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. ABSTRACT

Inhomogeneous boundary value problems for ordinary differential equations can
be solved by numerical integration of corresponding initial value préblems
(shooting). Guesses for the unknéwn boundary values are iteratively adjusted
until all prescribed boundary conditions are satisfied. The method of shooting
and matching can also be applied to nonlinear eigenvalue problems by treating
the éigeﬁyalue as a parameter in this procédure,vthat’is; as an unknown in .the
(Newtbn—type) iteration scheme.

In this re?ort‘a shooting method is described, which simultanéously yields an
eigenvalue and the corresponding eigenfunction. A normalization ‘condition is
added to the homogeneous boundary value problem to make the eigenfunctioﬁ;
unique. This method is applied to the bifurcation buckling of layered
ahisotrbpic cylinders under the combined loading of axial compression, radial
pressure and torsion. The nonlinear Donnell-type equations formulated in terms
of  the radlal displacement W and an Alry stress function F are used By
"Fourler decomposition for the circumferential direction the governing
equations are reduced to a set of ordinary differéntial equations. v
Numerical results  for a [30°,0° -30°] laminated glass-epoxy shell 'are
presented, showing the effects of different sets of boundary conditions and

nonllnear prebuckling deformations.
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NOTATION

BB

B11

BBl—BB35

first postbuckling coefficient, Eq. (2.2.4)
coefficient matfix, Eq. (3.2.2)

extensional stiffness matrix, App. A
semi-inverted extensional stiffness matrix, App. A
. * —-% *
nondimensional A,, (A,. = Et A, )
ij ij ij
submatrix of A, Eq. (3.2.3)

second postbuckling coefficient, Eqg. (2.2.4)
bending-stretching coupling matrix, App. A
semi-inverted bending-stretching coupling matrix, App. A
. . * - 4 *
nondimensional B,, (B,. = (2c/t)B, )
1] 1] 1]
constants in boundary conditions, App. D
coefficient matrix in boundary conditions, Eg. (3.2.5)
constants in boundary conditions, App. D
2 ..1/2
[(3(1-v )]
constant in normalization condition (3.2.8)

constants in Egs. (2.2.15)
constants of integration, Egs. (2.2.10) and (E4)

constants in Eq. (3.1.1)

flexural stiffness matrix, App. A
semi-inverted flexural stiffness matrix, App. A
: . ) * —% 2 3 %
nondimensional D,., (D,, = (4c /Et7)D, .)

1j 13j 1j
constants in postbuckling equations, App. E
constants in Eq. (3.2.4)

arbitrarily chosen reference Young's modulus

Young's moduli orthotropic layer, App. A

vector functions, Egs. (3.2.2), (3.2.14)
function in normalization condition, Eq. (3.2.9)
prebuckling stress function component

buckling stress function components
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postbuckling stress function components
Airy stress function
. th st .
stress functions for 0 -order, 1  -order, and
nd .
2 T -order state, respectively .
shear modulus orthotropic layer, App. A

thickness of kth layer, App. A

Jacobian matrices, Egs. (3.2.21), (3.2.29)
shell length

linear operators, Eqg. (2.2.2)

nonlinear operator, Eq. (2.2;3)

moment resultants

number of full waves in circumferential direction

1) half of the number of intervals in shooting method

2) number of layers, App. A

last component of ﬁ, §, Eq. (3.2.13)

stress resultants

applied axial load (N0 = - Nx(x=L))

applied external pressure

nondimensional external pressure (5 = (cRZ/EtZ)p)

critical nondimensional external pressure p

axial load eccentricity (measured from shell midsurface)

. . - - 2
nond;men51onal load eccentricity (q = (4cR/t7)qQ)

stiffness  matrix orthotropic layer with = respect

lamina principal axes, App. A

stiffness matrix orthotropic layer with respect to
shell reference axes, App. A

transverse shear sﬁress resultants

radius of shell

initial guess vectors, Eg. (3.2.17)

initial condition vectors, Egs. (3.2.11), (3.2.12)

initial guess vectors, Eq. (3.2.17)
shell wall-thickness ‘

applied torque (T0 = ny(x=L))
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x(0),x(2)

x(1)
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A,A2,AB

A()

Gx,Sy,ny

axial displacement -

solution vectors;‘Eq. (3.2.13)

solution vectors, Eqs..(3.2.11), (3.2.12)
circumferential displacement

prebuckling radial displacement component

buckling radial displacement components
postbuckling radial dis?laéement components

radial displacement (positive inward)

solution matrix of variational system, Eq. (3.2.31)
initial radial imperfection

solution vectors of variational equations, Eg. (3.2.22)
(forward integraﬁion)

Poisson's expansion under combined loading

Poisson's expansions, Eq. (2.2.7)

radial displacements for Oth—order, lSt—order and
an—order state, respectively v
submatrices of W(x)

axial coordinate, circumferential coordinate
nondimensional axial coordinate (x = x/R)
starting points in shooting method

matching point in shooting method

vector of dependent variables, buckling state
vectof of dependent variables, prebuckling state
radial coordinate

modified Batdorf parameter (z = L2/Rt)

solution vectors of variational equations, Eq. (3.2.22)

(backward integration)

vector of inhomogeneous terms in matching condition
(3.2.15)

constants, App. D

correction for ( ) in Newton's méthod

strain components
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strain components orthotropic layer, App. A
nondimensional circumferential coordinate (8 = y/R)
orientation of kth layer, App. A

curvature changes and twist, respectively
nondimensionai axial load (A = (cR/Etz)NO)
criﬂical nondimensional axial load A

load (eigenvalue) parameter

bifurcation buckling load

arbitrarily chosen reference Poisson's ratio
Poisson's ratios orthotropic layer, App. A
perturbation parameter, Eq. (2.2.4)

in-plane stresses .

in-plane stresses orthotropic layer, App. A

nondimensional torque (t = (cR/Etz)To)

critical nondimensional torque 1

vectors of matching conditions, Egs. (3.2.15), (3.2.16)

frequency parameter

partial differentiation with respect to coordinate
following the comma
differentiation with respect to x

. h . .
( ) evaluated in the vt iteration step



1. INTRODUCTION

1.1 Methods for vibration and buckling analysis of shells

Free vibration and buckling problems of circular cylindrical shells can be
reduced to homogeneous boundary value problems (eigenvalue problems) for
drdinary’ differential equations. The eigenvalue parameters are the square
frequency and the loading, respectively. The solution can be based on the
numerical integration of'corresponding initial value problems.

Kalnins (1] presented a method for the free vibration of shells of revolution
which consists of systematically evaluating a characteristic determinant. The
eigenvalue parameter is increased in small steps. For each trial value of the
eigenfrequency ® one has to obtain the solution vectors of the homogeneous
system of differential equatidns to compute the characteristic determinant.
When a sign change occurs, an eigenvalue has been found. This method will be
referred to as determinant plotting. It has been employed by.Booton [2] in the
bifurcation buckling problem of anisotropic cylinders. The eigenvalue can be
determined accurately by inverse interpolation.

Another approach was presented by Cohen [3]. This method is a generalization
of the well-known Stodola method for beams and will be referred to as the mode
iteration method. Substituting an estimate of the eigenmode into the governing
equations yields an inhomogeneous boundary value probiem giving an improved
eigenmode. ' The corresponding eigenvalue is computed from the Rayleigh
quotient. In each iteration step, one has to compute a particular solution
vector. The complementary solution vectors have to be calculated only in the
first step. It can be proved that this method is convergent for the lowest
eigenvalue mi. The rate of convergence depends on the ratio mg/mi, where wé is
the next smallest eigenvalue. One can speed up the rate of convergence by the
method of eigenvalue shifting. Each new reference value for the eigenvalue
correction requires the computation of the complementary solution vectors. It
is possible to compute higher eigenvalues by orthogonalization with respect to
lower modes and/or eigenvalue shifting. The mode iteration method was used by
Cohen [4] to compute the buckling load of shells of revolution including a

nonlinear prebuckling state. Because of the nonlinear dependence of the




prebuckling state on the load parameter, in general it is necessary to
approach the critical eigenvalue by a sequence of linearized problems.
Geometrically, this method consists of examining the stability of fictitious
equilibrium states on the tangent to the nonlineér load-deformation curve at
an assumed load A below the critical load. For loads near A, the corresponding
fictitious states are good approximations to the neighbouring nonlinear
states. Consequently, as A 1s increased towards the critical 1load, the
‘fictitious critical loads approximate with increasing precision the actual
critical load. For each A, the method of successive approximations can be used
to qbtain the fictitious critical load. Thié procedure has also been employed
by Arbocz and Hol [5] in the imperfection sensitivity analysis of anisotropic

cylindrical shells.

1.2 Shooting for eigenvalues

In the common shooting method (see e.qg. Keller [6], ﬁail and Watt (7}), an
inhomogeneous boundary value problem is converted into é sequence of initial
value problems which are solved by numerical integration. Guesses for the
unknown boundary values are iteratively adjusted until all prescribed boundary
conditions are satisfied. In this way, the boundary value problem has been
reduced to the solution of a system of (nonlinear)'equations for the unknown
boundary values. Thus in general, the shooting procedure consists of two
steps: |

1) numerical integration of corresponding initial value problems with initial
guesses for the unknowns,

2) solution of a linear algebraic system for a correction of the unknowns.
These two steps can be repeated in an jterative procedure until convergence
has been achieved.

To avoid the problems caused by a rapid growth of the initial value solutions,
one often has to employ parallel shooting. In this modification, the growth of
the solutions is controlled by dividing the range of integration into a number

of smaller intervals.



It can be difficult to estimate the unknown boundary values. This problem may
be overcome by perturbing a simpler problem in stages into éhe original
problem (a continuation method) . »

The method of shooting and matching can also be applied to (nonlinear)
eigenvalue problems, i.e., to problems in- which a coefficient in the
differential equation or boundary conditions has to be determined such that a
(nontrivial) solution exists. The eigenvalue can be treated as a parameter in
the shooting procedure; in other words, the eigenvalue is an unknown in the
(Newton-type) iteration scheme. We will distinguish between two approaches.
The first approach is an obvious extension of the determinant plotting method.
Thurston {8] presented a Newton-type root—finding’ procedure for lambda
matrices, i.e., for matrices of which the determinant. has to equal zero. The
problem is reduced to a sequence of linear algebraic eigenvalue problems. The
only eigenvalues (i.e., eigenvalue corrections) of interest are those which
are small in absolute value. This method can be started when a sign change of
the determinant has been detected.

