
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2013

MSc THESIS

Iterative Instruction Scheduling for a VLIW
Processor

Mirshahab Vahedi

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2013-03

Instruction scheduling aims to reorder instructions in such a way that it
covers the delay between an instruction and its dependent successor(s).
As a result, the length of schedules are shortened while the processor util-
isation increases. This is accomplished by exploiting Instruction Level
Parallelism (ILP). The rearrangements made by instruction scheduling
plays an important role in achieving the peak performance of a processor,
especially for the ones which do not support out-of-order execution.
Optimal scheduling to minimise the number of cycles under an arbitrary
pipeline constraints is an NP-complete problem. Hence, most schedulers
rely on heuristics in order to arrange the instructions. Although these
heuristics are widely used and frequently lead to a fairly good solution,
there still might be another instruction order which is better. In this
work we bring randomisation to the GNU Compiler Collection (GCC) list
scheduler to explore the area of possible orders beyond the heuristics. Our
core approach involves swapping the priorities of instructions, which does
not totally discard the scheduling heuristics. It starts exploring the search
space from a fairly good solution obtained by these heuristics. Moreover,
as a result of using randomisation in the scheduler, some other problems
have been tackled, such as: which part of the search space to explore in
a limited amount of time, getting an approximation of how much of the
search space is explored, how to fill the delay slots more efficiently, etc.
We evaluated our algorithms in compilation of programs for a Very Long
Instruction Word (VLIW) processor called Embedded Vector Processor
(EVP) from ST-Ericsson. Since EVP is used as an embedded Digital
Signal Processor (DSP) in mobile devices, it is crucial to have a simple ar-
chitecture to save power. Which is why, EVP is a non-interlocked exposed
pipeline and is highly dependent on the compiler to exploit ILP.

Iterative Instruction Scheduling for a VLIW
Processor

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Mirshahab Vahedi
born in Rasht, Iran

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Iterative Instruction Scheduling for a VLIW
Processor

by Mirshahab Vahedi

Abstract

I
nstruction scheduling aims to reorder instructions in such a way that it covers the delay
between an instruction and its dependent successor(s). As a result, the length of schedules
are shortened while the processor utilisation increases. This is accomplished by exploiting

ILP. The rearrangements made by instruction scheduling plays an important role in achieving
the peak performance of a processor, especially for the ones which do not support out-of-order
execution.

Optimal scheduling to minimise the number of cycles under an arbitrary pipeline constraints
is an NP-complete problem. Hence, most schedulers rely on heuristics in order to arrange the
instructions. Although these heuristics are widely used and frequently lead to a fairly good
solution, there still might be another instruction order which is better. In this work we bring
randomisation to the GCC list scheduler to explore the area of possible orders beyond the heuris-
tics. Two approaches have been experimented: making random decisions explicitly inside the
scheduler’s routine, and swapping the importance of instructions. The former approach is not
making any use of scheduling heuristics, whereas the latter one starts exploring the search space
from a fairly good solution obtained by heuristics. Moreover, as a result of using randomisation
in the scheduler, some problems have been tackled: which part of the ample search space to
explore in a limited amount of time, getting an approximation of how much of the search space
is explored, how to fill the delay slots more efficiently, etc.

We evaluated our algorithms in compilation of programs for a VLIW processor called EVP
from ST-Ericsson. Since EVP is used as an embedded DSP in mobile devices, it is crucial to have
a simple architecture to save power. Which is why, EVP is a non-interlocked exposed pipeline
and is highly dependent on the compiler to exploit ILP.

Laboratory : Computer Engineering
Codenumber : CE-MS-2013-03

Committee Members :

Advisor: Dr. Alex Turjan, ST-Ericsson, Eindhoven

Advisor: Dr. Anca M. Molnos, CE, TU Delft

Chairperson: Associate Prof. Sorin D. Cotofana, CE, TU Delft

Member: Prof. Kees van Berkel, TU Eindhoven

Member: Associate Prof. Stephan Wong, CE, TU Delft

i

ii

To my parents and my girlfriend, for supporting me unconditionally.

iii

iv

Contents

List of Figures vii

List of Algorithms ix

List of Tables xi

Acknowledgements xiii

1 Introduction 1

1.1 Contexts and Trends . 1

1.2 Related Work . 2

1.3 Goals and Contributions . 2

2 Fundamentals 5

2.1 Definitions . 5

2.2 Compilation . 5

2.3 Instruction Scheduler . 7

2.3.1 Data Dependence Graph . 7

2.3.2 Scheduling the Instructions . 8

2.3.3 Critical Path Length . 10

2.3.4 Motivational Example . 12

2.4 The Embedded Vector Processor . 14

2.4.1 The Architecture . 15

2.4.2 Features . 16

3 Iterative List Scheduler 19

3.1 Terminology and Definitions . 19

3.2 Making the Scheduling Pass Iterative . 20

3.2.1 Random Swapping of Priorities . 21

3.2.2 Selection of Two Instructions for Swapping 23

3.3 Random Landing . 26

3.4 Counting the Topological Orders . 28

3.4.1 Preliminary . 29

3.4.2 Implementing the Counter . 30

3.4.3 Using the Counting Algorithm on a Sub-graph of Data Dependence
Graph (DDG) . 34

3.5 Summary . 34

v

4 Iterative Framework 39
4.1 High Level Overview of the Scheduling Pass 39
4.2 Iterative Scheduling . 40

4.2.1 Interfaces Provided by Iterative Framework 41
4.2.2 Additional Scheduling Information Provided by the Framework . . 42
4.2.3 Other Framework Features . 44

4.3 The Framework’s Final Design . 45
4.3.1 Promoting Instructions Leading to a Branch 48

4.4 Iterative Compilation Flags . 50
4.5 Summary . 52

5 Experimental Results 55
5.1 “kernels-321” Benchmark . 55
5.2 “kernels-81” Benchmark . 56
5.3 Compilation Time . 58
5.4 The COmbining Weight Computation (COWC) benchmark 59

6 Conclusions and Future Work 61
6.1 Conclusions . 61
6.2 Future Work . 63

Bibliography 66

A Appendix A: Benchmarks for “kernels-321” 67

Benchmarks for “kernels-321” 67

B Appendix B: Benchmarks for “kernels-81” 77

Benchmarks for “kernels-81” 78

C Appendix C: Branch Promotion Benchmark 81

Branch Promotion Benchmark 81

List of Acronyms 85

vi

List of Figures

1.1 The decision tree for 3 independent instructions: a, b, and c. 3
1.2 The 3 important steps in our iterative list scheduling algorithm. 4

2.1 Compilation flow in GCC. 6
2.2 A few passes from the Register Transfer Language (RTL) phase. 7
2.3 An instruction sequence and its dependence graph. 8
2.4 Adding the sink node to the DDG. 11
2.5 A DDG with critical path length assigned to each node. 13
2.6 A DDG and its schedule obtained by using critical path heuristic. 13
2.7 Same DDG with another priorities ended up in a better schedule. 14
2.8 EVP core block diagram. 15
2.9 An example of in-flight scheduling. 17
2.10 Assembly output of the compiler. 17

3.1 All possible permutations of a priority vector for a DDG with 3 instructions. 24
3.2 Transitions between priority-vectors/schedules with one swap. 25
3.3 Unfiltered vs. filtered swaps and the effect on the transitions of the schedules. 26
3.4 Producing an order while respecting the precedence. 27
3.5 Transforming and dividing the problem into smaller manageable graphs

in 6 steps (depth of 3 recursive calls). 32
3.6 Finding the answer by solving smaller problems at the bottom and going

to the top. 36
3.7 Racing of ebc and its reversed version, ecb, for transforming the problem,

leads to a vicious cycle. 37
3.8 The K3,2 bipartite graph. 37
3.9 The strategy control flow for the iterative scheduler. 38

4.1 A DDG, its priority vector, and the schedule obtained using critical path
heuristic. 49

4.2 A DDG, its priority vector, and the schedule obtained using random pri-
orities. 50

4.3 Two scheduling orders of the same basic block, before and after delay slot
filling. 51

4.4 Loading the order from sched2 while giving higher importance to m4. . . 52

5.1 Geometric mean of improvements for each “kernels-321” benchmark group. 56
5.2 Distribution of 171 improved test cases in “kernels-321” over different

improvement ranges. 57
5.3 Geometric mean of improvements for each “kernels-81” benchmark group. 57
5.4 Distribution of 33 improved test cases from “kernels-81” over different

improvement ranges. 58

C.1 The effect of branch promotion on “kernels-321”. 83

vii

viii

List of Algorithms

2.1 List scheduler in GCC . 10
2.2 The priority calculation in GCC . 12
3.1 Main concept of the iterative scheduler . 21
3.2 Directed search swapping used in iterative scheduler 22
3.3 Selecting two instructions to swap their priorities 24
3.4 Landing instructions to produce a total random order 27
3.5 Counting number of topological orders . 33
3.6 Deciding the iterative scheduling strategy 35

ix

x

List of Tables

3.1 Swapping strategy in action . 23

5.1 Statistics of applying iterative scheduling on “kernels-321”. 56
5.2 Compilation times for a selected set of test cases from “kernels-321”: List

Scheduler (LS) vs. Iterative List Scheduler (ILS). 58
5.3 Static clock cycle counts of COWC kernel with different flags. 59

A.1 Average execution cycle counts for “kernels-321”: LS vs. ILS. 68
A.2 Average execution cycle counts for “kernels-321”: LS vs. ILS. 69
A.3 Average execution cycle counts for “kernels-321”: LS vs. ILS. 70
A.4 Average execution cycle counts for “kernels-321”: LS vs. ILS. 71
A.5 Average execution cycle counts for “kernels-321”: LS vs. ILS. 72
A.6 Average execution cycle counts for “kernels-321”: LS vs. ILS. 73
A.7 Average execution cycle counts for “kernels-321”: LS vs. ILS. 74
A.8 Average execution cycle counts for “kernels-321”: LS vs. ILS. 75

B.1 Average execution cycle counts for “kernels-81”: LS vs. ILS. 78
B.2 Average execution cycle counts for “kernels-81”: LS vs. ILS. 79

C.1 Average execution times for “kernels-321” affected by branch promotion. . 82

xi

xii

Acknowledgements

There are so many people who have helped me in this M.Sc thesis that I have decided
to have the acknowledgements go three ways.

First, I appreciate the help of my supervisors: I would like to thank Associate Prof.
Sorin Cotofana, the advisor of this research, for providing me the opportunity to do
research in my field of interest. I would like to appreciate the help of Alex Turjan, my
daily supervisor, who constantly guided me through the twists and turns of this work.
Thank you Alex, for your valuable feedbacks, and for always opening the path where
I was stuck. And, I send very special thanks to my never-tiring academic supervi-
sor, Anca Molnos, who guided me through this thesis and proof read it for so many times.

Second, I am grateful for the staffs at ST-Ericsson for giving me the opportunity to
work with them and providing a convenient workplace. I appreciate the help of Claudiu,
Dmitry, and Wim, the members of the compiler team, who taught me a lot about the
work and how to avoid pitfalls. I thank Arjun, my friend and colleague, for hours of
brain storming and discussions.

Finally, I thank my parents for providing me with constant supports of any kind
possible, and granting me the chance to be educated at this level. I thank Neda, my
fiance and friend, for her never-ending cares and cherishing me when I needed it the
most. I would also like to thank Hooman, my true friend, who always kept me going
during the hardest times.

Shahab Vahedi
Delft, The Netherlands
February 19, 2013

xiii

xiv

Introduction 1
1.1 Contexts and Trends

Ever since the advent of Reduced Instruction Set Computers (RISCs) [16] and their
pipelined architectures, instruction scheduling techniques have gained importance. Re-
arranging instructions can cover the delay or latency that is required between an in-
struction and its dependent successor(s).

A significant amount of research conducted in industry and academia has resulted in
processors that issue multiple instructions per cycle and hence exploit ILP. Exploiting
ILP is considered as a viable approach which provides continuous increase in performance
without having to rewrite applications. ILP processors are classified into two broad cat-
egories: Very Long Instruction Word (VLIW) and superscalar processors. For VLIW
processors the parallelism is exposed at compile time, whereas for superscalar architec-
tures it is exposed at runtime by dynamic instruction scheduling hardware. In VLIW
machines, the compiler identifies independent instructions and communicates them to
the hardware by packing them in a single long word instruction. However, in a super-
scalar machine, a complex hardware identifies independent instructions and issues them
in parallel at runtime. Hence, compile-time instruction scheduling is solely responsible
for exposing and exploiting the parallelism available in a program in a VLIW architec-
ture [20].

The work in this project took place in DSP-IC group of ST-Ericsson which is re-
sponsible for designing an embedded VLIW processor, namely the Embedded Vector
Processor (EVP). Power consumption plays an important role for embedded processors.
Therefore, to have simple design, these processors do not intrinsically support selecting
instructions that can be issued simultaneously. Instead, they heavily depend on the
compiler to pack parallel instructions together (a very long instruction word) in order to
increase throughput. Hence, EVP is a VLIW processor.

In order to compile programs for the EVP, a GCC port is used. It has been observed
that some of the programs became faster after using various compilation flags. This
speed-up was actually the result of instruction reordering which was a positive side effect
of using these flags. As a result of this, it was decided to bring a feature to the compiler
that enables it to produce different instruction orderings, schedules, while giving it a
chance to find better solutions. Since the performance of running programs on EVP is
very critical, the DSP-IC group were willing to accept the trade-off between compilation
time and the (possible) gain in performance.

The basic block1 instruction scheduling problem is to find a schedule for a basic block,
subject to precedence, latency, and resource constraints [13]. Finding an optimal solution
for this problem is NP-complete [1]. One of the dominant algorithms in instruction

1A straight-line sequence of code with a single entry point and a single exit point.

1

2 CHAPTER 1. INTRODUCTION

scheduling is the list scheduling. It is a heuristic-driven approach to construct a schedule
one time-slot at a time. While this method finds schedules that are empirically proven
to be fairly good, there can be other solutions (that were not produced) which result in
shorter clock cycles. One can look at the scheduling problem as a way to search a huge
solution space (a set of all valid schedules) to find a descent answer.

1.2 Related Work

In order to reduce the length (cycle count) of instruction schedules, many researches have
been done. Some of them falls under the category of (randomised) iterative scheduling.
In [10], an approach was devised which relied on gradually building a decision tree
according to possible choices at each point of time during scheduling. Every path in
this tree, from the first choice (root) until the last one (leaf), represents an order of
instructions considered for scheduling and thus corresponds to a schedule. This tree
can be parsed with different methods like Depth First Search (DFS), Breadth First
Search (BFS), and random uniform search. A very simple example of such approach
is depicted in Figure 1.1. The edges of each node are sorted based on their priorities
(obtained from scheduling heuristics) in a decreasing order. Therefore, the most left edge
(first edge) is the one that the list scheduler would select at that point. That is why
the first produced schedule by the DFS method is the one that the heuristic-driven list
scheduler offers. The next produced schedules look almost the same with slight changes
in the last instructions (last decisions made). While this approach makes a progress in
exploring different instruction orders, it can take a long time to find a new and better
schedule. As another method of searching, a randomised uniform search was introduced.
This search is totally random and can produce any schedule in the solution space (all the
possible schedules). The same applies to the BFS method without any randomisation.
After implementing these methods for our problem, it has been observed the convergence
to better schedules was very slow.

Another approach to randomise the list scheduler was introduced in [19]. The ran-
domisation only took place as a tie breaker, i.e. when the scheduling heuristics consider
the priorities of two instructions equal. As long as the scheduling heuristics choose an
instruction, whether it is a good choice or not, the randomised iterative scheduler does
not produce a different instruction order. This limits the scope of different schedules
that are produced since it only affects some instructions.

The proposed solution in [6] is an optimisation based on meta-heuristics. It is a
machine learning approach which tries to predict the best optimisation flags for compiling
a set of applications. The improvement targets can be different such as: code size,
execution time, and even compilation time.

1.3 Goals and Contributions

The goal of this research is reducing the length of schedules for a VLIW processor. The
first step to achieve this, is making the scheduling pass iterative so that it could be
run a user specified number of times (or trials) and select the shortest schedule over all

1.3. GOALS AND CONTRIBUTIONS 3

a b c

b c a c a b

c b c a b a

a b c

cc a ab b

[a, b, c] [a, c, b] [b, a, c] [b, c, a] [c, a, b] [c, b, a]

[a, b, c]: first order visited by depth first search

[c, a, b]: first order visited by a uniform (random) search

Figure 1.1: The decision tree for 3 independent instructions: a, b, and c.

trials as the final schedule. This is called the iterative scheduling throughout this thesis.
The second goal involves finding better schedules in a reasonable amount of time. The
solution space (all valid instructions order) can be huge and only a small portion of this
space may contain good schedules. If the search strategy for finding better schedules
does not use any intelligence, it can take a long time to find a good answer.

To address these concerns, the iterative scheduler proposed in this thesis iteratively
explores schedules that are in the neighbourhood of the default schedule2. A directed
search was performed in the solution space: whenever a neighbouring schedule with
worse performance is reached, it will not be explored any further; otherwise the search
continues in this direction. This corresponds to a simulated annealing with parameter
T = 0. It has been observed that using a search like this converges faster to better
schedules rather than a blind search. Unlike the approaches introduced in [10] and
[19], our method does not involve changing the list scheduler to bring randomness to its
decisions. Instead, the priority of instructions are randomly modified and the effects on
the list scheduler are evaluated. This is illustrated in Figure 1.2. Our approach produces
different schedules that are similar to the default schedule with a couple of instructions
permuted. This helps us benefit from a fairly good solution (default schedule) while
trying other schedules.

Another interesting problem that was tackled during this research was counting the
number of possible topological orders for a Directed Acyclic Graph (DAG). The reason
for doing so lies in the fact that if the number of possible orders is less than the number
of iterations to try different schedules, then there is no point in randomly producing
schedules while all of them can be tried.

Last but not least, the delay slot filling pass for EVP was slightly modified to adopt
the new schedules better. A motivational example is studied in Section 4.3.1.

2The schedule that is obtained from the heuristic-driven list scheduler.

4 CHAPTER 1. INTRODUCTION

perturbations on

scheduling parameters
list scheduler evaluate result

Figure 1.2: The 3 important steps in our iterative list scheduling algorithm.

To summarise, the contributions in this research are listed as follows:

1. A directed (local) search method was devised which starts from a fairly good so-
lution (discussed in Section 3.2.1).

2. An algorithm was designed and implemented for getting out of local minima (dis-
cussed in Section 3.3).

3. An NP-complete problem was tackled to count the number of possible topological
orders (discussed in Section 3.4).

4. The delay slot filler for EVP was modified to accommodate the changes in the
schedules in a more efficient way (discussed in Section 4.3.1).

The rest of the thesis is laid out as follows:

• Chapter 2 - Fundamentals: It starts with introducing the GCC, especially its
list scheduler. Then a motivational example is given to illustrate the possibility of
better schedules beyond the scheduling heuristics. It ends with a brief description
of the EVP processor.

• Chapter 3 - The Iterative List Scheduler: The main contributions are discussed
in this chapter. It consists of 3 sections: the introduction of the directed local search
algorithm (swapping); the landing as a way to get out of local minima; and how
the counting of topological orders is implemented.

• Chapter 4 - Iterative Framework: It presents the implementation details about
having a generic iterative scheduler in GCC.

• Chapter 5 - Experimental Results: The improvements for two sets of bench-
marks are demonstrated in this chapter. It also represents the trade-off between
the compilation time and the gained performance.

Fundamentals 2
This chapter begins with a brief explanation of the compilation process, followed by
studying the list scheduling method used in GCC. Afterwards, an example is given to
indicate that the scheduling heuristics might not always be the best solutions and still,
a better scheduling order may be achieved. Finally, the target processor’s architecture
and features are briefly discussed.

