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Abstract. Smart computing has demonstrated huge potential for var-
ious application sectors such as personalized healthcare and smart
robotics. Smart computing aims bringing computing close to the source
where the data is generated or stored. Memristor-based Computation-
In-Memory (CIM) has the potential to realize such smart computing
for data and computation intensive applications. This paper presents an
overview and design present of CIM, covering from the architecture and
circuit level down to the device level. On the circuit and device level,
accelerators for machine learning will be presented and discussed, focus-
ing on variability and reliability effects. We will discuss these aspects
for Redox-based Resistive Random Access Memories (ReRAM) based
on the Valence Change Mechanism (VCM) by employing the compact
model JART VCM v1b.

Keywords: CIM · architectures · memristive devices · memristors

1 Introduction

The conventional von Neumann architectures (such as CPU, GPU and TPU)
are suffering from the three well-known architectural walls such as the so-called
memory-wall [1]; not to mention the three technology walls CMOS technol-
ogy (used to implement such architectures) is facing such as static power [2].
As a result, excessive time and energy are spent on moving massive amounts
of data between the memory and data paths, which makes such architectures
extremely energy-inefficient [3–5]. The explosion of data-intensive applications
and their unprecedented demand for energy efficiency, from data centers to

This work was funded in part by EU’s Horizon Europe research and innovation pro-
gramme under grant agreement No. 101070374, in part by the Deutsche Forschungsge-
meinschaft (SFB 917), and in part by the Federal Ministry of Education and Research
(BMBF, Germany) in the project NEUROTEC II (project numbers 16ME0398K and
16ME0399).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Silvano et al. (Eds.): SAMOS 2023, LNCS 14385, pp. 437–450, 2023.
https://doi.org/10.1007/978-3-031-46077-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46077-7_29&domain=pdf
https://doi.org/10.1007/978-3-031-46077-7_29


438 C. Bengel et al.

energy-constrained edge devices, further exacerbate the challenges [6]. To over-
come these challenges and significantly improve the efficiency, beyond von-
Neumann Computation-In-Memory (CIM), in which computation and storage
are integrated in the same physical location, has become a potential alternative
for efficient computing mainly for edge devices [3,6].

Thus, CIM architectures based on memristive devices store the data while
exploiting their inherent capability to perform computation on the stored data
circumvents the costly data movement of von-Neumann based systems [5]. Mem-
ristive devices are a promising and relatively new type of device for CIM. They
offer interesting opportunities, making them a viable addition to current appli-
cations such as machine learning. In addition, they also significantly improve
new computing paradigms such as neuromorphic computing which represents a
special case of CIM [7,8]. Enhanced hybrid systems based on the combination
of memristive devices and complementary metal oxide semiconductor (CMOS)
devices can offer significant benefits over conventional CMOS systems via the
co-location of memory and computing. There exists a range of resistive switch-
ing devices that are considered for CIM such as Phase Change Memory (PCM)
where the switching is based on changing the internal device structure between
an amorphous phase and a crystalline phase [9] and Magnetoresistive RAM
(MRAM) devices in which the resistive switching is based on the change of
the magnetization direction in a ferromagnetic film [10]. Also, we have ReRAM
devices which can be further classified as Electrochemical Metallization Mem-
ory (ECM), also called Conductive-Bridge RAM (CBRAM) and Valence Change
Memory (VCM), also called Oxide-based RAM (OxRAM). For ReRAM devices
the switching is based on local redox reactions. Due to the specific physical func-
tionality of these devices they have to be individually considered for CIM. The
device type considered in more detail in this work is non-volatile, bipolar and
filamentary switching VCM devices [11,12].

This paper provides a broad overview of CIM architectures, circuits and
devices highlighting state-of-the-art research in CIM. Particularly, the paper
investigates memristive devices and their widespread application in neuromor-
phic computing. In this regard, ReRAMs are introduced in terms of their poten-
tial for novel computing paradigms. Moreover, we address design and non-
ideality challenges of CIM. The rest of the paper is organized as follows: In Sect. 2
the relevant fundamentals on CIM and VCM devices is explained. Section 3
explains commonly investigated architectures for CIM. Section 4 then details
circuit and device level considerations for CIM based on VCM devices followed
by the discussion of design and non-ideality challenges in Sect. 5. Finally, the
conclusion and future directions are presented in Sect. 6.

