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Abstract

In this thesis, manifolds in the coupled planar circular restricted three-body
problem (CR3BP) as means of interplanetary transfer are examined. The equa-
tions of motion or differential equations of the CR3BP are studied according to
Dynamical Systems Theory (DST).

This study yields the well-known Lagrange equilibrium points or libration
points. The theory can be developed further to also yield periodic orbits around
these points. From these periodic orbits, asymptotic paths or manifolds are
generated, which leave or approach them. Plotting the manifolds for two neigh-
boring Sun-planet systems, according to the planet positions, shows new possi-
bilities for interplanetary transfer. Finally the optimal high-thrust maneuver in
place and time to connect trajectories on overlapping manifolds is found. This
minimal velocity increment ∆V is used in the design of a mission, to analyze
its feasibility.

The implemented techniques to compute libration points, periodic orbits,
energy levels and manifolds give accurate results. Based on the analysis of
energy levels and overlap in manifolds for minimum energy levels, the connection
between the Sun-Jupiter and Sun-Saturn system is used for optimization. Over
a synodic period of 20 years, the minima show cyclic behaviour. The best time
and place of connection is mostly dependent on orientation of the manifolds
with respect to each other and could therefore already be derived from the plots
of overlapping manifolds. Optimization through a grid search yields a ∆V of
200 m/s, which makes manifolds a promising way of transfer from one system
to another.

For the total transfer from a parking orbit about Jupiter to a parking orbit
about Saturn, however, the examined transfer using manifolds is not to be
preferred over a classical Hohmann orbit. Both the ∆V budget and the transfer
time are higher. The manifolds should therefore be used in another type of
mission, especially to and between the outer planets and their libration points.
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1 Introduction

Due to the gravitational attraction of the many bodies in our solar system,
comets (for example) do not precisely fly the conic sections we nowadays use for
spaceflight. Not having any means of propulsion, they naturally follow the most
energy-efficient orbits for transfer. As energy is one of the major constraints
in the design of a space mission, making use of the paths that these subtle
gravitational effects create could therefore particularly offer a great advantage
for interplanetary space flight.

1.1 Study

The subject of this thesis is the use of manifolds, as these paths are called,
for interplanetary transfer. Instead of the two-body problem commonly used
in mission design, three bodies are considered simultaneously: the satellite, a
planet and the Sun. Knowing that planet and Sun orbit one another in almost
circular orbits, and the mass of the satellite is negligible compared to the mass of
these bodies, the model of the circular restricted three-body problem (CR3BP)
can be used [Wakker, 2007a].
Dynamical Systems Theory (DST) concerns itself with the analysis of differ-
ential equations, as the equations of motion in the CR3BP are. After finding
equilibrium points (both velocity and acceleration are zero), the region about
this points can be examined. Periodic orbits and asymptotic orbits are two of
the four types of motion in these regions [Conley, 1968]. The asymptotic paths
are also called manifolds, which form a natural highway to travel from and
to the area around equilibrium points, as is shown in Figure 1. Extending the
manifolds far from the periodic orbits for many Sun-planet systems shows a net-
work of manifold tubes, which is referred to as the Interplanetary Superhighway
[NASA, 2002].

Zooming in on two consecutive Sun-planet systems the transfer from one to
another can be examined. The actual four-body problem is approximated by
two coplanar coupled three-body problems [Koon, 2006].

In this study the high-trust maneuver requiring the minimal instantaneous ve-
locity increment to get from one CR3BP to the next, is to be found. On the
intersection of manifolds, different positions for executing the maneuver are
available. Furthermore the mutual geometry of the two systems changes with
the chosen epoch. So for changing place and time of the maneuver, the minimal
velocity increment is computed and analyzed. Finally the optimal maneuver is
used in the design of a mission; a transfer from one planet to another. Address-
ing the feasibility of such a mission is the final goal of this study.

Computations are mainly performed using the Technical University Delft As-
trodynamics Toolbox (Tudat), a C++ library for astrodynamics simulations
[Tudat, 2011]. New functions needed during the study have been implemented
according to the theory in this report and added to the toolbox. The report
therefore also contains verification of these computations.
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Figure 1: A manifold extending from a periodic orbit about an equilibrium point
in the Earth-Moon three-body system [Doedel, 2010].

1.2 Report

To understand the subject and answer this study’s main questions, first basic
theory of astrodynamics and DST is presented. Starting from the many-body
problem, the equations of motion of the CR3BP are derived in Chapter 2. Anal-
ysis of these equations and the Jacobi energy integral shows the existence of
libration points. The chapter also covers the two-body problem, which is used
later for comparison.

In Chapter 3 the positions of libration points are calculated and checked
against values from literature and AUTO, a tool to analyze ordinary differential
equations.

After some important concepts from DST are introduced in Chapter 4, the
theory is applied to the planar CR3BP (PCR3BP). Linearizing the equations
of motion different types of motion in the near-equilibrium area about libration
points can be identified, such as periodic orbits and asymptotic orbits, also
known as manifolds. It will be shown how the theory can be extended to the
spatial case and a system of four bodies.

Chapter 5 explains how the periodic orbits can be found by differential cor-
rection. The sensitivity of the technique to changes in initial position and energy
level are discussed and the resulting periodic orbits are verified.

Next the generation of manifolds is presented in Chapter 6. A method for
the optimal choice of the size of deviation from the periodic orbit is shown and
results are tested. From each periodic orbit now a family of orbits, forming a
manifold, can be generated.

The results of the PCR3BP are typically expressed in normalized parameters
(position, velocity, time). However, for the coupling of two three-body systems,
these quantities have to be converted to standard units and an inertial reference
frame. Chapter 7 shows how to do this and analyses minimum and maximum
energy levels. Coupling the systems of any pair of neighboring planets and their
manifolds then shows the possibilities for interplanetary transfer.
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For the most suitable coupled three-body systems, the maneuver to change
from one three-body system to the next is computed in Chapter 8. The minimal
velocity increment for different places on intersecting manifolds and at different
epochs is calculated and the behaviour of these minima is analyzed.

In Chapter 9 this minimal velocity increment is used in the design of an
interplanetary mission. It is compared to a classical Hohmann transfer and its
feasibility is discussed.

This all leads to the conclusions and recommendations in the final chapter.
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2 Astrodynamics

In this chapter the basic theory of astrodynamics needed to understand DST is
presented. It focuses on an analysis of the CR3BP and the equilibrium points in
this system. All theory is based on the lecture notes Astrodynamics I [Wakker,
2007a].

2.1 Motion of a body

Defining all planets, moons and satellites, as point masses, they all have an
attracting influence on each other. Under the assumption that no forces other
than gravity are present, the motion of one body (i) with respect to an inertial
reference frame is driven by the gravitational attraction of all other bodies in
the system, and can be written as:

mi
d2ri

dt2
=

∗∑
j

G
mimj

r3
ij

rij (1)

Figure 2: A system of bodies with respect to an inertial reference frame [Kumar,
2008].

Here m is mass, G is the universal constant of gravitation and ∗ indicates
all bodies j excluding j = i. The position vector rij describes the position of
the body j relative to body i, as shown in Figure 2. When only focusing on two
bodies and regarding the influence of the others as disturbing accelerations (ini-
tially neglected), analytical solutions are available. They result in for example
the equations for Keplerian motion, as shown in Section 2.2. However, when
taking three bodies into account, no general(!) analytic solutions are available.
The motion of one of the three bodies {1, 2, 3} is defined by:

d2r1

dt2
= G

m2

r3
12

r12 + G
m3

r3
13

r13 (2)
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Expressing the vectors relatively (r12 = r2− r1 and d2r12
dt2 = d2r2

dt2 − d2r1
dt2 ) results

in the Lagrange formulation (Figure 3):

d2r12

dt2
= G

[
m3

(
r23

r3
23

+
r31

r3
31

)
− (m1 + m2)

r12

r3
12

]
(3)

The equation exists respectively of a term accounting for the effective attraction
by the third body and a strictly 2-body term. The latter one can be solved
analytically.

Figure 3: Geometry of the system of three bodies and vectors used in classical
and Lagrange formulation [Wakker, 2007a].

2.2 Two-body problem

With the Lagrange formulation of Equation 3, the equation of motion of the
two-body problem can be written as:

d2r12

dt2
= −G (m1 + m2)

r12

r3
12

(4)

With µ = G(m1 + m2) ≈ Gm1, the relative motion of a body 2 about a much
larger body 1 becomes:

r̈ = −µ
r

r3
(5)

The solution of this equation of motion is referred to as Keplerian motion and
describes a conic section with the massive body in the focal point:

r =
p

1 + e cos(θ)
(6)

For an elliptical orbit as shown in Figure 4 the closest point (θ = 0, A) is
called the pericenter and the furthest point is called the apocenter (θ = π, A’).
Substituting their positions in Equation 6 yields:
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Figure 4: Geometry of an elliptical orbit [Wakker, 2007a].

p = a(1− e2) (7)

Taking the scalar product of Equation 5 and ṙ and integration yields:

1
2
V 2 − µ

r
= constant (8)

With this equation the velocity V at any point along a Keplerian orbit can be
computed.

When using instantaneous velocity increments (∆V ) the Keplerian transfer
to a higher orbit requiring the least amount of them turns out to be a Hohmann
orbit. It has its pericenter on the original orbit of the satellite and its apocenter
on the target orbit, which are all assumed to be circular and coplanar. The
time needed for this transfer is half of the orbital period of an ellipse, which is
known because of Kepler’s third law:

THohmann =
1
2
Tellipse = π

√
a3

µ
(9)

By regarding the multiple body system as a succession of patches in which
the satellite is only attracted by one dominating body (so a series of two-body
problems), a large number of missions have been designed. The total ∆V and
transfer time coming out of such a model typically serve as a reference in com-
parison with the values of non-Keplerian orbits, such as the ones discussed in
this report.

2.3 Gravity assists

Another possibility in the two-body problem is hyperbolic motion, for which
the eccentricity e > 1 and the planet is again in the focal point. The energy or
velocity of the satellite is too high to stay in an elliptical orbit about the planet.
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This is the case for a fly-by, where the orbit of the satellite is only deflected
due to the gravitational attraction of the planet, meaning the the scalar(!) hy-
perbolic excess velocity remains the same and only its orientation changes.

Using such a planetary swing-by, the energy or velocity of a spacecraft can
be increased, making it possible to design a faster and energy-efficient mission
in the two-body problem. In Figure 5 the geometry of a so-called gravity assist
is shown. Here V2 is the incoming velocity of the satellite, Vt the velocity of
the target planet orbiting the Sun and V4 the outgoing velocity of the satellite.
All are heliocentric velocities, meaning they are defined in an inertial reference
frame with respect to the Sun.

Figure 5: Geometry of a gravity assist [Wakker, 2007b].

The hyperbolic excess velocity V∞ of the spacecraft is defined with respect
to the planet, such that V ∞ = V 2 − V t and V

∗
∞ = V 4 − V t. As mentioned

previously, |V ∞| = |V ∗
∞|.
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The change in velocity of the spacecraft according to Figure 5 is [Wakker, 2007b]:

∆V = 2V∞ sin
1
2
α (10)

At a swing-by distance r3, the asymptotic deflection angle is defined by:

sin
1
2
α =

1
1 + r3V 2

∞µ−1
(11)

With the definition of energy as the sum of kinetic and potential energy, and the
change in potential energy being negligible, this leads to a difference in inertial
energy of:

∆E =
1
2
(V 2

4 − V 2
2 ) = 2VtV∞ sin

1
2
α cos β (12)

Here the swing-by angle β is determined by the satelite’s incoming trajectory
with respect to the planet. Notice that the inertial energy E will decrease when
passing before the planet (90◦ < β < 270◦) and increase when passing behind
the planet.
The maximum difference is achieved for r3 being minimal, or a swing-by as close
to the surface of the planet as possible. The maximal increase in energy is found
for β = 0◦.

2.4 Circular restricted three-body problem

As said before, for systems consisting of more than 2 bodies no general analytical
solutions are possible. However, in practical cases some assumptions for multi-
body systems can be made. For the Circular Restricted Three-Body Problem
(CR3BP), they are:

• The mass of two bodies is much larger than the mass of the third body.
Therefore the effect of the gravitational attraction of the third body on
the motion of the other two can be neglected.

• The two massive bodies move in circular orbits about the centre of mass
of the system and thus also about each other.