2.1 Definitions

In this section, we define the terms that are widely used in this thesis:

1. Instruction priority: A number attached to every instruction in GCC which is
used by the list scheduler (discussed in 2.3.2). The higher this number, the more
important the instruction. GCC initialises this field with the critical path length
which is explained in detail in Section 2.3.3.

2. Basic block: A straight line code sequence with no branches in except to the
entry and no branches out except at the exit [8].

3. Region: A set of basic blocks grouped together based on the control flow graph.
How regions are computed is not a concern in this study. However, for more
information you may refer to [4].

2.2 Compilation

In this section a brief description of the main GCC compilation phases is given. More
information regarding the internals of GCC can be found in [5]. As shown in Figure 2.1
the C/C++/Java tree obtained after parsing the input application, is first cleaned-up
by language specific constructs resulting to a Generic tree. The name Generic comes
from the fact that all input languages get converted to a common representation which
further on allows generic optimisation phase. Afterwards, the nodes of the Generic tree
are converted to a three-address representation obtained in this way, the Gimple tree.
The Gimple trees are converted to the Static Single Assignment (SSA) representation
[15, 3]. SSA allows efficient data flow analyses and optimising transformations (like
vectorisation). The SSA Tree is converted back to a multiple assignment tree which gets
linearised into a format called Register Transfer Language (RTL). This format is close to
the processor Instruction Set Architecture (ISA) which makes it appropriate for target
dependent optimisation. In fact, as shown by the right dotted arrow in compilation
flow diagram, Figure 2.1, all target dependent passes operate on the RTL. In the initial
stages, the RTL instructions are somewhat abstract, assuming an infinite number or

5

6 CHAPTER 2. FUNDAMENTALS

registers. However, during the later back-end phases they get transformed into real
processor instructions operating on hardware registers and/or memory references [22].

Genericiser Gimplifier
Tree

Optimiser
RTL ASM

C/C++ Trees

Java Trees

Target independent phases Target dependent phases

Figure 2.1: Compilation flow in GCC.

Around 200 passes are executed during the compilation. Each pass is responsible
for performing a particular task such as Dead Code Elimination (DCE), instruction
scheduling, Integrated Register Allocator (IRA), etc. The instruction scheduling pass
occurs during the RTL phase. It is usually executed three times:

• Sched1: It happens before the register allocation. In this pass, an unlimited
amount of registers are available to the scheduler and the dependency costs between
the instructions are one clock cycle1. The purpose of this pass is to order the
instructions, so that the register allocator [12] can work on that. The scope of
the scheduler during this pass is a region of basic blocks (at least one). Sometimes
instructions are moved from one block to another in the same region (code motion).
At the end of this pass, there is no code duplication.

• Sched2: The second instruction scheduling pass occurs a few passes after the
register allocation. Since there might be new instructions introduced, compared to
sched1, because of likely memory spills, another scheduling pass is required. During
this pass, the dependency costs represent the actual values and the instructions are
mainly scheduled in the way they are supposed to be issued by the processor. The
scheduling domain in this pass is one basic block.

• Sched3: The last scheduling pass is responsible for taking care of data and struc-
tural hazards between the basic blocks. It also fills the delay slots of branch
instructions. This is done iteratively and can be time consuming. The scheduling
scope is all the basic blocks belonging to the same function. In other words, during
scheduling a block, other blocks might be considered and re-scheduled.

1 Having dependency costs of one leads to decreasing the pseudo-register live ranges. Therefore, there
will be less register pressure in the end. Nevertheless, one may apply the -fsched1-accurate flag to use
the actual dependency costs in sched1.

2.3. INSTRUCTION SCHEDULER 7

These passes use the same list scheduler to organise the instructions. Since the
scheduling order obtained at Sched3 is the very same order printed in the assembly
output, it is reasonably the first choice for randomised iterative scheduling. However,
Sched3 is already an iterative pass and it is not very practical to wrap it inside another
iterative approach. This leaves us with Sched2, the classical basic block scheduler, as
the first and main option for iterative scheduling. In this thesis, the feature of iterative
scheduling is also added to Sched1, because it can have drastic influences on the register
allocator. In Figure 2.2, the order of scheduling passes and the register allocation pass
is depicted.

Sched1
Register

allocation
Sched2 Sched3

Figure 2.2: A few passes from the RTL phase.

2.3 Instruction Scheduler

Instruction scheduling is about reordering the instructions in such a way that the util-
isation of the processor increases. This is achieved by extracting the ILP in the code
and using it to cover the delay between producing and consuming instructions. While
reordering the instructions, the functionality of the compiled program must be identical
to the code written at the source level. The factor that the scheduler takes into account
regarding this principle is the dependencies between instructions. Apart from this, the
scheduler also guarantees that neither structural nor control hazards happen while the
non-interlocked processor is issuing the instructions. The GCC applies a Deterministic
Finite Automaton (DFA) based technique to avoid resource conflicts [14, 17].

2.3.1 Data Dependence Graph

The data dependencies information can be represented by means of a DDG. Each node
in this graph represents an instruction and each directed edge between a pair of nodes
represents a dependency between them. The data dependence graph for a single basic
block is a DAG. There are a few terms that are used frequently [20]:

• Successor: node v is said to be the successor or immediate successor of node u if
there exists an edge (u, v).

• Predecessor: node u is said to be the predecessor or immediate predecessor of node
v if there exists an edge (u, v).

• Descendants: all nodes that can be reached from a node.

8 CHAPTER 2. FUNDAMENTALS

• Source: a node without any incoming edge.

• Sink: a node without any outgoing edge.

• Edge weight: weight of the edge between two nodes is the dependency cost between
the corresponding instructions.

Figure 2.3 depicts an instruction sequence and its DDG. Nodes i1 and i4 are source
nodes; i3, i5, i6, and i7 are sink nodes. i2 is the predecessor of i3; and i6 is one of the
successors of i4. The descendants of i1 consists of i2 and i3.

i1:

i2:

i3:

i4:

i5:

i6:

i7:

r3

r4

r5

r4

r6

r7

r8

r1

r3

r4

r2

r6

r6

r6

+

+

3

4

2

7

1

5

9

+

+

+

*

*

i1

i2

i3

i4

i5 i6 i7

(a) Instruction sequence (b) Data dependence graph

Figure 2.3: An instruction sequence and its dependence graph.

2.3.2 Scheduling the Instructions

Now, let us have a closer look at how the scheduler operates. GCC applies a list schedul-
ing algorithm to order the instructions. There are four queues maintained by the sched-
uler [22]:

• Scheduled: the list of scheduled instructions.

• Ready: the list of instructions whose data dependent predecessors are scheduled;
also the required data latencies2 are satisfied.

• Queued: the list of instructions that have all their predecessors scheduled but still
are waiting for them to finish. It can also contain instructions which come from

2Data latency between instructions i and j is the minimum number of cycles that instruction j can
be issued after i.

2.3. INSTRUCTION SCHEDULER 9

the ready list but are not scheduled for some reason (e.g. resource conflicts). Such
delayed instructions are put back into the ready list in the next cycle.

• Pending: this list consists of instructions whose data dependent predecessors are
not scheduled yet.

For an instruction to be inserted into the ready list, all of its predecessors must
be scheduled. In the beginning of the scheduling procedure, the only instructions that
qualify for this requirement are the sources in the DDG. At each time step, there can
be more than one instruction available in the ready list. Making different decisions at
this point leads to different scheduled sequences in the end. The ready list is a priority
queue [2] and the instructions in this list are sorted by using the rank_for_schedule()

function as the comparator. This function takes two instructions as input and after
considering some scheduling heuristics, it determines which one of these two instructions
is preferred over the other. The heuristics that are applied on normal instructions3 are
listed here in the order of importance:

1. Register pressure4: the instruction whose scheduling results in smaller register
pressure is preferred.

2. Critical path length: this is explained in Section 2.3.3.

3. Number of successors: the one with more successors is considered more important.

4. Unique Instruction Identifier (UID): as the final tie breaker, the instruction with
lower UID is preferred 5.

The ready list is sorted in a descending priority order. This means that the first
element in the list is the most important one, the second element is the second most
important instruction, and so on. To compare two instructions while sorting the ready
list, these heuristics are used in the given order until there is a winner. So for example,
if i and j are normal instructions which happen to have the same register pressure
but different critical path lengths, then the corresponding heuristic is going to settle
which one is preferred. Since most focus of the iterative scheduling is in sched2, it is
safe to assume that the first heuristic being used is the critical path length. There are
two unlisted heuristics related to dispatch group scheduling and speculative instruction
scheduling [4]. Since they are not supported by EVP, the corresponding heuristics are

3“Normal instructions” refers to the instructions that are neither delay markers nor debugging in-
structions. The delay markers are used to fill the delay slots of the branches. Since it is desired to fill
as many delay slots as possible, the scheduler is forced to choose them over any other option. The next
most important instructions are the debugging ones and they have to be scheduled as soon as possible.
Because these considerations are rather a set of rules than heuristics, they were not mentioned in the
heuristics list.

4This heuristic is only used during sched1 which is before register allocation pass. During sched2 and
sched3 which occur after register allocation, there is no concept of register pressure.

5UIDs are assigned to the instructions in the same order that they appear in the source code. There-
fore, an instruction with a lower UID occurs sooner at the source level than the one with higher value.
This tie breaker wants to follow the same order.

10 CHAPTER 2. FUNDAMENTALS

never applied. It is worth mentioning that out of the four listed heuristics, the register
pressure is a dynamic criterion while the rest are static and pre-calculated. Register
pressure at a certain time step depends on how the instructions are scheduled until that
time.

In Algorithm 2.1, the pseudo-code for scheduling is listed. This routine is repeated
as long as the whole basic block is not scheduled. If there is nothing left for scheduling at
any clock cycle, then the cycle advances and instructions are brought into the ready list.
The choose-insn() function is responsible for sorting the ready list and removing its
first element. When an instruction is selected from the ready list, it must be ensured that
there is enough resource available to issue it. This is verified by the conflicts(). In case
it is not possible to issue the instruction, it is queued in the pending list. After scheduling
an instruction, some data dependencies are resolved. This can insert new instructions
into the ready list in the next or even the current cycle if the cost of resolved dependency
is zero. The update() function performs of this task. The key essence of advance-
one-cycle() is about advancing the state of dependencies and resource usages to the
next cycle.

Algorithm 2.1 List scheduler in GCC

Require: A basic block in the form of DDG
Ensure: Scheduled sequence of instructions

function schedule-block(basic-block)
init(ready-list) . Initialised with source nodes in DDG
while not all instructions are scheduled do

while ready-list 6= [] do
insn← choose-insn(ready-list)
if conflicts(insn)

queue(insn) . Becomes ready again in next cycle
else

schedule-insn(insn)
update(ready-list)

end if
end while
advance-one-cycle()
update(ready-list) . New instructions are added

end while
end function

2.3.3 Critical Path Length

Critical path length is usually the first criterion for sorting the ready list. In this context,
for the sake of brevity, we refer to the critical path length of an instruction as the priority
of that instruction. Priority of an instruction is a weight assigned to it, representing
the heaviest chain of dependencies starting from that instruction. If the instruction i is
not the source of any dependency, its priority is the same as the number of clock cycles

2.3. INSTRUCTION SCHEDULER 11

it takes to execute it. But if there are some dependent instructions like j, for each of
them let the sum of priorityj and dependency cost between i and j be a candidate for
priorityi. The priority of instruction i is the maximum of these values. This is illustrated
in equation (2.1).

priority(i) =

latency(i) |dependants(i)| = 0,

max(dependency cost(i, j) + priority(j)),

∀j ∈ dependants(i)
otherwise.

(2.1)
To get a clear view of critical path length, assume a single node, called sink, is added

to the graph. Moreover, new edges are introduced from any node in the graph with the
output degree of 0 to this sink node. The weight of these edges is the latency of the
source node. Critical path length for each node is the maximum weighted path from that
node in DDG to the node sink. This is visually depicted for a sample DDG in Figure 2.4.

a

e

b

c d

a

e

b

c d

sink

latency(e)

la
te
n
cy
(d
)

(a) A simple data dependence graph (b) Same graph with dummy sink node

Figure 2.4: Adding the sink node to the DDG.

For every instruction, which is a node in DDG, a flag is used to indicate whether the
priority of that node is valid or not. This way the process of calculating the priorities
for all nodes happens in O(|N | + |E|) time. Algorithm 2.2 illustrates the priority()

and set_priorities() functions pseudo-code in GCC.

12 CHAPTER 2. FUNDAMENTALS

Algorithm 2.2 The priority calculation in GCC

function priority(insn)
if priority-status[insn] = valid

return priority[insn]
end if

if |dependants[insn]| = 0 . No instruction depends on insn
priority[insn]← insn-cost(insn)

else
max-priority ← −1
for all j ∈ dependants[insn] do

this-priority ← dependency-cost(insn, j) + priority(j)
max-priority ← max(max-priority, this-priority)

end for
priority[insn]← max-priority

end if

priority-status[insn]← valid
return priority[insn]

end function

function set-priorities(basic-block)
for all insn ∈ basic-block do

priority(insn)
end for

end function

In Figure 2.5, an example is given that illustrates how priorities are assigned accord-
ing to the equation 2.1. The number in each node represents its priority value. Since
nodes c, e, and f have no children (dependent instructions), their priority is their latency.
The weight of each edge is the dependency cost between the source and destination node.
The edge (b, e) with cost 0 indicates that although b must execute before e, they may be
issued in the same cycle. In other words, instruction e can be issued 0 (or more) cycle
after b. This usually corresponds to an anti-dependency. Let us take a closer look at
how the priority of node a is assigned to it. There are two dependent instructions on a.
The dependency cost of (a, f) is 2 and the priority of f is 1, hence the regarding weight
would be 3. On the other hand, the dependency cost of (a, d) plus the priority of d is
2 + 2 = 4. The latter, being the higher value, is the priority of node a. In this DDG, a
is the first instruction that will be scheduled based on the critical path length heuristic.

2.3.4 Motivational Example

Although the scheduling heuristics are empirically proven to lead to a fairly good result,
the likelihood of a better solution should not be ignored. In this section, an example is
reviewed which illustrates this fact.

Assume a machine capable of issuing at most one multiplication and two addition

2.3. INSTRUCTION SCHEDULER 13

b: 3a: 4

f: 1

d: 2 e: 1

c: 2

2

2 1

1

0

Figure 2.5: A DDG with critical path length assigned to each node.

operations in each cycle. The number of clock cycles needed to finish either of these
operations (instruction latency) is one. Moreover, assume a basic block with a DDG
as depicted in Figure 2.6a. Each mi is a multiplication instruction and each ai is an
addition instruction. The subscript i represents the UID. For each node, the number
after the colon is the priority (critical path length) assigned to that instruction. Nodes
with higher values have more importance than those with lower values. In case the
priorities of two instructions are the same, the one with lower UID is scheduled first.

m : 3

a : 2

a : 1

m : 2

a : 1 a : 1 a : 1 a : 1

[1]:

[2]:

[3]:

[4]:

[5]:

m

a

a

a

a

||

||

||

m

a

a

(a) Instructions with critical path priorities (b) Corresponding schedule

Figure 2.6: A DDG and its schedule obtained by using critical path heuristic.

Let us see how the DDG in Figure 2.6a gets scheduled. At the first clock cycle, two
instructions, m1 and m3, are ready. Because at most one multiplication can be issued
in each cycle, the one with higher importance (m1) is chosen. Since nothing else can be

14 CHAPTER 2. FUNDAMENTALS

scheduled in the first cycle, the clock advances and both m3 and a2 move to the ready list.
Having one multiplication and two addition units available in each cycle makes it possible
to issue both of these instructions in the second cycle. The rest of the instructions will
be scheduled based on their UIDs because they have the same priority values. This leads
to a scheduling order of [m1, a2,m3, a4, a5, a6, a7, a8] with 53% utilisation6.

m : 2

a : 2

a : 1

m : 3

a : 1 a : 1 a : 1 a : 1

[1]:

[2]:

[3]:

[4]:

m

m

a

a

||

||

||

a

a

a

(a) Instructions with arbitrary priorities (b) Corresponding schedule

|| a

Figure 2.7: Same DDG with another priorities ended up in a better schedule.

In Figure 2.7a, the priority of m1 and m3 are exchanged and the priority of the rest is
left intact. While scheduling this DDG, m3 is preferred over m1 at the first clock cycle.
In the next cycle, three instructions are ready: m1, a5, and a6. According to the resource
constraints, all of these three instructions can be issued resulting in a 100% utilisation.
The final scheduled order is [m3,m1, a5, a6, a2, a7, a4, a8] in this way, resulting in 66%
utilisation. This order is one cycle shorter than the previous, as seen in Figure 2.7b.

It is worth mentioning, the advantage of the 4 cycle schedule over the 5 cycle one
is because of selecting instruction m3 first. Since the approach introduced in [19] only
takes over the scheduler decisions when there is a tie, it never finds the shorter schedule
in this example. This is because the priority of m1 and m3 are different. One can look
at this as the bad choices of scheduling heuristics propagates in all schedules.

This example shows that although applying scheduling heuristics may lead to a good
instruction sequence, but there can be other ones which are better. To find such possi-
ble solutions, the scheduler must go beyond these heuristics to come up with different
scheduling orders.

2.4 The Embedded Vector Processor

EVP was initially developed by NXP Semiconductors. EVP is mainly used in digital
signal processing domain. At the time of writing, it is a product of ST-Ericsson and is

6This number is the average of the machine’s utilisation in each cycle. For instance, in the first cycle
only the multiplication unit is busy and the two addition units are idle. Therefore, the utilisation is 33%.
Following the same concept, the utilisation is 66%, 66%, 66%, and 33% in cycles 2 to 5 respectively.

2.4. THE EMBEDDED VECTOR PROCESSOR 15

being developed for wireless and mobile markets to handle 2G, 3G and 4G standards.
These standards mainly require a lot of data stream processing. Hence, the design
of this processor supports multiple operations on 256 bit size vectors [21]. Most of the
algorithms in this domain benefits from parallelisms in their computations. The compiler
is the sole factor in exposing the ILP to the processor, because EVP is designed in such
a way to have a simple and power efficient architecture.

In the forthcoming sections, the architecture of EVP is presented and a few facts
that are related to the scope of this thesis are illustrated.

2.4.1 The Architecture

EVP is a Very Long Instruction Word (VLIW) Digital Signal Processor (DSP) with
vector processing capabilities. It supports parallel execution of multiple scalar and vector
operations. The processor core block diagram is depicted in figure 2.8. Each of those
units has access to its local register files and also limited access to those of the neighbour’s
register files. In most of the cases, data-dependant operations can be scheduled on
the consecutive cycles due to the pipelined execution and bypass network. One EVP
instruction can be composed of up to 13 operations. Each of these operations specifies
the task each functional units must perform [22].

ACU

ACU register files

SAAU VAAU

AHB slave

interface
PCU

Instruction memory

1K × 256

Data memory

2K × 256

Scalar

cache

Internal

Peripherals

VDCU

Vector register files

VMALUVALU VMAC IVU VSHU CGUVLSU

SDCU

PALUSALU SMACSLSU

Scalar register files

Scalar DMEM bus

V
ec
to
r
D
M
E
M
 b
u
s

Figure 2.8: EVP core block diagram.

The EVP core is composed of four main units, each of which includes a number of

16 CHAPTER 2. FUNDAMENTALS

registers and functional units:

1. Program Control Unit: The PCU fetches instructions from the program mem-
ory, decodes them, and controls the other main units. It also handles the hardware
loops through its special purpose registers.