2 Background

2.1 CIM Basics

CIM is a computing paradigm where the operation execution happens within the
memory where the data resides. Figure 1 shows a high-level micro-architecture
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Fig. 1. CIM core architecture concept.

of a CIM crossbar, where memristive devices such as ReRAM devices are used
at each crossbar junction. The communication to the crossbar is realized with
the support of peripheral circuits which perform different functions depending
on the targeted CIM architecture; for example input/output data format con-
version may require Digital-to-Analog Conversion (DAC) in the row decoding
part or Analog-to-Digital Conversion (ADC), dedicated sense amplifiers in the
read path. The control block is responsible for the overall control of the CIM
core operation.

2.2 CIM Benefits

Memristive CIM has many features that make it feasible to realize ultra-low
power and energy-efficient computing [6]:

– Practically zero leakage computing [13]: The non-volatile nature of the
resistive devices enables CIM to maintain the stored values in a leakage-
free manner when it is not operating, which solves the leakage bottleneck of
SRAM-based architectures.

– Massive parallelism [6]: CIM provides high parallelism as typically all
columns in a crossbar can be accessed concurrently, leading to maximal par-
allelism. Moreover, the scalability of memristive device technology enables
to increase the number of columns per crossbar, which in turn increases the
degree of parallelism CIM can offer.

– Near zero data bandwidth requirement [14]: Integration of storage and
computation in the same physical location circumvents the bandwidth bot-
tleneck associated with the traditional computation-centered systems, which
need significant data movement.
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– Extremely energy-efficient computing [13]: The combination of non-
volatility (near zero leakage), parallelism and near zero bandwidth require-
ment enables CIM to offer extremely energy-efficient computing.

2.3 VCM Devices and Circuits for CIM

Filamentary VCM switching is observed for two terminal devices consisting of a
stack with a metal oxide like ZrO2, Ta2O5 or HfO2 which is sandwiched between
two different metal electrodes [15]. One of the electrodes has a high work func-
tion and low oxygen affinity and therefore forms a Schottky contact with the
oxide. As the main resistance change happens at this electrode it is called elec-
tronically active electrode (AE). The other electrode has a low work function
and high oxygen affinity and forms an Ohmic contact with the oxide. It is there-
fore called ohmic electrode (OE). Underlying the resistive switching in VCM
cells is the movement of charged oxygen vacancies inside the oxide due to an
applied electrical field. An increase of the number of oxygen vacancies near the
AE interface leads to a resistance reduction and is termed a SET operation,
while a reduction of the number of oxygen vacancies near the AE increases the
resistance and is called a RESET process. The cell state after the SET process
is called the low resistance state (LRS) and the state after the RESET process
is called the high resistance state (HRS) [11,12]. Before the VCM cells can be
repeatedly switched they have to be electroformed, as the fabricated oxide is
initially highly insulating. During this electroforming process, the oxide layer is
locally reduced and oxygen vacancies are generated, decreasing the resistance
of the devices. Today, forming is mostly carried out in the SET direction with
relatively slow voltage sweeps ( V/s) at voltages between 2 V–4 V [16,17].

The variability of VCM devices arises from the stochastic nature of the
switching process [18,19]. It has consequences on the circuit and architectural
level design of CIM applications based on these devices [20–22]. Observed vari-
ability in experiments or simulations can be classified as switching variability
or read variability, depending on whether it is observed during a switching or
a reading process. In addition, it can be classified as device-to-device (d2d) or
cycle-to-cycle (c2c) variability, depending on whether it was observed between
multiple devices or in the same device during multiple switching cycles [23].
Read variability, sometimes also called read noise or random telegraph noise
(RTN) [24,25] describes the effect that during the read operation the current
in VCM cell shows random fluctuations and jumps with different jump heights.
The different current jumps were associated with oxygen vacancies jumping at
different positions in the plug or disc region [24]. Switching and read variabil-
ity are critical effects influencing the performance of VCM cells in computing
applications. However, different computing applications are effected differently
as will be discussed in Sect. 4 in detail. These differences concern first of all which
type of variability is relevant for a certain application and then secondly, which
amount of variability can be tolerated.