This is a valid assumption when for example the third body is a spacecraft and
the other two bodies are two planets or a planet and a moon, in orbits with low
eccentricities.

The plane in which the two massive bodies now move about each other
defines the reference frame X,Y,Z , which rotates with respect to the inertial
reference frame ξ, η, ζ. In this rotating reference frame the X-axis is in the
direction of r12 and the ζ and Z axes coincide. So the reference frame rotates
about the ζ-axis with a constant angular velocity ω. In Figure 6 and in coming
equations the index 3 is dropped, such that r3 = r , r13 = r1 and r23 = r2.

The motion of the third body, described by Equation 2, is not restricted to
this plane and is defined with respect to the inertial reference frame by:

d2r

dt2
= −G

m1

r3
1

r1 −G
m2

r3
2

r2 (13)
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Figure 6: Inertial and rotating reference frames in the CR3BP [Wakker, 2007a].

The velocity of the third body with respect to the inertial reference frame is
defined as dr

dt and with respect to the rotating (with angular velocity ω) reference
frame as δr

δt , such that:
dr

dt
=

δr

δt
+ ω × r (14)

Differentiation and substitution in Equation 13 gives the motion of the third
body with respect to the rotating reference frame:

δ2r

δt2
= −G

(
m1

r3
1

r1 +
m2

r3
2

r2

)
− 2ω × δr

δt
− ω × (ω × r) (15)

Normalizing mass (to m1 +m2), distance (to r12) and time (to 1
ω ), the problem

is only depending on the mass parameter µ = m2
m1+m2

:

δ2r

δt2
= −

(
1− µ

r3
1

r1 +
µ

r3
2

r2

)
− 2ez ×

δr

δt
− ez × (ez × r) (16)

With the new units the previously defined position vectors relative to the ro-
tating reference frame become:

r = xex + yey + zezr1 = (µ + x) ex + yey + zez

r2 = − (1− µ− x) ex + yey + zez
(17)

Now Equation 16 can be split into three scalar equations:

ẍ = −
(

1−µ
r3
1

)
(µ + x) + µ

r3
2

(1− µ− x) + 2ẏ + x

ÿ = −
(

1−µ
r3
1

)
y − µ

r3
2
y − 2ẋ + y

z̈ = −
(

1−µ
r3
1

)
z − µ

r3
2
z

(18)
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When a scalar function U = 1
2

(
x2 + y2

)
+ 1−µ

r1
+ µ

r2
is defined, it turns out to

serve as a potential function:

ẍ− 2ẏ = δU
δx

ÿ + 2ẋ = δU
δy

z̈ = δU
δz

(19)

The potential U is conservative and non-central. After manipulation it can be
used to construct an integral of motion for the three-body problem, as shown
in the next section.

There are also other ways to find these equations of motion, such as Hamil-
tonian mechanics. The theory as presented here is preferred because of its
simplicity and obvious physical interpretation.

2.5 Energy in a system of three bodies

Multiplication of Equations 19 with respectively ẋ, ẏ and ż and summation
yields:

ẋẍ + ẏÿ + żz̈ = ẋ
δU

δx
+ ẏ

δU

δy
+ ż

δU

δz
=

dU

dt
(20)

Integration of all terms results in Jacobi’s integral:

ẋ2 + ẏ2 + ż2 = 2U − C (21)

Or, with V being the velocity of the third body with respect to the rotating
reference frame:

V 2 = 2U − C (22)

After substitution of the definition of U, it can also be written as:

C = x2 + y2 +
2 (1− µ)

r1
+

2µ

r2
− V 2 (23)

When the velocity of the third body V is zero, this equation describes the
surfaces of Hill. For any real body V 2 ≥ 0, such that these surfaces describe
which regions of the XYZ-space are accessible for the third body:

2U = x2 + y2 +
2 (1− µ)

r1
+

2µ

r2
≥ C (24)

For example in the XY-plane (z = 0) the surfaces for decreasing values of the
energy C and a given µ look like the curves in Figure 7. Because 2U = C on
these curves, for all shown curves U is a constant.

In general, the accessible inner area is called the Interior region (I) and
the outer area is called the Exterior region (E). For some levels of energy, the
accessible area about the second massive body (m2) becomes large enough, such
that a neck between these regions exists (case 3 in Figure 7). This is the range
of energy levels used in the remaining part of this report. As explained in the
next section, the energy levels Ci correspond to the Lagrange Libration points
with the same index, such that their values can easily be calculated. For small
µ the result of these calculations is shown in Figure 8.
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Figure 7: Hill surfaces for z = 0 and various levels of total energy C (denoted
as E = − 1

2C) [Koon, 2006].

Figure 8: Energy levels C for the different cases of Figure 7 [Koon, 2000].

2.6 Lagrange Libration points

Analysis of figures like Figure 7, shows that the Hill surfaces for z=0 cross the
X and Y axes at different places. Multiple of these crossing points may coincide

12



for appropriate values of C. In these coinciding points always:

δU

δx
=

δU

δy
=

δU

δz
= 0 (25)

This means that Equations 19 becomes:

ẍ− 2ẏ = ÿ + 2ẋ = z̈ = 0 (26)

Since the points are located on the surfaces where the velocity is zero:

ẍ = ÿ = z̈ = 0 (27)

In other words, also the acceleration on the third body when located in these
points is zero, and the points are equilibrium points in the rotating system.
They are called Lagrange libration points and are indicated by the symbol L.
Their positions can be determined by using Equations 18:

0 = x−
(

1− µ

r3
1

)
(µ + x) +

µ

r3
2

(1− µ− x) (28)

0 = y

(
1− 1− µ

r3
1

− µ

r3
2

)
(29)

0 = z

(
1− µ

r3
1

+
µ

r3
2

)
(30)

Because r1 and r2 are positive and 0 ≤ µ ≤ 1
2 Equation 30 yields z = 0. With

the definitions of r1 and r2 (Equation 17), a first solution becomes:

y = 0 (31)

x− (1− µ)− µ + x

|µ + x|3
+ µ

1− µ− x

|1− µ− x|3
= 0 (32)

The last equation has three real roots, resulting in L1, L2 and L3 on the X-axis,
as shown in Figure 9.

The second solution, r1 = r2 = 1, is found when the term between brackets
of Equation 29 equals zero. These points L4 and L5 thus form an equilateral
triangle with the two massive bodies, and their coordinates are:

x = 1
2 − µ

y = ± 1
2

√
3

(33)

A periodic orbit about a libration point is called a Lissajous-orbit and is used
frequently for observation missions. Lyapunov orbits are entirely in the plane of
the two massive bodies. Halo orbits also have an out-of-plane component and
have the same frequency in both parts.

In DST, libration points and orbits about them may serve as a starting point
for the design of a low energy trajectory, which is explained in Chapter 4. First,
in the next chapter the locations of the libration points are determined.
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Figure 9: Position of libration points [Koon, 2006].
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3 Libration points

The determination of the libration points is the first step in the design of a
transfer making use of DST. It has become part of the TU Delft Astrodynamics
Toolbox (Tudat), which is discussed in Appendix B. In this section its results
will be verified against values from literature and results from AUTO-07p, a
tool for the analysis of solutions of ordinary differential equations, discussed in
Appendix C.

3.1 Determination of libration points

From Equation 18 the position in dimensionless rotating coordinates of the
Lagrangian libration points can be determined. The first three points are posi-
tioned relative to the two massive bodies as shown in Figure 9. In case of L1

this means that −µ < x < 1− µ or

|µ + x|3 = (µ + x)3

|x− (1− µ)|3 = −(x− (1− µ))3

−|x− (1− µ)|3 = (x− (1− µ))3
(34)

The equation of motion in x-direction (32) becomes:

x− (1− µ) (µ+x)

|µ+x|3 + µ 1−µ−x
−|1−µ−x|3

= x− (1− µ) (µ+x)

(µ+x)3
+ µ 1−µ−x

(1−µ−x)3

= xL1 −
(1−µ)

(µ+xL1 )2 + µ
(1−µ−xL1 )2 = 0

(35)

In the same way the equations of motion for the L2 and L3 collinear libration
points are based on their positions being limited to −µ < 1 − µ < x and
x < −µ < 1− µ respectively:

xL2 −
(1−µ)

(µ+xL2 )2 −
µ

(1−µ−xL2 )2 = 0

xL3 + (1−µ)
(µ+xL3 )2 −

µ
(1−µ−xL3 )2 = 0

(36)

Now the positions of the collinear libration points can be determined by means of
a root-finding method. The positions of libration points L4 and L5 are computed
directly via Equation 33.

3.2 Results and verification

The analytical equations and the Newton-Raphson root-finding method are used
in Tudat to determine the position of the libration points for any combination
of predefined celestial bodies.
For the system of Earth and Moon, the mass parameter is computed as 0.012153.
This gives the location of the libration points in normalized units as shown in
Table 1. Reference values are from [James, 2006] and show the correct imple-
mentation.
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Tudat Reference values
x [-] y [-] x [-] y [-]

L1 0.8363 0 0.83629259089993 0
L2 1.156 0 1.15616816590553 0
L3 −1.005 0 −1.00511551160689 0
L4 0.4878 0.866 0.487722529 0.86602540378444
L5 0.4878 −0.866 0.487722529 −0.86602540378444

Table 1: Location of libration points for system of Earth and moon, via Tudat.

In the remaining part of the thesis only the L1 and L2 from various Sun-
planet-systems are used, since these collinear libration points are situated most
convenient for transfer between two neigboring planetary systems. The location
of these points can also be determined via the compute lps function of AUTO.
Comparison of the positions (Table 2) shows no discrepancies.

Tudat AUTO
µ (Tudat) xL1 [-] xL2 [-] xL1 [-] xL2 [-]

Mercury 1.6602 10−7 0.996194 1.00382 9.996194 1.00388
Venus 2.4478 10−6 0.990682 1.00937 0.990683 1.00937
Earth 3.0043 10−6 0.990027 1.01003 0.990027 1.01003
Mars 3.22712 10−7 0.995251 1.00476 0.995254 1.00476
Jupiter 9.53678 10−4 0.93237 1.06883 0.93237 1.06883
Saturn 2.85745 10−4 0.954749 1.04607 0.954748 1.04607
Uranus 4.3656 10−5 0.975742 1.02457 0.975742 1.02457
Neptune 5.14997 10−5 0.974376 1.02596 0.974375 1.02597

Table 2: Location of libration points for system of Sun and planet, computed
via Tudat and AUTO.

When dealing with smaller mass parameters, such as the ones of the Sun-
Mercury, Sun-Earth and Sun-Mars systems, the AUTO precision parameters
EPSL, EPSU and EPSS should be lowered. These parameters govern the rel-
ative convergence criterion [Doedel, 2009] and should also be adjusted when
generating periodic orbits and manifolds using AUTO (Chapter 6).

In the next chapter, the area around libration points is analyzed by means
of DST.
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4 Dynamical Systems Theory

This chapter provides the theoretical background in the field of DST. It however
only focuses on a general understanding of this mathematical subject. A large
part of the terminology and theory is better explained in for example the book
Introduction to Applied Nonlinear Systems and Chaos [Wiggins, 2003] which is
available online. Another good source for more in-depth information is Nonlin-
ear Differential Equations and Dynamical Systems [Verhulst, 2000]. After the
introduction of some main concepts in DST, its application to the PCR3BP and
the extension to the spatial case (CR3BP) and the 4-body problem (CR4BP)
are presented.

4.1 Introduction

DST is a geometrical approach to solve differential equations. It is not only used
to find low-energy trajectories for spacecraft but for example also to describe
the natural motion of comets and that of atoms in molecular systems [Marsden,
2005].

The differential equation, for example shown in Equation 37, is referred to
as a dynamical system. Here µ are parameters and in general the independent
variable t is time. The solution or trajectory of a dynamical system can depend
on initial conditions in both x and µ [Wiggins, 2003].

ẋ = f(x, t;µ)
x 7→ g(x;µ) (37)

Poincaré mapping is a tool for the visualization of periodic orbits. The Poincaré-
cut is a transversal of the orbits, forming a figure of the points where it is
intersected by them. The cut is a dimension smaller than that of the orbits. It
can be at any arbitrary place along an orbit, as long as it is not tangent to it
and all orbits cross it in the same direction [Koon, 2006]. In Figure 10 a possible
Poincaré section of a 3-dimensional problem is shown. Here V is a collection of
points on the cross-section Σ, and the Poincaré-map P is the function such that
P : V → Σ.