2. Scalar Data Computation Unit: The SDCU contains the register files and
functional units for handling scalar data. The Scalar Load/Store Unit (SLSU) is
responsible for performing load and stores operations for both scalar and predicate
registers. SALU is a Scalar Arithmetic Logic Unit, while PALU is a Predicated
Arithmetic Logic Unit that takes care of 1-bit predicate registers. The last unit,
Scalar Multiply/Accumulate (SMAC), covers both multiplication and multiply-
accumulate operations [21].

3. Vector Data Computation Unit: The VDCU is made of multiple vector register
files and functional units for handling vector operations. The Vector Load/Store
Unit (VLSU) handles load and stores operations for both regular and mask vectors.
To perform arithmetic/logical operations on vector and vector mask registers, it
uses Vector Arithmetic Logic Unit (VALU) and Vector Mask Arithmetic Logic
Unit (VMALU) respectively. The Vector Multiply/Accumulate (VMAC) handles
multiplication with optional accumulation on vectors. The Intra Vector Unit (IVU)
makes it possible to perform tasks on a single vector (e.g. finding the maximum
of elements in one vector). The Vector Shuffle Unit (VSHU) shuffles the elements
of a vector according to a pattern. The last functional unit is Code Generation
Unit (CGU) which generates an application specific code that must be inserted into
the instruction streams (for example in the Universal Mobile Telecommunications
System (UMTS) standard that is a part of 3G, scrambling the code is needed [9])
[21].

4. Address Computation Unit: The ACU calculates the addresses needed in scalar
or vector operations (addressing data memory accesses).

In principle all scalar and vector units can be operated in parallel in one instruction.
For various reasons, the VLSU and SLSU units operate on the same data memory. In
order to support these two simultaneous memory operations per cycle, a system with
caching is used. To make this happen, the VLSU is connected directly to the data
memory, while the SLSU is connected to the data memory through a scalar cache.

2.4.2 Features

A few properties in the EVP must be considered before going into more detail on the
iterative scheduling:

Exposed non-interlocked pipeline: EVP cannot stall its multi-stage pipeline,
so the scheduler must deal with that and insert NOPs whenever needed.

2.4. THE EMBEDDED VECTOR PROCESSOR 17

In-flight Scheduling: In-flight scheduling takes advantage of the fact that some
instructions have an execution latency of multiple cycles. The destination register, where
the result of such an operation is written to, can be used for other purposes while the
operation is in progress. A sample code using this feature is represented in Figure 2.9.

load r0, 0x1000 /* [1] instruction latency of "load" is 3 clock cycles */

add r0, r1, r2 /* [2] instruction latency of "add" is 1 clock cycle */

mov r2, r0 /* [3] r0 is the result from "add" */

sub r1, r1, r0 /* [4] r0 is the result from "load" */

Figure 2.9: An example of in-flight scheduling.

Packed Instruction Words: The instructions that are supposed to be issued at
the same clock cycle are packed together in a VLIW format. There must be no resource
conflict neither amongst any of these instructions nor between the previous issued ones
which are still in the pipeline. The maximum opcode size for a VLIW is 24 bytes and
at most 13 instructions can be packed together. It must be noted that the functional
unit assigned to each instruction is decided by the best_alternative() function in
the compiler. It applies a greedy approach to come up with a functional unit for an
instruction in such a way that maximum number of instructions can be packed together
in the current VLIW. In Figure 2.10, the assembly equivalent of VLIWs is illustrated.
The numbers in the square brackets are the clock cycles, the || (parallel) operator
indicates that the corresponding instructions are packed together. The comment at the
end of each line represents the used functional unit and the UID of the instruction.

/* FU UID */

// [1]

vmove8 vr5, vr4 // VALU insn_id:16

|| vmove_vlsu8 vr4, vr1 // VLSU insn_id:17

|| vmove_vshu8 vr1, vr2 // VSHU insn_id:18

// [2]

vmuli16 vr2, vr3, vr0 // VMAC insn_id:22

|| vload_post_update vr3, ptr0, 32 // VLSU insn_id:20

|| vadd16 vr1, vr1, vr0 // VALU insn_id:23

// [3]

vadd16 vr4, vr4, vr0 // VALU insn_id:24

|| vstore_post_update ptr8, 32, vr5 // VLSU insn_id:25

Figure 2.10: Assembly output of the compiler.

Branch Delay Slots: The branching mechanism in EVP is based on visible branch
delay slots. This means that a number of instructions following a branch are always
executed. Depending on the branch type, the number of delay slots varies from 5 to 7
clock cycles.

18 CHAPTER 2. FUNDAMENTALS

Hardware Loops: By means of its dedicated registers stack, EVP is able to handle
up to 3 nested hardware loops. The required information for using this feature is the
starting and ending addresses of the loop body, along with the number of iterations. The
loop counter is either an immediate value, which is known during the compilation time,
or specified during the runtime7. The compiler detects potential hardware loops in the
program and transforms each of them into a single hardware loop instruction.

7The number of delay slots for the immediate and dynamic version is 5 and 7 clock cycles respectively.

Iterative List Scheduler 3
The GCC compiler takes as input the source code of a program and applies numerous
passes of transformations to it before translating it into machine code. The instruction
scheduling pass plays an important role in maximising the target machine’s utilisation,
hence achieving faster applications. Since the scheduling is well known to be an NP-
complete problem, the list scheduler in GCC applies heuristics to produce near optimal
schedules. While these heuristics yield to a fairly good solution (with short compilation
time), the likelihood of having a better schedule cannot be ignored.

The aim of this study was to improve the performance of the static instruction sched-
ule in GCC’s list scheduler. We propose an iterative scheduling pass that randomly
produces schedules other than the default one1 and picks the best as the solution. The
number of iteration is user-specified and is read from the command-line. While reducing
the cycle counts is the key goal of this project, the improvements should be in a reason-
able amount of time. To accomplish this, a directed search towards better schedules is
applied. Our approach benefits from starting with the default schedule which is a fairly
good solution. This initial solution is changed each iteration to obtain better schedules.
Another problem that was taken into account was the possibility of being trapped in a
local minimum and a solution to that is discussed. Last but not least, a method is intro-
duced to calculate the number of topological orders in a DAG. This number represents
the size of the solution space and helps us to determine if the number of iterations is big
enough to cover entire space. If so, all of the solutions are produced instead of trying
them randomly.

3.1 Terminology and Definitions

Before delving into more details, we must clarify the terminology that is frequently used
in describing our methods.

• Scheduling parameters: These are the priorities of instructions in the basic
block. They are initialised with the Critical Path Lengths (CPLs) of the corre-
sponding instruction.

• Schedule: This refers to an instruction order which is produced by the list sched-
uler.

• Current schedule: Our approach involves scheduling a basic block iteratively. In
each iteration, the basic block is scheduled once. At any iteration the corresponding
result of the scheduler is referred to as the current schedule.

1The default schedule is the one that the list scheduler constructs using the scheduling heuristics
discussed in Chapter 2.

19

20 CHAPTER 3. ITERATIVE LIST SCHEDULER

• Default schedule: As explained in the previous chapter, the list scheduler applies
a few scheduling heuristics so as to order the instructions. The schedule obtained
from using these heuristics are referred to as the default schedule. Later we will see
that we modify the scheduling parameters to get different schedules as opposed to
the default schedule.

• Neighbour schedule: The current schedule depends on corresponding param-
eters at that iteration. When we swap two elements of these parameters (more
detail in Section 3.2.1), the next schedule based on these new parameters is called
the neighbour of the current schedule. In Figure 3.2b, possible schedules for a DDG
are depicted. Every two schedules (nodes) that are connected to each other, are
considered neighbours.

• Performance: It is the number of cycle count for the scheduled basic block to
execute.

3.2 Making the Scheduling Pass Iterative

As discussed in Section 2.3.2, the list scheduler uses a few scheduling heuristics to con-
struct a solution (schedule). These heuristics are deterministic. In other words, given the
same input set (the DDG), the heuristics assign the same priorities to the instructions
and the scheduler takes the same decisions. Therefore, in order to get different schedules
on the same input, our approach modifies the priority of instructions. After the modifi-
cation, we let the list scheduler work based on these new priorities to schedule the basic
block. The achieved cycle count from this scheduling is then evaluated to decide what
to do next. This is detailed in Section 3.2.1.

More formally the priority vector P = 〈p1, p2, ..., pn〉, where pi is the priority of
insni

2, is used as the parameter that the iterative scheduler modifies. The dimension
of this vector, n, is the number of instructions in the basic block. One can consider the
priority vector as a point in an n dimensional space. The list scheduler then becomes a
function that maps every vector in this domain to one and only one image in the range
of valid schedules. With this point of view, instead of looking for different (and better)
schedules explicitly, we search in this n dimensional space of the priority vector to obtain
a good schedule.

The changes on the priority vector are made randomly before the scheduling starts.
The general idea involves making random changes, invoking the scheduler, and evaluating
the performance. These steps are executed in a loop for number-of-iterations times
which is specified in compilation command-line3. Algorithm 3.1 demonstrates this idea.
Two methods were implemented to change the parameters (priorities): random swapping
and random landing. These methods are discussed in detail in next sections.

2Instructions are enumerated according to a key, i.e. their UIDs.
3The compilation flags for iterative scheduling is explained in Section 4.4.

3.2. MAKING THE SCHEDULING PASS ITERATIVE 21

Algorithm 3.1 Main concept of the iterative scheduler

Require: A basic block in the form of DDG; instruction priorities
Ensure: Scheduled sequence of instructions

function iterative-schedule(basic-block)
for i = 1→ number-of -iterations do

insn-priorities← change-sched-parameters(basic-block)
schedule(basic-block, insn-priorities)
evaluate-schedule(basic-block)

end for
end function

3.2.1 Random Swapping of Priorities

The swapping method is the key strategy in this research. It partially modifies the
scheduling parameters during each iteration, in order to try a different schedule than the
current one. By means of this method, we transform the current schedule to another
that is slightly different. Our method benefits from a directed search that is detailed in
this section.

The swapping method consists of selecting two instructions randomly and exchanging
their priorities. When these two instructions appear in the ready list together, the
order in which the list scheduler would select them is reversed. In Algorithm 3.2, the
steps of iterative scheduling with random swapping are presented. First, the basic block
is scheduled using the default scheduling heuristics. The performance of the default
schedule is set as the reference (best-performance variable) that must be improved.
The priorities variable is the priority vector initialised with the CPL of instructions.
Next, the iterative scheduling begins. In each iteration, two instructions are picked
randomly (detailed in Section 3.2.2 as Algorithm 3.3) using Pseudo-Random Number
Generator (PRNG) and their priorities are exchanged. This is followed by scheduling
the basic block using this modified priority vector and evaluating the performance. If
the performance improves, the priority vector is stored as the solution to the problem
and the performance reference is updated. If the performance degrades, the last swap is
undone. In case the performance does not degrade, the modification on priority vector
is kept, so that the next iteration modifies this vector. Next section demonstrates an
example of this algorithm to make it clear, but meanwhile we study its properties.

The main idea behind devising the swapping method was changing the scheduling
parameters slightly. The resulting alteration in the schedule is a transition from the
current schedule to one of its neighbours in the solution space. Moreover, there is another
feature to this method; it is possible to start the search from the part of solution space
that is likely to have better schedules. This was achieved by initialising the priority vector
with the CPL of instructions. As it has been already established, we want to improve
upon the schedules which are obtained by using the scheduling heuristics. While there
may be room for improvement for schedules produced by using these heuristics, it has
been empirically proven that these schedules are fairly good. Hence, we use them as our
starting point.

22 CHAPTER 3. ITERATIVE LIST SCHEDULER

The swapping strategy utilises a directed search: whenever a neighbouring schedule
with a worse performance is reached, it is not going to be explored any further. In
other words, if a swap is done on the priority vector that led to a schedule with larger
cycle count, then the iterative scheduler goes back to the previous priority vector to
try another swap; otherwise, it continues to search in this direction (this new priority
vector will be used in next iteration). This corresponds to a simulated annealing with
parameter T = 0 [18]. It was observed that using a greedy search like this converged
faster to better schedules rather than a blind search which is totally random.

In swapping method, the list scheduler can still benefit from the scheduling heuristics.
We already established that the priorities of instructions are initialised with CPLs. As
explained in Chapter 2, when two instructions have the same priorities, the list scheduler
in GCC uses other heuristics to decide which one should be scheduled first. Therefore,
although we are modifying the priorities of instructions by swapping them, there can be
instructions in the ready list with the same priorities that need applying other scheduling
heuristics. Which is why, our method is a combination of a modified CPL heuristic and
other unmodified scheduling heuristics.

After discussing about the swapping and its properties, we present an example in
next sextion to show how it actually works.

Algorithm 3.2 Directed search swapping used in iterative scheduler

function iterative-schedule(basic-block)
priorities← critical-path-length(basic-block)
schedule(basic-block, priorities) . No parameter is modified at this point
best-performance← cycle-count(basic-block)
best-priorities← priorities

for i = 1→ number-of -iterations do
(i, j)← pick-two-insn-randomly(basic-block)
priority[i, j]↔ priority[j, i] . Priorities of instructions i and j are swapped

schedule(basic-block, priorities)
performance← cycle-count(basic-block)

if performance < best-performance
best-performance← performance
best-priorities← priorities

else if performance > best-performance
priorities[i, j]↔ priorities[j, i] . Undo the last change

end if
end for

end function

In Table 3.1, an example is provided to illustrate the behaviour of the random swap-
ping with directed search policy. There are 5 instructions involved: i1, i2, i3, i4, and i5.
Initially (at iteration 0), these instructions are scheduled with their actual CPL values
and a performance of 7 clock cycles is obtained. The first iteration works on the original
priority vector and swaps its first and fifth elements. The second iteration continues by

3.2. MAKING THE SCHEDULING PASS ITERATIVE 23

working on the modified priority vector obtained from the previous iteration and after
changing it again, the result of scheduling shows improvement (7 cycles → 6 cycles). In
the forth iteration, the modification made on the priority vector brings degradation (6
cycles→ 7 cycles). This is why in the fifth iteration, the last modification is ignored and
the new swap is taking place on the previous priority vector: 〈1, 3, 4, 2, 3〉.

Table 3.1: Swapping strategy in action
Iteration Priority vector Swap Priority vector after swap Cycle

0 〈3, 2, 1, 3, 4〉 - 〈3, 2, 1, 3, 4〉 7

1 〈3, 2, 1, 3, 4〉 (i1, i5) 〈4, 2, 1, 3, 3〉 7

2 〈4, 2, 1, 3, 3〉 (i1, i3) 〈1, 2, 4, 3, 3〉 6

3 〈1, 2, 4, 3, 3〉 (i2, i4) 〈1, 3, 4, 2, 3〉 6

4 〈1, 3, 4, 2, 3〉 (i4, i5) 〈1, 3, 4, 3, 2〉 7

5 〈1, 3, 4, 2, 3〉 (i2, i3) 〈1, 4, 3, 2, 3〉 6

6 〈1, 4, 3, 2, 3〉 (i1, i5) 〈3, 4, 3, 2, 1〉 5

3.2.2 Selection of Two Instructions for Swapping

Although, any pair of instructions can be randomly selected for swapping, we reduce the
number of choices to pairs that are likely to make a change. This reduction of choices is
performed by a filter which renders some pairs useless for swapping. Three main criteria
were used to construct the filter:

1. The priority of the two selected instructions must not be equal; otherwise, swapping
them makes no difference.

2. The chosen pair must not have been chosen in previous iteration; otherwise, swap-
ping them will undo the last change.

3. For the selected pair (i, j), there must be no path in the DDG from i to j or vice
versa (one should not be the ancestor/successor of the other).

As it was established earlier, swapping the priority of two instructions is considered
as exchanging their importance between each other. Nevertheless, if the priorities of a
parent and a child node in a DDG are exchanged, the parent still appears before the
child in the schedule. This is because an instruction gets ready to be scheduled only after
all of its predecessors are scheduled. To get a better understanding of this criterion, we
discuss the example in Figure 3.1 first. In Figure 3.1a, according to the DDG, instruction
a must execute before b. In Figure 3.1b, six4 possible permutations of a priority vector
for 3 instructions are listed. The first element in this vector represents the priority of a;
the second and third elements represent the priority of b and c respectively. During the
scheduling, the instruction with higher priority value is scheduled first. This is how the
corresponding schedules are produced.

4Number of different permutations for three elements is 3! = 6

24 CHAPTER 3. ITERATIVE LIST SCHEDULER

Algorithm 3.3 lists the pick-two-insn-randomly() which is used in Algorithm 3.2.
This algorithm applies the three mentioned criteria to select two instructions. In special
cases when nothing can be returned from this function, e.g. when the priority of all
instructions are the same, the iterative scheduling stops.

Algorithm 3.3 Selecting two instructions to swap their priorities

Require: Instructions of the basic block; the last selected pair
Ensure: Two instructions

function pick-two-insn-randomly(basic-block)
repeat

i← a random instruction in basic-block
j ← a random instruction in basic-block

if priority[i] = priority[j]
continue

end if

if (i, j) = last-pair . last-pair is a global variable
continue

end if

if j ∈ successors(i) or i ∈ successors(j)
continue

end if

until 0

last-pair ← (i, j)
return (i, j)

end function

a

b

c

Priority vector for

instructions: a, b, c
Corresponding schedule#

1 < 1, 2, 3 > [c, a, b]

2 < 1, 3, 2 > [c, a, b]

3 < 2, 1, 3 > [c, a, b]

4 < 2, 3, 1 > [a, b, c]

5 < 3, 1, 2 > [a, c, b]

6 < 3, 2, 1 > [a, b, c]

a) A sample DDG b) Priority vectors and their schedules for this DDG

Figure 3.1: All possible permutations of a priority vector for a DDG with 3 instructions.

3.2. MAKING THE SCHEDULING PASS ITERATIVE 25

In Figure 3.2a, all priority vectors for the example in Figure 3.1 are listed. There
are 3 swaps available for each. Edge labels indicate that a swap is performed on the
corresponding elements of the vector. For example, (a, c) means that the first and third
elements of the vector are exchanged. In Figure 3.2b, the priority vectors are replaced
with their corresponding schedules as listed in Figure 3.1b. In this small example it can
be observed how swapping priorities affects the schedules.

<2, 3, 1>

<1, 2, 3>

<1, 3, 2>

<3, 1, 2>

<2, 1, 3>

<3, 2, 1>

(a, b)

(a, b)(a, b)

(b, c)(b, c)

(b, c)

(a, c)

(a, c)

(a, c)
[a, b, c]

[c, a, b]

[c, a, b]

[a, c, b]

[c, a, b]

[a, b, c]

(a, b)

(a, b)(a, b)

(b, c)(b, c)

(b, c)

(a, c)

(a, c)

(a, c)

a) Priority vectors with one swap transitions b) Priority vectors are replaced with

corresponding schedules

Figure 3.2: Transitions between priority-vectors/schedules with one swap.

According to the three filtering criteria discussed in the beginning of this section,
we reduce the number of pairs that can be chosen for swapping. This affects the new
schedules that we can get from the current one. Figure 3.3 contrasts the difference
between swaps with and without filtered choices. According to the third filtering criterion
and the DDG depicted in Figure 3.1a, the priorities of a and b should not be exchanged.
Figure 3.3b depicts the scheduling transitions diagram without the (a, b) edges. It is
obvious at the first glance that two of these edges were actually useless, because they
made a transition from one schedule to another which were the same ([a, b, c]↔ [a, b, c]
and [c, a, b] ↔ [c, a, b]). The right (a, b) edge in Figure 3.3a that was removed is a
transition from a schedule to another which is different ([a, c, b] ↔ [c, a, b]). However,
it is still possible to transform either of these schedules to another by performing three
swaps.

The filtering introduced in this section is an attempt to avoid useless choices. It is
implemented in such a way that it does not eliminate the chances of producing different
schedules. However, some extra swaps might be needed to transform one schedule to
another.

