded.

Change of history queue size

Parameter sets 40, 41, 42, and 43 involve the size of the history with line segments that are included
in calculating the average of the localization error. It can be seen in figure 4.12 that the change in the
queue has an impact on how fast the robot does a recovery. The difference with the smaller history
queue is not large and somewhat random. With a larger history size, it does show quite an increase
in distance before a recovery takes place. In addition, it is expected that with a smaller queue, the
extra particles will be put in the right location faster. However, AMCL also needs time to assess these
new poses and change the weights. This probably takes more time than the time gained with a shorter
queue. So, increasing the history queue size causes a longer time before recovery.

4.3. Recovery ability 37

Figure 4.12: The number of meters the robot drove before the error is <0.1m. The dots are the measurement points. Each test
is performed three times, and the data points represent the average distance from the tests that were passed. The green, blue,
magenta and red dots indicate respectively 3, 2, 1, or 0 successful recoveries. For these tests, the distance the robot drove
before recovery is set to 5 meters when no recovery succeeded.

Change of standard deviation of added particles

Parameter sets 50, 51, and 52 pertain to the standard deviation of particles when placed from a line
error. Figure 4.13 shows that at the end when the standard deviation is higher, the recovery takes place
less quickly. The reason for this is that the additional particles in a larger cloud around the error position
reduce the likelihood of a particle in the correct position. This is because the same number of particles
are distributed over a larger area. There is no indication in the graph that the distance before recovery
of the 0.25 meter difference is not in line with the rest with a low standard deviation. During these two
tests, it was not the line algorithm that caused the recovery to take place, but AMCL itself. The small
error caused the current particles to have a high enough weight to remain active. Eventually, the extra
uncertainty added during the update step with moving the particles by odometry caused the particles
to move to the right place. To conclude, when the standard deviation of the placed particles according
to the line error is higher, the recovery time will also be higher.

38 4. Experiments

Figure 4.13: The number of meters the robot drove before the error is <0.1m. The dots are the measurement points. Each test
is performed three times, and the data points represent the average distance from the tests that were passed. The green, blue,
magenta and red dots indicate respectively 3, 2, 1, or 0 successful recoveries. For these tests, the distance the robot drove
before recovery is set to 5 meters when no recovery succeeded.

The full list of all the exact distances driven until a recovery was performed at the various tests can
be seen in appendix C.

4.4. Accuracy
The accuracy is about what the offset of the calculated robot pose is from the real robot pose. Testing
the accuracy is done with two different types of tests. The second test is described in chapter 4.6 where
only the pose is computed which tests the algorithm with an open loop. In this section, the closed-loop
accuracy is tested. Here, each time the current pose is used to let the robot drive its route. The robot
starts at a known location A and must drive to location B. On position B is measured how much the
robot differs from that location in real life.

4.4.1. Experiment setup
In this experiment, the robot drives a pre-programmed route from location A to B. These locations
are marked on the ground in the test area. The robot was placed at location A for each individual
test in this experiment and automatically driven to location B. At location B, the x and y positions [m]
were measured with an accuracy of 0.005m. By measuring the displacements between the robot’s
corners, the orientation [rad] of the robot was also determined. The experiment was conducted in a
static environment and aimed to test whether the addition of the line algorithm did not significantly
decrease accuracy, as additional particles are introduced in case of localization errors, which could
potentially degrade accuracy. Only the default parameters were used in this experiment due to the
time-consuming process of setting up the robot at location A, driving it, and accurately measuring the
pose at location B. The route of this experiment is shown in figure 4.14. The route was driven 3 times
with and without the addition of the line algorithm.

4.4. Accuracy 39

Figure 4.14: The route of the accuracy test with start point A and endpoint B. The colors of the route are for indication in order
to better follow the trajectory when the localization pose is staggered.

4.4.2. Results
Figure 4.15 shows the result of the accuracy experiment. As can be seen, the self-localization accuracy
is higher when no additional particles are sampled based on the detected line errors. The figure also
reveals that adding particles with a standard deviation reduces the average accuracy by approximately
0.015m compared to when no line algorithm is used. Considering that the deviation can already be
0.11m, this is not a significant deterioration (see appendix D). In the appendix can also be seen that the
measured Δtheta increases. This is due to the fact that the robot was not fully aligned after maneuvering
through the corner and had not traveled straight for a sufficient distance yet. A detailed overview of the
accuracy test can be found in appendix D. The large difference in localization error in the x- and y-axis
is because there is a difference between the real test environment and the map that the localization
uses. The leftmost wall in figure 4.14 is 0.08m more to the left in the real world.

Figure 4.15: Accuracy difference between with and without line algorithm. The Euclidean distance between the Δx and Δy of the
tests in table 4.4.

40 4. Experiments

Without line algorithm
Measured difference
Δx [m] Δy [m] Δtheta [rad]

Test 1 0.115 0.045 0.044
Test 2 0.125 0.030 0.042
Test 3 0.110 0.045 0.053
Average 0.117 0.041 0.047

With line algorithm
Measured difference
Δx [m] Δy [m] Δtheta [rad]

Test 1 0.130 0.053 0.041
Test 2 0.140 0.035 0.033
Test 3 0.120 0.060 0.047
Average 0.130 0.050 0.041

Table 4.4: The pose difference of the 3 different accuracy tests with and without line algorithm. The average is the average of
the three numbers in the column above. According to the coordinate system of figure 4.14.

4.5. Precision
This experiment looks at the precision of the robot. This is done by driving the same route several
times and overlaying the trajectories of the routes. Because of the large amount of time it takes to drive
the route a number of times with all the different parameter sets, it was chosen to do this only with the
default setting of the line algorithm and without the line algorithm. For all other parameter sets, the
robot drove the same route 5 times where the input from AMCL was a recorded rosbag. These were
replayed with all different parameter sets later in the simulation to simulate the localization of the route.
An important fact is that for this experiment, the base_link of the robot was used as the robot’s position.
This is different from the given route in figure 4.16 where the front of the robot is used for the waypoints.

4.5.1. Experiment setup
The robot starts its route each time from the charger and drives counterclockwise, shown in figure 4.16.
The pose of the robot is saved at 10Hz during the tests. When the robot is in the charger, the pose is
automatically reset to the location of the charger. When recording the rosbags, the route is recorded 2
times. One in a static environment and one with a person walking through to see how the line algorithm
handles this and what the effect is on the robot’s pose. A cow in the test environment was unfortunately
not possible, for this, the experiment in chapter 4.6 was performed in the barn.

Figure 4.16: Route and environment of precision experiment. The route with the waypoints for the front of the robot is represented
in green. The red lines are the outline of the robot in its charging pose. The size of the grid is 1x1m.

4.5.2. Results
Figure 4.18 shows the comparison of the precision with and without the line algorithm. Note that this is
in the closed loop. So, in these two tests, the robot drives around 5 times in real life. It can be seen that
the localization is more precise when the correction of the localization with the line algorithm is not used.

4.5. Precision 41

This is because particles are added with a standard deviation of 0.08 when there is a line localization
error. This is a distribution of up to 0.16m around the error position. A consequence of this is that the
robot’s pose may also deviate more than when no extra particles are added. When the dispersion of
route lines is measured at location (4,4) it can be seen that without the line algorithm, it is 0.1m and with
the line algorithm it is 0.15m. Thus, adding additional particles based on the line algorithm lowers the
precision of the closed-loop system. For the parameter comparison of the system is tested in an open
loop. This means that there is no correction when the robot’s location is not according to the route. The
input is the same for both tests with and without the line algorithm. In figure 4.17 (crop at location (3,5)
of whole test hall) can be seen that there is a much lower variation in the different routes for both the
tests. The difference without is 0.02m and 0.045m with the line algorithm. This could be due to that
these tests have the same input compared to the closed-loop tests.

