
Scientific Visualization

in Virtual Reality:

Interaction Techniques and

Application Development

About the cover image
Metaphorical illustration of scientific visualization in Virtual Reality. A display
can be considered as a window into a virtual world, see Chapters 1 and 2.

About the front cover
The Virtual Workbench is in use for interactive exploration and visualization of
a cumulus clouds dataset, see Section 6.3. The VRX toolkit (Section 5.2) is used
for this purpose.
Central image: A user at the Workbench is studying the vertical air velocity in
the interior of a cloud using a direct slicing tool, attached to the Plexipad, see
Section 5.1. This is an ”augmented reality” photo, see Section 3.5.4.
Bottom right image: A user is interactively studying the air flow in and around
the clouds using streamlines, see Section 6.3. This is an image from a playback
of a Workbench session in the RWB Simulator, see Section 3.5.

About the back cover
The Virtual Workbench is being used for visualization of real-time Molecular
Dynamics and steering of the simulation in the MolDRIVE system (Section 6.2).
Central image: A user at the Workbench is steering a particle of a protein using
the spring manipulator, see Section 4.3.
Bottom left and right images:
Particle steering with the spring manipulator in an electrolyte simulation (left).
The virtual particle steering method is assisted by a color slicer, which shows
the particle potential around it (right).

Cover design by Michal Koutek

Scientific Visualization

in Virtual Reality:

Interaction Techniques and

Application Development

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 12 mei 2003 om 10:30 uur
door

Michal KOUTEK

inženýr,

Fakulta elektrotechnická,
České vysoké učenı́ technické v Praze

geboren te Praag, Tsjechië

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. F.W. Jansen

Toegevoegd promotor:
Ir. F.H. Post

Samenstelling promotiecommissie:
Rector Magnificus, voorzitter
Prof.dr.ir. F.W. Jansen, Technische Universiteit Delft, promotor
Ir. F.H. Post, Technische Universiteit Delft, toegevoegd promotor
Prof.dr.ir. H.J. Sips, Technische Universiteit Delft
Prof.dr.ir. J.J.van Wijk, Technische Universiteit Eindhoven
Prof.Dr.rer.nat. B. Fröhlich, Bauhaus-Universität Weimar
Prof.Ing. P. Slavı́k, CSc. Czech Technical University in Prague
Dr.ir. A.F. Bakker, Technische Universiteit Delft

Advanced School for Computing and Imaging

This work was carried out in graduate school ASCI.
ASCI dissertation series number 85.

Published by:

Michal Koutek,
Computer Graphics & CAD/CAM group,
Faculty of Information Technology and Systems (ITS),
Delft University of Technology (TU Delft)

E-mail: M.Koutek@cs.tudelft.nl, Koutek@nat.vu.nl

WWW: http://visualization.tudelft.nl, http://graphics.tudelft.nl

Copyright c© 2003 by Michal Koutek, all rights reserved.

Preface

The research described in this thesis was carried out in the Computer Graphics
& CAD/CAM group at Delft University of Technology. The project was directly
supervised by Frits Post. It is the sixth project in a series of PhD projects on
data visualization, but the first project concerned with Virtual Reality and data
visualization.

In summer 1998, the Responsive Workbench facility was installed at the High
Performance Applied Computing Center (HPαC) at TU Delft. The Workbench
was intended to serve as a high performance visualization system, working in a
cluster with the other HPαC supercomputers.

This PhD project was initiated to set up an environment for high-performance
data visualization, so that our group and other research groups of TU Delft
could use this VR facility. Another aspect was to include computational steer-
ing facilities, which would enable the user to control a supercomputer simula-
tion directly from the virtual environment displayed on the Workbench. For the
purposes of our research we developed the RWB Library and the VRX toolkit,
together a basic environment for visualization and interaction on the RWB.

The thesis covers three main topics: design and development of VR applica-
tions, interaction in virtual environments, and visualization of data, originating
from scientific simulations. On various case studies we have demonstrated that
the Responsive Workbench concept with our software and techniques can pro-
vide an efficient visualization environment with natural spatial interaction. The
case studies were done in co-operation with internal TU Delft and external re-
search groups. One of the early applications was an interactive 3D visualization
of the flooding risk simulations, provided by WL|Delft Hydraulics. The Molec-
ular Dynamics visualization and computational steering case study has been
conducted in close co-operation with the Computational Physics group (Faculty
of Applied Sciences, TU Delft). The visualization of atmospheric data, originat-
ing from cumulus clouds simulations, has been performed together with the
Thermal and Fluids Sciences group (Faculty of Applied Sciences, TU Delft).

This thesis is accompanied by a CD-ROM that contains an electronic version
of this thesis, video presentations for conferences, VR animations, images and
web pages. It is strongly recommended to reproduce the CD-ROM and give it
to everyone who is interested.

v

Many people have contributed to this research and were of importance for
completion of this dissertation. I wish to thank them all.

First of all I would like to thank my direct supervisor Frits Post and my pro-
motor Erik Jansen for giving me the possibility to conduct this research project
in their group.

Frits, you are an extraordinary supervisor with a very broad spectrum of
knowledge and a never-drying-out source of inspiration. You were a great
teacher and advisor for me on the course of performing research and writing
scientific papers. I have learned a lot from your very detailed reviews and cor-
rections of my papers and this thesis. I am much obliged to you.

Erik, I want to thank you for your enthusiastic support through the project
and also for constructive suggestions to this thesis.

I also appreciate very much Loek Bakker for his great ideas, technical sup-
port and keeping the Virtual Workbench operational; every 6 months some of
the VR or graphics hardware got a failure. I remember that the fishing rod
metaphor, which we used for particle steering, was your idea.

Next, I would like to thank all people at the CG & CC group and at the CP
group: the (Ph.D.) students, the teachers, and the technical and administrative
staff. They created a pleasant environment to work in, and an atmosphere which
I enjoyed very much. I must also thank several M.Sc. students that I had the
pleasure to work with during my PhD project: Gerwin de Haan, Jeroen van
Hees, Jeroen den Hertog, and Michel Brinckman. We worked as a team together
and we have learned a lot from each other. I will always remember the golden
times when our VR lab was full of great people.

Further, I would like thank several colleagues from TU Delft, who provided
us with their datasets or simulations that we have visualized on the Workbench:
Harm Jonker - cumulus clouds simulation, Jaap Flohil - Gromacs simulation of
proteins, Robert H.F. Chung - DEMMPSI simulation of electrolytes, and Guus
Stelling - flooding risk simulation data. I also thank Anton Koning from SARA
for giving us the possibility to test MolDRIVE in the CAVE. I should not forget
to thank Anton Heijs who helped me at the beginning with the Workbench.

I am grateful to my former office mates: Freek Reinders, Eelco van den Berg,
and Alex Noort for helping me to discover the mysteries of the Dutch language.
Special thanks belongs to Freek for his patience in correcting my often wrong
pronunciation (a typical example: de mensen hebben ”roest” nodig).

I am thankful to VU Amsterdam, my new employer, in particular Henri Bal
and Hans Spoelder, for giving me the possibility to finish this thesis.

Finally, my greatest thanks goes my wife Ilona for her love and unconditional
support, and taking care of Sebastian, our little son, so that I could sleep in the
night and fully concentrate on the writing of this thesis in the past months.

Delft, January 2003 Michal Koutek

vi

Contents
1 Introduction 1

1.1 Objectives . 2
1.2 Structure of This Thesis . 3

2 VR in Scientific Visualization 5
2.1 Scientific Visualization . 5
2.2 Virtual Reality . 9

2.2.1 VR Definition . 9
2.2.2 Head Mounted Displays . 12
2.2.3 Projection-based Displays 13
2.2.4 Personal VR Systems . 16
2.2.5 Virtual Reality: Research Issues 18

2.3 Visualization in VR . 20
2.3.1 Example Visualization Applications in VR 22
2.3.2 Visualization in VR: Research Issues 26

2.4 Research Agenda of This Thesis . 27

3 The Concept of the Virtual Workbench 29
3.1 Introduction to the Virtual Workbench 29
3.2 Technical Characteristics of the Workbench 30

3.2.1 Tracking System and Input Devices 31
3.2.2 Registration and Calibration of the Tracking System 33
3.2.3 Projection and Viewing . 35

3.3 Design Aspects of the VE on the Workbench 37
3.3.1 Visualization tasks in the VE 37
3.3.2 Workbench Viewing Metaphors 38
3.3.3 Multi Sensory Feedback . 40
3.3.4 Layout of the VE . 41
3.3.5 Technical Constraints . 41

3.4 RWB Library: A Software Environment for the Virtual Workbench 43
3.4.1 Introduction to VR Software for the Workbench 43
3.4.2 Performer and Scene Graph Basics 46
3.4.3 Structure of RWB Library Applications 50
3.4.4 RWB Library Performance 58

vii

Contents

3.4.5 3D Interaction and User Interface 59
3.5 RWB Simulator: A Tool for Application Development and Analysis 60

3.5.1 Motivation . 60
3.5.2 Development of RWB Applications 61
3.5.3 The RWB Simulator Usage 63
3.5.4 Presentation of the RWB Application 65

3.6 RWB Library and Simulator Summary 66

4 3D Interaction in Virtual Environments 67
4.1 Basic Interaction Techniques . 67

4.1.1 Interaction Techniques - Overview 68
4.1.2 Interaction Techniques for the Workbench 71
4.1.3 Objects Collisions and Object Constraints 73

4.2 Force Feedback and Spring-Based Tools 79
4.2.1 Spring-Based Manipulation Tools 82
4.2.2 Dynamics on the Responsive Workbench 85
4.2.3 Spring Manipulation Techniques 88
4.2.4 Spring-fork: A Flexible Manipulation Tool 91
4.2.5 Other Spring-Based Tools 100
4.2.6 Visual Force Feedback: Summary and Discussion 101

4.3 Particle Steering Tools for Molecular Dynamics 102
4.3.1 Introduction . 102
4.3.2 Molecular Dynamics Real-time Virtual Environment . . . 105
4.3.3 Virtual Particle Steering Method 107
4.3.4 Spring Feedback Particle Steering Method 109
4.3.5 Spring Force Feedback Particle Steering Method 110
4.3.6 Particle Steering: Summary and Discussion 117

5 Exploration and Data Visualization in VR 119
5.1 Towards Intuitive Interaction and Exploration 119

5.1.1 Introduction . 119
5.1.2 Interaction Methods . 122
5.1.3 Navigation . 125
5.1.4 Probing Tools . 130
5.1.5 Implementation . 134
5.1.6 Example Applications . 134
5.1.7 Results . 138
5.1.8 Intuitive Exploration Tools: Summary and Discussion . . . 139

5.2 VRX: Virtual Reality eXplorer . 140
5.2.1 Overview of the Concept 140
5.2.2 Multiprocessing Scheme . 142
5.2.3 Visualization of Volumetric Data 142
5.2.4 Advanced Visualization Techniques 152
5.2.5 VRX: Summary and Discussion 155

viii

Contents

6 Case Studies: Visualization in VR 157
6.1 Flooding Risk Simulation and Visualization 159

6.1.1 Introduction to Flooding Simulations 159
6.1.2 2D Visualization of Flooding 160
6.1.3 Prototype of 3D Visualization 161
6.1.4 3D Visualization in VR . 163
6.1.5 Flooding Visualization: Summary and Discussion 166

6.2 Interactive Visualization of Molecular Dynamics 167
6.2.1 Introduction to Molecular Dynamics 167
6.2.2 Introduction to the MolDRIVE Project 171
6.2.3 MolDRIVE Design Requirements 174
6.2.4 Architecture and components of MolDRIVE 175
6.2.5 Simulation Steering and Time Control 181
6.2.6 The Visualization Client of MolDRIVE 182
6.2.7 MolDRIVE Case Studies . 185
6.2.8 MolDRIVE Performance . 192
6.2.9 MolDRIVE: Summary and Discussion 196

6.3 Visualization of Cumulus Clouds 197
6.3.1 Introduction to Atmospheric Simulations 197
6.3.2 Cloud Visualization in VR 199
6.3.3 Data Management and Analysis 200
6.3.4 Visualization of Cloud Geometry 202
6.3.5 Clustering and Tracking of Clouds 205
6.3.6 Interactive Exploration and Visualization of Cloud Data . 208
6.3.7 Cloud Visualization: Summary and Discussion 215

7 Conclusions and Future Work 217
7.1 Conclusions . 217

7.1.1 Development of Workbench Applications 217
7.1.2 Interaction with Virtual Environments 218
7.1.3 Exploration and Data Visualization in VEs 218
7.1.4 Lessons Learned . 219

7.2 Future Work . 222
7.2.1 Extension of Concepts and Techniques Developed 222
7.2.2 Long-Term Topics . 223

Bibliography 225

Color Section 237

Summary 247

Samenvatting 249

Curriculum Vitæ 251

ix

Chapter 1

Introduction
The progress in computer graphics and virtual reality technologies in recent
decades has made the Sutherlands’ visions about ”ultimate displays” become
almost real [Sutherland, 1970]:
”We should look on the display as a window into a virtual world. Improvements of image
generation will make the picture look real. Computers will maintain the world model in
real time. Immersion in virtual worlds will be provided by new displays. Users could
directly manipulate virtual objects. The objects will move realistically. Virtual world
will also sound and feel real.”

In a recent survey [Brooks, 1999] on the state of the art in Virtual Reality
(VR), Brooks states that VR already works well but there is still much to be
improved. Finding good VR applications, their implementation, and natural
user interaction also belongs to the main VR issues, and these aspects were part
of the motivation for this research.

Brooks defines a VR experience as any in which the user is effectively im-
mersed in a responsive virtual world. VR displays and VR devices provide a
user with interactive virtual worlds. The symbiosis between the VR hardware
and the virtual world is usually called Virtual Environment (VE). It seems that
VR is no longer an infant technology and has already found some serious appli-
cations. The increasing adoption of VR technology and its techniques is increas-
ing productivity, improving team communication, and reducing costs.

The first and still the best VR applications are vehicle simulators, mostly for
airplanes, cars or ships. Virtual prototyping, as an industrial VR application, is
used by engineers to design, develop, and evaluate new products by fully using
computer models. This branch is dominated by aircraft and automotive indus-
tries. VR applications in entertainment (games, virtual rides, interactive story
telling, etc.) are traditionally also very successful. Among many other serious
application areas we can mention architectural design, training of pilots and
astronauts, military training and simulators, medicine (psychiatric treatment,
surgical training and planning), and last but not least visualization of data from
medicine, chemistry, pharmacy, geology, meteorology or other applied sciences.

Today’s scientific simulations and data sensing/measuring systems produce
enormous amounts of data. The only practical way after the statistical analysis,
to get insight into ”the numbers” of the simulated or measured data is to use
data visualization. In recent years it has been demonstrated that Virtual Reality
can also provide very natural environments with powerful techniques for visu-
alization of scientific data [van Dam et al., 2000; Brooks, 1999; Schmalstieg et al.,
1998; Dai et al., 1997; Krüger et al., 1995; Haase, 1994; Cruz-Neira et al., 1993;
Bryson & Levit, 1992].

1

Chapter 1. Introduction

Building an immersive visualization environment begins with a careful se-
lection of a VR system. Before the beginning of this PhD project the Responsive
Workbench was selected as a promising VR system for visualization of simula-
tion results in computational science. We wanted to study in depth the aspects
of developing VR applications, design of VEs, and user interaction with VEs. As
application domain we have chosen visualization of scientific data. Indeed, we
were expected to develop practical experience and knowledge about utilization
of VR for our visualization group and HPαC. This PhD project was addition-
ally initiated to set up an efficient environment for data visualization, so that
our group and other research groups of TU Delft could use this VR facility as a
useful tool on a more regular basis in our visualization projects.

1.1 Objectives

The main objective of the research described in this thesis was to study visual-
ization of scientific data in Virtual Environments (VEs). We have developed new
techniques for interactive data exploration and visualization on the Responsive
Workbench (RWB), a projection-based Virtual Reality system.

For the purposes of our research we had to design and implement a basic
software environment for visualization and interaction on the RWB. Further, we
have also studied computational steering of remotely running simulations from
virtual environments.

On various case studies we have proved that the Responsive Workbench
concept with our software and techniques can provide an efficient visualization
environment with natural three-dimensional interaction.

The objectives of this thesis are:

1. Implementation of development environment for RWB applications

2. Design of VEs

3. Interaction techniques for VEs

4. Visual force-feedback tools for manipulation of virtual objects

5. Steering of real-time simulations

6. Techniques and architectures for interactive visualization of data

The first objective, was to have a flexible software environment for the Respon-
sive Workbench to facilitate rapid application development. For this purpose
we have built the RWB Library and the RWB Simulator. This software environ-
ment was published in [Koutek & Post, 2001a, 2002]. With this basic software
we could design VEs and develop new techniques for interactive visualization,
and test them on various case studies.

2

1.2. Structure of This Thesis

A second objective was to have a coherent set of interaction methods for nav-
igation in VEs, and for selection and manipulation of virtual objects. This the-
sis presents direct and remote interaction techniques for virtual assembly tasks.
We have studied dynamic object behaviour during manipulation. Object con-
straints, collision detection, and collision behaviour were also considered. We
have developed the spring-based manipulation tools to provide a visual force-
feedback and to substitute the real force input. Research in this area was pub-
lished in [Koutek & Post, 2000, 2001b, 2001c].

Another objective was to design and develop visualization and steering VE
for remotely running real-time simulations. This thesis presents the MolDRIVE
system, which provides visualization and computational steering of Molecular
Dynamics (MD) simulations. The aspects and the techniques of particle (atomic)
steering were published in [Koutek et al., 2002]. In this paper we have presented
an original particle steering technique: the Spring Particle Manipulator.

The final objective was to explore ways and techniques for interactive ex-
ploration and visualization of volumetric data in immersive VEs. To increase
the intuitivity of the techniques we have employed two-handed interaction sce-
narios and made use of the pen-and-notepad metaphor. Suitable data abstrac-
tions were considered and fast probing tools were implemented into VRX, our
visualization toolkit for VR. This research on interactive exploration tools for
immersive VEs has been published in [de Haan, Koutek & Post, 2002].

A number of M.Sc. students has participated in several research areas of
this thesis. The MolDRIVE system has been developed in a team co-operation
[van Hees & den Hertog, 2002; de Haan, 2002]. Van Hees and den Hertog
worked mainly on implementation of an interface between MD simulations and
VEs. De Haan worked on visualization techniques of MD data in VEs. De Haan
has also significantly contributed to the development of the interactive explo-
ration techniques and the VRX toolkit, which was successfully used in the third
case study (Section 6.3). Further, Michel Brinckman has worked on the user-
assisted tracking of clouds in the third case study [Brinckman, 2002].

1.2 Structure of This Thesis

Chapter 2 provides an overview of related work in the field of visualization
in VR. In Section 2.1 general principles of scientific visualization are described.
Section 2.2 gives an overview on the state of the art in Virtual Reality and VR
systems. Further, Section 2.3 discusses the research issues of scientific data visu-
alization by means of VR. Finally, Section 2.4 describes motivation of our work
and outlines the research agenda of this thesis, which has been derived from the
general research issues of VR and visualization in VR.

3

Chapter 1. Introduction

Some sections of the following chapters are mainly based on our recently
published work. Chapter 3 and especially Sections 3.4 and 3.5 were based on
two conference papers [Koutek & Post, 2001a, 2002]. Section 4.2 was created
as a conjunction of three papers [Koutek & Post, 2000, 2001b, 2001c]. Section 4.3
has been published in [Koutek et al., 2002]. Section 5.1 is also based on one paper
[de Haan, Koutek & Post, 2002]. As we wanted to keep the text of those sections
as fluent and compact as possible, some overlap in text and figures with the
case-studies chapter could not be avoided.

Chapter 3 describes the visualization concept of the Responsive Workbench.
Sections 3.1 and 3.2 give an introduction and an overview of the technical as-
pects of the RWB. In Section 3.3 the focus is on the design aspects and issues of
VEs for visualization on the RWB. Section 3.4 presents the RWB Library and the
RWB Simulator.

Chapter 4 deals with interaction in VEs. Section 4.1 gives an overview of the
basic interaction techniques in VEs and presents a basic interaction set suitable
for the Responsive Workbench. The VR aspects of object collisions and object
constraints are also discussed. Section 4.2 presents visual force-feedback tools
which are based on the spring metaphor. Particle steering tools of MolDRIVE,
our Molecular Dynamics visualization system, are explained in Section 4.3.

Chapter 5 describes our approach to interactive visualization and explo-
ration tools for VR. In Section 5.1 a set of intuitive interaction and exploration
tools for VEs is demonstrated. Section 5.2 presents VRX, our modular object-
oriented toolkit for exploratory data visualization.

Finally, validation and application of the visualization concept and VR tech-
niques described in this thesis have been performed on several case studies, as
described in Chapter 6.

It contains three main case studies:

• Interactive visualization of flooding scenarios (Section 6.1)

• Molecular Dynamics visualization and computational steering (Section 6.2)

• Visualization of cumulus clouds (Section 6.3)

At the end of each chapter conclusions are given, followed by a discussion on
future work in the topics concerned in the chapter. Chapter 7 presents overall
conclusions and gives directions for future research.

4

Chapter 2

VR in Scientific Visualization

2.1 Scientific Visualization

”Scientific visualization is the use of computer graphics to create visual images which
aid in the understanding of complex, often massive numerical representations of sci-
entific concepts or results [McCormick, 1987].” Such numerical representations, or
datasets, may be output of numerical simulations as in Computational Fluid
Dynamics (CFD), Molecular Dynamics (MD) or engineering in general, sensing
(recorded) data as in geological, meteorological or astrophysical applications. In
case of medical data (CT, MRI, etc.) we usually use term medical visualization.

Visualization is essential in interpreting data for many scientific problems.
It transforms numerical data into a visual representation which is much easier
to understand for humans. Other tools such as statistical analysis may present
only a global or localized partial view on the data.

Visualization is such a powerful technique because it exploits the highly
skilled human vision (more than 50 percent of our neurons are devoted to vi-
sion). While computers excel at simulations, numerical operations, data filter-
ing, and data reduction, humans are experts at using their highly developed
pattern-recognition skills to look at anomalies. Compared to programs, humans
are especially good in seeing unexpected and unanticipated emergent proper-
ties [van Dam, 2000]. The human eye has phenomenal capabilities for detecting
structures, shapes and patterns.

”Scientific visualization is not an end in itself, but a component of many scientific
tasks that typically involve certain combination of interpretation and manipulation of
scientific data and models. To aid understanding, scientists visualize the data to look for
patterns, features, relationships and anomalies. Visualization should be thought of as
task driven rather than data driven [van Dam, 2000].”

Simulation and visualization are used as an alternate means of observation,
creating hypotheses and testing the results of simulations against data from
physical experiments. Simulations may use visualization as a separate post-
process or may interlace visualization and parameters setting with re-running
the simulation. We speak then of computational steering [McCormick, 1987], in
which the user monitors and influences the computation process. Computa-
tional steering closes the loop such that the scientists can respond to results of
the simulations as they occur by interactively manipulating the input parame-
ters of the simulation. This technique enhances productivity by greatly reducing
the time between changes of parameters and viewing of the results. Brooks ex-

5

Chapter 2. VR in Scientific Visualization

pressed a need for generalized tools for interactive steering of large computer
simulations [Brooks, 1988]. Over the years, many computational steering ap-
plications and systems have been developed. An overview of computational
steering environments, such as VASE, SCIRun, Progress & Magellan, SMD, CU-
MULVS, and CSE, is given in [Mulder et al., 1999].

Traditionally, scientific visualization has been used in two modes: exploration
and presentation. Goal of data exploration is to find relevant features or pat-
terns in the data, that contain the studied phenomenon. During this process the
user is manipulating visualization techniques and changing a view on the data.
When an appropriate view on the feature/aspect of the data is discovered, then
scientific visualization can produce static images or animations for presentation
of the the investigated phenomenon.

The process of data visualization can be described as a sequence of funda-
mental processing steps [Haber & McNabb, 1990], the visualization pipeline:

• Simulation: results of numerical simulations (or data sensing / measure-
ment) are the input of the visualization pipeline.

• Data selection & filtering: relevant regions of the raw data are selected,
then filtered and enhanced. Techniques such as: i.e. enrichment & en-
hancement, data cropping, down-sizing, noise filtering, segmentation and
feature extraction can be used.

• Visualization mapping: the processed data have to be mapped / trans-
formed into graphical primitives such as: i.e. points, lines, planes / sur-
faces (triangle meshes), or icons, and their properties such as: color, texture,
or opacity.

• Rendering: finally, the graphical primitives are rendered as images, which
are then displayed on the screen.

Simulation
(data generation)

Selection
&

Filtering
Mapping

Rendering

raw
data

regular
data

geometry
data

imageUSER
INTERACTION

Conventional desktop
visualization

Computational
steering

Figure 2.1: Visualization pipeline on desktop workstations

We should think of the visualization as an interactive process, especially in
the exploration phase. On conventional desktop workstations (see Figure 2.1)
the users are provided with the keyboard and mouse interface and through the

6

2.1. Scientific Visualization

visualization systems they can usually interact with the stages of the visualiza-
tion pipeline. If a visualization system provides a good interactive control over
the processing elements (not only changing a view on the data in the render-
ing module, but also changing visual representations, filtering parameters, etc.),
then it can become a powerful research tool.

In the early days of visualization, it was rather difficult for the researcher
to visualize data beyond conventional drawings and plots. Familiarity with
computer graphics programming was required for more sophisticated 3D visu-
alization. In the recent decade(s), the problem of using visualization as a re-
search tool by scientists (non-graphics experts) has been addressed through the
development of powerful visualization systems which offer the user visualiza-
tion capabilities without requiring programming skills. There are basically two
approaches: specialized visualization programs (Vis5D [Hibbard & Santek, 1990],
VMD [Humphrey et al., 1996], and many others) and general purpose data-flow
visualization systems, see Figure 2.2.

The latter approach can be divided into: visualization network editors (AVS
[Upson et al., 1989], OpenDX [Lucas et al., 1992], Iris Explorer [Foulser, 1995])
and visualization programming interface libraries (VTK [Schroeder et al., 1999]).

(a) AVS (b) OpenDX

Figure 2.2: Data-flow visualization systems working as network editors.

Visualization network editors (application builders) are very popular. By
simply connecting visualization modules, represented by graphical icons, a net-
work can be built and the data flow through the network can be defined. Each
of the modules in the constructed network can have its unique functionality,
manipulating the data that flows through the module. Although these mod-
ules can be customized for a specific application, there are numerous general
purpose modules, representing useful functions such as reading data, creating
and rendering geometry. The user can select a data reader module from the li-
brary of input modules, drag it to the network editing area, connect its output
to a visualization mapping module and connect its output to a geometry viewer
module. The user can control parameters of several modules in the pipeline

7

Chapter 2. VR in Scientific Visualization

and navigate in the visualization window to get the best view on the data. The
network builder approach should provide a simple user-friendly and effective
solution for researchers to get a view on their data.

Another approach is to construct the visualization pipeline completely in
a programming language (e.g. Java, C++) or a scripting language (e.g. Tcl,
Python) using a visualization programming library such as the Visualization
ToolKit (VTK) [Schroeder et al., 1999]. VTK is a programming library with nu-
merous visualization modules that can be customized or used directly in almost
any visualization application. Although this approach is more difficult to use
and is not very popular with end users, it gives developers the possibility to use
the visualization tools in their own application development environment.

A collaborative visualization environment such as COVISE [Rantzau et al.,
1998] allows multiple scientists to study visualizations of their data collabora-
tively via a network, see Figure 2.3.

Figure 2.3: COVISE - collaborative visualization [Image source: RUS]

During visualization on a desktop workstation a window is provided to vi-
sualize the results of the pipeline. The user interface plays an important role. It
has to offer interaction methods for efficient data exploration. In a regular desk-
top visualization this control is often supplied by a Graphical User Interface
(GUI), using buttons, menus and widgets to adjust parameters of the visualiza-
tion pipeline. Most users are quite familiar with this 2D interface.

However, performing interactive 3D visualization on regular 2D screens (us-
ing perspective projection of 3D space onto a 2D window) can hide essential spa-
tial features of the data. In addition, it is hard to navigate through the data and
spatially control the orientation and position of the various visualization tools
using the classical 2D user interface. The ambiguous control of the visualization
environment sometimes hinders effective exploration of the datasets.

8

2.2. Virtual Reality

Virtual Reality has the potential to enhance both display of 3D graphics and
spatial control, offering a better environment for exploration. The following
sections describe Virtual Reality and its application in visualization.

2.2 Virtual Reality
The original term Virtual Reality (VR) refers to any computer generated 3D en-
vironment (VE), in which a user is practically immersed. Immersion can be char-
acterized as an experience of being enveloped by, included in, and interacting
with the VE. It is not required that VEs faithfully mimic the real world. As
there are different levels of user immersion, the term VR is sometimes used in
a confusing and misleading manner. Today the boundaries between interactive
3D computer graphics and VR have blurred. Applications like photo-realistic
computer-generated movies, flight simulators, 3D action games and desktop
3D worlds are often placed in the class of Virtual Reality. Similar and related
terms to VR include Synthetic Environments, Artificial Reality, Cyberspace, Vir-
tual Worlds and Virtual Environments.

2.2.1 VR Definition

Virtual reality is the use of computer technology to create the effect of an interactive
3D world in which the objects have a sense of spatial presence. The primary difference
between conventional 3D computer graphics and VR is that in Virtual Reality we are
working with things instead of pictures of things [Bryson, 1994a].

In this thesis, we refer to the concept of immersive Virtual Reality, which gives
the user the psycho-physical experience of being present in a virtual environ-
ment consisting of interactive (virtual) objects. This experience is achieved by a
proper integration of VR hardware (3D displays and spatial interaction devices)
with a responsive computer-generated 3D environment. (Note that VRML ap-
plications are typical examples of non-immersive VR.)
[Brooks, 1999; Burdea & Coiffet, 1994; Durlach & Mavor, 1995] have summa-
rized four technologies which are crucial for VR:

• the visual (and aural/acoustic and haptic) displays that immerse the user
in the virtual world and that block contradictory sensory impression from
the real world;

• the graphics rendering systems that generate at least 20-30 stereo images
per second for each eye;

• the tracking system that periodically reports the position and orientation
of the user’s head and limbs;

• the database construction and maintenance system for building and main-
taining of the virtual world model.

The auxiliary technologies are also important, but not so crucial:

• synthesized sound, including directional sound and sound effects;

9

Chapter 2. VR in Scientific Visualization

• synthesized forces and other haptic sensations to the kinesthetic senses;
• realistic behaviour of objects in VEs;
• improved interaction devices, interaction techniques that substitute for the

real world interactions.

The sensation of space and depth is essential for every VR system. The hu-
man visual system interprets the depth in sensed images using both physio-
logical and psychophysical cues [Okoshi, 1976]. The physiological depth cues are
accommodation, convergence, binocular parallax, and monocular motion par-
allax. Convergence and binocular parallax are the only binocular depth cues,
all others are monocular. The psychophysical depth cues are retinal image size,
linear perspective, texture gradient, overlapping, aerial perspective (fog/haze),
shading and shadows. In the real world people use all available depth cues to
determine distances of objects and their spatial relations.

Through the use of artificial depth cues in computer graphics, these spa-
tial sensations can be simulated. In regular desktop 3D graphics, monocular
depth cues such as perspective, shading, shadows and texture gradients are of-
ten used. In IVR, the stereo display and head tracking are used to also provide the
binocular parallax and motion parallax, respectively.

Figure 2.4: Binocular parallax and stereo effect [Image source: Barco]

The binocular parallax (or stereopsis) is achieved by displaying a separate im-
age for each eye (stereo display). The human visual system uses the slight dif-
ferences in the images to reconstruct depth information. To simulate this strong
depth cue, the computer generates two images from slightly different view-
points on the VE, see Figure 2.4. These two images are displayed to the left
and right eye separately. The images are mentally merged by a human observer,
providing the 3D depth / stereo effect. The separation of images can be achieved
by many techniques, of which passive stereo (using polarized light projection)
and active stereo are very popular, see Figure 2.5.

10

2.2. Virtual Reality

In active stereo, the two images for the left and right eye are alternately
projected at a high frequency (e.g. 2*48 = 96 Hz, or 2*60 = 120 Hz). At the same
frequency these left and right eye images are switched, the LCD shutter glasses
obscure light directed to one of the eyes (Figure 2.5(a)). As a result, each eye of
the user only sees the images intended for that eye.

(a) (b)

Figure 2.5: (a) Active stereo display using one projector and shutter glasses.
(b) Passive stereo display provided by polarized light from two projectors and
polarized glasses (linear polarization is shown, but circular polarization may be
also used). [Image source: Barco]

In passive stereo, the two images intended for the left and right eye are
projected by two separate projectors on a silver screen. Polarizing filters are
mounted on these projectors, while the users wear polarizing glasses. The po-
larization direction of the filters on both the projectors and the glasses is per-
pendicular (Figure 2.5(b)). In this way the user only sees the image generated
by one projector on the left eye and the other image on the right eye.

Figure 2.6: Autostereoscopic display with optical camera-based eyeball tracking
[Image source: Dresden3D]

Recently, the autostereoscopic displays (i.e. Dresden3D [Web-Dresden3D]) were
developed and brought to the market. These displays present a spatial image for
a viewer without using glasses, goggles, or other viewing aids, see Figure 2.6.

11

Chapter 2. VR in Scientific Visualization

However, these displays still suffer from a limited display resolution and other
technical problems. A survey on autostereoscopic and holographic displays can
be found in [Halle, 1997].

Head tracking is used to simulate motion parallax and to measure the spatial
position and orientation of the user’s head. It interactively controls the view-
point on the virtual world, from which the images are generated. To provide
a non-distorted VR experience the rendering system must deliver at least 10
frames per second [Bryson, 1994a].

Immersion in the VEs is typically produced by a stereo 3D display, which
uses head tracking to create a human-centric rather than a computer-determined
point of view on the virtual world. Basically, there are three types of VR dis-
plays: head-mounted displays (HMD), which have small display screens in front
of the user’s eyes, projection-based displays (CAVEs, workbenches, panoramic dis-
plays), which are specially constructed rooms, walls or tables with stereo pro-
jection, and personal VR displays, usually integrated within desktop VR systems.

Presence: closely related to the sensation of immersion is the sensation of
presence. It can be described as the feeling of ”being in the same space as the
VE”, which gives a sense of the reality of objects in the computer-generated
scene and the user’s presence with those objects. Both immersion and presence
are enhanced by a wider field of view than is available on desktop displays. This
helps to provide situation awareness, aids spatial judgements, and enhances
navigation and locomotion. The VR experience can be enhanced with 3D sound
and by haptic devices, which provide touch and force feedback, see Section 4.2.

Interaction with the VE is provided through a variety of spatial input de-
vices, most of these working in 6 degrees of freedom (DOF) based on tracking
technology. Such devices include 3D mice, various kinds of wands (or interaction
stylus) with buttons for pointing and selecting, data gloves that sense joint an-
gles, and pinch gloves that sense fingertip contacts. Both types of gloves provide
position and gesture recognition. Additional sensory modalities are exploited in
speech recognition and haptic force input. More about interaction with virtual
environments, including related work, can be found in Chapter 4.

2.2.2 Head Mounted Displays

The classical way of providing immersion of users in virtual worlds is through
the Head Mounted Displays (HMD). The user is wearing a helmet in which two
small LCD screens and a head tracker are mounted, see Figure 2.7. By looking
at the screens and moving around, the user is completely surrounded by the
virtual world and is visually isolated from the real environment.

Since 1996 see-through HMDs are also available, in which the users can also
see objects of the real world and their own limbs. With classical HMDs, the
user’s limbs had to be modeled and placed into the virtual world. HMDs have
been significantly improved in image resolution, color saturation, brightness,
weight and ergonomics. But still most of these parameters do not completely

12

2.2. Virtual Reality

meet the user’s needs. The light-weight HMDs still have a rather limited field
of view (45 degrees). Nevertheless, HMDs are very popular VR displays, and
they are used in many types of applications, including scientific visualization,
see Figure 2.18. In applications where HMDs do not work well the VR users
tend to employ the projection-based displays.

(a) (b)

Figure 2.7: (a) A conventional HMD; (b) Fear of heights phobia treatment using
HMD [Image source: M.J. Schuemie, ITS TU Delft].

2.2.3 Projection-based Displays

This technology displays the stereo images via CRT, DLP, or LCD projectors
onto a wall, a foil or a frosted glass. It offers much larger field of view on the
displayed virtual world with higher image resolution (more than 1024x768 per
projector), and usually better image quality than HMDs. More users can be
immersed at the same time. Also the ergonomic aspects seem better.

Although the projection-based systems are often more expensive than an
HMD, it is generally believed that the better display quality and their usabil-
ity value are worth their price. Projection-based systems can be implemented in
two ways: in active stereo or passive stereo, with rather expensive shutter glasses
or much cheaper polarizing glasses, respectively. Between shortcomings of these
systems belong: the limited brightness, contrast and sharpness of the projected
images, problems with focus, often problematic calibration and alignment of
projectors in a multiple-projector setup, and finally the need to work in darken
room. They need a proper installation and utilization for optimal results.

Virtual Table Systems

Classical virtual table systems or workbenches can be built either with one pro-
jector in active stereo or two projectors in passive stereo. These systems are
represented by ImmersaDesk (Figure 2.8(a)), BaronTable (Figure 2.8(b)), and the
Responsive Workbench originally developed by [Krüger et al., 1995]. For a de-
tailed description of this concept see also Section 3.1.

13

Chapter 2. VR in Scientific Visualization

The Workbench systems provide partial immersion into the displayed vir-
tual world. In fact the virtual and real worlds coexist. For applications that use
the laboratory table metaphor, it is seen as an advantage that the user remains
present in the real world instead of being fully immersed in a VE.

(a) ImmersaDesk [Image source: Fakespace] (b) Baron [Image source: Barco]

(c) Holobench [Image source: GMD, TAN] (d) Consul [Image source: Barco]

Figure 2.8: Virtual table systems

Since the eye-to-far-screen-edge plane limits the apparent height of virtual
objects, many workbenches can be tilted to resemble drafting tables,see Fig-
ures 2.8(a) and 2.8(b). This problem has been also addressed with the Holobench
concept which has an extra vertical screen, see Figures 2.8(c) and 2.8(d).

Workbench applications are in GIS (geographic information systems), archi-
tecture, chemistry, medicine, modeling and virtual prototyping. The Workbench
systems excel in visualization of complex three-dimensional data.

Fully Immersive VR Systems

The original concept of the CAVE was developed at EVL, University of Illinois
[Cruz-Neira et al., 1993], see Figure 2.9(a). Originally, this VR system provided
surround-screen projection on four sides (left, right, front, and ground). The
projection screens were driven by a set of coordinated image-generation sys-
tems. CAVE-like systems have been later implemented also by others under
different names: VR-CUBE, Cyber Stage, I-SPACE, HyPI6, RAVE, ReaCTor, C2,
or Reality CUBE. The CAVE systems provide complete immersion in the vir-
tual worlds by using either passive or active stereo. In active stereo, the 4-sided
CAVE is built up with four projectors (usually CRT).

14

2.2. Virtual Reality

Recently, in 2001 a 6-sided CAVE called HyPI6 was built at Fraunhoffer IAO
in Stuttgart, see Figure 2.9(b). They have installed 12 rendering PCs with Linux,
OpenGL and Performer for 12 projectors as an alternative to the multi-processor
and multi-pipe SGI Onyx2. HyPI6 can work either in active stereo (only 6 projec-
tors used) or in passive stereo, using all 12 projectors. As the back wall (sliding
door) closes the space, wireless tracking and wireless audio have to be used.
This system provides a complete surrounding projection. A serious issue is that
the user can very easily lose the orientation inside; as the relation to the real
world is almost completely lost.

(a) 4-sided original CAVE [Image source: EVL] (b) 6-sided HyPI6 [Image source: Fr. IAO]

Figure 2.9: Fully immersive CAVE-like systems

Virtual Wall and Panoramic Display Systems

Certain industrial applications require displaying objects in their real-world size.
Objects like cars do not fit into the CAVE-like environment (3x3x3m). Automo-
tive industry thus demands large panoramic tiled displays. Many types of tiled
wall-projection systems have been developed, including: Tanorama CYLINDER
& PowerWall, CADWall, WorkWall I-CONE, or IC-Wall.

(a) CADWall [Image source: Barco] (b) I-CONE [Image source: Fraunhoffer IMK/GMD]

Figure 2.10: Virtual panoramic wall systems

15

Chapter 2. VR in Scientific Visualization

In Figure 2.10 two examples are shown: (a) large tiled projection wall for dis-
playing life-size models of cars, (b) panoramic cylindrical projection for urban
and architectural walk-through.

As these projection systems offer very large display areas and higher resolu-
tion of images (number of projectors times 1280x1024), they are also very useful
for visualization of large scientific datasets. These systems can be built in both
active and passive stereo; even monoscopic projection on such a large (some-
times also panoramic) wall can provide a high level of immersion.

Projection-based displays can be customized and used together with a car
mockup for a driving simulator, see Figure 2.11(a). The user inside the car has
a panoramic view on the road (three back-projected screens in front), side view
on the left (one back-projected screen on left side), and three mirror views (three
front-projected screens behind the car).

(a) Immersive driving simulator [Fr. IAO] (b) Personal Immersion [Fraunhoffer IAO]

Figure 2.11: Customized (multi-) wall projection systems

Due to the increasing performance of PC processors and graphics processors,
such a customized display system can be built with a cluster of Linux PCs,
which seems to be a current trend for low-cost affordable VR systems. In Fig-
ure 2.11(b) is shown a simple example of one projection wall driven by two PCs.

2.2.4 Personal VR Systems

The large and expensive VR systems, such as CAVEs and panoramic walls, are
not affordable or suitable for the daily-use in real research work in many appli-
cation areas [Poston & Serra, 1996; von Wiegand et al., 1999; Mulder & van Liere,
2002]. Certainly, it is nice when the visualization results of research studies can
be presented in larger (fully) immersive VEs to a larger audience. But many
applications i.e. from chemistry, biology, and medicine do not explicitly require
immersion of the users in large VEs.

What is required are ergonomic desktop VR systems, with which the scien-
tists can work longer than 30 minutes in their natural environment (own lab-
oratory), in normal lighting conditions. These personal VR systems should be
of compact desktop size, inexpensive and affordable. This seems to be the best
way to make VR technology accessible and affordable for the real daily use in
scientific and clinical practice.

16

2.2. Virtual Reality

Figure 2.12: The user can manipulate the protein model with his left hand, hold-
ing a cube with markers. The protein geometry can be clipped by using a clip-
ping tool in the right hand. [Image source: CWI (Netherlands)]

Mulder & van Liere have presented the Personal Space Station (PSS), a near-
field virtual environment, addressing the issues of direct interaction, ergonomics,
and costs [Mulder & van Liere, 2002]. In a mirror the user can see stereo images,
which are generated by a cluster of two Linux-based PCs. Head tracking is re-
alized by ultrasound trackers.

The PSS uses optical tracking for user interaction. Two cameras sense the
interaction space, and computers analyze the images, tracking visual markers
on interaction tools, see Figure 2.12. Advantage of optical tracking is that the
user can naturally interact with the VE by using real instruments.

Figure 2.13: Reachin display with a Phantom haptic device provides also force
feedback. [Image source: Reachin]

Another commercially available desktop VR system is the Reachin Worksta-
tion [Web-Reachin], see Figure 2.13. The system is equipped with a Spacemouse
for navigation and a Phantom haptic device allowing 3D interaction, and pro-
viding force feedback.

17

Chapter 2. VR in Scientific Visualization

Similarly, Poston & Serra have developed the Dextroscope, a kind of virtual
workbench on the desktop [Poston & Serra, 1996]. It uses electro-magnetic track-
ing and a stylus for interaction. The Dextroscope [Web-Dextro] is very carefully
designed and fulfills the ergonomic requirements, see Figure 2.19. This system
is commercially available for medical applications.

2.2.5 Virtual Reality: Research Issues

VR is a logical extension of interactive 3D computer graphics and several of
their research issues overlap. However, VR is a special case. Its research agenda
incorporates the development and application of VR display and interaction
technology. A large amount of research is also conducted in the area of Human
Computer Interaction (HCI). As the interaction with VEs is very different from
interaction with a computer, the VR issues go much beyond the conventional
HCI problems.

VR Requirements and Research Agenda

In earlier years the performance requirement was that the scene has to be re-
rendered from the current user viewpoint at least 10 frames per second (fps), so
that the immersion effect would not be lost. Today we wish to see the virtual
worlds displayed rather at higher frame rates 20-30 fps.

