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ABSTRACT 

 
In the presented study test work was performed with near-infrared hyperspectral imagery (NIR-

HI) on 36 ore samples from a South-American epithermal Au-Ag mine. The aim of the test work was to 
investigate if NIR-HI provides information about the alteration mineralogy of samples that can be used to 
predict their economic value. Mineral distribution maps were produced from the hyperspectral images by 
using correlation coefficients between the image pixels and a set of reference spectra. These maps showed 
that detection of mineralogy with NIR-HI can be used to distinguish; i) ore particles with low Au and Ag 
grades, ii) ore particles with high carbon contents, iii) ore particles with high sulphur contents. 
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INTRODUCTION 
 
Sensor based sorting represents all applications in which singular particles are measured by a 

sensor and mechanically separated by using a classification based on certain physical and/or chemical 
properties. The technique has potential to be used as a pre-concentration step in mineral processing 
operations to eliminate waste and sub-economic ore prior to conventional treatment. It could therefore 
reduce the costs associated with processing mined materials (Salter & Wyatt, 1991; Sivamohan & 
Forssberg, 1991; Wotruba & Riedel, 2005; Dalm, Buxton, van Ruitenbeek, & Voncken, 2014; Buxton & 
Benndorf, 2013a; Buxton & Benndorf, 2013b).  

 
Application of sensor based sorting in mineral processing requires real-time sensors that detect 

physical and/or chemical parameters that indicate the economic value of individual rock particles. No real-
time sensors or combinations of sensors are currently known that can directly detect the Au and Ag 
contents of epithermal Au-Ag ores. However, the deposition of Au and Ag at epithermal deposits is 
accompanied by the co-deposition of certain alteration minerals (Pirajno, 1992; Simmons, White, & John, 
2005). These alteration minerals can often be detected with near-infrared (NIR) spectral sensors 
(Thompson, Hauff, & Robitaille, 1999; AusSpec, 2008). 

 
Near-infrared hyperspectral imagery (NIR-HI) is a sensor technique that is used to capture images 

of objects at many different wavelengths in the NIR spectral range. Each pixel in the resulting image 
represents a spectrum that contains the intensity of reflected NIR radiation as a function of wavelength. 
Wavelengths that are commonly recorded with NIR-HI range from 450 to 2500 nm. Certain solid materials 
absorb radiation around specific wavelengths in this region. This is caused by electronic molecular 
processes and/or molecule bond vibrations (Hunt, 1977; Clark, 1999). NIR spectroscopy can be used to 
identify minerals by analysing the locations, shapes and relative intensities of all absorption features in a 
NIR spectrum. Not all minerals can be identified with NIR spectroscopy. It is restricted to minerals 
containing elements or molecule bonds that produce diagnostic absorptions. Minerals that produce 
diagnostic absorptions are referred to as NIR active minerals. 

 
SENSOR BASED SORTING 

 
Figure 1 presents an example of the working principle of sensor based sorting. The numbers in 

this figure refer to the different sub-processes into which sensor based sorting is generally subdivided 
(Salter & Wyatt, 1991; Wotruba & Riedel, 2005). These sub-processes are the following: 

1) Particle presentation 
2) Particle examination 
3) Data processing 
4) Particle separation 

 
The aim of particle presentation in sensor based sorting is to redistribute the incoming material in 

such a way that individual particles do not touch each other. This is necessary to allow examination and 
separation of every individual particle. Particle presentation is usually achieved by accelerating the 
incoming material. In the example in figure 1, this is performed by transferring the material onto a faster 
moving conveyor belt. Another common method for particle presentation is by using a chute (Wotruba & 
Riedel, 2005; Harbeck & Kroog, 2008). 

