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We explicitly compute the local invariants (heat kernel 
coefficients) of a conformally deformed non-commutative d-
torus using multiple operator integrals. We derive a recursive 
formula that easily produces an explicit expression for the 
local invariants of any order k and in any dimension d. 
Our recursive formula can conveniently produce all formulas 
related to the modular operator, which before were obtained 
in incremental steps for d ∈ {2, 3, 4} and k ∈ {0, 2, 4}. We 
exemplify this by writing down some known (k = 2, d = 2) 
and some novel (k = 2, d ≥ 3) formulas in the modular 
operator.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

Studying the heat trace expansion on a non-commutative manifold, and computing the 
respective local invariants (i.e., the non-commutative heat kernel coefficients), is vital for 
two reasons. Firstly, the heat kernel coefficients play a major role in quantum field theory 
(cf. [44]), and if space turns out to be non-commutative at small scale, these coefficients 
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will need to be generalised. Secondly, the local invariants allow to extract geometric 
information from the spectrum of a Laplace-type operator, and they are therefore good 
starting points to extend geometric concepts to the setting of non-commutative geometry.

We shall focus on the non-commutative d-tori Td
θ , as they are prime examples of 

non-commutative spaces. A benefit of these examples is that they have clear-cut non-
commutative analogues C∞(Td

θ ) and L∞(Td
θ ) of the commutative algebras C∞(Td) and 

L∞(Td), together with a faithful representation λl on the Hilbert space L2(Td
θ ), which is 

an analogue of L2(Td), and a trace τ : L∞(Td
θ ) → C, which is an analogue of integration; 

see the definitions in Section 2.2.
The local invariants Ik(P ) of an operator P acting in L2(Td

θ ) are the unique coefficients 
occurring in the heat trace expansion, which is the asymptotic expansion

Tr(λl(y)e−tP ) ∼
∑
k≥0

k=0mod2

t
k−d

2 τ(y Ik(P )), t ↓ 0 (y ∈ L∞(Td
θ )). (1.1)

In [43] it was shown that this expansion exists if (and in particular e−tP is trace class 
if) P is self-adjoint and of the form

P = λl(x)Δ +
d∑

i=1
λl(ai)Di + λl(a) for some x, ai, a ∈ C∞(Td

θ ), (1.2)

with x positive and invertible. Here, Δ =
∑d

i=1 D
2
i and Di is the ith directional derivative 

which, again, is defined in Section 2.2. In this generalised sense, P is a strongly elliptic 
differential operator. Besides the existence of the asymptotic expansion, [43] shows that 
Ik(P ) ∈ C∞(Td

θ ), so y �→ τ(y Ik(P )) can informally be thought of as ‘integration’ against 
a smooth ‘function’ Ik(P ). The goal of this paper is to explicitly compute Ik(P ) for this 
class of P (those of the form (1.2) with x positive and invertible).

One motivation to consider this class of P is the vibrant research program that sur-
rounds the local invariants of the so-called conformally deformed non-commutative torus, 
a research program that was initiated by the papers [4,7,8]. The classical limit of the 
non-commutative torus is simply the flat torus Td, which holds no interesting geometry, 
and likewise Ik(Δ) is trivial. Geometric non-triviality is added to the torus in [4] by 
an adjustment analogous to a conformal scaling of the metric, and the result is called 
the conformally deformed non-commutative torus. For our purposes, we can capture this 
conformal scaling (see, e.g., [7]) by replacing the Laplacian by operators P of the form 
(1.2) and keeping the same Hilbert space, algebra, and representation.

A main goal in the research program mentioned above is to express the local invariants 
Ik(P ) as closed formulas involving functional calculus applied to the modular operator 
defining the conformal scaling, as done in [7,13] for k = 2, d = 2.

New functions acting by this ‘modular functional calculus’ were found for d = 4, k = 2
in [14], for d = 2, k = 4 in [6], for d = 3, k = 4 in [11], and for d ≥ 2, k = 2 in [17], and 
to understand and sometimes simplify the vast calculations in these papers, significant 
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progress has been made in [12,28–30,32]. In this context, various geometric notions were 
lifted to the non-commutative setting in [8,9,13,15,21–23,31,34,37,40,45] et cetera, giving 
further foundation and motivation for the calculation of the local invariants in terms of 
modular functional calculus, but not yet extending that calculation to higher dimension 
and higher order. In most of the papers mentioned above, the local invariants are obtained 
by means of the zeta function associated with P .

Seemingly, these results are completely distinct from the geometric formulas (found, 
e.g., in [18]) for the local invariants in the commutative case – the heat kernel coefficients. 
These coefficients, also called Gilkey–Seeley–DeWitt coefficients, are extremely useful in 
quantum field theory and other parts of physics (cf. [44]) and their extensions to non-
commutative manifolds are likely essential to any new quantum theory of particles or 
gravity. For example, the confrontation of the spectral standard model [3] with particle 
physics, which so far looks promising (cf. [2]), relies precisely on this heat trace expansion 
for bundles over manifolds (cf. [42]), while in non-commutative quantum field theories 
like [19] the underlying space itself is non-commutative, and bares resemblance to a non-
commutative torus (cf. [39]). Similarly, the non-commutative d-torus arises from matrix 
theory compactification, as explained in [5,27].

The above shows why it is notable that, in [24–26], geometric formulas for the heat 
kernel coefficients were derived in an operator-algebraic way (by means of a Volterra 
series), although the fully non-commutative torus was not yet tackled.

In this paper, we give a way to compute Ik(P ) explicitly for every d ∈ N≥2 and every 
k ∈ Z≥0, by making use of the full power of multiple operator integration theory, and 
using the description of Ik(P ) that in [43] led to the existence of the asymptotic expan-
sion (1.1) for P of the form (1.2). Instead of the abstract modular functional calculus 
employed by Connes and others, we use the framework of multiple operator integrals 
(a short introduction for the non-affiliate is given in Section 2.1), and we show how the 
two approaches are related. We also relate our approach to the (almost) commutative 
approach of [24–26], which (as argued in the two paragraphs above) opens up a realm of 
potential applications in physics.

Our main result is a compact expression for Ik(P ) that involves a simple recursive 
rule. When a specific k is chosen, this expression can be recursively expanded, and the 
resulting expressing for Ik(P ) is a sum of explicit multiple operator integrals (that in 
many cases can be computed algebraically, as in Remark 2.2). The amount of terms 
blows up rapidly (1 term for k = 0, 13 terms for k = 2, 1046 terms for k = 4, 140845 
terms for k = 6, et cetera).

Furthermore, we show how one can straightforwardly obtain all functions acting by 
modular functional calculus from the just-mentioned expressions in terms of multiple 
operator integrals. Thus we conclude a list [6,7,17,13,14,11] of advancements in which 
such functions were found for slowly increasing k and d. Our approach yields a substantial 
insight into the structure and appearance of such functions in [6,7,17,13,14,11], namely, as 
the results of a recursive procedure that starts with a simple expression, and increasingly 
jumbles up the result in each step. In particular, our recursive structure explains the 
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appearance of divided differences in these functions as a result of a commutator rule for 
multiple operator integrals that is also central to [35], and hence (through the arguments 
of [28,33]) sheds light on the functional relations of [6,7].

Passing from multiple operator integrals to modular functional calculus is quite simple, 
which we exemplify by producing some known and some novel modular formulas.

Finally, we hope the novel expression for Ik(P ) in our main result inspires generali-
sation to more general elliptic operators, including the settings of [10,24,31] et cetera.

This paper is structured as follows. After introducing the beautiful subject of multi-
ple operator integration and fixing our notation in Section 2, we give a comprehensive 
summary of our main results and applications in Section 3. Section 4 contains some 
groundwork. After that, the proof of our main theorem, Theorem 3.3, will span the 
whole of Sections 5, 6, and 7. In Section 8 we apply our main result to the case k = 2
and prove Corollary 3.6 and Theorem 3.8. The connection with modular functional cal-
culus is made in Section 9, and the connection with the commutative case is made in 
Section 10. Appendix A comments on the accompanying python program.

Acknowledgments. We heartily thank Bruno Iochum, Matthias Lesch, and Adam Ren-
nie for very illuminating discussions. We are grateful to Christiaan van de Ven for 
pointing us to [16] and to Yerlan Nessipbayev for checking part of our computations. 
T.v.N. was supported in part by NSF CAREER grant DMS-1554456, as well as in part 
by ARC grant FL17010005. F.S. was supported by ARC grant FL17010005 and ARC 
grant DP230100434. D.Z. was supported by ARC grant DP230100434.

2. Preliminaries

We let N = {1, 2, . . .}, Z+ = Z≥0, T := R/Z, R− = (−∞, 0). On a suitable set 
X we let C∞(X), L1(X), L2(X) denote the smooth, Lebesgue integrable, and square-
integrable functions, respectively. For n ∈ Zm we write |n|1 :=

∑m
i=1 |ni|. The bounded 

operators on a Hilbert space H are denoted B(H).

2.1. Multiple operator integrals

2.1.1. Introduction
The role that multiple operator integrals play for local invariants has never been clearly 

spelled out (and was but mentioned in [33]). However, when computing local invariants, 
one frequently (e.g. in [13,24–26,28,32]) encounters integrals that look roughly similar 
to, for example,

1∫
0

s1∫
0

e(s1−1)x V1 e
(s2−s1)x V2 e

−s2x ds2 ds1; (2.1)

∫ 1
x + iλ

V1
1

x + iλ
V2

1
x + iλ

eiλ

2π dλ; (2.2)

R
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or any other integral over an alternating product of bounded operators V1, V2 and func-
tions of a self-adjoint operator x. These are in fact special cases of multiple operator 
integrals, namely, integrals of the form (2.4) in the following definition.

Definition 2.1. Let n ∈ N, and let x be a (possibly unbounded) self-adjoint operator in 
a separable Hilbert space H, with spectrum spec(x). Let φ : spec(x)n+1 → C be given 
by

φ(α0, . . . , αn) =
∫
Ω

a0(α0, λ)a1(α1, λ) · · · an(αn, λ) dλ, (2.3)

for bounded measurable functions a0, . . . , an : spec(x) ×Ω → C and a finite measure space 
(Ω, λ). The multiple operator integral is the multilinear function T x

φ : B(H)×n → B(H)
defined by

T x
φ (V1, . . . , Vn)ψ :=

∫
Ω

a0(x, λ)V1a1(x, λ) · · ·Vnan(x, λ)ψ dλ, (2.4)

for V1, . . . , Vn ∈ B(H), ψ ∈ H.

This definition was given in [1, Definition 4.1] and [36], and it is a simple but crucial 
result of [1, Lemma 4.3] and [36, Lemma 3.1] that T x

φ only depends on the function φ, 
but not on the particular choice of the functions a0, . . . , an in the representation (2.3), as 
the notation suggests. For example, under reasonable assumptions, (2.1) equals (2.2).1
This explains why the literature sometimes contains different procedures to calculate 
the same thing. Providing an elegant unified picture is not the only purpose of multiple 
operator integration (and we ensure the critical reader that we are not merely casting 
known results into new notation). The theory of multiple operator integration provides 
extremely strong results on the analytical properties of integrals like (2.1) and (2.2), and 
moreover, the formalism often leads to completely new results or extensive generalisations 
of known ones. (See [41] for an overview of theory and applications.)

2.1.2. Basic results on multiple operator integrals
If n = 0, then Definition 2.1 recovers functional calculus:

T x
φ () = φ(x).

Moreover, if V1, . . . , Vn commute with x then T x
φ (V1, . . . , Vn) by definition reduces to 

φ(x, . . . , x)V1 · · ·Vn. This paper deals exclusively with bounded x ∈ B(H), so let us 
assume this from now on.