Engineering and architectural applications require a rather high level of vi-
sual realism of the virtual objects. Scientific visualization does not generally
require realistic rendering. Nevertheless, there is a great need to render massive
geometric scenes. And it challenges the graphical hardware, which is currently
technologically driven by the game industry. The current graphics processors
(GPU’s) have rendering throughput of geometric primitives in order of 10M tri-
angles per second, which is not sufficient. In the near future it should be about
300M triangles.

An important aspect is the system latency. It is required that the system re-
sponse to a user input must occur within 0.1 seconds. Longer delays result in a
significantly degraded ability to control objects in the VE [Bryson, 1994a].

Failure to meet the performance requirements will cause the immersion to
fail, with consequences for the usage of such system. It can cause people to
feel very uncomfortable in the VE, a condition sometimes called cybersickness.
Everything required to support the working of the virtual environment, includ-
ing data management and access, user interaction, computation, and rendering,
must take place within these performance constraints. It remains a challenge for
many researchers to meet these criteria for scientific visualization in VR.

18

2.2. Virtual Reality

We can summarize the general VR research issues as follows:

• Improved display technologies (new light production technologies, new
display surfaces, high resolution, high luminance, constant color, and au-
tomatic calibration of multi-projector environments)

• More realistic rendering, maximize rendering speed and minimize latency
• More accurate and wide-range tracking (optical, acoustic, electromagnetic)
• Improved interaction with VEs (improved devices, gesture recognition, in-

tuitive interaction metaphors)
• Implementation of VEs, model aquisition, and virtual world maintenance
• User friendly and ergonomic design of VR systems
• Acoustic and haptic augmentation of VEs
• Finding production-stage applications and choosing best fitting displays
• Cope with the lack of standards (or create them)

Of course, not all of these general issues could be addressed by this thesis, but
they show a wider scope of problems in VR, and in a certain sense they do place
accents in our work.

[Brooks, 1999] still sees the end-to-end system latency as the most serious
technical constraint of today’s VR systems. In HMD systems, head rotation
is the most demanding motion, with an angular velocity of about 50 degrees
per second. Latency of 150-500 ms makes the scene ”swim” for the user, seri-
ously reducing the presence effect. Latency is extremely serious in augmented
reality systems in which the virtual world is superimposed on the real world.
In projection-based VR systems the head rotation is related only to a viewpoint
translation. Small head rotation means a small translation of the eye-points, thus
also a small difference in the stereo images, see Figure 3.5 in Section 3.2. While
the user does not move the head very fast, the system latency (head tracker up-
dating the view on the scene, rendering of the scene, and display) is not so noticeable.
In projection-based VR systems 150-250 ms of latency is generally accepted.

Interaction with VEs is a big issue of the current and future research. Related
work in this research area and our contribution to improving interaction are
discussed in detail in Chapter 4.

Lack of standardization of VR technology and software interfaces makes it
difficult to apply VR on a larger scale. Not only developing VR applications
is an issue, but also finding serious production-stage application seems to be
still rather difficult. VR for visualization forms still a very small, specialized,
and expensive market. Therefore, most of the VR hardware and tools suitable
for visualization are often initially developed by the scientific community itself.
Due to steady progress in the mass market of CPU’s and GPU’s the costs of VR
systems are no longer dominated by the price of the computer, but by relatively
expensive VR displays and trackers. Virtual Reality needs good applications
and the VR technology must become affordable.

19

Chapter 2. VR in Scientific Visualization

2.3 Visualization in VR

There are several reasons why (immersive) Virtual Reality can provide a good
environment for scientific visualization [Bryson, 1994b; Haase, 1994]. The data
are often high-dimensional, and are represented in a three-dimensional (3D) vol-
ume. Visualization of the phenomena associated with this data often involves
3D structures. Shapes and relations of 3D structures are often extremely impor-
tant. VR can display these structures, providing a rich set of spatial and depth
cues. Further, VR interfaces allow rapid and intuitive exploration of the volume
containing the data, enabling the various phenomena at different places in that
volume to be explored. Scientific visualization is oriented towards the informa-
tive display of abstract quantities, instead of attempting to realistically repre-
sent objects of the real world. Thus, the graphics demands of scientific visual-
ization are oriented towards accurate, as opposed to realistic, representations.
Graphical representations can be chosen which are feasible with current tech-
nology. Further, as the phenomena being represented are artificial, a researcher
can perform investigations in VEs which are impossible or meaningless in the
real world.

In many ways the main impact of VR technology on scientific visualization
is in providing an intuitive and responsive interface for exploration of data. To
achieve a maximal benefit, the VR visualization can be integrated within a com-
putational steering environment, providing a virtual laboratory, where the re-
searcher can instantly visualize the data and interactively steer the simulation.

Simulation
(data generation)

Selection
&

Filtering
Mappingraw

data
regular

data
geometry

data

3D DISPLAY
&

3D INTERACTION

Visualization in VRComputational
steering

Z

Visualization
tool

Virtual objects

Virtual Environment

Z

X

Y

Data Space

X

Y

Z

X

Y

Virtual World

Figure 2.14: Visualization pipeline integrated with a responsive VE.

Visualization on desktop workstations produces static or animated images,
see Figure 2.1. Interaction with the visualization pipeline is usually provided
via 2D user interfaces (keyboard and mouse). Visualization in virtual environ-
ments produces interactive virtual objects instead of images, see Figure 2.14.
These virtual objects are present in the VE, and can have customized look and
behavior. The objects may be directly selected (touched) and manipulated by the
user. The proper employment of immersive VR techniques and VEs can revo-
lutionize the way the data are visualized and how people operate visualization
environments. Instead of displaying 3D worlds inside of computer monitors

20

2.3. Visualization in VR

with conventional 2D interaction, the scientists can now see these 3D worlds in
the same space where they can naturally interact with the virtual objects.

The evolution step from desktop visualization to visualization in VR is more
radical than it might seem. When designing and developing VEs for data visu-
alization we cannot just simply think of generating high quality graphical prim-
itives and rendering nice images. The ”immersive visualization”, as it is some-
times called, is a very complex and comprehensive problem, which has been
challenging for researchers in the past years. A recent progress report on scien-
tific visualization in VR [van Dam et al., 2000] sketches the research agenda and
its authors also ”call to action”, to help the scientist to employ VR technology
and incorporate it into the scientific work-flow.

Unfortunately, computational requirements and dataset size in science re-
search are growing faster than improvements in storage, networks, and pro-
cessing power (Moore’s law). The main bottleneck continues to be the ability to
interactively visualize the large data and gain insight. While the raw polygon
performance of graphics cards may keep up with Moore’s law, visualization
environments are not improving at the same rate. The key barriers to achiev-
ing really effective visualizations are underpowered hardware, underdeveloped
software, inadequate visual encoding representations, interaction which is not
based on a deep understanding of human capabilities, and a limited funding for
visualization [van Dam et al., 2000].

Short term solutions may include parallel visualization clusters, tiled dis-
plays (increased image resolution), and VR should help the most. Long term
solutions will be probably based on artificial intelligence techniques to cull, or-
ganize, and summarize the raw data prior to VR viewing, while ensuring that
the links to the original data remain. These techniques will support adjustable
detail-and-context views to let researchers zoom-in on specific areas while main-
taining the context of the larger dataset.

VR is used in scientific visualization in two kinds of problems: human-scale
and non-human scale problems. The use of VR is obvious for vehicle simulators,
vehicle design, and architectural design, as summarized in [Brooks, 1999].

For example an architectural walkthrough will, in general, be more effec-
tive in VEs than in a desktop environment because humans have a lifetime of
experience in navigating through, making spatial judgements in, and manip-
ulating 3D physical environments. Ergonomic validation tasks, like checking
viewable and reachable cockpit instrumentation and control placement, can be
performed more quickly and efficiently in a virtual prototyping environment
than with labor-intensive physical prototyping.

The key question for non-human (micro/macro) scale problems is whether
the added richness of life-size immersive display allows faster and easier work.
So far, not enough controlled studies have been done to answer this question
definitively. Anecdotal evidence indicates that it is easier to do for example
molecular docking for drug design in VR than on the desktop [Haase et al., 1996].
Direct interaction is impossible in physical experiments, but possible in VR.

21

Chapter 2. VR in Scientific Visualization

In addition, we often have to visualize data that have no inherent geometry
(such as flow field data) and perhaps no physical scale (such as statistical data).
The 3D abstractions through which we visualize these datasets often present
very irregular structures with complicated geometries and topologies. Just as
VR allows better navigation through complex architectural environments, many
researchers believe that VR is also a good environment for navigation and ex-
ploration of any complex 3D structure [van Dam et al., 2000].

Virtual Reality naturally encourages collaboration of scientists in the process
of data visualization and gaining insight. The participants do not necessarily
need to be at the same location. Telecollaboration / tele-immersion allows multiple
participants to interact with a shared dataset and between one another over a
network. The collaborative work also incorporates teleconferencing techniques.
Examples of tele-immersive collaboration in the CAVERN (CAVE Research Net-
work) were presented in [Johnson & Leigh, 2001].

2.3.1 Example Visualization Applications in VR

[Bryson, 1994b] made the case that real-time exploration is a desirable capability
for scientific visualization and immersive VR greatly facilitates the exploration
process. Bryson’s pioneering work on the Virtual Windtunnel (VWT) lets re-
searchers study a fluid flow around a space shuttle [Bryson & Levit, 1992].

The visualization techniques could be controlled via direct manipulation or
via widgets. In the VWT several techniques are available such as: sample points,
streamlines, particle paths, iso-surfaces, color-mapped cutting planes, tufts, and
numerical display, see Figure 2.15.

Figure 2.15: Virtual Windtunnel (VWT) application implemented with the
Fakespace BOOM display and the VPL Dataglove [Image source: S. Bryson,
NASA AMES]

When first presented the VWT was revolutionary in the sense that it allows
investigation of flow fields in VEs at reasonable frame rates. It has been a great
source of inspiration for many researchers in this area.

22

2.3. Visualization in VR

Another milestone of the VR-visualization history was the development of the
projection-based VR displays, such as the CAVE [Cruz-Neira et al., 1993] and the
Responsive Workbench [Krüger et al., 1995].

(a) Molecular modeling and docking (b) Fluid dynamics visualization in VWT

Figure 2.16: Visualization on the Responsive Workbench. [Image source:
Krüger et al., Fraunhoffer IMK / formerly GMD]

The Workbench concept became popular and has been adopted by many
visualization groups for scientific research. The early Responsive Workbench
applications have demonstrated the great potential of this VR system for appli-
cations such as: medical training and medical visualization, architectural plan-
ning, and mainly for scientific visualization, see Figure 2.16.

In the classical Workbench concept only one person is being head-tracked for
setting up the stereo perspective. Other persons by the Workbench get a slightly
distorted view. This problem has been addressed with the Two-user Responsive
Workbench, which supports individual stereoscopic views of the two users and
enables collaboration in a shared space [Agrawala et al., 1997].

Certain applications can profit from the life-size display in the fully immer-
sive CAVE-like systems. As the CAVE provides a much higher degree of user
immersion in the virtual worlds, applications like architectural walkthroughs,
or navigation through large computer generated environments are very impres-
sive. Also a large number of applications from the field of scientific visualization
have been tested within this environment. Indeed, scaling of the 3D visualiza-
tions of data from desktop into the 27 cubic meters of space is impressive in
itself. Yet a not clearly answered question is whether the scientific data really
need full human-size immersion of the user. It seems that Workbench systems
or desktop personal VR systems are good enough, and even better for many
scientific or clinical applications which should be employed in daily use. How-
ever, CAVEs are imposing systems. Due to the (almost) completely surrounding
projection these systems offer better immersion in a larger environment, but it
is much harder to find scientific applications that would really need a CAVE.

23

Chapter 2. VR in Scientific Visualization

Cave5D and Cave6D systems (see Figure 2.17) are examples of quite popu-
lar visualization programs for the CAVE. They have been adapted from Vis5D,
a desktop atmospheric data visualization program, for the CAVE. Vis5D [Hib-
bard et al., 1996; Hibbard & Santek, 1990] is a visualization library that provides
techniques to visualize multi-dimensional numerical data from atmospheric,
oceanographic, and other similar models, including iso-surfaces, contour slices,
volume visualization, and wind vectors. The Cave5D framework [Wheless et al.,
1998] integrates the CAVE library with the Vis5D library in order to interac-
tively visualize atmospheric data in the Vis5D file format in the CAVE or on the
ImmersaDesk. A collaborative environment has been incorporated in Cave6D
[Kapoor et al., 2000]. Each participant runs a separate instance of Cave6D. The
tele-immersed participants see the virtual environment from their own perspec-
tive, and can freely navigate in the space. The immersed participants share the
same virtual space.

A system called TIDE (Tele-Immersive Data Explorer) [Sawant et al., 2000]
has demonstrated distributed interactive exploration and visualization of large
scientific datasets. It uses centralized collaboration and data-storage model with
multiple processes designed to allow researchers around the world to collabo-
rate in one shared and interactive VE.

(a) Vis5D

(b) Cave5D (c) Cave6D

Figure 2.17: Visualization of atmospheric data on desktop (Vis5D), in an im-
mersive VE (Cave5D), and in a collaborative VE (Cave6D). [Image source:
Hibbard, Wheless, Kapoor (EVL)]

24

2.3. Visualization in VR

Figure 2.18: Studier Stube visualization environment is based on see-through
HMDs and electro-magnetic tracking. The system is operated with the Personal
Interaction Panel. [Image source: Schmalstieg et al., VR-VIS Center (Austria)]

A different approach to immersive visualization is presented by the ”Studier-
stube” approach [Schmalstieg et al., 1998]. The designers present a client-server
architecture for multi-user collaborative visualization, presentation and educa-
tion. Studierstube is based on augmented reality technology and see-though
HMDs. These displays do not affect natural communication and interaction of
collaborating users, see Figure 2.18. Each of the users has his own view on the
model and can independently use different layers of data for visualization. This
system uses the so-called Personal Interaction Panel (PIP) to assist user interac-
tion and to control the application. Due to recent great improvements of HMDs
and see-through HMDs, this augmented reality approach shows a good alterna-
tive for immersive visualization instead of the large projection systems.

Figure 2.19: Dextroscope system and VIVIAN medical visualization software
[Image source: L. Serra, KRDL (Singapore)]

As mentioned earlier, clinical application of VR technology must consider er-
gonomic and economic aspects. The current HMDs or the large projection sys-
tems can hardly offer a ”user friendly” working and affordable environment. It
is a severe shortcoming of these technologies. Let’s consider for example medi-

25

Chapter 2. VR in Scientific Visualization

cal application of VR (surgery training and planning). Nobody would ever think
about using CAVE, Workbench or HMDs the whole working day in this case.

A good example towards ergonomic VR for a clinical use is the Dextroscope,
a desktop-size Virtual Workbench, see Figure 2.19. This approach and its appli-
cation in medical visualization has been presented by Serra et al. [1997,1999].
They have also developed the VIVIAN system for volumetric tumor neuro-
surgery planning. It supports volume rendering and data segmentation to out-
line tumors, and the trajectory planning for surgery.

It uses 2D/3D paradigm of interaction, which combines 3D direct manip-
ulation of volumetric data with unambiguous 2D widget interaction. The 2D
interaction is achieved by providing passive haptic feedback of the virtual con-
trol panel with the widgets whose position coincides with the physical table.

2.3.2 Visualization in VR: Research Issues

Besides the already mentioned general research issues in Virtual Reality, we can
extend the general research agenda for scientific visualization in immersive VR
by the following issues:

• Interaction and visualization techniques that are scalable with data and
model size

• Feature extraction and tracking techniques for large time-dependent data

• Time-critical computing and visualization techniques for VR

• Tele-collaboration in immersive visualization environments

• Effective computational steering and visualization tools and environments

Unfortunately, most of the interaction and visualization techniques, devel-
oped so far, are based on small-scale problems. Techniques that work well with
100 objects in a scene will not necessarily work with 10.000 objects. For exam-
ple object selection: one from 100 or from 10.000. Obviously, it is similar for
visualization techniques. For example iso-surface extraction in a dataset with
dimensions 64x64x64 may be still performed interactively, but 256x256x256 al-
ready becomes a problem. Time-critical computing and visualization techniques
can offer a solution [Bryson & Johan, 1996; Funkhouser & Séquin, 1993].

Let’s consider a large time-dependent dataset with thousands of time-steps.
Classical data visualization techniques will probably fail. Part of the solution
may be in the use of interactive exploration in VR combined with feature ex-
traction and tracking techniques [Reinders, 2001; Sadarjoen, 1999].

As scientific problems are often multi-disciplinary, we need to encourage
collaboration and co-operation of experts. VR can provide good environments
also for collaborative visualization.

Computational processes and simulations need more effective steering and
visualization. VR also has a great potential in this area.

26

2.4. Research Agenda of This Thesis

For further reading on the hot topics of VR and research issues in immersive
visualization we refer to recent reports [van Dam et al., 2000; Brooks, 1999].

2.4 Research Agenda of This Thesis

Many years ago R. Hamming stated that ”the purpose of computing is insight, not
numbers [Hamming, 1962].” The most important aspect of this research was to
prove the concept that visualization of scientific data in immersive Virtual Re-
ality significantly improves the process of data exploration and discovery, and
that VR helps to get better oriented in the multi-dimensional datasets and con-
tributes to gaining scientific insight.

We have learned that a good way to get insight from numbers is to visualize
them [McCormick, 1987]. As the size and complexity of computational simula-
tions grows, the amount of data will also increase. Therefore, new concepts of
intensified interactive visualization should be developed. One such concept is
the use of VR for interactive visualization and exploration of scientific data.

Based on the general research issues of Virtual Reality (see Section 2.2.5) and
visualization in VR (see Section 2.3.2), we have proposed the following research
agenda for this thesis:

• Study of existing visualization systems for possible VR extensions

• Development of an experimental visualization environment for the Virtual
Workbench

• Study of existing VE interaction techniques and development of new inter-
action techniques for more effective object selection and manipulation, and
for navigation in and exploration of VEs

• Study of existing and designing alternative force feedback approaches

• Incorporating simulation into the visualization process and implementa-
tion of a computational steering environment

• Design and implementation of interactive exploration and visualization
tools for VR

• Proof of the concept by the case studies, collaborating with other research
groups, and trying to solve their scientific questions with VR

• Trying to define the essential contribution of VR to data visualization

All these topics will be discussed in more detail in the following chapters.

27

Chapter 3

The Concept of the Virtual Workbench

This chapter begins with an introduction to the Virtual Workbench (Section 3.1).
Followed by a description of technical aspects of this system (Section 3.2), such
as the hardware configuration, tracking system and input devices, and projec-
tion and viewing of virtual worlds. Design aspects of VEs for data visualization,
including requirements on the user interface and interaction, are discussed in
Section 3.3. The software environment, represented by the RWB Library and the
RWB Simulator, is described in detail in Sections 3.4 and 3.5

3.1 Introduction to the Virtual Workbench

The Virtual Workbench is a Virtual Reality system for 3D visualization and 3D
interaction. In this thesis we will call this system the Responsive Workbench
(RWB) or equivalently the Virtual Workbench. The original RWB concept was
developed by [Krüger et al., 1995].

Figure 3.1: Overview of the Virtual Workbench. The left image is a photo of a
VR session. In the right image, the 3D world that the user experiences is super-
imposed on the original photo.

The RWB provides a semi-immersive virtual environment, see Figure 3.1.
The user stands by a table with the upper half of the body immersed in a VE,
using the physical table for reference and support. In this approach the user
is not fully immersed and is always aware of the surrounding natural environ-
ment. The user can look away from the VE and see the surrounding real world
such as his body, the table, the physical tools and props being used and other
people in the room. This is in contrast to many other Virtual Reality systems

29

Chapter 3. The Concept of the Virtual Workbench

such as CAVE or HMD, which offer fully-immersive environments. Instead of
bringing the user inside the virtual world, the user at the workbench looks down
on virtual objects that are brought into the real world [van de Pol et al., 1999].

The RWB is in some sense complementary to the CAVE [Cruz-Neira et al.,
1993]. However, the usage of the RWB is different from the CAVE. The RWB
benefits from the table metaphor although its field of view is rather limited. In
the CAVE, all objects are usually virtual. In automotive industry, are put mock-
ups, car-seats inside the CAVE to have at least something real with a substance
to be able naturally interact with the virtual environment. In the CAVE usually
larger objects are visualized, and the user interacts with them often at a larger
distance than on the RWB. However, the Virtual Workbench is for using of our
applications more suitable than the CAVE. Nevertheless, the CAVE excels at
demonstrations in the final stage of visualization projects, see Section 6.2.7.

3.2 Technical Characteristics of the Workbench

The Virtual Workbench is a large table with a tilted, frosted glass surface which
serves as a projection screen. This Workbench was manufactured by TAN sys-
tems [Web-TAN]. A CRT-projector mounted inside the wooden framework is
used to project images via a series of mirrors on this glass surface (Figure 3.2).
To obtain a clear and sharp image the CRT projector has to be well calibrated
and precisely aligned. In addition to this back-projection system, LCD shutter
glasses, a tracking system and a graphics server provide the VE. The user stand-
ing in front of the RWB, wearing head-tracked shutter glasses, can experience
the computer generated VE and interact with virtual objects on the Workbench.

Figure 3.2: Schematic overview of the Workbench: top and side views

The heart of the VR system is the SGI Onyx2 graphics server [Web-SGI-
Onyx], which generates the stereo images for the Workbench and handles the
user input. The graphics server is equipped with four 195 MHz 64-bit MIPS
R10000 processors, 1.5 GB of shared memory, and an InfiniteReality2 graphics

30

3.2. Technical Characteristics of the Workbench

card with 64 MB of texture memory. This server is designed for high perfor-
mance graphics applications. The hardware architecture enables an optimal us-
age of multi-processing and one or more graphics boards. The stereo effect on
the Workbench is achieved by using active stereo projection. We use a display
resolution of 1120 × 840 pixels. Two images for the left and right eye are al-
ternately projected on the Workbench at a frequency of 96 Hz (=2x48 Hz). At
the same frequency, the StereoGraphics CrystalEyes LCD shutter glasses [Web-
Stereographics] block the light falling on one of the eyes.

3.2.1 Tracking System and Input Devices

The tracking system enables dynamic spatial measurements of the tracking sen-
sors. The RWB is equipped with a Polhemus Fastrak [Web-Fastrak] system, con-
sisting of a control unit, an electromagnetic field emitter and one or more track-
ing sensors. The control unit is connected via a serial port to the Onyx2. The
system is able to determine both spatial position (XYZ) and orientation (AER:
azimuth, elevation, roll) of each of the sensors. This results in a total of six
degrees of freedom (6 DOF) per sensor. For a later use we must convert orienta-
tions to the angle notation of Iris/OpenGL Performer (HPR: head, pitch, roll).

Figure 3.3: The stylus, the Plexipad and their two-handed use (left). The head-
tracker is mounted on a pair of shutter glasses (right)

In our configuration three tracking sensors are used as follows. One tracker
sensor is mounted on a pair of stereo glasses and is used to measure the posi-
tion and orientation of the user’s head (head tracking). As described earlier, this
viewpoint tracking simulates the motion parallax depth cue. The other sensors
are used for two input devices which can be used simultaneously: the stylus
and the Plexipad, see Figure 3.3.

• Stylus: a pen-shaped input device with a single button. The pen can define
a point in space. The shape of the pen defines a directional reference axis.
The pen can be used to specify a line in 3D space. This function is often
used for a ray-casting selection.

31

Chapter 3. The Concept of the Virtual Workbench

• Plexipad: a lightweight transparent acrylic panel (300 x 300 x 2 mm) with a
tracker sensor mounted under a foam handle at the edge of the panel. The
handle allows a firm and comfortable palm grip, reducing fatigue in the
fingers. With the tracker mounted close to the wrist, the inconvenience of
the tracker cable (obstruction of the view, weight on the panel) is reduced
to a minimum. The panel can be used to position and orient a 2D plane. It
defines a 2D reference plane in 3D space.

These input devices can be used in two-handed interaction scenarios, using
both hands simultaneously in a single task. The issues of one-handed and two-
handed interaction are discussed in detail in Section 5.1.

Figure 3.4: Tracker to table coordinate transformation

The tracker daemon is a separate process, which runs on the SGI Onyx2. It
periodically reads (50Hz) the data from the tracking system, converts them to
the workbench table coordinate system and stores them in shared memory. The
tracker daemon also offers functions to access and read the data for any running
process.

The view update function of the RWB Library (see Section 3.4) reads the new
position and orientation from the tracker daemon’s shared memory. This infor-
mation is first stored in the tracker coordinate system in a form of 4x4 matrix. The
position is placed in the translational part of the matrix and the HPR rotation
is stored in the rotational 3x3 sub-matrix (Euler rotational matrix). This matrix
forms the coordinate frame. Originally, this frame is defined with respect to the
tracker coordinate system, thus it has to be transformed to the workbench table
coordinate system, see Figure 3.4. Therefore, a 4x4 tracker to table transformation
matrix is used. The original head-tracker coordinate frame is transformed by
this matrix. The resulting frame has to be aligned so that in the neutral orienta-
tion of the head tracker, resp. stylus, its Z-direction is pointing upwards in the
workbench table coordinates. This is done by multiplying the frame with pre-
and post- rotational matrices. The final frame together with the information on

32

3.2. Technical Characteristics of the Workbench

the offsets of the eyes is used to position the viewpoints of the left and the right
eyes. The viewing direction is always pointing towards the center of the RWB
table, see Figures 3.4 and 3.5.

Figure 3.5: Head tracking and eye positions

3.2.2 Registration and Calibration of the Tracking System

Proper registration and calibration of the tracking system is very important, see
Figure 3.6. Registration of the tracking system means that we define a transforma-
tion from the original tracker coordinate system to a known world coordinate
system. Calibration of the tracking system should minimize the tracking errors.
Registration of the table coordinate system is done by defining the tracker to
table transformation. The user clicks with the stylus on 3 points ⊕: the origin
B and points on the X and Y axis of which we know the exact position on the
screen (in pixels) and their exact position with respect to the center of the glass-
plane (in cm), see Figure 3.6. We measure the positions in tracker coordinates.
From this we can obtain the scaling factors, the axis-vectors X, Y and the Z-axis,
which is a cross product of X and Y vectors, and the position of the origin with
respect to the tracker coordinate system. The X, Y and Z axis-vectors must be
normalized. From the three axis-vectors and origin B the orthonormal frame
base (4x4 matrix) is constructed and its inverse is the tracker to table transfor-
mation matrix MTT :

MTT =







Xi Xj Xk 0
Yi Yj Yk 0
Zi Zj Zk 0
Bi Bj Bk 1






−1

� MS

The matrix MS converts screen pixel metrics into the metrics of the virtual
world. MTT matrix is used to convert tracking sensor matrix MT from tracker
coordinates to the virtual world coordinates MW aligned with the table.

MW = MT � MTT

33

Chapter 3. The Concept of the Virtual Workbench

After a proper tracker registration we can measure positions of the sensors
relatively accurate close to the tracking emitter, which is mounted in the center
of the front wall of the Workbench, see Figure 3.6. However, when the tracking
sensors are positioned more than 50 cm away from the emitter, as frequently
happens, then the tracking errors in position measurement can reach even 2 or
3 cm. To compensate the tracking errors we designed a grid calibration scheme.
The grid calibration is performed by measuring the tracking error on the grid.
During this calibration procedure the user has to click as accurately as possible
on the grid markers. We use a bi-linear interpolation scheme to correct for these
errors.

Figure 3.6: Tracker registration and grid calibration of the tracker data

The results of the calibration procedure are stored in a tracker calibration
data file, which is later used by the tracker daemon for correction of the tracking
data of the sensors (position only).

In Figure 3.6, the dashed lines show stylus tracking results in the plane with-
out the grid calibration. The solid lines show the calibrated results. The track-
ing errors are very annoying especially in a direct 3D interaction with the stylus
when the virtual cursor is sometimes noticeably displaced from the stylus po-
sition. Similarly, the tracking errors occur also when measuring the orientation
of the sensors. For the head-tracking on the RWB the tracking errors, both in
position and in rotation, are less significant and the view distortion is minimal.

For the stylus the error in rotation can only be observed when using ray-
casting selection (laser pointer metaphor). We don’t see it as a big problem
because the user more is interested about the place of the ray intersection with
virtual objects. From experience we know that users can easily compensate for a
slightly bent ray because they get the visual feedback of the ray and it smoothly
follows the motion of the stylus. Therefore we did not implement any general
scheme for angular calibration.

In the case of the Plexipad the angular tracking errors will cause a slight
misalignment between the transparent pad and virtual objects that are placed on

34

3.2. Technical Characteristics of the Workbench

its surface. A future improvement of the tracking system would be an improved
dynamic calibration scheme, which can also cope with angular tracking errors
[Kindratenko & Bennett, 2000].

In addition to the coordinate transformations and calibration of the tracking
data, the tracker daemon also integrates actual velocity and acceleration vec-
tors of the stylus. We use a simple low-pass filter to minimize the noise in the
tracker data. The computed velocity and acceleration of the tracking sensors
can be used by any RWB application for recognizing gestures. For example, if
an application needs to detect the instant when the stylus stops, it can easily
check the actual velocity of the stylus.

3.2.3 Projection and Viewing

The virtual world projected on the RWB screen is represented in the workbench
table coordinates. The tracked positions and orientations of the user’s head and
the stylus are in the tracker coordinate system and therefore must be converted
into the workbench table coordinate system. We use a table-centered and table-
aligned coordinate system, see Figure 3.7(a). In the RWB environment, the head-
tracker updates user’s viewpoint, and the tracking of the stylus forms the base
for 3D interaction, see Figure 3.7(b).

(a) (b)

Figure 3.7: (a) Workbench table coordinate system (b) 3D user interaction

In common 3D rendering systems the user’s eye is assumed to be positioned
on the axis of perspective projection, so called on-axis-perspective. The viewpoint
is on the positive Z-axis and the viewing frustum is oriented into negative Z-
axis. For this perspective projection to be correct, the user’s head should be on
the central axis of the screen. For monoscopic images such a viewpoint assump-
tion is not a problem, but for stereo images the movements of users’s head cause
a distortion of the perspective.

On the Workbench we cannot assume that the user’s eyes are on the Z-axis.
Therefore we have to use an off-axis-perspective. The construction of the RWB
perspective frustum is shown in Figure 3.8.

35

Chapter 3. The Concept of the Virtual Workbench

We have to set up the perspective frustum from the user’s eye position (in ta-
ble coordinates) pointing down, perpendicular to the workbench ground plane.
After the perspective transformation we have to perform a 2D shift in viewport
coordinates to fixate the viewport origin with the origin of the RWB. This is
equivalent to the assumption that the user is always looking at the center of the
Workbench. By this we have fixed the ground plane of the projected VR world
to the screen of the Workbench. This has to be done for the left and the right eye
to set the correct stereo perspective.

Figure 3.8: Construction of the viewing frustum

The following code fragment shows the procedure of setting the view chan-
nel and the off-axis perspective frustum in the RWB Library. A basic overview
of Iris Performer [Eckel et al., 1997], a high performance rendering and scene
graph toolkit, which we use in the RWB Library, is given in Section 3.4.2.

It is important to note that Iris Performer uses a different notation of viewing
direction than usual. Performer’s viewing direction is the positive Y-axis, and
OpenGL uses the negative Z-axis.

EyeViewMatrix . makeEuler (0 . f ,−90. f , 0 . f) ; //∗∗∗ ro ta t i on matrix from Euler angles (H, P, R)
/ /∗ Viewing d i r e c t i o n : Performer +Y, OpenGL−Z

EyeViewMatrix . setRow (3 , eyeTable) ; //∗∗∗ inser t the eye point (in tab l e coord inate s)
/ /∗ into the viewmatrix

float projFactor = zNear / eyeTable [2] ; //∗∗∗ compute window boundaries in zNear plane
WinLeft = (tableMin [0] − eyeTable [0]) ∗ projFactor ;
WinRight = (tableMax [0] − eyeTable [0]) ∗ projFactor ;
WinBottom = (tableMin [1] − eyeTable [1]) ∗ projFactor ;
WinTop = (tableMax [1] − eyeTable [1]) ∗ projFactor ;

tableAspect = (tableMax [0] − tableMin [0]) / (tableMax [1] − tableMin [1]) ;
/ /∗∗ tab leAspect = (89,5 − (−89,5) = 179 cm) / (55 − (−55) = 110 cm)

//∗∗∗ setup of the viewing frustum and per spec t iv e pro j e c t i on via Performer ’ s pfChannel
ViewChannel−>setViewMat(EyeViewMatrix) ;
ViewChannel−>makePersp(winLeft , winRight , winBottom , winTop) ;
ViewChannel−>setAspect (PFFRUST CALC VERT, tableAspect) ;
ViewChannel−>setNearFar (zNear , zFar) ; //∗∗∗ zNear = 0 . 0 1 cm; zFar = 10000.0 cm;

36

3.3. Design Aspects of the VE on the Workbench

3.3 Design Aspects of the VE on the Workbench
The user interface with its interaction methods plays a crucial role in any appli-
cation. The user interface has to expose the application’s functionality, allowing
the user to perform his tasks and effectively control the behavior of the applica-
tion. A virtual environment provides the user interface for VR applications. By
using spatial input devices, the user can interact with this computer-generated
3D environment. In the design of the user interface of our system we concen-
trated on the user’s tasks in scientific visualization and the specific characteris-
tics of VR on the RWB. These aspects were taken in account in the design of the
visualization tools, the interaction scenario’s and the VE itself.

3.3.1 Visualization tasks in the VE

The typical processing steps of the scientific visualization pipeline have been
described in Chapter 2. We can distinguish two separate stages in a visualiza-
tion application: development and execution of the visualization pipeline. Network
application builders (AVS, OpenDX, etc.) or visualization libraries (VTK) are
used in the development stage. In our approach, visualization applications for
the Workbench are programmed in C++ using the VRX toolkit and the RWB Li-
brary and Simulator. The design and development of the applications can be
more effectively performed in a conventional desktop computer environment
than in a VE. However, the most obvious advantages of VR can be expected in
the execution stage. In order to effectively support the visualization in VR, the
layout of virtual objects in the VE should be done carefully with respect to the
capabilities and constraints of the RWB. The user on the Workbench has an ac-
tive role (not passively watching 3D animations) and has to be provided with a
set of interactive tools.

The main user task is to control the different stages of the visualization pipe-
line via interaction (selection and manipulation) with individual objects of the
VE. We distinguish the following interaction tasks: navigation (positioning, ori-
enting, selection, cropping and zooming of the data), visualization mapping (choice
of visualization method and setting of parameters; i.e iso-surfaces, color maps,
transfer function, seed points), probing and data exploration (visualization and vir-
tual measurement) and computational steering. We have implemented support
for these tasks by allowing direct spatial interaction with the data using a set of
virtual exploration tools; for a detailed description, see Chapter 5.

Although a large part of the interaction with the visualization application
can be performed using spatial control, some abstract tasks, such as setting a
value or enabling or disabling a function, do not have an intuitive spatial rep-
resentation or a straightforward real-world metaphor. Therefore, we use virtual
objects or interaction widgets for this abstract control from the VE. In our imple-
mentation, we used simple interaction widgets such as buttons (switches) and
value sliders, analogous to the well known graphical user interface elements in
desktop applications.

37

Chapter 3. The Concept of the Virtual Workbench

3.3.2 Workbench Viewing Metaphors

As described in the previous sections, the RWB brings virtual objects in the
real world. In contrast to fully-immersive VR environments, the user is not
surrounded by the VE but looks down onto it. This and other VR and RWB
specifics should be taken into account when developing an application for the
Workbench. The Workbench concept offers two basic metaphors: the laboratory
table metaphor and the window-on-the-world (WOW) metaphor.

Using the laboratory table metaphor, the user experiences the VE as if the vir-
tual objects were resting on top of the table. This scheme is an excellent analogy
to working on real experiments at a laboratory table. We draw a background
image exactly aligned with the frosted glass plane to emphasize the physical ta-
ble surface. When working with large volumes of data, a serious constraint is
the limited height of the VE above the table. Because the user’s view frustum
is limited to the screen size, virtual objects positioned just outside this field are
culled (clipped), seriously disturbing the perceived stereo effect, see Figure 3.9.

This limitation can be avoided by restricting the height of the VE or by using
the WOW metaphor. In this scheme the user experiences the tabletop glass as a
window onto a VE lying mainly under the table, allowing a birds-eye view on
large worlds. However, the WOW metaphor has also several limitations, such
as: conflicting cues with real world and no natural reference plane; when objects
are out of reach, remote selection and manipulation is needed.

Figure 3.9: The field of view is limited by the screen size. The view frustum
indicates which part of the VE and the data space remains correctly visible.

The physical shape of the RWB also has its implications on the types of inter-
action. Logically, the input devices, which are used to interact with the VE, can
only be positioned above the glass surface of the table. If the tabletop metaphor
is used, the projected VE and the real space above the table coincide: the virtual
space and real space are aligned. This allows users to directly interact with vir-
tual objects. This direct interaction with the VE is done intuitively at the exact
location of the input devices used. A typical example is the use of the stylus

38

3.3. Design Aspects of the VE on the Workbench

to select and manipulate an object directly in the VE by positioning the stylus
inside the virtual object, see Figure 3.10 (left).

This is in contrast to remote interaction where the input devices are used
to interact on a remote location in the VE. An example of remote interaction is
ray-cast manipulation, where the stylus is used to cast a ray on remote objects
in order to select and manipulate them. If the WOW metaphor is used, remote
interaction is the only type of interaction available as the user cannot move the
input devices under the glass surface, see Figure 3.10 (middle). However, many
users prefer the direct interaction because the remote interaction is less accurate
and less intuitive.

Figure 3.10: Viewing metaphors: table metaphor and direct interaction (left),
window-on-the-world (WOW) metaphor and remote interaction (middle) and
combined metaphor, using both direct and remote interaction (right)

Our solution is to combine the advantages of both metaphors, providing
both an overview on data as well as intuitive direct interaction. We place the
VE partly above the table and partly underneath, instead of constraining the VE
to be either above or underneath the table surface. By using ray-cast manipu-
lation, remote virtual objects can be repositioned into the reach of the user to
allow direct manipulation, see Figure 3.10 (right). For example, we have de-
fined a virtual data space object, which can contain both volumetric and object
data. The data space is represented by a box floating in the VE, using an out-
line to indicate its spatial boundaries. Interesting parts of virtual objects (such
as the data space) can be brought above the table for detailed inspection while
keeping an overview on the object as a whole. The user can operate the visu-
alization application by directly interacting with this data space object alone or
in combination with virtual exploration tools. When only a wire-frame bound-
ing box is used for the indication of the data space, it cannot be selected by ray
casting. To enable the ray-cast selection, we have added a transparent bounding
box constructed with inward facing triangles. Due to the back-face culling the
front sides of the box will not be rendered and will not stay in the way, so that
the back sides of the box (inward facing) could be intersected with the ray.

Although we do not explicitly emphasize the table surface of the display, the
user should be aware of the table surface intersecting the VE (data space). It
physically divides the VE into direct interaction and remote interaction parts.

39

Chapter 3. The Concept of the Virtual Workbench

3.3.3 Multi Sensory Feedback

Without appropriate feedback it is difficult to perform any type of interaction.
By providing feedback the user is informed about the progress or results of per-
formed actions. In VEs we can usually employ visual, acoustic, tactile and force
feedback schemes. Naturally, the primary feedback of actions is given in every
frame by the graphical update of interaction cursors and manipulated virtual
objects. However, freely selecting a point in 3D space or even selecting a virtual
object can be a difficult task without additional feedback.

This feedback can be given when an event has been detected, such as if an
object has been selected, a button has been clicked or if the ray has been acti-
vated. By using a visual (graphical) feedback, e.g. highlighting an object when
selected, the user can be informed effectively. For example, in our case the cur-
rently selected object or interaction widget is colored red. Further, we use simple
sound effects to accompany actions to enhance the pure visual feedback.

A more physical feedback is tactile or passive haptic/force feedback. The
glass surface of the Workbench can be used to support the interaction and cre-
ate additional physical constraints. When widgets in the VE are correctly posi-
tioned on top of the table surface, the tactile feedback can enhance the control
of these tools. Instead of freely positioning the stylus in space to select a wid-
get, the user only has to touch the glass with the stylus. This tactile feedback
can also be provided by the acrylic surface of the Plexipad, see Figure 3.11. By
combining the regular visual feedback with both tactile and acoustic feedback
the interaction can be improved.

Figure 3.11: A user touches the surface of the Plexipad to select a button, and is
simultaneously provided with visual, acoustic and tactile feedback.

As our hardware configuration of the Virtual Workbench does not contain
any active force feedback (haptics) device (such as a Phantom [Massie & Salis-
bury, 1994]), we cannot provide active force feedback during manipulation of
objects in the VE. Therefore, we have developed visual force feedback tools, see
Section 4.2.

40

3.3. Design Aspects of the VE on the Workbench

3.3.4 Layout of the VE

The user’s position with respect to the RWB also has its implications on the
layout of the VE. The users prefer direct interaction to remote interaction. Thus,
most of the interaction should rather take place within direct reach of the user.
In addition, the tracking system is most accurate close to the electro-magnetic
emitter, which is mounted at the front center of the RWB. In most cases the user
stands at a centered position before the emitter, with the stylus in the right hand
(assuming a right-handed user). To improve interaction speed and to reduce
fatigue, the most direct interaction should take place within direct reach of the
user’s dominant hand. The dominant hand holds the stylus, and is the preferred
hand for precise movements such as writing. For most people this is the right
hand, but it is easily adaptable for the left-handed users.

The ideal position of the data space is in front of the user slightly above
the table to allow direct interaction. Frequently used widgets such as buttons
and sliders should therefore be placed as close to the user as possible, without
blocking the view on the VE (Figure 3.12).

screen edge

sc
re

en
 e

d
g

e

main widgets

User

info panel 2 info panel 1

data space & visualization

sc
re

en
 e

d
g

e

Figure 3.12: Preferred layout of regions for interaction, display of information,
and data visualization on the RWB

In a two-handed configuration the Plexipad can be also used to improve
usability. The Plexipad can provide a passive tactile/haptic feedback and form
a container (background) for interaction widgets. The two-handed interaction
aspects are discussed in more detail in the Section 5.1.

3.3.5 Technical Constraints

The RWB is a back-projection system, and as such has its advantages and dis-
advantages. An advantage, compared to front-projection systems, is that we
do not have problems with shadows, caused by a user standing between the
projector and the projection screen. A disadvantage of the back-projection ap-
proach is that the user’s hands with interaction devices block/hide a part of

41

Chapter 3. The Concept of the Virtual Workbench

the VE. This problem can be minimized by a careful design of the VE, suitable
interaction techniques, and a convenient placement of interaction cursors (not
behind/under the hand with the stylus).

Small Objects and Fine Details

Although the screen of the RWB provides a large display space, not every region
can be used with the same effectiveness. A drawback of the large projection
screen is that the limited sharpness and focus of the images disturbs small de-
tails (several pixels in size). It is especially noticeable when using small detailed
objects or text far away from the user.

Another problem with very small objects is that they are difficult to select
due to the tracker inaccuracy. Thus, small detailed objects, which represent
important information, should be positioned close to the user or should be
avoided. Naturally, enlarging of objects should not be exaggerated. Large ob-
jects or control widgets can obscure the view on the data.

Use of Colors in the VE

In most visualization applications, a careful use of color is essential for the vi-
sualization of information. In VEs, we also have to work very carefully with
colors. Most of the projection systems, including the RWB, show colors differ-
ently than CRT monitors. They often lack in contrast, brightness and sharpness
and have a distorted color spectrum. This even becomes worse, if the VR lab is
not entirely darkened. Also the shutter glasses or polarized glasses somewhat
weaken the color spectrum.

In VEs the colors are often manipulated to provide essential depth cues.
Techniques like lighting, shading, shadows, and fog-haze can provide essential
spatial information of virtual objects in the VE. In our case study of Molecular
Dynamics, the depth fog-haze was especially useful. When the view was clut-
tered with particles of the same color, the depth fog-haze provided an additional
depth cue in distinguishing nearby and distant particles, see Section 4.3 and also
the Color Section.

From our experience we know, that parts of the VE such as textual informa-
tion and user interface widgets should be bright and contrasting, and therefore
clearly visible.

Performance Implications

To achieve a convincing visualization experience in VR, we have to provide in-
teractive and responsive environment [Krüger et al., 1995]. On the one hand, this
means that we have to represent the data using the most effective and detailed
graphical representation, using correct depth cues to enhance the visual infor-
mation. On the other hand, the system must provide the highest possible scene

42

3.4. RWB Library: A Software Environment for the Virtual Workbench

rendering rate and interactive user feedback. Considering that the performance
of the hardware and software has its limits, we have to find a balance between
detail and speed.