 
Examination of the individual particles is performed by using one or more sensors. Sensor types 

that can be used for sensor based sorting include optical, near-infrared, X-ray transmission, X-ray 
fluorescence and electromagnetic sensors (Harbeck & Kroog, 2008; Bergmann, 2011). After particle 
examination, the recorded sensor data is processed by a computer. The computer makes a decision on how 
to classify a certain particle and sends a signal to the particle separation unit. Particle separation is usually 
performed by using jets of compressed air (Wotruba & Riedel, 2005). 
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Figure 1 - Working principle of sensor based sorting 
 

HYDROTHERMAL ALTERATION AT EPITHERMAL ORE DEPOSITS 
 
Epithermal Au-Ag deposits are formed by hydrothermal activity that is driven by a magmatic 

intrusion occurring at several kilometres below the Earth’s surface. Hydrothermal activity is the movement 
of hot aqueous (hydrothermal) fluids through the Earth’s crust and interaction between these fluids and the 
rocks through which they pass. The hydrothermal fluids responsible for epithermal deposit formation 
originate from the magma and are released due to cooling of the magmatic intrusion (Pirajno, 1992). Au, 
Ag and other elements are dissolved within these fluids as ions or complex ions. After release from the 
magma, the hydrothermal fluids flow towards the surface due to the relatively high pressure and 
temperature. The ascending magmatic fluids may subsequently mix with meteoric fluids which changes the 
fluid chemistry and temperature. 

 
Epithermal Au-Ag deposits form at depths up to 1500 m below the surface and temperatures < 

300 °C. Sharp pressure and temperature gradients in this environment result in boiling of the hydrothermal 
fluids, which changes fluid composition and forces Au and Ag to precipitate (Simmons, White, & John, 
2005; Pirajno, 1992). The hydrothermal fluids that introduce Au and Ag in epithermal deposits also 
introduce, remove and/or redistribute other pre-existing components of the host rock. This is referred to as 
hydrothermal alteration (Pirajno, 1992). Hydrothermal alteration results in the formation of alteration 
minerals. The type of alteration minerals that are formed depends on the pressure and temperature of the 
hydrothermal fluids and on the composition of both the hydrothermal fluids and the host rock (Pirajno, 
1992). Because precipitation of Au and Ag also depends on hydrothermal fluid properties, it is related to 
the formation of specific alteration minerals (Simmons, White, & John, 2005; Sillitoe, 1993; White & 
Hedenquist, 1995). 

 
SORTING OBJECTIVES OF THE TEST WORK 

 
Test work was performed to investigate the applicability of NIR-HI to characterise epithermal Au-

Ag ores in terms of economic value. The economic value of the ore samples that were used for the testwork 
mainly depends on the Au grade. Ag is mined as a by-product and higher Ag grades increase ore value. 
Relatively high concentrations of carbonaceous materials or sulphide minerals on the other hand decrease 
ore value because these lower the recovery of Au and Ag during ore processing. The objectives of the 
testwork were therefore to investigate if an NIR sensor can be used to distinguish; i) ore particles with low 
Au and Ag grades, ii) ore particles with high carbon contents, iii) ore particles with high sulphur contents. 
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METHODS 
 

Test work approach 
 
The test work included NIR-HI on 36 samples that originate from a South-American mine. This 

mine exploits a high-sulphidation epithermal Au-Ag deposit. Each sample is a rock particle of about 5-15 
cm in diameter. The samples were selected at random from around the same location in the mine. Figure 2 
presents a photo of the samples that were used in the testwork. 

 
NIR hyperspectral images of the samples were acquired with a Corescan Hyperspectral Core 

Imager 3 (HCI-3). This device records hyperspectral images on 514 spectral bands at wavelengths ranging 
from 450 to 2500 nm. The pixel size of the images is about 0.5 x 0.5 mm. 

 
By using the SIMPLISMA method (Windig & Guilment, 1991), the purest pixel spectra were 

extracted from the NIR hyperspectral images. The NIR active mineralogy was determined from these pure 
spectra by comparing the spectra with those from the G-MEX spectral interpretation field manual 
(AusSpec, 2008) and the USGS spectral library (Clark, et al., 2007). Subsequently, a list of mineral 
reference spectra was selected from the pure spectra. The pixels of the NIR hyperspectral images were 
classified on mineralogy by using correlation coefficients between the pixel spectra and the list of 
reference spectra. This classification was used to create mineral distribution maps. The mineral distribution 
maps were checked manually and the spectra of misclassified pixels were added to the list of reference 
spectra. The classification of pixel spectra was then performed again to produce new mineral distribution 
maps. This was carried out in an iterative manner until no more misclassified pixels were observed. 