26 CHAPTER 3. ITERATIVE LIST SCHEDULER

[a, b, c]

[c, a, b]

[c, a, b]

[a, c, b]

[c, a, b]

[a, b, c]

(b, c)(b, c)

(b, c)

(a, c)

(a, c)

(a, c)

a) Possible swaps at each state before applying

the filter
b) Possible swaps at each state after

applying the filter: (a, b) edges are removed

[a, b, c]

[c, a, b]

[c, a, b]

[a, c, b]

[c, a, b]

[a, b, c]

(a, b)

(a, b)(a, b)

(b, c)(b, c)

(b, c)

(a, c)

(a, c)

(a, c)

Figure 3.3: Unfiltered vs. filtered swaps and the effect on the transitions of the schedules.

3.3 Random Landing

Because of the directed search, repeatedly applying swaps over each other as introduced
in the previous section might be prone to being trapped in a local minimum in the
solution space. In such situations, it is useful to escape the minimum by generating a
fresh, randomly produced schedule and performing a local search (swapping) from there.

Before we introduce our approach, we must define landing options. The landing
options for a list are the possible ways that we can insert a new element into this list.
For example, if there is a list such as S = [a, b, c], the landing options for inserting a new
element are: before a, before b, before c, and after c. These options are notated by “ ”
in the list [, a, , b, , c,].

Our random landing approach consists of the following steps:

1. Let U be a set of instructions. Initially U contains all instructions in the basic
block: U = {i : i ∈ BB}.

2. Let S be an ordered list of instructions. Initially S is empty: S = [].

3. Until U is empty, the following steps are repeated:

(a) insn = remove element(U); The order does not matter.

(b) Let V be the set of all valid landing options in S where the insertion of insn
respects the order imposed by dependencies5. Randomly select an element vi
from V , and insert insn into S at the landing indicated by vi.

These steps are listed in Algorithm 3.4.

3.3. RANDOM LANDING 27

Algorithm 3.4 Landing instructions to produce a total random order

Require: basic block in the form of DDG
Ensure: A random order of instructions that respects DDG

function Landing(basic-block)
U ← all insn ∈ basic-block
S ← []

while U 6= ∅ do
i← an insn ∈ U . The order that elements are picked is not important
U ← U − {i}

V ← valid-landings(i, S) . After ancestors and before successors of i that
are in S

v ← one random landing option ∈ V

insert(i, S, v)) . Insert i in S at landing option v
end while

return S
end function

c

d a

b

fe

c

d

a

b

f

e

a) An example DDG

2

1

3

4

5

6

b) A valid order

Figure 3.4: Producing an order while respecting the precedence.

In what follows we exemplify a random instruction order produced by random land-
ing. The DDG of this example is depicted in Figure 3.4a. Nodes are picked from the
U set in an arbitrary order: a, b, c, d, e, f . Since the list S is empty, there is only one
position at which to insert a. After the insertion, U = {b, c, d, e, f} and S = [a]. Next,
b is removed from U to be inserted into S. According to the DDG, b must occur after
a, so it must appear after a in the partial list S. Next, while inserting c into S, the

5insn can only be inserted into landings that are after any ancestor of insn that exists in S. insn
also must be inserted before any of its successors that might be in the S.

28 CHAPTER 3. ITERATIVE LIST SCHEDULER

DDG specifies that it must occur before a. Therefore, c must be added before a in list
S. By doing this we have U = {d, e, f, g} and S = [c, a, b]. For node d, the situation is
different. It can be inferred from the DDG that d must occur between c and b. While
respecting this dependency, there are two options: inserting d either between c and a, or
between a and b. One of these options is chosen randomly (in this example the second
one is selected, i.e. between a and b). This leads to U = {e, f} and S = [c, a, d, b]. The
only valid place to insert e into S is as the last element, after b. Finally, f must be
injected after b. This leads to two choices: before e or after e. Again, the decision is
made randomly and is decided to insert f after e. The final order is S = [c, a, d, b, e, f] as
depicted in Figure 3.4b. Since U = {} at this point, the algorithm is finished. This way,
after a series of random choices, an order is obtained which respects the DDG and has a
higher chance of never having been tried. This order can be imposed on the scheduler by
a priority vector like P = 〈5, 3, 6, 4, 2, 1〉 where the nodes are enumerated alphabetically
(5 is the priority of a, 3 is the priority of b, and so on.)

In each iteration, the swapping strategy uses the Pseudo-Random Number Generator
(PRNG) once to change only two elements of the priority vector. On the other hand,
the random landing method relies on consecutive use of the PRNG to construct a new
priority vector. This increases the likelihood of producing a new priority vector that the
iterative scheduler never worked on. If the DDG was not considered while (randomly)
constructing the priority vector, the probability of producing different schedules would
not be equal. To get a better view of this, look at Figure 3.1b. If a uniform PRNG
is used, the probability of producing each vector is equal, whereas the probability of
producing the 3 possible schedules are not (for instance, [c, a, b] happens half of the
times). However, the random landing approach produces only 3 distinct priority vectors:
(〈2, 1, 3〉, 〈3, 1, 2〉, and 〈3, 2, 1〉). Each of these vectors lead to a unique schedule. Hence,
the probability of producing each of schedules is equal.

3.4 Counting the Topological Orders

There is no need to search the solution space randomly in case that the given number of
iterations6 is enough to produce all valid schedules. There are two disadvantages if the
random swapping approach is used in this scenario: first, there is a chance that the whole
solution space might not be covered because of possible duplications; second, the iterative
scheduler may produce all valid schedules randomly in early iterations and spend the
rest of iterations producing duplicate schedules, which is the result of not knowing if
the whole solution space is covered. However, to select the brute-force strategy in this
scenario, we need to know how many different schedule exist for current basic block. If
the iterative scheduler knows that the number of all schedules is going to be less than
the given number of iterations, then it produces all schedules one after another during
each iteration. To know the number of schedules we have to count the number of all
topological orders which is known to be an NP-complete problem.

In [11], an approach is introduced to count the number of topological orders. It
involves partitioning the graph into independent static vertices; in case there is only one

6It is a user-specified number that is read from a compilation flag.

3.4. COUNTING THE TOPOLOGICAL ORDERS 29

static vertex in the graph which covers the whole graph, a brute-force enumeration is
used to find the number of topological orders. However, the method we propose relies
on transformations and makes no use of brute-force.

3.4.1 Preliminary

A topological order of a Directed Acyclic Graph G = (V,E) is a linear ordering of all its
vertices such that if G contains an edge eij , then u appears before v in the ordering. A
topological order of a graph can be viewed as an ordering of its vertices along a horizontal
line so that all directed edges go from left to right [2]. Let E be the set of all edges in the
DAG. Each edge eij imposes the order: i occurs before j or more briefly, i → j. Some
edges may be redundant because the order they impose is already implied by other edges.
For instance, if there are edges i → j, j → k, and i → k, the last one can be removed
because the order imposed by it is implicitly satisfied by the presence of the first two
edges. Since the removal of redundant edges does not affect the number of topological
orders possible, the counter works on DAGs where redundant edges had been removed.

Definition 3.1 Let G be a DAG, and TG the set of all topological orders of G; we define
count(G) = |TG|

Definition 3.2 A node with an incoming degree of zero is a source

Definition 3.3 A node with an outgoing degree of zero is a sink

Lemma 3.1 If G contains only one source or sink, its removal from G does not change
count(G).

Having a single source in the DAG indicates that this vertex always occupies the
first position in all topological orders. Hence, the source does not contribute to the
cardinality of topological orders.

Lemma 3.2 If there are m graphs G1, G2, ..., Gm with k1 = |V1|, k2 = |V2|, ..., km = |Vm|
nodes, and n =

∑m
i=1 ki, number of ways to linearly order them is the multinomial

coefficient: (
n

k1, k2, ..., km

)
=

n!

k1!k2! ... km!

As explained in [7], this is the same as the number of different ways of splitting a
set of n elements into m disjoint subsets, where each subset is an ordered set and the ith

subset has ki ≥ 1 elements.
To understand how this lemma is concluded, we study a situation where there are

only two graphs. The reasoning can easily be extended to more. Assume there are two
graphs with k1 and k2 nodes and both of them represent a chain, i.e. there is only one
topological order for each. To calculate the number of ways to linearly order them, first
we consider them as graphs without any edges. Therefore, this number would be the
permutations of k1 + k2 nodes, i.e. (k1 + k2)!. Now, we have to rule out k1! orders,

30 CHAPTER 3. ITERATIVE LIST SCHEDULER

because the number of possible permutations between k1 nodes, based on the edges we
ignored at first, is 1, hence we have: (k1+k2)!

k1!
. The same concept applies to eliminate k2!

orders between k2 nodes: (k1+k2)!
k1!k2!

. For detailed proof, refer to [7].

Lemma 3.3 If G is the disjoint union of m graphs G1, G2, ..., Gm with |V1|, |V2|, ..., |Vm|
nodes respectively, since the Gi graphs are independent of each other, we have:

count(G) =
(
∑m

i=1 |Vi|)!∏m
i=1(|Vi|!)

m∏
i=1

count(Gi)

=
(|V1|+ |V2|+ ... + |Vm|)!
|V1|! . |V2|! |Vm|!

. count(G1) . count(G2) count(Gm)

This is an extension to the previous Lemma, where the number of topological orders
for each graph is not necessarily 1. Which is why, the equation consists of their products.

Lemma 3.4 Given G with at least one edge, say eij, two graphs may be derived:

1. G′ is the graph obtained by removing eij from G

2. G′′ is the graph obtained by replacing eij with eji, i.e. reversing the edge

It then follows that:

count(G) = count(G′)− count(G′′)

If there is an edge from vertex a to b, it means in every topological order a occurs
before b. By removing the edge, half of the times a occurs before b, and for the other
half b occurs before a. Hence, “number of topological orders in which a can appear
before or after b”, minus “number of topological orders in which b must occur before a”
is the same as “number of topological orders that a must occur before b”. One thing to
consider is that reversing an edge in G can sometimes produce a G′′ containing a cycle.
It logically follows that in such cases, count(G′′) = 0.

3.4.2 Implementing the Counter

Using the above lemmas, we can implement several strategies in order to decompose
G to simple graphs (such as single node graphs or graphs without any edges) to easily
evaluate count(G). We can combine these strategies into a recursive divide and conquer
algorithm guided by the following items:

1. Reducing the number of sources by transforming the graph using Lemma 3.4 and
Lemma 3.1.

2. Identifying disconnected components.

3. Delegating the evaluation of the components to a recursive step.

4. Combining the results of the delegation using Lemma. 3.3

3.4. COUNTING THE TOPOLOGICAL ORDERS 31

We explain how the calculation of count is performed by means of an example. Let us
assume a graph like G as depicted in Figure 3.5. The cardinality symbol surrounding
a graph (|G|) indicates the number of topological orders for that graph. The ⊗ opera-
tor indicates that the number of topological orders from disconnected components are
combined using Lemma 3.3.

There are 2 sources, a and b, in graph G0. Our goal at this stage is to reduce the
number of sources to 1. Then, by using Lemma 3.1, we can reduce the size of the problem.
To achieve this, we use Lemma 3.4 on edge eac. The reason to select eac is the fact that if
there are multiple sources, we intend to make the source with higher outgoing degree the
single source7 so that when it is removed (based on Lemma 3.1), the likelihood of having
disconnected sub-graphs increases. The outgoing degree of source b is higher than the
outgoing degree of source a. In next steps we will see that removing the single source b
divides the graph into 3 disconnected sub-graphs. According to Lemma 3.4, we have to
calculate count(G1) and subtract count(G2) to achieve count(G).

Graph G1 consists of two disjoint sub-graphs. One of these two is a graph with
the single node a with number of topological orders 1. The other sub-graph, G4, has a
single source which can be removed (Lemma 3.1) and then divided into 3 independent
sub-graphs as shown in steps 2 and 3. Graph G2 is also converted to smaller graphs. In
Figure 3.5, all of the steps are shown in order.

After breaking the graph into simple graphs (such as single node graphs or graphs
without any edges) the final answer can be obtained from them. In Figure 3.6, it is
shown how the number of topological orders for these simple graphs are used together to
build the final answer (90). For example, using Lemma 3.3, the count(G5) is count(G6)⊗
count(G7)⊗ count(G8) which is 30.

After getting acquainted with the concepts, we introduce the counting in Algo-
rithm 3.5. The first part of the procedure is responsible for removing the single
source/sink, and also finding simple patterns like a cyclic graph or a graph with no
edges. Next, if the graph is a connected graph, Lemma 3.4 is applied. Reversing an edge
which is itself the result of reversing another edge may lead to a vicious cycle. This is
visually illustrated in Figure 3.7. That is why in our algorithm, all transformed edges
are flagged so that they are not transformed again. If the input graph consists of two or
more disconnected sub-graphs, they are handled separately and the results are combined
(Lemma 3.3).

3.4.2.1 Complexity Analysis

The complexity of this algorithm depends not only on number of vertices but also how
they are connected to each other. Necessarily, the growth in number of edges does
not increase the complexity. Assume a graph with maximum number of edges possible
without having a cycle. For such graphs, after removing redundant edges, as explained in
next chapter, what remains is a graph with a single chain of edges which its topological
order number can easily be calculated.

For our algorithm, the worst case happens when the input is a complete bipartite

7To do this, at least one edge of other sources must be reversed based on Lemma 3.4. Because of this
reversed edge, they will have an incoming degree greater than zero and will not be a source any more.

32 CHAPTER 3. ITERATIVE LIST SCHEDULER

a b

c d

j

f

h

a b

d

j

f= -

d

j

f
a

b

c d

j

f

h

c d

j

f

h

c d

j

f

h

a

c

f

h

d

j

a

c

h

ah

a

c

h

b

d

j

fc

h

#1: two disjoint

subgraphs

#2: single source

is removed

G1

G4

G2

G3

G5

#3: three disjoint

subgraphs

G6 G7 G8

G0

#4: single source

is removed

G9

G13

#5: three disjoint

subgraphs

G10 G11 G12

#6: single source

is removed

Figure 3.5: Transforming and dividing the problem into smaller manageable graphs in 6
steps (depth of 3 recursive calls).

3.4. COUNTING THE TOPOLOGICAL ORDERS 33

Algorithm 3.5 Counting number of topological orders

function count(G)
while |sources| = 1 do . minimising

G← G− source-node
end while
while |sinks| = 1 do . minimising

G← G− sink-node
end while
if |V | ≤ 1 . If so, graph was a single chain of dependencies

return 1
end if
if |sources| = 0 . there is a cycle

return 0
end if
if |E| = 0 . no edges in the graph

return |V |!
end if

subgraphs← all-disjointed-subgraphs(G)
if |subgraphs| = 1

sort sources on ascending output degree
for all s ∈ sources do

for all e ∈ edges[s] do . visits edges in no specific order
if e is an already reversed edge

continue
end if
p← count(G without edge e) . recursion
q ← count(G with reversed edge e) . recursion
if p = −1 or q = −1 . no answer on transformed graphs

continue
else

return p− q
end if

end for . looping over the edges of current source s
end for . looping over the sources
return −1 . nothing was returned as an answer

else . there are disconnected components
m← 0
total-orders← 1
for all g ∈ subgraphs do

n← number-of -nodes[g]
q ← count(g) . recursion

total-orders← (m+n)!
m!n! × total-orders× q . combining

m← m + n . growing till covers all components
if total-orders = 0 . this may happen because of cycles

break . do not waste time
end if

end for . looping over disconnected components
end if
return total-orders

end function

34 CHAPTER 3. ITERATIVE LIST SCHEDULER

graph. A bipartite graph is a graph whose vertices can be divided into two disjoint sets
U and V such that every edge connects a vertex in U to one in V . In complete bipartite
graph for any two vertices, u ∈ U and v ∈ V , there exists a (u, v) edge in the graph. A
complete bipartite graph is notated as Km,n where m and n are the number of vertices in
U and V respectively. A K3,2 graph is depicted in Figure 3.8. In our worst case, U is the
set of sources and V is the set of sinks. The number of vertices in these sets are either
the same or their difference is one. The recursions in our algorithm grows exponentially
for such cases, while the number of topological order for a Km,n graph can be calculated
from m!n!.

To use the counting algorithm efficiently, we apply it on a subset of the input graph.
This is explained in next section.

3.4.3 Using the Counting Algorithm on a Sub-graph of DDG

If the number of topological orders for a sub-graph of the DDG is bigger than the iteration
number, we can select our random strategy (swapping and landing) over the brute-force.
What we need is an algorithm that selects this sub-graph and apply the counting on this
smaller graph.

Algorithm 3.6 proposes an approach which results in efficient use of the counting
function. It starts with removing all source nodes from the DDG and adding them to
an initially empty sub-graph. At this point, the count(sub-graph) is s!, where s is
the number of sources. If the count is bigger than the number-of-iterations, the
random strategy is selected and the algorithm finishes. However, if the count is less
than number-of-iterations, we remove another node from DDG and add it to the
sub-graph. This new node, must be a new source in DDG (after removing previous
sources). Moreover, if there is any edge from previously added nodes to this new node
in initial DDG, these edges are also generated while adding this node to the sub-graph.
This guarantees that the count(sub-graph) never decreases while the size of sub-graph
is increasing. Next, the count(sub-graph) and number-of-iterations are compared
again. If the count is bigger, the random strategy is chosen and the algorithm finishes.
If not, another node is removed and added to sub-graph. This goes on until either the
count becomes bigger than number-of-iterations or there is no more node to add. In
later case, the brute-force is selected as the strategy of the iterative scheduling.

3.5 Summary

The core approach used by the iterative scheduler is the swapping strategy which utilises
a directed search. This approach enables modifying the instruction priorities and perform
a local search for schedules. It starts with the priorities that are obtained from the
scheduling heuristics and results in a fairly good schedule. As detailed in Chapter 5, it
has been observed that this approach finds better solutions very fast.

To give the iterative scheduler the opportunity to find the global minimum, the
random landing method was implemented. This method is an approach that completely
randomises the schedules while respecting the DDG, so that every schedule has the same
chance of being produced.

3.5. SUMMARY 35

Algorithm 3.6 Deciding the iterative scheduling strategy

Require: G is the DDG of a basic block
function strategy(G)

G′ ← G
sub-graph← remove-all-sources(G′)
repeat

if count(sub-graph) > number-of -iterations
return swapping-strategy

end if
if G′ = empty . whole graph is covered

return bruteforce-strategy
end if
sub-graph← remove-one-source(G′) . node along its edges are added

until TRUE
end function

Although counting the number of topological orders for every basic block added an
overhead to the iterative scheduler, it reduced the compilation time in all. This was
because of small basic blocks which had a few valid schedules. Without the counting,
there used to be lack of accountability about how much of the solution space was covered,
but with the counting, the rest of iterations were skipped as soon as all schedules were
produced. This also guaranteed finding the best answer for those cases, since the whole
solution space was explored.

Three topics were introduced in this chapter: swapping, landing and counting. Fig-
ure 3.9 depicts an overview of how the iterative scheduler makes use of them.

36 CHAPTER 3. ITERATIVE LIST SCHEDULER

a b

c d

j

f

h

a b

d

j

f= -

d

j

f
a

b

c d

j

f

h

c d

j

f

h

c d

j

f

h

a

c

f

h

d

j

a

c

h

ah

a

c

h

b

d

j

fc

h

#nodes:

count:

2 2 1

1 1 1

2

2

#nodes:

count:

5

30

#nodes:

count:

1

1

6

30

#nodes:

count:

7

210

7

120

6

120

3

2

2 1

1 1

(2 + 2 + 1)!

2! 2! 1!
× 1 × 1 × 1 = 30

7

90

Figure 3.6: Finding the answer by solving smaller problems at the bottom and going to
the top.