(a) Multiple routes without line algorithm (b) Multiple routes with line algorithm

Figure 4.17: Precision experiment with and without line algorithm in open-loop. Cropped figures of the corner at the top of the
route. In black is the corner of the environment.

42 4. Experiments

(a) Multiple routes without line algorithm

(b) Multiple routes with line algorithm

Figure 4.18: Precision experiment with vs without line algorithm in closed-loop

The different routes for each parameter set can be found in Appendix E. For almost all parameters,

4.6. Real world setting 43

it is not noticeable that the different routes per set differ from each other compared to the other sets.
However, this is visible when the percentage of particles from the line algorithm is changed. In param-
eter set 20, where the part from the line algorithm is 98%, it can be seen that the different routes are
significantly different from each other (figure 4.19). For the route in the dynamic environment, it is even
more clear that the error of the lines does change the software position of the robot. Also, in parameter
set 22, with a part from the lines at 75%, a variance like this can be seen in the routes.

(a) Multiple routes with parameter set 20, static environment (b) Multiple routes with parameter set 20, dynamic environment

Figure 4.19: Precision experiment parameter set 20

4.6. Real world setting
This experiment focuses on how the algorithm performs in the environment of a barn with cows. The
accuracy is taken as a method to calculate the performance of the system. Using the DataCow dataset,
all different parameter sets are compared with each other. Thus, this experiment also tests how the
algorithm deals with a dynamic environment. A total of 4 different routes are recorded in the barn, see
figure 4.2.

4.6.1. Experiment setup
In this experiment, the DataCow dataset was used to analyze the performance of the system. The
process of recording the data is described in section 4.1.1. The dataset is the input to the simulation
that is replayed with each parameter set. This makes it look like the robot drives all 4 routes with a
different parameter set each time. The robot only stops at each measurement point, this allows the
measured positions in the barn to be automatically linked to the localization positions.

4.6.2. Results
The metric used in the barn experiment is the mean absolute error (MAE, formula (4.1)) for the x, y, and
orientation of the robot. Not all routes were driven correctly. For example, figure 4.20 shows that when
all particles are resampled based on the localization error from the line algorithm, the routes are not
complete. This was also the case for 0.75% and 0.5%where 2 out of the 4 routes are not complete. This
can be seen in the error of the routes which is higher than the others. Appendix F shows an overview of
the average errors of the routes per parameter set. Figure 4.21 shows a cut-out of the upper right half
of route 4 in the barn. The localization in this turn gives variation between the different parameter sets
because there was a cow in front of the robot before this turn was made. Besides the different error
values in the localization, it can also be seen here that there is a variation between all parameter sets
which might not be visible from the mean absolute error. The recap of the corresponding parameters
can be found in an overview in appendix B.

MAE(𝑦, 𝑦̂) =
∑𝑁𝑖=1 |𝑦𝑖 − 𝑦̂𝑖|

𝑁 (4.1)

44 4. Experiments

𝑦(𝑖) : Ground truth (GT) position of the robot
𝑦(𝑖) : Calculated position of the robot
𝑁 : Number of positions

(a) Barn route 1 with all particle resamples from line algorithm (b) Barn route 2 with all particle resamples from line algorithm

(c) Barn route 3 with all particle resamples from line algorithm (d) Barn route 4 with all particle resamples from line algorithm

Figure 4.20: Routes in the barn with all particle resamples from line algorithm. The dots represent the position where the robot
stood still. The colors of the routes are for indication in order to better follow the trajectory when the localization pose is staggered.

4.6. Real world setting 45

Figure 4.21: Cutout top right corner of route 4 in the barn with different parameter sets/index. The colors of the routes are for
indication in order to better follow the trajectory when the localization pose is staggered. The red dots is where the robot stood
still in real life. The blue dots are where the self-localization thinks the robot stood still.

In order to examine the effect of the line algorithm and the different parameters on the accuracy,
the Euclidean distance of the mean absolute error was measured for each change in parameter when
using the Datacow dataset to evaluate the different configurations.

Change in line detection

To test the effect of the lines in the performance in a real-world situation, four different parameter sets
were considered. These are the same four parameter sets as in the recovery ability experiment in
chapter 4.3.3. In general, there is no major variation in the different situations. However, it can be seen
that the errors of routes 2 and 4 are higher than routes 1 and 3. Both routes 2 and 4 were made in
the same area of the barn. This shows that one side of the barn is more difficult than the other. It also
shows that the routes with more dynamics (routes 3 and 4) have a higher error than those with less
dynamic obstacles (routes 1 and 2). As explained in chapter 1.2, if cows block the camera’s view, they
cause an increase in localization uncertainty at those moments. This is probably also the reason that
for routes with more cows, the error is much higher.

46 4. Experiments

Figure 4.22: Real-world experiments in which 4 different routes were driven in the barn. The routes are shown in figure 4.2

Change in part of particles from line detection error
Parameter sets 20, 21, 22, and 23 deal with the difference in what percentage of the line detection
error should come during resampling. This is shown in figure 4.23. The plot shows that the greater
the percentage of resample coming from the line algorithm, the higher the localization error is. The
significantly larger error at a resampling factor of 0.98 is caused by the route not being completed as
shown in figure 4.20.

Figure 4.23: Real-world experiments in which 4 different routes were driven in the barn. The routes are shown in figure 4.2

4.6. Real world setting 47

Change in weights of added particles

Parameter sets 30, 31, and 32 are about the difference in weight that the added particles from the
line error have, compared to the other resampled particles during resampling. Figure 4.24 shows the
localization error relative to the weight of the particles. There is no clear correlation. However, the
order of the different routes is the same as the order of the comparison with the different line detection
situations. This suggests that there could be indeed a difference in difficulty in the different barn routes.

Figure 4.24: Real-world experiments in which 4 different routes were driven in the barn. The routes are shown in figure 4.2.

Change in history queue size

Parameter sets 40, 41, 42, and 43 involve the size of the history with line segments that are included
in calculating the average of the localization error. It can be seen in figure 4.25 that the change in the
queue has a minor impact on the localization error. Only in route 4, there is a positive relation between
the history queue size and the error. This could mean that the history queue has more effect when
there are more dynamic obstacles since route 4 has the most dynamism of the four routes.

48 4. Experiments

Figure 4.25: Real-world experiments in which 4 different routes were driven in the barn. The routes are shown in figure 4.2

Change in standard deviation of added particles

Parameter sets 50, 51, and 52 pertain to the standard deviation of particles when they are placed
based on a line error. The relation between the standard deviation and the average localization error
can be seen in figure 4.26. Between the different routes, the same ranking is visible as for the other
parameter sets with a higher error to due a more dynamic route. The effect of changing the standard
deviation is not affecting the result that much. It could be seen that with more dynamic obstacles in
the route, a higher standard deviation has a positive influence on the localization error. This could be
because with a more dynamic environment, more (false) errors are detected (line segments), but with
a higher standard deviation there are enough checks in the environment of the error, and therefore a
better position is found.