 
After acquiring the NIR hyperspectral images all the samples were pulverized to produce 

powders. X-ray diffraction (XRD) was performed on these powders to validate the NIR active mineralogy 
that was determined from the NIR hyperspectral images. Furthermore, fire assay was performed on the 
powders to determine the Au and Ag grades of samples. Finally, a LECO analyser was used to determine 
the carbon and sulphur contents of samples (LECO, 2015). 

 
Image pre-processing 

 
The recorded NIR hyperspectral images needed pre-processing to improve the performance of the 

SIMPLISMA method and the classification of pixel spectra with correlation coefficients. The first pre-
processing step that was applied was to convert the recorded data to relative reflections. This was 
performed with Corescan’s in-house software by using a calibration of a white reference and a dark 
current. A white reference is a measurement of a material with almost 100% reflection over the 450 to 
2500 nm spectral range. A dark current is a measurement that is performed when no light enters the sensor 
in order to record instrumental noise. 

 
The second pre-processing step that was applied was to mask the image by removing the data of 

pixels that do not represent a sample. This was performed by manually selecting regions of interest on the 
image. Subsequently, the data of pixels that contain anomalies was removed. These anomalies are 
wavelength bands with reflections > 100% or < 0% that are caused by errors in the detection mechanism of 
the NIR-HI sensor. Figure 3 presents the 1400 nm wavelength band of the hyperspectral image after 
masking and removal of pixels with anomalies. The order in which samples are presented in this figure is 
equal to that of figure 2. 

 
The third pre-processing step was to subdivide the spectral range of the NIR hyperspectral image 

into two regions. This was done because two different types of mineral absorptions take place on the 
spectral range that was recorded. At wavelengths ranging from 450 to 1330 nm the pixel spectra are 
dominated by charge transfer absorptions of the Fe-ion (Fe2+ and Fe3+). These absorptions therefore allow 
determination of Fe-bearing mineralogy. This wavelength region will be referred to as the visible (VIS) 
region of the NIR spectra. At wavelengths ranging from 1330 to 2500 nm the pixel spectra are dominated 
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by absorptions that are produced by molecule bond vibrations. These absorptions allow determination of 
hydrothermal alteration mineralogy. This wavelength region will be referred to as the short wave infrared 
(SWIR) region of the NIR spectra. 
 

 
 

Figure 2 - Photograph of the sample set 
 

 
 

Figure 3 - Masked 1400 nm wavelength band of the measured NIR hyperspectral image 
 

 
 

Figure 4 - Example of the hull quotient correction 
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The final pre-processing step that was applied was smoothing of the spectral data and correction 
of variations in the overall reflection of samples. Smoothing of the data reduces the noise that is present in 
the spectra. Smoothing was performed by using a Savitzky-Golay filter with a second order polynomial. 
Correcting variations in the overall reflection of samples was needed to remove absorption effects that are 
not indicative of mineralogy. These include light scattering, particle-size effects, surface roughness and 
detector artifacts (Amigo, 2010). Different methods for correcting the overall reflection were applied to the 
VIS and SWIR regions of the NIR spectra. The methods were chosen in order to provide the best 
correction for the type of mineral absorptions that takes place in these spectral regions. The VIS spectra 
were corrected by converting the data to standard normal variates, i.e. setting the mean and standard 
deviation of the VIS spectra to 0 and 1 respectively. The SWIR spectra were corrected by using the hull 
quotient removal. In this type of correction the convex hull of the spectrum is calculated which represents 
the shape of the spectrum without the absorption features. Each wavelength band of the spectrum is 
divided by the convex hull to produce the corrected spectrum. The hull quotient removal is illustrated in 
figure 4. 