1 To see this, one takes x positive and invertible, replaces esx and 1
x+iλ by bounded functions of x, and 

works out the second divided difference (definition below) of x �→ e−x in two ways. By the well-definedness 
of the multiple operator integral, the equality of functions implies an equality of operators.
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The function φ is called the symbol of T x
φ , and it is often defined on a region strictly 

surrounding spec(x)n+1 (such as Rn+1), in which situation we write T x
φ = T x

φ|spec(x)n+1

as one would expect. The symbols we encounter most are divided differences φ = f [n] ∈
C(Rn+1) of some f ∈ Cn(R), defined recursively by

f [0](α0) := f(α0); (2.5)

f [n](α0, . . . , αn) :=f [n−1](α0, α1, . . . , αn−1) − f [n−1](α1, . . . , αn)
α0 − αn

, (2.6)

for α0 	= αn, and extended continuously to α0 = αn. It is well-known that f [n] is 
symmetric in its arguments and satisfies f [n](α, . . . , α) = 1

n!f
(n)(α). Moreover, if f̂ (n) ∈

L1(R), then we have

f [n](α0, . . . , αn) = 1√
2π

∫
R

∫
Sn

f̂ (n)(t)eitλ0α0 · · · eitλnαn dλ dt, (2.7)

where λ is the flat measure on the simplex Sn = {λ ∈ Rn+1
≥0 :

∑n
j=0 λj = 1} with 

λ(Sn) = 1/n!. By comparing (2.7) to (2.3), we notice that T x
f [n] is defined whenever 

f ∈ Cn(R) and f̂ (n) ∈ L1(R). Let I ⊆ R be a bounded neighbourhood of spec(x). By 
(2.5) and (2.6), f �→ T x

f [n] factors through f �→ f |I . Moreover, any f ∈ C∞(I) can be 
extended to a Schwartz function on R, which satisfies (2.7). Therefore, T x

f [n] is defined 
for any f ∈ C∞(I). Some important identities in this case are (cf. [35, Lemma 14])

T x
f [n](V1, . . . , Vj , yVj+1, . . . , Vn) − T x

f [n](V1, . . . , Vjy, Vj+1, . . . , Vn)

= T x
f [n+1](V1, . . . , Vj , [x, y], Vj+1, . . . , Vn);

T x
f [n](yV1, . . . , Vn) − yT x

f [n](V1, . . . , Vn) = T x
f [n+1]([x, y], V1, . . . , Vn);

T x
f [n](V1, . . . , Vn)y − T x

f [n](V1, . . . , Vny) = T x
f [n+1](V1, . . . , Vn, [x, y]); (2.8)

f(x)y − yf(x) = T x
f [0]()y − yT x

f [0]() = T x
f [1]([x, y]),

for x, y, Vj ∈ B(H). In this paper we often see f = Fk,d, where Fk,d is our notation for the 
k
2

th order primitive of α �→ α− d
2 on I = (0, ‖x‖ +1), which is a bounded neighbourhood of 

spec(x) when x is a positive invertible bounded operator. In the literature, the dimension 
d of the (non-commutative) space is often even and the order k (appearing in Ik(P )) is 
often small. In these abundant cases the multiple operator integral is extremely explicit:

Remark 2.2. Suppose that d is even and that k < d. Then Fk,d is an integer power 
function, so for every n ∈ N there exists a finite L ⊆ Zn+1 and some constants cl such 
that, for all αj > 0,

F
[n]
k,d(α0, . . . , αn) =

∑
clα

l0
0 · · ·αln

n .

l∈L
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As a consequence, the multiple operator integral is a purely algebraic expression,

T x

F
[n]
k,d

(V1, . . . , Vn) =
∑
l∈L

clx
l0V1x

l1 · · ·Vnx
ln ,

for all Vj ∈ B(H) and positive invertible x ∈ B(H).

2.2. Non-commutative torus

Regarding the non-commutative torus, we use the definitions of [43], which we only 
briefly recall in this section. We omit the proofs of the folklore assertions below, some of 
which can be found in [43, §2].

For any d ∈ N≥2, we let θ ∈ Md(Rd) be an antisymmetric matrix. Let Aθ be the 
unital *-algebra generated by formal symbols U1, . . . , Ud satisfying U∗

kUk = UkU
∗
k = 1

and UkUl = e2πiθklUlUk, and write Un := Un1
1 · · ·Und

d for all n ∈ Zd. We define a 
linear function τ : Aθ → C by τ(

∑
n cnU

n) := c0. We let L2(Td
θ ) be the completion of 

Aθ in the norm ‖a‖ := 〈a, a〉 1
2 defined by the (nondegenerate) inner product 〈a, b〉 :=

τ(a∗b), which makes H := L2(Td
θ ) a separable Hilbert space. We define Dk(

∑
n cnU

n) :=∑
n cnnkU

n on Aθ, and let C∞(Td
θ ) be the completion of Aθ in the (Fréchet) seminorms 

a �→ ‖Dαa‖, α ∈ Zd
+, where Dα := Dα1

1 · · ·Dαd

d . Each Dα extends to a self-adjoint 
operator densely defined in L2(Td

θ ), with C∞(Td
θ ) = ∩αdomDα. Hence, C∞(Td

θ ) is 
stable under holomorphic functional calculus. We represent Aθ on L2(Td

θ ) by λl(a)b :=
ab, and denote by L∞(Td

θ ) the corresponding weak closure of Aθ, a von Neumann algebra 
with operator norm denoted ‖ · ‖∞. We identify C∞(Td

θ ) ⊆ L∞(Td
θ ) and L2(Td

θ ) ⊆
L∞(Td

θ ). Both τ and λl extend continuously to L∞(Td
θ ), giving a faithful tracial state τ :

L∞(Td
θ ) → C and a faithful representation (injective *-homomorphism) λl : L∞(Td

θ ) →
B(L2(Td

θ )).

3. Summary of main results

Before coming to our main result, it is important to get well acquainted with the 
recursive structure that lies at its core.

3.1. Recursive structure

We let D1, . . . , Dd be the formal symbols of the polynomial algebra C[D1, . . . , Dd], 
i.e., we impose only the relation DiDj = DjDi for all i, j ∈ {1, . . . , d}. We write Dα :=
Dα1

1 · · ·Dαd

d for all α ∈ Zd
+. We then define the free left C∞(Td

θ )-module

X := span
{
bDα : b ∈ C∞(Td

θ ), α ∈ Zd
+
}
,

generated by the set of formal symbols {Dα : α ∈ Zd
+}. In other words, X is the d-

variable polynomial algebra with scalars in C∞(Td
θ ). We identify C∞(Td

θ ) ⊆ X as the 
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subset of constant polynomials, i.e., we abbreviate bD0 by b for all b ∈ C∞(Td
θ ). We also 

briefly write Dix = Di(x) ∈ C∞(Td
θ ).

Definition 3.1. Let x ∈ C∞(Td
θ ) be self-adjoint and f : R → R be smooth when restricted 

to the spectrum of x. For every m ∈ Z+, we recursively define multilinear mappings 
Tx,m

f : X×m → C∞(Td
θ ) by firstly setting

Tx,m
f (b1, . . . , bm) := T x

f [m](b1, . . . , bm),

for all b1, . . . , bm ∈ C∞(Td
θ ) ⊆ X , secondly setting

Tx,m
f (B1, . . . ,Bk−1,BkDi, bk+1, . . . , bm)

:= Tx,m+1
f (B1, . . . ,Bk, Dix, bk+1, . . . , bm)

+ Tx,m
f (B1, . . . ,Bk, Dibk+1, bk+2, . . . , bm)

+ Tx,m
f (B1, . . . ,Bk, bk+1Di, bk+2, . . . , bm), (3.1)

for all B1, . . . , Bm ∈ X and k < m, and lastly setting

Tx,m
f (B1, . . . ,Bm−1,BmDi) := Tx,m+1

f (B1, . . . ,Bm, Dix). (3.2)

Well-definedness of Tx,m
f is shown in Lemma 4.1.

Example 3.2. As a simple example of Definition 3.1 we have

Tx,2
f (a, bDi) = Tx,3

f (a, b,Dix)

= T x
f [3](a, b,Dix). (3.3)

A similar example is

Tx,2
f (a, bDiDj) =Tx,3

f (a, bDi, Djx)

=Tx,4
f (a, b,Dix,Djx) + Tx,3

f (a, b,DiDjx) + Tx,3
f (a, b,DjxDi)

=T x
f [4](a, b,Dix,Djx) + T x

f [3](a, b,DiDjx) + T x
f [4](a, b,Djx,Dix).

Another instructive example is

Tx,3
f (aDi, b, c) =T x

f [4](a,Dix, b, c) + T x
f [3](a,Dib, c) + Tx,3

f (a, bDi, c)

=T x
f [4](a,Dix, b, c) + T x

f [3](a,Dib, c) + T x
f [4](a, b,Dix, c)

+ T x
f [3](a, b,Dic) + T x

f [4](a, b, c,Dix).

An only slightly more involved expression like
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Tx,3
f (aDiDj , bDk, c)

already produces 145 terms (the reader is encouraged to check why), which can be 
straightforwardly obtained if one has enough time (or a computer at hand).

The above example illustrates that, however complicated B1, . . . , Bm ∈ X might be, 
Tx,m

f (B1, . . . , Bm) can always be written as a sum of multiple operator integrals with 
arguments in C∞(Td

θ ). The above example also illustrates that, morally, we have

Tx,m
f (b1Dα1 , . . . , bmDαm) = “Tλl(x)

f [m] (λl(b1)Dα1 , . . . , λl(bm)Dαm)(1) ”, (3.4)

in the sense that, if we would take (2.8) at face value, we would have (using Di1 = 0)

“Tλl(x)
f [2] (λl(a), λl(b)Di)(1)” = T

λl(x)
f [3] (λl(a), λl(b), [Di, λl(x)])(1)

= T
λl(x)
f [3] (λl(a), λl(b), λl(Dix))(1)

= T x
f [3](a, b,Dix),

which mimics (3.3), and similarly for the other defining properties of Tx,m
f . However, the 

unbounded arguments of the multiple operator integrals between quotes warrant some 
caution. The moral identity (3.4) is made rigorous by Corollary 7.1, which forms a crucial 
step towards our main theorem. A unifying interpretation has recently been put forth in 
[20].

The final ingredients for our main result are the elements that we use as inputs of 
the mappings Tx,m

f . For every x, a1, . . . , ad, a ∈ C∞(Td
θ ), every m ∈ N, every subset 

A ⊆ {1, . . . , m}, and every function ι : A → {1, . . . , d}, we define WA ,ι
1 , . . . , WA ,ι

m ∈ X
by

WA ,ι
j =

{
Aι(j) (j ∈ A );
P, (j /∈ A ),

(3.5)

where (for all i ∈ {1, . . . , d})

Ai := 2xDi + ai, P := x
d∑

i=1
D2

i +
d∑

i=1
aiDi + a ∈ X . (3.6)

3.2. Main result

Our main result is formulated as follows.

Theorem 3.3. Let d ∈ N≥2, k ∈ 2Z+, let x, a1, . . . , ad, a ∈ C∞(Td
θ ) be self-adjoint with x

positive and invertible, and define P by (1.2). The kth order local invariant of P occurring 
in the asymptotic expansion (1.1) takes the form
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Ik(P ) = (−1) k
2 π

d
2

∑
k
2≤m≤k

∑
A ⊆{1,...,m}
|A |=2m−k

∑
ι:A →{1,...,d}

c
(ι)
d Tx,m

Fk,d
(WA ,ι

1 , . . . ,WA ,ι
m ), (3.7)

where Fk,d is any k2
th order primitive of α �→ α− d

2 and

c
(ι)
d := 1

vol(Sd−1)

∫
Sd−1

∏
j∈A

uι(j) du.

For non-self-adjoint P the right-hand side of (3.7) still exists, and we may take this as 
the extended definition of Ik(P ) (as it coincides with Definition 4.6).

Remark 3.4. An explicit k2
th order primitive of α �→ α− d

2 is given by

Fk,d(α) :=

⎧⎨⎩(−1) k
2

Γ( d
2− k

2 )
Γ( d

2 ) α
k−d

2 if d is odd or k < d;

(−1) d
2−1 1

( d
2−1)!( k

2− d
2 )!α

k−d
2 log(α) if d is even and k ≥ d.

In particular, we have F2,2 = log.

Remark 3.5. The constants c(ι)d are rational, invariant under permutations on the domain 
and range of ι, and, lastly, easy to compute. Writing nj := |ι−1({j})|, we have (cf. [16])

c
(ι)
d =

⎧⎨⎩
(d−2)!!

∏d
j=1(nj−1)!!