3.5. SUMMARY 37

a

d e f

b

c

a

d e f

b

c

a

d e f b

c

a

d e f b

c a

d e f

b

c

a

d e f

b

c

a

d e f

b

c

a

d e f

b

c

a

d e f b

c

=

=

=

-

-

-

G0

G2

G1 G2

G3 G4

G4 G5 G6

edge ebc will be transformed edge ebc is removed edge ebc is reversed

edge ecb will be transformed edge ecb is removed edge ecb is reversed

edge ebc will be transformed edge ebc is removed edge ebc is reversed

Figure 3.7: Racing of ebc and its reversed version, ecb, for transforming the problem,
leads to a vicious cycle.

a b c

d e

U

V

Figure 3.8: The K3,2 bipartite graph.

38 CHAPTER 3. ITERATIVE LIST SCHEDULER

#iterations

>

#topological orders

produce all

orders

random

swapping

no improvement

for a while?

random

landing

true

false

false

true

start

end
all iterations

are consumed

has

iterations

left

Figure 3.9: The strategy control flow for the iterative scheduler.

Iterative Framework 4
After studying the basics of instruction scheduling in Chapter 2 and introducing our
iterative scheduling approach in Chapter 3, it is now time to present the framework which
combines them. The iterative framework enables the compiler to schedule a basic block
for a user-specified number of iterations which is defined in the compilation command-
line. The framework also guarantees that the scope of each scheduling region is one
basic block during the iterative scheduling. Moreover, it is possible to embed different
strategies such as swapping or landing into the framework. This was accomplished by
adding new interfaces to a few parts of the scheduling pass. Each interface, which is
actually a function pointer, executes configurable functions at specific point of scheduling.
Through these interfaces, a strategy can affect the list scheduler, evaluate the result, and
decide what to do next. The strategy is encapsulated from the framework. This means
that the framework does not need to know how the underlying strategy operates. Any
strategy that relies on modifying the instruction priorities to affect the scheduler1 can
be used inside this framework.

In this chapter, first the scheduling pass in GCC2 and its iterative version are dis-
cussed. Next, the information relating to each basic block that the framework provides
such as the critical path, default performance (cycles of the non-iterative scheduled basic
block), etc. are listed. Last but not least, a problem resulting in performance degradation
is introduced and its solution is proposed.

4.1 High Level Overview of the Scheduling Pass

Before discussing about how to make the scheduling pass iterative, the non-iterative
version must be reviewed. The current scheduling pass in GCC is implemented by
Edelsohn et al. [4]. In Pseudo-code 4.1, the key steps of scheduling pass at the highest
level are listed. The init_region_infos() function is actually a set of calls to functions
initialising the basic blocks information which is used by the list scheduler. Afterwards,
the compiler goes through every basic block and schedules their instructions. Finally,
the wrapping of the scheduling pass takes place through a number of finalising functions
which are grouped as finalize_region_infos() in the pseudo-code.

If we look into schedule_region() function, as listed in Pseudo-code 4.2, we see a
few preliminary steps being executed before shcedule_block() begins scheduling the

1As illustrated in Section 2.3.4, by assigning different priorities to instructions, one may steer the
scheduler. This means that the algorithm must be static, i.e. before the scheduling begins, it ought to
have decided what to change.

2This pass is the same for both Sched1 and Sched2. The main differences between these two are:
1) Unlimited register file in Sched1; 2) Use of register pressure heuristic before any other heuristic in
Sched1; 3) The scheduling scope in Sched1 is a region (consisting of at least one basic block) whereas in
Sched2 it is only one basic block.

39

40 CHAPTER 4. ITERATIVE FRAMEWORK

Pseudo-code 4.1: schedule insns() in GCC.

/∗ s c h e d u l i n g f o r both Sched1 and Sched2 pa sse s ∗/
s c h e d u l e i n s n s ()
{

i n i t r e g i o n i n f o s () ;

for (r =0; r < number o f r eg ions ; r++)
s c h e d u l e r e g i o n (r) ;

f i n a l i z e r e g i o n i n f o s () ;
}

instructions. compute_dependencies() is one of these steps which builds the DDG from
the instruction list. In compute_priorities(), critical path lengths are calculated and
assigned to instructions as their priorities. Later, in schedule_block(), the instructions
are scheduled in order of these priorities. Only after these steps, does the scheduling of
instructions begin. Algorithm 2.1 in Chapter 2, details the schedule_block() function.

Pseudo-code 4.2: schedule region() in GCC.

/∗ r i s the reg ion number ∗/
s c h e d u l e r e g i o n (r)
{

/∗ us ing the reg ion number to s e t up v a r i a b l e s ∗/
. . .
compute dependencies () ; /∗ dependency a n a l y s i s t a k e s p l a c e ∗/
c o m p u t e p r i o r i t i e s () ; /∗ c a l c u l a t i n g c r i t i c a l path l e n g t h s ∗/

/∗ in our case t h e r e i s on ly one b a s i c b l o c k ∗/
for (bb=0; bb < number o f b locks ; bb++)

s chedu l e b l o ck (b a s i c b l o c k [bb]) ;
}

4.2 Iterative Scheduling

After briefly presenting the steps involved in the scheduling pass, we proceed by describ-
ing how this pass was transformed to an iterative scheduling pass. Later, the interfaces
and information that are available in this iterative pass are explained.

The very first step in making the scheduling pass iterative is to invoke the initialisa-
tion and finalisation functions in between the iterations or otherwise the compiler would
crash3. This is represented in Pseudo-code 4.3. The input of the scheduling pass is a
list of instructions. The list scheduler works on this list and rearranges its elements.

3The reason behind this relies in the way that GCC performs its sanity checks which is out of our
interest domain.

4.2. ITERATIVE SCHEDULING 41

Hence, The output is the same list with its instructions rearranged. In order to invoke
the scheduler repeatedly on the same instruction list, this input must be saved initially
and restored in the beginning of each iteration. This, as listed in Pseudo-code 4.4, is the
next step toward having a consistent iterative list scheduler.

Pseudo-code 4.3: Using the schedule region() iteratively

s c h e d u l e i n s n s ()
{

for (r =0; r < number o f r eg ions ; r++)
{

/∗ reg ion r i s be ing s c h e d u l e d f o r n u m b e r o f i t e r a t i o n t imes ∗/
for (i =0; i < n u m b e r o f i t e r a t i o n s ; i++)
{

i n i t r e g i o n i n f o s () ;
s c h e d u l e r e g i o n (r) ;
f i n a l i z e r e g i o n i n f o s () ;

}
}

}

Pseudo-code 4.4: Adding save and restore to the previous iterative scheduler

s c h e d u l e i n s n s ()
{

s a v e i n i t i a l i n s n l i s t () ;
for (r =0; r < number o f r eg ions ; r++)
{

/∗ reg ion r i s be ing s c h e d u l e d f o r n u m b e r o f i t e r a t i o n t imes ∗/
for (i =0; i < n u m b e r o f i t e r a t i o n s ; i++)
{

r e s t o r e o r i g i n a l i n s n l i s t () ; /∗ working on the same input ∗/
i n i t r e g i o n i n f o s () ;
s c h e d u l e r e g i o n (r) ;
f i n a l i z e r e g i o n i n f o s () ;

}
}

}

4.2.1 Interfaces Provided by Iterative Framework

Being able to schedule a basic block repeatedly is not enough for us. Because the list
scheduler is deterministic and the outcome will always be the same, unless some changes
happen during each iteration. This was the reason that new interfaces were introduced to
the iterative scheme. In order to perform certain tasks that are related to each strategy,

42 CHAPTER 4. ITERATIVE FRAMEWORK

the iterative framework executes callbacks4 provided by the strategy. Each callback, is
executed at specific points during the iterative scheduling. Thus, the strategy can affect
the list scheduler. The callbacks are:

• pre-schedule: This refers to the actions that must take place before each schedul-
ing. Any strategy that wants to modify the parameters of the scheduler (especially
the priorities of instructions) usually does it through this hook. This interface is
listed as iterative_pre_scheduling() in Pseudo-code 4.6.

• cost: This executes the code responsible for cost evaluation of the currently
scheduled sequence. The cost may be the number of clock cycles, but it
can be anything such as code size, register pressure, etc. This is what the
iterative_evaluate_order() in Pseudo-code 4.6 does.

• post-schedule: It is the function that is executed after each scheduling. Generally,
one can decide the next step based on the implemented strategy at this point. In
Pseudo-code 4.6, iterative_post_scheduling() represents this function.

• break-predicate: Through this callback, it is possible to evaluate a set of con-
ditions that if satisfied, the framework will stop the iterative scheduling for the
current basic block. For example, if the brute-force strategy specifies that all the
orders are produced, there is no point in continuing any more. You see this callback
with the name of iterative_done_p() in Pseudo-code 4.6.

Through these interfaces, it was made possible to affect the scheduler in each it-
eration, evaluate the results, and control the flow of iterative scheduling. During the
pre_schedule() callback, the new priority of instructions are determined and the
list scheduler uses them to construct another schedule. The post_schedule() hook
keeps track of changes and their performance. For example, if there is a degradation
in the new schedule, the swap strategy at this point (post_schedule()) signals the
pre_schedule() callback to undo the last change and then make a new swap.

4.2.2 Additional Scheduling Information Provided by the Framework

The framework calculates and provides extra scheduling information to the embedded
strategy. In this section, these information are listed:

4.2.2.1 Adjacency Matrix

The dependency matrices are the key data that the framework provides after analysing
the current basic block. There are three different types of these matrices that make it
easier to handle particular problems. The first one that will be explained is the adjacency
matrix for the DDG. This matrix represents the dependencies between the instructions
of a basic block, such that:

4A callback is a piece of executable code that is passed as an argument to other code, which is expected
to call back (execute) the argument at some convenient time. This is also called a hook in GCC.

4.2. ITERATIVE SCHEDULING 43

dep-matrixij =

1 if there is an edge in the DDG from insni to insnj ,

0 otherwise.

(4.1)

4.2.2.2 Path Matrix

According to the DDG, this matrix indicates if there exists a path from one node to
another. As illustrated in Equation 4.2, if there is a path from node i to node j, the
corresponding element in the matrix is 1; otherwise it is 0. In other words, the 1’s at
row i represent the successors of insni and the 1’s at column j indicate the ancestors of
insnj . This matrix is used for the minimising the choices in swap strategy as described
in Section 3.2.2. Moreover, this information is needed for building the next matrix
(minimum precedence matrix) which reduces the number of edges in the graph so that
the counting algorithm works faster on the DDG.

path-matrixij =

1 if there is a path in the DDG from insni to insnj ,

0 otherwise.

(4.2)

4.2.2.3 Minimum Precedence Matrix

As described in Section 3.4.1, a topological sort of a Directed Acyclic Graph G = (V,E)
is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears
before v in the ordering. A topological sort of a graph can be viewed as an ordering of its
vertices along a horizontal line so that all directed edges go from left to right [2]. Not all
of the edges in DDG are needed for the topological sorting. This concept is illustrated
in Equation 4.3.

min-matrixij =

1 if the only path from i to j is thorugh edge eij ,

0 otherwise.

(4.3)

To see how this equation can be useful, assume there is a graph with 3 nodes and
(a, b), (b, c), and (a, c) edges. (a, b) edge specifies that a must happen before b. Moreover,
(b, c) specifies that b must occur before c. These two edges implicitly define that a must
be before c. Hence, there is no need to keep the (a, c) edge.

The counting algorithm introduced in Section 3.4, handles graphs with less number
of edges faster. Therefore, we wanted to have the minimum number of edges possible
without loosing any useful information. Generating the minimum precedence matrix
from the DDG, allows us to achieve this goal.

44 CHAPTER 4. ITERATIVE FRAMEWORK

4.2.2.4 Other Extra Information

In addition to what we discussed, the framework provides more information to help the
embedded strategy. The remaining extra data are:

• Number of instructions: The instructions in the basic block are counted and
this value is stored in a global variable.

• Critical path and its length: After calculating the priorities, the maximum one
is considered as the critical path length of the current basic block. This number
represents the performance of an ideal schedule where there is enough resources
available. Hence, it is a lower bound on the clock cycle for a basic block. This
is why we also used it as a sanity check that the performance of each scheduling
should not be less than this value.

• Default cycle count: For each basic block, before the iterative procedure begins,
the basic block is scheduled with the default heuristics. The performance of this
schedule is evaluated and set as the initial cost that must be improved.

• Priority vector: In the beginning, this array is initialised with the critical path
length of instructions. During iterative scheduling, this vector represents the pri-
ority of the corresponding instructions (priority of insni is the value of the ith

element). It is the sole factor that allows the strategy to alter the scheduling
order. During the iterative phase, instead of calculating the priority of instruc-
tions, they are read from this array and assigned to the corresponding instruction.
In the example shown in Section 2.3.4, we see that two different priority vectors,
〈3, 2, 2, 1, 1, 1, 1, 1〉 and 〈2, 2, 3, 1, 1, 1, 1, 1〉, resulted in different performances, 5 and
4 clock cycles respectively.

4.2.3 Other Framework Features

The framework does not only provide the strategies with useful information but also
takes care of issues related to iterative scheduling. The key features are listed here:

• Scheduling one block at a time: The scope of each scheduling region is exactly
one basic block during iterative scheduling. To have each region as one basic block,
the flag_schedule_interblock in the compiler is set to 0. This is done only
for iterative scheduling during Sched1, because already in Sched2 each region is
one basic block (refer to Section 2.2 for more details).

• Last schedule: After the last iteration, the order of instructions are determined by
the last scheduling, which may or may not be the best order. Therefore, the current
basic block is finally scheduled one more time with the parameters (priorities)
which led to the best cost.

• Handling solutions: If a scheduling order better than the default is found for the
current region (r) in Sched2, a flag (load_priorities in the region information
is set as an indication. This leads to loading the same parameters which resulted

4.3. THE FRAMEWORK’S FINAL DESIGN 45

in this performance in Sched3. This is not true between Sched1 and Sched2. If
a better order is found in Sched1, only the output of this pass reflects this new
solution and the parameters are not remembered.

• Disabling the UID counter to save memory: During the Register Transfer
Language (RTL) passes in GCC, the information about each instruction is stored in
a data structure called RTL Expression (RTX). These records contain information
about the instruction they are representing such as source/destination operands,
the cycle in which it was issued on, notes5, etc. During basic block scheduling,
some RTXs might get created (mostly they are instruction notes). Whenever an
RTX is created, it is assigned a UID. This value is read from the cur_insn_uid

variable. Afterwards, cur_insn_uid is incremented by one. GCC also considers
this variable for handling its internal memory heaps. There is a linear correlation
between the amount of memory allocated and the cur_insn_uid. The iterative
framework momentarily stops any increase on this value. Moreover, to reuse some
of the consumed space in the heap, the internal garbage collector of GCC is invoked
after each iteration.

• Brute-forcing when suitable: If the number of iterations are big enough to
cover all the possible topological orders of the DDG, the current strategy is re-
placed with a brute-force strategy. This is determined by the set_strategy() in
init_iterative_framework(r) function, as listed in Pseudo-code 4.7.

4.3 The Framework’s Final Design

Now that it is clear what the purpose of the iterative framework is, where it is used, and
what it provides; it is time to see its implementation structure. In this Section, the code
is studied in a top-down approach. We start with the highest level, and get into more
details by viewing the code of the key functions.

As it is illustrated in Listing 4.5, if the compiler is asked to apply iterative schedul-
ing for number_of_iterations > 0 times, the iterative framework takes over. The
first step is to set the callback hooks. Here, the strategy is the swap strategy6 ex-
plained in Chapter 3. The swap_break callback checks the conditions that if are met,
the iterative loop terminates early. One of the conditions is the achievement of a cy-
cle count equal to the critical path length. The other one is having no possible swaps.
For instance, this can happen when the DDG is a single chain of dependencies. The
swap_pre_schedule function, picks two instructions randomly for the priority exchange
and the swap_post_schedule based on the performance of the schedule (evaluated by
clock_cycle_cost callback), defines the next step. Please refer to Chapter 3 for more
information about this strategy. After setting the hooks, the framework iteratively sched-
ule the regions using the current strategy. If it is desired, one can set more callback hooks
and try different strategies iteratively. Next, the iterative_schedule() function will
be explained.

5“notes” are special annotations in RTX format that are attached to instructions as extra information.

46 CHAPTER 4. ITERATIVE FRAMEWORK

Pseudo-code 4.5: schedule insns() using iterative scheduling with swap strategy.

/∗ s c h e d u l i n g f o r both Sched1 and Sched2 pa sse s ∗/
s c h e d u l e i n s n s ()
{

. . .
i f (n u m b e r o f i t e r a t i o n s == 0)
{

for (r =0; r < number o f r eg ions ; r++)
s c h e d u l e r e g i o n (r) ;

}
else
{

/∗ s e t t i n g the c a l l b a c k hooks ∗/
i t e r a t i v e d o n e p = swap break ;
i t e r a t i v e p r e s c h e d u l i n g = swap pre schedu le ;
i t e r a t i v e p o s t s c h e d u l i n g = swap post schedu le ;
i t e r a t i v e e v a l u a t e o r d e r = c l o c k c y c l e c o s t ;

for (r =0; r < number o f r eg ions ; r++)
i t e r a t i v e s c h e d u l e (r) ;

}
. . .

}

The iterative scheduler is invoked for each region (which is one basic block) separately.
In the beginning, it takes extra actions and initialises variables. These are illustrated
in Listing 4.7, such as saving the initial input, counting the number of instructions,
enumerating them, building all the dependency matrices, finding the critical path and
its length, and replacing the current strategy with the brute-force algorithm in case
the number of iterations is big enough. The set_strategy() which is responsible for
this decision, is the implementation of Algorithm 3.6. Further on, the list scheduler is
invoked once to get the performance of the default schedule. Setting the global variable
iterative_phase to true indicates that the next invocations of the list scheduler are
part of the iterative framework in current scheduling pass. As a result, for example, the
compute_priorities() function loads the priorities from the priority vector instead of
calculating them.

After the initialising steps, the iterative loop starts which is repeated for
number_of_iterations times. In the beginning of each iteration, the function hook
iterative_done_p() checks the conditions defined by the current strategy and deter-
mines whether the loop must continue or not. If it is decided not to break the loop,
the INITIALIZE_REGIONS() macro is used to make a function calls to set up regions
information. This makes it possible to invoke the scheduler again. Right before call-
ing the scheduling routine for the current region, the iterative_pre_scheduling()

They are generated and used by different optimisations passes.
6Mixed with landing approach to avoid local minima.

4.3. THE FRAMEWORK’S FINAL DESIGN 47

Pseudo-code 4.6: iterative schedule(), the framework.