 
RESULTS 

 
Mineralogy determined from the NIR hyperspectral images 

 
Figure 5 presents an overview of measured NIR spectra of all the different minerals that were 

determined on the samples with NIR-HI. The minerals determined from the VIS region of the NIR spectra 
are presented separately of those from the SWIR region. Almost all spectra in figure 5 match those of 
single minerals (AusSpec, 2008; Clark, et al., 2007). Only the SWIR spectrum of dickite is mixed with 
other minerals. The absorption features that led to identification of dickite from this spectrum are those that 
occur at 1380, 1415, 2175 and 2205 nm. The broad feature that occurs at 1920 nm is produced by water 
and the small feature at 1476 nm by alunite. 

 
The spectrum of water that is presented in figure 5 is likely produced by fluid inclusions in quartz. 

The occurrence of quartz with fluid inclusions is common at epithermal deposits (Simmons, White, & 
John, 2005). For samples on which all the pixel spectra represented that of water, also quartz contents > 
90% were determined by XRD. It was made sure that all samples were dry while taking the measurements. 

 
The spectrum of hematite / goethite that is presented in figure 5 is actually more representative for 

goethite than for hematite. However, it was not always possible to distinguish between hematite and 
goethite from the VIS region of the pixel spectra. This is because these minerals often occur together and 
their absorption features overlap. For this reason, hematite and goethite were classified as one group to 
produce mineral distribution maps from the NIR hyperspectral images. 

 
The SWIR region of the pixel spectra often contains absorptions by 2 or 3 different minerals. In 

total, 13 different combinations of NIR active mineral assemblages were classified to produce mineral 
distribution maps from the SWIR region of the NIR hyperspectral images. From the VIS region of the pixel 
spectra only a dominant mineralogy was classified. A fraction of the pixel spectra also contained no 
characteristic absorptions on the VIS region at all, indicating an absence of Fe-bearing minerals. 

 
Apart from the spectra that are presented in figure 5, also pixel spectra with a very low reflection 

over the entire VIS and SWIR spectral ranges were measured. It resulted that these spectra are 
representative for the carbonaceous ore materials. The low reflection of carbonaceous samples is also 
observed visually from their dark black colour. 

 
For most of the samples XRD validated the occurrence of all minerals that were identified with 

NIR-HI. The only minerals that were not always validated are diaspore, alunite, dickite and hematite / 
goethite. Diaspore was validated on 7 out of 12 samples on which it was determined with NIR-HI. Alunite 
was not validated on any of the 4 samples on which it was determined with NIR-HI. However, alunite was 
determined by XRD on one other sample. On this sample no spectra representing alunite were found 
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among the pixels of the hyperspectral image. Dickite was identified on only 1 sample with NIR-HI and this 
was not validated by XRD. Dickite was also not determined by XRD on any other samples. Hematite / 
Goethite was validated on only 1 out of 18 samples on which it was determined with NIR-HI. 

 

  
 

Figure 5 - Mineral spectra extracted from the measured NIR hyperspectral images 
 

The fact that XRD did not always allow validation of the mineralogy identified with NIR-HI is 
likely caused by the way in which the samples are used in both techniques. XRD was performed on 
pulverized samples and the mineralogy determined by this technique therefore represents the whole 
volume of the sample. With NIR-HI however, the mineralogy is determined on only the outer surface of 
the sample. The samples used in the testwork are not homogeneous and are formed by breakage of rock 
formations that consist of many small veins and fractures. When the rocks break along these veins and 
fractures, the outer surfaces of the samples may have a different mineral composition than the entire 
sample volume. When small veins and fractures cross-cut the sample on the other hand, the sample volume 
may contain minerals that are not visible from the surface. Furthermore, both XRD and NIR-HI have a 
certain detection limit. It is therefore possible that minerals occurring in low concentrations were not 
detected. However, almost all minerals that were determined from the entire sample set with NIR-HI were 
also determined with XRD. This indicates that identification of mineralogy from the NIR hyperspectral 
images was correct. Only for dickite it is not certain that this mineral was correctly identified. 
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Image classification 
 