Another. approach is given by Keller [6], who described a general shooting
method which simultaneously yields an eigenvalue and the corresponding
eigenfunction. Apart from the unknown boundary values one has the eigehvalue
as a parameter .in the Newton-type iteration scheme. For standard eigenvalue
problems the eigenfunction is determined to within a multiplicative constant.
The eigenfunction can be made unique by adjoining some kind of normalization
condition. We then also have an additional equation’for the eigenvalue. One
can also fix one of the inhomogeneous conditions at a boundary and in this way
normalize the solution. The method is applicable to general (nonlinear)
eigenvalue problems. The Newton-type iteration procedure converges rapidly
(quadratically), but only close to the root. Further, one has to supply an
initial guess which is close encugh to the desired root, otherwise the
iterations may not converge to this root. In this report, this method will be
applied to the bifurcation buckling of anisotropic cylinders under the

combined loading of axial compression, radial pressure and torsion.
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1.3 Bifurcation buckling of anisotropic cylinders

Cylindrical shells are frequently used in structural applications. The
buckling behaviour of these thin-walled structures is therefore a widely
studied subject.

The two fundamental concepts in buckling analysis are bifurcation and collapse
at a limit point, see Fig. 1. A bifurcation (eigenvalue)xénalysis can be used
as an approximation of the failure load and mode, and is the firs; step in the
initial-postbuckling analysis introduced by Koiter [9].

The introduction of fibre reinforced composite materials has led to new
possibilities in the design of lightweight structures. By varying the fibre
orientations and laminate stacking sequence the designer can try to find
optimal structural configurations. '

The bifurcation buckling problem of anisotropic cylinders including the
effects of exact boundary conditions and nonlinear prebuckling deformations
has been investigated by Booton [2] and Arbocz and Hol [5] using Donnell-type
equations. By means of separation of variables the buckling problem can be
reduced to a homogeneous boundary value problem with one independent variable.
In both references methods are employed using numerical integration techniques
for initial value problems (shooting methods). Booton uses determinant
plotting, while Arbocz and Hol solve the eigenvalue problem by the mode
iteration method. ‘

In this report, the general shooting method described by Keller will be used
to solve the bifurcation buckling problem. The numerical solution procedure is
discussed in Chapter 3. It has to be noted, that.the mode iteration method is
a more efficient method to solve this eigenvalue problem. First, the method
converges more rapidly, and secondly we have a guaranteed convergence to the
lowest roots of the linearized problems.

The equations governing bifurcation buckling are derived in Chapter 2. Results
for a [§0°,0°,-30°] laminated glass-epoxy shell are presented in Chapter 4,
showing the effects of various boundary conditions and‘nonlinear prebuckling

deformations.
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2. EQUATIONS GOVERNING THE BIFURCATION BUCKLING OF ANISOTROPIC CIRCULAR

CYLINDRICAL SHELLS

2.1 Introduction

In this chapter, the equations governing the initial-postbuckling behaviour of
aﬁisotropic cylinders under combined loading will be derived. The nonlinear
equations used in this analysis are based on a Donnell-type thin shell theory,
in which the geometric nonlinearity is limited to moderate rotations (see e.g.
Sanders [10]). The basic assumptions of this theory are (see Fig. 2):.
- the shell is thin, i.e., t/R << 1, t/L << 1, where t is the shell thickness,

R the shell radius and L the shell length,
- strains are small (of order & where & << 1),
- displacements u; v are infinitesimal, W is of the order of the shell

ﬁhickness,
- flexural rotations of shell elements are moderately small (W,i and W,i of

order g),
- the Kirchhoff assumptions:

- the transverse normal stress is small compared to the other normal
stress components and may be neglected, .
- normals to the undeformed middle surface remain straight and normal to
the deformed middle surface and suffer no extension.

It has to be noted, however, that for shells consisting of composite laminae
it may be necessary to include the effect of transverse shear deformation,
because the transverse shear stiffness is usually very small as compared to
in-plane stiffness. .
Further, the analysis is based on the assumptions made by Donnell [11]. The
term containing the transverse shear stress resultant Qy (Fig. 3) is neglected
in the force equilibrium equation in y-direction, or, equivalently, the
displacement term v is neglected in the curvature expressions. Under these
assumptions quadratic terms can be omitted in the potential energy expression
(Appendix A), i.e., the applied loads can be treated as dead loads. The
Donnell stability equations are accurate if the displacement components are

rapidly varying functions of the circumferential coordinate. In other words,
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the equations are in general not valid for a small number of circumferehtial
waves. The Donnell equations have the advantage that we can reduce the number
of dependent variables to two by introducing an Airy stress function.
The constitutive equations for a layered anisotropic shell are used. The
layers are assumed to be orthotropic and their principal axes can be oriented
in arbitrary directions.
The basic equatiqns

- fhe nonlinear strain-displacement reiations,

- the equilibrium equations (derived by appliéatioﬁ of the stationary

potential energy criterion), o
- the constitﬁtive equations for a layered anisotropic shell,’

can be found in Appendix A. ‘
A perturbation procedure will be used‘to derive the equations governing the
initial-postbuckling behaviour. By means.‘of separation of variables the
buckling problem (ISt—order state) is reduced to a two-point homogeneous
boundary value problem in terms of one independent variable. Values of the
load parameter are sought, for which a nontrivial solution.exists. The lowest
eigenvalue is the one of interest.
The solution procedure for the postbuckling problem (an-order state) is

described by Arbocz and Hol [5].

2.2 Derivation of the governing equations

Assuming that the radial displacement W is positive inward (see Fig. 2) and

introducing an Airy stress function F as N =F, , N =F, and N = -F, ,
X Yy Y XX . Xy Xy
then the Donnell-type nonlinear perfect shell equations for a general

anisotropic material can be written as

W
LNL( W)

NI

L_,(F) - W) =-=W -
A*( ) LB*( ) R 'xx

(2.2.1)

1
R F, + LNL(F,W) + p

Low (F) + Lo, (W) o

D* .

where p is the external pressure and where the linear operators are defined by



_13._
* * 2* *
= - + +A
LA*( ) A22( )'xxxx 2A26( )'xxxy ( A12 66)( )'xxyy
28, () O (2.2.2a)
- 2A + A sL.ca
16" " 'xyyy 11" " yyyy
* * * * *2*'
= -— + -
LB*( ) 821( )'xxxx * (2826 BGl)( )'xxxy * (Bll B22 B66)( )'xxyy
28" -B + B (2.2.2b)
+ ( 316’562)( )'xyyy 12( ),yyyy 2.
* * * * *4*
= +D._+
LD*( ) Dll( )'xxxx + 2(D16+DGI)( )'xxxy + (D12 D21 D66)( )'xxyy
) * * * (2.2.20)
+ + + .2.2C
(D26 D62)( )’nyy D22( ),yyyy
and the nonlinear operator by
= - . 2.2.3
LNL(S,T) S’XXT'yy ZS,xyT,xy+ S,ny,xx ( )

* * *
The stiffness parameters Aij' Bij and Dij are defined in Appendix A.

Assuming a unique buckling mode we have the following perturbation expansion

valid in the neigbourhood of the bifurcation point,

A/Ac =1+ af + bgz + ...

w=w® 4 gw(l) + §2w(2) + ... (2.2.4)

F = F(O) + éF(l) + §2F(2) +
where Ac is the bifurcation buckling load, and where W<1) will be normalized
with respect to the shell thickness t and W(Z) is orthogonal to W(l) in some

appropriate sense; § is a measure of the displacement amplitude after
buckling. ,

A formal substitution of this expansion into the nonlinear governing equations
(2.2.1) yields a sequence of equations for the functions appearing in the

expansions.
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Equations governing the Oth-order state (prebuckling problem)

(0) (0)

The set of governing equations for W and F is
(0) (0), _ 1 _(0) _ 1 (0) _(0)
Lpw (F10) = Ly (W00) = = R Wy ~ 3 D™ /%)
(2.2.5)
(0) (0), _ 1 _(0) (0) _(0)
LB*(F ) + LD*(W ) = R F'xx + LNL(F W ) +p
The axisymmetric prebuckling state can be represented as
W(O) = t(W + W + W) + tw, (%)
v P t 0
(2.2.6)
F{ O = (5e?/cR) (- % Ay’ - % x> - Txy + szo(x)} |
where the Poisson's expansions
-k l - - —-% / - 2 2 7
WV = (A12/°) ; wp = (A22/c)p ; Wt_— - (A26 c)t (2.2.7)

are evaluated by enforcing the periodicity condition (Appendix B), and

2 - 2 - 2
A = (cR/Et )N0 ; p = (cR2/Et )p ; T = (cR/Et )T0 (2.2.8)
where NO = - Nx(x=L) is the applied axial compression, p the applied external
pressure, and T0 = ny(x=L) the applied counter-clockwise torque. The
—-% -k )

-k .
nondimensional stiffness parameters Aij' Bij and Dij are defined in Appendix

A. Introduction into the governing equations and rearrangement gives

iv *  iv

=* 1 n " :

A22f0 (t/2R)821w0 = -cwy ' (2.2.93)
=% iv =% iv w _ "

2821f0 + (t/R)Dllw0 = (4cR/t)f0 4ckw0 (2.2.9b)

where ( )' = d( )/dx and x x/R. Integrating (2.2.9a) twice yields
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-k - - ~ - -~
" - w o 2.2.10
£5 (t/2R) (le/Azz)wo (c/A22)w0 +Cx +C, ( )

where the constants of integration C1 and C2 are equal to zero because of the
periodicity condition (Appendix B). The equations governing the prebuckling

state can now be combined to one equation

B+ B2/A yuiV A - Br /R )w + (4c?R%/t%)w /AL =0
D1y * Bpy/Bpp)wy + (4cR/E) (A = By /A, )wp + (4c WolBo2 T
(2.2.11)
Equations governing the ISt—order state (buckling problem)
The equations governing the first order state are given by
(1) (1) 1 (1) (0)_ (1) (1) _(0) (0)_ (1),
- = - = - - 2W W
LA*(F ) LB*(W ) R W,xx (W,xxW, + W’xxw’y 2 " xy ,xy)
(2.2.12)
(1) (1) 1 (1) (0) (1) (0) (1) (0)__(1)
= = - +F, 'W
LB* (F ) + LD* (W ) R F’Xx + F,XXW,YY .'ZIE‘,:’(stI,Xy ,yy " ex
1 1
+ F}l)W}O) _ ZFf )WfO) + F} )wa)
XX Xy Xy vy xx
The stability equations admit separable solutiéns of the form
(1) _ .
W = twl(x)cos né + th(x)31n nod
(2.2.13)
(1) 2 L2 .
F = (ERt /c)fl(x)cos n® + (ERt /c)fz(x)31n no
where 68 = y/R. Introduction into (2.2.12), regrouping and equating
t
coefficients of like trigonometric terms, gives the following set of four 4 -

order differential equations in W w2, fl and fé
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- 1
A fXV _ (a) +A