4.6. Real world setting 49

Figure 4.26: Real-world experiments in which 4 different routes were driven in the barn. The routes are shown in figure 4.2

4.6.3. Real world recovery example
Figure 4.27 shows an example of a recovery during a route in the barn. The localization error of 1.2
meters had occurred because cows blocked the robot’s view and AMCL chose the wrong part of the
particle cloud when a part of the view was clear again. With this example, the steps of the algorithm
can also be followed: using line detection and comparison with the walls to find a localization error, and
place particles at the location of the error, after which AMCL itself decides that this location better suits
the LiDAR scan and choose the right pose.

(a) Robot drive 1.2 meters behind
in real situation (b) Line localization error detected

(c) Particles are with pose differ-
ence of error (d) Robot recovers to right pose

Figure 4.27: Process of recovery in the barn during route

5
Conclusion

The main research question of this master thesis is:

Does using extracted lines from a planar LiDAR improve the accuracy, precision, and
robustness of self-localization with AMCL for a mobile robot in a barn?

This research question is separated into multiple sub-questions to answer the main research ques-
tion.

1. Can the localization with AMCL be improved by correcting for offsets by resampling particles
through additional line extraction and matching between those line segments and map?

2. How can the accuracy, precision, and robustness of self-localization be tested and evaluated in
a real-world barn environment?

3. How sensitive is the new self-localization to hyperparameter choices?

Different experiments examined the impact of using a line algorithm along with AMCL. The experi-
ments say something about the precision, accuracy, and recovery ability of the robot’s self-localization.
This gives more insight into the answer to sub-question 1 which will be answered in the next section.

5.1. Quality of robot self-localization
To evaluate the self-localization, three different methods were used: the precision, accuracy and the
recovery ability of the robot.

5.1.1. Precision
To evaluate the precision an experiment was done in which the robot drove the same route several
times in section 4.5. When AMCL is compared to LAMCL, the precision decreases, as shown in figure
4.17, from 0.1m to 0.15m in the closed loop and from 0.02m to 0.045m in the open loop. An explanation
for this could be that adding extra particles with a Gaussian distribution gives an extra deviation around
the position of the robot. As a result, there is a larger spreading where the robot might be, which lowers
the precision.

5.1.2. Accuracy
For evaluating the accuracy, the first thing considered was how LAMCL performed compared to AMCL.
It was shown in table 4.4 that the accuracy deteriorates from 0.117m to 0.130m in the x direction and
from 0.041m to 0.050m difference in the y direction. This, like the deterioration in precision, may be
due to the fact that extra particles are added with a standard distribution. The rotation did improve in
LAMCL compared to AMCL from 0.047 to 0.041 rad. However, this average improvement is negligible
given the variation in the Δtheta of the experiment.

In Kang’s paper [28] in which they also used a line algorithm to improve the localization, they did
have improved the accuracy in position from (0.880, 0.421) in (x[m], y[m]) to (0.273, 0.329) error. Note

51

52 5. Conclusion

that there was already a larger improvement to be made here at the beginning, as this error was much
larger without a line algorithm than the robots’ in the barn. In addition, in Kangs’ paper, they adjust the
location instead of adding additional particles.

In chapter 4.6 the accuracy was also measured at different locations in the barn. On average, the
accuracy is better without the line algorithm. The minimal difference is probably because AMCL can
already handle the majority of the difficult situations that occurred in the barn experiment.

5.1.3. Recovery ability
LAMCL has a slightly worse result than AMCL considering the precision and accuracy. This is due to the
addition of extra particles in a distribution. However, this addition greatly improves the recovery ability
of the system. The experiment in chapter 4.3 shows that LAMCL is faster and performsmore recoveries
when there is a localization error. Especially when the error is ≥0.5 meters. This is where LAMCL has
the biggest advantage over AMCL. Even with a localization error of 1.5 meters, LAMCL manages to
recover the location, which AMCL fails to do. However, the speed of recovery does correlate with the
layout of the environment at how many lines from the line algorithm an error is measured.

5.2. Effect of parameters
Sub-question 3 is about the influence of the parameters on the system. Therefore, the influence of
certain parameters in the localization was examined in 3 different experiments. For a number of pa-
rameter changes, no significant variation can be seen in the results. This is related to the observation
that most of them do not have a significant influence on the overall system when they change within
the range in which they were tested.

5.2.1. Change in line detection
The parameter sets with decade 1 looked at the effect of changing the line algorithm. When the original
parameters of the algorithm [22] are used there are no lines detected. This is not easily seen in the
barn test. For example, where the errors can still be caught by AMCL itself. In the recovery test, it is
only seen that no recoveries are performed, because no lines are detected. So the maximum standard
deviation in the measurement points of the pseudo LiDAR scan is certainly an important parameter and
it is crucial that it is set well enough so that the lines are detected.

5.2.2. Change in part of particles from line detection error
The original paper by Kang [28] moves the location of the robot when a localization occurs. By adjusting
the percentage of particles from the localization error the effect on the localization of the robot in the
barn is examined. By moving almost all particles based on the localization error it can be seen in the
barn test, in figure 4.20, that the localization does not function properly. This is probably due to the fact
that there are also line segments of dynamic obstacles among them that have a large localization error.
With 75%, the accuracy and recovery rate were still lower than average relative to a low percentage
of particles from the line algorithm. However, when recovery is done with 50% it does go a bit faster
than with a lower percentage, as seen in figure 4.9. This is due to more particles being in the right
location. So, it is important that not all particles are adjusted according to the line error. Only when the
percentage is ≤25% the algorithm can work properly to perform recoveries.

5.2.3. Change of weights of added particles
The new particles that are placed based on the line algorithm do not have the same weight as the
particles from resampling. In the recovery experiment, in figure 4.11, it can be seen that when the
weight is higher (division is smaller) the algorithm recovers faster. This is logical since less time is
needed for the newly placed particles to reach the highest weight. In the barn test, it varies between
the different parameters, so there is no optimum in terms of accuracy. The weight of the added particles
has the most influence on the speed of recovery of the algorithm.

5.2.4. Change of history queue size
The change in queue size does show a less obvious linear relationship between the speed of recovery
and the size of the history queue. The relation is expected because, with a shorter queue size, the
average of the queue is more likely to be the line error. This limited relation between the history queue

5.3. To conclude 53

and distance before recovery is due to that during the experiment, the robot first stood still in front of the
wall before driving towards it. During the standstill, the wall and thus the localization error was already
visible so the queue was already partly filled before the robot started driving. So it is uncertain what
effect adjusting the history queue size has in real-world operations.

5.2.5. Change of standard deviation of added particles
The recovery experiment shows in figure 4.13 that the larger the standard deviation is, the longer it
takes for the recovery to take place. This has to do with the fact that with a smaller standard deviation,
there is a bigger chance that a particle is located at exactly the right pose and matches the LiDAR scan
extremely well. The barn test shows that a higher standard deviation gives a slightly higher localization
error. This would be in the trend that the standard deviation brings additional inaccuracy to the system.

It was mentioned in chapter 3 that it is also possible to add random particles around the robot’s
pose with a normal distribution during resampling, instead of based on the line errors. This would be
equivalent to making the standard deviation very large. When the trend of the distance before recovery
is extended from figure 4.13, it can be seen that with the addition of random resamples, the distance
before recovery becomes even larger than resampling based on the line detection error. In the real-
world experiment, there is no clear trend in the tests to say anything about accuracy. So, adding random
particles in a standard distribution about the robot would result in a slower recovery time.