Classification on C 
 
The first step in the hyperspectral image classification was to classify spectra that represent 

carbonaceous ore material. The pixel spectra of carbonaceous materials have a very low reflection over the 
entire VIS and SWIR spectral ranges. This results in relatively low signal to noise ratios. Furthermore, 
these pixel spectra usually do not contain mineral absorption features. This has detrimental effects on the 
techniques applied for extracting the pure pixel spectra and the classification with correlation coefficients. 
It was therefore necessary to remove the pixels of carbonaceous ore material from the dataset. Figure 6 
presents the 1400 nm wavelength band of the NIR hyperspectral image on which pixels with an average 
reflection < 10 % over the entire 450 to 2500 nm spectral range are assigned a red colour. The black 
rectangles in this figure indicate samples that have C contents > 0.50 %. All other samples have C contents 
< 0.50 %. It is clear from figure 6 that samples with relatively high C contents can be distinguished with 
NIR-HI. These samples were removed from the dataset for producing the mineral distribution maps. 

 

 
 

Figure 6 - 1400 nm wavelength band of the measured NIR hyperspectral image. Pixels with an average 
reflection < 10 % on the 450 – 2500 nm wavelength range are assigned a red colour. The black rectangles 

indicate carbonaceous ore samples. 
 

 
 

Figure 7 - Mineral distribution map of the VIS region of the NIR hyperspectral image. The black rectangles 
indicate samples on which pixel clusters of pyrite occur. 
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Classification on S 
 
Figure 7 presents the mineral distribution map that was produced on VIS region of the NIR 

hyperspectral images. The black rectangles in this figure indicate samples on which clusters of pixels occur 
that are classified as pyrite. According to the XRD results, pyrite (FeS2) is the only sulphide mineral that 
occurs in the samples. Table 1 presents the differences in S content if the samples with clusters of pyrite 
pixels in the mineral distribution map of figure 7 are distinguished from all other samples. This table shows 
that significant differences result between the average S content of both groups. Furthermore, the table 
shows that samples containing cluster of pyrite pixels have a minimum S content of 0.57 %. It therefore 
results that NIR-HI can be used to distinguish ore particles with relatively high S contents. However, 
samples could not be distinguished on a certain S content cut-off. Table 1 shows that there is still overlap 
between the distributions of the S content of both groups. 

 
Table 1 - Results of classification on pyrite pixel clusters 

 

 
 

 
 

Figure 8 - Mineral distribution map of the SWIR region of the NIR hyperspectral image. 
 

Classification on Au & Ag 
 
Figure 8 presents the mineral distribution map that was produced on SWIR region of the NIR 

hyperspectral images. This map shows that the NIR active mineralogy of almost all samples is dominated 
by either pyrophyllite or water (fluid inclusions in quartz). Only one sample occurs on which diaspore is 

Fraction of samples (%) 100 19.4 80.6

S (%) minimum 0.00 0.57 0.00

S (%) maximum 9.48 9.48 2.22

S (%) average 0.76 2.80 0.27

Samples with pyrite 
clusters in figure 7Total Other samples
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the most abundant NIR active mineral. Alunite and dickite only occur on samples where water spectra 
dominate. Diaspore and zunyite only occur when pyrophyllite is present. Mixed pixel spectra of water and 
pyrophyllite are also observed on the samples, but their occurrence is usually very minor. On only 2 
samples this mixture is present in a relatively large amount (figure 8: 3rd row, first 2 samples from the 
right). 