Figure 10: Geometry of the Poincaré map for a periodic orbit [Wiggins, 2003].
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A manifold is defined by [Wiggins, 2003] as:

”A set which locally has the structure of Euclidean space. In ap-
plications, manifolds are most often met as m-dimensional surfaces
embedded in <n. If the surface has no singular points, i.e., the
derivative of the function representing the surface has maximal rank,
then by the implicit function theorem it can locally be represented
as a graph. The surface is a Cr manifold if the (local) graphs repre-
senting it are Cr.”

Here <n denotes the set of real numbers of dimension n; and Cr means continu-
ous and r times differentiable. As this definition might be hard to comprehend,
in practical applications two situations can be distinguished:

• Linear: a linear vector subspace of <n.

• Nonlinear: a surface embedded in <n which can be locally represented as
a graph.

An example of a manifold is a sphere, since it is the surface of a ball and can
be represented by a collection of two-dimensional graphs.

An invariant manifold now is a surface defined by the property that an orbit
starting on it, remains on it. So it can also be defined as a collection of orbits
that together form a surface. This surface is only invariant if the vector field is
always tangent to it. Manifolds approaching the invariant manifold asymptoti-
cally are called stable, the ones departing it unstable.

Figure 11: A homoclinic connection from a periodic (halo) orbit about L1

[Wang, 2009].

A homoclinic trajectory is a periodic orbit that is on both the stable and un-
stable manifold of the same libration point, like for example the trajectory in
Figure 11. When an orbit is on the stable orbit of one libration point and on
the unstable one of another libration point, it is called a heteroclinic trajectory
(Figure 12).

Heteroclinc connections between the L1 libration point of a system and the
L2 of another 3-body system (or the other way around) provide means to trans-
port the common smaller body in both systems. Because this orbit is asymptotic
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Figure 12: A heteroclinic connection between the (planar) periodic orbits about
L1 and L3 [Wang, 2009].

no maneuvers are needed. The application to the planar, spatial and patched
3-body problems are discussed next.

4.2 Motion in the PCR3BP

In the neighborhood of a hyperbolic point (the eigenvalues of the linear vec-
tor field has non-zero real parts) the geometry of the solution of a differential
equation is completely determined by the linearized system [Wiggins, 2003]. So
to understand what happens in the equilibrium region (the region around the
libration points, denoted as R), the equations of motion in the PCR3BP are
linearized. The equations of motion (Equation 19) can be written as a system
of equations:

ẋ = ẋ
ẍ = Ux + 2ẏ
ẏ = ẏ
ÿ = Uy − 2ẋ

(38)

This system can be linearized such that it results in a matrix equation:
ẋ
ẍ
ẏ
ÿ

 =


0 1 0 0

Uxx 0 Uxy 2
0 0 0 1

Uyx −2 Uyy 0




x
ẋ
y
ẏ

 (39)

Here the subscripts denote the first and second partial derivatives, and Uxy =
Uyx. By assuming x = Aeλt and y = Beλt the characteristic equation and the
eigenvalues become:

λ4 + λ2(4− Uxx − Uyy) + UxxUyy − U2
xy = 0 (40)

λ1 = −λ2 =
√

−(4−Uxx−Uyy)+
√

(4−Uxx−Uyy)2−4(UxxUyy−U2
xy)

2

λ3 = −λ4 =
√

−(4−Uxx−Uyy)−
√

(4−Uxx−Uyy)2−4(UxxUyy−U2
xy)

2

(41)
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Now the linearized equations of motion become:

x(t) = A1e
λ1t + A2e

−λ1t + A3e
λ3t + A4e

−λ3t

y(t) = B1e
λ1t + B2e

−λ1t + B3e
λ3t + B4e

−λ3t (42)

The second-order partial derivatives for the collinear libration points (L1, L2

and L3) can be computed as:

K = 1−µ
r3
1

+ µ
r3
2

Uxx = 1 + 2K
Uxy = 0
Uyy = 1−K

(43)

Now it can be shown that the first two eigenvalues are real (exponentially
in/decreasing the coordinates) and the other two are imaginary (yielding a
periodic motion). In the case of the equilateral points (L4 and L5) and for
practical values of the mass parameter (0 < µ < 0.0385), the eigenvalues are
all imaginary; only allowing for oscillatory motion about the libration points
[Wakker, 2007a]. This is why only the collinear libration points will be used in
the remaining of this study. The coefficients Ai and Bi (for i=1..4) are coupled
via:

Bi = Ai
λi − 2K − 1

2λi
= Aiγi (44)

Substituting this in Equation 42 and differentiating, shows that the eigenvectors
in (x,y,ẋ,ẏ)-space are:

u1 = (1, γ1, λ1, λ1γ1)
u2 = (1,−γ1,−λ1, λ1γ1)
w1 = (1, γ3,−λ3, λ3γ3)
w2 = (1,−γ3, λ3, λ3γ3)

(45)

Because both λ3 and γ3 are imaginary, they can be defined as iν and −iτ
respectively. And the general solution can be written as:

x(t)
y(t)
ẋ(t)
ẏ(t)

 = A1e
λtu1 + A2e

−λtu2 + A3e
iνtw1 + A4e

−iνtw2 (46)

Only the coefficients A are unknown and can be derived from the initial condi-
tions x0, y0, ẋ0 and ẏ0. Projecting the position space along the eigenvectors u1

and u2 of this system yields:

x(t) = A1e
λt + A2e

−λt + A3e
iνt + A4e

−iνt

= A1e
λt + A2e

−λt + C1 cos νt− C2 sin νt
(47)

The behaviour of x depends on the sign of A1 and A2, such that for each energy
level 4 cases can be identified near the collinear libration points (L1, L2 and L3)
[Conley, 1967]:

1. A1 = A2 = 0: The periodic solution (Lyapunov orbit)
With the semi-major axis (in y-direction) a =

√
τ2x2

0 + y2
0 and the semi-

minor axis (in x-direction) b =
√

x2
0 + y2

0
τ2 .
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2. A1A2 = 0: Orbits that are asymptotic to the periodic orbit, approaching
it or moving away.

3. A1A2 < 0: Orbits that cross the equilibrium region and are therefore
called ’transit’.

4. A1A2 > 0: Orbits that are called ’non-transit’.

These classes of orbits are shown in Figure 13 and indicated with B, A, T and
NT respectively.

Figure 13: The different classes of orbits in the equilibrium region [Koon, 2006].

Analysis of the phase-space flow in the equilibrium regions [Gomez, 2001] shows
that the asymptotic orbits are part of the stable and unstable manifold tubes of
the periodic orbit. These tubes are separatrices for the transit and non-transit
orbits. The transit orbits are inside the manifold tubes, such that they can
transport material or better a spacecraft from and to the smaller massive body
and between separate three-body models, as shown in Figure 14. The theory
can also be extended to the three-dimensional case, and two three-body systems
can be coupled.

4.3 Extension to the spatial case and 4-body problem

When also latitude and longitude of the spacecraft become important for the
design of a trajectory, the spatial circular restricted 3-body problem should be
considered. The equation of motion in the z-direction is decoupled of the other
two and can be linearized to [Wakker, 2007a]:

z̈ = Uzz ż (48)

Its solution is a stable and purely periodic motion:

z = C1 cos(
√
|Uzz|t) + C2 sin(

√
|Uzz|t) (49)

Because the Poincaré cut is a 3-sphere and both in the y,ẏ and the z,ż projections
it is a 2-dimensional disc, it is hard to find intersections. Therefore constraints
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Figure 14: Libration point invariant manifolds in position space (Ui are Poincaré
cuts) [Gomez, 2004].

on z and ż are proposed, for example:

z = c
ż = 0 (50)

Now the set of orbits in the Poincaré cut of the unstable manifold with these
constraints (a point in the z,ż-plane) projects to a curve on the y,ẏ-plane. Any
point which is inside this curve is a transit orbit from the exterior region through
R. Similarly this can be done for the Poincaré-cut of the stable manifold through
R to the interior region. Now the points can be extended to boxes z± δz,ż± δż
[Gomez, 2004]. Then the curve in the y, ẏ-plane becomes a strip (Figure 15).

How to compute the manifolds and trajectories exactly, is subject of Chapter
6 and further.

Figure 15: Examples of Poincaré sections of manifolds in y,ẏ-plane for the planar
(left) and spatial case (right) [Gomez, 2001].
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The spatial model is also needed when coupling two 3-body models which are
not in the same plane. This patched three-body approximation [Koon, 2006]
couples two systems with only one massive body changed; like for example
Earth-Sun-spacecraft and Earth-Moon-spacecraft (bicircular model) or Earth-
Sun-spacecraft and Mars-Sun-spacecraft (concentric circular model). Both ver-
sions of the PCR4BP are shown in Figure 16. Equivalently to the patched conics
approach for two-body motion in the n-body problem, the 4-body problem now
is approximated by two segments of purely 3-body motion. The initial solution
(existing of a stable manifold-unstable manifold trajectory) is then refined in
the full 4-body problem, such that the ephemeris of the motion of the planets
and moons can be taken into account.

Figure 16: (a) The concentric circular model (b) The bi-circular model [Koon,
2006].

The determination of periodic orbits in the non-linearized case is discussed in
the next chapter, the generation of manifolds in Chapter 6 and the coupled
CR3BP in Chapter 7.
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5 Periodic orbits

Periodic orbits about the libration points serve as a starting point for the con-
nections. The positions of the libration points can be determined when the
planets involved are known (Table 2). Also the appropriate energy level can be
selected (Figure 8), such that the neck between the inner and exterior region
exists in the Hill surfaces. In this section only planar periodic orbits or Lya-
punov orbits are discussed. The theory however also applies to the spatial case
and halo orbits.

5.1 Differential correction

The periodic orbit as given in Section 4.2 is only valid for the linearized system
and serves as an initial guess in the full system. It should be adjusted by means
of differential correction. Differential correction is used to adjust an initial
condition x0 in order to reach a desired target point xd at time t1 [Howell,
1988]. In practice it is an iterative scheme to reduce discontinuities in position
and/or velocity to zero.

Therefore the State Transition Matrix (STM) is needed [Koon, 2006]. It
relates small initial displacements to displacements in the final state:

δx(t1) = Φ(t1, t0)δx0 (51)

It can be found via integration of the set of initial conditions and (n2 + n)
differential equations [Kumar, 2008]:

x(t0) = x0

ẋ = f(x)
Φ(t0, t0) = In×n

Φ̇(t, t0) = FΦ(t, t0)

(52)

In this case the function f(x) are the equations of motion and the vector x is
the state vector ( x y ẋ ẏ )T . Based on the linearized equations of motion
in Equation 39, the matrix F is found to be:

F =
[

0 I
Uxx 2A

]
(53)

In the case of planar motion (n = 4) every input is a 2 by 2 matrix; Uxx is
the full array of second-order partial derivatives of U (Equation 43) and A is
defined as:

A =
[

0 1
−1 0

]
(54)

The planar periodic orbit is symmetric with respect to the x-axis (y = 0) and
intersects it perpendicularly (ẋ = 0) [Broucke, 1973]. So the initial and final
states should be of the form:

xi = ( xi 0 0 ẏi )T (55)

Now the initial state can be integrated forward by means of the non-linear
equations of motion untill the first crossing with the x-axis, which is when y
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changes sign. The time now is defined as T
2 , such that the periodic orbit will

have period T . Probably the first attempt will give ẋ1 not equal or close enough
to zero, so the initial state is to be changed to:

x0 = ( δx0 0 0 δẏ0 )T (56)

such that the desired change in final state is δẋ1 = −ẋ1. Based on a Taylor
expansion the change in state is defined as:

δx = Φ(
T

2
, t0)δx0 +

δx

δt
δ(

T

2
) (57)

Now the corrections can be computed by keeping x0 constant via:

δẋ1 = Φ34δẏ0 + ẍ1δ(
T

2
) = (Φ34 −

ẍ1

ẏ1
Φ24)δẏ0 (58)

Here Φij is the j’th entry on the i’th row of the STM. Only a few iterations are
needed to find the periodic orbit [Howell, 1984].

Because this is based on the linearization around the libration points, this
method will deliver only small-amplitude periodic orbits. The amplitude is
related to the level of energy. Numerical continuation can generate families
of orbits with larger amplitudes, which reaches the appropriate energy [Koon,
2006].

