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Abstract

The development of multi-agent reinforcement learning has
been largely driven by the question of how to design learning
algorithms to reach some particular notion of optimality of
strategies, e.g. Nash equilibria. The set of optimal strategies
is not known before the execution of the learning algorithm,
however we can often immediately identify a set of clearly
undesirable outcomes. Therefore, we propose to consider a
dual problem: given a collection of agent algorithms and a
collection of unwanted strategy profiles, can one identify a set
of starting strategies that invariably lead there? This leads us
to study the algorithmic problem of backpropagation of con-
straints defining the forbidden region by learning dynamics,
through the lens of set-valued maps and interval arithmetics.

Introduction

In the near future we can expect that autonomous agents will
operate independently in shared environments, learn and
adapt in order to achieve their individual goals. Most notori-
ous obstacles that prevent us from reaching this vision, and
deploying existing RL algorithms en masse are the issues of
safety and reliability (Dulac-Arnold, Mankowitz, and Hes-
ter 2019). Real world systems come with constraints, which
represent e.g. resource scarcity, safety limitations etc. and
need to be taken into account during the learning process.
As an example, let us consider the scenario of multiple self-
driving cars on a shared road. The vehicles adapt their strate-
gies based on the individual goals, like destination, desired
speed etc. At the same time, certain combinations of vehicle
strategies (strategy profiles) can be undesirable; for instance
one would not want to allow strategy profiles that let two
vehicles occupy the same part of the road space. In a more
general setting, one can imagine that the forbidden region
can be e.g. a degenerate Nash equilibrium, which one would
like to avoid during the learning process; or a region in the
strategy space where the rewards fall below some accepted
level.

Existing works on this problem focus on the prescriptive
approach, where the algorithms are designed to satisfy cer-
tain sets of constraints. The problem was considered in many

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

papers in the single-agent case, see (Altman 1999) (Achiam
et al. 2017) and recently also gained traction in the multi-
agent case (Diddigi et al. 2019). Within this report we would
like to explore a complementary, descriptive approach: given
the dynamics of a learning algorithm and the forbidden re-
gion within the space of joint strategies, can we identify the
set of strategies that are a priori permissible, however even-
tually lead to degradation into the forbidden region? There
is a strong real-life motivation for answering such question.
First of all, by finding all strategy profiles that degenerate
to unfavourable outcomes, one can make a better informed
decision on how to initialize the strategies of the agents that
one controls — even with uncertainty about the exact strate-
gies which other agents are playing. Secondly, for real-life
applications it is of utmost importance to recognize the early
signs that can lead to system degeneration. Then, enough
time can be given for human intervention, or application of
fallback algorithms.

To identify the preimage of a strategy profile under learn-
ing dynamics, one needs to perform operations which invert
the learning process; in other words, starting from a partic-
ular unwanted strategy profile, obtain trajectories of strat-
egy profiles that evolve to it. This leads us to our first re-
search question: which algorithms for multi-agent learning
can be reversed, and how? In such generality, it is difficult to
answer it directly. However, for simple, deterministic mod-
els of learning behaviour known from repeated normal form
games, the answer is easy. For instance, when the algorithm
is defined as a solution to an initial value problem of a dif-
ferential equation, it is enough to consider an initial value
problem of a reversed differential equation; and when the al-
gorithm can be represented as a deterministic mapping from
a set of strategies into itself, one can try to invert it.

The other challenge is related to the cardinality of the
forbidden region. As the name suggests, this set can con-
sist of a collection of strategy profiles, which can possi-
bly be infinite, or even dense. Therefore, the reverse learn-
ing algorithm needs to be applicable to sets, rather than
points in the strategy space. This leads us to the second
theme of the proposed research: how can (reverse) learn-
ing algorithms be used to propagate infinite collections of
strategy profiles? We relate the problem to the field of



constraint propagation (Rossi, Van Beek, and Walsh 2006;
Davis 1987).

Given the above difficulties, the problem of computing ex-
act preimages of strategy profile sets under the learning dy-
namics appears intractable. For applications related to safety
it is however enough to identify outer approximations of
such sets, i.e. regions that contain the dynamical preimages.
An obvious outer approximation is the set of all strategies,
and the challenge we are faced with is to find methods of
generating a possibly tight approximation given a certain
computational budget.

Reverse Constraint Propagation for Normal
Form Games

In this section we illustrate the ideas of reverse constraint
propagation for learning in the simplest scenario of deter-
ministic, repeated normal form games. A normal form game
is a 3-tuple < K, [T, %, TTr_, M* > where K denotes
the number of players, each set S* is a discrete set of strate-
gies for player k, and each map M* : [/, S' — Risa
payoff tensor for player k& — a multidimensional array which
represent the payoff player k is receiving when players use
a given combination of strategies. The strategy space can be
extended to the continuous space of mixed strategies defined
as a products of simplices X = Hi{:l A(S*). Elements of
X represent the probabilities with which each player plays
their respective strategies. The extended payoff for a given
mixed strategy © = (x1,...,2;) € X is defined as the ex-
pectation uy,(z) = Eq.s, 0z, (M*(5)).