- nf!" + 25* n3f'
2271 12 1

-
- 2A 160 "2

2_, K
SRR A n't »6"ES

11" h1

iv x
11 (B1 +B

1 722

2 " —-% 4 2_* -%
n w1 + BlZn w1 + 526—B61

-
-2B_ )

- (t/2R){B2 66

(ct/R)nzw"w = 0

2B -Br )nw!) + cw®
( - yn w!} cw!" - o¥1

16 62 2 1

-k 1
A flV

2_, .4
2o%5 (2A +A )n fr o+ A £+

12 2 117 T2

-k —-%

=* iv -% 2 . 4
(t/2R){821w2 - (Bll+B22—2566)n w3 + B_.n

(Ct/R)nzw"w = 0

3' "woo_
yn wl} + Ccw 0¥2

- -
+ -
(2By =B 2

4 —%
n £_ + (2B ynfl™

(t/2R) (B £V - (B 2B o 2¢n 4 B =y
n 12" %1 26 "61’ "2

2171 22 1

= 3., =% iv =% —* 2
+ —— "
6 2)n f2} Dllwl 2(D12+2D )n wl

- (2B1 66

-k

+ "_
4D16 4D

w‘

2,2 _.
26™ Wy T (4cR™/t )fl

+ n? (£ +wpf)) = 0

- 2ntw! o¥1

-2
+ w o
(4cR/t){lw1 pn W, 2

2 % 4 —% =%
yn f"* + B..n £, - (2B B_)nf!"™

+3, 12" I 26 8610

—%
(t/2R){B21 17855 2B66 5

2 (Bl

—% 4
+ D..nw

—% 3 -*x iy —* —% 2
] — n
+ (2B yn £'} + D w2 2(D12+2D66)n w2 290 5

-k
16 P62 1 11

-
nw!"™ + 4D n3w'

4.—*
- 4D 26" "1 T

2,2 .
16™71 (4cR7/t )f2

+ 2ntw!

- 2
+ "o
(4cR/t){kw2 pn W, 1

+ n (f0w2+w f2)} =0

B l)nwlll

)nwlll

2

(2.2.14a)

1

(2.2.14Db)

(2.2.14¢)

(2.2.144)

term 1is

To be able to use the shooting method, the wiv term is eliminated from
(2.2.14a) and the fiv term from (2.2.14c). Similarly, the w;V
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eliminated from (2.2.14b) and the f;V term from (2.2.14d). This finally

results in the following equations

iv = w o X T ] " o+ » ey v
£ 7 Cogfl 7 Cugfy ¥ Cpofp" + Cppfy *+ CppWy * Cppwy * Cpgwi™ + €y vy
" - - [ - LI, " "
+ C26w0w1 + C28pw1 C28f0w1 + C30‘tw2 C31?Lw1 C28w0f1 (2.2.15a)
£1V = C _fm - C f - C_EIM - C. £1 4 Cowl 4 Cow. - Cowi" - C. w!
2 1772 1872 191 2071 21 2 222 231 241
+ " oy - " - " - "o _ " L2,
C26w0w2 + C28pw2 C28f0w2 C301:w1 C31)\w2 C28w0f2 (2.2.15Db)
WV = CET 4 CE - C£I" 4 CLED 4 Cow" - Cow. - Cowl" 4 Cw
1 11 271 372 472 51 61 72 82
- " - - 11 - | I "o "
Clowow1 + Clzpw1 C12f0w1 + C14'rw2 Clslw1 C12w0f1 (2.2.15c)
WiV = CEM 4 Cf + CLEIM - C £ 4 C_w? - C.w +Cow!" - Cow!
2 12 272 371 41 52 6 2 71 81
- ” + = — " - - | " _ " R R
Clowow2 Clzpw2 C12f0w2 C14Tw1 Clslw2 C12w0f2 (2.2.154d)
The constants C1 - C31 are listed in Appendix D.

This set of homogeneous differential equations with variable coefficients
~ together with the appropriate boundary conditions listed in Appendix C form an
eigenvalue problem which is solved numerically. The equations governing the

nd
2" “-order state (postbuckling problem) are given in Appendix E.
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3. NUMERICAL ANALYSIS

In this chapter, the eigenvalue problem descfibing the bifurcatibn buckling of
anisotropic shells is solved via the shqoting method presented by Keller [6].
By adjoining a normalization condition for the eigenfunction the eigenvalue
parameter, i.e., the variable part of the applied loading, can be treated as

an unknown in the shooting procedure.

3.1 Solution of the prebuckling state

The equation governing the prebdckling state is

iv_ @, -¢ e 3.1.1
v, (C1 Czk)w0 C3w0 ( )
where Cl' C2 and C3 are constants, listed in Appendix D. Two sets of boundary

conditions (simply supported and clamped) are given in Appendix C. The problem
is solved by employing parallel shooting over 2N intervals (see Fig. 4). The
prebuckling state is nonlinear in the sense that the radial displacement is a
nonlinear function of the applied load. It must be noted that, although Eq.
(3.1.1) describes a nonlineai equilibrium path, for a fixed value of the load
parameter the differential equation is linear and a closed form solution can
be obtained (Arbocz and Hol [5]). o

Eq. (3.1.1) is the governing nonlinear bending equation. A linear bending
equation is obtained by omission of the nonlinear term containing kws and the

linear membrane prebuckling state corresponds to %, =.0.

3.2 Solution of the buckling state

The equations governing the buckling state are given by Egs. (2.2.15).

Following Booton [2], we introduce the l6-dimensional vector variable Y as
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Yl = w1 YS = wl Y9 = w2 Y13 = w
=5 Yo = £ Y10 = 5 Y14 = 5
(3.2.1)
= v = T = eyl = -y '
I3 =%, X, =w, Y11 “1 Y15 "1
= v = e = _f1T = —f1n
Yy = % g = £, Y12 = 7% Y16 =~ 75

The applied loading, consisting of a combination of axial compression, radial
pressure and tdrsion, is divided into a fixed and a variable part. The
variable part is characterized by a nondimensional load parameter A. The

governing equations can be written in matrix notation as follows

S_ Y = f(;,Y (YiA) = A(x,Y ;A)Y : (3.2.2)
—- - - _0 - _0 -
dx
where
(0] A12
A = (3.2.3)
—A12 (o]
and
r _l |
-1 (0]
1
1
A12 = 0 -1 (3.2.4)
~1
—Dl D4 D2 C4 D3 C1 —C7 -C3
B _~ ~ -~
L %5 Pg Ps S0 D5 Cyg Cp3 Sy |
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In (3.2.2) XO is the solution of the prebuckling state, and the constants

D1 - D8 in (3.2.4) are listed in Appendix D. The boundary conditions at x =0

can be written in the following form

1
[«

B11%, (O
(3.2.5)

1
o

B, ¥, (0)

and if the boundary conditions are assumed to be symmetric with respect to the:

midlength of the cylinder

Bpa¥y (B/R) =0
(3.2.6)
Blafp (/R =0
. .. ; . T T T . .
where B11 is a 4 x 8 coefficient matrix and Y = {zl, ¥2} . The following sets
of boundary conditions (simply supported and clamped) are considered
-1 N = = ; = ’ ; = ; = - N
Ss . N, ny Ty W=20 M 0d
S$5-2: = ; = ; = ; = - N
S u 0 ny T0 W 0 Mx oq
§$58-3: Nx = - NO ; v =20 ; W=20 ; Mx = - Noq
Ss-4: = ; = ; W = ; M = - N
u 0 v 0 0 " Oq
(3.2.7)
c-1 N = -N ; N =T ; W =20 ; W, = 0
x 0 Xy 0 b 4
- = 0 ; N =T ; W =20 ; w, = 0
Xy 0 X
- = - N ; v =0 ; W =20 ; W, = 0
X 0 X
- u = 0 ; v=2_0 ; W =20 ; w, = 0
_ x

where q is the axial load eccentricity, measured from the shell midsurface

(positive inward). The reduced boundary conditions can be found in Appendix C.
t . c

For the ls -order state (buckling problem), the boundary conditions (3.2.7)

become homogeneous.
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To make the eigenfunctions unique, to within a sign (for simple eigenvalues),

we normalize them by

Y] dx = C : (3.2.8)

where C 1s a (positive) constant. This condition can be written as a
differential equation as follows
2

= = X, ¥; 3.2.9
Y, =Y £g(x/¥iA) 0 < x < L/R ( )

L

d
dx
with the boundary conditions

Y17(0) =0
(3.2.10)

Y17(L/R) = C

By adding the normalization condition to the homogeneous boundary value
problem the eigenvalue can be treated as one of the unknown parameters in the
shooting method.

For simplicity, we will consider parallel shooting over 2 intervals. Hence let

us introduce the following 2 associated initial value problems:

Forward integration:

(3.2.11)

UG = 0) = (3,,0)"

where §0 contains 8 independent parameters s, in s.
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Backward integration:

x(1) € x < x(2)

V= £& VA
dx
(3.2.12)
~o= T T
Vix = x(2)) = {§2,0)
where s, contains 8 independent parameters ti in t.
In the above equations is
i T T T T
Uu={u, U17} = {U, NU}
(3.2.13)
n T T T T
v= (v, V17} = {v, NV}
and
f = {fT, £ }T (3.2.14)

~

Introducing a new vector function @ the solutions must satisfy the matching

condition and normalization condition
Ulx=x(1)] - VIx=x(1)]
@ (3) = - y=0 o (3.2.15)

‘NU[x=x(1)] - Nv[x=x(l)]

where

18>
]
e
A
€
[}

b (3.2.16)

(3.2.17)

0>
l
w
~
>
Z
1
o
-
et
<
>
zZ
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and
Y= {0, C} (3.2.18)

If we have initial guesses which are sufficiently close to the eigenvalue and
eigenfunction, we can use Newton's method to solve (3.2.15). We then have the
following iteration scheme

sVt o5V vasY o v=o,1,... (3.2.19)

A

h .
where A§v is the solution of the 17t ~order linear system

B? ~v ~v o Ny
_:(§ ) A§ = - 9(§ ) ' (3.2.20)
as

In order to solve for the components of the Jacobian

[ oo L ad, a0, T
Py —_ ] —
as, s, A
.. e
. @
J="7 = cee R (3.2.21)
9§
96 96 'EflG
5 P16 M
92, , 9, , | 90, ,
_asl 6516 oA ]

let us introduce the following new vectors

. au
W=, oW, 9T - =S i=1,2,...,8
17 : i
. (3.2.22)
av
A T T : ,
z, =iz, 2z, } = 2 i=9,10,...,16

117 i
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These vectors are found by solving the following variational equations,
obtained by differentiating (3.2.11) and (3.2.12) with respect to the

parameters Si:

forward:

"~ a A A A
0 < x < x(1) a W= £, USA) W i=1,2,...,8 (3.2.23)
ax o
backward:
- d A a A oA A
x(1) < x < x(2) —_Z, = T £(x,ViA) Z, i=29,10,...,16 (3.2.24)
ax T av *
with initial conditions
- T T
W, (0) = {(ds,/9s,) ", O}
- T T
W,(0) = {(ds,/9s,) , 0}
(3.2.25)
~ T T
Wo(0) = ((3ds,/9s5)", O}
and
- T T
Zy (L/R) = {(ds,/dt)) ", O}
(3.2.26)

A

T T
Z, (L/R) = ((3s,/3t,)", 0}

In addition we must solve the following inhomogeneous variational equations

with homogeneous boundary conditions, obtained by differentiating (3.2.11) and
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(3.2.12) with respect to the eigenvalue parameter A:

forward:
_ d dU 9 . _ n oU . _ n
0. < x £ x(1) T 5A = A E(xY ,U;A) T 0+ T £(x,Y ,U;A) (3.2.27)
; gz 9A 20 0 A A 0
backward:
- d aY a A .A aY a A ~
x(l) £ x £ x(2) T_5h = T fxY ,ViA) ST+ T £(x,Y ,V;A) (3.2.28)
ax dA av 0 JA IA 0
The componenté of the matrix J' = 0£/9U = 9£/9V can be calculated directly:
- |0 T
I
!
|
|
|
A I
~ I
J' = [ (3.2.29)
|
|
!
I
I
0
— e = = e mm Em de e e e mm wm e em mm ewe e I— — —
2u 0 o ' o |
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.
The Jacobian matrix J = ~ has the following form
CE
[ dU U av ]
a§[X(l)] o | aAIX(l)] - aA[X(l)]
. av ' e av
J = 0 - aE[X(l)] I SX[X(l)] - aAIX(l)] (3.2.30)
oN oN oN oN
U _Vv _U _Vv
ag,[x(l)] - ot (=M1 1 34 [x(1)] aA [x(1)]

i

Booton formally shows that if the boundary conditions‘at»x = 0 and x = L are
identical, W, and fl are even, and v, and f2 are odd functions of x (or vice
versa) with respect to the midlength of the cylinder. Therefore the
eigenvalues can be obtained from a homogeneous boundary value problem defined
over only one half of the cylinder length. |

Booton also indicates another reduction of the problem. We can show (see

Appendix F) that in the present approach the variational equations

W' =AW (3.2.31)

where W = [Wl, 1 ], with the corresponding initial conditions, have

By reeer Mg
the following property

W) Wy, ()

W(x) = (3.2.32)

Wy X) Wy, 0

3.3 Description of the computer program

The numerical computations were carried out by means of a Fortran program on a
SUN 4/280 computer. Fig. 5 shows the flow diagram of the program. To start the

iteration, an initial guess for the eigenvalue and the eigenmode must be
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obtained from a simpler analysis. For this purpose, Khot's method [12]
(Galerkin procedure for a one-term deflection function approximately
satisfying simply supported boundary conditions) or the method presented by
Rong et al. [13] (exact solution of the differential equations for a membrane
piebuckling state) can be used.

The main loop is the Newton iteration to solve the eigenvalue problem. In each
iteration step, first the prebuckling state and ‘the prebuckling state
differentiated with respect to the load parameter are solved. The converged
solutions are used in the integration of the buckliﬁg state. In an early stage
of the iteration process a damping factor can be used for the corrections to
guarantee convergence to the desired root.

The solution of the initial value problems was done by the library subroutine
DEQ from Caltech's Willis Booth Computer Center, which uses an Adams-Moulton
prediétor-corrector scheme. Starting values are obtained by the method of
Runge-Kutta-Gill. The program includes an option with variable interval size

and uses automatic truncation error control.
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4. NUMERICAL RESULTS

In this chapter, results of the buckling analysis for anisotropic shells under
axisymmetric loadings will be presented. The anisotropic shell investigated in
the calculations is a [30°,0°,-30°] laminated glass-epoxy shell first used by
Booton [2] and later by Arbocz and Hol [5]. Its geometric and material data
are given in Table 1.

The buckling load has been computed for two shells with different lengths,
namely, . o

1) a relatively short shell (L/R = 0.707, Z = 1?/rt = 50), and

400),

2) a shell of moderate length (L/R = 2, Z

and for three different load cases:

1) axial compression (A = (cR/EtZ)NO),

2) hydrostatic pressure, i.e., a uniform pressure applied to the lateral
surface as well as to the ends of the cylinder (5 = (cR2/Et2)p and
A= % 5), and

3) torsion (1t = (cR/Etz)TO): counter-clockwise, corresponding to a positive
sign, and clockwise, corresponding to a negative sign.

The influence of the eight different sets of boundary conditions (3.2.7) is

investigated. In particular, the following effects are examined:

1) the effect of rotational constraint (w,x = 0 versus W,xx = 0) and

2) the effect of axial constraint (u = 0 versus NX = 0).

The effect of prebuckling deformations ‘on the buckling load (and mode) 1is

$llustrated for the SS-3 and C-4 boundary conditions by a comparison with

results of calculations using a membrane prebuckling analysis.

The boundary conditions are symmetric with respect to the shell midlength. The

prebuckling shapes and mode shapes are therefore plotted for 0 < x < L/2R =

% (max). In the figures for the buckling modeé, the amplitudes are normalized

by the wall thickness t.
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4.1 Axial compression

It is seen from Table 2 that the buckling load of.simply supported shells is .
drastically reduced for the weak béundary support ny =0 (v is.free). This
has been reported by several investigators (see e.g. Almroth [14]). The
buckling mode is characterized by a small number of circumferential waves
(n = 0 or n = 1). Boundary conditions in which v is free, however, are not
likely to be encountered in practical applications.

For 2z = 50, the edge constraint in axial direction u = 0 raises the buckling
load by about 5% as compared to the corresponding cases in which u is free.
The effect of clamping (W,x = 0) is seen to be predominant, giving increases

by more dan 10%. For zZ = 400, the increases are less than 3% for u = 0 and

less than 4% for W,x 0. Buckling modes for S85-3 and C-4 boundary conditions
are shown in Figs. 6 and 7.

The effect of prebuckling deformations (Table 6) is seen to be important for
the short shell (E = 50). The buckling load is lowered by 13% in the SS-3
case, and by 5% for the C-4 case, as compared to the anal?sis with membrane
prebuckling. For z = 400, the decreases are less pronounced»(4% for S5-3 and
negligibly small for C-4 boundary conditions). The buckling modes for a
nonlinear and for a membrane prebuckling analysis are depicted in Figs. 8 to

11. For SS-3 boundary conditions, the prebuckling rotations are seen to have a

pronounced influence on the buckling mode.

4.2 Hydrostatic pressure

For the hydrostatic pressure case (Table 3), it is seen that for Z = 50 both
the rotational constraint W,x = 0 énd the axial constraint u = 0 increase the
bifurcation buckling load considerably (by about 10 to 25%). For Z = 400 the
axial restraint has a pronounced influence, raising the buckling load by about
30%. The increase for clamping (W,x = 0) is less than 10%. Buckling modes for
S5-3 and C-4 boundary conditions are shown in Figs. 12 énd 13. The modes
exhibit very little skewedness. The Poisson's expansion Wv + Wp in the

prebuckling radial displacement is denoted by Wc'
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The effect of prebuckling deformations (Table 7) on the buckling load is seen
to be small for the shell of moderate length (z = 400), giving a decrease less
than 0.5% for the SS-3 case, and a 1% increase for the C-4 case. For the‘short
shell (2 = 50) the buckling load is lowered by 2% for the S5S-3 boundary
conditions, and by 6% for the C-4 boundary conditions, when a rigorous

prebuckling analysis is used.
4.3 Torsion

An interesting phenomenon for torsion is that the buckling load under torsion
depends on the sense of the applied torque because of the shearing-bending
coupling tefms in the constitutive equations (Booton [2]). It is seen that the
buckling load under a negative {clockwise) torgue is lower than for a positive
(counter-clockwise) torque (Tables 4 and 5). For 7 = 50, the critical load is
decreased by about 15 to 20% when a clockwise torque is applied. The critical
torque is less than 5% lower for Z = 400 .

It is seen that for Z = 50 the effect of edge clamping is predominant. The
rotational constraint W,x = (0 raises the bucklipg load by about 10 to 20%,
while the axial constraint u = 0 gives an increase of less than 10%. For the
longer shell (z = 400) the éffect of the axial constraint u = 0 is
predominant; the increase due to this constraint is less than 10%. Buckling
modes for SS-3 and C-4 boundary conditions are shown in Figs. 14 to 17.

For anisotropic shells under torsion, prebuckling deformations occur if the
Poisson's expansion Wt is not equal to zero (see Appendix C). For the Booton
shell A* = 0, and consequently, if the edges are clamped, w, = 0. For simply

26 0
supported shells, however, prebuckling deformations occur, because B2 in the

boundary condition fpr_the prebuckling rotation does not vanish (le is not
equal to zero). These deformations are about an order of magnitudé smaller
than for the other external loads considered. The effect of prebuckling
rotations on the buckling load (Table 8) is therefore seen to be small (a

decrease of 2% for Z = 50).
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5. CONCLUDING REMARKS

A generalization of the common shooting method has been presented, which can
be used to solve nonlinear eigenvalue problems. The eigenvalue is treated as a
parameter in the shooﬁing' procedure, i.e., as one of the unknowns in the
Newton-type iteration scheme. v

This idea has been applied to the bifurcation buckling of anisotropic
cylindrical shells under the combined loading of axial compression, radial
pressure and torsion.