/∗ r i s the number o f reg ion ∗/
i t e r a t i v e s c h e d u l e (r)
{

i n i t i t e r a t i v e f r a m e w o r k (r) ; /∗ g a t h e r i n g needed in format ion ∗/

/∗ Repeating t i l l an e a r l y terminat ion c o n d i t i o n ∗
∗ i s met or we run our course ∗/

while (i t e r c o u n t e r < n u m b e r o f i t e r a t i o n s)
{

i f (i t e r a t i v e d o n e p ()) /∗ hook ∗/
break ;

i t e r c o u n t e r ++;
INITIALIZE REGIONS () ;

/∗ hook : Decides how the next order shou ld l o o k l i k e ∗/
i t e r a t i v e p r e s c h e d u l i n g () ;

/∗ Running the s c h e d u l e r on the reg ion r ∗/
s c h e d u l e r e g i o n (r) ;

/∗ hook : Now, l e t ’ s examine the r e s u l t ∗/
i t e r a t i v e e v a l u a t e o r d e r () ;

/∗ hook : Some house keep ing f o r next i t e r a t i o n ∗/
i t e r a t i v e p o s t s c h e d u l i n g () ;

/∗ c a l l s g g c c o l l e c t () , and r e s t o r e s saved i n i t i a l input ∗/
FINALIZE SCHEDULER () ;

}

/∗ c a l l s the s c h e d u l e r wi th the b e s t parameters , e t c . ∗/
f i n i s h i t e r a t i v e f r a m e w o r k (r) ;

}

hook is invoked which allows the strategy to alter the parameters for scheduling. In
scheduling_region(), the compute_priorities() loads the priorities from an array
(which probably is manipulated by the pre-scheduling hook). Once scheduling is done,
the performance of the schedule is evaluated by the iterative_evaluate_order() hook.
Besides, this hook make it possible to save the current priorities if they led to shorter clock
cycle. Next comes the last hook in this iteration, the iterative_post_scheduling().
According to the performance obtained, some steps might be taken such as set-
ting the variable that makes the condition in iterative_done_p() to be true, or
directing the next iterative_pre_scheduling(). At the end of the iteration,
FINALIZE_SCHEDULER() macro invokes a set of functions. This allows using the
INITIALIZE_REGIONS() again, calls the GCC’s garbage collector, and restores the order
of instructions. When the iterations are done, at finish_iterative_framework(), the

48 CHAPTER 4. ITERATIVE FRAMEWORK

current region is scheduled once again with the best parameters observed.

Pseudo-code 4.7: Initialising the framework.

i n i t i t e r a t i v e f r a m e w o r k (r)
{

s a v e i n i t i a l i n p u t () ; /∗ remembering the r t x order ∗/
number o f insns = c o u n t i n s t r u c t i o n s () ;
i f (number o f insns == 0)

return ;
enumerate insns () ;

/∗ g e t t i n g t h r e e t y p e s o f graphs out o f the b l o c k ∗/
i n i t d e p m a t r i x c o u n t (&adj matr ix , &min matrix , &path matr ix) ;

/∗ f i n d i n g the c r i t i c a l path and i t s l e n g t h ∗/
c r i t i c a l p a t h = g e t c r i t i c a l p a t h () ;

/∗ shou ld we go on wi th curren t s t r a t e g y or brute−f o r c e ∗/
s e t s t r a t e g y () ;

/∗ s c h e d u l i n g wi th d e f a u l t h e u r i s t i c s ∗/
s c h e d u l e r e g i o n (r) ;
minimum = i t e r a t i v e o r d e r c o s t () ;

FINALIZE SCHEDULER () ;

/∗ now we are a c t u a l l y in i t e r a t i v e mode ∗/
i t e r a t i v e p h a s e = true ;

return ;
}

4.3.1 Promoting Instructions Leading to a Branch

In some cases, it has been observed that a found solution in sched2 (a scheduling order
other than the default one which has a better performance) can end up in more cycle
counts in the end. In this section, an example of such cases is shown and the solution
that tries to minimise this effect is discussed.

Assume a machine capable of issuing at most one multiplication, two addition, and
one branch operations in each cycle. The number of clock cycles needed to finish multi-
plication and addition is one. The branch operation has a delay slot of three. Moreover,
assume a basic block with a DDG as depicted in Figure 4.1. Each mi is a multiplication
instruction and each ai is an addition instruction. The subscript i represents the UID.
For each node, the number after the colon is the critical path length assigned to that
instruction. Nodes with bigger values have higher importance over those with lower val-
ues. In case the priorities of two instructions are the same, the one with lower UID is

4.3. THE FRAMEWORK’S FINAL DESIGN 49

scheduled first. This DDG, considering the assigned priorities, ends up in a scheduling
order with 5 clock cycles.

m1: 3

a2: 2

a5: 1m4: 1 m6: 1 a7: 1 a8: 1 a9: 1 a10: 1

m3: 2

priorities = < 3 , 2 , 2 , 1 , 1 , 1 , 1 , 1 , 1 , 1 >
m1 m3a2 m4 m6a5 a7 a8 a9 a10

[1]:

[2]:

[3]:

[4]:

[5]:

m1

a2

m4

m6

a10

||

||

||

m3

a5

a8

||

||

a7

a9

Figure 4.1: A DDG, its priority vector, and the schedule obtained using critical path
heuristic.

There exists a better scheduling order than the one already seen. If the priority
vector looks like the one in Figure 4.2, the performance is going to be 4 clock cycles. It
is easy to see that this new priority vector is actually the original one with priorities of
m1 and a2 swapped with the priorities of m3 and m6 respectively. At this point, the
second schedule is better than the first.

During Sched3, the hardware loop instructions are introduced while its delay slots
are being filled. These are not visible in Sched2. Assume in Sched3, a loop instruction is
generated which depends on m4. For example, the multiplication result of m4 is written
to register r1 and the“loop bb5, r1” instruction (wants to execute the fifth basic block,
r1 times) needs to read that. After issuing the loop instruction in these two different
scheduling orders, the performance turns the other way around. The order with 5 clock
cycles will become 7 cycles and the order with 4 clock cycles will become 8 cycles, as
depicted in Figure 4.3. This is because in the second order, which is obtained randomly,
m4 is issued one cycle later.

To avoid this situation as much as possible, a slight change has been made. In sched3,
after loading the saved priorities for a basic block, the priority of instructions leading
to a branch is increased. It is like loading almost the same order from sched2, while

50 CHAPTER 4. ITERATIVE FRAMEWORK

m1: 2

a2: 1

a5: 1m4: 1 m6: 2 a7: 1 a8: 1 a9: 1 a10: 1

m3: 3

[1]:

[2]:

[3]:

[4]:

m3

m1

m6

m4

||

||

||

a7

a2

a5

||

||

||

a8

a9

a10

priorities = < 2 , 1 , 3 , 1 , 1 , 2 , 1 , 1 , 1 , 1 >
m1 m3a2 m4 m6a5 a7 a8 a9 a10

Figure 4.2: A DDG, its priority vector, and the schedule obtained using random priori-
ties.

shifting some instructions above in the final scheduling sequence. Figure 4.4 illustrates
an example of this. It must be mentioned that this solution rarely ends up in a worse
scheduling order. For instance, because of shifting up some instructions, the critical path
instructions might be postponed (due to the shortage of functional units). This approach,
at first, was only used for the basic blocks that the iterative scheduling improved during
sched2 7. Since the result was satisfactory, it was decided to make this method the default
behaviour of the compiler, disregarding the fact whether or not the iterative scheduling
is happening. In other words, after determining the priority of instructions in sched3,
the priority of predecessors of a branch instruction are increased. The determination of
priorities can be done either by calculation or by loading them from an array.

4.4 Iterative Compilation Flags

Now that the iterative scheduling concepts are discussed, the compilation flags can be
explained:

• -msched1-iterative= number : This flag sks the compiler to iteratively schedule

7So that in sched3, instead of letting the scheduler calculate the priorities from the DDG, it would
read it from the saved priority vector.

4.4. ITERATIVE COMPILATION FLAGS 51

[1]:

[2]:

[3]:

[4]:

[5]:

m1

a2

m4

m6

a10

||

||

||

m3

a5

a8

||

||

a7

a9

[1]:

[2]:

[3]:

[4]:

[5]:

[6]:

[7]:

m1

a2

m4

m6

a10

nop

nop

||

||

||

m3

a5

a8

||

||

a7

a9 || loop

[1]:

[2]:

[3]:

[4]:

[5]:

[6]:

[7]:

[8]:

m3

m1

m6

m4

loop

nop

nop

nop

||

||

||

a7

a2

a5

||

||

||

a8

a9

a10

[1]:

[2]:

[3]:

[4]:

m3

m1

m6

m4

||

||

||

a7

a2

a5

||

||

||

a8

a9

a10

loop depends on m4

// delay slot finished

// delay slot finished

Figure 4.3: Two scheduling orders of the same basic block, before and after delay slot
filling.

each basic block in sched1, for number times (number > 0), and selects the best.

• -msched2-iterative= number : The compiler will schedule each basic block during
sched2, number (number > 0) of times. The one with the better performance will
be the output of sched2 and its order is going to be reproduced in sched3.

• -fno-promote-branch-deps: Since promoting the rank of instructions which lead
to a branch in sched3 has become the default action in the compiler, this flag
will disable it. Nevertheless, when a non-default scheduling sequence is being
transferred from sched2 to sched3, the promotion takes place anyway.

52 CHAPTER 4. ITERATIVE FRAMEWORK

[1]:

[2]:

[3]:

[4]:

m3

m1

m6

m4

||

||

||

a7

a2

a5

||

||

||

a8

a9

a10

[1]:

[2]:

[3]:

[4]:

m3

m1

m4

m6

||

||

||

a7

a2

a5

||

||

||

a8

a9

a10

[1]:

[2]:

[3]:

[4]:

[5]:

[6]:

[7]:

m3

m1

m4

m6

nop

nop

nop

||

||

||

a7

a2

a5

||

||

||

a8

a9

a10

// delay slot finished

|| loop

order in sched2 loading order in sched3 end of sched3

Figure 4.4: Loading the order from sched2 while giving higher importance to m4.

• -fsched-random-seed= number : If the underlying strategy in iterative schedul-
ing is using PRNGs, the random seed is initialised with number. In case this value
is not given, the compiler uses a hard-coded number as the random seed. This
guarantees a deterministic output from the compiler.

4.5 Summary

All the three scheduling passes in GCC use the schedule_region() function to schedule
each region. It is not possible to call this function repeatedly on the same region, unless
some extra initialising and finalising procedures are invoked in between. The iterative
framework not only takes care of this function but also provides each iteration with the
initial input. Moreover, it gathers useful information from the current basic block and
makes them available. This pluggable iterative framework is designed in such a way that
it remains remain encapsulated from the strategy.

The iterative scheduling may happen in sched1 and/or sched2. It is not implemented
for sched3, because sched3 is already an iterative pass and it is not a good idea to apply
another iterative approach on top of it. In sched2, when a better scheduling sequence is
found, it becomes the output of the scheduling pass. Moreover, the same order is going
to be reproduced in sched3. On the other side, if a better scheduling order is obtained
in sched1, it is only going to be the output of that pass because it is desired have the
effect of this sequence on the register allocator only, not to reproduce it again later.

There are scenarios where a winning solution (the scheduling sequence with a better
performance than the default) in sched2 ends up being a losing solution in sched3. This
comes from the fact that different orders do not fill the delay slots in the same way and
the information about these delay slots are not known at sched2. To minimise the effect
of this lack of information, the instructions leading to a branch get higher priorities in
case of loading an order from sched2 in sched3.

Although the strategy embedded in the framework might use a pseudo-random ap-
proach, the output will still be the same as long as the input file and the compilation

4.5. SUMMARY 53

flags are the same. This deterministic property allows the iterative scheduler to have a
reproducible output.

54 CHAPTER 4. ITERATIVE FRAMEWORK

Experimental Results 5
The DSP-IC group of ST-Ericsson, developed in-house test cases for checking the validity
and the performance of the compiler. Most of these tests are DSP programs responsible
for handling 2G (GSM), 3G (WCDMA), 4G (LTE), and wireless communications. Each
test case listed in this section represents one of the functions in these test cases. The
corresponding performance is obtained from counting the clock cycles at execution time.
Two sets of benchmarks are considered for performance evaluation in this project1:

• kernels-321: This benchmark consists of 321 test cases in all. To
measure the iterative scheduling improvement, the Iterative List Sched-
uler (ILS) was compared against the List Scheduler (LS) with -O3

and -fno-ivopts2 as common compilation flags (“-O3 + -fno-ivopts” vs.
“-O3 + -fno-ivopts + iterative flags”).

• kernels-81: This is a set of test cases that are representative of EVP’s workload.
It consists of 81 test cases. A combination of flags, called sweep flags, is selected for
each test case to tune it in such a way that the best cycle count is achieved. In this
benchmark, the improvement of ILS is measured by adding the iterative flags to the
sweep flags (sweep flags” as reference vs. “sweep flags + iterative flags”).

5.1 “kernels-321” Benchmark

In this benchmark, 321 test cases were compiled with GCC. The “-O3 + -fno-ivopts”
flags were used for the reference (LS). Then once again, the test cases were compiled
with the iterative flags in addition to the reference flags3 (ILS).

In Table 5.1, an overview of this benchmark is given. 53% of the tests (171 out of
321) were improved and the average (geometric mean) of total improvement was 3.67%.
On the side, the average code size was reduced by 1.20%. Originally, using the list
scheduler, the compilation time was 4 minutes. This time increased to 34 minutes while
using the iterative list scheduler. The summary of improvements is depicted in Figure
5.1 and Figure 5.2. For more details on the performance of each test case please consult
the tables in Appendix A.

1They are not exclusive.
2Suppresses high-level loop induction variable optimisations, which are enabled if -O1 is used. These

optimisations are generally profitable but, for some specific cases of loops with numerous uses of the
iteration variable that follow a common pattern, they may end up destroying the regularity that could
be exploited at a lower level and thus producing inferior code.

3For example the iterative flags for the “libEvpFft256” test case are: -fsched-random-seed=38265161
+ -msched1-iterative=515 + -msched2-iterative=1600.

55

56 CHAPTER 5. EXPERIMENTAL RESULTS

Cycle counts improvement 3.67%

Improved test cases 53%

Increased compilation time 850%

Code size reduction 1.20%

Table 5.1: Statistics of applying iterative scheduling on “kernels-321”.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Figure 5.1: Geometric mean of improvements for each “kernels-321” benchmark group.

5.2 “kernels-81” Benchmark

In this benchmark, 81 test cases were compiled with GCC. The iterative scheduler
(“sweep flags + iterative flags”) was compared against the reference non-iterative
scheduler (only “sweep flags”). The goal in this benchmark was to improve the best re-
sults obtained by the non-iterative compiler. The iterative scheduler managed to improve
40% of the benchmarks (33 out of 81). The geometric mean of the total improvement
was 1.03%. This was accomplished by using the iterative scheduling in sched1 and/or
sched2 with an average of 5000 iterations. The performance comparison between the
List Scheduler (LS) and the Iterative List Scheduler (ILS) is listed in Table B.1 and
Table B.2.

In Figure 5.3, the histogram of average improvements is depicted. The first group
consisting of “conven”, “cowc”, “libEvpFft256”, etc. has an average improvement of
5.966%. Figure 5.4 categorises the improvements into different ranges and demonstrates
how many of them fall under the same range.

5.2. “KERNELS-81” BENCHMARK 57

20

30

40

50

60

70

80

90

0

10

20

(0-5]%

improvement

(5-10]%

improvement

(10-15]%

improvement

(15-20]%

improvement

(20-50]%

improvement

Figure 5.2: Distribution of 171 improved test cases in “kernels-321” over different im-
provement ranges.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8

Figure 5.3: Geometric mean of improvements for each “kernels-81” benchmark group.

58 CHAPTER 5. EXPERIMENTAL RESULTS

0

5

10

15

20

25

(0-2]% improvement (2-4]% improvement (4-6]% improvement (6-8]% improvement

Figure 5.4: Distribution of 33 improved test cases from “kernels-81” over different im-
provement ranges.

5.3 Compilation Time

The 3.67% performance improvement for the “kernels-321” was achieved after 34 minutes
of compilations, whereas the non-iterative version took 4 minutes. In Table 5.2, ten test
cases of the benchmark are listed along with corresponding compilation time for both
LS and ILS. For instance, it can be seen that the golay_manoverlay test case achieved
2 times speed-up with an extra minute compilation time.

Test Case
LS Compilation ILS Compilation Number of Improved

Time Time Iterations Cycles

cowc fxp kernel 0.93s 2.21s 174 33.59%

cowc flp kernel 0.86s 13.57s 1061 10.89%

golay manoverlay 1.48s 61.42s 2495 49.84%

libEvpMatInvSqrt 1.16s 23.16s 1048 22.22%

libEvpTranspose 0.61s 5.06s 408 15.36%

libEvpFft256 2.08s 107.32s 2115 9.65%

libEvpFft256 div2 1.27s 61.28s 1861 8.54%

libEvpFft256 sat 2.15s 102.70s 2115 9.65%

mc 16xN b 0.60s 11.82s 2194 7.32%

demuxb 2 0.62s 4.99s 1939 17.07%

Table 5.2: Compilation times for a selected set of test cases from “kernels-321”: LS vs.
ILS.

5.4. THE COmbining Weight Computation (COWC) BENCHMARK 59

5.4 The COmbining Weight Computation (COWC) bench-
mark

Since the 2G standard is well established after years of implementation, the performance
of various multi standards modems in the market over this standard is more or less the
same. This is also true for the 3G standard. The key performance differentiator for these
modems comes from the implementation of the new 4G (LTE) standard. The EVP, as a
part of the Thorium modem, executes the software partition corresponding to the LTE
standard.

The biggest component of the LTE load on the EVP is the adaptive filter, COWC.
The COWC kernel discussed in this section, is the of the COWC listed in the “kernels-
321” becnhmark. It accounts for 33% of the EVP’s workload and is invoked 13K times
a second. Thus, according to Amdahl’s law, it is a primary objective when attempting
to improve performance. We have found that the compiler achieved producing a 10%
shorter version of the COWC kernel after applying the iterative scheduling.

Thorium drains a current of 118 mA of which the EVP accounts for 25 mA. After
improving the COWC with iterative scheduling, 1 mA was reduced, resulting in 4%
reduction of the current drain for the EVP and consequently almost 1% for the entire
modem. This happened because the reduced cycle count of the running application
allowed the processor to finish its tasks earlier and switch to stand-by mode.

In Table 5.3, the performance of COWC is listed after compilation with different flags.
Moreover, the utilisation of the VMAC unit as the mostly used resource in this adaptive
filter is shown. The sweep flags in the table refers to a set of compiler optimisation flags
used for the test case such that the minimum cycle count is achieved.

Compilation Flags Clock Cycles VMAC Utilisation

-O3 91 45.65%

-O3 + sweep flags 81 51.85%

-O3 + sweep flags + iterative flags 73 57.53%

Table 5.3: Static clock cycle counts of COWC kernel with different flags.

60 CHAPTER 5. EXPERIMENTAL RESULTS

Conclusions and Future Work 6
This research was undertaken in DSP-IC group of ST-Ericsson and its goal has been to
reduce the cycle count of compiled programs. These programs are mostly responsible
for handling 2G, 3G, 4G standards and are compiled by a GCC port for an embedded
VLIW processor, namely the EVP. To adhere to simplicity and power efficiency, EVP
relies on the compiler to increase its throughput.

To achieve our goal, the scheduling pass in GCC, out of many optimisation passes,
was targeted. We introduced a random iterative scheduling algorithm to this pass. In
this way, different schedules are produced and the best one is selected.

The iterative scheduler proposed in this thesis was added to the production compiler
and is currently being used as a part of the speed-up optimisation settings. The value
and portability of the iterative scheduler was empirically proven by several typical test
cases, especially when it managed to improve the updated COWC filter by 10%.

6.1 Conclusions

In this section, the conclusions that were drawn after this research are briefly listed.

• The scheduling heuristics in GCC are used for a long time, while being tweaked
to achieve fairly good, if not optimal, schedules. To benefit from this, we use this
schedule as the initial point upon which a local search (swapping) is performed to
find better solutions.

• Our iterative scheduler modifies the priority of instructions, in order to produce
different schedules. These priorities are mapped into a vector, called priority vec-
tor, such that changes to this vector affect the output of the list scheduler. It is
important to initialise the priority vector with numbers that are likely to produce
good schedules. We had two options in that matter. The first one involved using
unique numbers that represent the position of the corresponding instruction in the
default schedule. For example, the priority value for the last instruction in the
default schedule would be 1, the priority of the second to last instruction would
be 2, and so on. The second option was initialising the priority vector with the
Critical Path Length (CPL) of instructions which are not necessarily unique. We
selected the second option, because when priorities are not unique, other scheduling
heuristics have a chance to be applied and construct a better schedule.