5.3. To conclude
It can be concluded from the experiments that adding extra particles to the resample state of AMCL
improves the recovery ability and thus the robustness of the self-localization. The disadvantage is that
this comes at a small cost in terms of precision and accuracy performance. This is because the new line
error particles are placed with a Gaussian distribution around the error location. From the parameters,
the percentage of particles resampled based on line error has the most influence. If all the particles are
resampled from the line error, the self-localization will not work. Regarding the impact of the parameters,
reducing the weights or increasing the history queue size or standard deviation will result in a decrease
in the performance of the new localization method LAMCL. It is shown that precision, accuracy, and
robustness can be tested and evaluated by experiments in chapter 4. Chapter 4.1 has shown that a
dataset can be used for evaluation in a real-world barn environment if a ground truth is granted.

5.4. Future work
There are still several areas that can be improved in LAMCL. For example, the effect of another line
algorithm could still be looked into. As an example, in the related work section Over-segmentation,
undirected graph, and line extraction method [31] has been mentioned. This line algorithm shows an
improvement in performance over the currently used Split and Merge. Another method to check out
would be Evolving Principal Component Clustering [11], where EPCC is used together with Split-and-
Merge for better results. However, it would be good to test the line algorithm in isolation instead of the
whole system as it is done now. This would require more time and a dataset with line segments and
their GT. This would also allow testing more different parameter sets of Split-and-Merge. In addition,
Split-and-Merge uses a threshold for the maximum deviation in the measurements. The pseudo LiDAR
has an increasing deviation in the measurements as the distance to the measurement points increases,
as seen in chapter 4.3.2. Therefore, it may be worth considering whether the range deviation in the
line algorithm can be varied with the distance at which the measurements are detected.

Another area to improve is when comparing line segments to walls. For example, a line segment is
now compared to each wall of the map to find the best matching wall. This could also be just the walls
in the direct surroundings to make the algorithm run faster. In addition, right now it does not take into
account when a wall is cut in two but continues. This sometimes causes line errors to be noticed even
though the line detected is also part of another wall that is an extension of the current compared wall.

Currently, the particles are added based on the line errors with a maximum frequency of 2 Hz. This
could also be made dependent on how much the robot has driven in the meantime.

The different parameter sets are limited by how much time there was to test. This could also be
investigated further to see how much influence they have and what their limits are. For example, in
figure 4.25 it can be seen that a lower history queue decreases the localization error. It could be
interesting to test a history queue of 1. In this way, particles will be placed based on every single line

54 5. Conclusion

error. Another example is the fraction of the particles from the estimated localization error based on
the line algorithm. There is no data between 75% and 98% to check where the fail threshold is.

As a final thought, the new algorithm is only tested with 4 routes in the barn. To test the full potential
of the new functionality, it is useful to run the LAMCL on the robot for several days in a barn. This will
allow us to see how the new algorithm handles situations that did not occur in the DataCow dataset.

A
Barn layout

Figure A.1: The layout of the barn. Route 1 and 3 were driven on the left wing and route 2 and 4 on the right hand-side. The
start pose of the robot in the routes is visible in green at the bottom.

55

B
Parameters

Line algorithm
Parameter Unit par0 par10 par11 par20 par21 par22 par23 par30 par31 par32 par40 par41 par42 par43 par50 par51 par52
bearing std dev rad 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001
range std dev m 1 0,02 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
least sq angle thresh rad 0,1 0,0001 0,0001 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
least sq radius thresh m 0,1 0,0001 0,0001 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
max line gap m 1 0,4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
min line length m 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
min range m 0,1 0,4 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
max range m 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4
min split dist m 0,5 0,05 0,3 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
outlier dist m 0,6 0,05 0,05 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6
min line points - 6 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Line-wall compare
wall max history - 80 80 80 80 80 80 80 80 80 80 20 10 150 5 80 80 80
max allowed angle difference degrees 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
max allowed pose difference x m 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
max allowed pose difference y m 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
distance start m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
distance end m 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
angle start degrees 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
angle end degrees 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

Place particles on error pose
min time between lamcl resamples sec 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
std dev pose x - 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,006 0,0006 0,2
std dev pose y - 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,006 0,0006 0,2
std dev orientation - 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,002 0,0002 0,2
fraction resample from line error - 0,1 0,1 0,1 0,98 0,5 0,75 0,25 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
division weight added particles - 8 8 8 8 8 8 8 1 4 16 8 8 8 8 8 8 8

Table B.1: All the parameter sets and their changes relative to the default parameter set 0 in bold.

57

C
Recovery experiment result overview

Distances 0 0.25 0.5 1.0 -0.5 -1.0
Parameter sets success distance success distance success distance success distance success distance success distance
No line algorithm 3 0 2* 1.7 1* 1.9 0 - 1* 3.0 0 -

0 3 0 3* 0.7 3 1.2 3 1.0 3 1.5 3 0.7
10 3 0 3* 1.0 2* 2.2 0 - 0 - 0 -
11 3 0 3* 1.0 3 1.3 3 1.1 3 1.8 3 3.0
20 1 0 1 4.0 0 - 0 - 3 2.8 2 2.5
21 0 - 1* 1.0 1 1.1 2 0.8 3 0.9 3 0.5
22 3 0 1 0.7 0 - 0 - 3 0.7 3 1.7
23 3 0 3* 1.2 3 1.3 3 1.0 3 1.3 2 0.5
30 3 0 3* 0.5 3 1.2 3 0.8 3 1.5 3 1.8
31 3 0 3* 0.7 3 1.5 3 1.1 3 1.3 3 0.5
32 3 0 3* 1.5 3 2.1 3 1.2 3 1.6 3 2.5
40 3 0 3* 0.7 3 1.5 3 1.0 3 1.5 3 0.6
41 3 0 3* 1.0 3 1.5 3 1.2 3 1.5 3 0.5
42 3 0 3* 1.5 3 1.6 3 1.6 3 1.8 3 2.0
43 3 0 3* 1.5 3* 2.5 3 1.0 3 1.8 3 0.7
50 3 0 3* 1.4 3 1.4 2 1.0 3 1.5 3 0.6
51 3 0 3* 1.6 3 1.2 3 1.0 3 1.4 3 0.6
52 3 0 3* 1.0 3 2.2 2 1.5 3 2.2 3 0.7

Table C.1: Results recovery experiment. Recovery is when the robot location is within an error of 0.1m. Successes are the
number of times out of 3 tests. Distance is the distance [m] traveled before recovery. *(recovery by change of AMCL, not lines
algorithm). The tens in the numbers of the parameter sets are an indicator of what is being varied in those parameter sets by
that decimal.