Following e.g. (Piliouras et al. 2014), we model a learning
process for the players as a flow ® : X x J — X, where J
is the time set (e.g. R, Z). The flow ® can be generated by
iterations of the learning map F': X — X (e.g. multiplica-
tive weight update (Arora, Hazan, and Kale 2012)), or by
the solution operator of the differential equation & = f(x)
(e.g. infinitesimal gradient ascent and its variations (Singh,
Kearns, and Mansour 2000; Bowling and Veloso 2002;
Zinkevich 2003), or replicator dynamics (Zeeman 1980)).
The exact formulas of f or F' are typically defined as func-
tions of mixed strategy configurations x; and their payoffs
ug (). For a compact subset of the strategy space A C X
representing the forbidden region, our research problem can
be stated as one of identifying the basin of attraction of A:

BA)={ze X :®(z,JN[0,00))NAZ£D}, (1)

where by Z we denote the topological closure of a set Z.
In other words, we want to find all mixed strategies, which
eventually arrive at, or accumulate in A under the learning
dynamics. By reversing the dynamics of ®, an outer approx-
imation of the set B(A) can be given by

B(A) Cc (W, J N (—o0,0])), 2)

where W is a small neighborhood of A which needs to be
propagated by ® backwards in time.

Interval arithmetics

The question of algorithmic propagation of sets by a time
step maps of a flow has been thoroughly addressed by

the dynamical systems community with the use of interval
arithmetics (Moore 1966). The basic idea of these methods
is to enclose possibly infinite subsets of R™ as products of in-
tervals and their unions, and perform computations only on
their end points. For instance, one can define the elementary
floating point operations of addition, subtraction, multipli-
cation and division on intervals, such that for any operator
- € {4, —, %, } we have the following equalities

(w1, 91] - [22,42) = {z -y, x € [z1, 1],y € [x2, 2]} (3)

and the right hand-side of (3) is given by interval. Interval
arithmetic operations can be extended in a natural way to
multidimensional intervals, and used to evaluate formulas
which can be expressed as compositions of the elementary
operations, such as polynomials, (c.f. (Tucker 2011)).

Given a map F' : R® — R™ composed of elementary
operations, one can leverage their interval extensions to pro-
duce an interval enclosure of F, denoted by [F], which is
defined as a map from interval sets of R™ to interval sets of
R™ satisfying

F (H[xi,yi]> C [F] <H[xi7yi]> : €

In the dynamical context of flows, the map F' is typi-
cally given by the flow time step operator ®(-,+h), and
its interval enclosure [®(-,+h)] can be used to compute
outer approximations of ®(W, £h), where W is an inter-
val set, in a finite number of computations. Interval meth-
ods have been leveraged with much success in the field of
dynamical systems, e.g. by aiding the solution of Smale’s
14th problem (Tucker 2002). Several solvers which compute
interval enclosures of maps and differential equations are
available off-the-shelf (Dellnitz, Froyland, and Junge 2001;
Wilczak and Zgliczynski 2012).

An example: the Stag Hunt game

Consider the well known Stag Hunt game, consisting of two
players, each of them with two strategies: Stag and Hare.
Their payoff profiles are given in Table 1.

Player 2
Stag Hare
Stag [(5,5) | (0,4)
Hare | (4,0) | (2,2)

Player 1

Table 1: Payoffs of the Stag Hunt game.

The replicator dynamics of the game are given by the
equations

& =a((My) —x"My) §=y((x"N) —x"Ny) )
defined on a unit square domain (z,y) € [0,1]?> with

x = [o,1—aff,y = [yl -y, M = [3 ;‘] and

N = MT. The variable = represents the proportion of
time the Stag strategy is played by Player 1, and the vari-
able y represents the proportion of time the Stag strategy is



Figure 1: The vector field of the Stag Hunt game; left: the
stable manifold of the (Hare,Hare) equilibrium; right: the
outer approximation of the stable manifold by interval sets.

played by Player 2. The two pure Nash equilibria of the sys-
tem are (xg,y0) = (0,0) where both players always play
Hare, and (x1,y1) = (1, 1), where both players always play
Stag. Now assume, that due to an unfavourable payoff pro-
file, we would like to exclude all strategy profiles that con-
verge to (xo,yo). This means that we have to compute the
basin of attraction B ((xo,yo0)). In this particular case the
set is also known as the stable manifold of (z¢,yo) and
was computed analytically in (Panageas and Piliouras 2016).
Interval aritmetics allow us for a more general, algorith-
mic treatment: the outer approximation of the stable man-
ifold can be computed by propagation of small interval sets
containing the equilibrium (Dellnitz and Hohmann 1997,
Dellnitz, Froyland, and Junge 2001) under the reversed vec-
tor field. This yields an outer approximation which consists
of a union of interval sets. We depict the shape of the basin
of attraction and its interval enclosure in Figure 1.

Challenges

The question of safety in multi-agent learning leads us to the
practical problem of computing preimages of forbidden re-
gions in spaces of strategy profiles. Inspired by the possibili-
ties offered by set valued propagators in dynamical systems,
we pose several questions, which outline a plan for further
research in this direction:

e Can interval arithmetics be used to produce general algo-
rithms for computation of basins of attraction under learn-
ing dynamics in normal form games?

e How to define reverse learning in stochastic and se-
quential environments, so it is applicable to e.g. Markov
games (Littman 1994)?

e Can the state-of-the-art multi-agent learning methods
(e.g. based on policy gradients) be reversed, and can one
compute their interval enclosures to backpropagate con-
straints?

e How can the ideas of abstraction in reinforcement learn-
ing (Sutton, Precup, and Singh 1999) be used to enhance
the scalability of constraint propagation by reducing the
problem dimensions?

e What are the domains of application of multi-agent learn-
ing, where identification of preimages of forbidden re-
gions can be of most value?

We hope that by performing further investigation on the
above topics, the methods of interval-based constraint prop-
agation can be developed to become a practical tool for ad-
dressing safety questions in multi-agent learning.
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