(|n|1+d−2)!! if n1, . . . , nd are even;
0 otherwise.

Here we use the usual convention (−1)!! = 1.

To illustrate what (3.7) means in practice, we note that for k = 0, 2, 4 it states that 
(cf. Section 8)

π− d
2 I0(P ) =Tx,0

F0,d
();

−π− d
2 I2(P ) =Tx,1

F2,d
(P) +

d∑
i=1

1
d
Tx,2

F2,d
(Ai,Ai);

π− d
2 I4(P ) =Tx,2

F4,d
(P,P) +

d∑
i=1

1
d

(
Tx,3

F4,d
(P,Ai,Ai) + Tx,3

F4,d
(Ai,P,Ai)

+ Tx,3
F4,d

(Ai,Ai,P)
)

+
d∑

i,j,k,l=1

c
(i,j,k,l)
d Tx,4

F4,d
(Ai,Aj ,Ak,Al),

but the real beauty of (3.7) is that this compact expression holds for any k.
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3.3. Consequences of our main result

Straightforward corollaries of Theorem 3.3 are obtained by fixing k and expanding the 
recursive definition of Tx,m

f (as in Remark 2.2) into explicit sums of multiple operator 
integrals with arguments in the non-commutative torus. The resulting formula for I0 is 
nothing new, namely

π− d
2 I0(P ) = T x

F
[0]
0,d

() = F0,d(x) = x− d
2 .

However, the resulting formula for the second order local invariant I2, which is sometimes 
called the scalar curvature, is already of note. We obtain the following explicit expression, 
which for d = 2, 4 can be used to recover the results of [7,12–14] (more on this later).

Corollary 3.6. For any dimension d ∈ N≥2, and P acting in L2(Td
θ ) of the form (1.2)

for positive invertible x, the second order local invariant of P is computed by

−π− d
2 I2(P ) =

d∑
i=1

(
2T x

F
[3]
2,d

(x,Dix,Dix) + T x

F
[2]
2,d

(ai, Dix)
)

+ T x

F
[2]
2,d

(x,Δx)

+ T x

F
[1]
2,d

(a) +
d∑

i=1

1
d

(
4T x

F
[4]
2,d

(x,Dix, x,Dix) + 4T x

F
[3]
2,d

(x,Dix,Dix)

+ 8T x

F
[4]
2,d

(x, x,Dix,Dix) + 2T x

F
[3]
2,d

(x,Dix, ai) + 2T x

F
[2]
2,d

(x,Diai)

+ 2T x

F
[3]
2,d

(x, ai, Dix) + 2T x

F
[3]
2,d

(ai, x,Dix) + T x

F
[2]
2,d

(ai, ai)
)

+ 4
d
T x

F
[3]
2,d

(x, x,Δx).

Deriving the above formula from our main theorem is quite straightforward; Section 8
contains an explicit proof for convenience of the reader.

In fact, the same can be done for any order k in a simple manner.

Corollary 3.7. For any d ∈ N≥2, k ∈ 2Z+, and P acting in L2(Td
θ ) of the form (1.2) for 

positive invertible x, an expression for the kth order local invariant Ik(P ) can be computed 
by the accompanying python program (cf. Appendix A). This expression consists of a finite 
amount of terms of the form

cπ
d
2 T x

F
[m]
k,d

(Dα1b1, . . . , D
αmbm),

where m ∈ N, c ∈ Q, αj ∈ Zd
+ and bj ∈ {x, a1, . . . , ad, a}. E.g., I4 has 1046 terms 

and I6 has 140845 terms in Einstein notation (i.e., not counting sums over indices 
ij = 1, . . . , d).
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For specific P and k, the above expressions can yield remarkably elegant results. As an 
example we shall focus on k = 2 and the case P = λl(x1/2)Δλl(x1/2), which corresponds 
to the Laplacian ‘on functions’ (see [7,13] for terminology) of the conformally deformed 
non-commutative 2-torus. In this case (and in fact in the analogous case for every d ≥ 2) 
we obtain an expression for I2(P ) that is arguably neater than the expressions one finds 
in the literature (cf. [7]).2

Theorem 3.8. Let d ≥ 2 and consider P = λl(x
1
2 )Δλl(x

1
2 ) acting in L2(Td

θ ) for a positive 
invertible x ∈ C∞(Td

θ ). The second order local invariant of P is given by

−π− d
2 I2(P ) = T x

Φ(Δx) +
d∑

i=1
T x

Ψ(Dix,Dix),

where Φ and Ψ are expressed in terms of divided differences as

Φ(α0, α1) = 2(α0α1)
1
2

d
·
α0F

[2]
2,d(α0, α0, α1) − α1F

[2]
2,d(α0, α1, α1)

α1 − α0
,

Ψ(α0, α1, α2) = −4
d

(α0α2)
1
2

α
2+ d

2
1

g[3]
(α0

α1
,
α0

α1
,
α2

α1
,
α2

α1

)
, g(α) = F2,d(α) + F

[1]
2,d(1, α),

for all α0, α1, α2, α > 0.

Multiple operator integrals can also serve as a stepping stone towards the modular 
functional calculus ubiquitous in the literature since [4,7,8]. Indeed, from the above 
formula one can derive the most basic main results of [7,13] as a corollary, namely the 
functions K0(s) and H0(s, t) from [7]. This derivation is done in Section 9.

In fact, as our main result holds for arbitrary d and k, many more ‘modular formulas’ 
are now within easy reach. As a quick example, if k = 2 and d ≥ 3 is arbitrary, then 
Theorem 9.4 (which can be derived from Theorem 3.8 or directly from our main theorem) 
shows how the function

Kd
0 (s) = 2

d
·
−1 − e(1− d

2 )s + e(1−d/2)s−1
1−d/2 coth

(
s
2
)

s sinh
(
s
2
)

replaces the function K0(s) of [7, eq. (2)] when passing to arbitrary dimension. Moreover, 
one immediately recovers the function K0(s) of [7] by taking d → 2 in the above formula.

2 Theorem 3.8 is just one of many possible applications of our main theorem. An unwieldy but ex-
plicit expression for I2 of the full Laplacian of a conformally deformed noncommutative d-torus (either 
in terms of multiple operator integrals or in terms of modular functional calculus, see Section 9) follows 
straightforwardly from Corollary 3.6. A simplification of it in the spirit of Theorem 3.8 and/or a geometric 
interpretation of it would be an interesting follow-up research.
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The recursive formula of Theorem 3.3 bears similarity to some of the formulas in 
[24–26]. Indeed, we show how to recover a key result from [24] from our main the-
orem in Theorem 10.3, thus finally bridging the gap between the commutative and 
non-commutative approaches.

4. Groundwork

Lemma 4.1. The map T : X×n → C∞(Td
θ ) of Definition 3.1 is well defined.

Proof. It suffices to show that the expression defining

Tx,n
f (B1, . . . ,Bk−1,BkDiDj , bk+1, . . . , bn) (4.1)

equals the expression defining

Tx,n
f (B1, . . . ,Bk−1,BkDjDi, bk+1, . . . , bn). (4.2)

By induction, one can show that (4.1) is equal to a long expression involving Di and Dj

occurring in the arguments after B1, . . . , Bk in one of the following forms

. . . , Dix, . . . ,Djx, . . . , . . . , Djx, . . . ,Dix, . . . ,

. . . , Dibl, . . . , Djx, . . . , . . . , Djbl, . . . , Dix, . . . ,

. . . , Dix, . . . ,Djbm, . . . , . . . , Djx, . . . ,Dibm, . . . ,

. . . , Dibl, . . . , Djbm, . . . , . . . , Djbl, . . . , Dibm, . . . ,

. . . , DiDjx, . . . , . . . , DiDjbl, . . . ,

where the dots signify the list of other arguments bk+1, . . . , bn, cut up at arbitrary places. 
One sees that the first 8 instances are in bijection with one another after swapping i and 
j. The last 2 instances are invariant under swapping i and j because DiDj = DjDi. 
Hence (4.1) is equal to (4.2). �
4.1. The results of our companion paper

In our companion paper [43] the existence of the asymptotic expansion was proven for 
the present general class of operators P (in fact, for an even more general assumption 
on the scalar symbol), and a formula was given for Ik(P ). However, this formula was not 
explicit.

As in [43], this formula is stated as a definition of Ik(P ) for all P of the form (1.2)
with x self-adjoint and invertible. If P is in addition self-adjoint, this definition of Ik(P )
coincides with the definition in the introduction (see Theorem 4.7 below).
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Definition 4.2. For s ∈ Rd, we define

V (s) :=
d∑

i=1
siAi,

Ai := 2λl(x)Di + λl(ai), 1 ≤ i ≤ d,

as linear operators C∞(Td
θ ) → L2(Td

θ ) acting (densely) in L2(Td
θ ).

As x is positive and invertible, x|s|2 + z ∈ C∞(Td
θ ) is invertible in L∞(Td

θ ) for 
every z ∈ C\R−. As C∞(Td

θ ) is stable under holomorphic functional calculus, we have 
(x|s|2 + z)−1 ∈ C∞(Td

θ ).

Definition 4.3. Let A ⊆ N. For every z ∈ C\R− and every s ∈ Rd, set fA
0 (s, z) := 1

and

fA
m (s, z) := WA

j (s)
( 1
x|s|2 + z

fA
m−1(s, z)

)
, m ≥ 1,

where (cf. (3.5))

WA
j (s) :=

{
V (s) (j ∈ A );
P (j /∈ A ).

(4.3)

Definition 4.4. For every z ∈ C\R− every s ∈ Rd and every k ∈ Z+ we set

corrk(s, z) := (x|s|2 + z)−1
∑

k
2≤m≤k

(−1)m
∑

A ⊆{1,··· ,m}
|A |=2m−k

fA
m (s, z).

Definition 4.5. For every s ∈ Rd and every k ∈ Z+ we set

Corrk(s) := 1
2π

∞∫
−∞

corrk(s, iλ)eiλ dλ.

Here and throughout this paper, 
∫∞
−∞ := limN→∞

∫ N

−N
. In the case above, the limit 

is with respect to the weak operator topology. The distinction between 
∫∞
−∞ and the 

Lebesgue integral 
∫
R is only relevant in the case k = 0.

Definition 4.6. For every k ∈ Z+, we define

Ik(P ) :=
∫
Rd

Corrk(s) ds,

as a weak integral in L∞(Td
θ ).
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Theorem 1.2 in [43] asserts the following.

Theorem 4.7. If P is self-adjoint acting in L2(Td
θ ) of the form (1.2) for x positive and 

invertible, then (1.1) holds with {Ik(P )}k≥0 as in Notation 4.6, and Ik(P ) ∈ C∞(Td
θ )

for all k ≥ 0.

In the next three sections we will rewrite the above definition into a computable 
formula for Ik(P ), and thus prove our main theorem.

5. Recursion at the level of symbols

Recall that X := span
{
bDα

∣∣ b ∈ C∞(Td
θ ), α ∈ Zd

+
}
, a free C∞(Td

θ )-module. Sim-
ilarly, let X :=

{
λl(b)Dα : C∞(Td

θ ) → C∞(Td
θ )

∣∣ b ∈ C∞(Td
θ ), α ∈ Zd

+
}

be the 
C∞(Td

θ )-module generated by the operators Dα = Dα1
1 · · ·Dαd

d , α ∈ Zd
+, seen here 

simply as linear functions from C∞(Td
θ ) to C∞(Td

θ ). We define a C∞(Td
θ )-module ho-

momorphism π : X → X by linear extension of

π(bDα) := λl(b)Dα. (5.1)

Fix a positive invertible x ∈ C∞(Td
θ ). We define multilinear mappings Sm

s,z : X×m →
C∞(Td

θ ) for every m ∈ N, s ∈ Rd \ {0} and z ∈ C \R− by

Sm
s,z(B1, . . . ,Bm) := (5.2)

(−1)m|s|2m 1
x|s|2 + z

π(B1)
( 1
x|s|2 + z

· · ·π(Bm)
( 1
x|s|2 + z

)
· · ·

)
,

for all B1, . . . , Bm ∈ X . The above expression is well-defined because (x|s|2 + z)−1 ∈
C∞(Td

θ ) and elements of X preserve C∞(Td
θ ). By defining Sm

s,z as above, we neatly 
separate the recursive structure from the analysis in the proof of our main theorem. In 
the following subsection we show that Sm

s,z satisfies the same recursive properties as Tx,m
f

does by Definition 3.1 (i.e., (3.1) and (3.2)). Relating Sn
s,z(b1, . . . , bn) to Tx,n

f (b1, . . . , bn)
for bi ∈ C∞(Td

θ ) (i.e., relating the two base cases of the respective recursions) involves 
some heavy analysis, and is done in Section 6.