For an interactive VR application the absolute minimum for the scene update
frequency is ten frames per second (10 Hz). Below this frequency the VR experi-
ence is seriously disturbed. A slow update rate causes the latency to grow. The
end-to-end system latency is the time spent between the user actions and the
resulting system feedback. Especially when the head tracking is used to update
the perspective view on the scene, the system latency can cause nausea or sim-
ulator sickness. More about performance aspects of RWB Library can be found
in Section 3.4.4.

3.4 RWB Library: A Software Environment for the
Virtual Workbench

3.4.1 Introduction to VR Software for the Workbench

The VR software infrastructure begins with software interfaces to VR devices.
The VR hardware, such as VR displays, tracking systems and 3D interaction de-
vices, is not usually delivered with all the necessary software. Usually it comes
with software drivers for various platforms only. Some commercial or publicly
available VR software has support for a variety of VR hardware. However, it is
not easy to choose for the right VR software. Either it is too general or too much
application specific.

Existing VR Libraries

In summer 1998, when the RWB facility was installed at the High Performance
Applied Computing Center (HPαC) at TU Delft, there were not many software
options. The Virtual Workbench was intended to serve as a high performance
visualization system. It should work in a cluster with the other supercomputers
such as CRAY T3, SGI Origin 2000, or Beowulf (Linux) Cluster.

The intention was to maximally utilize the resources of the SGI Onyx2 and
to create an open VR data visualization platform for the Virtual Workbench.
Another aspect was to implement a computational steering environment, which
would enable the user to control a supercomputer simulation directly from a
virtual environment displayed on the Workbench.

In the next two years we have studied various VR and visualization sys-
tems. Our visualization group at that time (until 1999) has made mainly use of
commercial data visualization systems such as AVS 5 [Upson et al., 1989], AVS
Express and Iris Explorer. Our first idea was to investigate the use of existing
VR interfaces with commercial visualization systems. Such solutions were the
RWB-viewer for Iris Explorer [Smychliaev, 1998], the CAVE-lib viewer for AVS 5
[Web-AVS-int] or the Grotto-viewer for AVS 5 [Web-VR-lib], see Figure 3.13.

43

Chapter 3. The Concept of the Virtual Workbench

Figure 3.13: Grotto-viewer for AVS 5.0: a visualization network of AVS on the
computer screen (left), a view on the Workbench (right)

These VR extensions were visualization network modules providing a VR
view on the data with very limited interaction and navigation. We concluded
very soon that visualization in VR has to offer much more than passive explo-
ration of visualization results without having possibility to adjust visualization
parameters, such as changing the iso-value in case of iso-surfaces. Another as-
pect was that AVS and Iris Explorer were quite ”closed-source” systems and
external developers did not have an access to the source code of the modules.
For example, how the Geometry Viewer module for AVS 5 works will remain
unknown and maybe therefore there have never been any ”good” VR viewers
for AVS that supported 3D interaction with the visualization network. In AVS
it was not easy to implement a connection between a 3D widget and the visual-
ization network. For example, a slider in the virtual environment, which could
control an iso-value of an iso-surface module of the visualization network.

At the time of writing this thesis (2002), for example an AVS/Express Mul-
tipipe Edition is available [Web-AVS-int] that provides a better interface to VR
systems; however, the interaction with visualization directly from the VE net-
work remains primitive. Systems such as Open DX [Lucas et al., 1992] and VTK
[Schroeder et al., 1999] are open-source and well documented. It gives us the
opportunity to develop better environments for visualization.

In addition to various VR-viewers for visualization systems, there are many
experimental VR libraries, such as for example Avango [Dai et al., 1997], VR-Lib
[Web-VR-lib], MR Toolkit [Web-MR-toolkit], VrTool [Web-VR-toolkit], SVE-lib
[Web-SVE-lib], Studierstube [Schmalstieg et al., 1998], Aura & VIRPI [Germans
et al., 2001], CAVE5D [Web-CAVE5D], COVISE [Rantzau et al., 1998], used by VR
researchers for various purposes. Some of these libraries are freely available.

44

3.4. RWB Library: A Software Environment for the Virtual Workbench

VR libraries, such as VR-Juggler [Bierbaum et al., 2001], MAVERIK [Hubbold
et al., 1999] follow the global trend and are available as open-source software.
This gives us an opportunity to work together on improvements. Other software
libraries were commercially available, such as the CAVE Library [Web-CAVElib]
or the WorldToolKit (WTK).

We have tried several of these libraries but none of them has fulfilled our ex-
pectations. Today we can see a variety of VR systems and libraries more or less
specialized on specific types of VR applications, for example data visualization,
industrial or medical applications.

There are several other software frameworks available for the creation of VR
applications, ranging from low-level scene graph implementations to complete
toolkits. These include Iris Performer [Rohlf & Helman, 1994], OpenSceneGraph
[Web-OpenScenegraph] or OpenInventor [Wernecke, 1994].

Our Software Approach

The problem that no suitable VR libraries existed, and the lack of software stan-
dards motivated us to create an environment for rapid virtual reality application
development on the Responsive Workbench. It resulted in the RWB Library and
the RWB Simulator [Koutek & Post, 2002]. This library [Web-RWB-lib] provides
the basic functionality for a virtual reality application on the RWB, including
stereoscopic projection, tracking support, user interaction, object manipulation,
collision detection, etc. Written on top of Performer and OpenGL, the RWB
Library still gives the user access to the complete functionality provided by Per-
former or OpenGL, see Figure 3.14.

Figure 3.14: Software architecture of RWB applications

Iris/OpenGL Performer [Eckel et al., 1997] is a 3D rendering toolkit for de-
velopers of real-time interactive graphics applications. It provides efficient ac-
cess to the features of the Onyx2 such as multiprocessing on multiple CPU’s,
multiple visualization pipelines, shared memory, etc. Performer is built on top
of OpenGL [Web-OpenGL], which provides the application programmer with
access to the low-level rendering capabilities of the graphics cards.

45

Chapter 3. The Concept of the Virtual Workbench

Performer provides a good basis for creating a graphical content of a VE,
but building an interactive VR application can still be a time-consuming and
difficult task. Therefore the RWB Library significantly simplifies writing VR ap-
plications for the RWB and adds the ”VR functionality” to the graphical objects.

Although the performance of RWB Library applications is generally very
good, the developers of applications should still be aware of the underlying
Performer and OpenGL techniques during the design process. The structure of
RWB applications has to correspond with the Performer multiprocessing scheme
for maximum performance.

The problem of developing and debugging applications has been addressed
with the RWB Simulator, see Section 3.5. The RWB Simulator is a very useful tool
and provides the developer with a birds-eye view on a simulated Workbench
which runs the actual application. The ability to play back a recorded Work-
bench session in the simulator helps the developer during testing, debugging,
previewing and creating still-images and movies of existing RWB applications,
see Figure 3.25.

On top of the RWB Library we have developed the Virtual Reality eXplorer
(VRX), our data exploration toolkit for VR, which has an interface to VTK (Vi-
sualization Tool Kit) [Schroeder et al., 1999]. VRX contains a set of exploration,
visualization and probing tools for more efficient data analysis in the VE on the
Workbench, see Section 5.2.

3.4.2 Performer and Scene Graph Basics

Performer is a scene graph-based 3D rendering toolkit [Rohlf & Helman, 1994].
This concept allows the creation of complex hierarchical graphical scenes, while
the system automatically takes care of most complex geometric transformations,
memory management and performance optimizations. Detailed technical infor-
mation can be found in the Performer documentation [Eckel et al., 1997].

Figure 3.15: Illustration of Performer scene graph: the hierarchical traversal or-
der (left) and coordinate transformations (right) [Image source: Perf. manual]

46

3.4. RWB Library: A Software Environment for the Virtual Workbench

The content of the virtual world is stored in a hierarchical scene graph, see
Figure 3.15. A node of the graph may hold, for example, the data for a geometric
primitive or a local coordinate system (pfDCS - Performer Dynamic Coordinate
System). Different types of nodes provide mechanisms for grouping, animation,
level of detail and other functional concepts. The scene graph is traversed at
several stages (by scene traversals) which together form the rendering pipeline
(Figure 3.16). A typical rendering scheme consists of three processing stages:

• APP updates the location and the look of geometries and it updates also
the viewing frustum.

• CULL determines which geometries in the scene are visible (in the viewing
frustum) taking occlusion into account.

• DRAW creates OpenGL graphical instructions for rendering the scene.

Figure 3.16: Performer rendering pipeline [Image source: Performer manual]

Both the APP and CULL stages traverse the entire scene graph. In the APP
stage, changes are made to the nodes in the scene graph. The CULL stage tra-
verses these nodes, calculates the coordinate transformation of all nodes and
constructs a display list of visible geometry to be rendered. The DRAW stage
transfers this list to a set of OpenGL graphical instructions. Finally, these in-
structions are sent to the graphics hardware to render the visible geometry. As a
result, the changes made to the scene graph in the APP stage are only made vis-
ible after a period of time (the latency, discussed in the previous section) which
it takes to complete all other stages.

For maximum performance, each of these stages can be executed in parallel
as a separate process on a different CPU (Figure 3.17). When using three CPU’s,
three frames can be processed in parallel, resulting in a considerable increase of
performance over serial execution. More time is available for each stage while
maintaining the same frame rate.

47

Chapter 3. The Concept of the Virtual Workbench

Figure 3.17: Multiprocessing scheme of Performer

The communication between the stages and processors takes place through
the Shared Memory Arena, a memory region that can be accessed by the differ-
ent processes (Figure 3.18). For every frame in the rendering pipeline a unique
copy of the scene graph is stored in shared memory. Each of the three stages
works on their copy of the scene graph, which guarantees data consistency dur-
ing processing of the stages.

Figure 3.18: Shared memory usage by the rendering stages of Performer

Although the Performer scene graph is copied to maintain data consistency
between stages, only one shared copy of the data exists that contains the raw
geometry and appearance information (e.g. vertices, colors and surface nor-
mals). If this aspect is disregarded, for example the APP stage can update the
raw geometries or the colors while the DRAW stage is reading the same data
concurrently, leading to unpredictable effects on rendered geometry. We use
Performer’s solution (pfFlux) to cope with this. The pfFlux node is a container
for dynamic data that enables multiprocessed generation and use of geometrical
data in the scene graph. A pfFlux node is stored in shared memory and inter-
nally consists of multiple buffers of data, allowing multiple processes to have
their copy of the data on which they are working. As a result, one process that
is busy creating for example a list of vertices in one buffer will not interfere with
another process that uses another buffer in the same pfFlux node (e.g. which
contains the most recent created display list) to render the geometry.

This multiprocessor-safe buffering technique allows asynchronous geome-
try data updates from the main Performer processing stages. This is especially
useful in cases where intensive calculations slow down the APP stage and as a

48

3.4. RWB Library: A Software Environment for the Virtual Workbench

result slow down the overall scene update rate. Such intensive calculations can
be performed asynchronously in a separate process on a different CPU, using
the pfFlux buffer to store the results. As we use just three of the four available
processors of the Onyx2 for the APP, CULL and DRAW stages, we have reserved
the fourth processor for an asynchronous COMPUTE process to perform com-
putationally intensive operations. The time critical Performer stages are now
relieved of the calculation and can simply use the latest available buffer of the
pfFlux node. We use this scheme for the update of all visualization tools in our
VRX framework (see Section 5.2).

Stereo with Performer

Figure 3.19 shows a scheme of the quad-buffer stereo approach that we have im-
plemented using one graphics card (SGI Infinite Reality 2). Two pfChannels are
used to view the scene for the left and the right eye and one pfPipe is rendering
the images in an alternating fashion. We use a resolution of 1120 × 840 pixels at
display refresh rate of 96 Hz (48 Hz for each eye). DRAW traversal of the scene
graph and consequently rendering is triggered at 24 Hz.

Database

Scene
Cull

Application

LPoint

Compute

Multiprocessing
pipeline 0

Cull
Draw

Draw

Intersect

isect

isect

Disk

LPoint

Back
buffer

Front
buffer

Swap buffers

LEFT
IMAGE

 RIGHT
 IMAGE

left ans right images
alternativelly

OpenGL renders

Multiprocessing
pipeline 1

Scene graph

pfChannel 1pfChannel 0

pfPipe

pfPipeWindow

Display system

pfChannel 0 pfChannel 1

pfScene

Figure 3.19: Single graphics pipe stereo with left and right pfChannels

As described in Chapter 2, a VR application requires a more specific approach
than high performance graphics only. The RWB Library is a VR extension of the
real-time 3D graphics, provided by Performer and OpenGL.

49

Chapter 3. The Concept of the Virtual Workbench

3.4.3 Structure of RWB Library Applications

The RWB Library provides an abstract layer on top of Performer, taking care of
all required aspects of VE and RWB specifics, such as the creation of the off-axis
perspective stereo projection, calibrated tracking of input-devices, and multi-
processing. The library provides a ready-to-use VE, optimized for the RWB.
This library has an object-oriented structure, allows development of new user-
functions, and it forms a basis for programming VR applications.

A simple VE that supports head-tracking, stereo-perspective viewing, and
object interaction can be constructed by only a few lines of code (see code frag-
ment below). The VE can be filled by adding graphical objects (generally of pfN-
ode type) to the scene graph under the root node of RWB applications, called
App-worldDCS. These graphical pfNodes can be created by using Performer
functions. By manually defining the properties of geometrical primitives (pf-
Geoset) such as color, shape and texture (e.g. pfMaterial, pfTexture) the appear-
ance of graphical objects can be defined. The graphical nodes and whole sub-
scene graphs can also be imported from geometry files. The added objects will
appear correctly in the virtual environment, but the user cannot interact with
them. For this purpose the RWB Library provides the RWB-Object class and the
RWB-Interactor class.

The following simple example of an RWB application begins with an initial-
ization of the RWB Library, building the scene graph, setting up the stereo-view
channels and initialization of the RWB Simulator. The user application defines
user-code functions: synchronous with main APP process and asynchronous
process. The user-exit function must be also specified because after starting the
RWB-main-loop the program never returns to the calling function.

/ / ∗∗∗ main . C, a simple RWB−LIBRARY example
#include ”rwblib . h” / / ∗∗∗ include RWB Library

int main (int argc , char ∗ argv [])
{

rwbInit main (argc , argv) ; / / ∗∗∗∗ RWB i n i t i a l i z a t i o n
rwbInit scene () ;
rwbInit view () ; / / ∗∗∗ void ∗ arena − contains Performer Shared Arena
rwbInit sim () ;

Shared−>UserCodeFunc =&My UserCodeFunc;
Shared−>UserCodeAsyncFunc =&My UserCodeFunc ASYNC;
Shared−>UserExitFunc =&My ExitFunc ;

My InitFunc () ; / / ∗∗∗ user program i n i t i a l i z a t i o n
Show/Hide GlobalCoordXYZ () ;
MakeDefaultPadPanel () ; / / . . c r e a t e s a blue semi−transparent Plexipad
Show/HideGround() ;

rwbForkMain () ; / / ∗∗∗∗ s t a r t s the main−loop of the RWB app l i ca t i on

/ / ∗∗∗ The program never returns here , user must use Shared−>UserExitFunc !
}

void My UserCodeFunc () { . .} / /∗∗ th i s function is re−ca l l ed from the main loop
/ / in the APP process , i t may modify the scene graph

50

3.4. RWB Library: A Software Environment for the Virtual Workbench

void My UserCodeFunc ASYNC() { . .} / /∗∗ th i s function runs in an asynchronous process
void My ExitFunc () { . .} / /∗∗ user ex i t function to clean−up things . . .

void My InitFunc () //∗∗∗ i n i t i a l i z a t i o n of the user app l i c a t i on
{

pfNode ∗my grNode; / / ∗∗∗ pfNode can be any performer sub−scene graph

my grNode = CreateGRobj (pfdNewCube(arena , 0 . f , 0 . f , 1 . f)) ; / / ∗∗∗ Create a blue cube
my grNode−>setName(”BlueCube”) ;

Shared−>App worldDCS−>addChild(my grNode) ;
/ / ∗∗∗ d i r e c t l y a t tacht to the root of scene graph ” Applicat ion World DCS”
/ / . . . or b e t t e r via rwbObj . . .

rwbObj ∗ obj ; obj = new rwbObj(RWB BV AABOX) ;
/ / ∗∗∗ RWB BV AABOX, RWB BV ORBOX . . axis−al igned / or i ented bounding box ,
/ / ∗∗∗ RWB BV SPHERE . . bounding sphere

obj−>EnableCollisions () ; / / obj−>Disab l eCo l l i s i ons () ;

obj−>attachGRobj (my grNode, x , y, z , sx , sy , sz , h, p, r) ;
/ / at taching pfNode to rwbObj at pos i t i on (x , y , z) , s i z e (sx , sy , sz) , ro ta t i on (h , p , r)

obj−>add to SceneGraph (Shared−>App worldDCS) ; / / where should th i s rwbObj be placed

obj−>ShowBoundingVolume() ; / / or use obj−>HideBoundingVolume () ;

obj−>vis ib le se lec t ion =1; / / ∗∗∗ s e l e c t e d o b j e c t s are h igh l ighted with red co lor
obj−>selectable =1; / / ∗∗∗ RWB−Object can be s e l e c t e d
obj−>manipable =1; / / ∗∗∗ RWB−Object can be manipulated

return ;
}

The actual application can be programmed either via the user-code func-
tions, or with traversal callback functions (APP, CULL, DRAW, ISECT) of any
pfNode that is attached to the scene graph, further using RWB-Objects and their
callback functions, or by different RWB-Interactors.

RWB-Object Class

The basis for interactive virtual objects in the VE is provided by the RWB-Object
class (rwbObj). This class adds several ready-to-use functions to regular Per-
former graphical nodes, such as support for selection, manipulation, object hi-
erarchy, collision detection and handling of constraints.

Figure 3.20 shows the basic structure of RWB-Objects. RWB-Object has a
structure of a sub-scene graph ending with a graphic pfNode, which has to con-
tain some geometry. It can be directly a pfGeode node with geometrical primi-
tives in pfGeoSet(s). But it can be also another sub-scene graph that ends with
pfGeode. RWB-Object controls several transformation nodes: DCS for position
and orientation of the object, zoomDCS for uniform scaling (used for zooming
onto objects) and scaleDCS that is used to scale the attached pfNode, containing
the geometrical objects.

51

Chapter 3. The Concept of the Virtual Workbench

Figure 3.20: RWB-Object class structure

Performer offers SCS, DCS and FCS transformation nodes (Static, Dynamic
and Flux Coordinate System). These nodes in fact represent a ”packed” trans-
formation matrix: scaleMatrix × rotationMatrix × translationMatrix. This
is a rather effective representation but the dependency of scaling, rotation and
translation makes it difficult to implement the flexible scene graph architecture
that we need for interactive virtual objects. Therefore we have separated the
scaling transformations from rotation and translation. A big advantage of this
solution is that we can easily add child RWB-Objects under any DCS node of a
parent RWB-Object without any problems with the child object’s scaling.

Another problem, which is shown in Figures 3.21 and 3.22, is the problem
of uniform and non-uniform scaling. The Performer transformation matrix rou-
tines are restricted to affine, orthogonal and orthonormal matrices and facilitate
efficient matrix multiplications. An affine transformation leaves the homoge-
neous coordinate unchanged; that is, in which the last column is (0,0,0,1). An
orthogonal transformation is one that preserves angles. It can include trans-
lation, rotation, and uniform scaling, but no shearing or non-uniform scaling.
An orthonormal transformation is an orthogonal transformation that preserves
distances; that is, one that contains no scaling.

As we needed to implement also non-uniform scaling, we had to separate the
scaling transformation of the underlying graphic node (grNode) with the object
geometry (i.e. make a box with dimensions of 4x10x2 when the standard Per-
former functions for creating primitive objects produce dimensions of 1x1x1).

52

3.4. RWB Library: A Software Environment for the Virtual Workbench

Figure 3.21: Original scene containing graphical RWB-Objects with appropriate bound-
ing volumes (left); When these objects are placed under a non-uniformly scaled and ro-
tated pfDCS node then a shear-error is introduced into the scene graph (right).

The RWB-Object class also implements all basic operations with bounding
volumes (BV) like automatic updating of BV during object manipulations and
transformations, object selections via BV, and collisions between BVs of other
RWB-Objects. Basic BV types are axis-aligned or oriented bounding boxes, and
bounding spheres.

First, RWB-Objects need to have attached a geometry node (grNode). The
user must specify dimensions, orientation and position in the parent coordinate
system. After that, a bounding volume is computed and, in case of enabled
collisions, also the triangle collision cache is created. It is also possible to enable
and put constraints on object manipulation. Using a constraint mask can be
any degree of freedom (xyz, hpr) enabled or disabled. For more information on
collision detection and constraints see Section 4.1.3.

Figure 3.22: Linking RWB-Objects: adding a child to a parent rwbObject

To make the RWB-Object active and visible in the virtual environment, it has
to be added to the scene graph, usually under the App-worldDCS node. It is
also possible to link RWB-Objects together (Figure 3.22). To prevent the shearing
effect (Figure 3.21) in the child object, it should not be added under scaleDCS of

53

Chapter 3. The Concept of the Virtual Workbench

the parent RWB-Object. This ”unexpected” shearing appears when rotation is
performed in a non-uniformly scaled coordinate system.

Behaviour and interactivity can be implemented into RWB-Objects via call-
back functions (for example, when the stylus is inside the BV of the object, it
can resize the object, or when an object is selected, the pick callback changes its
color to red). These functions are triggered from RWB-Interactors.

Moreover, new classes can be derived from the rwbObj class, allowing rapid
development of virtual objects with custom-made behaviour. We used this tech-
nique to construct RWB-Widget classes. These interaction widgets, such as but-
tons and sliders, are derived from the generic rwbObj class. In addition, the
RWB-Widget classes again can be used for other derived classes, for example to
represent a specific type of sliders, such as the slider with three value controllers
used in the colormapper widget (see Section 5.2).

RWB-Interactor Class

An important aspect of a VR application is interaction. Through the use of RWB-
Interactor classes various interaction scenarios can be implemented. In these
scenarios the behaviour of the application in response to user actions with input
devices is described. In Section 5.1 several interaction methods and examples
are described in detail.

The RWB-Interactor reads the input devices and determines the state of the
user-interaction, see Figure 3.23. If an event is detected the RWB-Interactor trig-
gers the appropriate actions and changes the current user-interaction state. For
example, if the stylus has moved inside an rwbObj, the RWB-Interactor can trig-
ger a method of this object in order to highlight its selection, while the interac-
tion state is set to ”selecting object”. The library uses a default RWB-Interactor,
which implements both direct and ray-casting selection and manipulation of
virtual objects. There are two interaction modes: direct stylus interaction with-
out visible ray and with enabled ray-casting. Switching between these two
modes is done by clicking the stylus button when no object is selected.

When only direct interaction is enabled then selection of objects is based on
checking whether the stylus is inside the bounding volume of an RWB-Object
that is attached to the scene graph. Sometimes it happens that the stylus position
is inside more than one RWB-Object at the same time. In such a case, the object
closest to the stylus is selected (when it is ”selectable”). The BV intersection tests
are very fast. We keep a list of all active RWB-Objects in the virtual environment
and their BVs.

The ray-casting selection is a more time-consuming operation. We use the
ISECT traversal process of Performer to check all ray intersections with all object
geometries in the scene. First the objects are checked whether the ray actually
hits their bounding volumes (BBOX or BSPHERE) before all their triangles are
checked for a ray intersection.

54

3.4. RWB Library: A Software Environment for the Virtual Workbench

Even when the ray is activated, the direct interaction has a higher priority.
Thus, when the stylus moved into some bounding volume (its object must be
”selectable”) then the ray-casting selection is temporarily disabled. When the
user moves the stylus outside the selected object, the ray-casting status is re-
stored. If there is no direct selection then the ray-casting intersection procedure
is activated.

We distinguish several events, to which the RWB-Object concerned can react
with callback functions, see Figure 3.23. These events and callbacks are:

touch event - stylus is moved inside of the object, or the ray has intersected it;

touching event - object remains intersected and stylus button is not pressed;
untouch event - stylus moves away from the object;
pick event - at the moment of the first click on the stylus button;
manip event - the object is ”manipable”, an object manipulation is performed;
picking event - stylus button is pressed, object can not be manipulated;
release event - stylus button is released and object manipulation stops;

Figure 3.23: Interaction-handling routine of the RWB-Interactor

55

Chapter 3. The Concept of the Virtual Workbench

Besides this standard interaction scenario, custom interaction scenarios can
be defined to create new interaction methods. Using the generic RWB-Interactor
class we can easily define new interaction tools, such as the zoom tool, the ROI
tool or the Spring Manipulator, see Section 5.1. We have implemented two in-
teractor schemes:

The user extension of RWB-Interactor first executes the default RWB-Interactor
to perform the intersection checks and to obtain a new interaction state and in-
teraction points; then the user-interactor function defines the desired behaviour
(examples: ZOOM, ROI, Click-ISO, Probing Tools, see Section 5.1).

The fully user-defined RWB-Interactor overloads the functionality of the de-
fault interactor and processes itself the input sensors (via RWB-Lib) and imple-
ments the desired functionality (examples: Spring Manipulators, Virtual Particle
Steering, see Section 4.2).

The user RWB-Interactors can be activated by clicking on a widget button.
The RWB-Interactor can be deactivated by the tool itself or by activating an-
other interactor. For example, the zoom tool is automatically deactivated after a
zoom action and control is returned to the default RWB-Interactor. The design
of the interactor determines the way the tool works. The event-based inter-
actors, straightforward coordinate transformations between the Plexipad and
stylus and the simulator environment, all provided by the RWB Library, allow
rapid development of new (two-handed) interaction tools.

The following pseudo code fragment illustrates how the interaction states
are used in the handleInteraction function of a Zoom-Interactor (user extension of
RWB-interactor).

/ / ∗∗∗ Zoom i n t e r a c t o r pseudo code , main i n t e r a c t i o n loop
void Zoom Interactor : : handleInteraction ()
{
switch (status) { / /∗∗ s e l e c t s t a t e

case Zoom RESET:
reset () ;

case Zoom NOTHING SELECTED: / /∗∗ s t a t e nothing se l .
if (! globalInteractor−>stylus button) / /∗ check button
{ /∗ do nothing ∗ / } / / button not pressed
else / / button pressed
{ status =Zoom WAIT FOR BUT RELEASE; / / change s ta t e

startZoom () ; / / s t a r t the zoom
}

case Zoom WAIT FOR BUT RELEASE: / /∗∗ s t a t e zooming
if (globalInteractor−>stylus button) / /∗ check button
{ / / s t i l l pressed
updateZoom(Shared−>cur interactor−> interactionPoint) ; / / update zoom
}

else / /∗ button re l e a s ed !
{ status =Zoom NOTHING SELECTED; / / change s ta t e

stopZoom () ; / / stop the zoom
}

}

56

3.4. RWB Library: A Software Environment for the Virtual Workbench

The behaviour of an application is fully defined by the combination of user-
defined RWB-objects, RWB-Interactors and the general user-code. This can con-
tain anything, from general application control to a specific animation of a vir-
tual object, and is executed every frame in the APP traversal. A more elegant
way of defining specific application behaviour is to supply user defined callback
functions to the various nodes. These callback functions can be automatically
executed when the node is visited during a scene graph traversal in one of the
processing stages. For example, an APP callback function, which rotates an ob-
ject, can be executed automatically every time the object is visited during the
APP traversal.

The Main Loop of an RWB-Application

A brief overview of the way RWB-Applications work is shown in the follow-
ing code fragment. After the initialization of the VE, the RWB Library initiates
Performer’s scene graph traversal and starts the main loop in the APP process.

// ∗∗∗∗∗ main loop of RWB app l i ca t i on (APP−process) :

while (! Shared−>exitFlag)
{

if (RWB SIMULATOR) handleSIM navigation () ; / / ∗∗∗ in case of RWB−Simulator
/ / handle the simulator−navigation

//∗∗∗ wait unt i l the next frame boundary , synchronizat ion of a l l performer processes
pfSync () ;

/ / ∗∗∗ NOW we do TIME CRITICAL OPERATIONS

UpdateUserInput () ; / /∗∗ reads new tracke r da ta , updates sty lus DCS
UpdateHeadCoords () ; / /∗∗ update head pos i t i ons + view−pos i t i on

if (Shared−>UserCodeCritical !=NULL) Shared−>UserCodeCritical () ;
//∗∗∗ ca l l ing user time−c r i t i c a l code , i f i t e x i s t s . . .

if (Shared−>drawStats) Shared−>rwbview−>l e f t−>drawStats () ; / /∗∗ draw channel s t a t i s t i c s

//∗∗∗ i n i t i a t e t r a v e r s a l using current s t a t e
//∗∗∗ synchronized s ta r t of APP, CULL, DRAW, DBASE, ISECT and COMPUTE t r a v e r s a l s / process
pfFrame () ;

Shared−>cur interactor−>handleInteraction () ;
//∗∗∗ handle in t e ra c t i on with app l i c a t i on via RWB Interactor

if (! Shared−>rwbOptions−>ForkedXInput) HandleEvents () ; / /∗∗ handle X events

HandleEventsInMainLOOP () ; / /∗∗ handle events that can modify the scene graph

if (Shared−>UserCodeFunc!=NULL)
if (! Shared−>stop) Shared−>UserCodeFunc () ; / /∗∗ c a l l the synchroneous user code

UpdateSceneGraph () ; / /∗∗ make changes to the scene graph

} / /∗∗ end of main−loop

57

Chapter 3. The Concept of the Virtual Workbench

At the beginning of the main loop the APP process waits for all other pro-
cesses to finish the last frame (pfSync). After this the library performs time criti-
cal functions such as reading the tracker information. This information consists
of the position and orientation of all tracking sensors. In the real RWB appli-
cation this data is read directly from shared memory of the tracker daemon
while in the RWB Simulator this data is read from a stored tracking-data file.
Then, all other processes (e.g. CULL and DRAW) are started synchronously (pf-
Frame). After this, the currently active RWB-Interactor is invoked. This interac-
tor evaluates the status of the input devices and triggers the appropriate actions
(e.g. move a virtual object to a new stylus position). Next, the user-defined or
application-specific code is executed.

Finally, the main loop waits until all stages have finished. The updated scene
graph from APP is then passed to the CULL stage. This stage eliminates the
invisible elements and sorts the graphical objects in a display list of geometry.
This list is passed to the DRAW stage. In this last stage the resulting display list
is passed to the graphics pipeline which renders it to the screen. If all stages are
finished and data has been transferred to the next stages, the loop starts again
from pfSync.

The combination of the RWB Library and Performer allows a rapid devel-
opment of VR applications and interaction techniques for different application
areas. The use of multiprocessing techniques provides performance for high
interactivity even with complex VEs.

3.4.4 RWB Library Performance

The performance of RWB applications can be characterized by the update and
rendering rate of the scene and the program latency, which is the time spent
between the user actions and the resulting system feedback.

We use three parallel rendering stages (APP, CULL, DRAW), and the update
rate is determined by the slowest stage in the rendering pipeline. The latency is
therefore three times the time spent in the slowest stage. A frame rate of 5Hz is
caused by the 200 ms spent in one of the rendering stages. The latency caused
by the rendering pipeline is here approximately 3 * 200 ms = 600 ms. The higher
the scene update frequency, the lower the latency is and the more realism and
comfort is experienced by the users. Although an update frequency of 10Hz is
experienced as sufficient (latency of 300ms), rates of 20 Hz and higher are found
most comfortable (latency of 150ms). In our setup the frequency is limited to
the maximum refresh rate of the CRT projector (for the chosen resolution of
1120*840) and the shutter glasses (96 Hz, left/right image = 48 Hz). The main
loop of our visualization system runs at 24 Hz. With too complex calculations
and large geometric models the frame rate can drop under 10 Hz. Therefore
we try not to generate very complex models (less than 100.000 triangles in the
whole scene).

58

3.4. RWB Library: A Software Environment for the Virtual Workbench

The scene update frequency is reduced by the time consumed by operations
that have to be completed each update. These operations include the reading of
the tracker data, execution of user-defined application functions (e.g. filtering
data), constructing of the graphical primitives in the visual scene and finally ren-
dering the primitives to the graphics frame buffer. The more complex the user-
defined calculations are, and the more complex the generated graphical scene
is, the lower the scene update frequency will be. The key towards a high update
frequency is to exploit the computational power from the available computer
system(s) and to reduce complex calculations, minimize number of graphical
primitives, and use simplified and LOD (level of detail) geometric models.

3.4.5 3D Interaction and User Interface

The RWB Library offers user interaction with devices such as a keyboard, a
mouse, a spacemouse (a kind of 6 DOF joystick), a stylus (6 DOF) and a Plex-
ipad. The spacemouse can be used for navigation in large environments and
to its 9 keys extra functionality can be assigned by the application. For spatial
(”real 3D”) interaction the RWB applications use the Plexipad and the stylus
with a tracking sensor and one button.

RWB Library also provides a basic 3D widget set for building a 3D user in-
terface with buttons, sliders, menus, or displays, dial and type-in windows. At
the position of the stylus the actual tool can be displayed. The full spectrum of
3D user interface facilities is demonstrated in the case studies in Chapter 6.

Monitoring of User Interaction

A very important aspect of working with the Responsive Workbench is to be
able to monitor and debug execution of an RWB application in a distributed
application-development environment.

We were mainly concerned with our VR and visualization laboratories that
were until the year 2000 equipped almost exclusively with SGI graphics work-
stations. Our intention was to use other workstations (one Onyx, one Octane
and several O2s) in combination with the VR facility (i.e. the RWB), which is
driven by the Onyx2. Later, we have also included PC graphics workstations
into our application development environment.

We have incorporated in the RWB Library a monitoring function for the user
interaction. The principle is quite simple. During the execution of the applica-
tion on the Workbench the tracker data and application time-stamps are written
into a file (or sent through a network) for immediate or later use, such as ani-
mated replay of a Workbench session in the RWB Simulator, see Section 3.5.

59

Chapter 3. The Concept of the Virtual Workbench

3.5 RWB Simulator: A Tool for Application Devel-
opment and Analysis

The RWB Simulator is a desktop development environment for RWB Library
applications. This tool provides application support in areas of: development,
evaluation, learning, presentation and navigation assistance.

Figure 3.24: Our VR laboratory with the Responsive Workbench and RWB Sim-
ulator platforms

3.5.1 Motivation

The process of developing a VR application needs special attention. With some
systems the development has to be done directly on the VR facility. Some sys-
tems have an option of creating the VR applications off-line in a sort of ”VR on
desktop - simulator”, like the CAVE Simulator [Web-CAVElib]. There are also
systems such as Avango [Dai et al., 1997], Lightning [Bues et al., 2001] or VR-
Juggler [Bierbaum et al., 2001], where the application developer can define the
virtual application platform to be, for example, a desktop system driven by key-
board and mouse which emulate the 3D input from the immersive VR systems.

However, trying to simulate a 6 DOF (degrees of freedom) input device with
a 2 DOF mouse is not very practical. It is impossible to simulate in this way
a complex 3D interaction that the user does (would do) in the virtual environ-
ment with the implemented application. We think that user interaction is one
of the most important aspects of VR applications. Therefore we should devote
enough attention to it during the development of an application. The best way

60

3.5. RWB Simulator: A Tool for Application Development and Analysis

of testing the spatial interaction is in the immersive VE itself. Development is
done much easier off-line on a desktop-system. The developer then pays the
price of missing 3D interaction with the application, which can be compensated
by using (quasi-) 3D input devices like the spacemouse, but still that is not the
same level of interaction as provided by the Responsive Workbench or in other
immersive VEs.

Our proposed solution for this problem is based on capturing the user’s
(developer’s) 3D interaction with the prototype application on the Responsive
Workbench. We measure the tracker data (tracking of user’s head and 3D in-
teraction devices) with a given frame rate and we also store time-stamps of the
RWB application running on the Responsive Workbench. This measured data is
then used by the application developer within the RWB Simulator for the next
stage of development and improvement of the RWB application. The RWB Sim-
ulator works on a desktop system and is controlled by mouse and keyboard
commands. The tracker data represent the interactions of the virtual user with
the application. A powerful tool is available to the developer for tracing and
simulating of the application forward, in some cases also backward in time, with
captured 3D interaction.

We try to solve the problem of simulating the spatial interaction during VR
application development with our concept of the RWB Simulator. Also, the use
of this tool has a strong impact on the processes of application development,
analysis, evaluation and presentation. It reduces the time needed on the Re-
sponsive Workbench and increases the efficiency of the whole process.

3.5.2 Development of RWB Applications

Development and implementation of VR application should be efficient. We try
to minimize the time spent in immersive VE during development, because it is
not always convenient and effective to debug or monitor an RWB application
on the RWB itself. Sometimes the user performs application-specific tasks, and
it is difficult to see if the task or the underlying algorithm works properly, when
the user is just standing at the Workbench and wearing the shutter glasses. Usu-
ally, program variables will be written onto the screen and analyzed. On the
real Workbench we cannot always easily pause, slow down and debug the ap-
plication. This becomes even more complex if we consider the multiprocessing
nature of the RWB application.

The RWB Simulator uses the captured tracker and application data and highly
interactive applications benefit from it. Time dependent simulations can make
use of the unified RWB-time and the RWB Simulator can play back a simula-
tion at any speed, usually at lower speeds, so that the developer is able to check
the proper behaviour of the simulated process. Some simulations can even be
played backwards in the RWB Simulator. Using our RWB Library and Simula-
tor, the process of application development runs as follows, see Figure 3.25.

61

Chapter 3. The Concept of the Virtual Workbench

Figure 3.25: Application development scheme

First, there must be a clear idea about the RWB application and its purpose -
the application scenario. The proper VE metaphors have to be considered.

The developer prepares a prototype of the application: the scene graph of
the virtual world, basic functions and callbacks, the user interface, etc. During
this preparation stage the application is compiled in the simulator mode.

In the next step, the user/developer runs the application on the real RWB,
and performs some tests and adjustments. The developer can record tracker
data for having some user’s interaction data, and switches back to the simula-
tor mode. This process repeats until the implementation is finished. At later
stages of this iterative process the real users of the RWB application can test the
application and the developer can record their Workbench sessions. With this
real user data the developer can adjust the implementation and check whether
it will fulfill the real users’ needs and their interaction abilities without them,
because the developer already has their interaction data.

This way we can much better address the problem that usually the best user
of an application is the developer. With the real user data the RWB application
can be really ”tuned” for the user and not the developer. We still have to learn a
lot about this user-developer cooperation process, but we think that this might
be a good direction.

After the final test of the application on the real Workbench the RWB Sim-
ulator can be used to produce images and animations for presentations. Also
demo sessions can be produced for the application users to learn how to use it.
These demo sessions can be previewed with the RWB Simulator version of the
RWB application.

62

3.5. RWB Simulator: A Tool for Application Development and Analysis

3.5.3 The RWB Simulator Usage

The RWB Simulator is in fact a simulation mode of an application that uses the
RWB Library. In practice it is a C++ compiler and linker option. There is also a
specially compiled RWB-SIM Library with enabled debugging options, and has
a lot of extra functions for tracing the RWB applications. The developer thus
has two compilations of the application, one optimized for the workbench and
the other for the simulator. For the application developer or the user it is very
simple to use.

Figure 3.26: A user clicks on the track button to start recording of his interactions
with the RWB application. These buttons (track, grab, exit) are invisible on the
Responsive Workbench (placed on the wooden bar) and the user gets an audio
feedback of the buttons instead of visual feedback when touching these buttons.

In simulation mode, the tracker data are not read from the tracker daemon
but from the tracker data file. The application then runs in the same way as
on the Responsive Workbench. Stereo is optional in the RWB Simulator on the
Onyx2 with the IR2 graphics card. The RWB Simulator can export RED/GREEN
stereo images and animations also. On other desktop systems we usually do not
provide stereo.

On the Responsive Workbench the user performs the interaction with the
RWB and with the running application. The user or the developer (Figure 3.26)
can start to capture his interactions with the virtual environment into a file.

Then within the RWB Simulator, the developer sitting at a common work-
station can play back what was happening on the real RWB. The application
world is displayed on top of a model of the Workbench; the displaying of the

63

Chapter 3. The Concept of the Virtual Workbench

model can be also switched off. The developer can observe the run of the RWB
application, how the user performed with it, and the simulator user can navi-
gate around the RWB model with the mouse via a trackball metaphor, see Fig-
ure 3.27. The keyboard can be used to control the simulator (e.g. slow, pause,
trace back/forward or reset simulation, reposition the user’s head or the stylus).
In the case when there are no interaction data for the simulator, the 3D interac-
tion can be emulated with keyboard and mouse controls, similar to the CAVE
Simulator [Web-CAVElib].

Figure 3.27: RWB Simulator viewpoint navigation via trackball metaphor

In the RWB Simulator the default viewpoint is above the Workbench table
overseeing the whole virtual setup with the user and the Workbench, see Fig-
ure 3.28(a). It is also possible to show the view from the user’s eye position, see
Figure 3.28(b).

(a) (b)

Figure 3.28: RWB Simulator: (a) overview with FOV volume; (b) user view

A big advantage of the RWB Simulator is in its portability. The RWB appli-
cations can be implemented and developed on common graphic workstations
with Iris Performer and the RWB Library. As our VR laboratory was originally
equipped only SGI graphics workstations we designed our software for the SGI

64

3.5. RWB Simulator: A Tool for Application Development and Analysis

systems. The RWB Simulator fully supports SGI Onyx, Octane and O2 family.
Logically, the run-time RWB application needs the SGI Onyx 2 with the Infinite-
Reality 2 graphics card.

Recently, since Performer is available for Linux, we have also made a com-
pilation of the RWB Simulator for PCs with Linux. The only requirements are
properly working OpenGL and Performer, and because the Performer geome-
try file format (”*.pfa, *.pfb” - Performer ASCII/binary) is not generally used
by other applications, it is also practical to install OpenInventor for being able
to read the Inventor geometry format (”*.iv”), which is well-known and estab-
lished in the graphics community.

3.5.4 Presentation of the RWB Application

Another aspect of VR research is demonstration and presentation of results. It is
not possible to take stereo/immersive pictures of a user working with an RWB
application. Usually, we switch the projection to a monoscopic mode and then
we adjust the perspective to align the user with the virtual world, we take a
camera and make the photo. The RWB Simulator is very convenient for mak-
ing pictures/animations of the RWB application (many of the figures from this
dissertation are made with the RWB Simulator).

(a) RWB-Simulator: Application overview (b) RWB-photo: Application overview

Figure 3.29: Comparison of pictures: the spring-fork used for manipulation of
objects in the mini-world, see also Section 4.2

We have used this system for several research problems and case studies.
Most of them will be described in the following chapters. Interactively the most
complex RWB application that we have tested with the RWB Simulator was a
physics-based world for an assembly task which we have used for designing
the spring-based manipulation tools. Object collisions and the dynamic tools
were simulated in real time. We have used the RWB Simulator not only in the
process of development and design of the tools and their application, but we
have also produced a large number of pictures and animations with it.

65

Chapter 3. The Concept of the Virtual Workbench

The reader can compare the images of the same application in the RWB Sim-
ulator, see Figure 3.29(a), and the real RWB application photo taken by a camera,
see Figure 3.29(b).

Further, RWB Simulator can be used for creating ”augmented reality” (AR)
still images. A RWB Simulator image is superimposed on a ’real’ picture taken
by a digital camera. In such case, the photo of the RWB application with the
users has to be taken simultaneously with recording the tracker and interaction
data. The application can be played back in the RWB Simulator with the RWB
photo on the background of the screen, see Figure 3.30. After adjusting the
view in the simulator, so that the Workbench model is aligned with the physical
Workbench on the photo, we have to replay the interaction session from the
RWB and find the moment in time when the photo has been taken. These ”AR”
still images clearly demonstrate the VR application in the real use.

Figure 3.30: RWB Simulator supports creation of AR still images.

3.6 RWB Library and Simulator Summary

In this chapter we have presented the RWB Library and the RWB Simulator, our
environment for the development of RWB applications.

With this system, the applications can be developed using desktop systems
as well as the RWB itself. RWB applications can by played back and traced in
the simulator environment. The use of the RWB Simulator improves the effi-
ciency of application development. Most of the development time of the RWB
application can now be spent on a desktop system.

The RWB Simulator can produce images and animations for presentations.
The simulator environment could be also used as an interactive tutor to teach
the users to operate the RWB applications.