Results for a [30°,0°,~30°] laminated anisotropic shell have been presented,
showing the effects of different boundary conditions and nonlinear prebuckling

deformations.
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APPENDIX A : Basic equations

Constitutive equations

Using the sign convention shown in Fig. 2, with W positive inward the
numbering of the layers begins'at the outer surface. The angle of rotation Ok
(k =1,2,...,N) of the individual layers is defined with respect to the x-axis
of the shell. The shell reference surface coincides with the midsurface of the
laminate. If the position of the kth lamina is defined by hk—l < z < hk the
total thickness of the laminate is

N
t = i (hk—hk_ ) . (Al)

We assume that each lamina may be considered as a homogeneous orthotropic

. . . . th .
medium in a plane stress state. The stress-strain relations for the k lamina

can then be written as

% Q4 92 0 €1
%2 = | Q2 22 0 ) (a2)
*12 . 0 0 %6 . Y12 .
where
' Ql; = By (7vipvay)

Q2 = EBpp/ (17Vy,vyy)

Q12 7 VorB1a/ (1mVipVay) = VipBy/ oy v, (a3)

Q.. =G

66 12
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The relations refer to the lamina principal axes (1,2). Transformation to the

shell wall reference axes (x,y) gives

O 9 92 Q6 €x
y = 1 9 90 %6 €y (ad)
T 6 5 5 Y
xy 1, 16 26 66 1, L 'xy ||
where
- 4 2 2 4
Q11 = Qllc + 2(Q12+2Q66)C ST+ szs
- 2 2 4 4
Q1 = Q140,790 )C S + 0., (CHS )
- 4 2 2 4
Q22 = Qlls + 2(Q12+2Q66)C S + Q22C | (A5)
- 22 4 4
Qg = (Qy170;572Q,,72Q,)C S + Qg (C+S )
5. = (Q..-Q..-20. )C°S + (0..-0..+20,.)CS>
16 117%127%66 12 222"
0. = (Q..-Q..-20.)CS° + (Q..-0,.+20,.)C]S
26 11791276 12792746
and

(¢}
X
N h ,
= I | o, dz (R6)
k=1 -1
T
Xy k

and the moment resultants (see Fig. 3) acting on the shell midsurface are

defined as
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F MX F GX
N h
My = X f cy ' zdz (A7)
k=1 hkfl
X M T
y ¥x xy

L 2 . L Tk

According to the Kirchhoff-Love hypothesis for a thin shell, the strain at any

layer can be written in terms of the strain and curvature of the midsurface as

X X X

€ = € + z X (A8)
y Yy Yy

Txy K Txy “xy

Substituting these expressions into Eq. (A4) and introducing the resulting
relations into Eq. (A6) and (A7), followed by carrying out the indicated

integrations gives the following constitutive equations

Ny P11 Pio Py €x Bi1 Bz Byg *x
N ol T Pz P22 P €y | T | Biz Bz By v
N A
xy 16 P26 Pes Ty Bi6 Bag  Bge “xy
(A9)
] o ] - -
[ M [ B11 Bz Byg fx [ P11 P12 Pye “x
M = ' '
'y = | P12 Bz By v | T ] P12z P2z Dy Xy
x M X B B B D D D
Y ¥ ] 16 °26 66 Yey ] 16 26 66 | “xy ]
[ — i ] ] i

(A10)
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where

(h. -h ) (All)
ij k=1 j'k k k-1
N
1 " 2_ 2 |
-1 - (212)
B~z F Qi Mk Py-1) ‘ |
N
1 3,3
-1 - . (A13)
o3 E Gudi M no )

for i,j = 1,2,6.

The constitutive equations (A9) and (Al0) can be written in matrix form as
(N} = & {e} + B {x} (Al4)
{M} = B {g} + D {x} (A15)

and after partial inversion as

*x *
{e} = A {N} + B {x} (AlG)
* *
(M} = C {N} + D {x} . (Al7)
where
A* =t

(Al18).
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The stiffness parameters are nondimensionalized as follows

- - — 2

A,, = (l/Et)A,, ; B,. = (2c/Et2)B.. ; D,., = (4c /EtB)D,,

1) 1] ij i] 1] 1]
and

% * ~k * —% 2 3 *

A,, = Et A, ., ; B,. = (2c/t)B, . ; D,. = (4c /Et")D, ,

ij 1] 1j iy 1] S13
where

c2 = 3(1—v2)

and the quantities E and v are arbitrarily chosen reference values.

Strain-displacement relations

The Donnell-type strain-displacement relations are

1 2 -
= + = +
£x Yy 2 W'x W'xw'x
W 1 2 -
€ =v, - =+>W°+w W,
4 y R 2y Y
= + + + W, + W
ny u’ y v’ Wl xw’ y W' xW' y WI xW’ y
K. =-W,
X XX
X = - W,
Yy YY
X = - 2W,
xy Xy

where W is an initial radial imperfection.

(A19)

(A20)

(A21)

(aA22a)

(A22Db)
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Equilibrium equations

The potential energy is given by

27R L Mx +M %
f [ (Ne +Ne +N y +Mx +Mx + ¥ ¥y jdxdy (a23)
X X vy xy 'y X X vy > Xy
2nR L 2rR L 2nR L
- NX(X=L) J (u,x-qW,xx)dxdy - f | pw axdy - | ny(x=L) f v,xdxdy =0
0 0 0 0 0 0
where Nx(x=L) = —NO is the applied axial compression, p is the applied
external pressure, ny(x=L) = T0 is the applied counter-clockwise torque and g

is the load eccentricity (positive inward) of the applied axial compression.
We can derive the following equilibrium equations by the stationary potential

energy theorem

N +N =0 ' (A24a)
X, X XY,y .
N + N =0 (A24b)
XY, X Yy
M + M +M ) + M +IN +N W, +W )
X, XX xy ¥yX XY v, YY R ¥ x| xx XX
+2N (W, +W, ) +N (W, +W, ) =-p (A24c)
Xy Xy Xy Y Yy Yy .
Introducing an Airy stress function F as N =F, , N =F, and N = ~-F,
X vy’ 'y XX Xy Xy

(A24a) and (A24b) are identically satisfied and (A24c) becomes

1 -
= + 2
L *(F) + L *(W) F, + L __(F,W + W) P ) (A25)

where the operators L L and LNL are defined in the text.

Bx' D%
Another equation in W and F is obtained from the compatibility condition

€ + € Y W, -
XYY Y, XX XY r Xy

XX

N

LNL(W,W + 2W) (AZG)

PR R
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Substitution of {g} from (A3) gives

- W 27
L. . (F) L__ (W) Ly, (W, W+ 2W) (A27)

Ax* B* T TR 'xx

|
1
|
=
t
NI

where the operators LA* and LB* are defined in the text.
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Periodicity condition

The solution has to satisfy the circumferential periodicity condition

2nR
[ v, dy =0 (B1)
where
1 1 2
=g +-W-= B2
v,y ey 2 5 W,y (B2)
A* N + A* + * * * + B* B3)
= + +
€y 128% T BooNy F BogNyy T Bor¥y + BpoX 26%xy (
and
N =TF = = -
x 'yy ! Ny F'xx ! ny F'xy
(B4)
KX = - W,xx ’ Ky = - w,yy ' ny = - 2W,xy

Substituting for W and

F

the assumed perturbation expansion yields after

regrouping and ordering by powers of &

vV

(t/cR)é{[i;

—%
- (t/ZR)(Blel—B

—%
+ [A2

) % % 2 %
- (t/ R)(B21w2—B n“w_.-2B

._* J—
(t/cR){(—kA12+cWV)+(—pA

-k 2 -
f;—A n £ _-A_ _nf}

* *

— - -
"_ wy
22+ch)+(‘tA26+th)+A22f0 (t/2R)Ble0 cwo}

12 1 26 2

-

2 =% .
22n w1+282 nw2)+cw1]cos né

6

—% 2 —%
f;—A n £,+A_ _nf'!

2 =* " =%
{t/cR)E {Azzfa-(t/ZR)Bz

12 2 26 1

nwi)+cw2]51n né} (B5)

22 2 26

“ 2 2 2
lwa+cwa (ct/4R)n (w1+w2) +



- 41 -

2 —%
"w_ - '
[A22fB A 4n fB A262an

“+

2 —% 2, 2 2
(t/2R)(B w"—B 4n w,+4B, nw')+cw,+(ct/4R)n (w. -w_.) Jcos 2n6

2178 22 B "T26 'y B 12

+ (A _f"-A _4n’f +A. 2nfl
Aty R p4n £ %A, 2nfy

- —% 2 —* , ' 2 L
"w_ - 0
(t/2R)(BleY 8224n wY 4B26an)+cwy+(ct/2R)n w1w2151n 2no}

' 3 2 ’ .
+ (t/cR)E™ {-(ct/R)n [(wlwﬂ+w2w7)cos ne - (WZWB_wlwy)Sln no
- - i 0
(wle wzwy)cos 3n6 (w2w8+w1wy)31n 3n6]}
2 2 2 2
+ (t/cR)& {-(ct/R)n" [w,+w —~2w_w sin 4n@® - )cos 4n6]}
g By "By B
where 0 = y/R. Substituting this expression into equation (Bl) and carrying
out the y-integration yields
—— -
{ (- XA +CW )+ ( pA22+CWp)+(IA26+CWt).+A22f (t/ZR)le O+Cw }
2 =% "w__ -* v" -— 2 2 2
+ & {A22fa (t/2R)B21wa+cwa (ct/4R)n (w1+w2)}
2
+ 8= (ct/myn? (wis )} =0 (B6)

B

Notice that the underlined terms vanish identically since they are equal to

equations (2.2.10) and (E4), respectively, with the constants El = 62 = 0 and
C3 = C4 = 0. If one now lets
_*x ' - 7
W, = Al2 /c ~ (B7a)
-k e .
Wp = A22p/c (B7b)
—-k -

W_=-1a_ 1/c : (B7c)
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then the periodicity condition (Bl) is satisfied up to and including terms of
the order §3.
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APPENDIX C : Boundary conditions

The reduced boundary conditions are summarized in this appendix. The

derivation can be found in the report by Arbocz and Hol [5].

Boundary conditions:

Prebuckling state

simply supported:

= - + +
wo (Wv Wp Wt)
we = Bll + BZT
clamped:
w0 = - (WV + Wp + Wt)

SS-1 : Nx = - N0 ; ny = T0 s W=20 ; Mx = - Noq
fl = f2 =0

f! = fé =0

w, =W, = 0

wI = - B3wé - B4f£

wg = B3wi - B4f5




1

fll

BBleE - BB16f
- BBle; + BBle
fé=0
w, = 0
- B3wé —'B4f{ + B
B3wi B4f5 + B
Nx = - N0 ;vo=
f2=0
BBlfé + BBZWé
- BBlfi - BBZWi
w, = 0
- Blewé + BBZZfé
BB,y ¥ T BBpofi
tu=0; v=20;
BBZ7fi + BBZBWi
BB27fé + Bstwé

+

- 44 -

H W = ; MX = - Noq
e )
+ BlZWl + BBl7w1
i 1
+ B12w2 + BB17w2
; W= ; MX = - Noq
=0 ; < = - Noq
e
Byo¥y" T BByofy
"
By,wy" + BByt



BB_f, +

BB_f

)

571

572

= 0

'
BBlfz

- BB_f!

171

+ BB, w!

22

- BB w!

- L]
BB, w! + BBZZfZ

: N
x

21°2

1
BBy)1¥y

BleZ

B, sf1

21

+ BB, _f

2571

- JEY + £
szzfl BB

0

N =T

Xy

= - N_; N
Xy

0

.
’

2572

;s W
To

W=20

- B __f. +B_ . w'"

1872

1271

+B f + B  w!'"