5.1. Recursive formula for Ss,z

The following two lemmas show how expressions of the form Sm
s,z(B1, . . . , Bm) (where 

Bi ∈ X ) can be rewritten in terms of expressions of the form Sn
s,z(b1, . . . , bn), where 

bi ∈ C∞(Td
θ ) and n ≥ m.

Lemma 5.1. Let k, m ∈ N, k < m, B1, . . . , Bk ∈ X , bk+1, . . . , bm ∈ C∞(Td
θ ) ⊆ X , and 

i ∈ {1, . . . , d}. For all s ∈ Rd \ {0} and z ∈ C \R− we have
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Sm
s,z(B1, . . . ,Bk−1,BkDi, bk+1, . . . , bm) = Sm+1

s,z (B1, . . . ,Bk, Dix, bk+1, . . . , bm)

+ Sm
s,z(B1, . . . ,Bk, Dibk+1, bk+2, . . . , bm)

+ Sm
s,z(B1, . . . ,Bk, bk+1Di, bk+2, . . . , bm).

Proof. We first note that from Di(u · u−1) = 0 it follows that

Di(u−1) = −u−1 ·Diu · u−1.

Thusly, we obtain

Di

( 1
x|s|2 + z

)
= −|s|2 1

x|s|2 + z
(Dix) 1

x|s|2 + z
.

By the latter equality and the Leibniz rule we obtain, for any k ∈ Z,

π(Di)
( 1
x|s|2 + z

bk+1
1

x|s|2 + z
· · · bm

1
x|s|2 + z

)
= Di

( 1
x|s|2 + z

bk+1
1

x|s|2 + z
· · · bm

1
x|s|2 + z

)
= −|s|2 1

x|s|2 + z
Dix

1
x|s|2 + z

bk+1
1

x|s|2 + z
· · · bn

1
x|s|2 + z

+ 1
x|s|2 + z

Dibk+1
1

x|s|2 + z
bk+2

1
x|s|2 + z

· · · bn
1

x|s|2 + z

+ 1
x|s|2 + z

bk+1Di

( 1
x|s|2 + z

bk+2
1

x|s|2 + z
· · · bn

1
x|s|2 + z

)
= −|s|2 1

x|s|2 + z
Dix

1
x|s|2 + z

bk+1
1

x|s|2 + z
· · · bn

1
x|s|2 + z

+ 1
x|s|2 + z

Dibk+1
1

x|s|2 + z
bk+2

1
x|s|2 + z

· · · bn
1

x|s|2 + z

+ 1
x|s|2 + z

π(bk+1Di)
( 1
x|s|2 + z

bk+2
1

x|s|2 + z
· · · bn

1
x|s|2 + z

)
.

After multiplying both sides by (−1)m−k|s|2(m−k), the above equality becomes

π(Di)
(
Sm−k
s,z (bk+1, . . . , bm)

)
=Sm−k+1

s,z (Dix, bk+1, . . . , bm) (5.3)

+ Sm−k
s,z (Dibk+1, bk+2, . . . , bm)

+ Sm−k
s,z (bk+1Di, bk+2, . . . , bm).

As
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Sm
s,z(B1, . . . ,Bk,Bk+1, . . . ,Bm)

= (−1)k|s|2k 1
x|s|2 + z

π(B1)
(
· · · 1

x|s|2 + z
π(Bk)

(
Sm−k
s,z (Bk+1, . . . ,Bm)

)
· · ·

)
,

the lemma follows from (5.3). �
Lemma 5.2. Let m ∈ N, B1, . . . , Bm ∈ X and i ∈ {1, . . . , d}. For all s ∈ Rd \ {0} and 
z ∈ C \R− we have

Sm
s,z(B1, . . . ,Bm−1,BmDi) := Sm+1

s,z (B1, . . . ,Bm, Dix).

Proof. This is an easier version of the proof of Lemma 5.1. �
6. Analytical results on multiple operator integrals

The purpose of this section is to prove the following theorem.

Theorem 6.1. Let x ∈ C∞(Td
θ ) be positive and invertible. For every n ∈ N, b1, . . . , bn ∈

C∞(Td
θ ), and every k ∈ 2Z+ such that 2n − k ≥ 0, we have

1
2π

∫
Rd

( ∞∫
−∞

|s|−kSn
s,iλ(b1, . . . , bn)eiλdλ

)
ds = (−1) k

2 π
d
2 · T x

F
[n]
k,d

(b1, . . . , bn),

where Fk,d is any k2
th primitive of α �→ α− d

2 .

For any open interval I ⊆ R and any n ∈ N we will use the space

Ẇn,2(I) := {f ∈ S ′(I) : f (n) ∈ L2(I)}

(where S ′(I) denotes the tempered distributions on I) with associated seminorm

‖f‖Ẇn,2(I) := ‖f (n)‖L2(I) .

By slight abuse of notation, we denote by (Ẇn,2 ∩ Ẇn+1,2)(I) the space of equivalence 
classes of functions in Ẇn,2(I) ∩Ẇn+1,2(I) modulo polynomials of degree at most n −1. 
We omit the notation for ‘the equivalence class of’. We equip (Ẇn,2 ∩ Ẇn+1,2)(I) with 
the norm

‖f‖(Ẇn,2∩Ẇn+1,2)(I) := ‖f (n)‖L2(I) + ‖f (n+1)‖L2(I) .

This space (Ẇn,2 ∩ Ẇn+1,2)(I) is a Banach space, as can be shown by standard tech-
niques. Note also that any f ∈ Ẇn,2(I) is a continuous function, because f (n) is locally 
integrable. Hence, any representative of a class in (Ẇn,2 ∩ Ẇn+1,2)(I) is a continuous 
function.
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Lemma 6.2. Let x ∈ L∞(Td
θ ) be self-adjoint and let I be an open interval containing 

spec(x). Let f be a Schwartz function on R. For all b1, . . . , bn ∈ L∞(Td
θ ) we have

‖T x
f [n](b1, · · · , bn)‖∞ ≤ cn,x,I‖f‖(Ẇn,2∩Ẇn+1,2)(I)

n∏
l=1

‖bl‖∞.

Proof. Let J = [inf spec(x), sup spec(x)] ⊆ I. Let φ be a smooth function supported in 
I such that φ equals 1 on J . We have

f [n](α0, · · · , αn) =
∫
Sn

f (n)
( n∑

j=0
λjαj

)
dλ,

where the integration is taken with respect to the standard measure on the simplex 
Sn = {λ ∈ Rn+1

≥0 :
∑n

j=0 λj = 1}. If α0, · · · , αn ∈ spec(x), then 
∑n

j=0 λjαj ∈ J . 
Therefore, denoting the Fourier transform of the Schwartz function f (n)φ by ̂(f (n)φ), we 
have

f [n](α0, · · · , αn) =
∫
Sn

(f (n)φ)
( n∑

j=0
λjαj

)
dλ

= 1√
2π

∫
Sn

∫
R

̂(f (n)φ)(t)eitλ0α0 · · · eitλnαndt dλ,

whenever α0, · · · , αn ∈ spec(x). Thus,

‖T x
f [n](b1, · · · , bn)‖∞ ≤ 1√

2πn!
‖ ̂(f (n)φ)‖L1(R)

n∏
l=1

‖bl‖∞.

Note that

‖ ̂(f (n)φ)‖L1(R) ≤
√

2
(
‖f (n)φ‖L2(I) + ‖(f (n)φ)′‖L2(I)

)
.

By the Leibniz rule, we deduce

‖ ̂(f (n)φ)‖L1(R) ≤ ‖f (n)‖L2(I)(‖φ‖∞ + ‖φ′‖∞) + ‖f (n+1)‖L2(I)‖φ‖∞.

Since φ depends only on x and I, the assertion follows. �
6.1. Integration over the symbol of a multiple operator integral

In this subsection we prove the following general result. We let (σtf)(α) := f(α/t)
denote the dilation operator.
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Theorem 6.3. Let x ∈ B(H) be positive and invertible. Let f be a Schwartz function on 
R. Let k ∈ 2Z+ and n ∈ N be such that 2n ≥ k. For all b1, . . . , bn ∈ B(H) we have∫

Rd

|s|−kT x
(σ|s|−2f)[n](b1, . . . , bn) ds =

∫
Rd

f ( k
2 )(|s|2)ds · T x

F
[n]
k,d

(b1, . . . , bn),

where the left-hand side is a Bochner integral taking values in B(H), and Fk,d is any k2
th

primitive of α �→ α− d
2 on (0, ∞) (cf. Remark 3.4).

Lemma 6.4. Let k ∈ 2Z+. Let f be a Schwartz function on R and let φ be a Schwartz 
function on Rd that equals 1 on a neighbourhood of 0. There exists a k2

th order primitive 
Fk,d of α �→ α− d

2 such that, for all α > 0,

∫
Rd

|s|−k
(
f(α|s|2) −

k
2−1∑
j=0

f (j)(0)
j! (α|s|2)j · φ(s)

)
ds =

∫
Rd

f ( k
2 )(|s|2)ds · Fk,d(α).

Proof. The left-hand side integral converges because, as s → 0, the expression between 
brackets is O(|s|k). Similarly this integral converges after differentiating the integrand 
with respect to α. Denoting the left-hand side by G(α), we have

G( k
2 )(α) =

∫
Rd

f ( k
2 )(α|s|2)ds = α− d

2

∫
Rd

f ( k
2 )(|s|2)ds.

Integrating k2 times, we complete the proof. �
We have the following simple but powerful proposition.

Proposition 6.5. Let n ∈ N and let x ∈ B(H) be self-adjoint. Let I be an open interval 
containing the spectrum of x. Let s �→ hs (s ∈ Rd) be a Bochner integrable mapping 
taking values in (Ẇn,2 ∩ Ẇn+1,2)(I). Denote its Bochner integral by

h =
∫
Rd

hs ds.

Then h ∈ (Ẇn,2 ∩ Ẇn+1,2)(I) and∫
Rd

T x

h
[n]
s

(b1, . . . , bn) ds = T x
h[n](b1, . . . , bn),

where the left-hand side is a Bochner integral with values in B(H).
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Proof. By Lemma 6.2, the map

T : (Ẇn,2 ∩ Ẇn+1,2)(I) → B(H), f �→ T x
f [n](b1, . . . , bn)

is a continuous linear map between Banach spaces. Hence s �→ T (hs) is Bochner inte-
grable over Rd and 

∫
Rd T (hs)ds = T (

∫
Rd hsds) = T (h). �

The function playing the role of hs in the above proposition will be hs =
|s|−k(σ|s|−2f)|I , where (σtf)(α) := f(α/t) denotes the dilation operator.

Lemma 6.6. Let f be a Schwartz function on R. Let I be a bounded open interval separated 
from 0. If n ∈ N and k ∈ Z+ satisfy 2n ≥ k, then the mapping

s �→ |s|−k(σ|s|−2f)|I , 0 	= s ∈ Rd.

is Bochner integrable to (Ẇn,2 ∩ Ẇn+1,2)(I).

Proof. It is immediate that

(|s|−kσ|s|−2f)(n) = |s|2n−kσ|s|−2f (n),

(|s|−kσ|s|−2f)(n+1) = |s|2n+2−kσ|s|−2f (n+1).

These functions of s are continuous from Rd\{0} to L2(R). Hence, the mapping s �→
|s|−kσ|s|−2f is continuous from Rd\{0} to (Ẇn,2 ∩ Ẇn+1,2)(R). Hence, the mapping 
s �→ |s|−k(σ|s|−2f)|I is continuous from Rd\{0} to (Ẇn,2 ∩ Ẇn+1,2)(I), and therefore 
Bochner measurable.