59

D
Accuracy experiment result overview

pose B
x [m] 1.77
y [m] 7.47
theta [rad] 1.5708

Table D.1: Pose B of accuracy experiment with in bold the most important comparison of the accuracy experiment

Without line algorithm
Measured pose Measured difference Software pose Software pose real, difference software-measured difference
x [m] y [m] theta [rad] Δx [m] Δy [m] Δtheta [rad] x [m] y [m] theta [rad] x [m] y [m] theta [rad] x [m] y [m] theta [rad]

Test 1 1,885 7,515 1,615 0,115 0,045 0,044 1,771 7,522 1,573 0,001 0,052 0,003 0,114 -0,007 0,042
Test 2 1,895 7,500 1,612 0,125 0,030 0,042 1,772 7,508 1,574 0,002 0,038 0,003 0,123 -0,008 0,039
Test 3 1,880 7,515 1,624 0,110 0,045 0,053 1,767 7,508 1,583 -0,003 0,038 0,013 0,113 0,007 0,041
Average 1,887 7,510 1,617 0,117 0,041 0,047 1,770 7,513 1,577 0,002 0,043 0,008 0,116 0.007 0,040

With line algorithm
Measured pose Measured difference Software pose Software pose real, difference software-measured difference
x [m] y [m] theta [rad] Δx [m] Δy [m] Δtheta [rad] x [m] y [m] theta [rad] x [m] y [m] theta [rad] x [m] y [m] theta [rad]

Test 1 1,900 7,523 1,612 0,130 0,053 0,041 1,767 7,519 1,580 -0,003 0,049 0,010 0,133 0,003 0,031
Test 2 1,910 7,505 1,604 0,140 0,035 0,033 1,767 7,498 1,579 -0,003 0,028 0,008 0,143 0,007 0,025
Test 3 1,890 7,530 1,617 0,120 0,060 0,047 1,774 7,527 1,569 0,004 0,057 -0,002 0,116 0,003 0,048
Average 1,900 7,519 1,611 0,130 0,050 0,041 1,770 7,515 1,576 0,003 0,047 0,007 0,131 0,005 0,036

Table D.2: Accuracy experiment results. Six different tests including 3 with line algorithm and 3 without. The values in bold are
the most important values of the table to compare the accuracy between with and without the addition of adding particles based
on the detected line error.

Table D.2 shows the results of the accuracy test. Here the ’measured difference’ is the measured
difference of the robot with respect to the marked point B in the real world. Together with the values
of pose B, this calculates the ’measured pose’. The ’software pose’ is the pose the robot thought it
had. The ’software pose real, difference’ is the difference between pose B in the real world and the
’software pose’. The ’software-measured difference’ is the difference between the ’software pose’ and
the ’measured difference’. An additional note about the software ’pose real, difference’ is that the
difference between where it should be and where the robot thinks it is in the y-axis is more than 0.04m
on average, while the error in the x-axis is extremely small. This is due to the fact that in pose B the
robot drove in a positive y direction. The waypoints of the robot route are every 0.1m with interpolation
in between. The robot must first drive over the end waypoint before it gets the signal that it is in position.
This is reflected in these values that the robot drove further ahead in the y-axis than requested.

61

E
Precision experiment all plots

63

64 E. Precision experiment all plots

65

66 E. Precision experiment all plots

67

F
Real world experiment result overview

Barn route 1 Barn route 2 Barn route 3 Barn route 4
Parameter set x [m] y [m] theta [rad] x [m] y [m] theta [rad] x [m] y [m] theta [rad] x [m] y [m] theta [rad]
No line algorithm 0.020 0.082 0.011 0.131 0.139 0.710 0.057 0.093 0.012 0.060 0.402 0.028

0 0.028 0.084 0.012 0.158 0.158 0.018 0.057 0.089 0.012 0.070 0.439 0.029
10 0.020 0.105 0.010 0.134 0.138 0.720 0.061 0.094 0.011 0.062 0.425 0.028
11 0.026 0.075 0.013 0.146 0.140 0.363 0.059 0.096 0.011 0.071 0.394 0.027
20 0.066 13.396 0.847 0.770 5.339 0.392 0.282 1.860 0.246 3.884 16.648 1.210
21 0.044 0.098 0.016 0.140 0.124 0.063 0.053 0.106 0.012 0.086 0.520 0.031
22 0.061 0.117 0.018 0.175 0.672 0.029 0.044 0.233 0.028 0.126 0.418 0.040
23 0.034 0.079 0.015 0.156 0.138 0.023 0.057 0.094 0.013 0.073 0.410 0.028
30 0.049 0.081 0.015 0.142 0.134 0.023 0.056 0.105 0.014 0.079 0.421 0.027
31 0.044 0.086 0.017 0.139 0.136 0.019 0.051 0.125 0.012 0.071 0.541 0.029
32 0.032 0.077 0.012 0.154 0.146 0.020 0.059 0.083 0.010 0.073 0.419 0.029
40 0.038 0.086 0.015 0.123 0.136 0.017 0.057 0.104 0.011 0.070 0.401 0.026
41 0.030 0.088 0.014 0.147 0.130 0.018 0.054 0.990 0.011 0.068 0.389 0.025
42 0.019 0.082 0.011 0.148 0.120 0.018 0.053 0.110 0.012 0.102 0.556 0.033
43 0.021 0.079 0.011 0.142 0.142 0.015 0.054 0.109 0.010 0.064 0.401 0.026
50 0.021 0.089 0.011 0.152 0.137 0.366 0.055 0.102 0.011 0.076 0.410 0.029
51 0.028 0.089 0.013 0.156 0.137 0.366 0.057 0.097 0.011 0.072 0.397 0.030
52 0.030 0.088 0.015 0.157 0.127 0.021 0.063 0.113 0.008 0.068 0.395 0.027

Table F.1: The average of the absolute localization errors compared to the GT in the barn. The parameters per parameter set
can be found in appendix B.

69

Bibliography
[1] Adaptive Monte Carlo localization. https://roboticsknowledgebase.com/wiki/state-

estimation/adaptive-monte-carlo-localization/. Feb. 2020.
[2] Eman Alhamdi and Ramdane Hedjar. “Comparative Study of Two Localization Approaches for

Mobile Robots in an Indoor Environment”. In: Journal of Robotics 2022 (June 2022), pp. 1–13.
DOI: 10.1155/2022/1999082.

[3] Deddy El Amin, Karlisa Priandana, and Medria Kusuma Dewi Hardhienata. “Development of
Adaptive Line Tracking Breakpoint Detection Algorithm for Room Sensing using LiDAR Sensor”.
In: International Journal of Advanced Computer Science and Applications 13 (7 2022). ISSN:
21565570. DOI: 10.14569/IJACSA.2022.0130732.

[4] Andrzej Pronobis, Kaiyu Zheng, Kousuke Ariga, Rajesh P. N. Rao. COLD dataset. https://
www.coldb.org/site/overview. [Online; accessed 8 March, 2023]. 2023.

[5] Jan Bayer, Petr Čížek, and Jan Faigl. “On construction of a reliable ground truth for evaluation
of visual SLAM algorithms”. In: Acta Polytechnica CTU Proceedings 6 (Nov. 2016), p. 1. DOI:
10.14311/APP.2016.6.0001.

[6] Filippo Bonaccorso, Francesco Catania, and Giovanni Muscato. “Evaluation of Algorithms for
indoor mobile robot self-localization through laser range finders data”. In: IFAC Proceedings Vol-
umes 43 (16 2010), pp. 563–568. ISSN: 1474-6670. DOI: https://doi.org/10.3182/
20100906-3-IT-2019.00097. URL: https://www.sciencedirect.com/science/
article/pii/S1474667016351175.

[7] Filippo Bonaccorso, Francesco Catania, and Giovanni Muscato. “Evaluation of Algorithms for
indoor mobile robot self-localization through laser range finders data”. In: IFAC Proceedings
Volumes 43.16 (2010). 7th IFAC Symposium on Intelligent Autonomous Vehicles, pp. 563–568.
ISSN: 1474-6670. DOI: https://doi.org/10.3182/20100906-3-IT-2019.00097. URL:
https://www.sciencedirect.com/science/article/pii/S1474667016351175.