18

1

1272

- 45 -

=0 ; W,x

+ Byo¥2

- Byo¥1

0




= BB__f.!

BB

Bio

Bio

33

33

£

£,

1

L}
f2

+

- BB34f

+
BB34f

C ot
Bi1%2

2

1

+ B

+ B

B12w

B..f! + B, .w

1171

12

e
12"1

12%2

”
1

2
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+ BB35w2

T BB3gWy
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Conditions at x = L/2:

Prebuckling state

w_ = symmetric w.r.t. x = L/2:

Buckling state

w, = symmetric, w, = anti-symmetric w.r.t. x = L/2:
= = - | - " o [ - LI L LI L J—

w2 f2 w f1 w f2 w1 fl 0

w1 = anti-~symmetric, w2 = symmetric w.r.t. x = L/2:
= = - [ - "o "o ve LI L -

wl fl w2 f2 w £ w £ 0

The coefficients used in this appendix are listed in Appendix D.
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APPENDIX D: Definition of constants

Constants used in the equations:

Prebuckling state (Eq. (3.1.1)):

A -
C, = (4c/8) (R/t)B,,
A -k
C, = (4c/a) (R/t)R,,
c, - (ac?/a) (R/t) 2

Buckling state (Egs. (2.2.15)):

-k -k - -k - —% 2 2 R/ i*
c1 = (2/A)(R/t){[A22(B +822-2866) - B21(2A12+A66)]n +.( cR/t) 22}
) -k =%
¢, = (2/A) (R/t) (B21A11 12A22)n
P -% —_K wk
c3 = (2/A)(R/t){A22(2526 ) + 2A26821}
-k -k -k =k
c4 = (2/A)(R/t){A22(2B16 ) + 2A16821}
—% * _* 2 2 —%
05 = (l/A){[2(D +2D66) 22 + (Bll 22 2566)]n + cR/t)le}
-k =%
C6 = (1/A)(D22A22+812521)
—%
C, = (1/4) {4D16A22 * (2826 Bgy) Im
. - 3
c8 = (1/A){4D26A22 + (21316 862)}n
2 %
C = (2¢c/A)n" B

21
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2 —-%
Cl2 = (4c/A) (R/t)n A22
-
Cia = (4(:/A)(R/t)nA22
-k
C15 = (4C/A)(R/t)A22
-k -k -k - -k 2 + 2 R/ g*
Ciq = (1/A){[D11(2A12+A66) + (B +322 2B66)]n (2cR/t) 21}
—_—k -k
Cig = (1/8) (D11A11+512321)
-
C19 = (1/A){2D11A26 - (2}326 B61)}n
—% 3
c20 = (1/4) {- 2D11A16 + (ZB16 562)}n
_* 2 -
c21 = (1/A){(t/2R) [ D (B +522 25 ) + 2B (D 2+21>66)]n - °D11}
-k =%
C22 = (t/2R) (1/A) (- B21D22+512D11)
' —% 2_* -k -k %
C23 = (t/2R)(1/A)(D11( 526-361) - 4821D16}n
_ 2 - - - 3
Cpq = (t/2R)(1/4) {4821D26 = Dy (2B Bgy) In
2 —x%
Cog = (c/8) (t/R)n" D,
2 2 5
C28 = (2c/A)n 521
4 -k
C30 = c/A)nB21
-k
c31 = (2c/A)B21
where
A=k 5 +B,°
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Further, the following constants are used in Eq. (3.2.4):

D) = Cg + Cigwp * Cqp(Ep ~ P

O
]
(@]
+
¢]
al

Oe
]
(@]
I
(@]
>

o
u
o
O
z-

5 T Cpp T Cog¥p T Caglfp T P

(o k]
il
(@]
+

jok]
il

9]
+

6 24 ¥ €307

7 = C1 Gt

Oe
1]
(@]
1

0
It

(@]
+

8 18 ¥ C28"0

Constants used in the boundary conditions (Appendix C):

%

- -k =% -k
B1 = (1/A2){q - (2R/t)(B21A12/A22 - Bll)}
2 -k =% -k -k
82 = /A2)(R/t)(B21A26/A22 - 561)
- -
By = 20D, /D,
2 -k -k
By = { R/t)BZI/Dll
5 2 e
B6 = 2n (R/t)Bll/Dll
2 - -
138 = n(R/t)B61/D11



10
11
12
13
15
‘ 17
18
19
20
BB
BB
BB
BB

15

BB g

BBl7

Ble

2 —% %

noA /By,

- -

nA, e By
-k -k
(t/2R)821/A22

- p
n(t/R)BZG/AZZ

*

- -—
2nA26/A22

*

2 —% -% -
(n /A22)(A12+A )

66
3 -k %
no A e/By,
—% 2 =% %
(l/A22){(t/2R)n (2366—322) - ¢}

—-%

-% -
(t/2R)(n/A22)(2826—861)

(l/AB)(Bll * B8B12)

(1/Ag) (By 5 = B3B, )

(1/AB)(810 + B _B_ )

6 12
B1s = ByByy
B1g ~ BgBag
B19 + B3B20
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and where

q= (4cR/t?)q

is the nondimensionalized axial load eccentricity (posiﬁiVe inward) .
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APPENDIX E: Postbuckling problem

The equations governing the an—order state (postbuckling problem) are

(2) 2), _ 1.2 _ (2)
LA*(F ) - LB*(W ) = R W'xx : tw0,xxW'yy

+ —(t/R) n {w.w )

+ + + w
11,xx wl,xwl,x w2w2,xx w2,x 2,%

* (wlwl,xx wl,xwl,x—waZ,xx‘FwZ,xWZ,x)cos 2né

+ (wlw2,x 2wl,xx_2w1,xw2,x)8in 2n6} (Ela)
LB*(F(Z)) + LD*(W(Z)) = % Ffzi + (Eth/c)fO'xxwf§; + twO,xfoii

- (Et /cR)(lW( by wfz) - 21w(2) {Elb)
xx Yy Y

- —(Et /cR)n? () +2w1'xf1,}-{+w1,xxf1+w2f2,xx+2w2'xf2’x+w2'xxf2)_
* [wlfl XX 2w l;xfl,x+w1,xxf1 - (w2f2,xx-2wZ,xf2,x+wZ,xxf2)]cos 2n8
* [w1f2 XX 2wl,xf2,x+w1,xxf2 * (w2f1,xx 2w 2,xfl,x-”v'IZ,zau:fl)]Sirl 2n8]

These equations admit separable solutions of the form

w'?)

t[wa(x) + wB(x)cos 2n0 + wY(x)sin 2n0] (E2a)

g (2

[

(ERtZ/c)[fa(x) + fB(x)cos 2n0 + fy(x)sin 2no) (E2b)

Substituting, regrouping and equating coefficients of like trigonometric terms
yields the following system of 6 linear inhomogeneous ordinary differential
equations with variable coeffients

=* _iv =* jv

A22fa - (t/2R)B21wa + cwy = (ct/2R)n (w1w1+w w +w2w2+w w ) (E3a)
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*

26

—-%  iv - o o
— T :
A22fB 4a nfy + 16A1

. 2—*
- | Al

A )4n2f" + A 16n’e n3g
2766 B 11 B 6. v

t/zﬁ 5wV Y 4B 28" yanZwr + B _16ntw, + (2B, -B.
( ) [ 21wB - (B1 B..- BGG) n wB + 3121 n wB ( B26—B6

T
1722 1) 20wy

- (25* —g* )8n3w'] + cwh - (4ct)é)n2w"w
16 62 ¥ B 0B
= (ct/2R)n2(w whewlw!-w w“+w'w}) (E3b)
1¥17MM1 72 2" 2 2
-%  jv —% =% 2 -k 4 —% —*x 3
+ " T _ 1
Byafy (2B, ,+Ac ) 4n"£D + A l6n°f 4 48, GnEg 16A, (0 £}
(£/2R) (Br.wi¥ - (B 4B, _-2B. )4nw" + B..16n" 2B, B, )2nw!"
(Byywy = (B ¥By,=2Bgo)dniwl + By,l6nw, = (2B, By )envg
+ (2B -B._)8n wll + cw" - (4ct/R)nw"w
16 62 B Y 0y
= (ct/2R)n2(w wiiw wi-2wlw!) {E3c)
1"272"1 712
55 £V 4 (e/2r)D) WiV - (2cR/EVET 4+ 2chw™ (E3d)
21 o 117 ¢ o Ay v
= = on?(w. ETH2wl £ 4w E bw ETH2wl £l 4wl E )
1517 T I T 2 22 22
B iV B 4B _-2B. )4an’fn + B._16n°f 2B, —B._)2nf'"
21%p (B) +B,,"2B ) dn fg + B, 16n £4 + (2B) =B, )2nf,
-k =% 3 ’ -*x  jv —% -k 2 —% 4
- 1 + - " +
(2B, B, 8 ) (£/2R) [D W 2(D,,+2Dy () 4n" Wy D,,16n wg
+ 8D nw'" - 32D, _now'] - fch/t)f" + 2c(xw"-4n2§w -4nTw')
16 'y 26 v , B B B Y
+ 8onZ (WUE +E%w.) = - énz(w EUo2wlEr+wnE_ -w £U42w!El-w"E ) (E3e)
0B 0B 15174Y1 1Tt T2 2T 2" 22
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By €2V o (B 4B' 28" yanZev + BY 1enlt 2B, -B_ )2nfrn
Pa1ty T By ¥Bppm2Bggldn £ + B ,l6n'f, - (2B,-By, ) 2nfy
+ (2B, B )8n £ + (£/2R) (B .wiV - 2(5" 425" anw" + B _16n°
(2B)g7Bgp) 8n £y + (t/2R) [ 11%y (D) p*2Dggh4n wy + Dy l6n w
- 8D, _nw!" + 32D, ndw!] - (2cR/t) £" + 2c(xw"—4n2§w +4ntw!)
16 B 26 B Y Y Y B
+ 8en® (WUE +ETw ) = - on® (w. EM-2wlEltwTE tw £M-2wlElewnE ) (E3f)
0Ty 0"y e B Mt o Rl S Nl B RS

Equation (E3a) can be integrated twice to yield

£ 2 -k —*~ - - 2 =% 2 2 ~ - + ~
o« (t/ R)(BZI/AZZ)WQ - (C/AZZ)WG + (ct/4R) (n /A22)(w1+w2) + C3X C4

(E4)

where x = x/R and the constants of integration 63 and E4 are identically equal

to zero because of the periodicity condition (see Appendix B for details).