Regarding absolute integrability, we have

‖(|s|−kσ|s|−2f)(n)‖L2(I) = |s|2n−k−1‖f (n)‖L2(|s|2I) ,

‖(|s|−kσ|s|−2f)(n+1)‖L2(I) = |s|2n−k+1‖f (n+1)‖L2(|s|2I) .

Thus,

‖|s|−kσ|s|−2f‖(Ẇn,2∩Ẇn+1,2)(I) ≤ (|s|2n−k−1 + |s|2n−k+1)‖f‖(Ẇn,2∩Ẇn+1,2)(|s|2I) .

As I is bounded away from 0, and f is Schwartz, the latter expression decays rapidly 
as |s| → ∞. Moreover, as 2n − k ≥ 0, the factor (|s|2n−k−1 + |s|2n−k+1) is of or-
der O(|s|−1) as |s| → 0. As I is bounded, and f (n), f (n+1) are continuous at 0, 
the factor ‖f‖(Ẇn,2∩Ẇn+1,2)(|s|2I) is of order O(|s|) as |s| → 0. Hence, the mapping 
s → |s|−k(σ|s|−2f)|I is absolutely integrable with respect to (Ẇn,2∩ Ẇn+1,2)(I) and the 
assertion follows. �

The following lemma gives a simplified expression for h =
∫

d hs ds.
R
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Lemma 6.7. Let f be a Schwartz function on R. Let n ∈ N and k ∈ 2Z+ such that 
2n ≥ k. Let I ⊆ (0, ∞) be a bounded open interval separated from 0. There exists a k2

th

order primitive Fk,d of α �→ α− d
2 such that∫

Rd

|s|−k(σ|s|−2f)|I ds =
∫
Rd

f ( k
2 )(|s|2)ds · Fk,d|I ,

where the left-hand side is a Bochner integral with values in (Ẇn,2 ∩ Ẇn+1,2)(I), and 
the right-hand side is interpreted as an element of (Ẇn,2 ∩ Ẇn+1,2)(I) as well.

Proof. Note that elements of (Ẇn,2∩Ẇn+1,2)(I) are not exactly functions, but functions 
modulo polynomials of degree < n. For every s ∈ Rd \ {0}, a particular representative 
of |s|−k(σ|s|−2f)|I ∈ (Ẇn,2 ∩ Ẇn+1,2)(I) is given by the function

h̃s : I → R, h̃s(α) := |s|−k
(
f(α|s|2) −

k
2−1∑
j=0

f (j)(0)
j! (α|s|2)j · φ(s)

)
.

Here, φ is a Schwartz function on Rd that equals 1 on a neighbourhood of 0. For a given 
α ∈ I, we have ∣∣h̃s(α)

∣∣ = |s|−k · O((|s|2) k
2 ) = O(|s|0).

Consequently, s �→ h̃s(α) is integrable for every α ∈ I, and the same holds for 
s �→ h̃

(j)
s (α), j ≤ n. Recall that s �→ |s|−k(σ|s|−2f)|I is Bochner integrable by Lemma 6.6. 

By using the definition of (Ẇn,2 ∩ Ẇn+1,2)(I), and subsequently using dominated con-
vergence on α �→

∫
h̃

(j)
s (α)ds, we obtain for almost every α ∈ I,

( ∫
Rd

|s|−k(σ|s|−2f)|I ds
)(n)

(α) =
∫
Rd

h̃(n)
s (α) ds = dn

dαn

( ∫
Rd

h̃s(α) ds
)
.

Therefore, α �→
∫
h̃s(α)ds is a representative of 

∫
|s|−k(σ|s|−2f)|Ids. By Lemma 6.4 we 

have ∫
Rd

h̃s(α) ds =
∫
Rd

f ( k
2 )(|s|2)ds · Fk,d(α) (α ∈ I),

and so the proof is complete. �
Proof of Theorem 6.3. Let I = (1

2 inf spec(x), 2 sup spec(x)) and hs = |s|−k(σ|s|−2f)|I , 
s ∈ Rd. By Lemma 6.6, the conditions in Proposition 6.5 are met for the mapping s �→ hs. 
Using Proposition 6.5 (and the fact that g �→ T x

[n] factors through g �→ g|I) we have

g
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∫
Rd

|s|−kT x
(σ|s|−2f)[n](b1, . . . , bn) ds =

∫
Rd

T x

h
[n]
s

(b1, . . . , bn) ds

= T x
h[n](b1, . . . , bn),

where

h =
∫
Rd

hs ds =
∫
Rd

|s|−k(σ|s|−2f)|I ds.

By Lemma 6.7, we have

h =
∫
Rd

f ( k
2 )(|s|2)ds · Fk,d|I ,

completing the proof. �
6.2. Integral formula relating the base cases of recursion

We can now prove the main theorem of Section 6.

Proof of Theorem 6.1. By definition of Sn
s,z (equation (5.2)) we have, for s 	= 0,

1
2π

∞∫
−∞

|s|−kSn
s,iλ(b1, . . . , bn)eiλ dλ

= (−1)n|s|2n−k · 1
2π

∞∫
−∞

1
x|s|2 + iλ

b1
1

x|s|2 + iλ
· · · bn

1
x|s|2 + iλ

eiλ dλ.

Next,

1
2π

∞∫
−∞

1
x|s|2 + iλ

b1
1

x|s|2 + iλ
· · · bn

1
x|s|2 + iλ

eiλdλ = T x
Ψs

(b1, . . . , bn),

where

Ψs(α0, . . . , αn) := 1
2π

∞∫
−∞

1
α0|s|2 + iλ

1
α1|s|2 + iλ

· · · 1
αn|s|2 + iλ

eiλdλ,

for all α0, . . . , αn > 0. Let f be any Schwartz function that on (0, ∞) ⊆ R is defined by

f(α) := 1
2π

∞∫ 1
α + iλ

eiλdλ = e−α, α > 0.

−∞
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Using the dilation (σ|s|−2f)(α) = f(|s|2α) and computing the divided differences of 
α �→ 1

α|s|2+iλ , we obtain

Ψs|(0,∞)n+1 = (−1)n|s|−2n(σ|s|−2f)[n]|(0,∞)n+1 .

Therefore,

1
2π

∞∫
−∞

|s|−kSn
s,iλ(b1, . . . , bn)eiλdλ = |s|−kT x

(σ|s|−2f)[n](b1, . . . , bn). (6.1)

By Theorem 6.3, and the fact that∫
Rd

f ( k
2 )(|s|2)ds = (−1) k

2

∫
Rd

e−|s|2 ds = (−1) k
2 π

d
2 ,

the assertion follows. �
7. Proof of the main theorem

We can summarise the previous section in the following way.

Corollary 7.1. Let x ∈ C∞(Td
θ ) be positive and invertible. For all m ∈ N, B1, . . . , Bm ∈

X and k ∈ 2Z+ such that 2m ≥ k, we have

1
2π

∫
Rd

( ∞∫
−∞

|s|−kSm
s,iλ(B1, . . . ,Bm)eiλdλ

)
ds = (−1) k

2 π
d
2 · Tx,m

Fk,d
(B1, . . . ,Bm),

where Fk,d is any k2
th primitive of α �→ α− d

2 .

Proof. This follows from the matching recursive properties of Tx,m
f (Definition 3.1) and 

Sm
s,z (Lemmas 5.1 and 5.2) and the base case, Theorem 6.1. �
The above corollary is the final ingredient needed for the proof of our main theorem.

Proof of Theorem 3.3. By the definition of Ik(P ) as given in Section 4.1 we have

Ik(P ) = 1
2π

∫
Rd

( ∞∫
−∞

∑
k
2≤m≤k

(−1)m
∑

A ⊆{1,...,m}
|A |=2m−k

1
x|s|2 + z

·WA
1 (s)

( 1
x|s|2 + z

· · ·WA
m (s)

( 1
x|s|2 + z

)
· · ·

)
eiλ dλ

)
ds.
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Using the definition of Sm
s,z (see (5.2)), and introducing elements WA

j (s) ∈ X for which 
π(WA

j (s)) = WA
j (s), we rewrite the latter expression as

Ik(P ) = 1
2π

∫
Rd

( ∞∫
−∞

∑
k
2≤m≤k

∑
A ⊆{1,...,m}
|A |=2m−k

1
|s|2mSm

s,iλ(WA
1 (s), . . . ,WA

m (s))eiλ dλ
)
ds.

By expressing WA
j (s) in terms of WA ,ι

j of (3.5) (see also (4.3)) we obtain

Sm
s,z(WA

1 (s), . . . ,WA
m (s)) =

∑
ι:A →{1,...,d}

( ∏
j∈A

sι(j)

)
Sm
s,z(W

A ,ι
1 , . . . ,WA ,ι

m ).

Thus,

Ik(P ) = 1
2π

∑
k
2≤m≤k

∑
A ⊆{1,...,m}
|A |=2m−k

∑
ι:A →{1,...,d}

∫
Rd

(∏
j∈A sι(j)

|s|2m

∞∫
−∞

Sm
s,iλ(WA ,ι

1 , . . . ,WA ,ι
m )eiλ dλ

)
ds.

Since the mapping

s �→
∞∫

−∞

Sm
s,iλ(WA ,ι

1 , . . . ,WA ,ι
m )eiλdλ, s ∈ Rd,

is a function of |s|, we can apply the general formula∫
Rd

sn

|s||n|1 g(|s|)ds = 1
Vol(Sd−1)

∫
Sd−1

undu ·
∫
Rd

g(|s|)ds (7.1)

≡ c
(ι)
d

∫
Rd

g(|s|)ds,

for n ∈ Zd
+ satisfying nj = |ι−1({j})|, and find that

Ik(P ) =
∑

k
2≤m≤k

∑
A ⊆{1,...,m}
|A |=2m−k

∑
ι:A →{1,...,d}

c
(ι)
d

1
2π

·
∫
Rd

( ∞∫
−∞

|s|−kSm
s,iλ(WA ,ι

1 , . . . ,WA ,ι
m )eiλ dλ

)
ds.

By applying Corollary 7.1, we obtain our main theorem. �
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8. The case k = 2: ‘scalar curvature’

Although the formula in Corollary 3.6 can be obtained directly from the computer 
(as done in Appendix A) we will first give an explicit proof by hand, demonstrating the 
simplicity of the algorithm. We fix d ∈ N≥2 and F2,d as in Remark 3.4

Lemma 8.1. For any P of the form (1.2) with positive invertible x, (3.7) gives

−π− d
2 I2(P ) = Tx,1

F2,d
(P) + 1

d

d∑
i=1

Tx,2
F2,d

(Ai,Ai). (8.1)

Proof. Our main theorem (Theorem 3.3) in the case k = 2 becomes

I2(P ) = −
∑

1≤m≤2

∑
A ⊆{1,...,m}
|A |=2m−2

∑
ι:A →{1,...,d}

c
(ι)
d π

d
2 Tx,m

F2,d
(WA ,ι

1 , . . . ,WA ,ι
m ). (8.2)

If m = 1 then |A | = 2m − 2 implies A = ∅; we then denote the unique function 
ι : A → {1, . . . , d} by ι = ∅. If m = 2 then |A | = 2m − 2 implies A = {1, 2}; we then 
identify ι : {1, 2} → {1, . . . , d} with (i, j) = (ι(1), ι(2)) for i, j ∈ {1, . . . , d}. We obtain

I2(P ) = − c
(∅)
d π

d
2 Tx,1

F2,d
(W∅,∅

1 ) −
d∑

i,j=1
c
(i,j)
d π

d
2 Tx,2

F2,d
(WA ,(i,j)

1 ,WA ,(i,j)
2 )

= − c
(∅)
d π

d
2 Tx,1

F2,d
(P) −

d∑
i,j=1

c
(i,j)
d π

d
2 Tx,2

F2,d
(Ai,Aj).