66

Chapter 4

3D Interaction in Virtual Environments

In this chapter, we will first give a short overview of existing basic interaction
techniques for virtual environments. Basic problems of 3D interaction will be
discussed. Interaction methods suitable for the Virtual Workbench, object colli-
sions checking and handling schemes together with constrained manipulation
of objects will be presented in Section 4.1.

After this introductory section, we will describe visual force-feedback tools
that are based on the spring metaphor, see Section 4.2. The spring-based tools
are attached to objects assisting the manipulation. They provide a visual force
interface and substitute a real force input.

The spring tools were further adapted for manipulation of atoms in Molecu-
lar Dynamics simulations. More about particle steering tools in the MolDRIVE
system can be found in Section 4.3.

4.1 Basic Interaction Techniques

Interaction is an essential characteristic of virtual environments. Much has been
published about interaction techniques in VR but the quest for truly intuitive
and natural interaction techniques is still going on. Interaction between users
and virtual environments is complex. Users must be able to navigate through
3D space, manipulate virtual objects with 6 degrees of freedom (DOF), or con-
trol parameters of a simulation, and interact with the 3D GUI inside the virtual
environment in a user-friendly way.

However, fully 3D interaction is not well understood [Herndon et al., 1994].
Users often have difficulty controlling multiple DOFs simultaneously, perform-
ing tasks in a volume rather than on a surface, and understanding 3D spatial
relationships. These problems are magnified in immersive VEs. Users are faced
with new interaction devices, such as pinch and data glove, tracked wand or
stylus, haptic or other devices. The users are expected to quickly learn operat-
ing and using them.

Proprioception is a sense of self-awareness of user’s body parts, their po-
sition and orientation. Proprioception in user interaction within VE has been
studied by [Slater et al., 1995; Mine et al., 1997; Mine, 1998]. Similar to the real
world where we can use our hands and legs without watching them. This factor
is very important for the level of presence experienced in VE.

67

Chapter 4. 3D Interaction in Virtual Environments

4.1.1 Interaction Techniques - Overview

Design of interaction techniques and user interfaces for VR must be done with
extreme care. The type of interaction technique usually depends on the task
to be performed. In our case, we studied interaction techniques that would
assist in visualization and steering of simulations in fully immersive (CAVE,
HMD) and semi-immersive virtual environments (RWB). Surveys of interaction
techniques for VR can be found in [van de Pol et al., 1999; Bowman & Hodges,
1997a; Bowman & Hodges, 1997b; Mine, 1995].

We can basically divide interaction techniques into three categories: object
selection, object manipulation, and navigation in virtual environment.

We begin with a brief overview of selection, manipulation and navigation
techniques in virtual environments. After that we will present our approach of
suitable interaction techniques for the Virtual Workbench.

Object Selection

First we will discuss selection techniques. Direct picking is the most intuitive and
easy way of object selection when the user can reach an object with the pointer.
When the object is not within the reach of the user’s hand or pointer (stylus),
another technique must be used. In ray casting (alias virtual laser pointer), a light
ray (or laser beam) is cast from user’s fingers or a pointer, and intersections with
objects are evaluated. With simple ray casting the user may find it difficult to
select very small or distant objects. A variant of ray casting developed to handle
this problem is the spotlight tool, see Figure 4.1(a). In gaze-directed selection the
user can select an object by looking at it. The pointing technique allows the user
to select an object by pointing at it with a finger or a pointer and an invisible
ray shoots out from between user’s eyes and pointer. Virtual hands and go-go
techniques [Poupyrev et al., 1996] give user the possibility to reach distant objects
by extending virtual hands further than the user’s real hands.

(a) (b)

Figure 4.1: Spotlight selection technique (a); World-in-miniature (WIM) naviga-
tion tool (b) [Image source: UNC-CHIMP]

68

4.1. Basic Interaction Techniques

Object Manipulation

Once an object has been selected, the user can manipulate it [Poupyrev et al.,
1997; van de Pol et al., 1999; Mine, 1996]. Manipulation is a task of changing pa-
rameters of a particular object. The number of ways in which an object can be
manipulated is almost unlimited. The most important types of object manipula-
tion are: positioning, orientation, scaling, changing an objects’ color and shape,
creating, grouping and deleting of objects [Bowman & Hodges, 1995].

VE interfaces typically support direct manipulation, which allows the user to
grasp an object, manipulate it, and then release it. Some systems, usually using
VR data or pinch gloves, also support recognition of hand gestures. With sym-
bolic manipulation, users manipulate GUI widgets which in turn affect change on
objects (i.e. RGB-slider widgets can control a color of an object).

We will now concentrate on object manipulation that controls position and
orientation of objects [van de Pol et al., 1999]. When an object is out of reach, close
manipulation brings this object near to the user. Popping brings a distant object
into user’s hands and after manipulations the object goes back to its position.
Copying brings a copy of the object into the user’s hands, while the original dis-
tant object follows the manipulations performed with the copy. Distant manip-
ulation allows the user to manipulate distant objects with tools at a distance. In
tele-manipulation, the user manipulates distant objects just as if they were close to
his body. The World-in-miniature (WIM) technique provides users with a hand-
held copy of the virtual world. The user can indirectly manipulate the objects
via their representations in the WIM, see Figure 4.1(b).

Objects can be manipulated in principle by one or two hands by using one
or two interaction devices, respectively. Principles of two-handed direct manip-
ulation on the RWB can be found in [Cutler et al., 1997].

Methods for remote object translation techniques for immersive VE, espe-
cially the CAVE, are presented in [Mulder, 1998]. Some of these methods can be
used on the Responsive Workbench as well.

With the slave method, the manipulated object follows translations of the
pointer. A disadvantage is that for larger translations the user must perform
a series of translate-release actions. The stick method connects user’s hand or
pointer with object by a ray/stick. The object is attached to this stick and fol-
lows translations and rotations (center of rotation is the user’s hand). With the
3D cross-hair method, the user can translate an object by dragging the ray of the
pointer along one of the cross-hair axes.

For controlling the velocity of objects fly or throttle methods can be used.
With the fly method, the direction and the velocity of a pointer is applied to the
object. The throttle method uses a metaphor of a motorcycle throttle grip. By
rotating the pointer about the direction of motion (the direction where points
the pointer) the velocity of motion is indicated. Forward and backward motions
are derived from the direction of rotation.

69

Chapter 4. 3D Interaction in Virtual Environments

[Yoshida et al., 2002] have presented a scope-based interaction technique. With
the scope-tool and by using two-handed gestures they can select distant objects
and manipulate them inside the scope-tool as if they were close.

Navigation in Virtual Environments

Generally, navigation can be regarded as a process of determining a path to be
traveled by any object through any environment [Darken & Sibert, 1993]. In
the context of virtual environments, this usually means changing the position
and orientation of the user’s viewpoint. The navigation process can be classi-
fied into three distinct categories. Exploration is navigation without any explicit
target when the user simply explores the environment [van Dam et al., 2000].
Search tasks involve moving through the environment to a particular location.
Finally, maneuvering tasks are characterized by precise movements usually done
to position users better for performing other tasks.

The navigation task itself is broken up into a motor component called travel,
the movement of the viewpoint from place to place, and a cognitive component
called way finding, the process of developing spatial knowledge and awareness
of the surrounding space.

Complete specification of user’s movement through the VE needs a direction
(goal) of motion and a speed of motion [Mine, 1995]. There are several ways of
specifying the direction of motion: physical walking, hand directed, gaze directed,
object driven, goal driven, dynamic world scaling, World-in-miniature (WIM - see Fig-
ure 4.1(b)). The speed control can be basically categorized into: constant speed,
constant acceleration, hand controlled.

A hands-free technique, head-directed navigation for a virtual environment
has been presented in [Fuhrman et al., 1998]. It uses head orientation (up and
down) to define to backward or forward motion, respectively. Direction of fly-
ing through the environment is given by looking left or right.

Redirected walking in place navigation technique for the CAVE has been pre-
sented in [Razzaque et al., 2002]. This technique solves a problem of the missing
back wall in 4-sided CAVEs, which can seriously disturb the immersion effect,
by rotating the world against the rotations of the user’s head when the user is
walking in place around the virtual environment.

The Personal Interaction Panel (PIP) has been used for navigation [Stoev
et al., 2001]. They have developed a through-the-lens concept, which provides
a scalable preview of the world on the PIP. It makes use of well-known manip-
ulation metaphors: eyeball-in-hand, scene-in-hand, and world-in-miniature.

Navigation techniques suitable for landscape and battlefield visualizations
on the Responsive Workbench are briefly described in [Durbin et al., 1998]. Map-
centric navigation is based on how users interact with a real physical map placed
on a table surface. It consists of three navigation modes: pan, zoom, and pitch/yaw.
The magnitude of the user’s gesture controls the distance of the virtual motion.

70

4.1. Basic Interaction Techniques

Another navigation metaphor investigated by Durbin et al. is termed user-
centric navigation. It is loosely based on the metaphor of a user flying above the
map as if in an airplane. In this case, the magnitude of user’s gesture (hand
translation) controls the velocity of the virtual motion.

4.1.2 Interaction Techniques for the Workbench

Considering the specific nature of the Responsive Workbench (laboratory table
metaphor, head-tracked central user, available spatial interaction devices, etc.)
and the type of VR applications considered, we have chosen to implement the
following basic interaction set into the RWB Library.

Object Selection in a VE

The virtual objects on the RWB are usually within reach of the stylus in the
user’s hand. For selection of distant objects, or objects below the glass plane,
we use the ray-casting (or virtual laser pointer) technique, see Figure 4.2. For near
objects we use direct picking, see Figure 4.3.

Figure 4.2: Selection of objects using ray-casting technique. The selected object
is highlighted by a red color.

Object Manipulation in a VE

In simple cases when an object is within reach of the user’s hand the slave method
is used for object manipulation. Translation and rotation are applied directly to
the object, see Figure 4.3.

When the object is distant, the stick method combined with the ray-casting
method is used. Together with ray-casting, the cross-plane method is used, where
the object is being translated by the ray intersections in a horizontal plane. A
similar technique is the cross-surface method, where the ray intersects surfaces of
other objects (eg. a landscape). These are examples of constrained manipulation.

The ray casting technique has a lower priority than direct interaction with
the stylus. The ray is switched off when the direct selection with stylus occurs
(Figure 4.3). The user clicks the button and manipulation begins. During object

71

Chapter 4. 3D Interaction in Virtual Environments

manipulation our system also evaluates object collisions, as demonstrated on
the last position in the manipulation series on this figure.

Figure 4.3: Direct manipulation of an object with the stylus.

Navigation in VE

In the RWB Library we have included support for head-tracking so that the user
can navigate and walk around the table in a natural way. Further, the user can
move (pan), rotate and scale (zoom) the virtual world that is displayed on the
RWB.

Figure 4.4: Workbench In Workbench (WIW) technique is assisting navigation

To improve the user’s orientation in the virtual world we have built in the
library the Workbench In Workbench technique, see Figure 4.4.

A small copy of the Workbench is displayed on the RWB table top. It contains
the whole virtual world as well as the user’s head and the stylus. The user can
navigate in a large world by looking onto the Workbench miniature and seeing
which part of the world is displayed on the RWB. The WIW function helps to
locate and manipulate objects which are not projected onto the RWB table top
because they are outside the field of view (FOV). These objects are visible in

72

4.1. Basic Interaction Techniques

the Workbench miniature. In the RWB Simulator it can be seen which virtual
objects intersect with the FOV, see Figure 3.9. When objects are clipped by the
FOV volume the sense of immersion is destroyed. Thus, we have to try to avoid
this by placing the virtual objects inside the FOV.

The WIW metaphor can also be used for collaboration with another user in
distributed applications. On the miniature of the Workbench the user can see
what the other user does in the virtual environment.

4.1.3 Objects Collisions and Object Constraints

Object Collisions

Collision detection is a fundamental problem in computer animation, physically-
based modeling, computer simulated environments and robotics [Moore & Wil-
helms, 1988]. In these applications an object’s motion is constrained by collisions
with other objects and by other dynamic constraints [Barzel & Barr, 1988]. The
problem has been well studied and described in the literature. However the re-
search on fast and accurate collision detection and handling suitable for VR is
still going on.

A survey of collision detection algorithms can be found in [Lin & Gottschalk,
1998]. Collision detection schemes suitable for assembly simulations in Vir-
tual Reality were presented in [Zachmann, 2000]. Several collision detection
approaches are available: I-COLLIDE [Cohen et al., 1995], RAPID [Gottschalk
et al., 1996], SOLID [van den Bergen, 1999], V-Clip [Mirtich, 1998], and several
others.

Most of them use a hierarchical bounding volume (BV) representation (axis
aligned and oriented BBoxes, or BSpheres) and space partitioning to speed up
the collision checks. Many collision algorithms use BVs to rule out collision
checks between objects which are far apart. Usually when an overlap of BVs is
detected, an exact ”polygonal soup” collision detection algorithm is triggered.

Figure 4.5: User manipulation of an object before (left) and during collision
(right). Objects cannot move through each other. The colliding triangles are
highlighted (right).

73

Chapter 4. 3D Interaction in Virtual Environments

Collision detection and handling is important for realistic object behaviour
during its motion or manipulation by a user. We have to prevent objects from
moving through each other. Detecting object collisions and the collision han-
dling helps to create an illusion that virtual objects have a substance, see Fig-
ure 4.5.

Based on the experiences with approaches mentioned above, we have imple-
mented the following object collision schemes: collision of stylus-object, ray-object
and object-object. The stylus and ray intersections are supported by Iris Performer
[Rohlf & Helman, 1994]. Iris Performer provides axis-aligned bounding boxes,
bounding spheres and cylinders. Into the RWB-Object class we have imple-
mented a complete support for oriented bounding boxes, which much better fit
around objects than axis-aligned boxes. Certainly, it is not too computationally
intensive to determine whether a point is inside a bounding volume or if a ray
intersects these types of bounding volumes. The point and ray casting queries
on bounding volumes of objects in a virtual world are the basis of our object
selection approach.

Collisions between objects have been implemented into the RWB Library.
Bounding volume collisions between objects are evaluated first. When we detect
any overlapping bounding boxes or spheres the system performs also a precise
polygonal collision check. This part of the collision detection can put serious
limitations on performance, especially if the triangle collision is not optimized
and all triangles of one object are tested against triangles of the other object.
Therefore we have implemented certain optimizations in order to check only a
small amount of triangles which could potentially collide.

Figure 4.6: RWB-Object collider routine finds a contact configuration of the ma-
nipulated object with the stationary object.

74

4.1. Basic Interaction Techniques

After detection of the collision we have to respond to it in an appropriate
way. In case of an object manipulation by the user we have to prevent the colli-
sion and find the contact configuration (position and orientation) of the objects,
see Figure 4.6.

Here we see the manipulated object that is not colliding at time t0. In the
next time step t0 + ∆t we have detected a collision. Since we don’t know the
exact motion of the manipulated object we cannot determine analytically the
time of collision and its place. It becomes even more complicated when we
imagine more complex objects. We have to solve this problem iteratively. We
use the bisection search in time. As Figure 4.6 shows, we are stepping to t0 + 1

2∆t.
If the manipulated object penetrates the other object at t0 + 1

2∆t time then we
would try stepping to t0 + 1

4∆t but if it wasn’t penetrating we would step from
t0 + 1

2∆t to t0 + 3
4∆t. In the same fashion we continue until the objects are close

enough. From our collision experiments we have found that 8 levels of bisection
are sufficient. We have considered the speed of the user’s hand motion and the
maximal length of motion on the Workbench, which is about 180cm. The tracker
daemon measures the stylus position every 20 miliseconds. In such a short time
the user can move his/her hand about 30-40cm at most. Thus, when we use 8
levels of bisection, it gives us a collision-resolution of 40

256 = 0, 15 cm. As we
have to interpolate the position and rotation over time, we have decided to use
quaternions to encode the vector of the object’s orientation (H,P,R). It results in
a much more logical orientation over interpolation time.

Figure 4.7: Dynamic simulation of a bouncing ball. The user can catch the ball
and throw it against the walls. Elastic collisions are simulated. The triangle
colliding with the bounding sphere is highlighted.

When dynamic object behaviour is simulated (like in Figure 4.7), the object-
collider routine has to detect the colliding triangles of objects, and also the colli-
sion plane and its normal vector have to be determined.

75

Chapter 4. 3D Interaction in Virtual Environments

Object Constraints

Similar to the real world, object manipulation must be constrained by the sur-
rounding environment and by the properties of the object itself. Imagine a heavy
object that is resting on the ground and has to pushed to another location, or a
key that has to be inserted into a lock. When creating virtual environments that
should mimic reality it is important to incorporate constraints, otherwise it will
appear very unrealistic.

We can distinguish between geometric constraints and dynamic constraints.
A proper simulation of motion constraints has to be physically-based [Barzel &
Barr, 1988]. When we consider a scene consisting of rigid bodies, which act in
accordance with the rules of physics, we could implement the constrained ob-
ject behaviour via a set of constraint forces. Generally, the contact behaviour
of objects, which appears for example during virtual assembly simulations, is
very difficult to simulate with interactive frame rates. Certainly, for the pur-
poses of Virtual Reality we use a simplification of the underlying physics, as we
have done in our testing object-assembly application of the Spring Manipulation
Tools, see Section 4.2.1. It seems that users have difficulties to freely manipulate
objects in three dimensions without any constraining or supporting objects.

Geometric constraints have a close relation with object collisions. When we
try to avoid object collisions in fact we apply constraints. However, the collision
checking is often computationally very intensive. In some cases, we can apply
constraints on object manipulation in an elegant and efficient way without an
explicit need to perform the collision checking. Geometric constraints are very
well established phenomena in world of 3D geometric modeling programs (3D
Studio Max, Maya, AutoCAD, etc.).

A simple approach of constrained manipulation for VR has been presented
in UNC-CHIMP (an immersive modeling program) [Mine, 1996]. The devel-
opers implemented support for movement along a line or in a plane, rotation
about any vector, full rotation (HPR) about the object’s center, and uniform scal-
ing about the object’s center. After selection of a suitable manipulation tech-
nique (translation, rotation, scaling) the user has to specify the axis of the ma-
nipulation, and then the magnitude of the manipulation by moving of the in-
teraction device. This way 1D or 2D constrained manipulation can be easily
implemented, see Figure 4.8.

Figure 4.8: One-dimension constrained object manipulation [UNC-CHIMP].

76

4.1. Basic Interaction Techniques

Another approach of constrained object manipulation [Smith & Stürzlinger,
2001] is based on the semantics of objects in the virtual world. Each type of
object incorporates its own semantic rules and relations to other objects in the
scene. In an example of a room with a table, a chair, a desk lamp, a computer,
and a keyboard, the scene graph with constraint relations is shown. The chair
is placed on the floor and is attached to the table. The computer with the key-
board, and the desk lamp can move only on the surface of the table. In addition,
the desk lamp has to be on the right side of the computer. Such rules can be
incorporated into the scene model. During manipulation of objects in the scene
the satisfaction of the constraints is evaluated.

Our approach of object constraints was developed to support the process of
data exploration in an intuitive manner. We needed to navigate in a 3D visual-
ized scene of data, precisely manipulate the visualization tools, operate the 3D
widgets, etc. For these purposes we have implemented a geometric constraint
scheme. Object manipulation (translation, rotation, and scaling) is performed by
applying homogeneous transformations. Matrices can effectively encode the de-
sired object transformation from one position to another. For each RWB-Object
in the scene we can specify a constraint mask, see Figure 4.9.

Figure 4.9: Object constraints: translation constraints (X-dir, Y-dir, Z-dir) and
rotation constraints (HPR - heading, pitch, roll)

When the transformation matrices are orthogonal (only uniform scaling can
be present in the matrices), then we can extract from these matrices the transla-
tion and rotation vectors, (x, y, z) and (h, p, r). We can then apply the constraint
mask of the manipulated object to this vector. After this constraining action the
resulting vector is converted back into the transformation matrix, which finally
moves with the objects only in the constrained directions.

77

Chapter 4. 3D Interaction in Virtual Environments

With this very simple and fast method we can constrain objects to any plane,
line, axis direction, or to permit rotation in heading, pitch, or roll.

In the following examples (Figures 4.10, 4.11) we show some applications of
our object-constraint approach.

Figure 4.10: RWB-Widget-slider: the slider element is constrained to move along
the slider line. The user changes the scaling factor of the vector-data-slicer.

Figure 4.11: VRX-data-slicer can move only vertically. More about VRX visual-
ization techniques can be found in Section 5.2.

78

4.2. Force Feedback and Spring-Based Tools

4.2 Force Feedback and Spring-Based Tools

In user interaction with virtual worlds, consistent and realistic behavior of ob-
jects is very important. We want objects to respond in a natural and predictable
way to our actions. But usually virtual objects are weightless and unsubstantial,
and they move without friction of inertia; this leads to altogether ’unphysical’
behavior and unpredictable responses, especially in semi-immersive environ-
ments such as the Responsive Workbench, where real and virtual worlds co-
exist, and should follow the same natural laws. Absence of weight and sub-
stance may sometimes be desirable while inspecting an object or flying through
an environment. But especially in manipulation tasks, mechanically realistic
behavior can help to achieve consistency and predictability.

Passive Haptic Feedback

Virtual Reality provides mainly computer-generated visual stimuli, sometimes
supplemented with audio or trying to stimulate other senses also. In the real
world we make a daily use of passive tactile/haptic feedback provided by real
objects everywhere around us. It is not an easy task to simulate a real experience
of touching objects in virtual environments. One of the most disconcertingly
unnatural properties of VEs is the ability of users to move through the virtual
objects. This reminds users that the perceived environment is not real, reducing
their sense of presence.

Figure 4.12: Passive haptic feedback environment [UNC: Being-there project]

Passive haptics incorporates passive physical (real) objects into VEs to physi-
cally simulate the virtual objects. This way the user can experience touching of
virtual objects. The most successful real-world simulators, such as flight, ship
and driving simulators, physically replicate anything that the user might touch,
from steering to dials and buttons.

79

Chapter 4. 3D Interaction in Virtual Environments

In these cases it is feasible because the displayed VE is outside the vehicle.
Sometimes even whole cars (or at least detailed mockups) are installed for these
purposes. However, in many other applications it is not feasible at all, techni-
cally and economically. Passive haptics can be used then at least partially, to
improve the presence in the VE. An example with a walkthrough is shown in
Figures 4.12 and 4.13. The passive haptic feedback significantly affects ”the
sense of being present in the virtual environment” [Insko, 2001].

Figure 4.13: Passive haptic feedback improves the presence in the VE [UNC]

In the case of the Virtual Workbench, we want to build upon the labora-
tory table metaphor, with instruments resting on the table and the laboratory
experiment presented on the table. The Workbench table has a solid wooden
framework, thus the user can physically touch the table and glass display screen.
Users usually prefer direct interaction with objects and widgets of the 3D GUI
instead of virtual laser pointer (ray-casting) and they only choose the ray-casting
if the objects are out of reach. This can happen with distant objects or when
an object is relatively small and hanging ”somewhere above the table”. What
makes it difficult to select these hanging objects is the missing feedback of phys-
ical contact with the objects. Our sense of touch is not stimulated.

Figure 4.14: RWB - passive haptic feedback provided by the Plexipad

In our concept we make use of the physical (passive haptic) feedback which
is provided by the glass screen and the Plexipad. On both these surfaces we
place 3D widget containers with buttons and sliders, which are easy to reach

80

4.2. Force Feedback and Spring-Based Tools

and operate, see Figure 4.14 Especially, the Plexipad can provide much more
than this. As it is a transparent acrylic plate, we can project any image on the
plane of this plate. It can perform the task of a visualization or probing tool with
controls mounted on it, see Section 5.1.4.

Active Haptic Force Feedback

A way to provide active mechanical responses from a virtual world is through
haptic devices [Massie & Salisbury, 1994; Burdea, 1996; Ruspini et al., 1997;
Grant et al., 1998]. Haptic devices usually give force feedback through an inter-
mediary device with a limited range, see Figure 4.15. Force feedback can be very
useful, especially when some mechanical device is used for interaction with the
VE, such as mechanical grasping devices (pantographs), or surgical instruments.
However the technology for free-field haptic interaction, where objects may be
touched anywhere in space, is still immature. Therefore, we have searched for
an alternative to the use of force-based haptic interfaces.

(a) (b)

(c) (d)

Figure 4.15: (a) Molecular interaction with a Phantom-like haptic device; (b)
Pneumatic robot haptic arm; (c) SCI Haptic Workbench; (d) UNC molecular
docking installation.

We will look for a limited set of physical properties and laws of behavior
to make user interaction more predictable and intuitive. We will introduce the

81

Chapter 4. 3D Interaction in Virtual Environments

concepts of force, inertia, gravity, contact, surface friction, and damping into the
virtual world. Thus, we will provide a visual interface to replace direct force
input; we call it a visual force feedback.

4.2.1 Spring-Based Manipulation Tools

In this section we present new tools for user interaction with virtual worlds, to
bring more natural behavior into the manipulation of objects in virtual environ-
ments. We present some principles of physically realistic behavior of virtual ob-
jects and a set of user input techniques suitable for semi-immersive VR devices
such as the Responsive Workbench. We present a spring-based visual force-
feedback method and we provide a visual interface as an emulation of direct
force input.

Figure 4.16: Illustration of spring-based tools

We do this by the use of spring-based tools attached to objects assisting the
manipulation, based on the following assumptions:

• A linear relation of force with spring compression / extension is intuitively
understood and visualized by the spiraling shape of a spring. Thus, even
without exerting real force, a user has an intuitive notion of transforming a
change of spring length to a force.

• Bending and torsion of a shaft is used to show forces and torques exerted
on virtual objects

• The relation between object mass and size is also intuitive. Specific mass of
objects should be user-specified. A massless world can always be created
by setting all specific masses to zero.

82

4.2. Force Feedback and Spring-Based Tools

• The RWB provides a natural ground plane for objects at rest.

• Stability is introduced by friction and damping, reducing excessive effects
of input actions on objects, and reducing undesired oscillations.

• Physical contact of objects is intuitively equivalent with geometric intersec-
tion, and sound can be used to provide contact feedback.

We introduce a set of spring-based tools for providing the basic manipula-
tion tasks (see Figure 4.16). We hypothesize that dynamics will provide intu-
itively consistent and predictable behavior of the objects in the virtual world,
and that interactive manipulation will therefore be easier and more natural.

• A Spring is attached to the center of an object. It assists linear motions
(translation). The tool has 1 DOF (degree of freedom), the length of the
spring, and controls 3 DOF (x,y,z) of an object.

• A Spring-fork is attached to an object and defines a contact point for trans-
fer of forces and moments to the object. It assists translations and rotations.
The tool has 3 DOF (extension, bending, torsion), and controls 6 DOF (x,y,z
+ h,p,r) of an object.

• A Spring-probe can be used for probing the material stiffness of an object
or pushing an object. The tool has 1 DOF (length) and can control 3 DOF
(x,y,z) or 1 DOF (pressure) of an object.

Why spring-based tools?

In VR it is just as easy to manipulate large and heavy objects as small ones.
This may sometimes be an advantage, but in general it is not according to our
expectations. Therefore, we will try to give the user a sense of weight or mass
of objects. We propose to use the spring-tools as a link between the user’s hand
and a manipulated object. In this way, we can obtain a natural visual feedback
during the manipulation. When the user lifts a heavy object, the spring will
extend proportionally to the object’s weight. Also, acceleration and deceleration
of the motion will affect the visible length of the spring.

The fork metaphor seems to be very intuitive. For object selection the fork
has to be inserted into an object. The user can fix the position and the orientation
of the fork inside the object. The spring part of the fork gives a visual dynamic
feedback during the manipulation of the object. It is also intuitive that rotating
the fork should rotate the object. The user controls one end of the fork and the
other end is influenced by the object. The fork can bend, extend (compress) or
twist according to the laws of mechanics.

We have demonstrated the usage of the spring-tools with a simple object
assembly task, which is easy in a real world but hard to simulate in a virtual
environment; see Figures 4.17, 4.22 and 4.31.

83

Chapter 4. 3D Interaction in Virtual Environments

Figure 4.17: Manipulation task that was used to test the spring tools.

Related Work

We first review some relevant related work on aspects of the dynamic and the
spring interaction techniques in VR. The basic interaction techniques have been
already discussed in Section 4.1.

The problems of mechanics and dynamics have been studied extensively
from many different points of view. It is outside the scope of this thesis to review
this field. We do not have the intention to implement a fully realistic dynamic
manipulation system, but rather a limited and simplified set of basic physics to
assist the manipulation of objects in VE.

The springs are very well established phenomena in the world of physics
and graphics as well. Springs were used also by others for manipulation of ob-
jects on the Responsive Workbench [Fröhlich et al., 2000]. The authors demon-
strate the use of simple 1 DOF springs in set of multi-spring configurations to
manipulate objects, giving visual force feedback. This interaction approach al-
lows multiple hands and multiple users to manipulate the same object. To sim-
ulate the spring behaviour they use the Coriolis physical simulation package.
The simulation update of 5 Hz seems to be really difficult to use for interactive
visual force feedback, which they claim to achieve.

We have introduced the spring manipulation tools in [Koutek & Post, 2000;
Koutek & Post, 2001c], where we have demonstrated the use of spring for ma-
nipulation of objects in virtual environments in simple assembly tasks. Our
work began with a simple spring manipulation tool [Koutek & Post, 2000],
which could only translate objects giving a visual feedback on inertial effects.
The spring-fork [Koutek & Post, 2001c] needs just one hand with the stylus to
control position and rotation of attached object, and it provides a clear visual
force feedback. When we look at frame rates (> 24Hz), our simulation of spring
deformation is not a bottleneck in the visualization and interaction pipeline.

Our approach has a set of simple manipulation tools which reflect dynamic
object behavior during the manipulation. Our first interest was in single-handed
manipulations.

We have extended the spring metaphor for manipulation of particles in steer-
ing of Molecular Dynamics simulation [Koutek et al., 2002].

84

4.2. Force Feedback and Spring-Based Tools

4.2.2 Dynamics on the Responsive Workbench

As discussed before, we have introduced the concepts of force, inertia, gravity,
contact and surface friction to provide a virtual world in which objects behave
more naturally. Objects behave according to physical laws and also the interac-
tion is physics-based.

We have applied the relevant laws of mechanics. In case of object collisions
we had to deal with principles of conservation of momentum and of energy, and
reversible conversion between kinetic and potential energy.

Method

A specific mass is assigned to each object. From the volume of an object its
mass is calculated. To make objects move, forces are needed. In our case, the
gravity force and the force exerted by the user are acting. Counter-acting forces are
the friction force between the object and the surface and the air resistance force.
For stability a damping force is applied. We use a simplified implementation of
the physics laws in our virtual world. We will ignore the air-resistance. We will
only use the static friction µ, when user drags an object across a surface. At low
speeds µ is constant.

When the forces act on the object at a certain distance from the center of
mass, it induces a moment and a torsion. The final rotational motion depends
also on the moment of inertia of the object which corresponds to the axis of
rotation. For simplicity, we will consider now that the whole mass of the object
is concentrated at its center of mass and therefore the moment of inertia around
axis O will be IO = r2Om, where rO is the perpendicular distance of the center of
mass from the axis O.

To make the simulation more realistic, it is possible to include a precise cal-
culation of the moment of inertia for a given object and a certain axis of rotation.
Here is an overview of the laws of mechanics as discussed above:

Force law: fa = ma = m dv
dt

= m d2x
dt2

Gravity law: fg = mg Spring force: fs = −kx

Friction force: fr = µN = µ.mg Damping force: fd = −c. dx
dt

Linear Momentum:
F = ma = mv̇ =

n∑
i=1

Fi

Angular Momentum:
M = Iε = Iω̇ =

n∑
i=1

(ri × Fi)

Where: m=mass, f=force, x=position, v=velocity, a=acceleration, g= gravity acceleration,
µ= static friction coefficient, k= spring constant and c= damping factor,

ω=angular velocity, ε=angular acceleration, ri=force position, I=moment of inertia.

During manipulation, a spring-tool is attached to an object. Each spring-
tool (spring, spring-fork, spring-probe) has to be calibrated with the manipulated

85

Chapter 4. 3D Interaction in Virtual Environments

object. This is done automatically using the weight and the dimensions of the
object. The calibration procedure consists of calculating spring and damping
constants and choosing a suitable size of the spring-tool. For practical reasons,
a rigid, inflexible and large spring-tool is used for heavy and large objects, and
a flexible and small spring-tool for light objects, see Figure 4.18.

Spring constant: k = −m.g
xm

=
m.g

0.2x0

where mg = −kxm; xm = −0.2x0

x0 - initial length of the spring; xm - extension with load m

Figure 4.18: Various objects and different springs

Spring Damper System

The main component of spring-tools is the spring-damper. To reduce oscilla-
tions during manipulation, when an object is attached to a spring-tool, we have
implemented a spring mass-damper system for each DOF, Figure 4.19(a). The force
f(t) acting on an object as a function of time t is:

f(t) = mẍ(t) + cẋ(t) + kx(t) (4.1)

Herem is the mass of the object, t is the time, x(t) is the extension / compres-
sion of the spring, f(t) is the force acting on the object only in x(t) direction, k is
the spring constant and c is the damping factor, g is the gravitation acceleration.

If xs is the static extension of the spring and xd is the dynamic change of
extension during the motion, we can simplify the spring-damper formula 4.1 by
assuming: x = xs + xd and kxs = mg.

86

4.2. Force Feedback and Spring-Based Tools

(a)

- critical damping

- damping

40

30

20

10

 0

-10

-20

-30

0.5 1 1.50 Time (sec)

D
is

p
la

ce
m

en
t

(m
m

)

(b)

Figure 4.19: (a) Spring-damper system; (b) damping comparison.

Applying this assumption we will get the following system of differential
equations with initial conditions for the dynamic spring-damper motion xd:

mẍd + cẋd + kxd = 0; x(0) = x0, ẋ(0) = v0

As the spring is a natural mechanical oscillator it would not be very suitable
for object manipulation. With our virtual environment we can create an artificial
(virtual) behaviour of the spring, which will fit into our interaction scheme. To
avoid the unwanted oscillations of the spring-damper we use a critical damping
solution:

xd(t) = (A.t+B)e−αt; with A = v0 + x0α; B = x0

where α = c
2m ; ω0 =

√
k/m

For critical damping: α = ω0 thus c = 2
√
mk. The damping factor plays a

very important role. Its value is derived in a similar way as the spring constant,
so that every object has its spring and damper. Damping refers to an energy dis-
sipation mechanism, either intentional or parasitic, such as air friction or struc-
tural damping. The damper is the energy dissipating element of the system. The
damping factor measures the ability to damp the motion of the mass. The spring-
damper is calibrated to hold the attached object with a certain extension. In
Figure 4.19(b), the effect of the damping factor can be observed. It is clear that
the critical damping without any oscillation converges to zero but in fact it takes
an ”infinite” time to reach zero. For practical reasons when the spring-damper
simulation reaches a threshold, it stops.

The initial spring-damper conditions have to be changed as the user moves
the spring-tool. Therefore, we have to re-initialize x0 and v0 at each simulation
time step. The effect is that the spring-tool is always trying to restore its statically
balanced configuration, while being unbalanced by the user interaction and the
object inertia.

87

Chapter 4. 3D Interaction in Virtual Environments

4.2.3 Spring Manipulation Techniques
An object can be manipulated using a set of techniques as described below. A
spiral spring is used as a handle, and the object will show its mass and inertia
by its behaviour according to the laws of dynamics.

The actions are performed by selecting an object by moving the stylus to-
wards it. As the stylus is moved closer to the object, a spring will be displayed
between the object and the stylus tip position. The spring can be extended or
compressed by keeping the pen button depressed while moving the pen to-
wards or away from the object.

Virtual forces are thus applied by the user to objects through the virtual
springs, which act as displacement-to-force transducers. The user will see the
extension or compression of a spring, and forces are inferred by the linear re-
lation of displacement and force. The forces may be exerted on an object in an
arbitrary direction. They are assumed to work on the object’s center of mass,
and thus the forces will induce only linear motion; no rotational motion, as no
torques are induced. Although friction on the ground plane can induce torques
and rolling motions, these effects are ignored in the current version of the sys-
tem.

The exerted forces are decomposed into lifting forces (perpendicular to the
ground plane), and dragging forces (parallel to the ground plane). To ensure
easy and stable manipulation, both linear and pendulum oscillations are damped
critically, which means that motion will essentially stop after one cycle. For clar-
ity, the objects are assumed here to rest on the ground plane, although other
horizontal planes will have the same effects.

Fig.4.20 shows the three cases: lifting, pulling and pushing. The user exerts
a force Fu which is unknown. From the change of extension of the spring x1

we can obtain the spring force Fs which makes the object attached to the spring
accelerate and move.

Figure 4.20: Spring manipulation cases

88

4.2. Force Feedback and Spring-Based Tools

The set of dynamic manipulation techniques is defined as follows:

• Lift: pull the spring upward, until the spring force exceeds the object’s
weight, and the object gets an upward acceleration, counter-acted by the
decrease on the force caused by the shortening of the spring length. Oscil-
lation is damped.

• Drop: the object is released from the spring connection and falls down until
it touches the ground plane; comes to rest immediately (no bouncing).

• Pull: pull the spring in a horizontal direction away from the object until
the force exceeds the static friction of the object on the ground surface. The
object gets a horizontal acceleration and slides over the surface, counter-
acted by friction force, and the decreasing force from the shortening of the
spring.

• Push: the same as pull, but the spring is compressed toward the object.

• Throw: the object receives the initial velocity from the user’s hand and is
thrown in the given direction, the spring disappears. The trajectory of the
object in the air is then only influenced by the gravitation force and the
object is falling to the ground.

• Catch: stop the object motion by blocking its motion path. The spring be-
tween the user’s hand and the object is compressed and the object deceler-
ates and stops moving. Oscillations are again damped.

• Swing: a combination of lift-pull-drop. The object behaves as a pendulum
on the spring; the swinging motion is damped, the object is moved through
in the air, and is dropped at the chosen position.

The difference between dropping and throwing is made by analysis of hand
motion data from the tracker. With dropping, the pen button is released while
the user’s hand is at rest, for throwing, the user releases the button while the
hand is moving. Catching flying objects can be done by positioning the hand to
block the motion path and pressing the button.

Wherever spring actions are performed (too) far from the user’s body, a ’fish-
ing rod’ technique can be used to attach and move the spring and the object, see
also Section 4.2.5.

Collisions and Constraints

For natural behavior in virtual environments, the collisions and constraints are
essential. Of course, we cannot stop the user’s hand to move through objects.
But we can disable user manipulation of an object through another object. We
can make use of the advantages of the spring manipulation.

89

Chapter 4. 3D Interaction in Virtual Environments

Figure 4.21: Collision with the wall

The manipulated object will stay at the place of collision with the other object
(see collision with a wall, Figure 4.21) while the user is still trying to pull. In this
case, the pulling will only affect the length of the spring, increasing its tension,
and no motion is induced.

The basic constraint is the ground plane. No object can get through it. The
ground can always produce enough reaction force to support any object. Calcu-
lation of collisions with the ground is the basic attribute of our mini-world. We
also handle collisions between objects inside the world (spheres, boxes). Elastic
collisions can be simulated for this. We use the law of momentum conservation
and the law of energy conservation.

(a) Object selection with the spring (b) Object attached to the spring

(c) Object assembly using the spring (d) Visualization of object collision

Figure 4.22: Spring tool demonstration (see also the Color Section)

90

4.2. Force Feedback and Spring-Based Tools

4.2.4 Spring-fork: A Flexible Manipulation Tool

The spring-fork is attached to an object and defines a contact point for transfer
of forces and moments to the object. It assists translations and rotations. The
tool has 3 DOF (extension, bending, torsion) and controls 6 DOF (x,y,z + h,p,r)
of an object. Each spring-damper in each DOF is calibrated to hold the attached
object with a certain extension. In case of the spring-fork (see Figure 4.23) there
are three spring-dampers, one for each DOF: bend, stretch, torsion.

Figure 4.23: Spring-damper systems for each deformation parameter

Spring-fork Model

To implement the spring-fork manipulation, we first need to create a model of
the spring-fork that would be scalable and deformable with bending, stretching
(extension) and torsion deformations. The fork consists of a rigid part (the fork
end) and a flexible part (the spring part), see Figure 4.24.

Figure 4.24: Space conversions of the fork’s vertices and surface normals

91

Chapter 4. 3D Interaction in Virtual Environments

Figure 4.25: Reconstruction of the XYZ coordinates of the deformed fork

The 3D model of the fork is converted to a normalized cylindrical coordinate
space, which is used to perform the fork deformation. All vertices and normal
vectors are converted once and stored in memory as the initial and the normal-
ized form of the fork. For a given scale of the spring-fork (Spr diam, Spr height)
and a given deformation (bend, stretch, torsion) we have to reconstruct the final
XY Z coordinates (Figure 4.25).

The torsion parameter of the spring-fork is the difference between twist0 and
twist1. The bend and the stretch parameters are built in a parametric function
f(t). From Figure 4.25, it is clear how the LCS (local coordinate system) rotates
along the function f(t). So for each position at f(t) we need to know the tangent
vector, thus f ′(t) which corresponds to the Z-direction of the LCS. The fork-end
is attached at the end of the spring and it is aligned with the last LCS.

Figure 4.26: Deformation of the spring-part of the tool

Figure 4.26 shows deformations of the spring-part of the fork. The first ex-
ample is without torsion and the second shows the both bending and torsion.

92

4.2. Force Feedback and Spring-Based Tools

The deformation function f(t) needs explanation. The problem of object or
beam bending is not trivial. Bending depends on the profile along the length the
object, on the material structure, on the type of load, and on other parameters.
In general it is a complex problem. A full general solution of the mechanical
problem would be too time consuming, so we will use a simplified solution that
will satisfy our needs.

We will assume that the load on the fork is concentrated. We designed an arc-
length parameterized Bézier spline function for bending (Figure 4.28), and allowing
the S-shape deformation, see Figure 4.27(b).

(a) Normal Bézier spline segment (b) S-shaped Bézier spline segment

Figure 4.27: Bézier curve is given by end points A,D and control points B,C.

A cubic Bézier curve Q(t) is defined by two end points A,D and two control
points B,C:

Q(t) = AT1(t) +BT2(t) + CT3(t) +DT4(t) where t ∈< 0, 1 > (4.2)

The Bézier curve contains Bernstein polynomials T1,2,3,4:

T1(t) = (1 − t)3 T2(t) = 3t(1 − t)2 T3(t) = 3t2(1 − t) T4(t) = t3

where
4∑

i=1

Ti(t) = 1

The Bézier curve parametrization can be written in the following form:

x : φ(t) = AxT1(t) +BxT2(t) + CxT3(t) +DxT4(t) (4.3)
y : ψ(t) = AyT1(t) +ByT2(t) + CyT3(t) +DyT4(t)
z : θ(t) = AzT1(t) +BzT2(t) + CzT3(t) +DzT4(t) with t ∈< α, β >

The arc of the Bézier spline can be computed with the following formula:

S(c) =

β∫
α

√
(φ′(t))2 + (ψ′(t))2 + (θ′(t))2dt (4.4)

93

Chapter 4. 3D Interaction in Virtual Environments

A Bézier arc S(c) defined in this way is in fact measuring the length of the spline.
When α = 0;β = 1 then S(c) is equal to the total arc length L. S(c) implements
a linear metrics on the arc of the Bézier spline. From Figure 4.27 is clear that
the original parameter t is not linearized (t = 0.5 is not in the middle of the
arc). As we use Bézier curves for geometric deformation of objects we must
have linearized (arc-length) parameterization of this spline. We don’t use the
original abstract non-linear parameter t. Instead, we use arc-length parameter l,
see Figure 4.28.

Figure 4.28: Arc-length parameterization of Bézier spline with parameter l

Here is the derivation of the parametrization (φ(t), ψ(t), θ(t)):

φ′(t) = AxT
′
1(t) +BxT

′
2(t) + CxT

′
3(t) +DxT

′
4(t)

ψ′(t) = AyT
′
1(t) +ByT

′
2(t) + CyT

′
3(t) +DyT

′
4(t)

θ′(t) = AzT
′
1(t) +BzT

′
2(t) + CzT

′
3(t) +DzT

′
4(t)

Derivation of cubic Bernstein polynomials:
T ′

1(t) = −3t2 + 6t− 3 T ′
2(t) = 9t2 − 12t+ 3 T ′

3(t) = −9t2 + 6t T ′
4(t) = 3t2

For a given arc-length parameter l (l is in fact a distance from point A on the
Bézier arc) we need to find a parameter ε which corresponds with parameter t
of the original parameterization 4.2.

l =

ε∫

0

√
(φ′(t))2 + (ψ′(t))2 + (θ′(t))2dt (4.5)

For this integral (4.5) a primitive function doesn’t exist because it contains a
general quadruple polynom: F =

∫ √
(at4 + bt3 + ct2 + dt+ e)dt. Thus it must

be solved numerically. Our arc-length parametrization iteratively searches for ε
for a given l. After this we put t = ε and we use the original parameterization
4.3 to get Cartesian coordinates of the point on the arc at given length l and
corresponding parameter t.