Suppose two periodic orbits with initial conditions x0,1 and x0,2 are found by
differential correction. Then a third initial state can be found by extrapolation:

∆ = x0,2 − x0,1 = (∆x0, 0, 0,∆ẏ0)T (59)

x0,3 = x0,2 + ∆ (60)

Again differential correction can be applied and this process can be repeated to
generate a family of periodic orbits. Keeping track of the energy levels of each
orbit, the two initial states used for extrapolation can be chosen such that it
refines towards the appropriate energy level for the design of a trajectory.

5.2 Results and verification

The generation of periodic orbits in Tudat requires only input of mass parameter
µ, initial position x0 and energy constant C. The value for ẏ0 follows from these
values and Equation 23.

Due to the correction in ẏ, the energy levels of the periodic orbit differ
slightly from the initial ones. The choice of initial value for C, as long as a
periodic orbit is obtained, seems to have little influence on the corrected initial
conditions. This is shown in Table 3 for a µ of the Sun-Earth system and an
initial position of 1.008. The position is closest to the L2 libration point (at
x = 1.01003), which has an energy of 3.00089. For comparison the amplitudes
A in both directions and the period of the Lyapunov orbit T are computed, all
in normalized units.

Visualizing these orbits (Figure 17) however shows that only one orbit (the
one with C0 = 3.0008) is truly about the libration point. Which means that an
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obtained periodic orbit can only be validated after visual inspection. A quick
check should include that periodic orbits about the collinear libration points
have smaller amplitudes in x than in y direction [Wakker, 2007a]. This fact can
be used in automating the grid search for the right initial conditions.

In Table 4 and Figure 18 the same analysis is performed for a variety of
initial positions x0 and a constant C0 = 3.0008. It shows that the periodic orbit
and its energy level are very sensitive to changes in initial position. Therefore
both C0 and x0 should be chosen close to the energy level and position of the
libration point and the periodic orbit should be examined first. Otherwise a
consequence might be that not an orbit about the libration point, but about
the planet is obtained. A study to the effects on the generation of L1 Lyapunov
orbits shows similar behaviour (not depicted here).

For small µ, as is the case in this study (Table 2, µ < 10−4), the different
cases as defined for the Hill-surfaces and their energy levels (Figure 8) are very
close together. However, continuation or correction of the initial x0 will only
be meaningful when other limits on the energy level are imposed, as is done
in Chapter 7. Then the energy level will be fixed and the initial position will
be manually adjusted using a simple grid search until the orbit converges to a
periodic orbit appropriate for the given problem.

C0 [-] C [-] Ax [-] Ay [-] T [-]
3.0000 No convergence
3.0001 3.0008816 0.004738 0.003752 1.959
3.0005 3.0008814 0.004728 0.003731 1.961
3.0007 3.0008812 0.004719 0.003709 1.964
3.0008 3.0007902 0.001827 0.005407 3.125
3.00085 3.0008813 0.004722 0.003722 1.964
3.0009 3.0008812 0.004718 0.003708 1.964
3.001 No convergence
3.005 No convergence

Table 3: Effect of initial energy level C0 on generation of planar periodic orbits
and their amplitudes A and period T , via Tudat. Mass parameter µ is equal to
3.0043 10−6 (i.e. Sun-Sarth system) and x0 = 1.008.

In literature [Broucke, 1968] the data of a total of 10 periodic orbits in the
Earth-Moon system (µ = 0.012155092) are available. In this system the libra-
tion points L1 and L2 are located at 0.8369 and 1.1157 with energy levels 3.1884
and 3.1722, respectively. Using differential correction as implemented in Tudat,
the same orbits are generated. A comparison of results (in Tables 5 and 6),
shows close resemblance for case 1 to 9. Only for exotic cases like case 10 (low
C, x far from libration point) discrepancies may show, because of multiple x-
axis crossings. Some examples of the orbits used for this comparison are shown
in Figures 19 and 20, from which the same conclusions can be drawn.
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Figure 17: Effect of initial energy level C0 on generation of planar periodic
orbits, via Tudat. Mass parameter µ is equal to 3.0043 10−6 (i.e. Sun-Sarth
system) and x0 = 1.008.

x0 [-] C [-] Ax [-] Ay [-] T [-]
1.000 No convergence
1.005 3.00092 0.00416 0.004459 1.263
1.008 3.0007902 0.001827 0.005407 3.125
1.009 3.0008573 0.0009353 0.002974 3.075
1.01 2.9999659 0.009992 0.01245 2.675
1.05 3.005712 0.2165 0.4752 37.73
1.1 3.01747 0.4309 0.6358 25.14
1.2 3.07363 1.26 0.9078 12.57

Table 4: Effect of initial position x0 on generation of planar periodic orbits and
their amplitudes A and period T , via Tudat. Mass parameter µ is equal to
3.0043 10−6 (i.e. Sun-Sarth system) and C0 = 3.0008.

As a conclusion, the generation of Lyapunov orbits about the L1 and L2

libration points is strongly dependent on the choice of initial energy level and
position. However, after adjustment of the initial parameters and visual ex-
amination of the obtained orbit, these planar periodic orbit can be accurately
computed with Tudat and may serve as a starting point for the design of a
trajectory by means of DST.
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Figure 18: Effect of initial position x0 on generation of planar periodic orbits,
via Tudat. Mass parameter µ is equal to 3.0043 10−6 (i.e. Sun-Sarth system)
and C0 = 3.0008.

Reference Tudat
case x0[-] ẏ0[-] C[-] T [-] ẏ0[-] C[-] T [-]
1 0.809282 0.281940 3.11689 3.01649 0.279377 3.11819 3.0090
2 0.804226 0.325927 3.09300 3.17330 0.325925 3.09301 3.1734
3 0.741687 0.546776 2.97072 5.02655 0.546759 2.97074 5.0272
4 0.668848 0.708265 2.92307 6.28319 0.708264 2.92308 6.2832
5 0.050000 5.458020 2.02492 6.82793 5.458010 2.02501 6.8280

Table 5: Lyapunov periodic orbits around the Earth-Moon L1, via Tudat and
[Broucke, 1968].

Reference Tudat
case x0[-] ẏ0[-] C[-] T [-] ẏ0[-] C[-] T [-]
6 1.18971 -0.225810 3.12870 3.47867 -0.225809 3.12870 3.47880
7 1.21610 -0.414022 3.02252 4.18719 -0.414020 3.02253 4.18720
8 1.30352 -0.581492 2.93970 6.28318 -0.581482 2.93971 6.28320
9 1.69366 -1.141870 2.75728 9.42476 -1.141870 2.75728 9.42480
10 2.44861 -1.907590 2.29519 10.6814 -1.809770 3.53994 8.50698

Table 6: Lyapunov periodic orbits around the Earth-Moon L2, via Tudat and
[Broucke, 1968].
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Figure 19: Orbits 2, 4 and 5 about the Earth-Moon L1, via Tudat (left) and
[Broucke,1968] (right).
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Figure 20: Orbits 6, 8 and 10 about the Earth-Moon L2, via Tudat (left) and
[Broucke,1968] (right).
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6 Manifolds

Manifolds emanating from the periodic orbits are candidates for paths for in-
terplanetary transfer. Simulation of large families of orbits, may result in the
manifold tubes as presented in Section 4. For comparison, this part of the de-
sign is also performed with AUTO-07p. The theoretical background and use of
this tool is discussed in more detail in Appendix C.

6.1 Generation of manifolds

Manifolds are computed by integration of a large number of orbits forward (un-
stable) or backward (stable) in time from initial conditions given by displacing
the spacecraft a small distance d from the periodic orbit.
The monodromy matrix is the STM after one revolution (so t = t0 + T ). Its
first two eigenvalues (which are real) correspond to the directions of the un-
stable and stable manifold respectively [Guzman, 1998]. With their normalized
eigenvectors v, for every starting point x0 on the periodic orbit, a manifold can
be computed via:

Wu(x0) = x0 ± dv1(x0)
Ws(x0) = x0 ± dv2(x0)

(61)

The distance d must be small enough such that the linearization is valid and
large enough such that one can get somewhere in a reasonable amount of time.
Ultimately, manifolds are computed by combining trajectories obtained from a
large number of initial points x0 on the periodic orbit.

The local eigenvectors can be found by integrating forward the STM [James,
2006] until reaching the initial point on the periodic orbit:

v(x0) = Φ(0, t0)v(0) (62)

6.2 Results from Tudat

In Figure 21 the Lyapunov orbits and 100 starting points for a mass parameter
9.53678 10−4 (Sun-Jupiter system) are visualized. The initial condition for the
orbits about the L1 and L2 libration point respectively are C = 3.0274, x0 =
0.92 and C = 3.032, x0 = 1.08. Both the periodic orbits and the initial points
are obtained using Tudat. Again, the starting points are obtained by adding
the eigenvectors scaled with the deviation parameter d to 100 equally spaced
(in time) points on these periodic orbits (Equation 61).

When integrating respectively backwards and forwards for a fixed amount
of time (t = 5

2π ) and plotting every resulting second manifold, the structure of
the manifolds shows in Figures 22 and 23. These figures are all in normalized
units and the system’s rotating reference frame. The shape of the figures show
great resemblance with the ones generated using AUTO (not depicted).

The deviation parameter (d in Equation 61) can be adjusted, such that the
initial points will shift. This is done for the L2 periodic orbit for deviations of
10−3, 10−4, 10−6 and 10−8, while in Figure 21 a deviation of 0.01 was used.

The effect of smaller deviations on the resulting manifolds is shown in Figure
24. The initials points will approach the periodic orbit for smaller deviations.
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For the same amount of integration time, the entire manifold structure becomes
shorter and smaller, because some of the manifolds never leave the vicinity of
the periodic orbit and other will take longer to do so. This means that the
deviation should be chosen as large as possible, without loss of accuracy. A
quick check for this type of accuracy is the examination of the manifolds energy
levels.

Figure 21: Periodic orbits and initials points (for d = 0.01) in the Sun-Jupiter
system, generated via Tudat.

Along orbits on a manifold the Jacobian energy constant (Equation 23)
should be constant. For the computed orbits of Figures 22 and 23 (with de-
viation d = 0.01) this is the case, however a range of energy levels along the
manifolds can be witnessed. The mean energy of the L1 manifold is 3.0276
and its standard deviation 8.7159 10−4. For the L2 manifold and the different
deviations from the periodic orbit, these statistics are shown in Table 7. Based
on this, for this specific problem a deviation d of 10−3 should be chosen to scale
the eigenvector with. When generating manifolds in other Sun-planet systems
or emanating from other periodic orbits, the same test will be used.
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Figure 22: L1 manifold in the Sun-Jupiter system, generated via Tudat.

Figure 23: L2 manifold in the Sun-Jupiter system, generated via Tudat.

d [-] C mean [-] C std [-]
10−1 3.0319 4.2 10−3

10−2 3.032 1.4003 10−4

10−3 3.032 1.0349 10−13

10−4 3.0319 1.2437 10−13

10−6 3.032 1.0349 10−13

10−8 3.032 1.0349 10−13

Table 7: Effect of deviation d from the periodic orbit on the accuracy of the L2

manifold in the Sun-Jupiter system, generated via Tudat.

6.3 Verification and comparison

Other implementations of the presented theory can be used for comparison. For
the Sun-Earth system [Herman, 2012], has found a periodic orbit, the stable
eigenvector and the end points of a certain manifold. This dataset has been
used as a unit test to verify the code in Tudat. The results are shown in Table
8. The initial conditions of the planar periodic orbit about L1 were x = 0.98883
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Figure 24: L2 manifold in the Sun-Jupiter system (a. d=10−3 b. d=10−4 c.
d=10−6 d. d=10−8), generated via Tudat.

and ẏ = 0.00883 and a deviation from this periodic orbit of 10−6 was used.
The end points are determined after 10 times the period of the periodic orbit,
Tend = 30.60155. The direction of the eigenvector (positive or negative) can be
chosen as preferred, as shown in Figure 13 and Equation 61.

The results obtained with the RK4 and RKF78 integrators (Appendix A)
are equal for computer accuracy (10−10) and may serve as verification of the
accuracy of both integration techniques and their implementation in Tudat for
this specific problem.