Eliminating fa between Eqs. (E3a) and (E3d) one obtains.

i = o LU 2 2 - v ” L] L] ” T ]
wa (D1 Dzl)wa D3wa + D4(w1fw2) Ds(wlwl+wlw1+w2w2+w2w2)
+ L] 1 1] ” - ” 1 ] ” '
. DB(wlf1+2w1f1+w1fl+w2f2+2w2f2+w2f2) (ES5)

Further, in order to be able to use the shootihg method to solve the governing
equations of the an-order state it is necessary, by considering Egs. (E3b)
and (E3e), to eliminate the w;v term from Eq. (E3b) and the fév term from Eq.
(E3e). Similarly, by considering Egs. (E3c) and (E3f) one must eliminate the
wiv term from Eq. (E3¢c) and the fiv term from Eq. (E3f). Finally, some further

regrouping makes it possible to write the resulting equations as
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iv = "w o " LI L I, | I ]
fB D9fB (D10+D17w0)fB + Dllf ¥ DlZf'Y (D13+D317\.)wB
- " - "_o - tn w'
(D14 DISWO)WB D17(f0 p)wB Dlswy + (D16+D19T)WY (E6a)

+ [ IO QU " Togt - "w_ 161 " - " TE g™
D32(w1w1 wlw1 w2w2+w2w2) DS(wlfl 2w1f1+w1f1 w2f2+2w2f2 w2f2)

iv

£y T Pofy - (D10 7%) £y ~ P1afp” * Diofp - (D) 3D M vy
= (D) ,"DygwgIv, - 917(f3-{>)wY + D gwp" - (D16+D19;)w; ’ (E6b)
+ D32(w1w§+w2wz-2wiwé) - DS(wlfg—2wifé+wifé+w2fI-2wéfi+w§fl)
";v = = Dyofp = (Dyy*D,,Wg) fg + (Dy3DyMwg = (D, 4*P17%0) g
- D22(f8-§)wb - Dyfa" D6ty - D, wa" + (D28+D29;)w; (E6c)
- D5(w1w;—wiwi—w2w§+wéwé) - D8(wlfI—Zwifi+wIfl—w2f§+2wéfé—w3f2)
wiv = = Dyofn = Dy 4D W E ¥ (Dy3D M)Wl = (Dy D W)W,
- Dzz(fa-{))wy + D, fp" = Dyefy + D, ¥g" - (928+D29¥)wé ~ (E6)
- D5(w wliw w'-2w'w]!) - D8(wlfa-2wifé+w;f2+w2fz—2wéfi+w3fl)

12 21 12

where fa is given by Eq. (2.2.10), and the constants D1 - D32 are defined as

follows:

v
[

—%
(4c/A)(R/t)B21

o
]

4
(4C/A)(R/t)A22



10

11

12

13

14

15

16

17

18

19

i

il

(4c2/a) (r/t) 2
(c2/4) (R/t)n?

2 -
(cn /A)B21

2 —-% -k
(t/ R)BZI/AZZ

-k
c/A22

2¢cR/ 2/ M)Ax
(2cR/t) (n /A)A22

(l/A){[D (2A +A ) + B (B

66

(16n /A)(D11A11+821512)

-k

(2B2 -B_.)

2
( n/A){2D A ¢ Be1

11726

2B 5%
L Bl -B

8 A 2D
(8n / ) { A 6 Be2

11716 ~

(1/A){(t/2R)[D (B +B 2B )

22 66

—-—% =%

(t/2R)(16n /A)(821D22 12Dll)

(t/2R)(2n/A){4B D

21016 (232

_*

(t/2R)(8n /A){4B D

21026 (ZB

8c/a)n’ B
(8c/A)n 321

4ct/R) (n2/8)D"
(4c ) (n /A)D11

—%
(Qc/A)nB21

- 57 -

22

}
)}
- -
T 2By (Pp*2
-
6 561!
-
16 Be2) !

=% 2
-2B 66)]4r1

+ (2cR/t)B.

—* 2
D66)]4n +

21}

-k
D
11

}
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- —% [ S * —% 2 9 —%
D20 = { /A)(R/t){[321(2A12+A66) - (B11+B 2B66)]4n - | cR/t)A22}
D = (2/A)(R/t)(A B )16n4

21 227127 21 11
2 —%
D22 = (4cR/t) (4n /A)A22
I S ~% * —* 2 2cR/ —%
D23 = (1/A){[2A22(D12+2D66) + (B +322 366)]4n + (2cR t)B21}
-k -k
D24 = (16n /A)(821812+A22D22)
-k -k -k ek

D25 = (2/A)(R/t){A22(2B26 ) + 2B21A26}2

2 —-% 2_* —-% 2_* -k 3
D26 = /A)(R/t){AZZ( B16_B62) + 821A16}8

2 * - -%
Dyp = (2n/4) {4A22D16 t By (2B Bgy )

* 2 -
D28 = (8n /A){4A22D26 + ( 316 562)}
-k
D29 = (8c/A)(R/t)2nA22
2 =%

D30 = (ct/4R)n /A22

2 . —%
D31 = c/A)B21

2 2,mD"

D32 = (ct/2R) (n /A)D11
where

—% % % 2
A A22D11 B21

This set of inhomogeneous differential equations with variable coefficients
together with the appropriate boundary conditions (Arbocz and Hol [5]) form a

response problem which is solved numerically.
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APPENDIX F: Properties of W(x)
| _

|

i

The initial value problem for W(x) can be written in the following partitioned

form

l— l_ - - =
Wll(x) W12(x) o] A12(x) Wll(x) le(x)
= v (F1)
|- I‘ . — - - -
W21(x) W22(x) AlZ(X) (e} W21(X) W22(x)
with the initial conditions (if multiple shooting is employed)
Wll[X(ZJ)] W12[X(23)] ' I o
= ’ (F2)
W21[X(23)] W22[X(23)] o I
where x(23j) are the starting points for the integration (j = 1, ..., N=1 if 2N
is- the number of intervals). For edge intervals (j = 0 or j = N) the analysis
is similar. '
We now have obtained two uncoupled initial value problems
! =
1 B12"21
(F3)
1 = -
W21 A12W11
Wll[x(ZJ)] =1
(F4)
W21[x(23)] =0
and
l=_'
W22 B12%12
(F5)
W' =

12 Ao
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W, [x(29)]) = T
(F6)
le{x(ZJ)] =0
Comparing the two initial value problems, it is seen that
= ‘ . ' - F7
W11 W22 (F7)
and
- - : ' F8
w21 W12 (F8)
Consequently, W(i) can be written as follows:
_ W 0 Wy ()
W(x) = (F9)
Wppx) W 0

Therefore only eight solutions of the variational_equations are required.



- 61 -

shell geometry:

radius R
thickness -t

length L

2.67 in.

0.0267 in.
1.88798 in.

geometry parameters:

R/t
L/R

2

laminate geometry:

3 layers:

]

100
0.70711
50

layer thickness:

layer

layer properties:

composite material: glass-epoxy

where c2 = 3(1—v2), D

orientation:

Et$/4c2, v =

or 'L = 5.34 in.
or. L/R = 2
or Z = 400

by = hp = P3
_ o = n°

91 = 30 62 0 3

modulus of elasticity l-direction E11

modulus of elasticity 2-direction E22

major Poisson's ratio Vi

shear modulus 12-direction G12

' laminate properties:

1.3751 -0.7582 0.0000 0.0000
A*= (1/Et) -0.7582 2.6292 0.0000 B = (t/2c) 0.0000
0.0000 0.0000 4.8885 ' 0.7430
0.0000 0.0000 -0.7430 0.5634
C*= (t/2¢) 0.0000 0.0000 -0.1965 D* = D 0.2214
-0.1785 0.0096 0.0000 0.0000

0.363, and E = 0.583 10

0.0089 in.
= -30°

= 0.583 107 psi

= 0.242 107 psi
= 0.363
6 .

= 0.668 10 ©psi
0.0000 0.1785
0.0000 -0.0096
0.1965 0.0000
0.2214 0.0000
0.3898 0.0000
0.0000 0.1856
psi

Table 1: Booton's anisotropic composite shell
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AXIAL COMPRESSION

B.C. Z = 50 z = 400

ss-1 0.23058 (0) 0.23145 (0)
ss-2 0.23910 (1) 0.23498 (1)
SS-3 0.37096 (8) 0.39303 (7)
S5-4 0.39349 (8) 0.40556 (8)
c-1 0.41815 (7) 0.40790 (6)
c-2 0.43689 (8) 0.41178 (6)
c-3 0.41993 (8) 0.40865 (6)
c-4 0.43835 (8) 0.41194 (6)

Table 2: Nondimensional buckling loads lc (circumferential wave numbers) under
axial compression for different boundary conditions (Booton's shell,

Z = 50 and 2 = 400)

HYDROSTATIC PRESSURE
B.C. Z = 50" Z = 400
ss-1 0.10382 (9) 0.03646 (6)
S§-2 0.12367 .(10) 0.04831 (7)
ss-3 0.10985 (10) 0.03795 (6)
S5-4 0.13360 (11) 0.05046 (7)
c-1 0.12933 (10) 0.04036 (7)
c-2 0.14739 (11) 0.05141 (7)
c-3 0.13019 (10) 0.04042 (7)
c-4 0.14984 (11) 0.05188 (7)

Table 3: Nondimensional buckling loads Ec (circumferential wave numbers) under
hydrostatic pressure for different boundary conditioné (Booton's

shell, Z = 50 and Z = 400)
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COUNTER-CLOCKWISE TORSION
B.C. zZ = 50 Z = 400
ss-1 0.25924 (10) 0.13182 (7)
55-2 0.27846 (10) 0.14391 (8)
s5-3 0.27989 (11) 0.13918 (8)
S5-4 0.30249 (11) 0.15012 (8)
c-1 0.30858 (11) 0.14062 (8)
c-2 0.32193 (11) 0.14995 (8)
c-3 0.31878 (11) 0.14394 (8)
c-4 0.33205 (11) 0.15287 (8)

Table 4: Nondimensional buckling loads T {circumferential wave numbers) under
counter-clockwise torsion for different boundary conditions (Booton's

shell, Z = 50 and z = 400)

CLOCKWISE TORSION

B.C. Z = 50 Z = 400

ss-1 -0.21964 (9) -0.13100 (7)
S5-2 -0.23486 (9) -0.14038 (8)
$s-3 -0.23849 (10) -0.13820 (8)
SS-4 -0.24878 (10) -0.14524 (8)
c-1 -0.25331 (10) -0.13841 (8)
c-2 -0.26221 (10) -0.14536 (8)
c-3 -0.25991 (10) ~0.14039 (8)
c-4 -0.27100 (10) -0.14744 (8)

Table 5: Nondimensional buckling loads ;c (circumferential wave numbers) under
clockwise torsion for different boundary conditions (Booton's shell,