[8] G A Borges and M . -J. Aldon. “A split-and-merge segmentation algorithm for line extraction in
2D range images”. In: vol. 1. 2000, 441–444 vol.1. ISBN: 1051-4651. DOI: 10.1109/ICPR.
2000.905371.

[9] Geovany Araujo Borges and Marie-José Aldon. “Line Extraction in 2D Range Images for Mobile
Robotics”. In: Journal of Intelligent and Robotic Systems 40 (3 2004), pp. 267–297. ISSN: 1573-
0409. DOI: 10.1023/B:JINT.0000038945.55712.65. URL: https://doi.org/10.
1023/B:JINT.0000038945.55712.65.

[10] M Bošnak. “Evolving principal component clustering for 2-D LIDAR data”. In: 2017, pp. 1–6. ISBN:
2473-4691. DOI: 10.1109/EAIS.2017.7954834.

[11] Matevž Bošnak. “Evolving principal component clustering for 2-D LIDAR data”. In: 2017 Evolving
and Adaptive Intelligent Systems (EAIS). 2017, pp. 1–6. DOI: 10.1109/EAIS.2017.7954834.

[12] I. Bukhori, Z. H. Ismail, and T. Namerikawa. “Detection strategy for kidnapped robot problem
in landmark-based map Monte Carlo Localization”. In: 2015 IEEE International Symposium on
Robotics and Intelligent Sensors (IRIS). 2015, pp. 75–80. DOI: 10.1109/IRIS.2015.7451590.

[13] Simone Ceriani et al. “Rawseeds ground truth collection systems for indoor self-localization and
mapping”. In: Autonomous Robots 27 (4 2009), p. 353. ISSN: 1573-7527. DOI: 10.1007/
s10514-009-9156-5. URL: https://doi.org/10.1007/s10514-009-9156-5.

[14] Chi-Square Statistic: What It Is, Examples, How and When to Use the Test. https://www.
investopedia.com/terms/c/chi-square-statistic.asp. Accessed: 2023-07-25.

[15] RDomínguez et al. “LIDAR based perception solution for autonomous vehicles”. In: 2011, pp. 790–
795. ISBN: 2164-7151. DOI: 10.1109/ISDA.2011.6121753.

71

https://roboticsknowledgebase.com/wiki/state-estimation/adaptive-monte-carlo-localization/
https://roboticsknowledgebase.com/wiki/state-estimation/adaptive-monte-carlo-localization/
https://doi.org/10.1155/2022/1999082
https://doi.org/10.14569/IJACSA.2022.0130732
https://www.coldb.org/site/overview
https://www.coldb.org/site/overview
https://doi.org/10.14311/APP.2016.6.0001
https://doi.org/https://doi.org/10.3182/20100906-3-IT-2019.00097
https://doi.org/https://doi.org/10.3182/20100906-3-IT-2019.00097
https://www.sciencedirect.com/science/article/pii/S1474667016351175
https://www.sciencedirect.com/science/article/pii/S1474667016351175
https://doi.org/https://doi.org/10.3182/20100906-3-IT-2019.00097
https://www.sciencedirect.com/science/article/pii/S1474667016351175
https://doi.org/10.1109/ICPR.2000.905371
https://doi.org/10.1109/ICPR.2000.905371
https://doi.org/10.1023/B:JINT.0000038945.55712.65
https://doi.org/10.1023/B:JINT.0000038945.55712.65
https://doi.org/10.1023/B:JINT.0000038945.55712.65
https://doi.org/10.1109/EAIS.2017.7954834
https://doi.org/10.1109/EAIS.2017.7954834
https://doi.org/10.1109/IRIS.2015.7451590
https://doi.org/10.1007/s10514-009-9156-5
https://doi.org/10.1007/s10514-009-9156-5
https://doi.org/10.1007/s10514-009-9156-5
https://www.investopedia.com/terms/c/chi-square-statistic.asp
https://www.investopedia.com/terms/c/chi-square-statistic.asp
https://doi.org/10.1109/ISDA.2011.6121753

72 Bibliography

[16] Richard O Duda and Peter E Hart. “Pattern classification and scene analysis”. In: 1974.
[17] Víctor J. Expósito Jiménez, Christian Schwarzl, and Helmut Martin. “Evaluation of an indoor local-

ization system for amobile robot”. In: 2019 IEEE International Conference on Connected Vehicles
and Expo (ICCVE). 2019, pp. 1–5. DOI: 10.1109/ICCVE45908.2019.8965234.

[18] Jiang Xue Fei and Song Yu. “Conjugate Unscented Particle Filter BasedMonte Carlo Localization
for Mobile Robots”. In: Applied Mechanics and Materials 556-562 (2014), pp. 2266–2269.

[19] Jiang Xue Fei and Song Yu. “Conjugate Unscented Particle Filter BasedMonte Carlo Localization
for Mobile Robots”. In: Applied Mechanics and Materials 556-562 (2014), pp. 2266–2269.

[20] Giulio Fontana, Matteo Matteucci, and Domenico G Sorrenti. “Rawseeds: Building a Benchmark-
ing Toolkit for Autonomous Robotics”. In:Methods and Experimental Techniques in Computer En-
gineering (2014). Ed. by Francesco Amigoni and Viola Schiaffonati, pp. 55–68. DOI: 10.1007/
978-3-319-00272-9_4. URL: https://doi.org/10.1007/978-3-319-00272-9_4.

[21] Dieter Fox. “Adapting the Sample Size in Particle Filters Through KLD-Sampling”. In: The Inter-
national Journal of Robotics Research 22 (12 Dec. 2003). doi: 10.1177/0278364903022012001,
pp. 985–1003. ISSN: 0278-3649. DOI: 10.1177/0278364903022012001. URL: https://
doi.org/10.1177/0278364903022012001.

[22] MGallant. Laser Line Extraction. https://github.com/kam3k/laser_line_extraction.
2021.

[23] Haiming Gao et al. “A line segment extraction algorithm using laser data based on seeded re-
gion growing”. In: International Journal of Advanced Robotic Systems 15 (1 Jan. 2018). doi:
10.1177/1729881418755245, p. 1729881418755245. ISSN: 1729-8806. DOI: 10.1177/1729881418755245.
URL: https://doi.org/10.1177/1729881418755245.

[24] Gengyu Ge et al. “Text-MCL: Autonomous Mobile Robot Localization in Similar Environment
Using Text-Level Semantic Information”. In: Machines (2022).

[25] Chen Gu, Ahmed Shokry, and Moustafa Youssef. The Effect of Ground Truth Accuracy on the
Evaluation of Localization Systems. 2021. arXiv: 2106.13614 [eess.SP].

[26] Shubh Gupta, Adyasha Mohanty, and Grace Gao. “Getting the Best of Particle and Kalman Fil-
ters: GNSS Sensor Fusion using Rao-Blackwellized Particle Filter”. In: (2022).

[27] International Society of Information Fusion et al. Combining KLD-Sampling with Gmapping Pro-
posal for Grid-Based Monte Carlo Localization of a Moving Robot. 2017. ISBN: 9780996452700.

[28] S -W. Kang, S -H. Bae, and T -Y. Kuc. “Feature Extraction and Matching Algorithms to Improve
Localization Accuracy for Mobile Robots”. In: 2020, pp. 991–994. ISBN: 2642-3901. DOI: 10.
23919/ICCAS50221.2020.9268393.