Remark 3.5 gives c(∅)d = (d−2)!!
(0+d−2)!! = 1 and c(i,j)d = δi,j

(d−2)!!
(2+d−2)!! = δi,j

1
d . We therefore 

obtain (8.1). �
Proof of Corollary 3.6. We work out the first term on the right hand side of (8.1) by 
using (3.6) and Definition 3.1. In a similar way to Example 3.2 we obtain

Tx,1
F2,d

(P) =Tx,1
F2,d

(x
d∑

i=1
D2

i +
d∑

i=1
aiDi + a)

=
d∑

i=1

(
Tx,2

F2,d
(xDi, Dix) + Tx,2

F2,d
(ai, Dix)

)
+ Tx,1

F2,d
(a)

=
d∑

i=1

(
Tx,3

F2,d
(x,Dix,Dix) + Tx,2

F2,d
(x,DiDix) + Tx,2

F2,d
(x, (Dix)Di)

+ T x
[2] (ai, Dix)

)
+ T x

[1] (a)

F2,d F2,d
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=
d∑

i=1

(
2T x

F
[3]
2,d

(x,Dix,Dix) + T x

F
[2]
2,d

(ai, Dix)
)

+ T x

F
[2]
2,d

(x,Δx) + T x

F
[1]
2,d

(a).

Once you get the hang of it, working out the second term is child’s play. For all i ∈
{1, . . . , d} we obtain

Tx,2
F2,d

(Ai,Ai)

= Tx,2
F2,d

(2xDi + ai, 2xDi + ai)

= 4Tx,3
F2,d

(xDi, x,Dix) + 2Tx,2
F2,d

(xDi, ai)

+ 2T x

F
[3]
2,d

(ai, x,Dix) + T x

F
[2]
2,d

(ai, ai)

= 4
(
Tx,4

F2,d
(x,Dix, x,Dix) + Tx,3

F2,d
(x,Dix,Dix) + Tx,4

F2,d
(x, x,Dix,Dix)

+ Tx,3
F2,d

(x, x,DiDix) + Tx,4
F2,d

(x, x,Dix,Dix)
)

+ 2
(
Tx,3

F2,d
(x,Dix, ai)

+ Tx,2
F2,d

(x,Diai) + Tx,3
F2,d

(x, ai, Dix)
)

+ 2T x

F
[3]
2,d

(ai, x,Dix) + T x

F
[2]
2,d

(ai, ai)

= 4T x

F
[4]
2,d

(x,Dix, x,Dix) + 4T x

F
[3]
2,d

(x,Dix,Dix) + 8T x

F
[4]
2,d

(x, x,Dix,Dix)

+ 4T x

F
[3]
2,d

(x, x,D2
i x) + 2T x

F
[3]
2,d

(x,Dix, ai) + 2T x

F
[2]
2,d

(x,Diai)

+ 2T x

F
[3]
2,d

(x, ai, Dix) + 2T x

F
[3]
2,d

(ai, x,Dix) + T x

F
[2]
2,d

(ai, ai).

Inserting both results into (8.1) yields Corollary 3.6. �
8.1. Conjugation property

The goal of this subsection is to show that I2 satisfies the conjugation property of 
Proposition 8.5, which is needed in the proof of Theorem 3.8.

Firstly, we define a right action of C∞(Td
θ ) on X by extending

Dib := Dib + bDi (b ∈ C∞(Td
θ )), (8.3)

to a C∞(Td
θ )-bimodule structure on X in the obvious way. (To be precise, bDαc =∑

β+γ=α bDβcDγ if α ∈ {0, 1}d, which one can assume without loss of generality.) One 
easily checks well-definedness of this structure. Moreover, using the notation introduced 
in (5.1), one easily checks that

π(bDαc) = λl(b)Dαλl(c), (8.4)

for all b, c ∈ C∞(Td
θ ) and α ∈ Zd

+.
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Lemma 8.2. Let x, y ∈ C∞(Td
θ ) with x self-adjoint, y invertible, and [x, y] = 0. We have

Tx,2
F2,d

(y−1xDiy, y
−1xDiy) =y−1Tx,2

F2,d
(xDi, xDi)y + 1

2y
−1 · x2F ′′

2,d(x) ·D2
i y

+ y−1
(
Tx,2

F2,d
(xDi, x) + Tx,2

F2,d
(x, xDi)

)
·Diy.

Proof. Using (8.4) in the definition of S2
s,z (i.e., (5.2)), it follows that

S2
s,z(y−1xDiy, y

−1xDiy) = y−1S2
s,z(xDi, xDiy).

Again using the definition of S2
s,z, we find

S2
s,z(xDi, xDiy) = |s|4x

x|s|2 + z
Di

( x

x|s|2 + z
Di

y

x|s|2 + z

)
.

By the Leibniz rule, we have

Di

( x

x|s|2 + z
Di

y

x|s|2 + z

)
= Di

( x

(x|s|2 + z)2 ·Diy
)

+ Di

( x

x|s|2 + z
Di

( 1
x|s|2 + z

)
y
)

= x

(x|s|2 + z)2 ·D2
i y + Di

( x

(x|s|2 + z)2
)
·Diy+

+ x

x|s|2 + z
Di

( 1
x|s|2 + z

)
·Diy + Di

( x

x|s|2 + z
Di

( 1
x|s|2 + z

))
· y.

Again appealing to the definition (5.2) of S2
s,z, we write

S2
s,z(xDi, xDiy)

= S2
s,z(x, x)D2

i y + S2
s,z(xDi, x)Diy + S2

s,z(x, xDi)Diy + S2
s,z(xDi, xDi)y.

By doubly integrating both sides of the above equality, applying Corollary 7.1 to the 
resulting terms, and using that

T x

F
[2]
2,d

(x, x) = x2 1
2F

′′
2,d(x),

the lemma follows. �
Lemma 8.3. Let x, y ∈ C∞(Td

θ ) be invertible with x ≥ 0 and [x, y] = 0. We have

Tx,1
F2,d

(y−1xΔy) = y−1xF ′
2,d(x)Δy + 2

d∑
y−1Tx,1

F2,d
(xDi)Diy + y−1Tx,1

F2,d
(xΔ)y.
i=1
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Proof. By using (8.4) in the definition of S1
s,z, we find

S1
s,z(y−1xΔy) = − |s|2y−1x

x|s|2 + z
Δ
( y

x|s|2 + z

)
.

By the Leibniz rule, we have

Δ
( y

x|s|2 + z

)
= 1

x|s|2 + z
Δy + 2

d∑
i=1

Di

( 1
x|s|2 + z

)
·Diy + Δ

( 1
x|s|2 + z

)
· y.

Thus,

S1
s,z(y−1xΔy) = y−1S1

s,z(x)Δy + 2
d∑

i=1
y−1S1

s,z(xDi)Diy + y−1S1
s,z(xΔ)y.

Like in the previous proof, the assertion follows by appealing to Corollary 7.1. �
Lemma 8.4. Let x ∈ C∞(Td

θ ) be positive and invertible. We have

dTx,1
F2,d

(xDi) + 2Tx,2
F2,d

(xDi, x) + 2Tx,2
F2,d

(x, xDi) = 0. (8.5)

Proof. By the recursive definition of Tx,m
φ (Definition 3.1), we have

dTx,1
F2,d

(xDi) = dT x

F
[2]
2,d

(x,Dix), 2Tx,2
F2,d

(x, xDi) = 2T x

F
[3]
2,d

(x, x,Dix), (8.6)

2Tx,2
F2,d

(xDi, x) = 2Tx,3
F2,d

(x,Dix, x) + 2Tx,2
F2,d

(x,Dix) + 2Tx,2
F2,d

(x, xDi)

= 2T x

F
[3]
2,d

(x,Dix, x) + 2T x

F
[2]
2,d

(x,Dix) + 2T x

F
[3]
2,d

(x, x,Dix). (8.7)

By the definition of the multiple operator integral, we may rewrite the above terms as 
Tφ(Dix), for instance, for any function f we may rewrite

T x
f (x,Dix, x) = T x

φ1
(Dix), where φ1(α0, α1) = α0f(α0, α0, α1, α1)α1.

In the same way, by using (8.6) and (8.7), the left-hand side of (8.5) equals T x
φ (Dix), 

where

φ(α0, α1) =dα0F
[2]
2,d(α0, α0, α1) + 2α0α1F

[3]
2,d(α0, α0, α1, α1)

+ 2α0F
[2]
2,d(α0, α0, α1) + 4α2

0F
[3]
2,d(α0, α0, α0, α1).

Note that φ is homogeneous. Thus, it suffices to prove that φ(1, α) = 0. In other 
words, we need to show

(d + 2)F [2]
2,d(1, 1, α) + 2αF [3]

2,d(1, 1, α, α) + 4F [3]
2,d(1, 1, 1, α) = 0.



T. van Nuland et al. / Journal of Functional Analysis 288 (2025) 110754 29
This equality is an elementary exercise, albeit rather long, and its proof is omitted. �
Proposition 8.5. Let x, y ∈ C∞(Td

θ ) be invertible with x ≥ 0 and [x, y] = 0. We have

I2(λl(y−1x)Δλl(y)) = y−1 · I2(λl(x)Δ) · y.

Proof. From (8.3) we obtain

y−1xΔy = xΔ +
d∑

i=1
aiDi + a,

ai = 2y−1xDi(y), 1 ≤ i ≤ d, a = y−1xΔy.

From this one can derive that

Ai = 2y−1xDiy.

By Lemma 8.1 we have

−π− d
2 I2(λl(y−1x)Δλl(y)) = Tx,1

F2,d
(y−1xΔy) + 4

d

d∑
i=1

Tx,2
F2,d

(y−1xDiy, y
−1xDiy).

Using Lemma 8.2 and Lemma 8.3, we write

−π− d
2 I2(λl(y−1x)Δλl(y))

=y−1
(
Tx,1

F2,d
(xΔ) + 4

d

d∑
i=1

Tx,2
F2,d

(xDi, xDi)
)

+ y−1
(
xF ′

2,d(x) + 2
d
x2F ′′

2,d(x)
)
Δy+

+
d∑

i=1
y−1

(
2Tx,1

F2,d
(xDi) + 4

d
Tx,2

F2,d
(xDi, x) + 4

d
Tx,2

F2,d
(x, xDi)

)
Diy.

Since F2,d is the primitive of α → α− d
2 , it follows that

xF ′
2,d(x) + 2

d
x2F ′′

2,d(x) = x · x− d
2 + 2x2

d
· (−d

2x
−1− d

2 ) = 0.

So, the second summand on the right hand side vanishes. Third summand on the right 
hand side vanishes by Lemma 8.4. This completes the proof. �
8.2. Proof of Theorem 3.8

Lemma 8.6. Let x ∈ C∞(Td
θ ) be positive and invertible. Let d ≥ 2. We have

−π− d
2 I2(λl(x

1
2 )Δλl(x

1
2 )) = T x

Φ(Δx) +
d∑

T x
Ψ(Dix,Dix),
i=1
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for the symbols Φ, Ψ defined by F2,d, a first order primitive of α �→ α− d
2 , as

Φ(α0, α1) :=
(α1

α0

) 1
2
(
α0F

[2]
2,d(α0, α0, α1) + 4

d
α2

0F
[3]
2,d(α0, α0, α0, α1)

)
,

Ψ(α0, α1, α2) :=(α2

α0
) 1

2

(4
d
α0α1F

[4]
2,d(α0, α0, α1, α1, α2)

+ (2 + 4
d
)α0F

[3]
2,d(α0, α0, α1, α2) + 8

d
α2

0F
[4]
2,d(α0, α0, α0, α1, α2)

)
,

for α0, α1, α2, α > 0.

Proof. Using Corollary 3.6 we find

−π− d
2 I2(λl(x)Δ) =T x

F
[2]
2,d

(x,Δx) + 4
d
T x

F
[3]
2,d

(x, x,Δx) +
2∑

i=1

(
4
d
T x

F
[4]
2,d

(x,Dix, x,Dix)

+ (2 + 4
d
)T x

F
[3]
2,d

(x,Dix,Dix) + 8
d
T x

F
[4]
2,d

(x, x,Dix,Dix)
)
.

Combining the above formula with Proposition 8.5 and computing the resulting symbols 
yields the lemma. �

The rest of this section consists purely of algebraically rewriting the above formulas 
for Φ and Ψ into a more concise form, and thusly derives Theorem 3.8. Let us again fix 
d ≥ 2 and F2,d as in Remark 3.4.