Tudat Reference
eigenvector final state eigenvector final state

x [-] -0.36309 -0.35096 0.36309 -0.35096
y [-] 0.12255 0.85664 -0.12255 0.85664
ẋ [-] -0.83726 -0.12067 0.83726 -0.12067
ẏ [-] 0.39006 -0.04510 -0.39006 -0.04510

Table 8: Comparison of eigenvectors of a Sun-Earth L1 manifold and its final
state after integration over Tend, from Tudat and from [Herman, 2012].

The results in this chapter show that with the theory presented and implemented
in Tudat, the manifolds emanating from the periodic orbits can easily and accu-
rately be generated. Next the manifolds from different Sun-planet systems are
to be generated and connected for interplanetary transfer.
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7 Coupling two planar CR3BP’s

Because of the almost planar motion of planets in our solar system, a first anal-
ysis of manifolds in this system is performed in the planar CR3BP (PCR3BP).
Coupling two of such systems, typically the possibilities for transfer from one
Sun-planet system to another can be investigated.

Figure 25: Position vectors in normalized units and rotating reference frame in
the PCR3BP [Calleja, 2011].

7.1 Coupled 3-body systems

Converting the obtained state vectors back to standard units and using the ro-
tation of the planets in their circular coplanar orbits, the trajectories in separate
three-body systems can be expressed with respect to a common inertial refer-
ence frame, and ideally be coupled. An example of such a conversion is shown
in Figure 26, for the unstable manifolds emanating from a periodic orbit about
the Sun-Jupiter’s L2 libration point.

Figure 26: L2 unstable manifold in the Sun-Jupiter system (a. Rotating refer-
ence frame b. Inertial reference frame), generated via Tudat.

As described in Chapter 2, distance was normalized to the distance between the
two massive bodies and velocity to the rotational speed of the system. So, mul-
tiplication of the normalized vectors with these two scalars, will yield position
and velocity in meters and meters per second respectively. Time was normalized
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to one over the mean motion, so:

X = R12x
V = V12v = R12ω12v
T = 1

ω12
t

(63)

In these equations, the lower-case symbols represent normalized parameters,
whereas the upper-case parameters are in standard units. The Jacobian energy
constant in standard units in a reference frame rotating with mean motion ω12

is given by:

ω2
12

(
X2 + Y 2

)
+ 2

(
Gm1

R1
+

Gm2

R2

)
− V 2 (64)

As shown in Figure 25, the positions of m1 (OP1) and m2 (OP2) have been
normalized to µ and 1−µ respectively. From theoretical mechanics it is known
that if m2 (and thus also m1) moves in a circular orbit, the motion of m2 is
given by:

m2ω
2
12OP2 = Gm1m2

R2
12

ω2
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12
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12
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2
12
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2
12
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= Gm1
R1

(65)

In the same way:

ω2
12R

2
12

µ

r2
=

Gm2

R2
(66)

such that Equation 64 becomes:
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] (67)

which means that the normalized Jacobian energy (Equation 23) may be con-
verted to SI units directly via:

C = ω2
12R

2
12c = V 2

12c (68)

In the case of a Sun-planet system, the rotational speed of the system V12 is the
velocity of the planet rotating about the Sun.
The energy level is defined as E = − 1

2C or via:

Erot =
1
2
V 2 −

(
GmSun

R1
+

Gmplanet

R2

)
− 1

2
ω2

12

(
X2 + Y 2

)
(69)

In an inertial reference frame the correction for the rotating system is missing
and the energy only consists of the sum of kinetic and potential energy [Wakker,
2007]:

Ein =
1
2
V 2

in −
(

GmSun

R1
+

Gmplanet

R2

)
(70)
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The velocity in an inertial reference frame is defined as:

Vin = Vrot + Ω×R = Vrot + [0 0 ω12]T × [X Y 0]T = Vrot + ω12[−Y X 0]T (71)

For the orbits of the planets, the initial J2000 ephemeris of [Standish, 2011] is
used. The semi-major axis is assumed constant and the mean longitude (defined
for circular orbits) will change according to the given initial value and change
rate.

With the presented conversions the energy levels within two different CR3BP’s
can be compared and the manifold tubes can be visualized in one figure.

7.2 Analysis of energy levels

The minimum energy levels are based on analysis of the Hill surfaces (Figure
7); they should just allow for transfer from and to the area around the libration
points. For the stable manifold from L1 the inner region should be accessible,
which results in CL1 , and for the unstable manifold from L2 the outer region is
to be accessed, resulting in CL2 .

Using the location of the libration points (Table 2) and Equation 23, the
values of these specific energy levels can be computed. For both libration points
they are shown in Table 9 in normalized units for each particular planet-Sun
system. In [Elvik, 2004] values for these energy levels from AUTO were found,
which serve as a reference. For comparison the energy levels are also given in
standard units (Equation 68) and with respect to an inertial reference frame
(Equation 70) in Table 10. Note that the inertial velocity (Equation 71) of a
collinear libration point (V = 0 and Y = 0) becomes:

Vin = ω12[0 XL 0]T

V 2
in = ω2

12X
2
L = ω2

12(R12xL)2 = V 2
12x

2
L

(72)

For the generation of manifolds the software uses the normalized energy con-
stants C (Table 9), while for analysis the physical interpretable energy levels E
(Table 10) are more suitable.

Tudat AUTO
Planet CL1 [−] CL2 [−] CL1 [−] CL2 [−]
Mercury 3.00013 3.00013 3.000130 3.000130
Venus 3.00078 3.00077 3.000777 3.000774
Earth 3.00089 3.00089 3.000891 3.000886
Mars 3.00020 3.00020 3.000202 3.000202
Jupiter 3.03876 3.03748 3.038756 3.037483
Saturn 3.01782 3.01744 3.017822 3.017440
Uranus 3.00522 3.00516 3.005219 3.005161
Neptune 3.00582 3.00575 3.005817 3.005749

Table 9: Minimum normalized energy levels for transfer through the area around
libration points, via Tudat and AUTO.

Increasing these energy levels (decreasing the Jacobian energy constant C)
results in more possibilities for transfer, but also a larger energy demand in
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Rotating frame Inertial frame
CL1 CL2 EL1 EL2 EL1 EL2

Planet [km2s−2] [km2s−2] [km2s−2] [km2s−2] [km2s−2] [km2s−2]
Mercury 5512.14 5512.13 −2756.07 −2756.07 −1163.41 −1128.48
Venus 3737.04 3737.03 −1868.52 −1868.52 −636.44 −590.60
Earth 2689.04 2689.03 −1344.52 −1344.52 −461.56 −426.06
Mars 1479.32 1479.32 −739.66 −739.66 −296.69 −285.61
Jupiter 516.16 515.95 −258.08 −257.98 −110.86 −64.15
Saturn 310.48 310.44 −155.24 −155.22 −55.31 −38.37
Uranus 126.22 126.22 −63.11 −63.11 −25.40 −20.89
Neptune 90.19 90.19 −45.10 −45.10 −16.31 −13.27

Table 10: Minimum standard energy levels for transfer through the area around
libration points, computed using Tudat.

terms of velocity increments ∆V . The two increments are related due to Equa-
tion 23.

As the Jacobian energy constant C is the integral of motion in the PCR3BP,
it remains constant along a manifold. So the possibilities for transfer are also
limited by the energy gap between the unstable and stable manifolds of two
different planet-Sun systems. In some cases this energy gap might be overcome
using a planetary swing by, which reduces the needed velocity increments. The
planet in the system of departure can be used as swing-by planet, when utilizing
a connection in the planetary region as shown in for example Figure 12. In
Figure 27 the maximum energy increments reachable by means of a swing-by
are shown; more realistic values can be computed according to the theory in
Section 2.3 and are to be converted back to C.

The maximum energy levels are limited due to the stability of the Lyapunov
periodic orbits. With the family of periodic orbits generated in AUTO (as shown
in Figure 28), the energy level of the outermost periodic orbit is assumed to be
the maximum energy level. It corresponds to the orbit which causes collision
with the primary body and therefore the continuation is terminated naturally.
The energy levels with respect to a rotating reference frame are constant over
the orbit as long as the satellite is kept far enough (0.1R12 is used) from collision.
These values are given in Table 11 for every Sun-planet system.

Also the minimum values have been checked by inspecting the values of C
and E for the innermost periodic orbit, being the libration point itself; the
results are consistent.

In Table 12 the minimum energy levels (of Table 10) and maximum swing-
by energy increments (based on Figure 27), are summarized. Also the energy
gap between one planet’s L2 energy level to the next planet’s L1 energy level
are given. Although the inertial energy levels are not completely constant, it
is likely that transfer is only possible for small differences in energy. When
considering transfer from one planet’s L2 point to the following planet’s L1

point, with a possible swing-by at the first planet, the only options for transfer
worth investigating are Earth-Mars, Jupiter-Saturn, Saturn-Uranus and Uranus-
Neptune.
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Figure 27: Maximum heliocentric energy increase for planetary swingby missions
[Melman, 2007].

Figure 28: Example of a family of planar periodic orbits about the L1 and L2

libration points, generated by AUTO.

7.3 Possibilities for transfer

Plotting the manifolds emanating from the inner planet’s L2 and the outer
planet’s L1 periodic orbits in one figure shows the possibilities for transfer in
Figures 29 to 32. Plots are in kilometers in an inertial reference frame; both
families of manifolds have been rotated according to the planet positions and
seconds after J2000 (θ0 = θJ2000). The manifolds are plotted for minimal energy
levels, emanating from the periodic orbits as given in Table 13.
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Planet CL1 [-] CL2 [-]
Mercury 2.998 2.998
Venus 2.998 2.908
Earth 2.964 2.992
Mars 2.996 2.998
Jupiter 2.142 2.910
Saturn 2.287 2.942
Uranus 2.683 2.973
Neptune 2.824 2.970

Table 11: Maximum energy levels w.r.t. the rotating reference frame, derived
from AUTO.

Planet EL1 EL2 EL1(i+1) - EL2(i) ∆Emax

[km2s−2] [km2s−2] [km2s−2] [km2s−2]
Mercury −1163 −1128 492 −
Venus −636 −591 130 250
Earth −461 −426 129 230
Mars −297 −286 175 80
Jupiter −111 −64 9 400
Saturn −55 −38 13 240
Uranus −25 −21 5 100
Neptune −16 −13 − −

Table 12: Summary of standard minimum inertial energy levels for libration
points and their energy gap, and possible swing-by energy increments.

Planet x0[-] ẏ0[-] T [-] C[-]
Earth L2 1.011 -0.00698 3.0828 3.00085
Mars L1 0.995 0.00177 3.0308 3.0002
Jupiter L2 1.08 -0.0806 3.2588 3.03192
Saturn L1 0.95 0.03792 .9806 3.0170
Saturn L2 1.047 -0.02488 3.1312 3.01741
Saturn L2 1.08 -0.1595 5.6376 2.9989
Uranus L1 0.979 -0.002038 3.0184 3.00492
Uranus L2 1.027 -0.01728 3.1134 3.00491
Neptune L1 0.977 -0.0167 3.0006 3.00561

Table 13: Characteristics of initial periodic orbit used for the generation of
manifolds, in normalized units.

The figures show that for minimum energy levels only overlap in position
exists for manifolds from Jupiter to Saturn (Figure 30) and from Uranus to
Neptune (Figure 32), as indeed was indicated by the smaller gap in minimum
inertial energy (Table 12). The difference in velocity and needed maneuvers to
connect the manifolds will be discussed in the next chapter.

Increasing the energy level of the periodic orbit about the L2 libration point
of the Sun-Saturn system to 2.9989, shows (Figure 33) that for higher energy
levels intersections become apparent and interplanetary transfer along manifolds
is possible. However, this energy level or velocity needs to be obtained first,
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Figure 29: Manifolds from Earth’s L2 and to Mars’ L1, for minimum energy
levels.

Figure 30: Manifolds from Jupiter’s L2 and to Saturn’s L1, for minimum energy
levels.
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Figure 31: Manifolds from Saturn’s L2 and to Uranus’s L1, for minimum energy
levels.

increasing the total required energy for a mission. Therefore minimum energy
levels are chosen for the final part of this study.

Because of the large amount of intersecting orbits for a minimum energy
level, the coupled Jupiter-Saturn three-body systems will be examined in detail.
In the next chapter the needed maneuver to move from Jupiter’s L2 unstable
manifold onto Saturn’s L1 stable manifold is computed and analyzed for different
cases.
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Figure 32: Manifolds from Uranus’s L2 and to Neptune’s L1, for minimum
energy levels.