[29] A R Khairuddin, M S Talib, and H Haron. “Review on simultaneous localization and mapping
(SLAM)”. In: 2015, pp. 85–90. DOI: 10.1109/ICCSCE.2015.7482163.

[30] Lely Lely presenteert visie Boerderij van de Toekomst 2035. https://www.lely.com/be/
nl/persberichten/2023/06/06/lely-presenteert-visie-boerderij-van-de-
toekomst-2/. Accessed: 2023-08-09.

[31] Xinzhao Li et al. “A line segments extraction based undirected graph from 2D laser scans”. In:
2015, pp. 1–6. DOI: 10.1109/MMSP.2015.7340851.

[32] Yanjie Liu, Changsen Zhao, and YanlongWei. “A Robust Localization System Fusion Vision-CNN
Relocalization and Progressive Scan Matching for Indoor Mobile Robots”. In: Applied Sciences
12.6 (2022). ISSN: 2076-3417. DOI: 10.3390/app12063007. URL: https://www.mdpi.
com/2076-3417/12/6/3007.

[33] Yanjie Liu et al. “Improved LiDAR LocalizationMethod forMobile Robots Based onMulti-Sensing”.
In: Remote Sensing 14 (23 Dec. 2022). ISSN: 20724292. DOI: 10.3390/rs14236133.

[34] Roberto Martín-Martín et al. “JRDB: A Dataset and Benchmark of Egocentric Robot Visual Per-
ception of Humans in Built Environments”. In: (Oct. 2019). DOI: 10.1109/TPAMI.2021.
3070543.

https://doi.org/10.1109/ICCVE45908.2019.8965234
https://doi.org/10.1007/978-3-319-00272-9_4
https://doi.org/10.1007/978-3-319-00272-9_4
https://doi.org/10.1007/978-3-319-00272-9_4
https://doi.org/10.1177/0278364903022012001
https://doi.org/10.1177/0278364903022012001
https://doi.org/10.1177/0278364903022012001
https://github.com/kam3k/laser_line_extraction
https://doi.org/10.1177/1729881418755245
https://doi.org/10.1177/1729881418755245
https://arxiv.org/abs/2106.13614
https://doi.org/10.23919/ICCAS50221.2020.9268393
https://doi.org/10.23919/ICCAS50221.2020.9268393
https://doi.org/10.1109/ICCSCE.2015.7482163
https://www.lely.com/be/nl/persberichten/2023/06/06/lely-presenteert-visie-boerderij-van-de-toekomst-2/
https://www.lely.com/be/nl/persberichten/2023/06/06/lely-presenteert-visie-boerderij-van-de-toekomst-2/
https://www.lely.com/be/nl/persberichten/2023/06/06/lely-presenteert-visie-boerderij-van-de-toekomst-2/
https://doi.org/10.1109/MMSP.2015.7340851
https://doi.org/10.3390/app12063007
https://www.mdpi.com/2076-3417/12/6/3007
https://www.mdpi.com/2076-3417/12/6/3007
https://doi.org/10.3390/rs14236133
https://doi.org/10.1109/TPAMI.2021.3070543
https://doi.org/10.1109/TPAMI.2021.3070543

Bibliography 73

[35] Miguel Ángel de Miguel, Fernando García, and José María Armingol. “Improved LiDAR Prob-
abilistic Localization for Autonomous Vehicles Using GNSS”. In: Sensors 20.11 (2020). ISSN:
1424-8220. DOI: 10.3390/s20113145. URL: https://www.mdpi.com/1424-8220/20/
11/3145.

[36] V T Nguyen et al. A Comparison of Line Extraction Algorithms using 2D Laser Rangefinder for
Indoor Mobile Robotics. Sept. 2005, pp. 1929–1934. DOI: 10.1109/IROS.2005.1545234.

[37] Viet Nguyen et al. “A comparison of line extraction algorithms using 2D range data for indoor
mobile robotics”. In: Autonomous Robots 23 (2 2007), pp. 97–111. ISSN: 1573-7527. DOI: 10.
1007/s10514-007-9034-y. URL: https://doi.org/10.1007/s10514-007-9034-y.

[38] David Obregón et al. “Adaptive Localization Configuration for Autonomous Scouting Robot in
a Harsh Environment”. In: 2020 European Navigation Conference (ENC). 2020, pp. 1–8. DOI:
10.23919/ENC48637.2020.9317366.

[39] M Ogaz, R Sandoval, and M Chacon. “Data processing from a Laser Range Finder sensor for
the construction of geometric maps of an indoor environment”. In: 2009, pp. 306–313. ISBN:
1558-3899. DOI: 10.1109/MWSCAS.2009.5236093.

[40] Prabin Kumar Panigrahi and Sukant Kishoro Bisoy. “Localization strategies for autonomous mo-
bile robots: A review”. In: Journal of King Saud University - Computer and Information Sciences
34 (8, Part B 2022), pp. 6019–6039. ISSN: 1319-1578. DOI: https://doi.org/10.1016/j.
jksuci.2021.02.015. URL: https://www.sciencedirect.com/science/article/
pii/S1319157821000550.

[41] T Pavlidis and S L Horowitz. “Segmentation of Plane Curves”. In: IEEE Transactions on Comput-
ers C-23 (8 1974), pp. 860–870. ISSN: 1557-9956. DOI: 10.1109/T-C.1974.224041.

[42] David Portugal, André G. Araújo, and Micael S. Couceiro. “A Reliable Localization Architecture
for Mobile Surveillance Robots”. In: 2020 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR) (2020), pp. 374–379.

[43] Andrzej Pronobis and Barbara Caputo. “COLD: The CoSy localization database”. In: The Inter-
national Journal of Robotics Research 28 (May 2009). DOI: 10.1177/0278364909103912.

[44] Kun Qian et al. “Improved Rao-Blackwellized particle filter for simultaneous robot localization
and person-tracking with single mobile sensor”. In: Journal of Control Theory and Applications
9 (4 2011), pp. 472–478. ISSN: 1993-0623. DOI: 10.1007/s11768- 011- 9105- 7. URL:
https://doi.org/10.1007/s11768-011-9105-7.

[45] Abhijeet Ravankar et al. “On a Hopping-Points SVD and Hough Transform-Based Line Detection
Algorithm for Robot Localization and Mapping”. In: International Journal of Advanced Robotic
Systems 13 (3 Jan. 2016). doi: 10.5772/63540, p. 98. ISSN: 1729-8806. DOI: 10.5772/63540.
URL: https://doi.org/10.5772/63540.

[46] J Saarinen et al. “Normal distributions transform Monte-Carlo localization (NDT-MCL)”. In: 2013,
pp. 382–389. ISBN: 2153-0866. DOI: 10.1109/IROS.2013.6696380.

[47] J Saarinen et al. “Normal distributions transform Monte-Carlo localization (NDT-MCL)”. In: 2013,
pp. 382–389. ISBN: 2153-0866. DOI: 10.1109/IROS.2013.6696380.

[48] Viktor Schmuck and Oya Celiktutan. RICA: Robocentric Indoor Crowd Analysis Dataset. May
2020, pp. 63–65. DOI: 10.31256/Io1Sq2R.

[49] Ali Siadat et al. “An Optimized Segmentation Method for a 2D Laser-Scanner Applied to Mobile
Robot Navigation”. In: IFAC Proceedings Volumes 30 (7 1997), pp. 149–154. ISSN: 1474-6670.
DOI: https://doi.org/10.1016/S1474-6670(17)43255-1. URL: https://www.
sciencedirect.com/science/article/pii/S1474667017432551.