94

4.2. Force Feedback and Spring-Based Tools

Further, we had to incorporate a compensation for changes in length of the
arc (due to bending), to keep its length constant without stretching. When the
object was bent without changing its length, we built the stretching ability in the
deformation function. Torsion simulation is also rather complex to perform in
real time, so we also made a very significant simplification for this.

It is obvious that the deformation function needs to be calibrated to a certain
range of forces, resp. to the virtual world and all the objects and their weights
and forces which they could produce.

We have calibrated the spring-fork tool in our mini-world for the range of
object mass (0.0 vkg, 300.0 vkg), vkg = virtual kilograms. We must mention the
problem of different measurement units in a virtual world and the real world.
The real acceleration differs from the virtual acceleration, and certainly the force
applied by the user has different scaling than the virtual one of the object. The
calibration procedure takes care of this problem.

Spring-fork Parameters

There are two major inputs to the spring-fork tool. Using the tracked stylus,
the user controls the initial position of the tool: the fork axis and twist0. The
attached object applies a force and a moment to the fork-end and causes a de-
formation of the spring part of the tool. See Figures 4.29(a) and 4.29(b).

(a) Initial state of the spring-fork (b) Bent, stretched and twisted spring-fork

Figure 4.29: Force-based deformation model of the spring fork

The force applied to the object Fobj is decomposed into the stretching force
(parallel with the fork axis) and the bending force (perpendicular to the fork
axis). Absolute values are calculated by using angle Phi, see Figures 4.29(a)
and 4.29(b).

We designed the spring-fork tool in such a way that it is possible to choose
which of the three deformation DOF will be active: bending, stretching, torsion,
or any combination of these. Of course, the user can change the stiffness of each

95

Chapter 4. 3D Interaction in Virtual Environments

DOF, for example to set up a stretch and a torsion resisting spring-fork which
will easily bend only.

Spring-fork Manipulation

The object selection is done by inserting the spring-fork into an object. When
the fork is inside, the object is highlighted. The user can then still adjust the
position of the fork inside the object. To begin the manipulation a button on the
stylus must be pressed. Manipulation stops when the button is released.

The manipulation procedure can be decomposed into several stages, see Fig-
ure 4.30. The initial stage is the selection. The position and orientation of the
inserted fork with respect to the object will be kept during the whole manipula-
tion. Only the spring-part of the tool will change.

Figure 4.30: Manipulation procedure with the spring-fork

In the next stage the new position and the rotation of the user’s hand are
used for updating of the spring-fork. The bend and stretch deformations are
performed first. After that, the torsion is calculated. This configuration (position
and orientation of the object together with the deformed spring-fork) becomes
a candidate for the new step, but first possible collisions with other objects have
to be detected. If there is no collision, the candidate configuration will be used

96

4.2. Force Feedback and Spring-Based Tools

to update all three spring-damper systems, and they transform the current con-
figuration to the new configuration. The spring-dampers of the spring-fork pro-
duce at each new time step a new configuration of the object and the fork, but in
the mean time the user has repositioned his hand. This triggers the next update
of the system.

All the above steps make this simulation rather complex, especially the han-
dling of the collisions of objects. We have used a simple method for collision
checking, see Section 4.1.3.

(a) Object selection with the spring-fork (b) Object manipulation with the spring-fork

(c) Object assembly using the spring-fork (d) Spring-fork in detail

Figure 4.31: Spring-fork demonstration (see also the Color Section)

Manipulation Experiments

To test this interaction concept, we have implemented an experimental appli-
cation where the user can perform dynamic spring manipulation with virtual
objects in a mini-world. The mini-world consists of several boxes and spheres
which has to be assembled into the assembly box (Figure 4.31). This task can be
done either with spring-based tools or with common direct manipulation tools.

97

Chapter 4. 3D Interaction in Virtual Environments

The basic concept of the RWB is that the user is standing in the real world,
where the physical laws apply, and is partly immersed in the virtual mini-world
which is displayed on the Responsive Workbench. The user can compare the
advantages of the spring-tools to the common tools (directly with the stylus or
ray-casting manipulation). Finally, the user can also observe a visual feedback
of dynamic behaviour of manipulated objects.

The spring-fork also provides a very clear and intuitive visual feedback of
object collisions during manipulation. This flexible tool can deform according
to the situation, see Figure 4.32.

Figure 4.32: Spring-fork provides visual feedback of object collisions. The fork
tool shows an S-shape deformation.

An object is selected by inserting the spring-fork into it, as shown in Fig-
ure 4.31(a). When the user has adjusted the fork inside the object, the manipula-
tion can start. As mentioned before, a user can switch the deformation DOFs of
the spring-fork on and off. For example, a manipulation with a torsion-resistant
spring-fork is shown in Figure 4.33(a).

(a) (b)

Figure 4.33: (a) Torsion-resistant spring-fork; (b) Spring-fork with torsion

98

4.2. Force Feedback and Spring-Based Tools

When all the deformation DOFs of the fork are enabled the spring-fork ma-
nipulation with the box would be as shown in Figure 4.33(b).

Torsion in the spring-fork and the rotation of the object are caused by the
moment which is applied at the rigid fork-end. The user can compensate the
rotation of the object by turning the spring-fork around its axis in the oppo-
site direction. The spring-damper of the torsion parameter will take care of the
transformation of the rotation to the attached object.

(a) RWB overview: Spring tools used for the
assembly task

(b) RWB detail: Spring manipulation

(c) RWB detail: Spring-fork manipulation (d) RWB detail: Spring-fork manipulation

Figure 4.34: RWB-view: Spring-tools demonstration on the Workbench

Figure 4.34 shows snapshots of the Responsive Workbench with a user perform-
ing the object assembly task using the spring tool and the spring-fork, respec-
tively.

99

Chapter 4. 3D Interaction in Virtual Environments

4.2.5 Other Spring-Based Tools

As described before, the deformation DOF’s of the spring-fork can be disabled.
This way we have derived other spring-based tools.

Spring-probe

By disabling the torsion and bending DOF’s and use of a modified tool tip we
have created a spring probing tool. The spring-probe can be used for probing the
material stiffness of an object, local deformation of an object, or simply pushing
an object. This tool has only 1 DOF (length) and can control 3 DOF (xyz) or
1 DOF (i.e. pressure) of an object, see Figure 4.35.

(a) Object selection with the spring-probe (b) The spring-probe is pushing to the object

Figure 4.35: Spring-probe demonstration

Although this tool seemed also quite promising we did not experiment much
with it. Instead, we have invested our research time in the next tool, which is an
instrument for particle steering in Molecular Dynamics simulations.

Spring Particle Manipulator

One of the drawbacks of the spring manipulation tools, described above, is that
they work only within direct reach of the user’s hands. To overcome this we
looked into the real world and we have made use of the fishing rod metaphor.
In a fishing rod the principles of the spring-damper are also hidden. Usually,
the fishing tool can bend only. We have adapted this metaphor and created the
Spring Manipulator, which can stretch and bend. Instead of using a nylon line
we actually insert the tool itself into a manipulated object.

The object is selectable from any distance using the ray-casting and then ma-
nipulated with this Spring Manipulator. We have applied this technique in our
MolDRIVE system, where we can perform particle steering and exert an external
force on particles in this way (Figure 4.36). More about MolDRIVE and particle
steering can be found in Section 4.3 and 6.2.

100

4.2. Force Feedback and Spring-Based Tools

Figure 4.36: Spring Manipulator for particle steering in MolDRIVE

4.2.6 Visual Force Feedback: Summary and Discussion

We have developed a scheme of dynamic object behaviour for manipulation of
objects in virtual environments. We have presented and described in detail the
set of spring-based manipulation tools, with which we can control both transla-
tional and rotational motions. These tools were designed to produce a realistic
visual force feedback.

We performed informal tests of object manipulation with a group of VR ex-
perienced and non-experienced people. The spring tools were easy and intu-
itive to use and also the subjects performed better with the assembly task. The
results show that object behaviour appears more natural and predictable than
the ’unphysical’ objects in most virtual environments.

However synthetic the models of the spring-tools are, they look and feel sur-
prisingly real. The approximation of the mechanics seems to be good enough
to create the illusion of mass and substance. Also the performance of the dy-
namic simulation keeps up with the tracker speed (50Hz). Of course, the actual
performance and the frame rate varies with the amount of collisions and the
complexity of collision behaviour, which seems to be a bottleneck.

We can easily define a long list of extensions for future work in this area. The
numerical computations for dynamic simulation can become very complex, and
may put serious limits on performance. Therefore, we have greatly simplified
the underlying physics. The simulation of the contact behaviour, efficient colli-
sion detection and handling, and constrained motion are areas of future work
and improvement.

We have successfully applied the spring tools in particle steering of Molec-
ular Dynamics in our MolDRIVE system, see Section 4.3. Haptic devices that
could do the job of particle steering in the same free and easy fashion to use as
the Spring Manipulator do not exist, and may not exist in the near future.

101

Chapter 4. 3D Interaction in Virtual Environments

4.3 Particle Steering Tools for Molecular Dynamics
In this section we present new virtual spring manipulator-based tools for steer-
ing particles in molecular dynamics simulations from virtual environments. We
briefly review the MolDRIVE system, our visualization and computational steer-
ing environment for real-time molecular dynamics simulations, which is the
platform for our particle steering implementation.

Our study concentrates on visual feedback tools. We compare a basic virtual
particle steering method with two other methods using a spring manipulator.
The first just creates a visual feedback of a flexible connection between the user’s
interaction device and the steered particle, while the second technique creates a
visual illusion of force feedback. The user can, through the spring manipulator,
exert a force on the manipulated particle in the MD simulation.

4.3.1 Introduction

Current trends in molecular dynamics (MD) visualization show an increasing
importance of interactive steering capabilities for MD simulation systems. Due
to the increasing computational power we can simulate larger MD problems
in real time. But there will always be enough MD simulations where we would
have to wait days or weeks for results. Thus many of today’s MD systems [Web-
MD-demmpsi; Web-MD-gromacs; Web-MD-namd] support visualization and
steering of running simulations.

For many reasons, atomic or particle steering seems to be a very attractive
function of MD simulation and visualization systems. It can be used for pro-
tein design [Arthur et al., 1998] and for molecular docking. With the particle
steering the user can make a particle overcome energy barriers within the sim-
ulated system. This way a desired configuration can be reached in a shorter
time, which is very useful for studying specific energy system configurations.
Based on previous research of the Computational Physics group at TU Delft, we
perform particle steering on real-time simulations of a β-Alumina electrolyte
system [Beckers, 1999].

VR systems offer a stereoscopic 3D immersion into the microscopic scale
molecular environments. The 3D tracking technology gives us the opportunity
to interact with these virtual environments. Specialized VEs were developed
for Interactively Steered Molecular Dynamics (ISMD) [Prins et al., 1999; Arthur
et al., 1998], where the researcher can control the simulation as well as interact
with the particles, allowing to get in touch with this micro-environment. How-
ever, the existing implementations of particle steering techniques for VEs are
mostly based on using the haptic devices, often constraining user interaction.
With our virtual particle manipulators we want to show a very good alternative
to the existing approaches.

Our proposed particle steering methods offer visual feedback, showing if the
performed interaction with the particle is physically valid. Each user interaction
with a particle is validated by the simulation program.

102

4.3. Particle Steering Tools for Molecular Dynamics

Figure 4.37: Visual force feedback using spring manipulator

Currently, haptic devices can be used to obtain an input position and force
from the user, as well as to render the force feedback.

Haptics adds to VEs a dimension of touch and force feeling; the user can feel
a real force during pulling or pushing objects. Haptics is also used to provide
the force input and the force feedback during atomic steering [Stone et al., 2001].
Most of the PHANToM - like haptic devices are used in desktop systems, and
only a small number of them is used in immersive VEs [Grant et al., 1998; Tay-
lor II, 1999; Brederson et al., 2000; Durbeck et al., 1998]. Some MD visualization
systems use the haptics to apply force on particles or to feel the forces of the
simulated system. Advantage of VEs is that they produce greater 3D immersion
and much more natural interaction with the MD simulation than the desktop
systems.

The motivation of our research is to prove our concept that visual force feed-
back is sufficient for effective particle steering in MD simulations. We present
a graphical force-feedback method and we provide a visual interface as an em-
ulation of direct force input. We have experimented in the MolDRIVE system
with the following three particle steering methods:

• Virtual particle displays a virtual particle on a user-requested position and
the original particle on a position accepted by the simulation. The new
particle position is sent to the simulation and checked for validity.
More about this technique in Section 4.3.3.

• Spring feedback displays a bending spring between the stylus and the
manipulated particle on an accepted position. The virtual particle with
the ray shooting from the stylus show the desired position. The spring

103

Chapter 4. 3D Interaction in Virtual Environments

manipulator forms only a flexible visual connection between the stylus and
the manipulated particle. No force is calculated from the deformation of
the spring in this case. More about this technique in Section 4.3.4.

• Visual spring force feedback displays a bending spring between the sty-
lus and the particle; the 2 DOF (degrees of freedom) spring deformation
(stretching and bending) defines an external force acting on the particle,
see Figure 4.37; the force is sent back to the simulation. More about this
technique in Section 4.3.5.

We first review some related work on MD simulation in VE, on particle steer-
ing, on force feedback and on the usage of springs as a visual feedback instru-
ment. This work follows the initial implementation of the spring manipula-
tion tools [Koutek & Post, 2001c; Koutek & Post, 2000]. Then we provide an
overview of the MolDRIVE system, and we describe in detail the three particle
steering methods. This section documents their development and experiments
in various MD applications.

Related Work

Molecular Dynamics simulations are used to study the properties and behaviour
of complex particle systems by solving Newton’s equation of motion numeri-
cally for all particles for a relatively small time interval (10−15 sec). The grow-
ing interest for being able to steer an MD simulation has resulted in the devel-
opment of several systems such as Steered Molecular Dynamics (SMD) [Leech
et al., 1996] and Interactive Molecular Dynamics (IMD) [Stone et al., 2001].

(a) (b)

Figure 4.38: (a) Steered MD; (b) Interactive Molecular Dynamics (IMD);

Initially, we have developed the MolDRIVE system on top of the DEMMPSI
simulation program [Web-MD-demmpsi]. Because of its good computational
speed compared to other MD programs [Beckers, 1999], and its parallel imple-
mentation using MPI, it is a good candidate to perform atomic steering in real-
time Molecular Dynamics simulations.

104

4.3. Particle Steering Tools for Molecular Dynamics

Usually haptic devices [Grant et al., 1998; Taylor II, 1999; Brederson et al.,
2000; Durbeck et al., 1998] are used to add user force on particles and to expe-
rience the reaction of the simulation. In SMD external forces are implemented
with springs between the target position and the restrained atom. Visual Molec-
ular Dynamics (VMD) [Humphrey et al., 1996] is commonly used to perform the
2D or 3D visualization. VR extensions to VMD have been presented [Prins et al.,
1999; Arthur et al., 1998], where the user’s immersion into the VE is supported
by head-tracking with ability to interact with the visualization.

MolDRIVE uses the Workbench as a Virtual Reality visualization environ-
ment with spatial interaction. It uses a metaphor of a laboratory table, where
the user performs an interactive experiment with MD system. What is specific
in our case, is the use of the DEMMPSI simulation, and our new contribution is
the particle steering tools, which use the spring manipulator.

The springs are very well established phenomena in the world of physics
and graphics as well. Springs were used by other researchers for manipula-
tion of objects on the Responsive Workbench [Fröhlich et al., 2000]. The spring
particle manipulators are based on our previous work, the spring manipulation
tools [Koutek & Post, 2001c; Koutek & Post, 2000], where we have demonstrated
the use of spring for manipulation of objects in virtual environments in a simple
assembly task. The spring-fork [Koutek & Post, 2001c] needs just one hand with
the stylus to control position and rotation of attached object, and it provides a
clear visual force feedback.

4.3.2 Molecular Dynamics Real-time Virtual Environment

We have developed a system named MolDRIVE , which represents a virtual en-
vironment for visualization and steering of real-time molecular dynamics sim-
ulations. MolDRIVE is in fact a visualization and computational steering en-
vironment with an interface to several MD simulation programs, which run in
parallel on remote supercomputers.

Figure 4.39: MolDRIVE overview: remote parallel MD simulation is running on
a (parallel) supercomputer. Visualization and computational steering is done on
the RWB which is driven by a powerful graphics workstation (SGI Onyx2).

105

Chapter 4. 3D Interaction in Virtual Environments

Currently, it uses DEMMPSI [Beckers, 1999; Web-MD-demmpsi] and also
Gromacs [Web-MD-gromacs]. Remote simulations allow the high performance
graphics workstation, to fully concentrate on the visualization part of the pro-
cess and larger systems can be visualized. The MolDRIVE system layout is
shown in Figure 4.39. The MD simulation, in this case DEMMPSI, runs remotely
on parallel supercomputers such as a CRAY T3E (128 proc.), an SGI 1100/1200
Beowulf Linux cluster (54 proc.) or an SGI Origin 2000 (8 proc.). Gromacs is not
running in parallel using MPI yet; the version used supports only PVM.

MolDRIVE System Components

The simulation server is a thread-based program, which communicates simul-
taneously through TCP/IP sockets with each MD simulation node on the su-
percomputer. The simulation server runs on an SGI Onyx2. At each time step
the server transmits a data request of the visualization client to each simulation
node. Each node handles this request and sends the simulation data back to
the server. This data is then placed in shared memory. The system architecture
allows transmission of user interactions back to the simulation.

The visualization client also runs on the SGI Onyx2. The RWB visualization
client is implemented using the RWB-Library [Koutek & Post, 2002; Web-RWB-
lib] and is based on Iris Performer and OpenGL. It runs in parallel on all 4 pro-
cessors of the Onyx2 to maximize the speed of the visualization pipeline and to
keep up with the interactive visualization frame rates.

The visualization client creates a graphical representation of the simulated
system and updates the particle position, forces and velocity vectors. It can also
visualize the derived grid data from the simulation, such as particle densities,
potentials, kinetic energy, etc. Through the 3D GUI the user has access to several
visualization and steering tools.

Shared memory is used to communicate and exchange simulation and com-
munication data between the visualization client and the simulation server.

The MolDRIVE manager reads an XML configuration file with the descrip-
tion of the simulation and the visualization environment. It initializes the shared
memory data structures. It also activates and controls the RWB visualization
client and the simulation clients (through the simulation server).

The shared memory consists of particle data, such as position, velocity and
forces, grid data such as particle density or potential, and the communication data,
which are used to steer the simulation and to get feedback data. We use double
buffering to speed up the data throughput. The control data is used to manage
the read and write access from both visualization client and simulation server to
the shared memory. RWB visualization client reads the data from the read buffer,
while the simulation server fills in the write buffer with simulation data for the
next time step. When both have finished the MolDRIVE manager switches the
pointers and tells to the visualization client that new data is ready.

106

4.3. Particle Steering Tools for Molecular Dynamics

Another benefit of this method is that it reduces the effects of network la-
tency. A small disadvantage is that during particle steering the write buffer is
filled with simulation data which are one step behind.

For the MolDRIVE system, we use a Na+-β-alumina simulation as an exam-
ple, which runs in real time at reasonable frame-rates, up to 24 Hz, depending
on the number of particles in the simulated system and the complexity of inner
system relations and interactions. This Na+-β-alumina electrolyte is studied be-
cause of its fast ionic conduction properties. We usually run this simulation on
up to 8 nodes in parallel on the supercomputer. The simulation speed scales up
quite acceptably with the number of processors.

DEMMPSI uses domain decomposition of problem space; thus, each proces-
sor has to simulate only the particles which fall within its sub-domain. In case
of long range interaction forces with particles from other sub domains commu-
nication with other simulation nodes takes place. For systems containing 2000
up to 4500 particles, we have found experimentally that 8 nodes seems to be
an optimal number for DEMMPSI. If more processors are used, communication
between the computational nodes slows down the whole simulation. From our
experience, if the refresh rate does not drop much below 8 Hz, we can still inter-
actively perform the particle steering even with a system containing more than
2000 particles.

On top of the MolDRIVE system we have implemented three particle steer-
ing methods, which we will describe in the following three sections.

4.3.3 Virtual Particle Steering Method

The virtual particle method and its enhanced version with the spring feedback
(Section 4.3.4) send a newly requested particle position through the control data
buffer via the simulation server to the simulation nodes. The simulation then
evaluates the new position in a new simulation time step. If this new position
doesn’t destabilize the simulated system, the new data are sent to the simulation
server and then placed into the shared memory where the visualization client
reads its data.

Underlying Physics

During manipulation of a particle through the system, the potential energy of
this particle changes and may reach a value which the particle normally could
not get. Such a situation occurs for example when the user tries to place a par-
ticle very close to another particle. This could cause unpredictable behaviour
and eventually resulting in a simulation crash. To prevent this, the Boltzmann
constant from formula 4.6 is used. It gives us a relative probability P , that the
system will move to a configuration with an energy value at a distance ∆E from
the current energy.

107

Chapter 4. 3D Interaction in Virtual Environments

P = exp(
−∆E
kBT

), ∆E ≥ 0 (4.6)

Where kB is the Boltzmann constant and T is the temperature of the system.
For the reference energy the particle energy at the first position of the interactive
movement is used. A new particle position is considered to be valid if the cor-
responding energy at that position could occur with a probability that is larger
than or equal to a probability threshold α, which is usually chosen to be in the
order of 1%.

Practical Usage

The virtual particle steering method is shown in Figure 4.40. The user selects
a particle using ray-intersection. At the moment of the first click on the stylus
button, the transformation from the stylus to the particle is computed. Next
time, when the RWB-library updates the position and orientation of the stylus,
the new position of the particle will be computed using this transformation.
At this position, at the end of the ray, a virtual (blue) particle is displayed. It
indicates a new desired position of the particle. This position is sent to the MD
simulation for validation. The white particle shows this particle on the last valid
position that was accepted by the simulation program.

(a) (b)

Figure 4.40: Virtual particle method: (a) in overview; (b) in detail

Figure 4.40(b) shows the steering of the Na+ atom through the conduction
layer of the electrolyte. The velocity of particles as well as the forces acting on
them are visualized using arrows. They react to the user’s interaction giving an
immediate visual response.

108

4.3. Particle Steering Tools for Molecular Dynamics

The virtual particle always follows the motions of the stylus, while the ac-
cepted white particle only moves when the simulation allows this. Sometimes it
results in a very inconsistent view. For a user manipulating a particle, it seems
as though the original particle was left behind at its place and some new particle
pops up and follows the ray. With increasing distance from the white particle
also the visual gap between them increases.

This is the situation where the spring manipulator can be used. It will con-
nect the stylus with the manipulated particle at its last valid position.

4.3.4 Spring Feedback Particle Steering Method

This method visually differs from the previous one in the way the user experi-
ences the acceptance of the new position by the simulation. During particle ma-
nipulation, the user’s stylus is always connected to the selected particle through
a spring manipulator, as shown in Figure 4.41. The position of the manipulated
particle is equivalent to the last position accepted by the MD simulation. The
acceptance is calculated in the same way as in the previous method.

(a) (b)

Figure 4.41: Spring feedback method: (a) in overview; (b) in detail

This spring based interaction tool has 2 DOF for deformation: stretching and
bending. Next it has 6 DOF in positionXY Z and orientationHPR (Head, Pitch
and Roll), which is given by the tracking of the stylus. The spring manipulator
is attached to the tip of the stylus and points always in the Z-direction of the sty-
lus’s local coordinate system. The other end of the spring manipulator is always
attached to the manipulated particle at the point of the initial ray intersection.

At the moment of the first button click, a transformation from the center
of the particle to the point of initial intersection is calculated, see Figure 4.43.
Next time, when a newly accepted particle position arrives at the visualization
server and the RWB-library reads the new stylus position and orientation, the
new intersection point is calculated by transforming the actual particle central

109

Chapter 4. 3D Interaction in Virtual Environments

position with the pre-computed transformation. The spring manipulator will
bend and stretch to end precisely at the new intersection point, see Figure 4.43.

This scheme is similar to the original spring-fork [Koutek & Post, 2001c] with
3 deformation DOF (stretching, bending, torsion). The spring-fork can control
position and orientation of objects with 6 DOF, see Figure 4.29 in Section 4.2.4.

The new spring manipulator has only 2 deformation DOFs. It bends without
torsion and controls only the position of an object. This tool has only a single
point attachment with the particle, as there is no need to apply rotation on single
particles during steering. The effect of the visual spring is that the user never
loses a particle during manipulation. It stays visually connected to the stylus, no
matter how the user deforms the spring, see Figures 4.41 and 4.42. The new (de-
sired) position which is sent to the simulation is indicated by a virtual particle
at the end of the stylus ray just as in the previous method. The spring metaphor
makes the user feel that the particle is being dragged to a new position, which
is experienced as more natural than the previous steering method.

Figure 4.42: Spring manipulator - experimental deformations: a) pulling /
extension b) bending c) pushing / compression d) extreme pushing

4.3.5 Spring Force Feedback Particle Steering Method

The previous method provides only a visual contact with the manipulated par-
ticle. The feedback is based only on particle positions. Sometimes, it results in
irregular motion of the particle, as the new particle positions may be accepted
or rejected by the MD simulation.

A way to avoid this is to use the force input and the force feedback delivered
by the spring instead. The spring manipulator provides a visual force feedback
as well as an emulation of direct force input through the idea of bending and
stretching a spring.

110

4.3. Particle Steering Tools for Molecular Dynamics

Model of the Spring Manipulator

The graphical model of the spring manipulator consists of a spring, a beam col-
umn inside and a small sphere at the tip of the instrument, which supports the
idea of a single point contact with the manipulated particle, in contrast to the
original spring-fork, which has contact with intersected objects at four points,
and therefore can also control rotation of objects. This was not needed for a
single particle steering. Thus the spring manipulator became more simple. As
mentioned before, the spring has 2 deformation DOFs: stretching and bending.
Figure 4.42 shows in wireframe: a) stretched spring b) regular bending c) highly
compressed spring d) extreme spring deformation.

The geometric model of the spring manipulator is kept simple, with a small
number of vertices, because the vertices and normals of the facets have to be
transformed according to the spring deformation. This must be done each time
when the RWB-library reads a new position and orientation of the stylus (48Hz).

Spring deformation follows the arc-length parameterized cubic Bézier curve
segment which is defined by the 4 control points: A,B,C,D, see Figure 4.43.

Figure 4.43: Spring-manipulator scheme

More about the deformation model of the spring tools (spring and spring-fork)
can be found in Section 4.2.4.

111

Chapter 4. 3D Interaction in Virtual Environments

Stretching and bending of the spring manipulator causes a reaction of exerting a
force to restore its initial length and straight form. The total spring force consists
of the stretching and the bending component:

Spring stretching force: −→
F stretch = −k−→δ stretch

Spring bending force: −→
F bend = −k−→δ bend

Total spring force: −→
F spring = −→

F stretch + −→
F bend (4.7)

Where: k= spring constant, −→
δ stretch= relative stretching of the spring,−→

δ bend= relative bending of the spring

Calibration of the Spring Manipulator

The spring manipulator is calibrated by the spring constant and by setting the
initial length of the spring. In the rest position it has a straight form. The spring
manipulator has two ends: one is permanently connected to the stylus and the
other end is connected with the particle at the point of the ray intersection (see
Figures 4.43 and 4.44).

Figure 4.44: (a) Ray selection of particles and initial calibration of the spring
manipulator (b) spring constant k = 1eV/Å2 (c) k = 5eV/Å2

A moving particle in a running MD simulation can be selected with the ray
casting technique, see Figure 4.44(a). When the user clicks the button the initial
spring length is computed, the ray disappears and the spring manipulator is
displayed instead. The spring strength and dimensions are based on a given
spring constant. Figure 4.44(b) shows k = 1eV/Å2 and Figure 4.44(c) shows
k = 5eV/Å2 (common units in MD community). The user can change the spring
constant with the slider, see Figures 4.45 and 4.46.

112

4.3. Particle Steering Tools for Molecular Dynamics

Particle Force Model of the MD Simulation

The original force model of the particle of DEMMPSI had to be adapted in order
to enable the external user force. The force that the user exerts on a particle
is also sent to the simulation and is added to the force delivered by the other
particles due to long and short range interactions:

−→
F part = −→

F short + −→
F long + −→

F user (4.8)

In the spring force feedback method we set −→F user = −→
F spring . After the force

calculation the particle positions are updated. Without taking precautions, the
influence of the extra force to the simulation will finally result in a tempera-
ture change and a possible drift of the simulation which is caused because of a
non-zero total momentum of the system. Therefore, after finishing the particle
manipulation, the velocities of the particles are re-scaled in order to restore the
original temperature and to maintain zero momentum.

Figure 4.45: Real-time particle steering using force feedback of the spring ma-
nipulator with spring constant k = 1eV/Å2

113

Chapter 4. 3D Interaction in Virtual Environments

Examples of Visual Force Feedback Particle Steering

In Figures 4.45 and 4.46, the spring manipulator is used to steer the particle in
a running MD simulation. After particle selection and initial auto-calibration
of the spring manipulator, the user can exert an external force on the particle
through the visual spring mechanism into the force model of the MD simulation.

The arrow at the end of the spring shows the spring force which is computed
from the spring deformations. Figures 4.45a and 4.45b show a user steering
the Na+ ion to the right or to the left respectively. The user is trying to find
a new equilibrium position for the selected particle. Figures 4.45c and 4.45d
demonstrate push and pull techniques.

Figure 4.46: Real-time particle steering using force feedback of a strong spring
manipulator with spring constant k = 5eV/Å2 (see also the Color Section)

In Figures 4.45 and 4.46, we can see a β-alumina system consisting of 2088
particles. There are atoms of sodium Na (red), oxygen O (yellow) and alu-
minum Al (small blue particles), see also the Color Section. The conduction
plane is formed by the sodium ions. In Figure 4.46c the user looks down through
this conduction plane.

114

4.3. Particle Steering Tools for Molecular Dynamics

In our visualization we use a depth cuing technique based on distance-haze
to improve the depth perception in a 3D visualization on the Responsive Work-
bench. It significantly improves orientation in the stereo images on the RWB
(there we use a ”black fog”; darker with distance) as well as the RWB simulator
images in this section (here we have used a ”white fog”; lighter with distance).
It helps a lot to distinguish between particles in the foreground and in the back-
ground in addition to the stereo-effect.

Figure 4.46 shows an Na atom being driven by a strong spring manipulator.
When a weak spring is used, the spring force will be relatively small to steer
the particle in the desired direction. With a strong spring is it possible to drag a
particle even against strong atomic binding forces. In this particle visualization
the user can also adjust the size of the displayed particles to see through the
system. When the Van der Waals atomic radius is used, the particle system is
so dense that the user cannot look through it. Our MD simulation program
provides the visualization client also with particle forces (green arrows) and
velocities (white arrows), which are also visualized, see also the Color Section.

Figure 4.47: Particle steering of β-Alumina electrolyte with the spring manipu-
lator on the Workbench (see also the Color Section)

A user performing particle steering in the MolDRIVE environment gets a
complex visual feedback of the interactions with the particle, see Figures 4.47
and 4.48.

115

Chapter 4. 3D Interaction in Virtual Environments

(a) User performing steering with virtual
particle method

(b) Particle steering using the spring manip-
ulator;

Figure 4.48: RWB photo: MolDRIVE - particle steering (DEMMPSI); the user moves
the sodium atom through the conduction plane, the other non-sodium atoms are not
displayed (b). The large arrow at the end of the spring manipulator shows the spring
force and the small arrow shows the resulting velocity of this particle.

Optionally, we can interactively visualize derived grid data of the whole sys-
tem, such as kinetic energy, particle densities or particle potential, which shows
important properties for particle steering (see Figure 4.49).

(a) Virtual particle steering method (b) Spring force feedback steering method

Figure 4.49: MolDRIVE (DEMMPSI): particle steering; A color data-slicer is used
to display the potential around the particle.

An observation we have made is that during particle manipulation the user
normally introduces some local disturbance to the simulation. We have found
that relaxation of the system takes about 10 to 30 fs (femto seconds), which
means about 2 seconds during VR visualization at the Workbench with the
DEMMPSI simulation running at 15Hz with a timestep of 1 fs.

116

4.3. Particle Steering Tools for Molecular Dynamics

4.3.6 Particle Steering: Summary and Discussion

We have presented steering methods which enable users to interact with parti-
cles in real-time MD simulations on the RWB. The performance of the MolDRIVE
system allows to steer in real-time systems with up to 4500 particles.

The virtual particle and spring feedback particle methods can be used to
navigate a particle through relatively low energy barriers with little disturbance
of the simulation. The visual spring helps users to keep contact with the steered
particle and is experienced in a more natural way.

The virtual particle with the spring feedback is also a useful technique espe-
cially when the user wants to check whether the particle could be placed at a
given position rather than to be dragged to that position, which is the effect of
the spring force feedback method.

Comparing the three steering methods, we have found that the spring force
feedback method provides the smoothest way of steering the simulation to a
desired configuration. Further, it seems that adding the force delivered by the
spring manipulator to the particle makes sense regarding the underlying physics.
The user can visually experience the strength of inter-atomic forces and the
amount of work is required to reposition the atoms.

The researchers studying the β-Alumina electrolyte can now interactively
perform experiments using the Responsive Workbench with the MolDRIVE sys-
tem. The observations that are made in this virtual MD laboratory, when per-
forming these experiments, help to create a better understanding of underlying
processes. They also help to evaluate the simulation methods and to move the
fundamental MD research further.

We have tested the spring force feedback technique on steering of polymer
simulations. A simple example of a carbon polymer is shown in Figure 4.50. Ini-
tial results indicate that the techniques can be easily extended to very different
types of MD simulations.

Figure 4.50: MolDRIVE (DEMMPSI): steering of a simple carbon polymer

117

Chapter 4. 3D Interaction in Virtual Environments

We have also used MolDRIVE to study protein simulations using the Gro-
macs MD simulation program, see Figures 4.51 and 4.52.

Figure 4.51: MolDRIVE (Gromacs): particle steering of T0099 protein

Steering particle (atomic) groups and exploring the possibility of extending
our spring manipulators to move atomic groups were identified as items for
future work.

Figure 4.52: MolDRIVE (Gromacs): particle steering of protein fragment

We believe that we have also reached our initial goal to make all the particle
steering tools intuitive and easy to use for non-VR experts.

118

Chapter 5

Exploration and Data Visualization in VR

This chapter describes our approach to interactive visualization and exploration
of data in VR. Interaction with the VE plays an important role in immersive
visualization. From this reason, we describe first suitable interaction scenarios
and techniques, see Section 5.1. These interaction and exploration concepts were
implemented in VRX, our visualization toolkit for the Virtual Workbench, which
is described later in Section 5.2.

5.1 Towards Intuitive Interaction and Exploration

In this section we present a basic set of intuitive exploration tools for data vi-
sualization in a virtual environment on the Responsive Workbench. First, we
introduce the Plexipad, a transparent acrylic panel which allows two-handed
interaction in combination with a stylus. After a description of various inter-
action scenarios with these two devices, we present a basic set of interaction
tools, which support the user in the process of exploring volumetric datasets.
Besides the interaction tools for navigation and selection, we present interactive
probing tools which are used as an input for complex visualization tools and for
performing virtual measurements.

Figure 5.1: Two-handed exploration tools in data visualization on the Virtual
Workbench (see also the Color Section)

5.1.1 Introduction

Scientists use a visualization system as a tool in an effort to explore and inter-
pret available data from their experiments, measurements or simulations. The

119

Chapter 5. Exploration and Data Visualization in VR

system must provide its users with means to effectively perform the data explo-
ration task. The interactive nature of this task implies that the man-machine
interface plays a prominent role in designing effective visualization applica-
tions. VR has a potential to enhance this two-way communication between the
researcher and the visualization application. In contrast to desktop-based 3D vi-
sualization applications, the use of stereoscopic, (semi-)immersive displays and
spatial interaction devices provides the user with a 3D experience of datasets,
allowing a quicker exploration.

Although VR can provide us with an intensified view of data, and more intu-
itive ways of interaction with the environment, some problems concerning data
exploration tasks have not been solved. These problems include high interac-
tivity of the visualization system and the virtual environment, effective naviga-
tion in the visual representation of the data and good control of visualization
tools and their parameters. The datasets from simulations and measurements
from various research areas are multi-modal and multi-dimensional, growing
rapidly in size and dimensionality. Advanced visualization techniques such as
direct volume rendering or iso-surfaces are computationally intensive and their
performance degrades dramatically as the dataset size grows. In addition to
these performance implications, the interactive control of the input parameters
(e.g. selecting an iso-value or defining a transfer function) to achieve useful
graphical representations of the data is a complex task. Instead of concentrat-
ing on the acceleration of visualization techniques we focus on the exploration
process itself. We developed intuitive interaction scenarios to support interest
driven exploration. Intuitive navigation and the use of simple and fast interac-
tive visualization tools provide a useful approach to the effective exploration of
volumetric data.

We will first give an overview of two-handed interaction techniques in visual-
ization applications in VEs. We define appropriate interaction scenarios using
both the Plexipad and the stylus, which form the basis for our two-handed inter-
action tools on the Responsive Workbench. Based on these interaction scenarios,
we describe our set of implemented exploration tools and their characteristics.
We focus our description on navigation and probing tools. After an overview
of implementation details, example visualization applications from different re-
search fields will demonstrate the use of our tools in practice.

Related Work

A good overview of the various challenges of scientific visualization in VR is
given in [LaViola, 2000]. One of the main challenges described in this report
is to ”make interaction comfortable, fast, and effective”. In this section we con-
centrate on this topic, focusing on the intuitivity of the interaction techniques
involved in the exploration and visualization of data. Based on promising re-
sults of working with both input devices simultaneously, we have focused on
the use of two-handed interaction techniques.

120

5.1. Towards Intuitive Interaction and Exploration

Numerous studies have shown that Guiard’s framework [Guiard, 1987] is
useful as a guideline for designing a two-handed interface. His findings in the
distribution of labor between two hands in everyday activities not only proved
useful for 2D computer drawing interaction schemes [Kabbash et al., 1994; Bier
et al., 1993], but was also applicable to the study of two-handed interface sce-
narios in VEs [Schmalstieg et al., 1999; Cutler et al., 1997; Szalavari & Gervautz,
1997; Hinckley et al., 1994; Lindeman et al., 1999; Coquillart & Wesche, 1999].
The following types of interaction tasks can be distinguished:

• One-handed task: only one hand performs a task.
• Double one-handed task: each hand performs a separate task.
• Two-handed task: both hands co-operate to perform a single task.

The division of tasks between hands in the case of two-handed tasks can be
either symmetric or asymmetric. A two-handed task is symmetric when both
hands perform identical actions. In an asymmetric task, the most common form
of two-handed tasks, each hand performs an individual action, involving a com-
plex coordination between hands. The dominant hand is the preferred hand
for precise movements such as writing. For most people this is the right hand;
the non-dominant hand provides guidance and support. For asymmetric two-
handed tasks, Guiard described the following principles:

• Dominant to non-dominant reference: the motion of the dominant hand
finds its spatial reference in the results of the motion of the non-dominant
hand.

• Asymmetric scales: the right and left hand are involved in different mo-
tions. The motions of the non-dominant hand tend to be of lower frequency
and higher spatial amplitude. In other words, the non-dominant hand is
responsible for the infrequent large motions while the dominant hand has
more movements in a smaller area.

• Non-dominant precedence: the movement of the non-dominant hand pre-
cedes the dominant hand. The dominant hand waits for the non-dominant
hand to initiate and set the spatial reference before engaging action.

Most of the work in the field of two-handed interaction interfaces concen-
trates on object manipulation or assembly tasks [Cutler et al., 1997]. In addition,
most reports on two-handed interaction in VR deal with two identical input de-
vices for each hand, such as wands or gloves. Similar approaches that use a
hand-held panel and a stylus, are described in [Szalavari & Gervautz, 1997; Lin-
deman et al., 1999; Coquillart & Wesche, 1999]. The use of a transparent panel on
a projection based table has been reported in [Schmalstieg et al., 1999], but the
panel is not actively used in a visualization process. Alternative approaches to
the improvement of man-machine interaction use other input modalities such
as speech and gesture recognition.

121

Chapter 5. Exploration and Data Visualization in VR

An example of this multi-modal interface in a visualization application is
described in [LaViola, 2000]. We use the two-handed task principles to match
the interaction scenarios for the tools in our system. These scenarios are reflected
by various interaction tools for navigation and probing.

5.1.2 Interaction Methods

The Responsive Workbench provides a VE on a laboratory table. The user stands
in the real world and looks down into the virtual world. Instead of bringing the
user into the virtual world, the virtual world is brought to the user [van de Pol
et al., 1999]. The virtual workspace is usually within reach of the user’s hands,
but can also extend under the projection surface. Most of our tools are therefore
designed to work both directly and remotely. The projection surface of the RWB
provides passive haptic feedback and is suitable for the placement of 2D/3D
interaction widgets. In our VR setup we use the following two input devices
(Figure 5.2) which are tracked by electromagnetic trackers with six degrees of
freedom (DOF): position and orientation.

• Stylus: a pen-shaped input device with a single button. The pen can define
a point in space (zero-dimensional or 0D). The shape of the pen defines a
directional reference axis. The pen can be used to intuitively specify a line
in 3D space, extending the actions from 0D to 1D. This function is often
used by ray-casting selection.

• Plexipad: a lightweight transparent acrylic panel (300 x 300 x 2mm) on
which a tracker sensor is mounted. The pad can be used to naturally posi-
tion and orient a 2D plane. It defines a 2D reference plane in 3D space. In
contrast to a similar prop presented in [Schmalstieg et al., 1999], the tracker
sensor is mounted under a foam handle at the edge of the panel. The han-
dle allows a firm and comfortable palm grip, reducing fatigue in the fin-
gers. With the tracker mounted close to the wrist the inconvenience of the
tracker cable (obstruction of the view, weight on the panel) is reduced to a
minimum.

Figure 5.2: The stylus, the Plexipad and their two-handed use

122

5.1. Towards Intuitive Interaction and Exploration

In our two-handed interaction setup, the dominant hand holds the stylus
while the non-dominant hand holds the Plexipad. The stylus and Plexipad are
interchangeable, and this allows both right-handed and left-handed persons to
operate the tools.

Interaction Scenarios

Based on our input devices and Guiard’s principles of two-handed tasks we
have derived the following interaction scenarios:

One-handed interaction: either the stylus or the Plexipad is actively used to in-
teract with the environment. The stylus is suitable for direct (0D) or ray-casting
(1D) selection and manipulation, where the Plexipad allows direct control (posi-
tioning and orientation) of objects which are virtually attached to the Plexipad.

Double one-handed interaction: the stylus and the Plexipad are used to per-
form unrelated one-handed tasks. The Plexipad and stylus each have their own
separate functionality: a direct coupling between the tools is absent. This sce-
nario allows a combination of stylus-based and Plexipad-based one-handed in-
teraction scenarios. Although this direct relation between the two interaction
tasks is absent, usually a higher-level goal will be pursued.

Symmetric two-handed interaction: Both hands perform identical tasks. This
type of interaction task is not likely to be used in our scenarios, considering our
use of two distinct input devices. Systems that use two identical input devices
like wands or gloves usually support symmetric two-handed interaction [Cutler
et al., 1997].

Figure 5.3: Asymmetric two-handed interaction: constrained actions (left) and
complex actions (right)

Asymmetric two-handed interaction: the Plexipad sets the 2D reference plane
for the stylus. This combination of the two tools exploits the familiarity with the
”pen and pad” metaphor. In addition, the pad provides tactile feedback to the
stylus’ movements. The combination of the plane shaped panel and similarly
shaped virtual object proves to be very intuitive. It feels as if you are holding

123

Chapter 5. Exploration and Data Visualization in VR

the virtual tool in your hand. We distinguish the following three scenarios for
this asymmetric two-handed interaction:

• The Plexipad serves as an object container. The Plexipad is used as a
container for 2D and 3D virtual objects or interaction widgets, which can
be manipulated or operated by the stylus.

• The Plexipad constrains the stylus. The actions of the stylus are projected
on the reference plane defined by the Plexipad. This actively constrains the
3D actions of the stylus in a 2D plane (Figure 5.3, left).