Figure 33: Manifolds from Saturn’s L2 and to Uranus’s L1, for higher energy
level.

45



46



8 Intersections in the coupled PCR3BP

Because of the planar motion of the planets involved and the extra velocity
increments needed for out-of-plane maneuvers, only connections in the planar
CR3BP will be examined. As shown in the previous section (Figure 30) the
Jupiter and Saturn systems are most suitable for interplanetary transfer. The
Poincaré section of their intersecting manifolds will be analyzed for different
epochs and intersections.

8.1 Poincaré sections

Using a cross-section at θ = 1.5π = 270◦ the positions of twice 100 orbits on the
manifolds of Figure 30 are shown in Figure 34, with respect to an inertial refer-
ence frame and in standard units. The two three-body problems are coupled for
a J2000 epoch, and the location of the chosen cross-section is shown in Figure
35. As the cut is located on the negative Y axis, the position in X direction
is (approximately) zero for all points. The error in X position (Figure 34) is
due to precision of data generated by Tudat, which is in the order of 10−10 in
normalized coordinates.

Figure 36 shows the velocity in both directions for both manifolds. Here Y
ranges from approximately -1.5 to -1.0 109 km, as is in conformity with Figure
35. Typical values of VX are from 8 to 11 km/s for Jupiter’s unstable manifold,
and from 10.5 to 11.5 km/s for Saturn’s stable manifold. However, no overlap
exists for similar positions (i.e. equal value of Y). The same can be said about
the velocity in y-direction VY , which ranges from -3 to -1.5 km/s for the unstable
manifold and from 1 to 2 km/s for the stable manifold.

This means that there will always be a difference in velocity. The figure can
be used to minimize this difference, which is the needed velocity increment to
maneuver from Jupiter’s unstable manifold onto Saturn’s stable manifold.

In order to gain a simple increase in energy only, a velocity increment in the
direction of flight is preferred, so Vx over Vy should be equal for both manifolds.
As Figure 37 shows, no such point exists. This is also the fact for many other
cuts (not depicted), and therefore the connections will only be optimized on the
size of the velocity increments.

The minimal vectorial velocity difference (
√

∆V 2
X + ∆V 2

Y ) is to be found for
overlapping positions (i.e. equal value of Y). To find these intersecting points a
curve is fit to the data (2 times 100 points) of Figures 36, the result of which is
shown in Figures 38.

The fit function available in MATLAB most suitable for this problem is the
nearest neighbour interpolation method [Mathworks, 2012], because it conserves
the shape of the diagrams. Other fitting methods have been tried on various
test cases, such as splitting the diagram in two parts and fitting a polynomial to
it. This gave approximately the same results (minimum velocity increments),
and proved not suitable for the whole collection of data because of differently
shaped curves, while only increasing computational effort.
The fitted curves can be sampled again, such that for any point within the
overlapping positions (i.e. Y-values, since X is zero) the total velocity difference
can be calculated. In order to perform this calculation, both the VX and VY

curves are sampled over exactly the same Y-values.
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Figure 34: Cut (at 270◦) of manifolds from Jupiter’s L2 and to Saturn’s L1, for
minimum energy levels.

As can be seen in both figures of Figure 38, 4 combinations of velocities exist,
resulting in 4 differences in velocity in Figure 39, for every Y-value. However
the resulting two curves are non-continous, a minimum velocity difference can
clearly be found.

According to the computed velocity differences, visualized in Figure 39, the
minimum value for this specific epoch and cut is 2.35 km/s.

8.2 Other cuts

For the same epoch, also other cuts can be chosen. As shown in Figure 30, the
manifolds intersect for angles θ = 1.3 - 1.6 π = 234 - 288◦, but as the figure is
symmetric, also for θ = 0.1 - 0.4 π = 378 - 432◦. These angles are indicated in
Figure 35.

Using the same technique as above, but rotating the figures to an new coor-
dinate frame X, Y such that X is again zero, the minimum velocity increments
for different cuts can be computed. The results are shown in Table 14 and
Figure 40. The result for θ = 270◦, obtained earlier, is also included.

It shows that the problem might be symmetric, such that when there are
two places where the families of manifolds intersect, only the first needs to be
examined. This was already expected when inspecting Figure 35.
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Figure 35: Location of cut (270◦) and intersecting areas on manifolds from
Jupiter’s L2 and to Saturn’s L1, for minimum energy levels.

Figure 36: Velocity [km/s] in cut (at 270◦) of manifolds from Jupiter’s L2 and
to Saturn’s L1.

8.3 Other epochs

Clearly, the results in terms of minimum ∆V are driven by the geometry of the
two manifolds with respect to eachother; in turn, this is driven by the positions
of Jupiter and Saturn at the initial epoch chosen. As the synodic period of
Jupiter and Saturn is 19.85887 years, the influence of this geometry can be
sampled in 20 epochs. The manifolds can be converted to an inertial reference
frame and visualized as before. This is shown for epochs J2000 plus 5, 10, 20
and 30 years (or the year 2005, 2010, 2020 and 2030) in Figure 41. As can be
seen, the geometry of the manifolds in 2010 and 2030 is the same. This means
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Figure 37: Velocity ratio in cut (at 270◦) of manifolds from Jupiter’s L2 and to
Saturn’s L1.

Figure 38: Interpolated velocities [km/s] in cut (at 270◦) of manifolds from
Jupiter’s L2 and to Saturn’s L1.

that the relative orientation of the manifolds and their state vectors is equal,
and so will be the differences in velocity.

Again in the intersecting area cuts can be chosen and the minimum velocity
increment computed. The result for multiple cuts in the 2010 epoch (J2000 +
10 years) shows that the problem in general is not symmetric, as can be seen
in Figure 42. To make a reasonable inventory of the options for connections,
each relative geometry of manifolds is sampled by 6 different cuts, i.e. 6 cuts
per epoch. The positions A to F of the cuts are given in Table 15.
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Figure 39: Velocity differences [km/s] in cut (at 270◦) of manifolds from Jupiter’s
L2 and to Saturn’s L1.

Angle θ [◦] Minimum velocity increment [km/s]
234 4.0545
252 3.2525
270 2.3483
288 1.8249
306 1.5333
324 No intersection
342 No intersection
360 No intersection
378 1.5984
396 1.9534
414 2.5252
432 No intersection

Table 14: Minimum needed velocity increments [km/s] from Jupiter’s unstable
manifold to Saturn’s stable manifold, at different positions [◦] in the J2000
epoch.

Due to the addition of the rotation of the planets in time, the angular posi-
tions of the intersections become larger than 360 ◦.

The minimum ∆V for each of these cuts are shown in Table 16. When no
intersecting manifolds are found for a given angular position of the cut, this is
indicated with NI.
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A B C D E F
J2000 252 270 288 396 414 432
2001 270 288 306 414 432 450
2002 288 306 324 432 450 468
2003 306 342 378 432 468 504
2004 342 378 414 450 486 522
2005 378 414 450 486 522 558
2006 396 432 468 504 540 576
2007 414 450 486 522 558 594
2008 450 486 522 558 594 630
2009 495 531 567 603 639 675
2010 522 558 594 630 666 702
2011 216 252 288 324 360 396
2012 252 288 324 360 396 432
2013 288 324 360 396 432 468
2014 324 360 396 432 468 504
2015 360 396 432 468 504 540
2016 396 432 468 504 540 576
2017 414 432 450 558 576 594
2018 432 468 504 558 594 630
2019 468 504 540 576 612 648

Table 15: Angular positions [◦] of cuts in intersecting Jupiter and Saturn man-
ifolds, for different epochs [years].

A B C D E F
2000 3.2525 2.3483 1.8249 1.9534 2.5252 NI
2001 3.7913 2.5864 1.9754 1.8080 2.3061 3.2061
2002 4.1952 2.8149 2.0732 1.6256 2.0435 2.7955
2003 4.2969 2.1708 1.3035 1.1949 1.7549 NI
2004 3.1963 1.6445 1.0029 0.9329 1.4485 NI
2005 2.1877 1.1991 0.8100 0.8652 1.5102 NI
2006 2.1143 1.0847 0.7160 0.6654 1.1068 NI
2007 2.1581 0.9434 0.5844 0.5073 0.7671 NI
2008 1.2554 0.5834 0.3688 0.3755 0.7469 NI
2009 0.6416 0.5226 0.2486 0.3136 1.1357 NI
2010 0.5257 0.3883 0.4335 0.2026 0.9261 NI
2011 0.3411 0.2370 0.5309 0.3973 NI NI
2012 0.9858 0.4304 0.3735 0.2174 0.5428 0.5205
2013 1.6523 0.8792 0.5173 0.3103 0.3936 0.5875
2014 2.0945 1.1817 0.6201 0.4984 0.5985 0.9506
2015 2.5711 1.3559 0.7656 0.6665 0.8707 1.5368
2016 2.5316 1.3933 0.8633 0.8539 1.3049 2.2673
2017 3.3206 2.3562 1.7863 1.3890 1.7882 2.3501
2018 3.6057 2.1555 1.3434 1.3348 1.8261 3.2342
2019 3.6010 NI NI NI 1.7876 3.0459

Table 16: Minimal velocity differences [km/s] in intersecting Jupiter and Saturn
manifolds, for different positions of the intersection and epochs [years].
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Figure 40: Minimum needed velocity increments [km/s] from Jupiter’s unstable
manifold to Saturn’s stable manifold, at different positions [◦] in the J2000
epoch.

8.4 Analysis

Although gridded in a coarse way (20 epochs, 6 cuts), Table 16 provides the
most attractive combination of manifolds to transfer from Jupiter to Saturn, at
a minimum ∆V . Because interpreting a table can be rather cumbersome, the
minimal values for every intersection are visualized for each epoch in Figure 43
and in a contour plot in Figure 44. The contour plot relates to the 3-dimensional
graph (epoch, intersection, ∆V ) of which Figure 43 is formed by the vertical
cross-sections for the 20 different epochs.

The intersections chosen in the middle give the most optimal results, this is
presumably due to the orientation of the manifolds with respect to each other.
The orbits forming the manifolds are aligned at this point, as well as the velocity
vectors, decreasing the need for a maneuver. As Figure 43 shows, the choice of
the position of the intersection is most important for the first and last years in
this range of epochs, while the 2009-2012 epochs show straighter curves.

Furthermore there are indications, such as Figure 44, that the behaviour
is cyclic. Which makes sense, knowing that for every epoch only the relative
positions of the planets change. So after each synodic period of approximately
20 years the pattern will repeat and there will be another, similar, minimum
around 2030. This can also be seen from the total minimal velocity increments
per epoch, in Figure 45.

53



Figure 41: Manifolds from Jupiter’s L2 and to Saturn’s L1, with respect to the
inertial reference frame in the year 2005, 2010, 2020 and 2030.

Table 16 suggests that the optimal transfer can be found for the year 2010
and an angle of 630 ◦. To more accurately identify the minimal maneuver, the
intersections around 630 degrees for the 2010 epoch are examined more closely.
Figure 46 shows that the minimal velocity increment is about 200 m/s, for
θ = 632◦. This is an improvement of approximately 3 m/s with respect to the
previous best result. As the Poincaré cuts of Figure 47 show, matching values
of VY can be found, and there is only a difference in velocity in X-direction,
which prooves the similar orientation of the state vectors.

Based on the results of this chapter, the minimum needed velocity incre-
ments to maneuver from one planet’s unstable manifold to the next planet’s
stable manifold are found when the manifolds have the most overlap and they
have the same orientation. Rotating the obtained manifolds according to the
planet positions for different epochs, already a quick qualitative analysis can be
made to choose time and position of intersection.

The minimal required velocity increment for all epochs and intersections
calculated is 200 m/s. This value is used in the design of the mission and
compared to other means of interplanetary transfer in the next chapter.
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Figure 42: Minimum needed velocity increments [km/s] from Jupiter’s unstable
manifold to Saturn’s stable manifold, at different positions [◦] in the 2010 epoch.

Figure 43: Minimum needed velocity increments [km/s] from Jupiter’s unsta-
ble manifold to Saturn’s stable manifold, for different intersections and epochs
[years].
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Figure 44: Minimal velocity differences [km/s] in intersecting Jupiter and Saturn
manifolds, for different positions of the intersection and epochs [years].