Circuit-level compact models are used for the investigation of computing
applications. For the results shown in this work the Jülich Aachen Resistive
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Fig. 2. (a) shows the Equivalent Circuit diagram (ECD) of the JART VCM v1b com-
pact model with the circuit symbol shown in (b). A passive 1R crossbar array (c)
is composed of horizontal Sourcelines and vertical Bitlines with a VCM cell at each
crossing point. The 1S1R array (d) has an additional selector element in series with
the VCM cell at each crossing point of Sourceline and Bitline. In the 1T1R array each
VCM cell is connected in series with a transistor (usually an n-type field effect transis-
tor (NMOS) due to the higher charge carrier mobility) (e). To access the elements of
the 1T1R array an additional Wordline is required that sets the voltage at the gate of
the transistors. Exemplary readout schemes for individual cells are highlighted in blue.
(Color figure online)

Switching Tools (JART) VCM v1b compact model is used which is a sophisti-
cated and physically motivated model for filamentary switching VCM cells. In
the past, it has been used to describe several key properties of VCM devices
such as the highly nonlinear SET and RESET switching kinetic [26,27], the
multilevel switching in the RESET direction [28] and nonideality effects like
read noise [24]. Its equivalent circuit diagram (ECD) corresponds to the general
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metal-oxide-metal structure of a VCM cell and is shown in Fig. 2 (a). The more
commonly used circuit symbol is shown in Fig. 2 (b).

VCM cells are often organised in array structures or crossbars. Passive arrays
were proposed such as 1R (1 resistive element) arrays as shown in Fig. 2 (c).
Another passive array structure are 1 Selector 1 resistive element (1S1R) arrays
Fig. 2 (d). While passive arrays allow for the highest possible integration density
of 4 F2 (where F denotes the minimum feature size of the used technology),
they suffer from issues such as sneak paths and programming difficulties (1R)
or limited multilevel capabilities (1R and 1S1R) [29,30]. Therefore, most works
focus on active 1 Transistor 1 resistive element (1T1R) arrays [31,32]. A 1T1R
array structure is shown in Fig. 2 (e).

3 CIM Architectures

3.1 CIM Architecture Units

As shown in Fig. 3(b), a CIM core has two main architectural units: (1) Memory
array commonly known as crossbar array unit and periphery unit. The crossbar
array stores the data, and can perform any logic or arithmetic operation. Simi-
larly, the periphery unit converts input/output data formats between analog and
digital. Moreover, the periphery unit can also be used to perform basic logical
and arithmetic operations.

Crossbar Array: Different applications use primitive computational units such
as multiply and accumulate (MAC) extensively to perform matrix-matrix mul-
tiplication (MMM) with large operand sizes [33,34]. Such primitive units can
be easily mapped into a memristive crossbar array and perform their operation

Fig. 3. CIM architecture (a) ReRAM based crossbar operation demo (b) CIM core
architecture i.e., Periphery + crossbar array
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e.g., MMM in the crossbar unit of a CIM. Figure 3(a), shows a subset of MMM
operation i.e., vector-matrix multiplication (VMM) using CIM crossbar array.
From Fig. 3(a) it can be observed that the VMM is performed by applying a
voltage vector V = Vj (where j ∈ {1,m}) to a memristive-crossbar matrix of
conductance values G = Gij (where i ∈ {1, n}, j ∈ {1,m}). At any instance,
each column performs a vector-vector multiplication (VVM) or a MAC opera-
tion, with the output current vector I, in which each element is Ii = ΣVj · Gij .
Note that all n MAC operations are performed with O(1) time complexity.

Periphery: A CIM core needs some major modifications to accommodate
analog-based computing, as shown in Fig. 3(b). The circuit blocks comprising
the periphery that supports the bitcell array need to be modified to support
CIM operations. For example, the following is needed to perform VMM oper-
ation in CIM: 1) Row-decoder becomes complex as it involves enabling several
rows in parallel. Also, 1-bit row or word-line drivers are now replaced by digital-
to-analog converters (DACs) that convert multi-bit VMM operands into an array
of analog voltages. 2) Column periphery circuits performing read operations need
to be replaced by analog-to-digital converters (ADCs). 3) Control block needs
to deal with complex instructions such as handling intricacies of multi-operand
VMM operations.

3.2 Potential CIM Applications

CIM architectures can be applied in different application segments which have
extreme demand in terms of storage, energy and computation efficiency. This
subsection presents some of the application domains in which CIM can be
applied [35].