Lemma 8.7. For Φ as in Lemma 8.6, we have

Φ(α0, α1) = 2(α0α1)
1
2

d
·
α0F

[2]
2,d(α0, α0, α1) − α1F

[2]
2,d(α0, α1, α1)

α1 − α0
, α0, α1 > 0.

Proof. By definition of Φ in Lemma 8.6, we have (α0, α1 > 0 as always)

(α0α1)−
1
2 Φ(α0, α1) = F

[2]
2,d(α0, α0, α1) + 4

d
α0F

[3]
2,d(α0, α0, α0, α1).

Thus,

(α1 − α0) · (α0α1)−
1
2 Φ(α0, α1)

= F
[1]
2,d(α0, α1) − F

[1]
2,d(α0, α0) + 4α0

d
F

[2]
2,d(α0, α0, α1) −

4α0

d
F

[2]
2,d(α0, α0, α0).

By definition,

F
[1]
2,d(α0, α0) + 4α0

F
[2]
2,d(α0, α0, α0) = F ′

2,d(α0) + 2α0
F ′′

2,d(α0) = 0.

d d
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Thus,

(α1 − α0) · (α0α1)−
1
2 Φ(α0, α1) = F

[1]
2,d(α0, α1) + 4α0

d
F

[2]
2,d(α0, α0, α1)

and

(α1 − α0)2 · (α0α1)−
1
2 Φ(α0, α1)

= F2,d(α1) − F2,d(α0) + 4α0

d
F

[1]
2,d(α0, α1) −

4α0

d
F

[1]
2,d(α0, α0)

= (1 − 2
d
)
(
F2,d(α1) − F2,d(α0)

)
+ 2(α0 + α1)

d
F

[1]
2,d(α0, α1) −

4α0

d
F ′

2,d(α0).

The right-hand side, clearly, equals

2
d

(
(α0 + α1)F [1]

2,d(α0, α1) − (α1− d
2

0 + α
1− d

2
1 )

)
= 2

d

(
α0(F [1]

2,d(α0, α1) − F ′
2,d(α0)) + α1(F [1]

2,d(α0, α1) − F ′
2,d(α1))

)
= 2

d

(
α0(α1 − α0)F [2]

2,d(α0, α0, α1) − α1(α1 − α0)F [2]
2,d(α0, α1, α1)

)
.

Thus,

(α1 − α0) · (α0α1)−
1
2 Φ(α0, α1) = 2

d

(
α0F

[2]
2,d(α0, α0, α1) − α1F

[2]
2,d(α0, α1, α1)

)
. �

Lemma 8.8. Let f, g ∈ C∞((0, ∞)) be such that f + g′ = 0. If

ψ(α, β) = f [2](α, α, β) + 2g[3](α, α, α, β),

then

ψ(α, β) = −g[3](α, α, β, β).

Proof. As f = −g′, we have

ψ(α, β) = −(g′)[2](α, α, β) + 2g[3](α, α, α, β)

= − (g′)[1](α, β) − (g′)[1](α, α)
β − α

+ 2
g[2](α, α, β) − 1

2g
(2)(α)

β − α

= 1
β − α

(
2g[2](α, α, β) − (g′)[1](α, β)

)
= 1 (

2g
[1](α, α) − g[1](α, β) − g[1](α, α) − g[1](β, β))
β − α α− β α− β
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= 1
β − α

(g[1](α, α) − g[1](α, β)
α− β

− g[1](α, β) − g[1](β, β)
α− β

)
= 1

β − α
(g[2](α, α, β) − g[2](α, β, β)),

concluding the proof. �
Lemma 8.9. For Ψ as in Lemma 8.6, we have

Ψ(α, 1, β) = −4
d
(αβ) 1

2 g[3](α, α, β, β), α, β > 0.

Here,

g(α) = F2,d(α) + F
[1]
2,d(1, α), α > 0.

Proof. By definition of Ψ in Lemma 8.6, we have

d

4
1

(αβ) 1
2
Ψ(α, 1, β)

= F
[4]
2,d(α, α, 1, 1, β) +

(d
2 + 1

)
F

[3]
2,d(α, α, 1, β) + 2αF [4]

2,d(α, α, α, 1, β).

Note that

αF
[4]
2,d(α, α, α, 1, β) = (α− 1)F [4]

2,d(α, α, α, 1, β) + F
[4]
2,d(α, α, α, 1, β)

= F
[3]
2,d(α, α, α, β) − F

[3]
2,d(α, α, 1, β) + F

[4]
2,d(α, α, α, 1, β).

Thus,

d

4
1

(αβ) 1
2
Ψ(α, 1, β) = F

[4]
2,d(α, α, 1, 1, β) +

(d
2 − 1

)
F

[3]
2,d(α, α, 1, β)

+ 2F [3]
2,d(α, α, α, β) + 2F [4]

2,d(α, α, α, 1, β)

= f [2](α, α, β) + 2g[3](α, α, α, β),

where

f(α) = F
[2]
2,d(1, 1, α) +

(d
2 − 1

)
F

[1]
2,d(1, α); g(α) = F2,d(α) + F

[1]
2,d(1, α).

By writing out the divided differences explicitly, it is straightforward to show that f+g′ =
0. The assertion now follows from Lemma 8.8. �
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Proof of Theorem 3.8. By Lemma 8.6, we obtain the assertion of Theorem 3.8, with 
alternate expressions for Φ and Ψ. It is established in Lemma 8.7 that the expressions 
for Φ in Lemma 8.6 and in Theorem 3.8 coincide.

Note that Ψ (as in Lemma 8.6) is homogeneous of degree −1 − d
2 , so that

Ψ(α0, α1, α2) = α
−1− d

2
1 Ψ(α0

α1
, 1, α2

α1
), α0, α1, α2 > 0.

The required convenient expression for Ψ now follows from Lemma 8.9. �
9. Recovering the Connes–Moscovici modular curvature

In [7], and, independently, in [13], a formula for the so-called scalar curvature I2(P ) of 
the conformally deformed non-commutative two-torus is given in terms of the modular 
operator of the corresponding conformal factors. Below we show how to recover their 
formulas as a special case of our result by taking P = λl(x1/2)Δλl(x1/2), which in the 
notation of [7] and [13] corresponds to the Laplacian on functions when τ = i.

For our convenience, we define the modular functional calculus as follows.

Definition 9.1. Let d ∈ N≥2, n ∈ N, and x, V1, . . . , Vn ∈ L∞(Td
θ ) with x positive and 

invertible. For any K ∈ C∞(R), H ∈ C∞(R2), and L ∈ C∞(Rn), we set

K(∇)(V1) := T x
K(log(α1

α0
))(V1), H(∇1,∇2)(V1, V2) := T x

H(log(α1
α0

),log(α2
α1

))(V1, V2),

L(∇1, . . . ,∇n)(V1, . . . , Vn) := T x
L(log(α1/α0),...,log(αn/αn−1))(V1, . . . , Vn).

Here and in the following, a multiple operator integral T x
f(α0,...,αn) should be understood 

as T x
(α0,...,αn) �→f(α0,...,αn).

Consider as an important example the case that K(log(α)) = αp. Then

T x
K(log(α1

α0
))(V1) = T x

α−p
0 αp

1
(V1) = x−pV1x

p = Δ̃p(V1) = K(log Δ̃)(V1),

where Δ̃ : V1 �→ e−hV1e
h is the modular operator corresponding to the conformal factor 

h = log x. Extending this argument a bit further, one finds that the above definition 
agrees with the definitions of [7,13]; see [28] for more clarification.

Lemma 9.2. Let d ∈ N≥2. If x = eh for self-adjoint h ∈ C∞(Td
θ ) then for all K ∈ C∞(R)

and H ∈ C∞(R2) we have

T x
ΦK

(Δx) +
d∑

i=1
T x

ΨK,H
(Dix,Dix) = 1

2K(∇)(Δh) + 1
4

d∑
i=1

H(∇1,∇2)(Dih,Dih),

for
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ΦK(α0, α1) =1
2K(log(α1

α0
)) · log[1](α0, α1);

ΨK,H(α0, α1, α2) =K(log(α2

α0
)) · log[2](α0, α1, α2)

+ 1
4H(log(α1

α0
), log(α2

α1
)) · log[1](α0, α1) · log[1](α1, α2).

Proof. As C∞(Td
θ ) is stable under holomorphic functional calculus, we have x = eh ∈

C∞(Td
θ ). By standard arguments in multiple operator integration theory, we find

Dih = T x
log[1](Dix); Δh = T x

log[1](Δx) + 2
d∑

i=1
T x

log[2](Dix,Dix).

Applying Definition 9.1, we obtain the lemma. �
It turns out that ΦK0 = Φ and ΨK0,H0 = Ψ with Φ, Ψ as in Theorem 3.8 and K0 and 

H0 precisely as in the following theorem, proven in an entirely different way in [7].

Theorem 9.3 (Connes–Moscovici). Let x = eh for self-adjoint h ∈ C∞(T 2
θ ) and consider 

P = λl(x1/2)Δλl(x1/2) acting in L2(T 2
θ ). We have

I2(P ) = −π

2

(
K0(∇)(Δh) + 1

2

2∑
i=1

H0(∇1,∇2)(Dih,Dih)
)
,

where

K0(s) :=
−2 + s coth

(
s
2
)

s sinh
(
s
2
) ; H0(s, t) :=

t(s + t) cosh(s) − s(s + t) cosh(t) + (s− t)(s + t + sinh(s) + sinh(t) − sinh(s + t))
st(s + t) sinh(s/2) sinh(t/2) sinh2((s + t)/2)

.

Proof. Let Φ, Ψ be as in Theorem 3.8. A straightforward computation shows that

Φ(1, α) = 1
2K0(log(α)) · log(α)

α− 1 ,

for α > 0. By homogeneity, this yields

Φ(α0, α1) = 1
2K0(log(α1

α0
)) log[1](α0, α1) = ΦK0(α0, α1), α0, α1 > 0,

with ΦK0 as in Lemma 9.2.
We are now left to show that Ψ = ΨK0,H0 , which by homogeneity comes down to 

showing that
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−2(αβ) 1
2 g[3](α, α, β, β) =K0(log(β/α)) · log[2](α, 1, β)

+ 1
4H0(− log(α), log(β)) · log[1](α, 1) · log[1](1, β).

By writing − log(α) = s and log(β) = t, one finds

4
log[1](α, 1) log[1](1, β)

(−2(αβ) 1
2 g[3](α, α, β, β) −K0(log(β/α)) · log[2](α, 1, β))

= 4
(−st)

(e−s−1)(et−1)

(
− 2e− s

2 e
t
2

1
(e−s − et)2

(
s

(e−s − 1)2
+ 1

e−s − 1

− 2
e−s − et

(
e−s

e−s − 1 (−s) − et

et − 1 t
)

+ −t

(et − 1)2
+ 1

et − 1

)

−
(

− 4e
(t+s)

2

(t + s)
(
e(t+s) − 1

) + 2e
(
t+s
2

) ( (
e(t+s) + 1

)(
e(t+s) − 1

)2
))

·
(

1
e−s − et

(
− s

e−s − 1 − t

et − 1

)))
.

Upon multiplying the latter expression with the denominator of H0(s, t), i.e.,

st(s + t) sinh(s/2) sinh(t/2) sinh2((s + t)/2),

and writing the result out explicitly, one straightforwardly obtains the numerator of 
H0(s, t), i.e.,

t(s + t) cosh(s) − s(s + t) cosh(t) + (s− t)(s + t + sinh(s) + sinh(t) − sinh(s + t)).

This concludes the proof. �
9.1. K0 for general d

We now give an example of a completely new modular formula that can be obtained 
from our main result, which generalises the function K0 that appears in the main result 
of [7] to any dimension.