[50] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to autonomous
mobile robots. MIT press, 2011.

[51] Jürgen Sturm et al. “A benchmark for the evaluation of RGB-DSLAM systems”. In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 2012, pp. 573–580. DOI: 10.1109/
IROS.2012.6385773.

https://doi.org/10.3390/s20113145
https://www.mdpi.com/1424-8220/20/11/3145
https://www.mdpi.com/1424-8220/20/11/3145
https://doi.org/10.1109/IROS.2005.1545234
https://doi.org/10.1007/s10514-007-9034-y
https://doi.org/10.1007/s10514-007-9034-y
https://doi.org/10.1007/s10514-007-9034-y
https://doi.org/10.23919/ENC48637.2020.9317366
https://doi.org/10.1109/MWSCAS.2009.5236093
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.02.015
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.02.015
https://www.sciencedirect.com/science/article/pii/S1319157821000550
https://www.sciencedirect.com/science/article/pii/S1319157821000550
https://doi.org/10.1109/T-C.1974.224041
https://doi.org/10.1177/0278364909103912
https://doi.org/10.1007/s11768-011-9105-7
https://doi.org/10.1007/s11768-011-9105-7
https://doi.org/10.5772/63540
https://doi.org/10.5772/63540
https://doi.org/10.1109/IROS.2013.6696380
https://doi.org/10.1109/IROS.2013.6696380
https://doi.org/10.31256/Io1Sq2R
https://doi.org/https://doi.org/10.1016/S1474-6670(17)43255-1
https://www.sciencedirect.com/science/article/pii/S1474667017432551
https://www.sciencedirect.com/science/article/pii/S1474667017432551
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/IROS.2012.6385773

74 Bibliography

[52] Niko Sünderhauf et al. “Visual Odometry Using Sparse Bundle Adjustment on an Autonomous
Outdoor Vehicle”. In: Jan. 2005, pp. 157–163. ISBN: 3-540-30291-3. DOI: 10.1007/3-540-
30292-1_20.

[53] Jaroslaw Szrek et al. “Accuracy evaluation of selected mobile inspection robot localization tech-
niques in a gnss-denied environment”. In: Sensors (Switzerland) 21 (1 Jan. 2021), pp. 1–23.
ISSN: 14248220. DOI: 10.3390/s21010141.

[54] Qin Tang and Jing Liang. Grid-Based Monte Carlo Localization for Mobile Wireless Sensor Net-
works. Jan. 2020, pp. 1339–1346. ISBN: 978-981-13-6503-4. DOI: 10.1007/978-981-13-
6504-1_159.

[55] J. Tardos. “Introduction to Mobile Robotics”. In: Uni Freiburg DE (2011), p. 9. URL: http://
ais.informatik.uni-freiburg.de/teaching/ss09/robotics/slides/feature_
extraction.pdf.

[56] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005. ISBN: 0262201623.

[57] United Nations Our growing population. https://www.un.org/en/global- issues/
population. Accessed: 2023-08-09.

[58] Rafael Valencia et al. Localization in highly dynamic environments using dual-timescale NDT-
MCL. 2014.

[59] J Vandorpe, H Van Brussel, and H Xu. “Exact dynamic map building for a mobile robot using
geometrical primitives produced by a 2D range finder”. In: vol. 1. 1996, 901–908 vol.1. ISBN:
1050-4729. DOI: 10.1109/ROBOT.1996.503887.

[60] Regis Vincent, Benson Limketkai, and Michael Eriksen. “Comparison of indoor robot localization
techniques in the absence of GPS”. In: ed. by Russell S. Harmon, Jr. John H. Holloway, and
J. Thomas Broach. Apr. 2010, 76641Z. DOI: 10.1117/12.849593.

[61] E.A. Wan and R. Van Der Merwe. “The unscented Kalman filter for nonlinear estimation”. In:
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and
Control Symposium (Cat. No.00EX373). 2000, pp. 153–158. DOI: 10.1109/ASSPCC.2000.
882463.

[62] Jibo Wang et al. “High-precision and robust localization system for mobile robots in complex and
large-scale indoor scenes”. In: International Journal of Advanced Robotic Systems 18 (5 Sept.
2021). doi: 10.1177/17298814211047690, p. 17298814211047690. ISSN: 1729-8806. DOI: 10.
1177/17298814211047690. URL: https://doi.org/10.1177/17298814211047690.

[63] Miin-Shen Yang and Yessica Nataliani. “Robust-learning fuzzy c-means clustering algorithm with
unknown number of clusters”. In: Pattern Recognition 71 (2017), pp. 45–59. ISSN: 0031-3203.
DOI: https://doi.org/10.1016/j.patcog.2017.05.017. URL: https://www.
sciencedirect.com/science/article/pii/S003132031730208X.

https://doi.org/10.1007/3-540-30292-1_20
https://doi.org/10.1007/3-540-30292-1_20
https://doi.org/10.3390/s21010141
https://doi.org/10.1007/978-981-13-6504-1_159
https://doi.org/10.1007/978-981-13-6504-1_159
http://ais.informatik.uni-freiburg.de/teaching/ss09/robotics/slides/feature_extraction.pdf
http://ais.informatik.uni-freiburg.de/teaching/ss09/robotics/slides/feature_extraction.pdf
http://ais.informatik.uni-freiburg.de/teaching/ss09/robotics/slides/feature_extraction.pdf
https://www.un.org/en/global-issues/population
https://www.un.org/en/global-issues/population
https://doi.org/10.1109/ROBOT.1996.503887
https://doi.org/10.1117/12.849593
https://doi.org/10.1109/ASSPCC.2000.882463
https://doi.org/10.1109/ASSPCC.2000.882463
https://doi.org/10.1177/17298814211047690
https://doi.org/10.1177/17298814211047690
https://doi.org/10.1177/17298814211047690
https://doi.org/https://doi.org/10.1016/j.patcog.2017.05.017
https://www.sciencedirect.com/science/article/pii/S003132031730208X
https://www.sciencedirect.com/science/article/pii/S003132031730208X

	Abstract
	Introduction
	Background
	Problem statement
	Research questions
	Document structure

	Related work
	Localization error improvement
	Change of localization method
	Other studies
	Features usage in self-localization
	To sum up

	Line algorithms
	Type measurement errors
	Structure in measurements points LiDAR
	To sum up

	Performance evaluation
	Metrics
	Usage of a dataset
	To sum up

	Thesis contributions

	Methods
	Line detection
	The algorithm
	Parameter description

	Line-wall comparison
	The algorithm
	Parameters description

	Localization modification
	The algorithm
	Parameters description

	Experiments
	Barn dataset: DataCow
	Setup data recording
	Routes

	Parameters
	Line detection
	Line-wall comparison
	Localization modification

	Recovery ability
	Experiment setup
	Measurement bias error compensation
	Results

	Accuracy
	Experiment setup
	Results

	Precision
	Experiment setup
	Results

	Real world setting
	Experiment setup
	Results
	Real world recovery example

	Conclusion
	Quality of robot self-localization
	Precision
	Accuracy
	Recovery ability

	Effect of parameters
	Change in line detection
	Change in part of particles from line detection error
	Change of weights of added particles
	Change of history queue size
	Change of standard deviation of added particles

	To conclude
	Future work

	Barn layout
	Parameters
	Recovery experiment result overview
	Accuracy experiment result overview
	Precision experiment all plots
	Real world experiment result overview