Neuromorphic Computing. Neuromorphic computing is one of the applica-
tion domains which can significantly benefit from CIM architecture. The main
reason for this is the fact that the main operation employed by neuromorphic sys-
tems involves intensive Matrix-Matrix Multiplication (MMM) or Vector-Matrix
Multiplication (VMM). Since both MMM and VMM kernels can be easily accel-
erated using CIM architecture, neuromorphic computing can achieve substan-
tial improvement in energy efficiency and alleviate data movement problems by
employing CIM.

Sparse Coding. Sparse coding of information is a powerful means to per-
form feature extraction on high dimensional data and it is of vital importance
for a wide range of application segments such as object recognition, computer
vision, signal processing and etc. Sparse coding can be used to implement energy-
efficient bio-inspired neuromorphic applications as well. Since sparse coding
mainly relies on bulky matrix-vector multiplication operation, it can directly
benefit from CIM to accelerate the matrix-vector multiplication operation effi-
ciently.
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Threshold Logic. Threshold logic is a basic operation that uses a threshold
gate which takes n inputs (x1,x2, . . ., xn) and generates single output y. A
threshold logic has a threshold θ and each input xi is associated with a weight
wi. Since weighted sum operation is the core operation involved in threshold
logic, it can be easily accelerated using CIM.

Fig. 4. (a) shows the Vector-Matrix-Multiplication of a 1× 3 vector with a 3× 3 matrix.
In (b) the input data signals are assigned their physical correspondence with a ’1’ being
encoded as V READ and a ’0’ being encoded by setting the input lines (Sourcelines)
high ohmic. A ’1’ in the weight matrix is encoded by a device in the LRS and a ’0’ is
represented by a device in the HRS. (c) shows an exemplary circuit-level architecture
of the 1T1R crossbar. Each element of the input vector and the weight matrix is
assumed to consist of three bits. The input vector is applied via the Sourcelines over
three time cycles and the weight matrix is stored column-wise with the first three
columns encoding the first column of the weight matrix. The results of the dot product
operation is encoded in the Bitline current (IBL and temporarily stored in a Sample &
Hold element before it is multiplexed to the ADC and then shifted and added to align
the dot products for the correct bit position in the multiplication. In (d) an exemplary
artificial neural network structure is shown, that can be mapped by the VMM in (a).
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4 Circuits and Devices for CIM

4.1 Vector-Matrix-Multiplication Accelerators

Machine learning has been a rapidly growing field in the last decade, driven by
improvements in the algorithms and network architectures as well as by improv-
ing the underlying hardware [36]. It can be used to extract information out of
large amounts of data generated in contexts such as the internet of things or
self-driving cars [37]. Machine learning algorithms are trained to perform cer-
tain tasks through exposure to previous examples of how to perform a task
correctly. During this training phase, they adapt their internal parameters or
weights according to a teacher signal with labeled data. This procedure is called
supervised learning [38]. When the training is finished, the network is able to
classify or respond to unseen data input with a high-accuracy answer. This
second phase is called the inference phase. During the training and the infer-
ence phase, a common type of operations are Vector-Matrix (VMM) or Matrix-
Matrix Multiplication (MMM) constructed from multiply-accumulate (MAC)
operations [39,40]. While in conventional computer architectures these opera-
tions are associated with heavy data transfer between the memory and the CPU
or GPU, CIM using VCM cells reduces the data transfer by allowing the memory
arrays to perform both inference and training in the same physical location [41].

Figure 4 explains the mapping of a VMM operation to a 1T1R crossbar array
and a neural network. Figure 4 (a) shows the 1 × 3 input vector multiplied with a
3× 3 matrix resulting in a 1× 3 output vector. Each element of the input vector
and input matrix consists of three bits. Each element of the output vector then
contains six bits to map all possible input combinations. The bits of the input
vector are converted to high ohmic to represent a ‘0’ and to V READ to represent
a ‘1’. The weight bits are represented by a device in the HRS state for a ’0’ and
by a LRS device for a ‘1’ as shown in Fig. 4 (b). Figure 4 (c) shows the circuit
of the 1T1R crossbar array, representing the first column of the weight matrix.
The input vector is applied over three time cycles represented by the indices ‘0’,
‘1’ and ‘2’ of the input vector components. During the operation the Wordlines
connecting to the transistor gates have to be activated by applying V DD to them.
In each cycle an output current IBL,i is produced based on the result of the
MAC operation between input vector bit and weight. This current is stored on a
Sample & Hold element (S&H). This intermediate storage is required because in
many cases it is not possible to provide one Analog to Digital Converter (ADC)
per column of the array. In that case the MAC results of the different columns
have to be temporarily stored and multiplexed to the available ADCs [42,43].
After the ADC stage the result might also require shifting and adding to align
the result at the correct bit position. The result of the first time cycle does not
have to be shifted, the results of the second cycle have to be shifted by one and
the results of the third cycle have to be shifted by two.
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Fig. 5. Area and Power share of CIM design blocks [34].