Figure 45: Minimum needed velocity increments [km/s] from Jupiter’s unstable
manifold to Saturn’s stable manifold, for different epochs [years].
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Figure 46: Minimum needed velocity increments [km/s] from Jupiter’s unstable
manifold to Saturn’s stable manifold, for different positions [◦] in the 2010 epoch.
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Figure 47: Velocities [km/s] in cut of manifolds from Jupiter’s L2 and to Saturn’s
L1, for different angular positions (620 - 640◦) in the 2010 epoch.
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9 Discussion of results

The main result of the previous chapter is a minimum velocity increment to
change from an unstable manifold emanating from Jupiter’s L2 planar periodic
orbit onto Saturn’s L1 stable manifold, for minimum energy conditions. Of-
course, this transfer cannot exist by itself: is is part of a transfer from a parking
orbit about Jupiter to a parking orbit about Saturn. The total transfer must
be compared to a classical Hohmann transfer. Based on this, the feasibility of
interplanetary transfer using manifolds is discussed.

9.1 Comparison to Hohmann transfer

As explained in Chapter 2, the minimum velocity increments needed in the
classic 2-body approach are based on a Hohmann transfer. The total velocity
increments needed for such a transfer can be used for comparison.
The assumed radius of both the circular parking orbit about Jupiter and about
Saturn, is 1.1 planetary radii. Used quantities, such as the circular velocity in
these orbits Vc, are stated in Table 17.

µP Rp Rpark Vc(Rpark)
Planet [106 km3/s2] [km] [km] [km/s]
Jupiter 126.686 71492 78641 40.12
Saturn 37.931 60268 66295 23.92

Table 17: Values needed to compute velocity increments in Hohmann transfer
between Jupiter and Saturn [NASA, 2010].

Assuming a pericenter at the distance of Jupiter (5.2034 AU) and an apoc-
enter at the distance of Saturn (9.5371 AU), the interplanetary transfer is one
half of an ellipse about the Sun. It has a semi-major axis of 7.37025 AU or
1102574660 km and an eccentricity of 0.294, which yields a pericentric and
apocentric heliocentric velocity of respectively 14.85 and 8.10 km/s.

Subtracting the orbital velocity of Jupiter (13.06 km/s [Wakker, 2007b]),
the velocity V∞ relative to this planet to be obtained at departure is 1.80 km/s.
Doing the same for Saturn’s orbital velocity of 9.64 km/s, the velocity V∞
relative to Saturn at arrival should be 1.54 km/s. Furthermore at least the
velocity Vesc is needed to escape Jupiter’s surroundings:

Vesc =
√

2µ
r

V =
√

V 2
esc + V 2

∞

(73)

At a distance r of the parking orbit and using the values for V∞ just found, the
velocities V are respectively 56.76 and 33.86 km/s. This means an acceleration
of 16.65 km/s is needed at departure and a deceleration of 9.94 km/s is needed
at arrival, resulting in a total required ∆V of 26.59 km/s for the Hohmann
transfer. According to Equation 9 this transfer would take 10 years.

For the transfers by means of DST as presented in this thesis, still a trans-
fer from the parking orbit to the libration points and vice-versa is needed. For
the computation of these maneuvers, some values are given in Table 18. Note
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that the libration points are not within the sphere of influence of Jupiter nor Sat-
urn, which measure respectively a maximum of 50.5 and 57.7 106 km [Wakker,
2007a]. This means that the Hohmann transfer is only an approximation for
the needed velocity increment to get from the parking orbit to a height of the
libration points.
As shown in Figure 48, the Hohmann orbit has its pericenter at the parking
orbit and its apocenter at a height of the periodic orbit about L2, such that the
pericenter velocity is 56.72 km/s. The difference between the velocity in the
parking orbit and the pericenter velocity is 16.58 km/s. The ellipse is defined
with respect to Jupiter, while the libration points are fixed with respect to the
Sun. Adding the velocity of Jupiter to the apocenter velocity (0.08 km/s), the
velocity at L2 is 13.14 km/s with respect to the Sun. Given the periodic orbit
from Table 13, the minimal velocity to be obtained is -1.05241 km/s plus the
circular velocity of L2 with respect to the Sun, or 11.57 km/s in total. The
difference between the apocenter velocity and that of the periodic orbit (both
with respect to the Sun) is the velocity increment to get from the Hohmann
orbit onto the periodic orbit about L2 and is 1.57 km/s. Together with the first
velocity increment of 16.58 km/s to maneuver from the parking orbit to the
Hohmann-orbit, this results in a ∆V of 18.15 km/s.

Rplanet
Li

RSun
Li

V Sun
c,Li

Planet [km] [km] [km/s]
Jupiter 54297488 832715048 12.62
Saturn 64153072 1362572340 9.87

Table 18: Values needed to compute velocity increments to transfer from and
to the libration points.

The same can be done to get from the periodic orbit about Saturn’s L2 with
a velocity of 0.37 km/s with respect to Saturn or 9.50 km/s with respect to the
Sun, to a Hohmann orbit (Figure 48). This elliptical orbit has its apocenter at a
distance of the libration point, which yields a velocity of 0.03 km/s. Adding the
circular velocity of Jupiter in its orbit about the Sun, the satellite needs to be
accelerated to 9.67 km/s, resulting in the first velocity increment of 0.17 km/s.
Next the pericenter velocity of 33.81 km/s needs to be lowered to the velocity
of the parking orbit (Table 17), resulting in a velocity increment of 9.89 km/s.
Toghether the two maneuvers result in a ∆V of 10.07 km/s.

So first a transfer from the parking orbit of 1.1 Jupiter radii about this planet to
a specified periodic orbit about its L2 libration point is used. This results in a
total ∆V of 18.15 km/s. Then after the manifolds form the connection between
the two libration points, a transfer from near Saturn’s L1 libration point to a
parking orbit at 1.1 Saturn radii needs two more velocity increments, with a
total of 10.07 km/s. Including the 0.2 km/s needed to change from Jupiter’s
unstable manifold onto Saturn’s stable manifold, this results in a total of ma-
neuvers of 28.42 km/s, which is more than the budget needed for a classical
Hohmann transfer.
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Figure 48: Hohmann orbits in the total transfer using DST, in the Jupiter (top)
and Saturn (bottom) systems.

9.2 Feasibility of the mission

The higher energy requirement does not mean the mission from Jupiter to Sat-
urn using DST is unfeasible. Other methods to get to and from the libration
points can be used, such as gravity assists about moons or using the planet-
moon manifolds. Orbits using the latter technique have been constructed in
various studies concerning the coupled Earth-Moon and Sun-Earth three-body
systems, such as [Howell, 2006] and [Moore, 2009].

A mission visiting both Jupiter and Saturn using only gravity assists is due
to geometric constraints and the rare launch window almost impossible [Lali,
2009]. Using manifolds would be a great opportunity to observe both planets,
as Figure 17 shows that only minor errors in energy (or initial velocity) cause
the satellite to orbit the secondary body instead of the libration point. [Wang,
2009], [Doedel, 2010] and [Calleja, 2011] show how manifolds are to be used in a
low-energy mission orbiting Earth, moon and their libration points, which can
easily be extended to the Sun-planet cases of this report.
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The required accuracy is a drawback of transfer by manifolds and may be an
important constraint for missions to and between the outer planets. Therefore
low thrust might be more suitable, than the instantaneous maneuvers used in
this study.

Another drawback is the time required for transfer: in the Jupiter-Saturn
case that has been optimized it would result in approximately 20 years, which
however can simply be lowered when larger deviations from the periodical orbit
are used, as is shown in Figure 24.

So in the current state of development of the use of DST for space flight,
interplanetary transfer using manifolds would not be feasible. The low veloc-
ity increments -in the order of 100’s of m/s- required for maneuvering from
one planet’s unstable manifold onto the next planet’s stable manifold, however
make it an option worth investigating as a means of transfer in future missions,
especially to and between the outer planets and their libration points.
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10 Conclusions and Recommendations

In this study manifolds in the coupled planar circular restricted three-body
problem as means of interplanetary transfer are examined.

The motion of a body in space is defined by the gravitational attraction of
all other bodies. In a system of three bodies some assumptions can be made,
leading to the circular restricted three body problem (CR3BP). This results in
two major bodies moving in circular coplanar orbits about each other, while the
smaller body (with negligible mass) is not confined to this type of motion. The
plane of the two major bodies defines a rotating reference frame. In this refer-
ence frame and after normalizing mass, distance and time, the resulting three
second-order differential equations are the equations of motion of the CR3BP.
The problem is now only dependent on the mass parameter, which is based on
the mass ratio of the two major bodies.

The Sun-planet-satellite three-body systems fulfill the restrictions of the
CR3BP. The equations of motion can be translated to 6 first-order differen-
tial equations, with the Jacobi energy integral as a conservative quantity.

Analyzing the energy surfaces and the equations of motion, equilibrium points
are found, called libration points. Linearizing the equations, the region around
these points shows 4 types of motion: periodic, transit, non-transit and asymp-
totic. The asymptotic orbits towards the equilibrium region (or invariant mani-
fold) are called stable manifolds, while the ones departing it are called unstable
manifolds. They form tubes in space, being the separation between transit and
non-transit orbits. So a path within these tubes will always lead to or from
the periodic orbit. The 4-body problem can be approximated by coupling two
three-body models with only one of the major bodies not in common.

The positions of the libration points are computed with Tudat for the Earth-
Moon system and show no discrepancies when comparing to literature. Also the
positions of the collinear libration points of all Sun-planet systems of the solar
system, are accurate when compared to values from AUTO.

The periodic orbits can be found in the non-linearized case by means of
differential correction, which is implemented in Tudat. This technique is very
sensitive to changes in energy and initial conditions, such that the periodic orbits
may be centered about the planet and not about the libration point. Therefore
a check of the geometry of the resulting periodic orbit is always required. In
this way, via a simple grid search and differential correction, the periodic orbits
for a given energy level can be found. The found periodic orbits are compared
on initial state, energy level and period with data from literature and the im-
plementation shows to be valid.

Both the RK4 and RK78 integrators have been proven to be accurate by means
of Tudat’s obligatory unit tests and when integrating periodic orbits and man-
ifolds. In most cases the RK4 integrator has been used because of the required
expansion of the integrator: integration until a stopping condition rather than a
fixed end time, and adjustment of the step size near violation of this condition,
to find an accurate result.

The starting points of the manifolds can be found by deviating at a number
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of points on the periodic orbit in the direction of an eigenvector of the mon-
odromy matrix, which is the state transition matrix (STM) of the periodic orbit
after one period, based on linearized equations of motion. The local eigenvectors
can be computed along the periodic orbit by using the STM again.

The size of the deviation should be as large as possible, to get from the equi-
librium region in the least amount of time, without giving in on accuracy. The
accuracy of the manifolds can easily be evaluated by computing the variation
of the constant Jacobi energy constant along a manifold.

From each periodic orbit a collection of 100 orbits is generated, forming a
manifold. The unstable manifold is integrated forward from the L2 libration
point, while the stable manifold is integrated backwards from the L1 libration
point. Interplanetary connections can be found at the intersection of these two
families of manifolds, for two different three-body systems.

To couple the systems, the state, time and energy have to be converted back to
standard units and an inertial reference frame. The first conversion is shown to
be nothing but a multiplication by the normalizing factor. The minimal energy
level corresponds to that of the libration point, while the maximum energy level
is derived from the outermost periodic orbit as generated by AUTO. The total
energy in the inertial reference frame is not a constant, but analysis of the gaps
in minimum energy between two consecutive planets, indicates that only four
coupled systems have possibilities for transfer along manifolds. From the Earth-
Mars, Jupiter-Saturn, Saturn-Uranus and Uranus-Neptune coupled three-body
systems, only Jupiter-Saturn and Uranus-Neptune show overlap in manifolds
for minimum energy conditions. These two connections indeed correspond to
the smallest energy gaps. As expected, increasing the energy of Saturn’s L2

periodic orbit shows more possibilities for transfer between Saturn and Uranus.

The transfer between Jupiter and Saturn is chosen for optimization. Within
the area of intersection of the manifolds different cuts can be made, resulting
in 2 times 100 state vectors per cut. The introduction of a new reference frame
allows that the X-component is always zero and the vector difference in velocity
V is evaluated for the same Y-component. Because the 100 points in the cut
will rarely have the same Y-position, the smooth Y, VX and Y, VY functions are
interpolated and resampled. In this way for every cut the minimum velocity
difference, equal to the velocity increment of the maneuver, is found.