• The iterative scheduler repeatedly modifies the priority vector. These modifications
are done on top of each other. To speed-up the process of finding better schedules,
we tweaked our iterative scheduler to take into account the outcome of changes to
the priority vector. Whenever a change to the priority vector results to more cycle

61

62 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

count for a scheduled basic block, that change is discarded and another change is
made (going toward some other solution).

• Our iterative scheduler, performs a local search for other schedules. Two schedules
are considered local to each other when their instruction orders are similar. Having
a schedule (and its priority vector), we want to take a small step in the solution
space (all valid schedules) to find another schedule. If the changes on the priority
vector are too much, the corresponding schedule can be very different from the cur-
rent one. What our random swapping approach does in each iteration is selecting
two instructions randomly and exchanging their priorities. This way, the changes
are under control and we can gradually step toward better schedules, especially
when it is combined with a directed search as described above.

• A strategy for getting out of local minimum traps had to be developed because of
using a directed search method. This strategy, had to produce any valid schedule
without being biased. The landing algorithm described in Section 3.3 is as such.

• There is no need to perform a random search for basic blocks with small number
of valid schedules. Instead, all of the schedules must be produced. This has
two advantages. First, since all of the schedules are produced, the best solution
is found. Second, this can decrease the compilation time. For example, if the
iterative scheduler is asked to perform 1000 iterations while the number of possible
schedules for a DDG is 20, the iterative scheduler produces the 20 schedules and
skips the rest of iterations. To do this, the iterative scheduler needs to calculate
the number of valid schedules or at least should know if this number is bigger than
the given iteration number. This is what the counting algorithm in Section 3.4
helps us to do.

• Adding the iterative scheduler to GCC resulted in speed improvement for the
compiled applications. The applications that were benchmarked are mostly re-
sponsible for handling mobile signals and wireless communications. In one of the
benchmarks, our iterative scheduler moderately improved the -O3 optimisation.
When we combined the iterative scheduler with the -O3 optimisation, a 3.67% cy-
cle count speed-up was achieved, compared to the benchmark where only -O3 flag
was used. The compilation for the iterative scheduler took 34 minutes, while the
non-iterative version was only 4 minutes. While this might not be acceptable for
day to day compilations, but it is well received in ST-Ericsson, since they want
to improve their critical and limited programs. In another benchmark, we took
the fastest version of applications1 and observed that the iterative scheduler still
managed to improve their cycle count by 1.02%.

1A set of flags for each application was used, called the sweep flags, to produce binaries with smallest
cycle count observed.

6.2. FUTURE WORK 63

6.2 Future Work

In this section, we present some of the issues that were not considered in this work. They
can be interesting aspects to take into account when taking this work further.

• Instead of applying and evaluating the iterative scheduling in the same pass, one
can widen the scope of the iteration. One good example would be changing the
schedule in Sched1 and evaluating the result in Sched3.

• A different metric than the clock cycles can be used for evaluating the perfor-
mance of schedules in Sched1. For instance, this new metric can be the average of
register pressure per basic block. It is also possible to focus on other aspects of
improvements such as code size.

• The performance of the counting algorithm discussed in Section 3.4 can be opti-
mised. For example, one of the key points to be considered is the selection of the
edge for dividing the graph. A well-devised criterion for selecting such edges will
reduce the number of steps to solve the problem.

The iterative scheduling proposed in this research indicates once again the importance
of performing randomised search for improving the solutions to NP-complete problems.
The same concept can be used in various parts of compilation process such as clustering
or software pipelining in which the optimal solutions are not known.

64 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, Compilers:
Principles, Techniques, and Tools, Prentice Hall, 2006.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,
Introduction to Algorithms, MIT Press and McGraw-Hill, 2001.

[3] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck, Efficiently Com-
puting Static Single Assignment Form and the Control Dependence Graph, ACM
Transactions on Programming Languages and Systems (1991), 451–490.

[4] D. Edelsohn, W. Gellerich, M. Hagog, D. Naishlos, M. Namolaru, E. Pasch, H. Pen-
ner, U. Weigand, and A. Zaks, Contributions to the GNU Compiler Collection, IBM
Systems Journal 44 (2005), no. 2, 259–278.

[5] Free Software Foundation, http://gcc.gnu.org/onlinedocs/, Gcc internals manual.

[6] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-
Tov, Ayal Zaks, Bilha Mendelson, Edwin Bonilla, John Thomson, Hugh Leather,
Chris Williams, Michael O’Boyle, Phil Barnard, Elton Ashton, Eric Courtois, and
Francois Bodin, MILEPOST GCC: Machine Learning Based Research Compiler,
GCC Developers’ Summit (2008), 1–13.

[7] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics:
A Foundation for Computer Science, Addison-Wesley Professional, 1994.

[8] John L. Hennessy and David A. Patterson, Computer architecture: A quantitative
approach, Morgan Kaufmann, 2006.

[9] International Telecommunication Union, http://www.itu.int/, International mobile
telecommunications-2000 standard.

[10] Georgia Kouveli, Kornilios Kourtis, Georgios Goumas, and Nectarios Koziris, Ex-
ploring the Benefits of Randomized Instruction Scheduling, GROW (2011).

[11] Wing-Ning Li, Zhichun Xiao, and Gordon Beavers, On Computing the Number of
Topological Orderings of a Directed Acyclic Graph, Congressus Numerantium 174
(2005), 143–159.

[12] Vladimir N. Makarov, The Integrated Register Allocator for GCC, GCC Developers’
Summit (2007), 77–90.

[13] Abid M. Malik, Tyrel Russell, Michael Chase, and Peter van Beek, Learning Heuris-
tics for Basic Block Instruction Scheduling, Journal of Heuristics 14 (1981), no. 6,
549–569.

[14] Thomas Muller, Employing Finite Automata for Resource Scheduling, Proceedings
of the 26th Annual International Symposium on Microarchitecture (1993), 12–20.

65

66 BIBLIOGRAPHY

[15] D. Novillo, Tree SSA: A New Optimization Infrastructure for GCC, GCC Develop-
ers’ Summit (2003), 181–193.

[16] David A. Patterson and Carlo H. Sequin, RISC I: A Reduced Instruction Set VLSI
Computer, Proceedings of the 8th Annual Symposium on Computer Architecture
(1981), 443–457.

[17] Todd A. Proebsting and Christopher W. Fraser, Detecting Pipeline Structural Haz-
ards Quickly, Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Prin-
ciples of Programming Languages (1994), 280–286.

[18] Stuart Russell and Peter Norvig, Artificial Intelligence, A Modern Approach, Pren-
tice Hall, 2009.

[19] Philip J. Schielke, Stochastic Instruction Scheduling, Ph.D. thesis, Rice University,
2000.

[20] Y.N. Srikant and Priti Shankar (eds.), The Compiler Design Handbook: Optimiza-
tions & Machine Code Generation, CRC Press, 2002.

[21] Roel Trienekens, Porting the GCC Compiler to a VLIW Vector Processor, Master’s
thesis, Delft University of Technology, 2009.

[22] Alex Turjan, Dmitry Cheresiz, Claudiu Zissulescu, and Wim Kloosterhuis, The GCC
Port for the EVP Architecture, ST-Ericsson DSP Innovation Center, 2012.

Appendix A: Benchmarks for
“kernels-321” A

67

68 Benchmarks for “kernels-321”

Group Test Case LS Iterative-LS Improved Geomean

1

golay manoverlay 1146.33 575.00 49.84%

19.234%

cowc fxp kernel 3135.00 2082.00 33.59%
golay manpipe1 1157.33 897.33 22.47%
libEvpMatInvSqrt 234.00 182.00 22.22%
LTE FHT32pt 123.00 100.00 18.70%
LTE initial FHT32pt 123.00 100.00 18.70%
demuxb 2 82.00 68.00 17.07%
demuxb 2 val8 84.00 70.00 16.67%
fht s4 1 72.00 60.00 16.67%
fht s4 2 72.00 60.00 16.67%
LTE periodic InputPermute 302.00 254.00 15.89%
fht s4 1 limit 71.00 60.00 15.49%
fht s4 2 limit 71.00 60.00 15.49%
libEvpTranspose 703.00 595.00 15.36%
t3g transpose 758.00 650.00 14.25%
demux 2 67.00 58.00 13.43%
fft block 4096 1953.00 1697.00 13.11%
fft block 2048 993.00 865.00 12.89%
fft block 1024 513.00 449.00 12.48%
fft 64 selfsort note 450.00 394.00 12.44%

2

fft 64 selfsort nsat 450.00 394.00 12.44%

10.535%

fft block 512 273.00 241.00 11.72%
libEvpFht32HP gcc 45.00 40.00 11.11%
fft 2048 3759.00 3342.00 11.09%
fft 1024 1773.00 1579.00 10.94%
cowc flp kernel 1965.00 1751.00 10.89%
h264transform 4 fa mp 178.00 159.00 10.67%
fft 64 2 pipe 462.00 413.00 10.61%
fft 64 sat 2 pipe 462.00 413.00 10.61%
fft 4096 7892.00 7058.00 10.57%
fft block 256 153.00 137.00 10.46%
fft 64 1 477.00 428.00 10.27%
fft 64 2 477.00 428.00 10.27%
fft 64 sat 2 477.00 428.00 10.27%
libEvpFft128 div2 139.00 125.00 10.07%
fft 4096 btail vi 1311.00 1181.00 9.92%
fft 4096 btail ii 1318.00 1190.00 9.71%
fft 1024 tail vi 351.00 317.00 9.69%
libEvpFft64 div2 62.00 56.00 9.68%
libEvpFft256 311.00 281.00 9.65%

Table A.1: Average execution cycle counts for “kernels-321”: LS vs. ILS.

Benchmarks for “kernels-321” 69

Group Test Case LS Iterative-LS Improved Geomean

3

libEvpFft256 sat 311.00 281.00 9.65%

8.643%

fft 64 1 pipe 462.00 418.00 9.52%
fft 2048 btail ii 678.00 614.00 9.44%
fft 512 btail vi 191.00 173.00 9.42%
fft 2048 btail vvi 1057.00 960.00 9.18%
libEvpDecimateBy3 997.00 906.00 9.13%
fft 1024 btail ii 358.00 326.00 8.94%
demux 3 68.00 62.00 8.82%
fft 128 block vvv 93.00 85.00 8.60%
libEvpFft128HP 444.00 406.00 8.56%
libEvpFft256 div2 328.00 300.00 8.54%
fft 128 btail vi 71.00 65.00 8.45%
LTE MetricsScalar 1919.00 1758.00 8.39%
LTE initial MetricsScalar 1919.00 1758.00 8.39%
fft 512 893.00 819.00 8.29%
fft 512 btail ii 198.00 182.00 8.08%
fft 256 btail vvi 161.00 148.00 8.07%
fft 256 464.00 427.00 7.97%
libEvpLog10Fl v 13.00 12.00 7.69%
libEvpLogEFl v 13.00 12.00 7.69%

4

mc 16xN b 205.00 190.00 7.32%

6.299%

libEvpFftDynScal 8192 17801.00 16516.00 7.22%
libEvpFftDynScal sat 8192 17801.00 16516.00 7.22%
fft 256 btail ii 118.00 110.00 6.78%
LTE CollectSsigSpectra 612.00 571.00 6.70%
fft note idx 422.00 394.00 6.64%
fft 64 selfsort nidx 422.00 394.00 6.64%
fft 128 274.00 256.00 6.57%
huffdecode opt1 1476.00 1382.00 6.37%
fft2 inter 4 126.00 118.00 6.35%
libEvpFft128 127.00 119.00 6.30%
libEvpFft128 sat 127.00 119.00 6.30%
LTE periodic FFT128 127.00 119.00 6.30%
libEvpLog10Fxp 17.00 16.00 5.88%
fft 64 selfsort swp1 404.00 381.00 5.69%
fft 64 selfsort swp2 404.00 381.00 5.69%
libEvpAtan2Fl 18.00 17.00 5.56%
LTE FFT128 127.00 120.00 5.51%
LTE initial FFT128 127.00 120.00 5.51%
libEvpFft32 37.00 35.00 5.41%

Table A.2: Average execution cycle counts for “kernels-321”: LS vs. ILS.

70 Benchmarks for “kernels-321”

Group Test Case LS Iterative-LS Improved Geomean

5

libEvpFft32Fl 37.00 35.00 5.41%

4.875%

fxpfft1 57956.00 54884.00 5.30%
fxpfft2 57956.00 54884.00 5.30%
fxpfft3 57956.00 54884.00 5.30%
Alg InterpolatedChest 2 191.00 181.00 5.24%
LTE DeinterleaveInplace 39.00 37.00 5.13%
LTE initial DeinterleaveInplace 39.00 37.00 5.13%
LTE periodic DeinterleaveInplace 39.00 37.00 5.13%
btail ii 78.00 74.00 5.13%
fft 64 selfsort 2 411.00 390.00 5.11%
btail vv 1313.00 1249.00 4.87%
libEvpFht32HP 42.00 40.00 4.76%
Alg MatFilt 3109.00 2964.00 4.66%
BDTI OFDM IQ SLICER 1 1400.00 1336.00 4.57%
libEvpFht16HP gcc 22.00 21.00 4.55%
BDTI OFDM IQ SLICER 2 1450.00 1386.00 4.41%
fft4bfy 1 stepreg 91.00 87.00 4.40%
fft4bfy 2 bcst 91.00 87.00 4.40%
fft4bfy 3 ptrupd 92.00 88.00 4.35%
fft4bfy 4 aliases 92.00 88.00 4.35%

6

h264transform 2 260.00 249.00 4.23%

3.602%

LTE GetPsigChest 48.00 46.00 4.17%
LTE initial GetEquSsigSpectrum 48.00 46.00 4.17%
LTE initial GetPsigChest 48.00 46.00 4.17%
LTE periodic EquSsigSpectrum 48.00 46.00 4.17%
LTE periodic GetPsigChest 48.00 46.00 4.17%
btail vv 193.00 185.00 4.15%
LTE initial 1 23883.00 22930.00 3.99%
libEvpFft64 54.00 52.00 3.70%
libEvpFft64 sat 54.00 52.00 3.70%
BDTI OFDM IQ SLICER 3 2667.00 2571.00 3.60%
fft 64 selfsort sat 404.00 390.00 3.47%
tgolay manoverlay2 golay 1062.00 1025.33 3.45%
h264transform 1 325.00 314.00 3.38%
libEvpCxNorm 30.00 29.00 3.33%
LTE PsigChest 127.00 123.00 3.15%
golay manpipe2 1352.67 1312.00 3.01%
BDTI OFDM IQ SLICER 4 1707.00 1659.00 2.81%
LTE periodic 1 5162.00 5024.00 2.67%
W AP PFU CCES HS 1 79.00 77.00 2.53%

Table A.3: Average execution cycle counts for “kernels-321”: LS vs. ILS.

Benchmarks for “kernels-321” 71

Group Test Case LS Iterative-LS Improved Geomean

7

W AP PFU CCES HS 2 79.00 77.00 2.53%

1.991%

pccfAcq 1 42.00 41.00 2.38%
pccfAcq reuse 42.00 41.00 2.38%
pccfAcq 2 42.00 41.00 2.38%
multi loops 87.00 85.00 2.30%
Alg InterpolatedChest 1 131.00 128.00 2.29%
fft 64 selfsort 3 397.00 388.00 2.27%
libEvpInterpolateBy5 1251.00 1226.00 2.00%
Alg InterferenceHs 2 258.00 253.00 1.94%
LTE GetEquSpectrum 52.00 51.00 1.92%
LTE periodic SsigEqu 54.00 53.00 1.85%
LTE periodic GetAvgEquSpectrum 55.00 54.00 1.82%
libEvpDecimateBy5 1465.00 1439.00 1.77%
Alg InterferenceHs 1 283.00 278.00 1.77%
LTE Derotate 170.00 167.00 1.76%
LTE Permute 172.00 169.00 1.74%
LTE initial Permute 172.00 169.00 1.74%
LTE periodic CollectSsigSpectra 58.00 57.00 1.72%
LTE initial SsigEqu 59.00 58.00 1.69%
libEvpInterpolateBy3 784.00 772.00 1.53%

8

libEvpInterpolateBy3 gcc 784.00 772.00 1.53%

1.145%

LTE periodic TestHypothesis 66.00 65.00 1.52%
libEvpChol 44911.00 44274.00 1.42%
pccf1 main 71.00 70.00 1.41%
pccf1 main resuse 71.00 70.00 1.41%
pccf2 main 71.00 70.00 1.41%
libEvpTranspose gcc 612.00 604.00 1.31%
LTE EvalHypotheses 78.00 77.00 1.28%
t3g les1 5549.00 5485.00 1.15%
tfft4bfy 6 muldep 2 88.00 87.00 1.14%
cck5511Enc manual swp 91.00 90.00 1.10%
libEvpLes1Fl 586.00 580.00 1.02%
LTE periodic FHT32pt 100.00 99.00 1.00%
fft2 inter 5 101.00 100.00 0.99%
cces hs W AP PFU CCES HS 816.00 808.00 0.98%
libEvpInterpolateBy5 1238.00 1226.00 0.97%
libEvpInvChol 161819.00 160370.00 0.90%
libEvpMatrixMultiplyFl 30017.00 29777.00 0.80%
t3g les2 5602.00 5558.00 0.79%
libEvpLes 116882.00 115976.00 0.78%

Table A.4: Average execution cycle counts for “kernels-321”: LS vs. ILS.

72 Benchmarks for “kernels-321”

Group Test Case LS Iterative-LS Improved Geomean

9

libEvpLes1Fxp 789.00 783.00 0.76%

0.165%

libEvpMatrixMultiply 32908.00 32668.00 0.73%
W AP PFU CCES HS 716.00 712.00 0.56%
LTE initial AverageSpectra 647.00 645.00 0.31%
LTE periodic OutputPermute 372.00 371.00 0.27%
libEvpCholFxp 10084.00 10065.00 0.19%
libEvpCholFxp gcc 10102.00 10083.00 0.19%
LTE initial CollectSsigSpectra 615.00 614.00 0.16%
tvpressure do 0 1045.00 1044.00 0.10%
t3g cholNxN 7374.00 7373.00 0.01%
libEvpCholRDRFl 8301.00 8300.00 0.01%
read write I c 4M to 4M 8.00 8.00 0.00%
read write I p 4M to 4M 8.00 8.00 0.00%
write write I M M 8.00 8.00 0.00%
read write c 4M to 4M 8.00 8.00 0.00%
read write c 4M to 4M x 8.00 8.00 0.00%
read write p 4M to 4M 8.00 8.00 0.00%
write write M M 8.00 8.00 0.00%
BDTI OFDM FIR 1 8303.00 8303.00 0.00%
BDTI OFDM FIR 2 8302.00 8302.00 0.00%

10

BDTI OFDM IQ Demod 42.00 42.00 0.00%

0.000%

BDTI OFDM Viterbi 11181.00 11181.00 0.00%
libEvpAtan2 29.00 29.00 0.00%
libEvpAtan2Fl v 17.00 17.00 0.00%
libEvpDecimateBy2 693.00 693.00 0.00%
libEvpFht16HP 21.00 21.00 0.00%
libEvpInterpolateBy2 576.00 576.00 0.00%
libEvpInterpolateBy2 gcc 576.00 576.00 0.00%
libEvpInvSqrt32ToFloat 12.00 12.00 0.00%
libEvpInvSqrt32ToFloat v 18.00 18.00 0.00%
libEvpLes2Fl 973.00 973.00 0.00%
libEvpLes2Fxp 1749.00 1749.00 0.00%
libEvpLog10Fl 12.00 12.00 0.00%
libEvpLog2Fl 12.00 12.00 0.00%
libEvpLog2Fl v 11.00 11.00 0.00%
libEvpLogEFl 12.00 12.00 0.00%
libEvpLog10Fxp v 20.00 20.00 0.00%
libEvpLog2Fxp 15.00 15.00 0.00%
libEvpLog2Fxp v 20.00 20.00 0.00%
libEvpLogEFxp 15.00 15.00 0.00%

Table A.5: Average execution cycle counts for “kernels-321”: LS vs. ILS.