5 CIM Challenges

5.1 Design Challenges

In CIM architectures, the operations are performed in an analog manner as
shown in Fig. 3, and the result is converted to a digital signal using Analog-to-
Digital Converter (ADC) at the periphery of the CIM architecture. However, the
conversion performed by ADC is very critical and challenging due to 1) Analog
signals have low noise margin and hence, can lead to erroneous output; 2) Analog
computation heavily relies on the device strenghts of the memristive and CMOS
devices along the column, therefore their variations induce variation in output
current; 3) Quantization error in ADC increases as we increase the number of
levels or reduce the resolution. In addition, area/power increases drastically as
we do so and speed reduces along with accuracy. For instance, substantiating the
importance of ADC design in CIM-based implementation of machine learning
algorithms such as CNN and DNN, Fig. 5 shows that the ADC alone typically
dominates CIM die area (>90%) and power consumption (>65%). Thus, efficient
ADC design is imperative to efficiently deploy CIM architecture in different
resource-constrained systems.

5.2 Non-ideality Challenges

While CIM using VCM cells is a promising new field, there remain several chal-
lenges for industry-level adoption. Those challenges depend on the type of appli-
cation as each application will put different requirements on the devices. In the
case of machine learning accelerators or VMM accelerators, the VCM cells are ini-
tially programmed during the training phase and then read out over a long time
scale during the inference [22,44]. The programming is achieved via program-
verify algorithms [45–47]. These algorithms adapt the resistance of individual
1T1R cells by repeatedly performing SET and RESET operations to bring the
resistance into a previously specified range. After the programming the resis-
tances should be constant over time under read stress or without any voltage
applied. The readout operation is then affected by the read disturb effect and
the read noise effect. Read disturb is a directed and time-dependent accumula-
tive effect. It describes the change of the device state due to the applied read
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voltage. This resistance change happens towards lower resistances if the read
voltage is applied in the SET direction or towards higher resistances if the read
voltage is applied in the RESET direction. It is an accumulative process, there-
fore, over many read operations it will increase in magnitude. Additionally, it
is more pronounced at higher voltages. Through our detailed experimental and
theoretical analysis it was found that the effect is stronger pronounced in the
SET direction, where even an information loss due to an abrupt switching from
the HRS to the LRS is possible. If the readout is done in the RESET direction,
the resistance change is more gradual and weaker at comparable voltages. From
a long-term stability point of view it is therefore more favorable to read in the
RESET direction to prevent the negative effects of read disturb [44]. Read noise
or RTN is an undirected and not accumulative process whereby the read-out
current fluctuates over time. The effect is stronger at higher resistances, giving
them a higher inaccuracy [24,25]. The occurrence of read noise depends on the
dominant electron conduction mechanism of the VCM cells. While there also
exist VCM switching devices without read noise those devices are often based
on less industrial fab compatible material systems like SrTiO3 or TiOx [48]. The
typical materials considered for industrial applications like HfO2 or Ta2O5 both
show read noise. Reducing the impact of read noise is then only possible by using
lower ohmic devices which however also has negative effects like a higher energy
consumption. It should also be noted that read disturb and read noise are not
correlated between different devices.

6 Conclusion and Future Direction

CIM has the potential for a computing paradigm shift from the traditional von-
Neumann architecture based computing. This paper presented the overview and
cross-layer design aspects of memristive-based CIM designs. The paper first dis-
cussed devices and circuits for CIM design followed by the discussion on CIM
architectures. The paper also highlighted different design and non-ideality chal-
lenges which are roadblocks for the widespread applicability of CIM designs.
Therefore, addressing those design and non-ideality challenges is prime impor-
tance to harness the full potential of CIM and its widespread applicability.
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16. Hardtdegen, A., Torre, C.L., Cüppers, F., Menzel, S., Waser, R., Hoffmann-Eifert,
S.: Improved switching stability and the effect of an internal series resistor in
HfO2/TiOx bilayer ReRAM cells. IEEE Trans. Electron Devices 65(8), 3229–3236
(2018)
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