• The Plexipad and stylus are used for a complex interaction task. Here
the Plexipad and stylus form a pair of input devices that control a single
complex interaction task. Examples of this interaction scenario are the se-
lection of a region of interest (Figure 5.3, right), a 3D lasso selection tool, a
modeling tool or a cutting tool.

The Plexipad as a passive object container is widely used and is well suited
for hand-held 2D or 3D menus and object snapping [Lindeman et al., 1999;
Schmalstieg et al., 1999]. Although we also use the Plexipad for this purpose,
we concentrate on more dynamic asymmetric two-handed interaction scenarios.
The second scenario uses the Plexipad as a pure 2D reference plane for stylus in-
teraction. In the third scenario however, the Plexipad actively participates in the
interaction. This complex interaction has been used mainly with two 0D/1D in-
put devices such as pens or gloves [Cutler et al., 1997]. The plane shape of the
Plexipad can be exploited to create more expressive interaction tools. We use
the concept of holding two dimensions in one hand (the Plexipad) while the
other hand (the stylus) controls the third dimension. In the following section
we will describe how these interaction scenarios are reflected in the design of
our interaction tools for navigation and probing.

Interactive Exploration Environment

We have implemented a VE for visualization and exploration of data on the
RWB (Figure 5.4). Besides a conventional 3D GUI, the user can interact with
various visualization tools and the data space which can contain both volumet-
ric and object data. The data space is represented as a virtual object, using an
outline to indicate the spatial boundaries.

In the description of the exploration tools we will use a Molecular Dynamics
(MD) application, our testbed during development, to illustrate their function-
ality. MD is used to study the properties and behaviour of complex particle sys-
tems. This application is a good example of combining volumetric fields with
object information (particles). The various illustrations in this section show the
study of a solid electrolyte (sodium beta-alumina) which consists of a crystal
molecular structure with layers of sodium ions. In Chapter 6.2 the MD applica-
tion will be described in more detail.

124

5.1. Towards Intuitive Interaction and Exploration

Figure 5.4: Overview of the VE for data exploration and visualization

A typical exploration process begins with a quick spatial and temporal scan
of the volumetric data for interesting information. If an interesting region or
phenomenon has been found in the data, the attention is focused on this aspect
of the data. The user then tries to get detailed insight in this data by inspect-
ing or probing the various data values in the neighborhood, using visualization
techniques or measurement tools to explore the data.

In our approach we provide interaction tools to support these steps of the
exploration process. These can be divided into two main categories: navigation
(positioning, orienting, cropping and zooming of the data space) and probing
(localized visualization and measurement of the data).

5.1.3 Navigation

In our VR concept we do not consider navigation as flying through a VE. Instead
we use the laboratory table metaphor, where the position of the VE with respect
to the physical table is fixed. Navigation consists of manipulation actions on the
data space object which contains all data. Common direct or ray-cast manipu-
lation tools can be used to position and orient the data space object. For other
types of navigation we have developed the following interest driven tools.

Zoom Tool

The zoom tool allows the user to take a closer look at a point in the data. In naive
implementations (e.g. using a slider to adjust the zoom factor), the user has to
pay attention to both the manipulation of the slider and the size of the object.
Moreover, the object will often scale from its local origin, thus effectively moving

125

Chapter 5. Exploration and Data Visualization in VR

the point of interest to another position. We observed users repeatedly zooming
and repositioning in an effort to get a good view of the point of interest in the
object. Our ”magnifying glass” metaphor is interest driven: click at a point of
interest, pull back to zoom, push away to zoom out.

Figure 5.5: Zoom tool and scaling function f(d)

After activating the zoom tool, the user can specify the point of interest in
the VE (Figure 5.5, stylus position 1). The zooming will occur around this focal
point, so that this point will remain stationary. The line from this point to the
eyes defines the normal of the reference plane. The user can move the stylus
away from the initial position to adjust the zoom factor. If the stylus is moved
towards or away from the eyes, the zoom factor increases or decreases respec-
tively. This factor is determined by distance d, the perpendicular distance from
the stylus (position 2) to the reference plane. To prevent jerky zooming with
small movements while allowing large zooming with large movements, we use
a non-linear scaling function f(d). In addition the zoom factor is clipped at
f(d) <= 0.1. This prevents the disappearance of the zoomed object.

Figure 5.6: Ray-cast zoom tool for distant objects

126

5.1. Towards Intuitive Interaction and Exploration

Sometimes the user wants to zoom from a point that is out of reach (too far
away or under the table). To facilitate this we have extended the zoom tool with
the possibility to select a point of interest on a remote object using ray selection
(Figure 5.6).

Figure 5.7: Ray-cast zoom tool used in molecular visualization (MolDRIVE)

Figure 5.8: Direct zoom tool used in cloud visualization

The zoom tool using the ”magnifying glass” metaphor has been found very
intuitive, easy to learn and useful by users, see Figures 5.7 and 5.8. It has signif-
icantly decreased the time and effort needed for obtaining a more detailed view
on a point in space.

127

Chapter 5. Exploration and Data Visualization in VR

Mini System tool

Using the zoom tool the user can be fully immersed in the data space/domain,
thus losing orientation. The mini system provides a global context of the data
space in the form of a small model (Figure 5.9). To have a good navigation
control in the data space we coupled the orientation of the mini system to the
data space object. If the user rotates the data space object, the mini system is
rotated accordingly. Likewise, if the user rotates the mini system, the data space
object is rotated as well. As a result the system and its miniature are always
aligned.

The data space object is rotated around a point of interest, for which we
selected the center of the projection screen. We decided not to share positioning
information between the data space and its small version. A small repositioning
of the mini system would cause a much greater repositioning of the data space
object, thereby confusing the user.

Figure 5.9: Mini System tool helps to navigate in molecular visualization
(MolDRIVE)

An advantage of not using the location information of the system is that the
mini system can be placed anywhere in the VE. For example, the user can use
the mini system to rotate the data space object and then move it out of sight, e.g.
to the side of the screen.

128

5.1. Towards Intuitive Interaction and Exploration

Region of Interest tool

The region of interest (ROI) interaction tool allows users to select an arbitrarily
oriented 3D box in the VE. The stylus is used to define two points in space to
define an extent of the box. This box is created by clicking on the surface of the
Plexipad. While holding the button, the user can move both stylus and Plexipad
to dynamically adjust the size, position and orientation of the box.

The Plexipad also defines the orientation of the base plane of the box. This
enables the user not only to reposition the box but also to adjust the orienta-
tion of the box dynamically. The complex asymmetric interaction between the
two hands reduces the number of actions, allowing easy creation of axis-aligned
boxes as well as arbitrarily oriented boxes in 3D space in a single movement.

Figure 5.10: Region of Interest tool in molecular visualization (MolDRIVE)

In our MD application we use the box to define the 3D region in which we
want to display particles (Figure 5.10). The technique can also be used for object
selection, volume probing or 3D modeling. The Plexipad can control the 2D
base of an object while the position of the stylus defines another parameter such
as height or extent.

129

Chapter 5. Exploration and Data Visualization in VR

5.1.4 Probing Tools

The probing tools, which allow the user to inspect the data, work in synergy
with the navigation techniques. Probing in a dataset is a necessary input for
various visualization and measurement tools. 3D probes such as point probes
(0D), line probes (1D), plane probes (2D) and volume probes (3D) are therefore
essential in the data exploration process. Without an appropriate feedback it is
difficult to freely probe the data in 3D space. The passive haptic feedback pro-
vided by the Plexipad is very useful during 3D probing. We take advantage of
the two-handed input scenarios defined earlier, using the Plexipad as a 2D refer-
ence plane. This reference plane forms the basis for the creation and positioning
of probes.

Figure 5.11: Direct data slicer: a user slices through an atomic density field of a
solid electrolyte (MolDRIVE).

Plane Probing

The Plexipad allows the user to navigate a 2D plane through the VE. We exploit
the interaction scenarios by attaching a plane-shaped probing tool directly to the
Plexipad. This consists of a grid of point probes, which perform a trilinear inter-
polation of the volume data values, see Figure 5.12. We directly visualize these
data values on the plane-shaped probe by using a textured rectangle (quad).

130

5.1. Towards Intuitive Interaction and Exploration

(a) (b)

Figure 5.12: (a) Direct data slicer is used to probe the volumetric data in a plane.
(b) Trilinear interpolation inside a data cell.

Each pixel of the texture corresponds with the value at a point in an inter-
sected cell of the data, which is calculated using a trilinear interpolation:

fG = f1(1 − α)(1 − β)(1 − γ) + f2α(1 − β)(1 − γ) +
+ f3(1 − α)β(1 − γ) + f4αβ(1 − γ) +
+ f5(1 − α)(1 − β)γ + f6α(1 − β)γ +
+ f7(1 − α)βγ + f8αβγ

where α, β and γ are relative positions of point G in the cell, with 0 ≤ α, β, γ ≤ 1.

As a result, the user directly controls the position and orientation of the prob-
ing tool, slicing through the volumetric data. We call this tool the direct data slicer,
see Figure 5.11. The user holds the direct data slicer in the non-dominant hand
and can quickly probe through the volume to get an overview of the data values
inside. At the same time, the dominant hand can be used to operate the stylus
for manipulation, zooming of the data, and the selection of new tools.

The direct data slicer forms a two-dimensional reference plane for other
tools: for asymmetric two-handed interaction and passive haptic feedback, and
a slicing plane in a volumetric dataset. This combined feedback assists in selec-
tion of points and lines in 3D space by using the stylus directly on the Plexipad.
This assisted or constrained selection can be effectively used to define the input
for visualization or measurement tools. The advantage of the plane probe is that
it can also serve as a reference plane for other probing tools.

131

Chapter 5. Exploration and Data Visualization in VR

Point Probing

The point probe allows the user to request the data value(s) at a point in 3D
space using the stylus. In addition to freehand probing, the direct data slicer can
provide a tactile feedback for constrained probing, by clicking with the stylus on
a point of interest on the Plexipad (a 0D selection on a 2D slice). An example of
using a point probe is the click iso-surface tool, see Figure 5.13. This tool uses the
value of an interactively positioned point probe as the iso-value which is used
to create an iso-surface instantly. The iso-surface is generated by the marching
cubes module in VTK [Schroeder et al., 1999] and transferred to the VE using
vtkActorToPF [Web-VTK-to-Perf], see Section 5.2.4.

Figure 5.13: Point probing: the data value at the selected point is used as input
for the iso-surface visualization tool (see also the Color Section).

Line Probing

Line probing provides a way of selecting a line in 3D space. Again, the direct
data slicer can be used to create a 2D reference plane in 3D space, allowing the
user to draw a line on the Plexipad (a 1D selection on a 2D slice). An example
of line probing is using the probed data values along the selected line to define
the data range of a color mapper. The color mapper defines the color-coding of
the values probed by the direct data slicer. The line probe can be used to select

132

5.1. Towards Intuitive Interaction and Exploration

a line of interest (LOI) after which the color mapper is calibrated to reveal small
variations in the selected profile, see Figure 5.14. This profile can also be used to
select an appropriate iso-value for an iso-surface.

Figure 5.14: Line probing: the user selects a line of interest to calibrate the gray-
scale color mapper in the visualization of a medical CT-scan.

Sub-Volume Probing

The principle of the oriented 3D box described in ROI (Section 5.1.3) can be used
for probing sub-volumes. The user can crop or cut a selected volume of the data,
while data slicers probe and visualize the data on the inside faces of the 3D box.
The box selection can also be used for direct volume rendering in the given re-
gion. It is important that the user can interactively select and adjust the box
while visualizing the data at the same time. After the initial exploration pro-
cess, the presented probing tools can be used for interactive quantitative mea-
surement purposes by presenting the probe results in a classic 2D or 3D graph.

133

Chapter 5. Exploration and Data Visualization in VR

For example, the data values along the LOI can be presented in a 2D graph
to visualize the data profile along this line. Another example is to display the
results of a point or line probe over a period of time. These dynamic graphs can
be placed anywhere in the VE and stored for further analysis. We expect that
this data representation will be appreciated by researchers for its analytical and
quantitative character.

5.1.5 Implementation

The interaction tools presented were implemented in the VRX toolkit (Section 5.2)
on top of the RWB Library (Section 3.4).

The RWB Library uses a default RWB-Interactor class, which can select and
manipulate objects directly with the stylus or using ray-casting for distant ob-
jects. It checks for bounding volume or ray-casting selections, providing the
intersection and interaction points (stylus/ray with objects). This class works
on the principle of an interaction finite state automaton, driven by interaction
events. RWB-Objects can be selected and deselected, picked (first button click),
manipulated and released, each time invoking their event callback function.
This way the desired behaviour of virtual objects can be implemented.

Using the generic RWB-Interactor class we can define new interaction tools,
such as the ZOOM and the ROI or the Spring Manipulator [Koutek et al., 2002].
We have implemented two interactor schemes.

The user extension of the RWB-Interactor executes the default RWB-Interactor
first to perform the intersection checks and to obtain a new interaction state
and interaction points; then the user interactor function performs the desired
behaviour (i.e. ZOOM, ROI, Click-ISO, Probing Tools)

The fully user-defined RWB-Interactor overloads the functionality of the de-
fault interactor, processes the input sensors itself (via RWB-Lib), and imple-
ments the desired functionality (i.e. Spring Manipulators, Virtual Particle Steering)

The user RWB-Interactors can be activated by clicking on a button widget.
The RWB-Interactor can be de-activated by the tool itself or by activating an-
other interactor. For example the zoom tool is automatically deactivated after
completing a zoom action and control is returned to the default RWB-Interactor.
The design of the interactor determines the way the tool works. The event-based
interactors, straightforward coordinate transformations between the Plexipad
and stylus and the simulator environment all provided by the RWB Library al-
low rapid development of new (two-handed) interaction tools and scenarios.

5.1.6 Example Applications

We will illustrate the interaction scenarios described above with two applica-
tions. Visualization and steering of MD simulations have been an important

134

5.1. Towards Intuitive Interaction and Exploration

inspiration for our research. Within the scope of MD visualization research we
have developed most of the interaction techniques presented. To prove their
wider applicability we also applied them in other case studies.

Particle Steering in Molecular Dynamics

In our VR lab we have developed the MolDRIVE system [van Hees & den Her-
tog, 2002; de Haan, 2002], a VR system for visualization and steering of real-
time remotely running MD simulations, see Section 4.3. As described earlier,
MD simulations are used to study properties and behaviour of particle systems.

Figure 5.15: Molecular Dynamics: user performs particle steering with Spring
Manipulator while holding the time-control of the remotely running simulation
in the left hand (see also the Color Section).

In the MolDRIVE system we work with particle data (positions, force and
velocity vectors) and volumetric data. The volumetric data consists of regularly
structured grids of scalar data (e.g. kinetic energy, potential energy, particle
density) and vector data (e.g. force fields). As we are dealing with a real-time
simulation, the VE content is updated each time we receive new data. We have
used double-buffer data management so that the update of visualization tools
is not disturbed when the simulation delivers new data, see Section 6.2 for more
information.

135

Chapter 5. Exploration and Data Visualization in VR

Growing interest for the ability to steer particles in running simulations has
led us to develop particle steering tools. The most reliable steering is provided
by the Spring Force Manipulator (Section 4.3), which has been derived from the
Spring Manipulation Tools, providing visual force feedback during manipula-
tion, see Figure 5.15.

The task of particle steering can be effectively assisted by the direct data
slicer. A higher level interaction is achieved when for example the stylus is used
for dragging a particle, while the Plexipad is used to gain information on the
potential energy around the particle, see Figure 5.16. In MD simulations the
particles usually have preference to move from higher to lower potential. Using
the direct data slicer the user can see what the most efficient trajectory for the
particle will be and then uses the steering tool (Spring Manipulator) to drag the
particle in that direction. The interaction of the non-dominant hand itself does
not influence the reference frame of the stylus.

Figure 5.16: Molecular Dynamics: the direct data slicer is used to display poten-
tial energy around an individual atom during particle steering with the stylus.

Instead it presents valuable information which can be interpreted to adjust
actions with the dominant hand. The visualization tool in the non-dominant
hand provides information that allows the user to redirect simulation steering
actions with the dominant hand.

136

5.1. Towards Intuitive Interaction and Exploration

Visualization of Cloud Simulations

Atmospheric simulations are usually very complex and computationally inten-
sive, and they produce large time-dependent datasets. In this case study we
are dealing with data originating from Large Eddy Simulation (LES) with cu-
mulus clouds. Scientists study atmospheric boundary layers to get a better un-
derstanding of the turbulent dynamics and the behaviour of clouds (cumulus,
stratocumulus). Turbulent convective motions are very important since they are
responsible for the vertical transport of heat, moisture and pollutants. The pres-
ence of clouds in the boundary layer makes the dynamics even richer but forms
an additional complication due to the phase changes (condensation / evapora-
tion) [Siebesma & Jonker, 2000].

The LES in this case has produced a large dataset (20 GB), with grid dimen-
sions of 128x128x80 and 600 time-steps, which means one hour of simulated
clouds in an area of 6x6x3 km. The key quantities are momentum (velocity),
pressure, temperature and moisture. It is a real challenge to be able to interac-
tively visualize and browse through such a large time-dependent dataset. The
exploring user is searching for an interesting cloud with a complete life cycle
inside the simulated time interval. The spatial relations and the simulated phys-
ical properties around the selected cloud must be explored in detail.

Figure 5.17: Cloud simulation: playback of the cloud field simulation. Clouds
are tracked in time and colored accordingly. The user is searching for a cloud
with interesting properties.

The presented two-handed interaction scenarios have also been applied in
this case study. The exploration process begins with a quick search through
the dataset. The Plexipad contains a time-control widget to navigate in time
of the cloud simulation. The stylus can be used for operating it, as well as for
navigation in the visualization of the cloud field, see Figure 5.17.

137

Chapter 5. Exploration and Data Visualization in VR

The direct data slicer can be attached to the Plexipad as well, enabling highly
interactive exploration of the data, see Figure 5.18. The stylus can be used to
probe the data on the surface of the direct data slicer. While using the direct
data slicer, the stylus is used to operate the rest of the VE, using the 3D GUI
to change for example the visualized data or adjusting the color mapper. A
color mapper widget can also be attached to the data slicer, enabling the color
mapping adjustments without changing view context. The LOI tool can be used
to calibrate the color mapper on the selected data range.

Figure 5.18: Atmospheric visualization: the direct vector slicer shows the flow
momentum around the cumulus clouds (iso-surfaces of liquid water concentra-
tion).

5.1.7 Results

We have presented the interaction tools and a new way of exploring data in 3D
to the scientists whose data we visualize and they became quickly familiar with
this exploration interface. We have asked them what makes this concept that
easy to use and intuitive. It is exactly the pen and pad that form a natural inter-
action pair. Our conclusion at this point is that intuitive data visualization and
exploration tools for VR should relate to real tools and interaction paradigms,
which are used in the real world when scientists make their observations. Al-
though we give them a slightly different look and functionality, people will have
no problems using them. Another aspect is that people are working in 3D in the
real world. When performing tasks like drawing, construction or measuring,
they usually search for a supporting plane or a reference. Measuring freely in
the air is difficult. The passive haptic feedback and constraints are important.

138

5.1. Towards Intuitive Interaction and Exploration

In our solution it is provided by the transparent Plexipad, which is augmented
by virtual objects and tools with straightforward meaning.

5.1.8 Intuitive Exploration Tools: Summary and Discussion

We presented intuitive interaction scenarios for the Plexipad and the stylus,
based on well-founded two-handed interaction paradigms. The described in-
teraction scenarios provide a usable approach to the development of navigation
and probing tools. The use of two-handed scenarios proved valuable for the de-
velopment of volumetric visualization tools in projection-based semi-immersive
VEs, like the Responsive Workbench. The complex two-handed interaction sce-
nario, holding the two dimensions of the Plexipad in one hand and controlling
the third dimension by the stylus in the other, allows the creation of complex
but still easy-to-use interaction tools. This two-handed synergy between the
stylus and the Plexipad allowed natural exploration and probing of volumetric
datasets.

The combination of the zoom tool, the region of interest tool and the mini
system allows a flexible way of navigating through the data and focusing on in-
teresting regions of the data while maintaining a view of the context. The direct
data slicer presented can be used to quickly probe large datasets and scan for
interesting phenomena in the 3D data space during navigation. The tactile and
visual feedback provided by this tool also provide a spatial reference plane for
various 3D probing tools, allowing accurate placement of measurement tools.
Moreover, the presented interaction tools are not computationally intensive and
their performance is independent of the data size.

A successful employment of the interaction concepts presented needs accu-
rate tracking. The coherence of the Plexipad and the virtual object has to be op-
timal to achieve a good tactile feedback, which in turn increases the interaction
experience when using the stylus on the Plexipad. As we are using electromag-
netic trackers, we are dealing with tracking errors especially in the orientation of
the Plexipad. Therefore a specialized tracker calibration scheme is needed, see
Section 3.2.2. Current trends show a good alternative of using optical tracking.

Currently we employ the interaction techniques on various visualization ap-
plications, of which some are shown as examples in the case studies (Chapter 6).
We can extend our concept with 3D measurement tools, and also concentrate on
exploration of large multi-modal and multi-dimensional datasets. The use of
our probing techniques in combination with complex time-critical visualization
tools will allow us to explore and analyze large and complex datasets more ef-
fectively.

139

Chapter 5. Exploration and Data Visualization in VR

5.2 VRX: Virtual Reality eXplorer

5.2.1 Overview of the Concept

Concurrently with the development of the RWB Library we have worked on the
design and implementation of a modular object-oriented toolkit for exploratory
data visualization on the Virtual Workbench. Our efforts have resulted in the
Virtual Reality eXplorer (VRX), see Figure 3.14. We have designed a set of simple
classes to support the development of visualization applications on top of the
RWB Library, providing the multiprocessing support for visualization tools.

Figure 5.19: Schematic overview of the various modules in VRX

With the VRX toolkit we provide a framework for the development of appli-
cations for interactive visualization of multi-dimensio-nal and time-dependent
datasets in VR. We focus not only on the actual interactive exploration and anal-
ysis of the data in VR, but also on the construction of the visualization pipeline.
Similar to other existing visualization systems each class represents a modular
function in the visualization pipeline. Instances of these classes can be inter-
connected to define the flow of data. The advantage of this modular approach
is that each component in the set can be extended, optimized and tested sepa-
rately without great implications for the other components. Once the modular
framework and the communication is defined, developers create their own ap-
plication specific modules for use in the system or the modules can be shared
between several applications. We have created a basic application framework
and some virtual tools to demonstrate our concept. We will describe now the
main modules and their interconnections, see Figure 5.19.

Data source is responsible for the physical data file access and memory storage
of the time-dependent datasets. At this point, the data source class is able to
read and convert different file formats that contain regular grids of scalar or
vector data. The structure of the filenames of the data files must be configured,
while the data are stored per time step usually in separate files. We use an

140

5.2. VRX: Virtual Reality eXplorer

asynchronous process for disk operations in combination with double buffering
and custom semaphores not to slow down the graphics related tasks.

Data object represents one data entity (i.e. one scalar or one vector quantity)
in the data space. It is an abstract layer on top of the actual data source and
is responsible for handling data value requests by virtual visualization tools.
The data object class presents an interface to those tools for calculating data
values at both arbitrary points in 3D space, or at points on the data grid. If an
arbitrary point in space is requested, it first calculates whether this point falls
within the data space boundaries. If the requested point is outside the data, it
returns a NULL. Otherwise, it calculates the cell in which the point is located
and retrieves the value from the underlying data source. For this the data object
uses tri-linear interpolation.

Data space is a box-shaped virtual object (RWB-Object) that defines the spatial
extent of the data in the VE. The actual presence of data in the VRX system is
provided by data objects, which are placed in the data space. Each data object is
responsible for one data source. By connecting multiple data objects, multiple
types of data can be present simultaneously in one data space. Navigation tools
operate on the data space and can be used for navigation or spatial filtering.
Visualization tools work inside the data space.

Virtual tools: By using interactive virtual tools a user can probe various data
types present in the data space for exploration, visualization and measurement.
These probe tools can be controlled by the stylus and/or the Plexipad. The tools
do not have direct access to the data in memory, but use data objects to request
values at a point in 3D space. Each virtual tool operates on one data entity,
thus one data object. When a visualization tool is used, the received value can
be mapped to a color by using a color mapper object. Bellow we will describe
various interactive probing tools that we have implemented.

Abstract tools: In addition to these spatial tools we have also created abstract
tools such as the color mapper widget and the time control widget. These widgets
can be connected to the color mapper and the data sources, and provide direct
interactive control of these abstract parameters of the visualization pipeline.

Although the design and implementation of the basic concept itself took a
substantial amount of time and effort, this paid off in increase of code stability,
readability, flexibility, and development time of visualization applications for
the Responsive Workbench. By using an object-oriented design, new applica-
tion specific tools can be derived and extended relatively easily from the basic
classes and tools provided. Also, the abstract layer provided by the data object
offers an effective interface to the data for new visualization techniques. VRX
also contains improved 3D interaction and exploration techniques, as described
in Section 5.1. We have applied the VRX concept on several case studies, see
Chapter 6.

141

Chapter 5. Exploration and Data Visualization in VR

Further, we have also implemented an interface to VTK (Visualization Tool
Kit) and incorporated it in VRX. A promising idea is to combine VRX with an
existing visualization package, which uses the network builder paradigm, such
as OpenDX. In this way, scientists could more easily prepare their visualization
sessions on regular desktop computers.

5.2.2 Multiprocessing Scheme

As described in Section 3.4.2, the RWB Library initiates and executes the APP,
CULL, DRAW and COMPUTE processes. Multiprocessor support using a sep-
arate parallel COMPUTE process in combination with pfFlux nodes has the po-
tential to enhance performance of complex visualization tools.

The update of the visualization/exploration VRX tools is done in the COM-
PUTE process. This process runs in parallel on the fourth processor of the
Onyx2, not interfering with the normal rendering pipeline. Within this process,
each visualization tool is updated in a separate thread sub-process (Figure 5.20).
In this way, the separate tools are updated in parallel and the slow tools do not
affect the fast tools directly. When the update of a tool is complete, the new data
in the pfFlux buffer is immediately available to the DRAW traversal stage in
the following frame. This way the latency of the visualization tools is reduced,
compared to sequential execution of tools’ updates.

Figure 5.20: Multiprocessing in VRX. P0,1,2,3 means processors nr. 0,1,2,3. Ai

means APP traversal process of frame i. Ci,Di stays for CULL and DRAW
traversal processes. The COMPUTE process on proc. P3 executes individual
threads for each visualization tool. The arrows show a moment when the graph-
ics data of updated tool will be passed to the DRAW process and displayed on
the RWB.

5.2.3 Visualization of Volumetric Data

VRX mainly utilizes the idea of interactive exploration in VEs. The set of virtual
visualization/exploration tools has been chosen carefully with a special atten-
tion to the level of interactivity of each tool.

142

5.2. VRX: Virtual Reality eXplorer

In regular visualization applications, cutting planes (or data slicers) are often
used to visualize slices of volumetric data. A data slicer probes the values in the
data space at the intersection of the slicing plane and the volume. By mapping
the data values to colored pixels in a texture, these values can be visualized in
detail, see Figure 5.21. The number of sample points in the slicing plane can be
specified by the user.

Figure 5.21: Data slicer is used to probe the volumetric data in a slicing plane.

We have developed and extended the concept of a generic data slicing tool.
Together with other object-oriented classes of VRX we have designed a master
class of a generic data slicer. Several data-specific slicers have been derived from
this master class. These tools make data requests via abstract data objects. This
way we could easily implement data slicers for scalar and vector data.

The functionality of the data slicer depends on the data space object and the
slicing object. As described earlier, the data space object is a box-shaped vir-
tual object containing a multi-dimensional dataset. The slicer object is a square,
plane virtual object that defines the position and orientation of the slicing plane.

As a natural form of interaction we have designed and built the Plexipad,
see Figure 5.2. The slicer object can be attached to the plane of the Plexipad. The
sub-scene graph of SlicerDCS is then attached to a parent PlexipadDCS, which
is updated with the tracker information. This way the slicer object can be freely
moved through the virtual environment. The two-handed interaction scenarios
with the Plexipad are described in detail in Section 5.1. The slicer object can
also be attached to any other DCS of the scene. It is practical to attach the slicer
objects under the SystemDCS of the data space. When the data space is manip-
ulated (translated, rotated or zoomed), then the child objects are transformed in
the same way, see Figure 5.23. It is also possible not to connect the slicerDCS
with the SystemDCS. Then the slicer has to be a child object of the application
world DCS (App-WorldDCS), which is also useful.

143

Chapter 5. Exploration and Data Visualization in VR

The slicer object contains a 2D grid of probing points. The grid dimensions
are user-defined. A common value is 128x128 points for scalar data slicers and
64x64 points for vector data slicers. Each of the grid points has to be trans-
formed from the local coordinate system of the slicer (SlicerDCS) to the coor-
dinate system of the data space. This is implemented via homogeneous matrix
transformations. The data values can be obtained via the data object.

Texture Slicer

The mapping of scalar data into a color space seems relatively straightforward.
The colors on the slicer object visualize the data values at the intersection with
the data volume (Figure 5.21). For this purpose a regular 2D texture is used
(i.e. texture slicer). The hardware acceleration of textures provided by the IR2
graphics board in the Onyx2 allows the use of high resolutions (e.g. 512*512)
without much loss of performance. The update of the values in the texture how-
ever does require matrix calculations and tri-linear interpolation. Therefore it is
the main bottleneck of this tool.

Figure 5.22: VRX - exploration of medical CT scan: adaptive resolution of the
texture slicer; lower resolution during slicer manipulation (left) and high reso-
lution when the slicer is not moving (right); the texture slicer is attached under
the SystemDCS and is constrained to move in Z-direction only.

To reduce the influence of this bottleneck, an adaptive/variable grid resolu-
tion of the slicer can be used (adaptive slicer resolution). There are three levels:
high-res, mid-res and low-res (i.e. 128x128, 64x64, 16x16). When the user is ma-
nipulating the data slicer, a lower resolution is used. When the slicer remains
still, the resolution is automatically set to high-res, see Figure 5.22.

144

5.2. VRX: Virtual Reality eXplorer

Together with the adaptive approach the number of texture updates is kept
to a minimum. For every frame update, it is determined whether the values in
the texture have to be updated (i.e. the dirty bit of the slicer is set):

- the slicer has been manipulated relative to the data space
- the data space has been manipulated (slicer doesn’t move with the data space)
- the data values in the data space have been updated (e.g. new time step)
- the color mapper has been manipulated

If the slicer is ”dirty”, it is tested whether the slicer has an intersection with
the data space object. In the case it has, the content of the slicer must be updated.
Therefore data values at the probing points inside of the volume are calculated.

Figure 5.23: VRX - exploration of medical CT scan: iso-surface clipping tool
combined with a data slicer. The wire-frame of the geometry remaining after
clipping (left) can be switched off eventually (right).

First, for every probing point, the position in the data space is determined.
As the slicer and the data space each use their own coordinate systems, the
coordinate of each point is mapped to the coordinate system of the data space
using matrix calculations. If the point is outside the data space, the texture point
(texel) is set to a standard color and transparency. If the point is inside the data
space, the data value of the requested dataset is determined. This value is cal-
culated using a tri-linear interpolation in the grid of data values. Using a color
mapper, which is described later in this section, the probed values are converted
to color values of the textured quad.

A promising approach to data slicing is using OpenGL hardware accelerated
3D textures. A brief investigation of this approach was reported in [de Haan,
2002]. It might be used to achieve higher performance on high resolution texture
slicers. However, other slicers (such as the landscape slicer and the vector slicer)

145

Chapter 5. Exploration and Data Visualization in VR

do not use texture mapping but do use the described probing and interpolation.
Thus, the texture slicer, as described here, does not use the 3D textures.

Landscape Slicer

Landscape slicer is a type of slicer which uses a mesh geometry instead of a
texture, see Figure 5.24. The mesh consists of an array of triangle strips, a geo-
metric primitive that can be rendered at maximum performance. The probing
algorithm is identical to that used in the Texture slicer.

Figure 5.24: MD simulation of β-alumina electrolyte: the landscape slicer (reso-
lution: 64x64) shows an electric field. A grid indicates the reference plane.

Data values at the vertices of the mesh are mapped into both height and
color. The differences in the height of the vertices results in a ”landscape-like”
mesh, usually called a height field. The height values of the mesh emphasize
the variations and relations in the data. Although the use of height might seem
advantageous, the user should be made aware that the height is a pure virtual
information enhancement. In case of the texture slicer, the color value informa-
tion spatially coincides with the probed location. In case of the landscape slicer
however, the visible landscape mesh cuts through points in the data space which
are not the probed locations. The data values are probed in the zero height of
the slicing plane and not at different heights in the landscape. We have noticed
that users wrongly interpreted the visualized information. To prevent this, we
have used grid lines to indicate the position and orientation of the probing plane
(Figure 5.24). The rendering performance differences compared to the fast tex-
ture slicer were only noticeable when using higher resolutions (e.g. 256*256 and
above) or when using many landscape slicers. An advantage of the landscape
slicer, compared to the texture slicer, is that the human eye is better in detecting
differences in shapes than in colors.

146

5.2. VRX: Virtual Reality eXplorer

Vector Slicer

Another variation of the data slicer is the vector slicer (similar techniques are
called arrow-plot or hedgehog), see Figure 5.25. Just as the texture slicer and the
landscape slicer are used to visualize scalar data sources, the vector slicer can be
used for the visualization of vector data sources.

Figure 5.25: Visualization of cloud dataset: the Plexipad has attached two clip-
ping planes and controls the vector data slicer. Velocity vectors (u, v, w) are vi-
sualized in a given slice. Vertical velocity w is mapped onto the vector’s color.

Instead of using multiple polygons per object, such as pyramids or arrow
shapes, we use simple thin lines (3 pixels wide) to visualize both direction and
magnitude of the vector data. To indicate the difference between the start point
and end point of a vector line, the end point is made semi-transparent. Because
of this transparency (in combination with the multi-sampling and anti-aliasing
techniques), the line has the appearance of a very thin pointed needle or arrow.
The start point of each line is on a grid point on the surface of the slicer. Each
probed vector is transformed from the data space coordinate system to the slicer
coordinate system.

Moreover, the global scaling factor of all vectors (the length of the arrows)
can be adjusted by the user. The endpoint of the line is obtained by summing
the corrected vector and the start point coordinates. The result is that the dis-
played lines are always aligned with the direction of the vector field, and are
not influenced by the orientation of the slicer. (Vector lines are placed in the
SlicerDCS and not in the SystemDCS of the data space.) The scaling factor of
the lines, can be interactively adjusted by using a slider widget attached to the
slicer, see Figures 5.25 and 5.26.

147

Chapter 5. Exploration and Data Visualization in VR

Color mapping can be used to color the generated lines. The length of the
vector can be used as an input for a color mapper in order to emphasize the
vector magnitude with color. Another option is to use a different data value
for the coloring of the vectors. In this way color is used to visualize another
property. An example of this is the flow velocity in the case study of cumulus
clouds. In this special case, researchers were interested in the direction of the
flow and especially in the vertical velocity. Only the vertical component of the
velocity vector was used for the color mapping. The spatial direction in the
data could be determined from the arrows, while the color value emphasized
whether the flow is directed upwards or downwards, see Figure 5.25.

The user can manipulate the slicer by ray-casting or directly with the stylus.
Because the slicer object is very thin, the selection and manipulation using nor-
mal direct selection (positioning the stylus inside the object) would be almost
impossible. For this purpose, each slicer is equipped with a control element, a
box in the lower left corner. To enhance the interactive and natural use of the
slicer, it can be directly controlled by the Plexipad. We like to call this a direct
data slicer, see Figures 5.25 and 5.26.

The user can use the slicer to quickly scan the entire data for important
phenomena. Besides this natural placement of the slicer plane, this technique
enables other two-handed interaction schemes, as described in Section 5.1. In
addition, related tools such as the color mapper or the previously mentioned
slider widget can be attached directly to the slicer tool (Figure 5.25). These at-
tachments allow a direct control of the behaviour of the slicer without a context
switch. The user does not have to look away from the data slicer to interact with
the widgets, but has the widget directly within reach.

Point Cloud

Although a data slicers can provide a detailed impression of slices through the
volumetric data, users sometimes demand a complete 3D view of the volumetric
data. To facilitate this, we can use direct volume visualization techniques as
described below. Inspired by the use of pixels in a particle visualization test, we
have tested the application of points to create a simple but fast display of volume
information. This and similar techniques are called point cloud, galaxy viewer
or point splatting [Swan et al., 1997]. The main advantages of this technique are
that its generation and updates are fast, and the density of the point cloud can
have a direct relation to a physical property (e.g. density or concentration).

The main problem with this technique are the ”gaps” in the visualization,
caused by the lack of connectivity between points. To achieve a ”filled” view
on the data, the individual points must overlap slightly (Figure 5.26 left). This
can be achieved by either enlarging the individual pixels (until the maximum
pixel size of a point in OpenGL is reached), increasing the number of points

148

5.2. VRX: Virtual Reality eXplorer

or shrinking the region to be visualized. Thus, the point placement algorithm
and/or the hardware pixel fill rate will limit both the performance and use of
this solution.

Figure 5.26: VRX - Point cloud visualization: in the left image the points overlap,
resulting in an acceptable rendering quality. In the right image, the individual
points are distinguishable.

Initially, we used colored and transparent points simply positioned at all grid
points of the volumetric data. By enlarging the point size or shrinking the data
space, the points can fill the entire space. To reduce the moiré patterns caused
by the structured grid, the points can be drawn with a random offset from the
original grid point (jittering). The colors of the points are determined by the
color mapper based on their data value in the grid.

As an improvement, instead of placing points on every grid point of the vol-
ume data, points were only drawn if the respective data value would fall within
the color mapper range (see next section). In this way, the number of points
could be reduced substantially. By adjusting the color mapper, only the data
of interest could be visualized. Especially when the points in the data slightly
overlap and the color mapper is well calibrated, this technique provided a fast
visualization of the volumetric data.

This technique would require pre-processing of the dataset in order to dis-
tribute and resize individual points in space dynamically. In this way, the most

149

Chapter 5. Exploration and Data Visualization in VR

effective positions in space are used to ensure a maximum visible quality. This
process would be time-critical, taking into account the requested frame rate to
calculate the maximum amount of points allowed.

Color Mapping

In most visualization tools we use color to visualize data values. We have cre-
ated a color mapper class to provide an easy-to-use coloring scheme for the vi-
sualization tools. We chose to use a simple one dimensional control of the color
mapping, as it is very difficult for users to work with the three dimensional con-
trol of colors in for example the HSV cone or RGB cube. During initialization of
the VE, several color mapper objects can be created. For the creation of a color
mapper object, the user must specify a data source on which the object works. In
addition, the user indicates the desired color spectrum and mapping function.
After this initialization, various visualization tools can use the provided color
mapping function: given a data value, it will return an RGB color value.

Figure 5.27: VRX color mapper widgets: the initial configurations of four differ-
ent mapping functions (left) and the adjusted configurations (right); from top
to bottom: rainbow spectrum (a), periodic rainbow (b), gray scale spectrum (c),
periodic gray scale (d)

To interact with the color mapper object and its color range, a color mapper
widget can be connected (Figure 5.27). This widget shows the color legend of
the connected color mapper. It also allows the user to interact with the mapping
domain of the color mapper. In our implementation, two sliders are used to
define the local minimum and maximum data value limits for which a color
value is returned. A third slider is used to define the distribution of the color
spectrum over the data values, see Figure 5.28

150

5.2. VRX: Virtual Reality eXplorer

During initialization, the minimum and maximum data values of the con-
nected data source are read. These values serve as absolute limits of the color
mapper. After initialization, local limits can be (re)set to specify the mapping
domain in more detail. These limits are used as a reference for the input value
and define the mapping domain. If a color request is issued, the relative position
of the input value in the mapping domain is calculated. This relative position
[0..1] is used to determine the resulting color value from the color range.

We use color mapping functions for the definition of the color range. An-
other approach is to use a pre-calculated color lookup table, instead of calculat-
ing the color value many times. For a given input value [0..1], the color mapping
functions return a 24 bit RGB color value, 8 bits per color channel. We have de-
fined several color mapping functions, of which the linearized rainbow function
is the most frequently used. This function uses an increase in the hue of the HSV
color space to generate a comprehensive color range from blue to red via green
and yellow. Besides these linear functions, we have also used sinusoidal or tri-
angular color mapping functions to create a periodic color spectrum.

Figure 5.28: The graphs indicate the mapping (transfer) function of the rainbow
spectrum (left) and the periodic gray-scale color mapper (right).

These periodic color functions can be used to reveal gradient information
in the data. The use of complex color spectra can enhance the visualization in
special cases. For example, the use of four different color mapping functions is
shown on the cumulus cloud data in Section 6.3 in Figure 6.51, and reproduced
also in the Color Section.

For each color mapper, a horizontal and vertical data slicer is used. It can be seen
that in the vertical slices, the periodic color mappers reveal far more information
about the gradients in the dataset, compared to the direct rainbow or gray-scale
color mapping. However, disadvantage of periodic mapping is that several data
values correspond with the same color.

151

Chapter 5. Exploration and Data Visualization in VR

5.2.4 Advanced Visualization Techniques

Although we have implemented some visualization tools of our own, we have
also put effort into integrating existing visualization systems in our applica-
tions. The advantage of this integration is that we could use previous work
of researchers and developers around the world. In some cases, a disadvantage
could be a reduced performance for interactive use in VR.

Visualization Toolkit (VTK)

VTK [Schroeder et al., 1999] is an open source, freely available software system
for 3D computer graphics, image processing, and visualization. It supports a
variety of visualization algorithms including scalar, vector, tensor, texture, and
volumetric methods; and advanced modeling techniques such as polygon re-
duction, mesh smoothing, cutting, contouring, and triangulation. VTK consists
of an object oriented C++ class library with support for other (interpreted) lan-
guages such as Tcl/Tk, Java, and Python.

Figure 5.29: Conversion of graphical objects from VTK to Performer

The VTK uses a visualization pipeline architecture. Creating visualization
applications is done by constructing a data pipeline and creating graphics ob-
jects. Data source modules are connected to filtering and data mapping mod-
ules. Many different types of sources, filters, and mappers are available, de-
pending on the type of data and the desired functionality. Typically, the graph-
ics objects (vtkActors) are connected with mappers, which deliver graphic ge-
ometries, and are rendered on the screen. Instead of using a standard OpenGL
render window, we used a converter to graphics objects for our Performer appli-
cations. This converter function, vtkActorToPf [Web-VTK-to-Perf], converts the
vtkActors to a Performer node (pfGeode) in the scene graph, see Figure 5.29.

152

5.2. VRX: Virtual Reality eXplorer

Among other visualization techniques, we have used VTK for generation of
iso-surfaces, see Figure 5.30. The data sources of the visualization application
are read by the VTK pipeline. We follow the VTK data format standard to avoid
time consuming conversion of data. The vertices and polygons are generated
by the Marching Cubes algorithm of VTK. These surfaces can be smoothed and
decimated or simplified. After processing of the VTK pipeline, the geometry
and its properties are transferred to a pfGeode and placed directly into the scene
graph under the data space object (SystemDCS).

Figure 5.30: VRX visualization of the tornado dataset: iso-surfaces (vertical ve-
locity) and streamlines starting from a plane-source; lower iso-level (left) and
iso-surface of high vertical velocity (right).

Just like the other VRX visualization tools, the VTK pipeline is executed as a
separate thread process in the COMPUTE stage. Although this relieves the time-
critical main loop, the latency of the iso-surface generation can still be problem-
atic. Especially when using large volumetric datasets the geometry generation
may take more than 1000 milliseconds. In interactive situations, such as when
the user adapts the iso-value of the iso-surface, the latency in the visual feedback
hinders the execution of interactive exploration tasks. More about application
of these techniques can be found in the Case Studies, Section 6.3.

A very useful visualization technique for vector data fields is the streamline
tool. Using VTK we have implemented an interactive streamline tool for VR,
see Figures 5.30 and 5.31.

Similar to data slicers, we use a slicer object to define a slicing plane. The
streamlines are generated from a plane or line source that is attached to a data
slicer object. Integration of streamlines is also rather time-consuming and there-
fore we use here also the adaptive resolution of the streamline sources, see Fig-
ure 5.32.

153

Chapter 5. Exploration and Data Visualization in VR

Figure 5.31: The number of streamlines generated from the plane source can be
interactively chosen via the plane-resolution slider widget.