Theorem 9.4. For all d ∈ N≥3, x = eh, h = h∗ ∈ C∞(Td
θ ), P = λl(x1/2)Δλl(x1/2)

acting in L2(Td
θ ), we have

I2(P ) = −πd/2

2 e(1−d/2)h

(
Kd

0 (∇)(Δh) + 1
2

d∑
i=1

Hd
0 (∇1,∇2)(Dih,Dih)

)
, (9.1)



36 T. van Nuland et al. / Journal of Functional Analysis 288 (2025) 110754
Fig. 1. The function Kd
0 for d = 0.01 (red), d = 1 (orange), d = 2.01 (green), d = 3 (blue), d = 4 (purple, 

horizontal axis), and d = 5 (black), plotted with Desmos. (For interpretation of the colours in the figure(s), 
the reader is referred to the web version of this article.)

for some function Hd
0 and

Kd
0 (s) = 2

d
·
−1 − e(1− d

2 )s + e(1−d/2)s−1
1−d/2 coth

(
s
2
)

s sinh
(
s
2
) . (9.2)

The above formula in fact defines a function Kd
0 for every d ∈ (2, ∞), satisfying

lim
d→2

Kd
0 (s) = K0(s),

with K0 as in Theorem 9.3. Moreover, K4
0 = 0 (see Fig. 1).

Proof. By Theorem 3.8 and Lemma 9.2, we obtain (9.1) exactly when Φ(α0, α1) =
α

1− d
2

0 ΦKd
0
(α0, α1) and Ψ(α0, α1, α2) = α

1− d
2

0 ΨKd
0 ,H

d
0
(α0, α1, α2). By homogeneity, we are 

left to derive (9.2) for the function Kd
0 defined by

Kd
0 (log(α)) := 2

log[1](1, α)
· Φ(1, α), (9.3)

with Φ from Theorem 3.8, namely

Φ(1, α) = 2α1/2

d

F
[2]
2,d(1, 1, α) − αF

[2]
2,d(1, α, α)

α− 1 . (9.4)
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Combining (9.3) with (9.4) and substituting α = es, we obtain

Kd
0 (s) =2(es − 1)

s
· 2es/2

d

(
1

(es − 1)2

(
1

1 − d
2

e(1− d
2 )s − 1

es − 1 − 1
)

− es

(es − 1)2

(
e−

d
2 s − 1

1 − d
2

e(1− d
2 )s − 1

es − 1

))
.

Simplifying the above formula, one obtains the desired form of Kd
0 . The last two state-

ments of the theorem follow by using limd→2
e(1−d/2)s−1

1−d/2 = s and coth( s2) = 1+e−s

1−e−s , 
respectively. �

Generalisations of the functions H0, K, H, S et cetera appearing in the main result 
[7, Theorem 3.2] can be similarly obtained. In fact, similar formulas for k > 2 are now 
within easy reach. Although we have proved the theorem above as a consequence of 
Theorem 3.8 (which we think is interesting in its own right) we stress that it can also 
be obtained directly from Theorem 3.3, with the only difference that the intermediate 
formulas become longer. In this way one can obtain any function in the modular operator, 
for any P and k one chooses.

10. The relation with the Iochum–Masson-approach for rational θ

We now relate our approach with the one of [24–26], in which Iochum and Masson 
calculate the local invariants for differential operators on finite dimensional bundles over 
manifolds. Suppose that θ ∈ Md(R) is such that we can identify

C∞(Td
θ ) ⊆ MN (C∞(Td)),

where MN (C∞(Td)) is the algebra of N ×N matrices with entries in C∞(Td). There is 
such an inclusion for d = 2 and rational θ, or in higher dimensions under a slightly more 
convoluted condition on the entries of θ ∈ Md(R) (cf. [38]). In these cases the results of 
[24–26] can be applied. In [25, Appendix B], the final result of [25] is compared to the 
final result of [13], for k = 2 and d = 2. Here, we compare our result to [24] for any d
and any k.

For all m ∈ N, ξ ∈ Rd and all matrix-valued differential operators B1, . . . , Bm, [24, 
eq. (2.1)] defines a matrix denoted fm(ξ)[B1 ⊗ · · · ⊗ Bm] ∈ MN (C), by setting, for all 
v ∈ CN ,

fm(ξ)[B1 ⊗ · · · ⊗Bm]v (10.1)

:=
∫

Δm

e(s1−1)|ξ|2λl(x)B1e
(s2−s1)|ξ|2λl(x) · · ·Bme(sm+1−sm)|ξ|2λl(x)(1M ⊗ v) ds,
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where (1M ⊗ v) is just the section in C∞(Td; CN )) that is constantly v, and Δm = {s ∈
Rm

+ : 0 ≤ sm ≤ · · · ≤ s1 ≤ 1} is the simplex equipped with the flat measure ds of 
total variation 1/m!, and sm+1 := 0. The integrand in (10.1) can be identified with a 
CN -valued function on Td for every ξ and s, which for every ξ is Bochner-integrable in 
s.

With respect to the notation of [24], we restrict ourselves to gμν = δμν , and substitute 
uμν = xδμν , vμ(·) = iaμ, w = −a, and tr = (2π)dτ into the formulas [24, eqs. (1.6-1.7)], 
and note that we may identify −i∂j = Dj . In this case, the formulas [24, (2.4-2.5), etc.]
state that the local invariants of order k ∈ {0, 2, 4} are given by

Ik(P ) =
∫
Rd

∑
k
2≤m≤k

(−1)m
∑

A ⊆{1,...,m}
|A |=2m−k

fm(ξ)[WA
1 (ξ) ⊗ · · · ⊗WA

m (ξ)] dξ, (10.2)

in which we use the notation WA
i from (4.3). Clearly the formula (10.2) works for any 

k, which Iochum and Masson have also noted in personal communication.
We can express their ‘functional calculus’ (10.1) as a multiple operator integral.

Lemma 10.1. For all elements b1 . . . , bm ∈ C∞(Td
θ ) we have

(−1)mfm(ξ)[b1 ⊗ · · · ⊗ bm] = T
|ξ|2x
g[m] (b1, . . . , bm), (10.3)

where g(α) := e−α.

Proof. We obtain,

(−1)mfm(ξ)[b1 ⊗ · · · ⊗ bm]v

= (−1)m
∫

Δm

e(s1−1)|ξ|2xb1e
(s2−s1)|ξ|2x · · · bme−sm|ξ|2xv ds. (10.4)

As b1, . . . , bm are bounded operators, the above expression is a multiple operator integral 
for which we can compute the symbol inductively. Indeed, by using

e−smαm − e−smαm+1

αm − αm+1
= −

sm∫
0

e(sm+1−sm)αme−sm+1αm+1 dsm+1.

we find

(−1)m
∫

Δm

e(s1−1)α0e(s2−s1)α1 · · · e−smαm ds = g[m](α0, . . . , αm),

which is the symbol of the multiple operator integral of (10.4). �
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Proposition 10.2. For all b1, . . . , bm ∈ C∞(Td
θ ) we have

1
2π |ξ|

−2m
∞∫

−∞

Sm
ξ,iλ(b1, . . . , bm)eiλ dλ = (−1)mfm(ξ)[b1 ⊗ · · · ⊗ bm]. (10.5)

More generally, for all B1, . . . , Bm ∈ X we have

1
2π |ξ|

−2m
∞∫

−∞

Sm
ξ,iλ(B1, . . . ,Bm)eiλ dλ = (−1)mfm(ξ)[π(B1) ⊗ · · · ⊗ π(Bm)].

Proof. By using change of variables in the definition of the multiple operator integral, 
and subsequently using Lemma 10.1, we obtain

|ξ|−2mT x
(σ|ξ|−2g)[m](b1, . . . , bm) = T

|ξ|2x
g[m] (b1, . . . , bm)

= (−1)mfm(ξ)[b1 ⊗ · · · ⊗ bm].

By applying (6.1) we find the first part of the proposition.
When replacing bj in (10.5) by differential operators, the left-hand side satisfies the 

same recursive properties as the right-hand side: compare [24, Lemma 2.1] with our 
Lemma 5.1 and Lemma 5.2. By induction (in which (10.5) is the induction base) the 
second part of the proposition follows. �
Theorem 10.3. Let θ be such that C(Td

θ ) ⊆ MN (C(Td)). With the notations as above, 
we have, for all k2 ≤ m ≤ k and A ⊆ {1, . . . , d} with |A | = 2m − k,

(−1) k
2 π

d
2

∑
ι:A →{1,...,d}

c
(ι)
d Tx,m

Fk,d
(WA ,ι

1 , . . . ,WA ,ι
m )

=
∫
Rd

(−1)mfm(ξ)[WA
1 (ξ) ⊗ · · · ⊗WA

m (ξ)] dξ, (10.6)

and our main result (Theorem 3.3) therefore reproduces (10.2) due to [24].

Proof. By applying Corollary 7.1 and, subsequently, Proposition 10.2, we find

(−1) k
2 π

d
2

∑
ι:A →{1,...,d}

c
(ι)
d Tx,m

Fk,d
(WA ,ι

1 , . . . ,WA ,ι
m )

=
∑

ι:A →{1,...,d}
c
(ι)
d

1
2π

∫
Rd

|ξ|−k

∞∫
−∞

Sm
ξ,iλ(WA ,ι

1 , . . . ,WA ,ι
m )eiλ dλ dξ

= (−1)m
∑

ι:A →{1,...,d}
c
(ι)
d

∫
Rd

|ξ|2m−kfm(ξ)[π(WA ,ι
1 ) ⊗ · · · ⊗ π(WA ,ι

m )] dξ. (10.7)



40 T. van Nuland et al. / Journal of Functional Analysis 288 (2025) 110754
Turning our attention to the right-hand side of (10.6), we express WA
j (ξ) in terms of 

WA ,ι
j := π(WA ,ι

j ) (see (4.3) and (3.5)), and find

fm[WA
1 (ξ) ⊗ · · · ⊗WA

m (ξ)] =
∑

ι:A →{1,...,d}

∏
j∈A

ξι(j)fm[WA ,ι
1 ⊗ · · · ⊗WA ,ι

m ].

Hence, by using (7.1),

(−1)m
∫
Rd

fm(ξ)[WA
1 (ξ) ⊗ · · · ⊗WA

m (ξ)] dξ

= (−1)m
∑

ι:A →{1,...,d}
c
(ι)
d

∫
Rd

|ξ|2m−kfm(ξ)[WA ,ι
1 ⊗ · · · ⊗WA ,ι

m ] dξ (10.8)

The theorem follows by combining (10.7) with (10.8). �
Appendix A. Comments on the accompanying python program

Accompanying this paper is a python script that computes Ik = Ik(λl(x)Δ +∑
i λl(ai)Di + λl(a)) for any k ∈ Z+ in terms of multiple operator integrals with ar-

guments in C∞(Td
θ ). The program can also be found on the Github page https://

github .com /TDHvanNuland /I _k.
The program outputs an identity (formatted in latex) with Ik on the left-hand side 

and an expression on the right-hand side with explicit dependency on d. The program 
can be easily adjusted to match the output type one prefers.

The last line of the program fixes the value of k. For example, to compute I2 one can 
replace the last line

print_I(4)

with the line

print_I(2)

and run the program, for example by opening a terminal, navigating to the correct 
directory, and typing

python3 I_k.py

(any installed version of python should work). The output should be as follows.

−π−d/2I2 =
∑(

2T x

F
[3]
2,d

(x,Dix,Dix) + T x

F
[2]
2,d

(x,DiDix) + T x

F
[2]
2,d

(ai, Dix) + T x

F
[1]
2,d

(a/d)
)

i

https://github.com/TDHvanNuland/I_k
https://github.com/TDHvanNuland/I_k
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+
∑
i

1
d

(
4T x

F
[4]
2,d

(x,Dix, x,Dix) + 4T x

F
[3]
2,d

(x,Dix,Dix) + 8T x

F
[4]
2,d

(x, x,Dix,Dix)

+4T x

F
[3]
2,d

(x, x,DiDix) + 2T x

F
[3]
2,d

(x,Dix, ai) + 2T x

F
[2]
2,d

(x,Diai)

+2T x

F
[3]
2,d

(x, ai, Dix) + 2T x

F
[3]
2,d

(ai, x,Dix) + T x

F
[2]
2,d

(ai, ai)
)

Computing I4 in this way produces the 1046 terms in an instant, and computing I6 takes 
about 10 minutes on an Intel(R) Core(T) i9-10900 CPU @ 2.80GHz, and produces 140845 
terms (of course excluding sums over the indices i, j, k, . . ., as otherwise the amount of 
terms depends on d).

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /
10 .1016 /j .jfa .2024 .110754.

Data availability

The python code file “I_k.py” has been shared at the “Attach file” step.
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