The geometry of the coupled system changes in time, so the synodic period
of almost 20 years is sampled, and for 20 epochs and 6 cuts per epoch the
minimum velocity increments are computed.

Analysis of the minima per epoch, shows they are not symmetric over the
overlapping area. Over all epochs it however is clear that the cut should be
chosen in the middle. This might be due to the suitable orientation of the
manifolds relative to each other.

For the initial epoch 2010 (J2000 plus 10 years) a minimum is found and the
behaviour of the minima over the years is shown to be cyclic, such that another
minimum should be found when starting the manifolds in 2030.

Referring again to the relative orientation of the manifolds for this epoch,
the alignment of manifolds seems to be the most important factor in finding
a minimum-energy transfer. This means the optimal time and place of a ma-
neuver can already be deduced from the geometry or plots of the manifolds of
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coupled systems for different epochs. These plots can therefore be an important
tool in the design of a mission with transfer by manifolds.
The overall minimal velocity increment is about 200 m/s, which makes mani-
folds by itself a promising way of transfer.

Using manifolds in the transfer from a parking orbit about Jupiter to a parking
orbit about Saturn, leads to a total required velocity increment of 28.42 km/s,
while a classical Hohmann transfer requires 26.59 km/s. This means that with
these type of flights from and to the libration points, and the increased transfer
time, transfer by means of manifolds is not to be preferred.

Other means of getting to and from the libration points or missions only
visiting the libration points and their manifolds should be considered, as well as
low-thrust propulsion. The obtained trajectory can then be refined in the full
4-body model, to confirm validity of the coupled three-body models.

The behaviour of the minimal velocity increments over time, can be exam-
ined more into depth when considering the epochs after 2020 and other coupled
three-body systems.

As shown, more connections become apparent for higher energy levels. This
may decrease the needed velocity increment further for the studied combination
of Sun-planet systems and yield more possibilities for transfer for all Sun-planet
systems. So simulation of the manifolds for high energy levels may really show
the Interplanetary Superhighway, through which a spacecraft travels the solar
system without propulsion...
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Appendix A: Numerical integration

When equations of motion are given in the form of ordinary differential equa-
tions, an orbit or manifold can be found by integration. Various methods are
commonly used in celestial mechanics, such as the single-step or Runge-Kutta
(RK) methods, which are available within Tudat (Appendix B). In this section
two versions are presented.

RK integrators

The RK integrators are known to be easy to use and applicable to a variety of
problems [Montenbruck, 2005]. They are based on a first-order Taylor expan-
sion:

y(t0 + h) ≈ y0 + hẏ0

= y0 + hf(t0, y0)
= y0 + hΦ

(74)

The increment function Φ can have different forms and order. In Tudat second
(Euler), fourth and eighth-order RK integrators are available. For example for
the fourth-order Runge-Kutta (RK4) algorithm, referred to as the classical RK,
it is defined as:

k1 = f(x(t0), y(t0))
k2 = f(x(t0 + h/2), y(t0) + k1/2)
k3 = f(x(t0 + h/2), y(t0) + k2/2)
k4 = f(x(t0 + h), y(t0) + k3)
Φ = k1

6 + k2
3 + k3

3 + k4
6

(75)

It is based on derivatives on different places along a function, as shown in figure
49.

Figure 49: The Runge-Kutta 4th order algorithm [McMillan, 2011].
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RK4 approximates the exact solution up to terms of order h4. So the trun-
cation error depends on the order of the increment function, in this case:

eRK4 = |y(t0 + h)− (y0 + hΦ)| ≤ constant h5 (76)

Higher-order RK formulas look like:

k1 = f(t0 + c1h, y0)ki = f(t0 + cih, y0 + h
i−1∑
j=1

aijkj) (77)

Such that with given vectors of coefficients bi the increment function becomes:

Φ =
s∑

i=1

biki (78)

The coefficients are in the form of Table 10, which is called the Butcher tableau.

c0 = 0
c1 a10

c2 a20 a21

cs = 1 as0 as1 as,s−1 = 0
b0 = as0 b1 = as1 bs−1 = −λ bs = λ

b̂0 = b0 b̂1 = b1 b̂s−1 = 0 b̂s = 0
ˆ̇
b0

ˆ̇
b1

ˆ̇
bs−1

ˆ̇
bs

Table 19: Coefficients for higher order RK methods.

Variable step size

For more suitable use of an integrator, the step size can be adjusted accord-
ing to the required accuracy. This is for example done in the RK-Fehlberg
7(8) integrator (RKF78) [Fehlberg, 1985]. The Fehlberg method requires less
computational steps than earlier methods of the same order. It compares the
solutions of an approximation of the 7th and of the 8th order to evaluate the
accuracy. Both approximations use the same coefficients, hence the reduced
computational effort.

The integration method is discussed in detail in [Burden, 2001], which covers
the theory that has been implemented in Tudat.

Based on the unit tests that form an important part of Tudat (see Appendix
B) both the RK4 and RKF78 integrators are assumed to be accurate enough for
the problems in this study. When developing manifolds in Chapter 6 another
test is performed to support this. Also the resulting periodic orbits in Chapter
5 show that the integrators as implemented in Tudat are accurate enough.
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Appendix B: Tudat

The TUD Astrodynamics Toolbox (Tudat) is a C++ library for astrodynamics
simulations developed and maintained by staff and students in the Astrody-
namics & Satellite Missions research group at the TUD’s faculty of Aerospace
Engineering [Tudat working group, 2011].

After various former tools, it was decided to work on a more structured way
to share code written for amongst others theses and PhD. studies on Orbital
Science and Technology. Tudat is therefore set up with particular focus on
modularity and robustness of code.

For development any environment can be used, while the compiler used
by Tudat is g++ of the GNU Compiler Collection, which is available for all
platforms.

Development

Using Tudat for a thesis also means that active participation in its development
is expected. Newly written work packages during the thesis should be incorpo-
rated in it and should fulfill certain standards. These concern amongst others
development guidelines which are available in a development manual [Tudat
working group, 2011] and the Tudat Commandments and Guidelines [Melman,
2011]. The online forum [Tudat working group, 2011] and meetings can be used
for support and discussion.

Because of the technical documentation coming with the toolbox, all code
should be commented according to Doxygen style [Doxygen, 2011]. This makes
it possible to generate documentation straight from the comments.

All code can be found in the repository, such that all changes and the progress
of the projects can be tracked. It is checked by the developer by means of unit
tests and by other developers. Changes and communication regarding existing
code is done via .diff-files. Especially the development of unit tests and the
code checking take time and should be taken into consideration when planning
programming tasks.

Additions

The last public version is v0.3, but newer versions were downloaded from the
repository. Tudat required expansion for specific functionality, such as:

• Approximate planet positions for circular coplanar orbits.
Based on the variation of orbital elements of the J2000 model [Standish,
2011], but only using the semi-major axis as constant radius and the initial
and changing mean longitude.

• Equations of motion CR3BP.
Defined by the 6 first-order differential equations used throughout this
report and only dependent on mass parameter.

• Calculation mass parameter of a three-body system.
Based on the gravitational parameters as included as planet parameters
in Tudat, the mass parameter is calculated after two predefined celestial
objects are selected.
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• Conversion from normalized to standard parameters.
According to the equations in Chapter 7, time, state and the Jacobian
energy constant are converted, given the distance between the two major
bodies.

• Determination of libration points.
Based on the equations of Section 2.6 and their derivatives, Newton-
Raphson is used to find the x-locations of the collinear libration points.
The positions of the equilateral points are computed directly. The posi-
tions are only dependent on the mass parameter.

• Generation of periodic orbits by means of differential correction.
Given the initial guess for position and velocity and the mass parameter,
differential correction is performed until a fixed number of iterations or a
convergence limit. This results in the initial conditions of a planar periodic
orbit.

• Computation of the starting points of manifolds.
Starting with the initial conditions of a periodic orbit and its period, one
can choose between stable and unstable manifolds and specify the size of
the deviation from the periodic orbit and the number of starting points.
The function will output this amount of starting points divided equally
along the periodic orbit.

• Implementation of stopping condition for integrator.
Previously only integration up to a specific end time was possible within
Tudat, so for the fixed step size integrator functionality to integrate up to
any stopping condition has been added, as well as adjustment of the step
size to accurately find the final state vector.

All new functions come with a unit test and are checked by other developers.
Furthermore the outcomes of most functions are verified in detail as described
in Chapters 3 to 7.
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Appendix C: AUTO

AUTO is a tool to analyze ordinary differential equations and boundary value
problems. It can be downloaded online and comes with extensive documentation
[Doedel, 2009]. It is used commonly to study the restricted three-body problem
[Deurloo, 2003] [Elvik, 2004] [Oldeman, 2011]. During this study version 0.8 of
AUTO-07P has been used [AUTO website, 2010], which consists of scripts and
demonstrations in Python and runs best using UNIX/Linux-based computers.

Theory

AUTO uses (pseudo-arc length) continuation and bifurcation analysis to come
up with solution families for ordinary differential equations [Wang, 2009] [Doedel,
2010]. The solutions families for the libration points in the CR3BP are for ex-
ample the radial positions, for different mass parameters. The corresponding
bifurcation diagram is shown in Figure 50.

Figure 50: Bifurcation diagram of the position of libration points in the CR3BP
[Deurloo, 2003].

First continuation is performed on the 6 first-order differential equations
defined by Equation 18 with the mass parameter µ as continuation parameter,
to find the libration points. The bifurcation point for µ = 0 (the two-body
problem) is found, along with different branches that are continued to the desired
value of µ [Deurloo, 2003].

With the selected libration point as the new bifurcation point, the boundary
value problem (BVP) for the equations of motion of the CR3BP is given by
the same set of differential equations. Time is scaled to the interval [0,1] in the
BVP formulation, to find a periodic orbit with period T . Furthermore, for a
conservative system with one conserved quantity, an unfolding parameter needs
to be added [Calleja, 2011] times the gradient of this conserved quantity, the
Jacobian energy constant C:

λ[
∂C

∂x
,
∂C

∂y
,
∂C

∂z
,
∂C

∂vx
,
∂C

∂vy
,
∂C

∂vz
] = λ[0, 0, 0, vx, vy, vz] (79)
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The vector field now becomes:

ẋ = Tvx

ẏ = Tvy

ż = Tvz

ẍ = T
(
2vy + x− (1−µ)(x+µ)

r3
1

− µ(x−1+µ)
r3
2

+ λvx

)
ÿ = T

(
−2vx + y − (1−µ)y

r3
1

− µy
r3
2

+ λvy

)
z̈ = T

(
− (1−µ)z

r3
1

− (µ)z
r3
2

+ λvz

)
(80)

The boundary conditions for periodicity are [Oldeman, 2011]:

x(1) = x(0) vx(1) = vx(0)
y(1) = y(0) vy(1) = vy(0)
z(1) = z(0) vz(1) = vz(0)

(81)

Here λ is the Floquet multiplier, which determines the stability of the solution
and is another unknown during the continuation. The solution branch for λ = 0
is used to compute the entire family of periodic orbits, other values are used to
generate manifolds.

Usage

A demonstration package of scripts and input files called ’r3b’ is included in
the standard version of AUTO. The files make it amongst others possible to
generate families of periodic orbits and manifolds, after libration points have
been determined. Only a script to generate periodic orbit and manifolds about
L1 is available. It can easily be copied and adjusted, resulting in the L1a.auto
and L2a.auto scripts, which are called from r3b.auto.

In general the following steps are taken when using the r3b demo in AUTO:

1. Adjust the value of the mass parameter µ in r3b.auto.

2. Use compute lps to find the libration points, for the given value of µ.

3. Adjust the index referring to libration points L1 and L2 in compute lps.

4. Adjust the value for Jacobian energy CL1 or CL2 in c.r3b.L1 to find the
corresponding periodic orbit.

5. Use scripts L1a.auto and/or L2a.auto to generate unstable manifolds.

6. Change from Floquet multiplier λ to 1
λ and use negative step size to gen-

erate stable manifolds.

The scripts are adjusted to my needs, such that for example output could be
used in other ways. The original data files can be visualized using QTPlaut
[Wang, 2011].

The manifolds generated by AUTO have only been used for visual reference,
as the theory (as presented in Chapter 6) was easy to implement and a useful
addition to Tudat. Other data such as the position of libration points and fam-
ilies of periodic orbits have been used for verification and analysis in Chapters
3 to 7.
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