During manipulation with the streamline plane-source we use a lower res-
olution: 2x2 instead of 5x5. In the lower resolution we use twice as long inte-
gration time-step for calculation of the streamlines. For better usability of this
technique, the plane-source of the streamlines is constrained to move only in the
vertical direction.

Figure 5.32: Adaptive resolution of the streamline plane-source; lower resolu-
tion during manipulation (right) and higher resolution when not moving (left)

In the same fashion as with the data slicers, the streamline tool can also be
connected to the Plexipad, see Figure 5.33. Moreover, to see the interior of the
clouds we have developed a specialized geometry clipping tool, which can be
connected to any data slicer or to the streamline tool. We used these techniques
on the cumulus cloud visualization; see Section 6.3 for more details of these
techniques.

154

5.2. VRX: Virtual Reality eXplorer

Figure 5.33: VRX visualization of the cloud dataset: a line source of streamlines
is attached to the Plexipad.

5.2.5 VRX: Summary and Discussion

In the concept of the VRX toolkit the virtual environment contains the data space
object, which visually represents a volume containing multi-dimensional data.
This object can be freely manipulated (translated, rotated, scaled/zoomed) to
get a proper view on the data. In case of a time-dependent dataset, the VE
also contains time controller object for navigation through the time-steps. We
have developed a toolbox for interaction and exploratory visualization. The
user can take any tool from the VRX toolbox and apply it directly to the data
space object in the VE on the Workbench. Also, it must be specified on which
scalar or vector quantity of the multi-dimensional data the tool should work.
The tool is activated when it is inserted into the data space.

The VRX toolbox contains tools such as: zoom tool, mini system tool, point
probe (Click-iso-tool), line probe (LOI), ROI, plane probe (scalar, vector and
landscape slicers), point-cloud tool, iso-surface tool, geometry-clipping tool,
and streamline plane-source / line-source generator. The visualization tools are
supported by specially designed color mappers and widgets for controlling of
the parameters of the tools. The design and development of the tools was driven
by user demands in our applications. Certainly, the toolbox is not yet complete,
and we could easily define a long list additional tools in our toolbox. In this
sense, the VRX toolkit benefits from the integration with VTK, which can offer
a large number of tools needed for data visualization.

There is one problem associated with using universal visualization libraries
in VR, which in practice often needs re-implementation or at least adaptation
of the visualization technique for a virtual environment. Visualization in VR
should be interactive. To wait several seconds for results of a given visualization

155

Chapter 5. Exploration and Data Visualization in VR

technique is too much for many applications. Visualization tools that are used
in VEs should not lower the interactive response of the VE. When the generation
of visualization results cannot be completed within 200 ms, the user should get
a visual or acoustic feedback about the processing.

Indeed, the visualization computations must be de-coupled from the main
loop of the VR application, so that fluent navigation and interaction with the VE
is preserved. We solve this problem with a separate COMPUTE process, from
which a threaded sub-process starts for each visualization tool. For this purpose
there is only one CPU left on the 4-processor SGI Onyx2; the other three are
used for APP, CULL, DRAW processes. This way the VE will keep its fluent
interactive response. Only the user has to wait for completing the visualization
computations and updating the geometry in the VE.

To accelerate the visualization tools we could either use parallel comput-
ing and subdivide the visualization data domain over several CPUs, or to use
lower resolution of the data or the tools. Due to the limited local processing re-
sources (only one CPU left), we did not implement the first solution in VRX. A
better possibility would be to perform distributed visualization on the available
HPαC supercomputers. But we leave this option for future work. For example,
we see interactive and parallel generation of iso-surfaces as a great challenge.

Instead of parallelization, we have implemented adaptive resolution schemes
for our visualization techniques. And this approach proved successful. The user
is exploring the data space with any slicer tool, which may be attached to the
Plexipad or to the data space object. When the tool is manipulated (translated,
rotated) by the user, a low resolution of the tool is used. When the tool is re-
leased or not in motion/manipulation, a higher resolution is used. It usually
takes a moment of time before the refined visualization is updated in the VE.
This works very well with the scalar/vectors data slicers as well as with the
streamline plane-source generator. For clarity, we must repeat that this tech-
nique does not down-scale the data. The resolution of the data remains intact.

A further success of visualization tools for VR also depends on the complex-
ity of interaction and overall intuitivity of the technique. The interaction and
exploration techniques, as described in Section 5.1, are indeed part of the VRX
toolkit. Many of the tools were developed during the MolDRIVE project (Sec-
tion 6.2) and were later incorporated in VRX.

We have validated our concept of interactive exploration on various types of
data using the case studies. With VRX we could interactively visualize a large
multi-dimensional time-dependent dataset in the cumulus clouds case study,
see Section 6.3.

156

Chapter 6

Case Studies: Visualization in VR

The main goal of this research was to design a virtual environment for data vi-
sualization on the Virtual Workbench. We have developed several useful inter-
action, exploration and visualization tools for VR. Several M.Sc. students have
also participated and contributed to this research. To demonstrate and to test
the concepts of this thesis we have worked on several case studies from various
application domains. The three main case studies deal with data originating
from scientific simulations. Due to the 3D nature of the data we expect that
their visualization and exploration in a VE on the Workbench will be more ef-
fective, leading to a better insight of the simulated process, compared to the 3D
visualization on desktop workstations. As user interaction plays a key role in
using the VE, we devote ample attention to it also in our applications.

One of the early applications was the flooding risk simulation, provided by
WL|Delft Hydraulics. Our task was to develop an interactive 3D visualization
of inundation scenarios on the Virtual Workbench. The Workbench should offer
a broad overview of the flooded landscape. The user should be directly inter-
acting with the 3D map of the country, and previewing the simulated process of
flooding in case of a dike-breaking. More on this in Section 6.1. For clarity we
have to mention that this application was implemented with an early version of
the RWB Library, and the VRX toolkit did not exist yet.

Together with the Computational Physics (CP) group (Faculty of Applied Sci-
ences, TU Delft) we have worked on development of a VR system for visualiza-
tion of remotely running real-time Molecular Dynamics simulations. The contri-
bution of the CP group was building an interface around the MD simulations.
Our part of the project was to develop the visualization system and integrate
the steering environment. Together we have developed the MolDRIVE system.
More on this in Section 6.2. After the successful implementation of MolDRIVE
on the Virtual Workbench, it has recently (summer 2002) been adapted for the
CAVE.

Parallel with the MD visualization case study we have worked on the VRX
visualization toolkit, see Section 5.2. Many of the interaction, visualization and
exploration tools that were developed in the MD case study were later build in
the VRX toolkit.

157

Chapter 6. Case Studies: Visualization in VR

Another large project was the visualization of atmospheric data, originating
from cumulus cloud simulations. In this project we cooperated with the Ther-
mal and Fluids Sciences group (also from Faculty of Applied Sciences, TU Delft).
They delivered us a large multi-dimensional time-dependent dataset. From the
initial desktop visualizations of this dataset it became clear that this very com-
plex and highly turbulent data field could be more effectively studied in an in-
teractive virtual environment than on a desktop workstation. This case study
has been fully implemented with the VRX toolkit. More on this in Section 6.3.

An interesting aspect of the VR applications that we have worked on is
the different scale-level of the scientific simulations. The Molecular Dynamics
deals with simulation of atomic and molecular systems that are in the order of
10−9m (nanometers) in size, and with simulation time-step in the order of 10−15s
(femto-seconds). The Large Eddy Simulation that simulates the behaviour of cu-
mulus clouds deals with a data volume in the order of 103m (kilometers) and it
uses time-steps of several seconds. Both the microscopic and the macroscopic
types of simulations can be scaled into a suitable virtual environment, which is
displayed on the Responsive Workbench and interactively explored by the user.

Although the ”easy” scaling of virtual worlds, containing the data and their
visualization, seems to be a significant advantage of the RWB concept, the users
should be always aware of the scaling, especially during interaction with virtual
worlds that are physically-based. For example, in particle steering of atoms
in MD simulations the user can cause with ”non-careful” steering movements
un-physical states of the simulated system, and even cause the simulation to
crash. In other words, in general the user interaction does not scale linearly with
the scaling of the virtual world. Therefore users should be trained to perform
certain actions properly and safely.

These rather different case studies demonstrate the Responsive Workbench
concept for visualization of the scientific data. Moreover, the Workbench can
provide a natural environment for steering of real-time simulations. This way
the users can perform simulated ”virtual laboratory experiments”.

158

6.1. Flooding Risk Simulation and Visualization

6.1 Flooding Risk Simulation and Visualization

6.1.1 Introduction to Flooding Simulations

The Netherlands has been faced for centuries with the threat of floodings. The
water danger is not only coming from the North Sea but also from all the rivers
that have their delta in this rather flat country. People believe that the today’s
costal protection, is enough to protect this country from the sea, and that the nat-
ural disaster of 1953, when large parts of Zeeland were flooded and thousands
of people died, will be never repeated, see Figure 6.2(a).

Figure 6.1: Floodings in Holland, 17th century

The Dutch people have always fought with the nature to win dry land. They
continue their efforts of making polders from places, where formerly there was
only water. Large areas of the mainland are below the sea level. Due to such a
flat and low landscape profile, the rivers need more time to reach the sea and
naturally need more space around the river-basins. Sometimes even the water
in the lower parts does not flow in the ’right’ direction.

(a) (b)

Figure 6.2: Recent large-scale floodings in the Netherlands: Zeeland 1953(a),
Limburg 1995(b)

159

Chapter 6. Case Studies: Visualization in VR

The management of costal waters and rivers is a very complex discipline
and for the Netherlands it is of vital importance. Although complex systems of
dikes and inundation zones around the rivers were built, the potential danger of
flooding at some places of this country is still very high. Such places are mostly
around the big rivers like the Rhine, the Maas and the IJssel. In the province of
Limburg quite regularly the river Maas floods her banks, see Figure 6.2(b).

There is a great need for flooding risk simulations. We have cooperated with
WL|Delft Hydraulics [Web-DelftHydraulics]. Among other activities they also
conduct research on the flooding and inland water systems. They also develop
systems for hydrodynamic simulation and flood early warning systems.

Within this case study we were asked to develop an interactive 3D visualiza-
tion of the flooding simulation for the Responsive Workbench. This VR system
should give a broad overview of the land with pre-computed flooding scenar-
ios. The user should be able to interactively explore the effects of the flooding
and analyze the flooding risk at various locations.

6.1.2 2D Visualization of Flooding

Figure 6.3: 2D hydrodynamic flooding simulation [WL| Delft Hydraulics]

160

6.1. Flooding Risk Simulation and Visualization

We were provided with the data of DFLS simulation (Delft Flooding Sys-
tem). We were also introduced to 2D visualization that was used at WL|Delft
Hydraulics, see Figure 6.3. In this case study we have visualized flooding sce-
narios in the province of Gelderland. The area of this flooding simulation is
about 11x17 km, including towns such as Gorinchem and Tiel. It is surrounded
by a complex dike system. The rivers and canals around that form a potential
danger are: the Waal, the Lek/Nederrijn, and the Amsterdam-Rijnkanaal. Sev-
eral scenarios of dike-breaking were simulated on a 2D grid with dimensions
211x318. One grid cell has real-world dimensions of 50 meters.

The hydrodynamic simulation is based on a 3D elevation model of the land-
scape, the water saturation in the soil, water levels and water flow in the rivers.
As an initial condition a break-point in a dike must be specified. The flooding
simulation generates new water levels at grid points per time-step. At the be-
ginning the flooding data file contains the initial water level at each grid point.
For compression of this data file, only changes of water levels per time-step are
stored into data file, see the following fragment of the data:

4321 0 0 / / time−step number , ”0 0 ” i d e n t i f i e s a new time−step
187 20 8 / / x , y , z−increment of water l e v e l
264198 7 / / a l l 3− d ig i t in t egers (except x or time−step : 4 d i g i t s)
267200 7

4322 0 0
262193 7
267200 8

4323 0 0
187 20 7
256181 7
138197 7

In early times of this project we were provided with the water level files in
ASCII with 9 different water levels (0..8). In the original 2D visualization the
height of the water was visualized with 8 different colors. Although it seemed
enough for 2D visualization, at an early stage of the project we have very en-
countered problems with inconsistency of the absolute water levels and the ab-
solute height of the terrain. The water geometries simply did not fit on the 3D
landscape. At that time the water levels were given relative to the height of the
terrain.

Therefore, we requested and obtained binary files with floating-point levels
in centimeters and defined in absolute coordinates. Then both geometries finally
matched with each other.

6.1.3 Prototype of 3D Visualization

Together with the water level data file(s) we received a 3D elevation field, from
which the landscape could be reconstructed. We have created a prototype 3D

161

Chapter 6. Case Studies: Visualization in VR

visualization in AVS 5.0. Several new AVS visualization modules were imple-
mented for generation of the 3D landscape from the height field data and for
visualization and animation of the flooding data (water levels), see Figure 6.4.

Figure 6.4: Visualization network of the prototype 3D visualization of flooding
data in AVS 5.0

We have used the standard AVS module field-to-mesh to generate the 3D ge-
ometry of the water levels and to generate the 3D landscape from the height
field, see Figure 6.5. Using a simple animation scheme, we could preview the
process of flooding in 3D. Unfortunately, the incremental compression scheme
for the water level data allowed only sequential reading of the data.

Figure 6.5: Prototype 3D visualization of flooding data in AVS 5.0

162

6.1. Flooding Risk Simulation and Visualization

We have implemented random access to any time-step of the flooding sim-
ulation, but it was rather slow because a switch to another time-step means to
re-read the whole water level file from the beginning to the chosen time-step.
For the VR version of the flooding visualization we have used therefore sepa-
rated data files for each time-step, which was much more suitable for a random
access.

6.1.4 3D Visualization in VR

From the prototype visualization we have learned that online generation and vi-
sualization of complex landscape and water geometries is not a good approach
to VR visualization. Generation of the full 3D mesh takes too much time and
cannot be performed interactively from the VE. One solution to this is to pre-
process the whole flooding simulation and generate geometries for each time-
step.

Landscape Geometry Visualization

Another problem of visualization in VR is the complexity of the geometry that
has to be rendered. The available OpenGL hardware of the Onyx2 (Infinite Re-
ality 2) can render practically about 5 millions of triangles per second, which
leaves us about 100-150 thousand triangles in the whole scene for maintaining
screen refresh rate of 2x25Hz.

Figure 6.6: Original mesh (211x338) of the 3D elevation model

The mesh 211x318 has 142.636 triangles (Figure 6.6), which saturates the ren-
dering capacity. Moreover, when we would like to render the water levels also
as a 3D mesh then the drop in the refresh rate (<<10Hz) would cause distortion
of the immersion in the virtual environment.

163

Chapter 6. Case Studies: Visualization in VR

Figure 6.7: Decimated landscape model was colorized with a high-resolution
texture.

In our approach we have simplified the complex 3D mesh using Qslim [Gar-
land, 1999] to 30.000 triangles. Due to this simplification fine details of the land-
scape disappeared. To partially restore the detailed features of the landscape we
have used the full-resolution texture (211x338 resized for OpenGL into 512x512)
for the decimated landscape geometry, see Figure 6.7. The rendering frame-rate
is much faster than 50Hz and it leaves rendering resources for other graphical
objects.

Water-level Geometry Visualization

The differences of a few decimeters in the height of the water are practically
invisible when observing the landscape of 11x17km on the Virtual Workbench.
The water surface can be seen as a plane and it can be approximated with a
textured rectangle (quad) instead of a complex geometry.

(a) (b)

Figure 6.8: Water-levels are visualized with a textured rectangle: fully-saturated
rivers (a), the dike is broken and the land is being flooded (b).

164

6.1. Flooding Risk Simulation and Visualization

The fine differences in water levels can be much more efficiently visualized
by color in the texture. The whole flooding scenario has been pre-processed and
texture files generated for each time-step.

Visualization Layers

Additional textured layers can be used for topographical and geographical in-
formation, see Figure 6.9. This way we can emphasize important and strategic
infrastructure that are important for flooding risk analysis, like cities, roads,
highways, railroads, dikes, power plants, etc.

(a)

(b)

Figure 6.9: Visualization layers: decimated and textured landscape geometry
with a topographical layer (a) and the water layer (b).

165

Chapter 6. Case Studies: Visualization in VR

Interactive Visualization on the Responsive Workbench

On the Responsive Workbench the user has a good overview of the area that
is being studied for the flooding risk. Several scenarios with different places,
where the dike could break, were simulated and explored in the virtual envi-
ronment. The user can choose one of the simulated scenarios and interactively
play back the flooding, see Figure 6.10. In the worst-case scenario the whole
area (11x17 km) can be inundated in 4 days.

Figure 6.10: Interactive visualization on the Responsive Workbench: the user
can play back in 3D the flooding simulation.

6.1.5 Flooding Visualization: Summary and Discussion

We worked on the flooding visualization in the first year of this PhD research
when we were intensively developing the RWB Library & Simulator. Although
the results of this case study are not as important as the results of the other two
case studies, we mention it mainly as our introductory VR application. At that
time we didn’t have the VRX toolkit yet and we searched inspiration in visual-
ization packages such as AVS 5.0, AVS Express, and VTK. In fact, we developed
a stand-alone visualization system for the flooding data on the RWB. We have
faced traditional problems of VR such as: generating of the VR content, reduc-
tion of the complexity of the scene (polygon decimation and using textures), and
user interaction in the VE. This case study showed that the Responsive Work-
bench can be efficiently employed for visualization of simulations that can be
projected on top of the geographical data and the landscape geometry, such as
the flooding risk simulations.

As future work we should mention the interactive selection of the dike break-
ing points and other flooding conditions, but this needs real-time flooding sim-
ulation or at least that the simulation delivers the data within a few minutes.
Another improvement could be a hierarchical representation of the landscape
that would contain roads and cities and would facilitate local detailed views on
the flooded areas.

166

6.2. Interactive Visualization of Molecular Dynamics

6.2 Interactive Visualization of Molecular Dynamics

This section describes in detail the MolDRIVE visualization and steering system
for Molecular Dynamics in VR and its applications. We have already given a
brief overview of this system in Section 4.3, mainly describing the simulation
steering aspects and the particle steering tools.

We have worked together with several M.Sc. students on this case study;
it was presented in two M.Sc. theses [van Hees & den Hertog, 2002; de Haan,
2002]. Van Hees and den Hertog worked mainly on the interface between the
MD simulations and the Workbench VE. De Haan worked on the visualization
and interaction techniques, and the design of the VRX visualization environ-
ment on the Virtual Workbench.

In the next section we will give a brief introduction to Molecular Dynamics,
describing our motivation for using VR in this project.

6.2.1 Introduction to Molecular Dynamics

Molecular Dynamics (MD) is a technique used to simulate the properties of com-
plex materials and molecular structures. MD helps to gain insight in the mate-
rial properties and the inter-molecular interactions. This includes finding and
understanding spatial positioning and interactions of atoms and molecules, but
also properties of materials such as molecular structure, conduction and diffu-
sion. To be able to describe or predict these properties we try to understand the
processes involved.

The physical behaviour of individual atoms in a material can typically be de-
scribed by Newton’s equations of motion. These equations express the behavior
of atoms in time, based on their position and momentum, and the influence of
atomic forces, caused by the interaction with other atoms. The purpose of any
MD simulation program is to numerically solve the equations for all individual
particles in the computational system. The particle properties such as position
and momentum are obtained by numerical integrations of these equations using
discrete time steps. To be able to correctly sample atomic motions, the length of
the time step is chosen sufficiently small, mostly in the order of 10−15s (femto-
second). To observe simulations with long time characteristics (in the order of
10−9s), many time steps are required.

The initial problem of MD is to create an atomic/molecular model of the
material. The atoms or molecules are represented as individual objects or par-
ticles, each with its position in space. The initial MD model configuration can
be constructed from physical measurements such as NMR (Nuclear Magnetic
Resonance) or by using MD modeling programs.

The constructed model is used as the initial configuration in the MD simu-
lation program. Usually, the simulations run for thousands of time steps while
intermediate results are written to hard disk in so-called trajectory files.

167

Chapter 6. Case Studies: Visualization in VR

Figure 6.11: Molecular Dynamics example [Image source: Web-VMD]

Typically, MD simulations can take in the order of hours to several months or
even years, depending on the complexity of the model, the available computa-
tional power and naturally the number of time steps. An example of a simulated
molecular structure is shown in Figure 6.11.

To get an overview of the behaviour of the particles or a specific material
property in the simulation, these trajectory files are usually analyzed afterwards
(off-line). The interaction with the simulation is mostly done in advance of the
simulation run by adjusting input parameters such as the initial atomic config-
uration or the temperature. The influence of these parameters on the simulation
is analyzed after the simulation is completed. Interesting behaviour and global
parameters such as diffusion and particle flow can be extracted from these files
and visualized in a regular graph.

In addition, the atomic configuration in each of the static trajectory files can
be visualized using existing software packages and techniques for the visualiza-
tion of atomic and molecular data (e.g. VMD [Humphrey et al., 1996], RASMOL
[Sayle & Milner-White, 1995]).

In Figure 6.12, several basic graphical MD representations are shown. Each
of the representations provides a different level-of-detail view on the (complex)
molecular structure. By using suitable visualization methods, scientists can
study their theories and predictions on material properties, using the simula-
tion for verification.

168

6.2. Interactive Visualization of Molecular Dynamics

Figure 6.12: Basic graphical MD representations, showing Bacteriorhodopsin
biomolecules with 3,700 atoms [Image source: Web-VMD]

169

Chapter 6. Case Studies: Visualization in VR

The MD researchers need to simulate larger molecular structures, and to ana-
lyze slow processes on larger time scales. The use of larger, more realistic atomic
models of a material in simulation also allows more reliable and accurate mea-
surements of the material’s properties. For these reasons, the goal of an MD
application is to simulate as many particles as possible as fast as possible, which
requires a significant amount of computational power. Several approaches are
used to speed up the simulations.

One approach is to reduce the amount of complex calculations by adapting the
actual algorithm, which involves physical simplification while a certain accu-
racy is attained. An example is the PPPM method [Beckers, 1999], where the
more complex force calculations are performed only on particles that are within
a certain distance (Particle-Particle interaction within cut-off range), while the in-
fluence from more distant particles is calculated from a mesh (Particle-Mesh in-
teraction on a long range).

The software approach is to optimize the compilation and execution of the
computer program. The hardware approach is to simply increase the speed and
performance of the CPUs that perform the numerical calculation.

Another trend is to use distributed computing, dividing the computational
tasks over several processors or computers (simulation nodes) and allowing
parallel execution of the simulation program. Today’s powerful MD programs
(such as i.e. NAMD [Web-MD-namd], Gromacs [Web-MD-gromacs], DEMMPSI
[Web-MD-demmpsi], etc.) support distributed and parallel computing.

Figure 6.13: The (spatial) domain decomposition of MD simulation

Two decomposition methods are used with MD simulations. Particle decom-
position assigns unique particles to processors and the particles remain with the
assigned processor throughout the whole simulation.

170

6.2. Interactive Visualization of Molecular Dynamics

Figure 6.13 shows a schematic overview of the domain decomposition. In this
technique the spatial domain is divided over the available simulation nodes.
Each of the nodes simulates behaviour of the particles that fall within the do-
main. For a proper simulation of the particle behaviour at the domain bound-
aries it is necessary to simulate interactions between particles in the neighboring
domains. Also it is important to support moving particles from one domain (one
CPU) to other domain (other CPU).

The development of efficient numerical algorithms and realistic physical
models have made Molecular Dynamics a well established research tool, which
is now widely used in (bio-) chemistry, solid state physics, materials science and
many other areas.

In this case study we want to demonstrate that the Virtual Workbench can offer
a better visualization environment with a more effective interaction interface
for displaying and analyzing of the complex MD structures compared to the
conventional desktop systems.

6.2.2 Introduction to the MolDRIVE Project

The growing interest in steering capabilities in MD simulations has resulted in
the development of several systems such as Steered Molecular Dynamics (SMD)
[Leech et al., 1996], and Interactive Molecular Dynamics (IMD) [Stone et al.,
2001]. These systems are based on NAMD [Web-MD-namd] simulation soft-
ware and VMD [Humphrey et al., 1996] visualization software, and offer both
(desktop and semi-VR) visualization and steering of atoms and molecules. We
decided not to use these software packages for several reasons. First, our col-
leagues from the CP group were not using NAMD software. They have con-
cluded [Beckers, 1999] that for the problems, they were studying, DEMMPSI
and Gromacs were better. We did some experiments with VMD and we decided
to build a more intuitive visualization system, which fully exploits the advan-
tages of the VEs.

The results of the simulation parameters on the behaviour of the particles are
commonly analyzed after the simulation has been completed. The off-line inter-
action with the simulation is useful for the analysis of long-term behaviour and
global properties of the simulated phenomenon. Current trends in MD stud-
ies show a growing importance in the interactive steering capabilities on a small
time-scale, for example in protein design, in molecular docking, and in the study
of energy configurations. In this project we want to enable this interactive study
of particle behaviour and material properties. This requires that we can visual-
ize and steer running real-time simulations.

171

Chapter 6. Case Studies: Visualization in VR

An Early Approach: Vrsim

In 2001, Vrsim [Garvic, 2001], a prototype VR visualization of real-time MD
simulations on the Virtual Workbench, was developed at the Computational
Physics group at TU Delft. Although this solution has some design flaws, the
results of controlling a real-time simulation in a VE on the RWB were promising.
Our goal was to design a new approach, exploiting the advantages of VR and
MD techniques to the fullest extent.

Figure 6.14: Vrsim on the Virtual Workbench

Vrsim allowed users to view a running MD simulation in a virtual environ-
ment on the Responsive Workbench, see Figure 6.14. A simple approach to steer
the simulation was also implemented.

The Vrsim application consists of three software components: the simulation
component, the visualization component and the databroker, see Figure 6.15.

Figure 6.15: The Vrsim system overview

The whole system, including the simulation, was designed to run on an SGI
Onyx2. The simulation component used DEMMPSI MD package [Web-MD-
demmpsi]. The databroker controlled the communication and the data-flow be-
tween the simulation and the visualization. The visualization component pro-
vided an interactive view of the simulation data on the Virtual Workbench.

172

6.2. Interactive Visualization of Molecular Dynamics

Vrsim allowed real-time visualization of MD simulations on the RWB of par-
ticle systems up to 700 particles. Larger particle systems result in a slow scene
update rate of the virtual environment, severely disturbing the VR experience
of the user. The DEMMPSI simulation was marked as the main bottleneck of
the system, slowing down the entire application. Vrsim was not implemented
using RWB Library and Simulator, had very simple VE with limited user inter-
action, and the simulation module with the databroker were constantly causing
overload of the visualization server. Further, Vrsim was not very stable. Among
other decisive arguments of this project the following requirements became our
motivation for the design of a new system:

Improvement of simulation and communication: the development of a dis-
tributed visualization and steering environment; the simulation should run on
parallel supercomputers and communicate with the visualization computer via
a network.

Improvement of visualization: new and improved visualization and inter-
action techniques should be developed to provide the user with a more effective
visualization and steering environment.

More detailed analysis of Vrsim and motivation to implement a new system
can be found in [van Hees & den Hertog, 2002; de Haan, 2002].

Used MD Simulation Programs and Available Supercomputers

In the MolDRIVE project we have chosen to work with the following MD simu-
lation packages:

• DEMMPSI: MD software package [Web-MD-demmpsi], internally devel-
oped at the Computational Physics group, with actual research applica-
tions on solid state electrolyte materials. Furthermore, it is reasonably fast
and allows the use of parallel computing using MPI (Message Passing In-
terface) libraries.

• Gromacs: MD software package [Web-MD-gromacs], primarily designed
for biochemical molecules like proteins, lipids and DNA. This software is
also very fast, widely used and the code is freely available and well doc-
umented. For parallel computing, traditionally PVM (Parallel Virtual Ma-
chine) is used. Optionally, MPI can be also implemented within the Gro-
macs code.

In this project we used some of the supercomputers (Figure 6.16) available at the
High Performance Applied Computing Center (HPαC) at TU Delft:

• The Cray T3E consists of 128 RISC processors DEC Alpha 21164, each with
128 MB of RAM. The processors are interconnected by a fast network.

• The Beowulf-class Linux cluster is constructed of 27 system boards SGI
1100/1200, each hosting two Intel Pentium III processors 700 MHz, and
256 MB of RAM. The boards communicate via a regular 100Mb Ethernet.

173

Chapter 6. Case Studies: Visualization in VR

• The SGI Origin 2000 contains 8 MIPS processors R10000 (195 MHz). These
processors have access to 768 MB of shared memory.

Figure 6.16: Supercomputers at HPαC. From left to right: Cray T3E, Beowulf
Linux cluster and SGI Origin 2000

6.2.3 MolDRIVE Design Requirements

Our main goal was to design a framework, which enables users to interactively
work with real-time Molecular Dynamics simulations in a virtual environment
on the Responsive Workbench. We concentrate on working with large and com-
plex MD simulations. To interactively work in a virtual environment with this
large amount of real-time generated data, both the visualization component and
the simulation component should have a sufficiently high update frequency.

The simulation component should calculate a simulation time step as fast
as possible for a given simulation. A faster simulation enables users to study
slower movements and behaviour of molecular structures on a larger timescale.
Also the implications of the user’s steering actions on the simulation process
can be studied more effectively.

The visualization component, which generates the VE should maintain a suf-
ficiently high scene update frequency (10 Hz minimum) to maintain the VR ex-
perience. Calculations in the visualization component and the complexity of the
graphical scene have an effect on the frame rate. The goal was to create a visu-
alization component that could generate effective visual representations of the
(large) simulation data while maintaining a sufficiently high frame rate.

Independence of the frame update of the visualization component and the
simulation component should be attained. Instead of waiting for simulation
data of the next time step to arrive, the visualization component should continue
to update the graphical scene of the VE with the highest frame rate possible,
using the latest available data. In this scenario the visualization component
could continue to update the VE (including the update of the head position and
interaction) while the simulation is calculating a next time step concurrently on
the remote supercomputers.

174

6.2. Interactive Visualization of Molecular Dynamics

With the introduction of a remote simulation the performance of the entire
system will not only depend on the performance limitations of the visualiza-
tion component and the simulation component, but also on the communication
throughput over the network. The fast supercomputers could prevent the sim-
ulation component from becoming the main performance bottleneck of the sys-
tem. Instead, the visualization component or the data communication between
the graphics server and the supercomputers could become a new bottleneck. In
the following sections this aspect and performance measurements will be dis-
cussed in more detail.

When performing large MD simulations with many particles, we cannot sim-
ply transport and visualize the particle data. First, the screen would probably
be filled with particles, from which the user cannot easily get the desired infor-
mation. Second, the number of particles can become too high to be rendered fast
enough by the graphical hardware. Instead of using the particle data for visual-
ization, we should use alternative ways for the transmission and visualization
of large numbers of particles. The main requirements of the MolDRIVE system
can be summarized as follows:

• Distributed simulation and visualization: the MD simulation program
running on any of the supercomputers should be extended with a commu-
nication module to be able to communicate with the visualization compo-
nent through a network connection.

• Generation of derived particle data: concepts and algorithms to create
derived/abstract data from the (large) simulation data should be investi-
gated.

• Visualization and interaction in VR: the visualization component should
be implemented using the RWB Library and Performer, providing an effec-
tive user interface in the VE. Users at the Responsive Workbench should be
able to interact with the simulation and the particles or some other abstract
particle representation like particle clouds in the case of large numbers of
particles. Both interaction and visualization techniques for particles and
derived data should be implemented.

The next section will describe the MolDRIVE architecture and its components.

6.2.4 Architecture and components of MolDRIVE

Based on the initial requirements we designed and implemented a new dis-
tributed system. Our system was named MolDRIVE, Molecular Dynamics in
Real-time Interactive Virtual Environments. An overview of the MolDRIVE ar-
chitecture is shown in Figure 6.17.

175

Chapter 6. Case Studies: Visualization in VR

node #1 node #2 node #3

node #4

node #N

node #

node #node #

node #

data #N

128 nodes

3) Origin 2000 8 nodes

SUPER COMPUTER:

2) BEOWULF CLUSTER 54 nodes

TCP/IP

Internet

Simulation Server

 - Infinity Reality 2 graphics
 - 4 processors
 - SGI ONYX 2 workstation

Grid dataGrid data
data #N
Particle Particle

data #1 data #1

Simulation Node
1) CRAY T3E

Parallel Remote Simulation

Control data
Visual data

Comm.

Particle Particle

Configuration

MolDRIVE Manager

XML

File

Write
buffer

Read
buffer

pointer switch

VIRTUAL REALITY WORKBENCH

data
Comm.
data

VisualizationClient

Shared Memory

ROI

GUI

User Interaction

Vis. Tools

Figure 6.17: MolDRIVE architecture and system components. The MD simula-
tion is running remotely in parallel on the supercomputers, while the visualiza-
tion and the computational steering is done on the RWB.

176

6.2. Interactive Visualization of Molecular Dynamics

It shows the four components of the system: the remote Simulation Nodes, the
Simulation Server, the MolDRIVE Manager, and the Visualization Client. A simula-
tion runs on multiple nodes of a remote parallel computer. Each of the Simu-
lation Nodes communicates with the Simulation Server on the RWB through a
TCP/IP connection. The Simulation Server provides the simulation nodes with
simulation parameters, data requests and user interaction feedback. The sim-
ulation nodes return the requested data. The system is first initialized by the
MolDRIVE Manager with a configuration file. Then it creates and controls ap-
propriate Shared Memory structures through which the Simulation Server and
the Visualization Client can communicate.

Double buffering enables the Simulation Server to write the simulation data
it receives to one buffer while the Visualization Client simultaneously reads the
simulation data from the previous time step from the other buffer. The VC con-
trols the visualization of the simulation and handles the user interaction.

Communication between Components

Since MolDRIVE consists of four separate components, one of which is run-
ning remotely, it is important to have effective communication. The Simulation
Nodes must ”know” which type of information/data is requested by the Visu-
alization Client. For this purpose the information buffer was constructed. It
uses a simple message format which defines all information about the current
data request or response. If a user would like to display the force vectors of all
particles in the simulation, the VC can set the value of the ”FORCES” element
in the information buffer to ”1”. As the data request containing the information
buffer is received by the simulation nodes, they will append the force and ve-
locity data of all particles to the data response. The transfer of data between the
components is done either by using Shared Memory (local communication) or
using a network (remote communication).

Simulation Server and Simulation Nodes

The remote simulation on the parallel computer communicates with the Simula-
tion Server component on the Onyx2 using sockets of the TCP/IP network pro-
tocol. The Simulation Server creates a separate socket endpoint for each Simula-
tion Node and waits for incoming connections from the Simulation Nodes. After
the simulation is started and initialized on the remote computer(s), each Simu-
lation Node connects to the Simulation Server, using the configured IP address
or hostname and port number on the visualization server. After the connection
is established, the Simulation Nodes transmit initialization data needed by the
Visualization Client, such as identification of each individual particle type.

Communication between the Simulation Nodes and the Simulation Server
is performed by passing of information and data messages. At each time step
the Simulation Server sends a data request in the form of an information buffer

177

Chapter 6. Case Studies: Visualization in VR

filled by the Visualization Client. Each Simulation Node receives the informa-
tion buffer, gathers the requested data from the simulation program and pro-
cesses a possible user feedback. Each node replies to the Simulation Server with
the updated information buffer, containing properties such as the simulation
status and size of the data message it will send. Afterwards, each Simulation
Node will send its data response to the Simulation Server, see Figure 6.18. The
Simulation Server then places the received data in the Shared Memory for use
by the Visualization Client.

Remote (parallel)
simulation program Simulation Server

(Realtime/Record mode)

= running

(runs on each node)
D0

Initialization
Simulationstatus

D1

D2

D3

no

finished?
Is Visualization

Do simulation timestep
D4

D5
Receive information buffer

D6
Handle feedback data

data, puit it into Databuffer
Get requested visualization

D7
Send information buffer

Send databuffer
D8

Close connection to
D10

Simulation Server

Exit
D11

yes
Simulation status

= finished

D9

Is simulation status
= finished

yes

no

E0
Initialization

Read initial data from
shared memory

E1
Create a server for
each sim node

Wait for incomming
connection

E2
Receive initial data from

each sime node

Receive and store data buffer
E6/S1

E5/S1

Kill the thread
E7

conform S2/S9

Wait until each thread is done
E8

Put data buffer in
shared memory

E9

If record mode store data

from shared memory

yes

Is simulation finished?

E10

E11
Close the server for each

sim node

Send information buffer

each sim node
Create a seperate thread for

E3

E4/S1

no

Exit
E12

Initial data

infobuffer

Infobuffer

databuffer

Send initial data to server

Connect to Simulation
Server

TCP/IP
Internet

Receive information buffer

get new information buffer

Figure 6.18: Communication structure between the Simulation Nodes (on the
supercomputer) and the Simulation Server (on the visualization server).

178

6.2. Interactive Visualization of Molecular Dynamics

The communication interface of the Simulation Nodes sends only the data
that is requested through the information buffer to save the communication and
processing time. It has access to the internal data structures and data generation
functions of the MD simulation program on that node. We created functions
that generate the derived spatial data (scalar or vector). Each node stores its
domain data in a regular Cartesian grid, and all grids are merged in the Sim-
ulation Server. Examples are particle density, long range forces (vectors), and
kinetic energy. Moreover, a Region-of-Interest (ROI) can be defined in the Visu-
alization Client. Each node will only send particle data if the particle is located
within this ROI. The communication between the nodes and the server is done
simultaneously by using multi-threading, somewhat reducing the influence of
network latency, see Figure 6.18. By using a thread for each communication
channel with a Simulation Node, the communication with all Simulation Nodes
is performed in parallel. Furthermore, the amount of transferred data is reduced
by type conversion of the simulation data (8 byte float into 2 byte integer) that is
sent for visualization. For visualization purposes, the simulation data notation
does not have to be as accurate as for simulation purposes.

Local Communication

The communication between the MolDRIVE Manager, the Simulation Server
and the Visualization Client takes place through the Shared Memory. All com-
ponents have access to the information in this Shared Memory, see Figure 6.19.
We constructed a special class to control the Shared Memory using semaphores,
allowing a component to lock and unlock access to the data structures. This
prevents data inconsistencies and errors, which are introduced when two com-
ponents are simultaneously reading from and writing to the same memory ad-
dress. Three buffers are created, consisting of the following elements: control
data, visualization data, dynamic simulation data.

A small information buffer called the control data contains the status of all
components. This buffer contains the name of the component that is reading
from or writing to which buffer in the Shared Memory. To obtain read or write
access on a certain buffer, the requesting component first has to gain access to
the control data by trying to lock its access. If this locking succeeds, no other
processes can access to this part of memory, and the process can safely read
or alter data. After gathering the control information and updating on which
part of the Shared Memory the component will work, the control data can be
unlocked. The visualization data buffer contains static visualization information,
such as the particle colors and dimensions. The third buffer, the dynamic simu-
lation data, is used for the transmission of simulation data from the Simulation
Server to the Visualization Client. Further, it is used for sending user feedback
in the opposite direction. Using a double buffering technique on this data struc-
ture, both the Simulation Server and the Visualization Client always have their
own buffer available. While the Visualization Client is reading new simulation

179

Chapter 6. Case Studies: Visualization in VR

data in one buffer, the Simulation Server can already start filling the other buffer
with new data. When both have finished their actions, the pointers to buffers
are switched by the MolDRIVE Manager.

D1 Initialization
Parse XML file

Create shared memory
read_buf_ready=0
write_buf_ready=1

MolDRIVE Manager

Unlock

Nap

Nap

no

Nap

Nap

vis_read_done=1

(sim_write_done=1)

yes

Unlock
control data

D4
Visualization ready

 Simulation ready writing?

sim_write_done=0
buf_align=0

D2

yes

Nap

D3

V5

yes

no

V3

New data available
(read_buf_ready=1)

yes

V1

no

yes

yes

yes

Main loop of the
Visualization Client

no

Update visualization scene
V7

(according to buf_align)
Read data from read buffer

V6

Unlock

V8

(read_buf_ready=0)

V4

V10

V9

yes

(vis_read_done=1)

reading?

CONTROL DATA
buf_align

read_buf_ready
write_buf_ready

vis_read_done
sim_write_done

Shared Memory Structure

control data

Update control data

control data

Lock control data

Update control data

Unlock control data

VISUALIZATION

WRITE
READ

buf_align = 1
buf_align = 0

1 2
WRITE

BUFFER
DATA

BUFFER
DATA

DATA

READ Copy control data

no

no

no

loopMain

simulation

Update control buffer

(vis_read_done=1)

yes

D5
Flip pointers

(buf_align != buf_align)

D6

(described in other scheme)

Unlock control data

Update control data

Unlock control data

Update control data

(described in other scheme)

vis_read_done=0 sim_write_done=0
read_buf_ready=1 write_buf_ready=1

Lock control data

Copy control data control data

noCan I write data ?
(write_buf_ready=1)

S4

(write_buf_ready=0)

S5

S2

 S3

(according to buf_align)

(sim_write_done = 1)

S8

S7

 Main loop of the
Simulation Server

no

S9

write buffer
Store simulation data in

S6

Unlock

S1
Get new data from

(successful ?)

Lock control data
(successful ?)

Lock control data
(successful ?)

Lock control data
(successful ?)

Figure 6.19: Communication structure between the MolDRIVE Manager, the
Simulation Server, and the Visualization Client. All these components are run-
ning on the SGI Onyx2, using the Shared Memory.

180

6.2. Interactive Visualization of Molecular Dynamics

The data buffer contains three types of data:

• Communication data, which contains the information buffer used for com-
munication between the Simulation Server and the Simulation Nodes.

• Particle data, which contains type of atom and its dimensions, position,
velocity, and force vectors.

• Derived grid data, which contains derived simulation data stored as 3D
grids, such as density and potential fields.

From the communication data, the exact content of the entire data buffer can
be retrieved. For example, from the communication data the exact dimensions
of the grid data can be determined.

MolDRIVE Manager

The MolDRIVE Manager is responsible for the initialization and control of the
local system components. In the initialization process a configuration file con-
taining information on the simulation and visualization session is parsed. The
configuration files are created using XML syntax (eXtensible Markup Language).
More about how to write the configuration files for MolDRIVE can be found in
[van Hees & den Hertog, 2002; de Haan, 2002].

According to the configuration, the required shared memory areas are al-
located and the communication with other MolDRIVE components is initiated.
During execution, the manager controls the swapping of the double data buffers
and at the end of the MolDRIVE session cleans up the shared memory used. If
one of the other components crashes, the allocated shared memory areas can
still be released safely by the MolDRIVE Manager.

6.2.5 Simulation Steering and Time Control

The MolDRIVE system is not only capable of handling real-time simulation, but
it also supports recording and playing back of simulation sessions. In this way,
large and slow simulations can be pre-recorded and visualized afterwards in
playback mode on the RWB. Although this eliminates the bottleneck of the slow
simulation, there can be no direct interaction (particle steering) with the simu-
lation. If the desired derived data of the simulation is recorded, it can be vi-
sualized using the regular visualization tools. A more advanced concept we
introduced is the instant replay, a mix between real-time operation and play-
back. In this mode, the user can visualize and interact with a running (remote)
simulation, while the last few hundreds of time steps are recorded simultane-
ously on the harddisk. When the user sees (or has just missed) an interesting
phenomenon, the simulation can be paused and the recorded time steps can be
played back from hard disk. During this instant replay, the user can also use
exploration tools to inspect the phenomenon detected or the effect of steering
actions, when particle steering was applied.

181

Chapter 6. Case Studies: Visualization in VR

The Simulation Server is responsible for playing back and recording the sim-
ulation data files. The user controls the flow of simulation time steps by using
the time control widget, see Figure 6.20.

Figure 6.20: Control widget allows direct steering of the real-time simulation.
Using instant-replay the real-time simulation stops and interactive playback
mode is activated.

6.2.6 The Visualization Client of MolDRIVE

The Visualization Client (VC) of MolDRIVE provides a virtual environment for
visualization and control of the MD simulation. As previously described, the
VE of this application has been the test-bed for the development of the VRX
tools. Several visualization and interaction tools used in the VC have already
been described in the previous two chapters. This section will highlight the
integration aspects of the MolDRIVE Visualization Client and the tools used.

Initialization

During the initialization the VC tries to connect to the MolDRIVE Manager
through Shared Memory. When the connection is made, the VC will read the
session-specific information e.g. how many particles and of which type, which
grids for derived data, etc. Further, the information of the required visualiza-
tion tools and GUI widgets is read. Based on this, the VC will create required
particle objects, visualization tools and widgets, and set up the the MolDRIVE
virtual environment.