 
By comparing the mineral distribution map of figure 8 with the Au and Ag grades of samples, it 

resulted that samples dominated by pyrophyllite have lower Au and Ag grades than those dominated by 
water. It also resulted that samples containing pyrophyllite and zunyite have higher Au grades than samples 
that contain only pyrophyllite or samples that contain pyrophyllite and diaspore. Based on these results, the 
mineral distribution map of figure 8 was modified to produce the waste discrimination map that is 
presented in figure 9. The red pixels on the map in figure 9 represent spectra of pyrophyllite and 
pyrophyllite + diaspore that are indicators of low Au and Ag grades. The green pixels represent spectra of 
zunyite and pyrophyllite + zunyite that indicate that a sample can have a higher Au grade. All other pixels 
in figure 9 show the 1400 nm wavelength band of the hyperspectral image and have no influence the 
identification of waste samples. Table 2 presents the results when samples containing red pixels and no 
green pixels in the waste discrimination map of figure 9 are distinguished from the rest of the sample set. 
These samples are also indicated by the black rectangles in figure 9. 

 
Table 2 shows that significant differences result between the average Au and Ag grades when 

samples are distinguished by using the waste discrimination map of figure 9. Furthermore, the table shows 
that the samples that can be distinguished contain no Ag and have a maximum Au grade of only 0.17 ppm. 
It therefore results that NIR-HI can be used to distinguish ore particles with relatively low Au and Ag 
grades. However, not all samples below a certain Au grade cut-off could be identified with NIR-HI. Table 
2 shows that the distribution of Au grades of both groups completely overlap. If the results in table 2 can 
be reproduced with sensor based sorting equipment though, this is not problematic. Since sensor based 
sorting is generally cheaper than the conventional ore processing methods (Salter & Wyatt, 1991; 
Sivamohan & Forssberg, 1991; Wotruba & Riedel, 2005), removal of only a fraction of the low grade ore 
material could already provide economic benefits. That is, if the value of the amount of Au and Ag that are 
lost by discarding ore material through sensor based sorting do not exceed the difference in costs between 
sensor based sorting and conventional ore processing. However, no economic analysis of sensor based 
sorting was performed on the results in table 2. The results do show that there is great potential in using 
NIR-HI for sensor based sorting of epithermal Au-Ag ore. 

 

 
 

Figure 9 - Waste discrimination map. Red pixels indicate waste and represent spectra of pyrophyllite and 
 pyrophyllite + diaspore. Green pixels indicate a sample is not waste regardless of any red pixels. 
Spectra of green pixels represent zunyite and pyrophyllite + zunyite. The black rectangles indicate 

samples on which only red pixels occur. 
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Table 2 - Results of classification with the waste discrimination map of figure 9 
 

 
 

REPRESENTATIVITY OF THE RESULTS 
 
A limitation of the results presented here is the representativity of the used sample set. This is 

mainly directed at the results on distinguishing samples with low Au and Ag grades. These results are 
based on an indirect relationship to certain alteration mineral assemblages, while it is unknown if this 
relationship persists throughout the entire ore deposit. In order to validate these results, research is needed 
on a sample set that covers all geological and mineralogical variability of the deposit. This research is 
currently ongoing at Delft University of Technology in The Netherlands. 

 
CONCLUSIONS 

 
The following conclusions were drawn from the testwork: 

• The average reflection over the entire 450 – 2500 nm spectral range can be used to distinguish 
samples with relatively high C contents. 
 

• It is possible to use NIR-HI to distinguish ore samples with high S contents. This is based on 
detecting pyrite from the VIS region of the pixel spectra (350 – 1300 nm). 
 

• It is possible to use NIR-HI to distinguish ore samples with low Au and Ag grades. This is based 
on specific alteration mineral assemblages detectable from the SWIR region of the pixel spectra 
(1300 – 2500 nm). 
 

• More research is needed to validate the results on a sample set that is more representative for the 
geological and mineralogical variability of the entire deposit. 
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Fraction of samples (%) 100 35.5 64.5

Au (ppm) minimum 0.02 0.02 0.02

Au (ppm) maximum 3.59 0.17 3.59

Au (ppm) average 0.26 0.08 0.36

Ag (ppm) minimum 0.00 0.00 0.00

Ag (ppm) maximum 14.90 0.00 14.90

Ag (ppm) average 1.59 0.00 2.47

Total
Samples with red pixels and 
no green pixels in figure 9 Other samples
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