Z = 50 and Z = 400)
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AXIAL COMPRESSION
z B.C. nonlinear prebuckling membrane prebuckling
50 $5-3 0.37096 (8) . 0.42465 (6)
Cc-4 .0.43835 (8) 0.46257 (7)
400 $S-3 0.39303 (7) . 0.40929 (6)
Cc-4 0.41194 (6) 0.41224 (6)

Table 6: Comparison of nondimensional buckling. loads lc (circumferential wave
numbers) under axial compression for nonlinear and membrane
prebuckling analysis (Booton's shell, Z = 50 and 7 = 400, SS-3 and

C-4 boundary conditions)

HYDROSTATIC PRESSURE
z | B.C. | nonlinear prebuckling membréne prebuckling
o | 5S3 | . 0.10985 (10) 0.11710 (10)
- C-4 : 0.14984 (11) 0.15341 (11)
400 | S$5-3 0.03795 (6) 0.03808 (6)
- C-4 | 0.05188 (7) 0.05146 (7)

Table 7: Comparison of nondimensional buckling loads Ec (circumferential wave
numbers) under hydrostatic pressure for nonlinear and membrane
prebuckling analysis (Booton's shell, Z = 50 and Z = 400, SS-3 and

C-4 boundary conditions)
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COUNTER-CLOCKWISE TORSION
Z B.C. nonlinear prebuckling membrane prebuckling
50 §5-3 0.27989 (11) 0.28490 (11)
Cc-4 0.33205 (11) . 0.33205 (11)
'400 $s-3 0.13918 (8) 0.13911 (8)
Cc-4 0.15287 (8) 0.15287 (8)

Table 8: Comparison of nondimensional buckling loads ;c {(circumferential wave
numbers) under counter-clockwise torsion for nonlinear and membrane
prebuckling analysis (Booton's shell, Z = 50 and Z = 400, SS-3 and

C-4 boundary conditions)
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1oad i

bifurcation load perfect shell

limit load «-postbuckling paths

imperfect shell

N\
prebuckling paths

.
generalized deflection

Fig. 1: Fundamental concepts in buckling analysis
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Fig. 2: Cylinder geometry and applied loading
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Fig. 3: Stress and moment resultants
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-2N
Y9 % (2N-1)
x(1) % (2N-2) x(2N)
' U
v, 2N-2
initial conditions: at x(0),x(2),...,x(2N)
matching conditions: at x(1),...,x(2N-1)
Fig. 4: Parallel shooting over 2N intervals
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( START )

Read data

Generate initial guess
for buckling mode

v+l

v+1

]

1]

§v . A§y

kv + AxV

no

Solve prebuckling state

]

Integrate buckling equations

|

Build Jacobian matrix

!

Solve system for correction

AS, BX

Fig.

5:

!

Convergence ? ;::>

yes

STOP

Flow diagram of the computer program
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Wy +wo Wy +w,
-0.34, -0.38-
. L L L - . m . ) ) . A . u
+0.34L - +0.38L -
x(mox)=0.354 — x(max)=1.0 —

a) Prebuckling shapes

w, solid w, solid
w, dashed w, dashed
-1.0 1.0
. " " /_.\ g
”~
\\ //
\ T T
\ Ve
\ /
\ /
7/
+1-0 L *{max)=0.354 — 1ot " X(max)=1.0 —
4 b) Buckling modes
Z =50 ‘ 7 = 400
Z = 50: A_ = 0.37096 (8) Z = 400: A, = 0.39303 (7)

6: Prebuckling shapes and buckling modes under axial compression for SS-3

boundary conditions (Booton's shell)
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Wy +wo : : Wy + wo

-0.33 -0.28¢

+0.33L - +0.28L -
x{mox)=0.354 — x(max)=1.0 —_

a) Prebuckling shapes

w, solid ' w; solid
w, dashed w, dashed
-1.0 ¢ -1.0 ¢
/
/
. =7 N A / 4
N\ ] o/ Al 7
\- \(/ \ )
\ \ /
\ : \
\/
+1.0. L - +1.0 L
x(max)=0.354 — x(mox)=1.0 —
b) Buckling modes
7 =50 7 = 400
Z = 50: A, = 0.43835 (8) Z = 400: A_ = 0.41194 (6)

Fig. 7: Prebuckling shapes and buckling modes under axial compression for C-4

boundary conditions (Booton's shell)
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Wy +w, Wy
~0.34r -0.34,
+0.34L - ) +0.34L - -
. x(mox)=0.354 —_— x{max)=0,354 —
a) Prebuckling shapes
w, solid w, solid
w, dashed w; daoshed
-1.0 - -1.0
- - — ~
N
N
\
N
N
N
~
N -
+1.0 L - +1.0 L -
x(max)=0.354 —_— x({max)=0.354 —
b} Buckling modes
nonlinear prebuckling membrane prebuckling
nonlinear: lc = 0.37096 (8) membrane: lc = 0.42465 (6)

8: Comparison of buckling modes under axial compression for nonlinear and
membrane prebuckling analysis (Booton's shell, z = 50, SS-3 boundary

conditions)
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Wy +wo Wy
-0.33 -0.33¢
+0.33L - +0.33L -
x{mox)=0.354 — - x(max)=0.354 —_—
a) Prebuckling shapes
w, solid w, solid
w, dashed w, dashed
~1.0 - -1.0 ¢
. - .
~
~
~
~
~
~
+1.0 L - +1.0 L -
x(max)=0.3564 —. x(max)=0.354 —
b) Buckling modes
nonlinear prebuckling membrane prebuckling
nonlinear: Xc = (0.43835 (8) _membrane: lc = 0.46257 (7)

Fig. 9: Comparison of buckling modes under axial compression for nonlinear and

membrane prebuckling analysis (Booton's.;hell, z = 50, C-4 boundary

conditions)
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Wy +wy Wy
-0.38 —o.JT
+o.sl - +0.38L -
. x(max)=1.0 — x(max}=1.0 —_—
a) Prebuckling shapes
w, solid w, solid
w, doshed w; dashed
1.0 ¢ -1.0
VA
/
/ \
. T~ . I N
N Z < 7 T
N N—" P N ) \
\ T T~ / \
\ / \ \
\ / \/ \
\ 4 \ 7/
1.0 L ~_7 +1.0 L - -
x(max)=1.0 —_ x(mox)=1.0 —
b) Buckling modes
nonlinear prebuckling membrane prebuckling
nonlinear: A = 0.39303 (7) membrane: A_ = 0.40929 (6)

Fig. 10: Comparison of buckling modes under axial compression for nonlinear

and membrane prebuckling analysis

boundary conditions)

(Booton's

shell, z =

400, Ss-3
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-0.28- -0.28¢
+o.2a£ - +0.28L -
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o) Prebuckling shapes
w, solid w, solid
wy, dashed w, dashed
-1.0 -1.0
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+1.0 L - +1.0 L -
x(mox)=1.0 —_ x(mox)=1.0
) Buckling modes
nonlinear prebuckling membrane prebuckling
nonlinear: lc = 0.41194 (6) membrane: lc = 0.41224 (6)

11: Comparison of buckling modes under . axial compression for nonlinear

and membrane prebuckling analysis

boundary conditions)

(Booton's

shell, 2 400,

Cc-4
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We+wo » We+w
-0.17; -0.061
+0.170 - 4+0.060 =
x(mox)=0.354 —_ x(max)=1.0 —
a) Prebuckling shapes
w, solid w; solid
w; doshed w, dashed
-1.0 -1.0
+1.0 L - 1.0 L _
x(mox)=0.354 — x{mox)=1.0 —_—
b) Buckling modes
Z =50 Z = 400
2 = 50: p_ = 0.10985 (10) ' Z = 400: p_ = 0.03795 (6)

Fig. 12: Prebuckling shapes and buckling modes under hydrostatic pressure for

S5-3 boundary conditions (Booton's shell)
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We + W We +wp
-0.22- -0.08-
+0.220 - ' +o.oa{ —
x{max)=0.354 — x(max)=1.0 —
a) Prebuckling shapes
w, solid W, solid
w, dashed w, dashed
-1.0 -1.0 -
+1.0 L - 10l . -
x(max)=0.354 —_— x(max)=1.0 —
b) Buckling modes
Z =50 ‘ 7 = 400
Z'= 50: p_ = 0.14984 (11) ‘ z = 400: p_ = 0.05188 (7)

Fig. 13: Prebuckling shapes and buckling modes under hydrostatic pressure for

C-4 boundary conditions (Booton's shell)
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Wi +wo Wt +wo
-0.09- -0.04,

, . . T . e "

+0.09% F(mox)=0.354  _» oot *(max)=1.0

a) Prebuckling shapes
w, solid w, sol‘id
w, dashed w, dashed
-1.0 ¢ -1.0 [
. L ) " s y - T~ L Y
e ~
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-~ ~
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v1.0 L - T~ | kol - -

x(max)=0.354 —_— x(max)=1.0

b) Buckling modes
Z =50 7 = 400
z = 50:'%c = 0.27989 (11) Z = 400: ?C = 0.13918 (8)

14: Prebuckling shapes and buckling modes under counter-clockwise torsion

for S5-3 boundary conditions (Booton's shell)




- 80 -
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-0.09, ~0.04r
. ; L A u " A L . . 4
+0.08L - . +0.04L -
x(max)=0.354 — . x{max)=1.0 —
a) Prebuckling shapes
w, solid w, solid

w, dagshed

w, dashed

-1.0 - -1.0 ¢

1.0t *{mox)=0.354 — 1.0 & X(max)=1.0 —
b) Buckling modes ' '
Z =50 7 = 400
Z = 50: %c = 0.33205 (11) 7 = 400: IC = 0.15287 (8)

Fig. 15: Prebuckling shapes and buckling modes under counter-clockwise torsion

for C~4 boundary conditions (Booton's shell)
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Wi +wp Wt +wo
—-0.08, ~0.04,
T
0.o08L - .04l -
* x{max)=0.354 —_ +0.04 x(max)=1.0 —
" a) Prebuckling shapes

w, solid w, solid .
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- -
e e
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/// ///
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b) Buckling modes
Z =50 Z = 400
z = 50: %C = -0.23849 (10) Z = 400: %C = -0.13820 (8)

16: Prebuckling shapes and buckling modes under clockwise torsion for

$S-3 boundary conditions

(Booton's shell)
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Wi +wo . Wi +w,
-0.08r : ' ~0.04r
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+0.08L - +0.04L -
x(max)=0.354 — x(max)=1.0 —
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b) Buckliing modes
Z =50 Z = 400
Z = 50: ?C = -0.27100 (10) Z = 400: %C = -0.14744 (8)

Fig. 17: Prebuckling shapes and buckling modes under clockwise torsion for C-4

boundary conditions (Booton's shell)
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