Benchmarks for “kernels-321” 73

Group Test Case LS Iterative-LS Improved Geomean

11

libEvpLogEFxp v 20.00 20.00 0.00%

0.000%

libEvpCos v 16.00 16.00 0.00%
libEvpSin v 15.00 15.00 0.00%
libEvpSqrt32 10.00 10.00 0.00%
libEvpSqrt32 v 19.00 19.00 0.00%
libEvpSqrtFl 11.00 11.00 0.00%
libEvpSqrtFl v 11.00 11.00 0.00%
fxpAutoCorrelation1 4958568.00 4958568.00 0.00%
fxpAutoCorrelation2 228232.00 228232.00 0.00%
fxpAutoCorrelation3 1680.00 1680.00 0.00%
fxpAutoCorrelation4 218104.00 218104.00 0.00%
convolutionalEncode1 124976.00 124976.00 0.00%
convolutionalEncode2 82984.00 82984.00 0.00%
convolutionalEncode3 124976.00 124976.00 0.00%
fxpBitAllocation1 159364.00 159364.00 0.00%
fxpBitAllocation2 41833.00 41833.00 0.00%
fxpBitAllocation3 552644.00 552644.00 0.00%
idct int32 449.00 449.00 0.00%
ViterbiDecoderIS136 0 4951.00 4951.00 0.00%
ViterbiDecoderIS136 1 235604.00 235604.00 0.00%

12

ViterbiDecoderIS136 2 235604.00 235604.00 0.00%

0.000%

ViterbiDecoderIS136 3 235604.00 235604.00 0.00%
ViterbiDecoderIS136 4 235604.00 235604.00 0.00%
load to ofs 5130.00 5130.00 0.00%
move no valu 10.00 10.00 0.00%
vmove no vshu 10.00 10.00 0.00%
vmove valu 10.00 10.00 0.00%
vmove vlsu 10.00 10.00 0.00%
vmove vshu 10.00 10.00 0.00%
pressure do 1 1047.00 1047.00 0.00%
pressure do 2 1047.00 1047.00 0.00%
pressure doi 1 1045.00 1045.00 0.00%
pressure doi 2 1045.00 1045.00 0.00%
pressure doi 3 1045.00 1045.00 0.00%
vpressure doi 1044.00 1044.00 0.00%
LTE CalcCos 16.00 16.00 0.00%
LTE CalcSin 15.00 15.00 0.00%
LTE 76.00 76.00 0.00%
LTE AverageSpectra 508.00 508.00 0.00%
LTE CalcMetrics 97.00 97.00 0.00%

Table A.6: Average execution cycle counts for “kernels-321”: LS vs. ILS.

74 Benchmarks for “kernels-321”

Group Test Case LS Iterative-LS Improved Geomean

13

LTE DescCSeq 1 34.00 34.00 0.00%

0.000%

LTE DescZSeq 2 93.00 93.00 0.00%
LTE GenDerotSeq 126.00 126.00 0.00%
LTE SsigEqu 53.00 53.00 0.00%
LTE TestHypothesis 48.00 48.00 0.00%
LTE Update 37.25 37.25 0.00%
LTE main 268.00 268.00 0.00%
LTE initial CalcCos 16.00 16.00 0.00%
LTE initial CalcSin 15.00 15.00 0.00%
LTE initial 2 84.00 84.00 0.00%
LTE initial CalcMetrics 89.00 89.00 0.00%
LTE initial Derotate 157.00 157.00 0.00%
LTE initial DescCSeq 1 34.00 34.00 0.00%
LTE initial DescZSeq 2 93.00 93.00 0.00%
LTE initial EvalHypotheses 88.00 88.00 0.00%
LTE initial GenDerotSeq 118.00 118.00 0.00%
LTE initial PsigChest 81.00 81.00 0.00%
LTE initial TestHypothesis 61.00 61.00 0.00%
LTE initial Update 26.00 26.00 0.00%
LTE periodic 2 48.00 48.00 0.00%

14

LTE periodic AvgSsigSpectra 92.00 92.00 0.00%

0.000%

LTE periodic CalcMetrics 66.00 66.00 0.00%
LTE periodic DescCSeq 1 34.00 34.00 0.00%
LTE periodic DescZSeq 2 93.00 93.00 0.00%
LTE periodic EvalCPHypothesis 43.00 43.00 0.00%
LTE periodic EvalSFHypothesis 29.00 29.00 0.00%
LTE periodic MetricsVector 85.00 85.00 0.00%
LTE periodic PsigChest 81.00 81.00 0.00%
LTE periodic Unpack 86.00 86.00 0.00%
cces hs Alg ChEst 72.00 72.00 0.00%
cces hs Alg ChSamp 156.00 156.00 0.00%
cces hs Util Iir 35.00 35.00 0.00%
cces Alg ChEst 72.00 72.00 0.00%
cces Alg ChSamp 141.00 141.00 0.00%
cces Util Iir 35.00 35.00 0.00%
bitscount 2 85.00 85.00 0.00%
cck5511Enc 146.00 146.00 0.00%
cck5511Enc main 2088.00 2088.00 0.00%
dct 1 141.00 141.00 0.00%
dct 2 133.00 133.00 0.00%

Table A.7: Average execution cycle counts for “kernels-321”: LS vs. ILS.

Benchmarks for “kernels-321” 75

Group Test Case LS Iterative-LS Improved Geomean

15

dct tdct 1 932.00 932.00 0.00%

0.000%

dct transform 1 547.00 547.00 0.00%
dct tdct 1 948.00 948.00 0.00%
dct transform 2 547.00 547.00 0.00%
demux 0 113.00 113.00 0.00%
one demux 0 92.00 92.00 0.00%
demux 1 71.00 71.00 0.00%
demuxb 1 79.00 79.00 0.00%
fft2 inter 174.00 174.00 0.00%
fft2 inter 1 178.00 178.00 0.00%
fft2 inter 2 174.00 174.00 0.00%
fft2 inter 3 174.00 174.00 0.00%
fft2 inter 4 176.00 176.00 0.00%
fft2 inter 5 169.00 169.00 0.00%
fft2 inter 6 169.00 169.00 0.00%
fft2 inter 7 136.00 136.00 0.00%
fft4bfy 0 86.00 86.00 0.00%
fft4bfy 5 muldep 1 103.00 103.00 0.00%
fft4bfy 5 muldep 1 103.00 103.00 0.00%

16

fht 0 orig 168.00 168.00 0.00%

0.000%

fht 1 aliases 163.00 163.00 0.00%
fht 2 notemp 163.00 163.00 0.00%
fht 3 lessreg 163.00 163.00 0.00%
fht lessreg exp 163.00 163.00 0.00%
fht s4 0 153.00 153.00 0.00%
fht 1 aliases 142.00 142.00 0.00%
fir 1 20944.00 20944.00 0.00%
fir 2 11600.00 11600.00 0.00%
fir 3 11284.00 11284.00 0.00%
fir scalar 1 334863.00 334863.00 0.00%
golay aliases golay 1204.00 1204.00 0.00%
golay manoverlay3 golay 980.67 980.67 0.00%
golay noimm golay 1207.00 1207.00 0.00%
golay orig golay 1287.33 1287.33 0.00%
th264transform 230.00 230.00 0.00%
huffdecode 2063.00 2063.00 0.00%
one parity 13.00 13.00 0.00%
parity 110.00 110.00 0.00%
sqrt8 main 96.00 96.00 0.00%
sqrt8 18.00 18.00 0.00%
vmfill 13.00 13.00 0.00%

Table A.8: Average execution cycle counts for “kernels-321”: LS vs. ILS.

76 Benchmarks for “kernels-321”

77

78 Benchmarks for “kernels-81”

Appendix B: Benchmarks for
“kernels-81” B

Group Test Case LS Iterative-LS Improved Geomean

1

convolutionalEncode1 97318.00 90150.00 7.37%

5.966%

convolutionalEncode3 97318.00 90150.00 7.37%
cowc fxp kernel 2108.00 1956.00 7.21%
libEvpFft256 302.00 283.00 6.29%
libEvpFft256 sat 302.00 283.00 6.29%
libEvpFft256 div2 318.00 298.00 6.29%
convolutionalEncode2 66594.00 62498.00 6.15%
libEvpFht32HP 40.00 38.00 5.00%
libEvpFft128 div2 129.00 124.00 3.88%
cowc flp kernel 1688.00 1625.00 3.73%

2

libEvpFftDynScal 16778.00 16262.00 3.08%

1.780%

libEvpFftDynScal sat 16778.00 16262.00 3.08%
libEvpMatInvSqrt 133.00 129.00 3.01%
libEvpFft128HP 408.00 401.00 1.72%
libEvpDecimator 919.00 906.00 1.41%
idct32 411.00 406.00 1.22%
fft 1024 1467.00 1450.00 1.16%
fft 2048 3018.00 2985.00 1.09%
fft 4096 6546.00 6480.00 1.01%
libEvpInvChol 150156.00 148658.00 1.00%

3

libEvpFft128 122.00 121.00 0.82%

0.448%

libEvpFft128 sat 122.00 121.00 0.82%
libEvpChol 43282.00 42929.00 0.82%
libEvpMatrixMultiplyFl 30016.00 29776.00 0.80%
fxpAutoCorrelation3 1048.00 1040.00 0.76%
libEvpCholFxp 8614.00 8581.00 0.38%
fxpAutoCorrelation4 124952.00 124920.00 0.03%
viterb01 212054.00 212018.00 0.02%
t3g cholNxN 6104.00 6103.00 0.02%
libEvpCholRDRFl 7521.00 7520.00 0.01%

4

fxpAutoCorrelation2 130584.00 130568.00 0.01%

0.001%

fxpAutoCorrelation1 2833944.00 2833896.00 0.00%
libEvpLes 103250.00 103249.00 0.00%
libEvpAtan2 28.00 28.00 0.00%
libEvpAtan2Fl 15.00 15.00 0.00%
libEvpAtan2Fl v 16.00 16.00 0.00%
libEvpCxNorm 29.00 29.00 0.00%
libEvpDecimateBy2 692.00 692.00 0.00%
libEvpDecimateBy5 1465.00 1465.00 0.00%
libEvpFft32 34.00 34.00 0.00%

Table B.1: Average execution cycle counts for “kernels-81”: LS vs. ILS.

Benchmarks for “kernels-81” 79

Group Test Case LS Iterative-LS Improved Geomean

5

libEvpFft32Fl 35.00 35.00 0.00%

0.000%

libEvpFft64 52.00 52.00 0.00%
libEvpFft64 div2 57.00 57.00 0.00%
libEvpFft64 sat 52.00 52.00 0.00%
libEvpFht16HP 21.00 21.00 0.00%
libEvpInterpolateBy2 576.00 576.00 0.00%
libEvpInterpolateBy3 760.00 760.00 0.00%
libEvpInterpolateBy5 1226.00 1226.00 0.00%
libEvpInvSqrt 12.00 12.00 0.00%
libEvpInvSqrt v 17.00 17.00 0.00%

6

libEvpLesFl 580.00 580.00 0.00%

0.000%

libEvpLesFl v 960.00 960.00 0.00%
libEvpLesFxp 783.00 783.00 0.00%
libEvpLesFxp v 1449.00 1449.00 0.00%
libEvpLogFl 12.00 12.00 0.00%
libEvpLogFl v 12.00 12.00 0.00%
libEvpLogFl 12.00 12.00 0.00%
libEvpLogFl v 11.00 11.00 0.00%
libEvpLogFl 12.00 12.00 0.00%
libEvpLogFl v 12.00 12.00 0.00%

7

libEvpLogFxp 16.00 16.00 0.00%

0.000%

libEvpLogFxp v 20.00 20.00 0.00%
libEvpLogFxp 14.00 14.00 0.00%
libEvpLogFxp v 19.00 19.00 0.00%
libEvpLogFxp 14.00 14.00 0.00%
libEvpLogFxp v 19.00 19.00 0.00%
libEvpMatrixMultiply 31132.00 31132.00 0.00%
libEvpSin v 16.00 16.00 0.00%
libEvpSin v 15.00 15.00 0.00%
libEvpSqrt 10.00 10.00 0.00%

8

libEvpSqrt v 17.00 17.00 0.00%

0.000%

libEvpSqrtFl 11.00 11.00 0.00%
libEvpSqrtFl v 11.00 11.00 0.00%
libEvpTranspose 581.00 581.00 0.00%
fxpBitAllocation1 107995.00 107995.00 0.00%
fxpBitAllocation2 28573.00 28573.00 0.00%
fxpBitAllocation3 374587.00 374587.00 0.00%
fxpfft 41823.00 41823.00 0.00%
t3g les1 5485.00 5485.00 0.00%
t3g les2 5555.00 5555.00 0.00%
t3g transpose 495.00 495.00 0.00%

Table B.2: Average execution cycle counts for “kernels-81”: LS vs. ILS.

80 Benchmarks for “kernels-81”

Appendix C: Branch
Promotion Benchmark C

In this section, the measured performance of the compiler is compared before and after
adding the branch promotion feature. The experiment was performed on “kernels-321”
benchmark. In Table C.1, only the affected test cases are listed. The branch promo-
tion led to both improvements and degradations. However, as it can be observed in
Figure C.1, the number and magnitude of improvements exceeds that of degradations.

The branch promotion approach gives higher priority to the predecessors of a branch
so that they can be scheduled in the early cycles of the basic block. If these promoted
instructions do not postpone the critical instructions, then there is a possibility that the
number of cycles will be reduced; otherwise, the result can be a longer schedule.

81

82 Branch Promotion Benchmark

Test Case
Without With

Improved
Branch Promotion Branch Promotion

LTE GetPsigChest 47.00 48.00 -2.13%

LTE periodic GetPsigChest 47.00 48.00 -2.13%

LTE initial GetEquSsigSpectrum 47.00 48.00 -2.13%

LTE periodic EquSsigSpectrum 47.00 48.00 -2.13%

LTE initial GetPsigChest 47.00 48.00 -2.13%

LTE GetEquSpectrum 51.00 52.00 -1.96%

LTE FHT32pt 121.00 123.00 -1.65%

LTE initial FHT32pt 121.00 123.00 -1.65%

fft2 inter 5 100.00 101.00 -1.00%

libEvpTranspose gcc 607.00 612.00 -0.82%

Alg InterferenceHs 2 256.00 258.00 -0.78%

fft 512 btail vi 192.00 191.00 0.52%

cces hs Alg ChSamp 157.00 156.00 0.64%

cces Alg ChSamp 142.00 141.00 0.70%

Alg InterpolatedChest 1 132.00 131.00 0.76%

W AP PFU CCES HS 722.00 716.00 0.83%

cces hs W AP PFU CCES HS 824.00 816.00 0.97%

fft2 inter 1 180.00 178.00 1.11%

libEvpLes2Fl 984.00 973.00 1.12%

convolutionalEncode1 126512.00 124976.00 1.21%

convolutionalEncode3 126512.00 124976.00 1.21%

fft 128 btail vi 72.00 71.00 1.39%

convolutionalEncode2 84520.00 82984.00 1.82%

LTE initial 1 24463.00 23883.00 2.37%

W AP PFU CCES HS 1 82.00 79.00 3.66%

W AP PFU CCES HS 2 82.00 79.00 3.66%

huffdecode opt1 1536.00 1476.00 3.91%

huffdecode 2155.00 2063.00 4.27%

LTE initial MetricsScalar 2072.00 1919.00 7.38%

LTE MetricsScalar 2072.00 1919.00 7.38%

cces hs Util Iir 38.00 35.00 7.89%

cces Util Iir 38.00 35.00 7.89%

Table C.1: Average execution times for “kernels-321” affected by branch promotion.

Branch Promotion Benchmark 83

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

Figure C.1: The effect of branch promotion on “kernels-321”.

84 Branch Promotion Benchmark

List of Acronyms

ACU Address Computation Unit

BFS Breadth First Search . 2

CGU Code Generation Unit . 16

COWC COmbining Weight Computation . vi

CPL Critical Path Length . 19

DAG Directed Acyclic Graph . 3

DCE Dead Code Elimination . 6

DDG Data Dependence Graph. .v

DFA Deterministic Finite Automaton . 7

DFS Depth First Search . 2

DSP Digital Signal Processor . i

EVP Embedded Vector Processor . i

GCC GNU Compiler Collection . i

GSM Groupe Spcial Mobile

ILP Instruction Level Parallelism . i

ILS Iterative List Scheduler . xi

IRA Integrated Register Allocator . 6

ISA Instruction Set Architecture . 5

IVU Intra Vector Unit . 16

LS List Scheduler . xi

LTE Long-Term Evolution

modem MOdulator-DEModulator

NOP No Operation (instruction)

PALU Predicated Arithmetic Logic Unit

PCU Program Control Unit

PRNG Pseudo-Random Number Generator . 21

RISC Reduced Instruction Set Computer . 1

RTL Register Transfer Language. .vii

RTX RTL Expression . 45

SALU Scalar Arithmetic Logic Unit

SDCU Scalar Data Computation Unit

SLSU Scalar Load/Store Unit . 16

85

86 List of Acronyms

SMAC Scalar Multiply/Accumulate . 16

SSA Static Single Assignment . 5

UID Unique Instruction Identifier . 9

UMTS Universal Mobile Telecommunications System. .16

VALU Vector Arithmetic Logic Unit . 16

VMALU Vector Mask Arithmetic Logic Unit . 16

VDCU Vector Data Computation Unit

VLIW Very Long Instruction Word. i

VLSU Vector Load/Store Unit . 16

VMAC Vector Multiply/Accumulate . 16

VMALU Vector Mask Arithmetic Logic Unit . 16

VSHU Vector Shuffle Unit . 16

WCDMA Wideband Code Division Multiple Access

	Contents
	List of Figures
	List of Algorithms
	List of Tables
	Acknowledgements
	Introduction
	Contexts and Trends
	Related Work
	Goals and Contributions

	Fundamentals
	Definitions
	Compilation
	Instruction Scheduler
	Data Dependence Graph
	Scheduling the Instructions
	Critical Path Length
	Motivational Example

	The Embedded Vector Processor
	The Architecture
	Features

	Iterative List Scheduler
	Terminology and Definitions
	Making the Scheduling Pass Iterative
	Random Swapping of Priorities
	Selection of Two Instructions for Swapping

	Random Landing
	Counting the Topological Orders
	Preliminary
	Implementing the Counter
	Using the Counting Algorithm on a Sub-graph of DDG

	Summary

	Iterative Framework
	High Level Overview of the Scheduling Pass
	Iterative Scheduling
	Interfaces Provided by Iterative Framework
	Additional Scheduling Information Provided by the Framework
	Other Framework Features

	The Framework's Final Design
	Promoting Instructions Leading to a Branch

	Iterative Compilation Flags
	Summary

	Experimental Results
	``kernels-321'' Benchmark
	``kernels-81'' Benchmark
	Compilation Time
	The COmbining Weight Computation (COWC) benchmark

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix A: Benchmarks for ``kernels-321''
	Benchmarks for ``kernels-321''
	Appendix B: Benchmarks for ``kernels-81''
	Benchmarks for ``kernels-81''
	Appendix C: Branch Promotion Benchmark
	Branch Promotion Benchmark
	List of Acronyms