182

6.2. Interactive Visualization of Molecular Dynamics

Main Loop

The RWB Library and Performer control the basic visualization, manipulation
and interaction aspects of the VE on the RWB. The main-loop code of the VC is
implemented in the user code (see Figure 6.19), which is executed every frame
by the RWB Library, and interaction code has been programmed using the RWB-
Interactors, see Section 3.4.

In this main loop, the control buffers in the Shared Memory are checked
for the availability of new simulation data. When the new data is ready, the
VC shortly locks the control buffer and updates the local references to the data
buffers to be visualized, see Figure 6.19. Simultaneously, the new data request
and the user feedback is put back to the buffers. This data, for example steering
or ROI data, will be used by the simulation for the generation of the new time
steps.

The information in the current buffers is visualized in the VE. The VC is not
completely integrated with the VRX concept, where the updates of visualiza-
tion tools occur in a parallel COMPUTE process. Therefore, the update of all
visualization tools are handled in this main loop. A full integration of VRX into
MolDRIVE would speed up the whole system.

Virtual Environment

A typical layout of the VE of the MolDRIVE Visualization Client is shown in
Figure 6.21. The main object of the VE is the data space which contains the sim-
ulation data, both the particles and the derived grid data. In addition, several
data slicers can be used to visualize available grid data.

The workspace also contains several widgets, such as the time controller
widget on the Plexipad, and the interaction buttons which are used to activate
various RWB-Interactors. These RWB-Interactors include Particle steering tools,
Region of Interest tool and the Zoom tool. The user can navigate using the Mini-
system. Any of the data slicers can be attached to the Plexipad.

Visualization of Molecular Data

As already mentioned, we are dealing with two types of molecular data:

• Particle data: position of atoms (particles), type and dimension of atoms,
force and velocity vectors of each atom (particle).

• Derived grid data: volumetric data that are computed on a 3D grid by the
Simulation Node or by the Simulation Server; for example particle densi-
ties, kinetic and potential energies, or force fields.

183

Chapter 6. Case Studies: Visualization in VR

Figure 6.21: The MolDRIVE Visualization Client (see also the Color Section)

For particles we have used a spherical representation (Van der Waals’ ra-
dius), see Figure 6.12. Color and radius directly correspond with the type of
atom. This can be specified in the XML configuration file for each particle type.
For more details, read Appendix B of [van Hees & den Hertog, 2002].

At each time step, the simulation delivers new particle data and also derived
data. Which derived data are sent to the visualization server can be selected via
the XML configuration file, or directly from the VE itself. For visualization of the
3D data we use direct data slicers (for scalar and vector data). When the simu-
lation is not in real-time mode, the user can use slower visualization techniques
like an iso-surface generation. As our simulation-visualization scheme has a
blocking mechanism, the simulation cannot continue until the visualization has
finished the visualization of the current time-step. For better throughput we use
double buffering.

To visualize both the velocity and the force of all particles, we use arrows
on the particles. According to the orientation and magnitude of the vector, the
arrow is rotated and resized. Another feature is the particle path technique. This
technique simply draws the trajectory of a particle in time. At every time step,
a thin colored line is drawn from the previous position of the particle to its cur-
rent position, using color to represent its current velocity magnitude. After some
time steps, the colored trajectory of the particle is revealed. In the case study of
an electrolyte material, this function is used to analyze the motion of specific
ions. Figure 6.22 shows an example of the electrolyte material, where both par-
ticle vectors and particle paths are used.

184

6.2. Interactive Visualization of Molecular Dynamics

Figure 6.22: Electrolyte visualization (β-alumina). Darker arrows indicate force,
white arrows indicate velocity. Particle paths are used to visualize the motion
of sodium ions (wireframe).

In large particle systems we cannot see more information by simply show-
ing all particles and their properties. Depending on the visualization task and
the application area, derived volumetric data or extracted features can probably
provide more important information than the use of large numbers of particles.
Instead of spending too much time on optimizing the particle visualization, we
have concentrated more on the development of the visualization techniques for
the derived data.

6.2.7 MolDRIVE Case Studies

Electrolyte Study

In the Computational Physics group, the DEMMPSI simulation package has
been used extensively to study the properties and phenomena of solid elec-
trolytes [Beckers, 1999]. One of the main case studies in their research has been
the β-alumina. We have used this material as the main case study for MolDRIVE
as well. The structure of this material is characterized by the conduction planes
of sodium ions and bridging oxygen atoms between dense blocks of aluminum
oxide, see Figure 6.23. The ionic conduction properties material has been of
interest for use in solid state batteries.

185

Chapter 6. Case Studies: Visualization in VR

Figure 6.23: The schematic structure of β-alumina
To study the movement of the sodium ions in the conduction layer, we have

used the particle path function to visualize the trajectories of these particles in
time. After a short time of simulation, the movement of these ions revealed
a hexagonal (or honeycomb) pattern, as was well known from the literature
(Figure 6.24).

This pattern is caused by the chain reaction of moving sodium ions, which
push each other away from the available equilibrium position with low poten-
tial energy. Using particle steering this chain reaction can be studied in detail,
by gently pushing a sodium ion towards an occupied site and thus causing a
movement of the occupying ion. The hexagonal energy pattern can also be seen
during particle steering, using the assistance of a data slicer to display the po-
tential energy of a moving particle, see Section 4.3.

(a) (b)

Figure 6.24: The characteristic movements of sodium atoms in the conduction
layer. A schematic 2D projection (a) and an observation in MolDRIVE (b).

186

6.2. Interactive Visualization of Molecular Dynamics

Another phenomenon was observed by the use of a direct data slicer to dis-
play the long-range forces in a simulation of β-alumina. During the visualiza-
tion, a system wide oscillation pattern in the long-range forces was detected
(Figure 6.25). In the MD literature, this oscillation was described as being caused
by a breathing motion of the spinal blocks, and can be seen in the vibrational
density of states (VDOS) spectra.

Figure 6.25: Sequence of 6 consecutive simulation time steps , where the land-
scape data slicer visualizes the magnitude of long-range particle forces (PPPM).
This way the oscillation pattern is made visible.

(a) (b)

Figure 6.26: β-alumina electrolyte; Na+ atoms visible only; direct data slicer
shows potential field (a); vector data slicer shows PPPM force field (b) ;

187

Chapter 6. Case Studies: Visualization in VR

Simulation and Steering of Proteins

To prove the versatility of our MolDRIVE system, we decided to integrate it
with another MD simulation package. The Gromacs MD simulation package
[Web-MD-gromacs] was chosen for its performance, the availability of code and
the user experience in the CP group.

Initially, a file converter was constructed to convert Gromacs particle trajec-
tory files to MolDRIVE input files. This allowed off-line visualization of original
Gromacs simulations in MolDRIVE. As an example, we have converted trajec-
tory files from a simulation of protein folding. This simulation data, the result
of more than 14 months of computation with Gromacs on the SGI Origin 2000,
was provided by Jaap Flohil and Loek Bakker from the Computational Physics
group. Using the MolDRIVE system, the user can study the folding process in
the VE in detail. By using the time control widget, the user can browse through
the simulated time steps and replay interesting movements.

The MolDRIVE communication protocol was also integrated in Gromacs.
This enabled real-time visualization of a remotely running Gromacs simulation.
In addition, the integration allowed interactive atomic steering using our parti-
cle steering techniques. This feature is especially interesting for use in molecular
modeling tasks, such as correcting, docking and (un-)folding of molecular struc-
tures.

Figure 6.27: T0099-protein simulation using Gromacs; the user can unfold the
protein using the spring manipulator.

The particle steering technique was used for the forced unfolding of a small
protein, see Figure 6.27. This protein (T0099) contains 56 amino acids and was
the smallest available protein. In this example the protein was forced to un-
fold by pulling the N- and C-terminal ends apart. The pulling procedure was
started by the selection of a the C-atom from the backbone (the C-terminal end).

188

6.2. Interactive Visualization of Molecular Dynamics

Next, a pull force was exerted on this atom by retracting the spring manipu-
lator connected to this atom. Figure 6.27 shows that the molecule is gradually
unwrapped by pulling the C terminal away from the system’s center of mass.

The Visualization Client was not adapted for the integration with Gromacs.
It was merely used to visualize the basic molecular structure only, using the
standard sphere representation to represent the atoms in the proteins. As de-
scribed earlier, other packages for molecular visualization offer several other
visual representations for protein structures, see Figure 6.12. For example, the
cartoon representation uses strips and tubes to indicate specific structures inside
the protein (Figure 6.27). However, the particle representation was found most
suitable for use with the particle steering. Moreover, the use of derived data was
not implemented. The original code used in DEMMPSI for the generation of de-
rived data requires considerable rewriting. This is because of the differences
in code structure and internal data representation between DEMMPSI and Gro-
macs.

Figure 6.28: MolDRIVE (Gromacs): particle steering of protein fragment
(see also the Color Section)

The promising results in our examples have led to the continuation of the
use and development of the combination of Gromacs and MolDRIVE, see Fig-
ure 6.28. An extension of the interactive steering features could be of great im-
portance for the steering of entire molecules.

189

Chapter 6. Case Studies: Visualization in VR

MolDRIVE in the CAVE

MolDRIVE was designed originally for the laboratory table metaphor of the Vir-
tual Workbench. After a successful presentation of the particle steering tools
we were asked to give a demonstration of MolDRIVE in the CAVE. It gave us
a possibility to test another type of interaction environment. MolDRIVE was
implemented on the basis of the RWB Library, OpenGL and Performer. The ap-
plications in the CAVE at SARA in Amsterdam are usually based on the CAVE
Library [Web-CAVElib], pure OpenGL or Performer version. The CAVE Library
provides only basic functions for accessing the tracker sensors and the render-
ing pipeline. The CAVE Simulator enables the user to implement CAVE applica-
tions on desktop systems. The CAVE Library doesn’t support any scene graph
maintenance. Graphic and scene graph libraries must be used in addition to the
CAVE Library.

Figure 6.29: MolDRIVE in the CAVE Simulator (MD simulation - Gromacs)

To facilitate a simple conversion of MolDRIVE from the Workbench to the
CAVE we have implemented in the RWB Library an additional interface for the
CAVE Library (Performer version). Instead of using the tracker daemon, the
tracker data are delivered by the CAVE Library. Another adjustment is that the
RWB Library does not set up the Performer rendering pipeline. This is left to the
CAVE Library and the CAVE projection configuration. The CAVE Performer-
Library provides the main application loop for the RWB Library. These adapta-
tions have resulted in a special version of the RWB Library for the CAVE.

An advantage of this solution is that original RWB applications can be com-
piled for the use in the CAVE without any change in their source code. In other
words, the MolDRIVE source code remained intact. Most of the useful features
of the RWB Library also work in the CAVE. As in the CAVE at SARA a Plexipad
is not available, we had to place the Plexipad object freely in space. To enable
easier interaction with it we have enlarged it four times.

190

6.2. Interactive Visualization of Molecular Dynamics

Figure 6.30: MolDRIVE in the CAVE at SARA, Amsterdam

The CAVE experience has learned us that the surround screen projection of-
fers much larger space for visualization. The user is not limited to the relatively
small vertical field of view as on the Virtual Workbench. When the user zooms
in on molecules, he is in fact standing inside or walking around it. This ex-
perience cannot be provided at this scale on the Workbench. It seems that the
user fascination and presence when steering the proteins in the CAVE is much
higher than on the Workbench. The CAVE can also offer a larger immersive
environment where a demonstration of interaction with proteins can be given
to a larger group of people. We have proved this way that the CAVE is in fact
supplementary to the Workbench concept.

However, we have also found significant differences and drawbacks of CAVE
applications. One of the problems is much less accurate tracking. On the Work-
bench the users can accurately perform direct selection and direct manipulation
tasks. But in the CAVE the users should rather use remote interaction (ray-
casting). Another problem is that the images in the CAVE appear much less
focused than on the Workbench.

We have brought into the CAVE a virtual life-size model of the Workbench
and we have supposed that MolDRIVE could be used in the same fashion as on
the Workbench. User interface and workspace layout remained intact, and in the

191

Chapter 6. Case Studies: Visualization in VR

same size as on the Workbench. The visual experience in the CAVE that objects
appeared less focused but the molecular system could be scaled up so much that
on the Workbench it would seriously distort the immersion, as it would simply
not fit in. Very confusing in the CAVE was the lack of physical haptic feedback
of the Workbench and the Plexipad.

We can conclude from this experiment that the CAVE is better in giving more
impressive demonstrations and displaying larger objects. When detail and task
accuracy are important, then the Virtual Workbench provides a better environ-
ment. It also seems that for everyday laboratory experiments the Virtual Work-
bench is simply a more realistic solution.

6.2.8 MolDRIVE Performance

As explained earlier in this chapter, the update rate of the simulation and visu-
alization processes are partly independent. The frame rate of the visualization
is not directly related to the simulation update rate. However, the simulation
is limited to the visualization frame rate. The simulation will not continue un-
til one of the two latest time steps (in the double buffers) has been visualized.
To indicate where the performance limitations in the system are, we have con-
ducted some performance measurements. The performance of MolDRIVE has
been measured by comparing the most time consuming aspects of our system
when performing one time step. These include contributions of the simulation
and visualization components and the data transmission through the network.
The simulation side of the system is divided in the MD simulation time and
the time spent collecting and transforming the requested simulation data (e.g.
retrieve particle data and calculate derived grid data). In the visualization, a
standard sphere representation (36 triangles) was used for the display of the
particles.

Figure 6.31: Processor load in MolDRIVE: simulation on 8 computing nodes,
visualization on 4 processors

192

6.2. Interactive Visualization of Molecular Dynamics

In the first measurements of the MolDRIVE system, a DEMMPSI MD simu-
lation of liquid argon of different system sizes was run on 1,2,4 and 8 nodes on
the Origin 2000, the best performing supercomputer available to us. The results
of these measurements are shown in Figure 6.32.

0

100

200

300

400

500

600

700

800

900

86
4;

1
86

4;
2

86
4;

4
86

4;
8

13
92

;1
13

92
;2

13
92

;4
13

92
;8

20
48

;1
20

48
;2

20
48

;4
20

48
;8

29
12

;1
29

12
;2

29
12

;4
29

12
;8

40
00

;1
40

00
;2

40
00

;4
40

00
;8

53
24

;1
53

24
;2

53
24

;4
53

24
;8

10
97

6;
1

10
97

6;
2

10
97

6;
4

10
97

6;
8

Nr. of particles; Nr. of processors

ti
m

e
(m

s)

Visualization

Transmission

Data collection

Simulation

Figure 6.32: MolDRIVE performance: time measurements of a real-time
MolDRIVE session on an MD simulation of liquid Argon on 1,2,4 and 8 pro-
cessors on SGI Origin 2000

It became clear that both the MD simulation and the data collection scaled
well. They could produce and transmit data from over 10.000 particles in un-
der 100 ms (more than 10 updates per second) when using all 8 processors. The
visualization however did not perform so well. Contrary to our expectations,

193

Chapter 6. Case Studies: Visualization in VR

it became clear that the overall performance of the simulation, including data
collection and transmission, was much better than the visualization. At 2048
particles, the frame rate already dropped below 10 Hz. As expected, the visu-
alization frame rate of the visualization server is independent of the number of
processors used for the MD simulation.

However promising the results of the simulation seemed, the good perfor-
mance was mainly due to the absence of long range particle interaction in the
simulation of the liquid argon. These results were compared with measure-
ments on the MD simulation of β-alumina (2088 particles), a more complex sim-
ulation which does use long range particle interaction (PPPM). This type of sim-
ulation was more representative of the general performance of MD simulations.
From the measurements it became clear that the MD simulation can also be the
most time consuming component in the system (Figure 6.33).

0 50 100 150 200 250 300 350 400 450

1

2

4

8

N
r.

o
f

p
ro

ce
ss

o
rs

t ime (ms)

Simulation
Data collection
Transmission
Visualization

Figure 6.33: MolDRIVE performance: time measurements of a real-time
MolDRIVE session on an MD simulation of β-alumina with 2088 particles on
1,2,4,8 processors on SGI Origin 2000

Further it seems that in this configuration, the maximum number of particles
in real-time MD simulations is around 2500 particles. Above this number the
update rate of the simulation will drop bellow 5 per second (time above 200ms)
and the interaction latency becomes too high. The playing back of the recorded
simulation timesteps has higher update rates but particle steering interaction
is not possible. In playback, the update rate of simulation data is only limited
by the hard disk performance (e.g. well over 10.000 particles at 24 updates per
second).

Also, the Visualization Client is limited to the display of around 2500 spheres
for particles (36 triangles per sphere). However, the performance can be consid-
erably increased by using other particle representations and other visualization
techniques. The use of derived data instead of particle data will increase the
performance to the limit of 24Hz. Visualization using the data slicer tools does
not have a great impact on the performance of the Visualization Client. By the
use of the ROI or showing/hiding of all particles of given type, the number of
visible particles can be decreased. In this way it is possible to work with a larger
simulation system with many more particles, while only few are displayed.

194

6.2. Interactive Visualization of Molecular Dynamics

In these measurements, the data collection time and transmission time in
real-time simulations appeared not to be of much influence on the total perfor-
mance of the system. However, we have only used fast grid extraction for de-
rived data and not used any complex feature extraction algorithms. We expect
that the data collection can also become a performance limitation when more
complex algorithms are used. Moreover, the network transmission was only
measured on the high speed Local Area Network. We have done a preliminary
test where the simulation runs on a computer at the SARA high performance
computing center in Amsterdam while the RWB in Delft was used for visual-
ization. Although we have not performed time measurements, there was no
noticeable increase of network delay in the interaction.

In the combination with Gromacs, a small benchmark was performed to in-
dicate possible bottlenecks. Two simulations were compared, one running inde-
pendently, and one communicating with MolDRIVE. For a small protein system
(around 500 particles), the data transmission time turned out to be very long
compared to the time of a single integration step. In this case, the communi-
cation overhead resulted in an increase of the simulation update time of over
200 percent. We expect that this overhead will diminish when using larger and
more complex simulations. A solution to the influence of communication over-
head could be to dynamically adjust the number of integration time steps before
transferring the data. Instead of sending the simulation data of every time step,
more time steps can be calculated before one is sent to the visualization server.
Although we have not conducted more time measurements on the Gromacs per-
formance, it became clear that it outperforms DEMMPSI when only considering
the number of particles. We expect that Gromacs will be able to simulate almost
10.000 particles in under 100ms per time step (above 10 updates per second).

As expected, running the simulation remotely on a supercomputer turns out
to be a big improvement of simulation performance compared to the locally
running MD simulation on the visualization server as in Vrsim. The network
transmission from the Simulation Nodes to the local machine takes little time
compared to computing a simulation time step for larger simulations, so the im-
provement remains significant. Moreover, the Onyx2 is relieved from the bur-
den of a computationally intensive MD simulation, leaving more resources for
the Visualization Client. Although the capacity of the visualization server has
improved, it can still become a bottleneck of the entire system when displaying
too many individual particles. The use of derived data and other visualization
tools such as ROI and particle type selection reduce the number of particles to
be drawn, making it possible to deal with larger systems.

We have seen that the bottleneck of the system shifts between the simula-
tion, the visualization, and the network transfer. The limitation of the simu-
lation (amount of particles, simulation program, complexity) cannot simply be
overcome by techniques other than simulation recording and playback. The per-
formance limitations of the Visualization Client can be stretched to the hardware
optimum of 24 Hz, by selecting a fast visual representation of particles.

195

Chapter 6. Case Studies: Visualization in VR

6.2.9 MolDRIVE: Summary and Discussion

After designing of the MolDRIVE architecture we started to implement most
of the basic techniques such as network communication, shared memory, and
basic visualization and simulation interface. In addition we learned from the
previous project (Vrsim) and early tests. Surprisingly, we completed our first
working prototype earlier than expected. Because of the flexible combination
of the RWB Library and Performer also the development of visualization tech-
niques and interaction methods was more effective. Although the Onyx2 is a
high performance graphics workstation, the real graphics performance was be-
low our expectations (It will be always possible to generate a very complex ge-
ometry, which cannot be rendered at interactive frame rates). Nevertheless, by
the use of derived data and a new data representation we were able to develop
an interactive virtual environment, which is well suited for the visualization
and computational steering of many MD applications. MolDRIVE works on the
Responsive Workbench as well as in the CAVE.

The overall performance of MolDRIVE shows that is it now possible to per-
form real-time MD simulations of up to 2500 particles and visualize it interac-
tively. The versatility of the system is illustrated by several case studies that
have been performed with the system. The 3D visualization techniques re-
vealed spatial configurations and important structures in the materials studied.
In combination with particle steering this allows researchers to conduct experi-
ments and analysis on a nano-scale. Especially the integration with the Gromacs
MD software, which enables the steering of proteins, has been successful. The
promising results in combining Gromacs and MolDRIVE have led to the contin-
uation of using this system for molecular modelling. Furthermore, MolDRIVE
will be integrated with VRX, and a more effective visualization environment
may be expected.

Our system may be of certain importance in research, for example on mate-
rial properties and molecular modeling. It must be said that MolDRIVE sessions
with real-time simulations are not suitable for many other MD applications.
During our project, it became clear that most MD users use very large and very
slow simulations. Only after weeks or months they start with the actual analysis
of their simulation results. As our system is only able to process small scale sim-
ulations in real time, the large simulations are not suitable for real-time use with
MolDRIVE. However, these MD simulations can be simulated off-line using our
system and intermediate results can be visualized on demand.

196

6.3. Visualization of Cumulus Clouds

6.3 Visualization of Cumulus Clouds

6.3.1 Introduction to Atmospheric Simulations

Transport processes in the lowest kilometers of the atmosphere (boundary layer)
are very complicated due to the turbulent nature of the air motion [Stull, 1988].
The length- and time-scale of the turbulent motions is ranging from millimeters
to kilometers and from fractions of seconds to hours. These turbulent motions
(eddies) are very important since they are responsible for the vertical transport
of heat, moisture (latent heat), and pollutants.

The presence of clouds in the boundary layer makes the dynamics even
richer. It forms also an additional complication due to the phase changes (con-
densation/evaporation) and the impact of clouds on short- and long-wave ra-
diation. The understanding of the turbulent dynamics in the lowest parts of the
atmosphere can be increased by observational or computational methods. The
observational methods include e.g. aircraft measurements, balloon measure-
ments, lidar/radar measurements, and satellite imaging. As the observational
techniques do not provide a complete 3D state of the boundary layer and its
evolution in time, the numerical techniques have become a good alternative for
studying atmospheric boundary layers and Large Eddy Simulations (LES) are
usually used for these purposes. The idea behind LES is to fully resolve the large
scale turbulent motions in space and time, and to parameterize (i.e. model) the
smaller eddies. The concept of LES is rooted in the assumption that the largest
eddies are the most energetic and therefore responsible for most of the turbu-
lent transport. Many comparisons of LES results with observational data have
revealed the capability of LES to mimic atmospheric boundary layers, not only
for dry situations, but also for the even more complicated cases where clouds
(cumulus, stratocumulus) are present.

The advantage of numerical data is clear: we obtain the full 3D state of the
key quantities (momentum, pressure, temperature, moisture) as well as their
evolution in time. The problem with this may be equally clear: the amount of
data is huge, and has to be filtered and post-processed for further study. An
often used method is to calculate spatial/temporal averages of the data and
study the average quantities instead. Such data reduction may be suitable for
many purposes, but it must be realized that important information with fine
details of the data is lost.

For example, in a recent study [Siebesma & Jonker, 2000] a cumulus topped
boundary layer was investigated by means of LES with particular focus on cloud
geometry. The boundaries of the numerical clouds revealed an anomalous scal-
ing behaviour with a fractal dimension equal to the value known from observa-
tions [Lovejoy et al., 2000]. It is this kind of information that is lost when only
statistical averages are considered. This study shows that geometrical features
of cumulus clouds are nicely represented in the numerical model, and that the
LES is a good numerical method for simulation of cumulus clouds.

197

Chapter 6. Case Studies: Visualization in VR

Figure 6.34: Informal visualization of the cloud field data using AVS; wireframe
iso-surfaces combined with a vertical color slicer; different color mappings com-
pared: non-periodic color spectrum (left), periodic color spectrum (right);

However, we have to find ways how to efficiently explore the large datasets
obtained from LES. Virtual environments offer the users the opportunity to in-
vestigate the time evolving datasets in a computer-generated 3D environment
with natural forms of interaction. Our experiments with VRX on the Virtual
Workbench will demonstrate how evolving 3D cumulus cloud fields can be vi-
sualized, enabling an observer to identify clouds that satisfy a number of basic
requirements (large enough size, undergoing the full life cycle from cloud birth
to decay, etc). By interactively defining a region of interest (in space and time),
the user will explore the evolution of all relevant variables, such as moisture,
temperature, pressure, and the 3D velocity vectors. We will adapt visualization
techniques for VR: i.e. streamlines, particle tracing, releasing of virtual dust,
and simultaneous visualization of scalar and vector fields.

The goal is to get a better understanding of the spatial/temporal structures
in atmospheric boundary layers with cumulus clouds. By enabling the user
to freely maneuver (navigate) in the dataset, selecting interesting regions and
events, and visualizing the relevant quantities on demand, better insight will be
gained into the complex flow around and below clouds. Two specific questions
that will be addressed:

• Observational atmospheric studies have revealed a thin shell of descending
air around clouds. The origin of the descending motion however is still
in discussion. The opposing hypotheses are: a) mechanical forcing and b)
evaporative cooling due to mixing of environmental air with cloudy air. By
employing the Virtual Workbench we aim to extract from the data whether
or not the LES clouds indeed possess this shell of descending air and, if so,
to identify the origin of the phenomenon.

198

6.3. Visualization of Cumulus Clouds

• There is a large debate in the atmospheric community on the dominant
mixing process in clouds. The mixing process deals with a transport of
moisture into and outside the cumulus cloud [Stull, 1988]. Two hypothe-
ses exist: a dominant lateral mixing (moisture is mainly lost at the sides of
the cloud) versus a dominant vertical mixing (moisture is mainly transported
from the bottom and is lost on the top of the cloud). An interactive explo-
ration of the cloud field dataset on the Virtual Workbench should gain more
insight of the mixing processes.

6.3.2 Cloud Visualization in VR

Atmospheric simulations are usually complex and computationally intensive,
and they deliver large time-dependent data sets. The LES used in this case study
provides a large dataset (20 GB uncompressed, 600 time-steps). The main phys-
ical quantities are momentum, pressure, temperature and moisture. For Vir-
tual Reality it is a real challenge to be able to interactively visualize and browse
through such a large time-dependent dataset. In the worst case, when the user
wants to visualize all available data components, the system would have to read
from hard-disk storage about 30MB of data per time step. Without a suitable
compression scheme and hierarchical level of detail representation of data it will
not be possible to interactively access and explore such a large dataset. The user
is searching for an interesting cloud with a complete life cycle inside the simu-
lated time interval. The spatial relations and the simulated physical properties
around the selected cloud have to be explored in detail.

Initially, we have visualized the cloud data in AVS, see Figure 6.34. The
images show geometries of the clouds (iso-surfaces of moisture) together with
temperature. Two different color mappings are compared. From our experience
we have concluded that a desktop visualization cannot offer a really interactive
3D exploration of the full time-dependent data. Usually, the data must be pro-
cessed off-line with a suitable visualization technique to produce an animation,
and then the data flow in time can be analyzed. The existing desktop visualiza-
tion systems (like AVS, Open DX, or VTK) are very good in static and animated
visualizations. Unfortunately, these systems do not have a suitable VR interface.
We have learned from the desktop visualization and adapted some techniques
for VR. We have designed and implemented an interactive and responsive visu-
alization system for large time-dependent atmospheric data containing cumulus
clouds. The main requirements of this case study were:

• Maintaining random access to any time step of data
• Pre-processing schemes of the data to speed up the visualization.
• Automatic selection, clustering and attribute calculation of clouds.
• Automatic tracking of clouds through the whole simulation.
• Spatial/temporal and content-based selections (like a region of interest in

space and time; respectively a cloud of interest and its path in time).

199

Chapter 6. Case Studies: Visualization in VR

• Interactive 3D playback of cloud simulation with the ability to quickly (in-
teractively) explore the simulated data.

• Application of exploration and visualization tools, described in Section 5.2.

Related Work on Atmospheric Visualization in VR

Data from numerical simulations and measurements of atmospheric processes
have been traditionally visualized in existing universal visualizations systems
such as: AVS, Iris Explorer, OpenDX, and VTK. Also specialized programs for
visualization of the atmospheric data were developed, i.e. Vis5D [Hibbard et al.,
1996; Hibbard & Santek, 1990].

Due to the 3D nature and complexity of this data, the interactive exploration
in virtual environments should help enormously in studying of the processes
in the atmosphere. Some visualization systems that were originally designed
for desktop systems have been adapted for VR usage in CAVEs, workbenches,
panoramic walls, or HMDs.

One good example can be adaptation of Vis5D for the CAVE in the Cave5D
system, see Figure 2.17. The Cave5D framework [Wheless et al., 1998] integrates
the CAVE Library with the Vis5D library in order to interactively visualize at-
mospheric data in the Vis5D file format on the ImmersaDesk or in the CAVE.

However, Vis5D and Cave5D deal with another type of spatial domain of
the data and therefore another level of detail of the visualization techniques is
required. Vis5D was designed for visualization of global weather and atmo-
spheric conditions in areas of several thousands of square kilometers (simula-
tion timesteps in the order of minutes or hours), where the scientists are study-
ing only global effects in the atmosphere. The scale of related simulations is
very different to the cumulus clouds case study (area of 6x6 km, timesteps in
the order of seconds).

In this case study we demonstrate a detailed visualization and exploration
of pre-simulated time evolving cloud field on the Virtual Workbench.

6.3.3 Data Management and Analysis

For use of the simulation data in our visualization application the data had to
be pre-processed. The Large Eddy Simulation (LES) produced a large time-
dependent dataset, with grid dimensions of 128x128x80 and 600 time-steps,
which represents one hour of simulated clouds in an area of 6x6x3 km. Per
grid cell the following quantities have been computed: the air velocity vector
(u, v, w) and several scalars: meteorological temperature θl, total water qt and
liquid water ql. The data components were stored in 6 separate files. Originally
they were double precision floats, which meant 64 bits per scalar. One data com-
ponent file was thus 128x128x80x8 bytes (10 MB). To manage the enormous data
volume we had to compress the data into 16-bit integers. Not to lose the 64-bit

200

6.3. Visualization of Cumulus Clouds

float precision on a given range we have used a float-to-integer ratio. This way
one data component file needed only 2.5 MB of harddisk space. After reading
the file into memory, the integers (16 bits) must be converted back to floats using
an integer-to-float ratio (qt, ql ≈ 10−5, θl, uu, vv, ww ≈ 10−3).

Optionally, we can use Reynolds’ decomposition to compensate the influ-
ence of the average wind speed in the data.

Figure 6.35: Reynolds’ decomposition of a dataset; determining the average Uk

in time of all scalars in a plane of given height

Uk = 1
N2T

∑
i,j,t u(i, j, k, t) i, j = 1..128, k = 1..80, t = 1..600

Vk = 1
N2T

∑
i,j,t v(i, j, k, t) Wk =

1
N2T

∑
i,j,t

w(i, j, k, t)

θlk = 1
N2T

∑
i,j,t θl(i, j, k, t) Qtk =

1
N2T

∑
i,j,t

qt(i, j, k, t)

From scalar components (u, v, w, θl, qt) we subtract the plane-average in time
according to the height k (U[k=1..80],Vk, Wk, θlk, Qtk); N = 128, T = 600.

U ′(i, j, k, t) = u(i, j, k, t) − Uk

V ′(i, j, k, t) = v(i, j, k, t) − Vk W ′(i, j, k, t) = w(i, j, k, t) − Wk

θl′(i, j, k, t) = θl(i, j, k, t) − θlk Qt′(i, j, k, t) = qt(i, j, k, t) − Qtk

This way only data fluctuations can be made visible, which has been found
very helpful for studying time-dependent data in detail; the average wind speed
has been filtered out.

201

Chapter 6. Case Studies: Visualization in VR

6.3.4 Visualization of Cloud Geometry

Geometric objects were extracted for each time step to create a natural visual
representation of the clouds. For this, iso-surfaces were generated from the qt
data files (liquid water). The geometries were smoothed and the quality of tri-
angulation was optimized. The resulting cloud geometries were stored in Per-
former binary files (PFB), see Figure 6.36. These binary geometrical files (about
1,5MB each) could be read very rapidly and inserted directly into the Performer
scene graph. In the visualization application these geometric objects could be
placed in the data space, where the other cloud data are visualized.

Figure 6.36: Cloud geometry is based on the liquid water data: raw iso-surfaces
(left) and smoothed and optimized surfaces (right)

It is obvious that the iso-surface representation produced by VTK is far from
a natural-looking smooth cloud representation. However, our motivation was
not to implement realistic cloud visualization. As we are dealing with continu-
ous LES data we also have to visualize continuous and smooth iso-surfaces. Due
to the rather small grid dimensions (128x128x80) of the simulation the effects of
point sampling and aliasing are reflected in the quality of the iso-surfaces. To
cope with this, and generate ”nicer” cloud geometry we have used a Gaussian
smoothing filter before using the Marching Cubes algorithm for iso-surfaces.
Result is shown in Figure 6.36 (right).

The Marching Cubes algorithm as such does not produce high quality tri-
angular meshes [de Bruin et al., 2000]. Although we have smoothed the data
with a Gaussian filter, the simulation grid is still clearly visible in the mesh (Fig-
ures 6.37a,d). Also the quality of the triangulation is quite low. For an optimal
rendering of the triangular mesh the triangles should be as close as possible
equilateral. We have used the vtk triangular mesh smoothing filter for improve-
ment (Figures 6.37b,e). This final cloud representation is stored in a PFB (Per-
former Binary) geometry file. Data consisting of 10-50 clouds with about 40-60
thousand triangles is stored in a binary geometry file of 1-1.5 MB. The amount of

202

6.3. Visualization of Cumulus Clouds

Figure 6.37: Cloud geometry refinements: a,b,c) in wire-frame, d,e,f) shaded;
a,d) - original iso-surface mesh (12 clouds) produced by Marching Cubes (49.000
tris, 1.6MB); b,e) - optimization and mesh smoothing (46.000 tris, 1.5MB);
c,f) - mesh decimation/simplification (18.000 tris, 600kB)

triangles and the file size can have significant impact on the performance of our
visualization system especially, when the user is playing back the simulation on
the Virtual Workbench, see Figure 6.44. One of the bottlenecks is the rendering
pipeline. Our OpenGL graphics hardware can process and render theoretically
up to about 10 millions of triangles per second (but practically 5-6 mil.). For the
frame rate of 2*25 Hz (in stereo) our scene may contain about 100-200 thousand
of triangles. As our visualization system also has to display other things than
the cloud geometry, it is reasonable to use a suitable mesh simplification. We
have applied vtk-decimation, see Figures 6.37c,f. The cloud geometry can be dec-
imated to 18 thousand triangles, which needs only 600 KB. The whole dataset
(600 time-steps) was pre-processed and the cloud geometries were generated in
both versions: not-simplified and simplified. This data pre-processing took 10
hours. Each cloud has been processed separately in the given time step.

The geometries of all clouds in one time-step were stored into a single binary
file (PFB). Each cloud can be identified by a cluster number and has its own pf-
Geode in the scene graph sub-tree. After clustering (Section 6.3.5 of the cloud
dataset, at each time-step a different cluster number is assigned to each cloud.
The correspondence between the clouds in consecutive time-steps has to be de-
termined by a tracking routine. Clouds of one time-step are read at once and
any of the clouds can be selected or colored, see Figure 6.38.

203

Chapter 6. Case Studies: Visualization in VR

Figure 6.38: Performer scene graph of the cloud geometry; pfDCS (Performer
Dynamic coordinate system) contains separate cloud clusters in each pfGeode
node, which can be identified by a name and number for each cluster. Each
pfGeode contains pfGeoSet with the geometry.

When our system has to read only the cloud geometries (about 1.5MB per file
and time-step) from the harddisk and display about 40 thousand triangles, we
can still achieve a high rendering frame rate of more than 24 Hz and data update
rate of 10 Hz. But as soon as additional data components have to be read from
the harddisk and visualized simultaneously, the update rate drops drastically
(< 1 Hz). From our measurements it is clear that we cannot expect much more
than 10-15 MB per second (continuous) from our data storage system. In case
of reading all five data components (the liquid water is not needed, we use the
cloud geometry instead) the data amount would be: 5x2,5MB + 1,5MB = 14MB;
the data update rate about 1 Hz. Conversion of integers to floats costs only about
a milisecond. For performance reasons it is better not to overload the data input
when the user is performing interactive exploration of the data in time. It makes
sense to read the cloud geometry (1-1.5MB) together with one data component
(2.5MB). The data update rate would be then about 3 Hz. The size of the data is
not a problem when exploring a single time-step. It becomes a bottleneck only
when the user wants to watch the simulation data in playback mode.

204

6.3. Visualization of Cumulus Clouds

Practically, there are two solutions. The first solution is to sub-sample the
dataset into a smaller grid, for example 32x32x20 x2 bytes, which needs only
40kB. The whole dataset could be pre-processed and a sub-sampled version of
the data could be used for interactive previews of the simulation. A severe dis-
advantage of this method is that it removes many interesting details of the data,
but an advantage is that it preserves a global overview.

Figure 6.39: Feature-based cropping of the cloud data

Another, and much better solution, is a feature-based cropping of the data.
We know that the user is interested in a small region of the data that surrounds
a chosen cloud formation, see Figure 6.39. When our system could track the
cloud in time, we could read only the data around this cloud, which would be
just a fraction of the whole data. The diameter of the region of interest can be
determined as maximal cloud size over the time series + some margin. After
a selection of the cloud, the whole dataset and corresponding clouds would be
processed and cropped. An advantage of this method is that no details would be
missed, but context will be lost. To cope with losing the context we can combine
both methods: global view on the cloud dataset in low resolution, and local high
resolution around a chosen cloud. Technical problem is only finding a good data
structure for browsing in space/time and resolution.

6.3.5 Clustering and Tracking of Clouds

The ql data (liquid water) contain non-zero values where the visible clouds are,
and zero values everywhere else. It is thus quite simple to make data selections.
The next step is to find the clusters of neighboring cells that satisfy the selection
criterion. The process of finding these data clusters and assigning identifica-
tion numbers is called clustering. For data clustering we have used a vertex
correspondence, see Figure 6.40. As we are interested only in sufficiently large
clouds, we ignore smaller clusters with less than 100 data cells. To each clus-

205

Chapter 6. Case Studies: Visualization in VR

ter of such data a cluster number is assigned. A single cluster corresponds to a
single cloud in the cloud field.

Figure 6.40: Selection of cloud data (left); clustering of clouds (right)

An optimized iso-surface is generated for each cloud separately. All cloud
geometries of one data-frame are stored into one binary geometrical file (PFB).
The whole dataset (600 time-steps) is processed frame by frame. The pre-processing
stage generates a series of files containing cluster attributes (center position, di-
mensions, volume, bounding box), and cloud geometries.

Figure 6.41: Coloring of cloud clusters: the clustering method also supports
periodic boundaries (see also the Color Section).

After clustering and generating cloud geometries we perform time-tracking
of the clouds. We have applied a user assisted tracking scheme [Brinckman,
2002], where an algorithm tries to find the cloud cluster correspondences be-
tween consecutive time-steps. After the automatic tracking the user can edit
the correspondences manually and restart the automatic tracking from a given
time-step, see Figure 6.42. Some basic events can eventually be detected, like
cluster birth, death, join and split [Reinders, 2001]. The main goal of our simple
cloud tracking scheme is to provide the user with a cloud selection through the
whole life-cycle of a chosen cloud, enabling the user to automatically highlight
one selected cloud or hide the other clouds.

206

6.3. Visualization of Cumulus Clouds

Figure 6.42: User-assisted tracking on the Virtual Workbench (see also the Color
Section)

The cluster correspondence is made visible by assigning the same color to
corresponding clouds in different time-steps. We have tested several schemes
for assigning colors to the cloud clusters, see Figure 6.43. The simple scheme
(Figure 6.43 - top) does not provide enough difference between the colors. How-
ever, in the optimized scheme (Figure 6.43 - bottom) the colors are sufficiently
distinct in the HSI color space (hue, saturation, intensity), so that the user can
always distinguish between two different clouds (clusters). Due limitations of
the VR displays and the human eyes, we can use 100% on the hue scale, 75% on
the saturation scale, and only 60% on the intensity scale.

Figure 6.43: Simple color scheme (top) and optimized color scheme (bottom)
with 96 different colors in the HSI color space (see also the Color Section)

207

Chapter 6. Case Studies: Visualization in VR

6.3.6 Interactive Exploration and Visualization of Cloud Data

The exploration process begins with a quick search through the dataset, see Fig-
ure 6.44. The Plexipad is holding a time-control widget for navigation in the
time of the simulation. The stylus can be used for operating the widgets, as well
as for navigation in the visualization of the cloud field. The clouds are tracked
in time and corresponding clouds in subsequent frames are assigned the same
color. The user can select a cloud with interesting properties and complete life-
cycle.

Figure 6.44: Playback of the cloud field simulation. Clouds are tracked in time
and assigned with color to show the correspondence in time. The user is search-
ing for a cloud with interesting properties.

The direct data slicer can be attached to the Plexipad, allowing highly in-
teractive exploration of the data. The stylus can be used to probe the data on
the surface of the direct data slicer. While using the direct data slicer, the stylus
can be used to operate the rest of the virtual environment, using the 3D GUI to
change for example the data visualized or adjusting the color mapper, see Fig-
ure 6.45. A color mapper widget can also be attached to the data slicer, enabling
the color mapping adjustments without changing view context, which has been
found very convenient.

One of the visualization techniques that we tried in VR was a direct volume
rendering [Meissner et al., 2000]. A ray-cast volume rendering is too slow for
VR. Therefore we have tried to use point primitives to emulate volume render-
ing, see Section 5.2. The preliminary results show a large potential of the point
rendering techniques. It is very fast, 50 - 100 thousands points can be drawn
without any drops in frame-rate.

208

6.3. Visualization of Cumulus Clouds

Figure 6.45: The direct vector data slicer is showing air velocity vectors colored
with vertical velocity. Point-based volume rendering shows the ql data (liquid
water). The horizontal data slicer (gray-scale color mapper) shows the qt data
(total water). On this slicer constraints are applied so that it can move only in
the Z direction, while the vector slicer can freely move with the Plexipad (see
also the Color Section).

Figure 6.46: Plexipad contains a direct vector data slicer, showing air velocity
vectors colored with vertical velocity. The iso-surfaces show the cloud volumes
(see also the Color Section).

209

Chapter 6. Case Studies: Visualization in VR

We decided not to use the vtk iso-surface for dynamic visualization of the
cloud geometry (as shown in Figure 6.46) in the exploration sessions on the RWB
because an iso-surface generation takes even on our high performance visual-
ization server more than a second for a dataset of these dimensions. Moreover,
the standard iso-surface routine does not produce sufficiently nice and optimal
triangular meshes. Therefore, we use the pre-processed and optimized cloud
geometries as described before.

Cloud Exploration

Important effects also happen inside the clouds. Therefore we had to develop an
intuitive and functional way of cloud-interior exploration. Transparent surfaces
do not work well in stereo. We designed and implemented Plexipad clipping
technique. The Plexipad can be used to naturally define one clipping plane,
see Figure 6.47. The user can naturally maneuver the clipping plane through
the cloud geometry. For awareness of what is being clipped and clarity of the
clipping technique we have added a wire-frame of the rest of the clipped cloud.
For convenience the wire-frame display can be disabled and hidden.

Figure 6.47: Clipping of cloud geometries with Plexipad: one clipping plane

The Plexipad clipping technique is based on OpenGL and the geometric
primitives are clipped in the graphics hardware and not in software parts of
the graphic pipeline. OpenGL thus has to obtain a complete set of geometric
primitives (triangles, lines) with up to 6 clipping planes. What remains after the
clipping with the half-spaces is rendered on the screen.

An advantage of the hardware polygonal clipping is that it is very fast. A
disadvantage is that it does not allow you to display the removed parts. There-
fore we have to send the cloud geometry into OpenGL twice with opposite ori-
entation of the clipping plane to get the wire-frame geometry. It puts an extra
load on the graphic performance. When the cloud geometry has too many tri-

210

6.3. Visualization of Cumulus Clouds

angles, a drop in the frame-rate can be seen. In such cases it is better to use the
decimated version of the cloud geometry.

Figure 6.48: Clipping of cloud geometries with Plexipad: two clipping planes

Clipping of cloud geometries with Plexipad opens an inside view into the
cloud for detailed visualization. We have found that especially for cloud objects
it is better to use two clipping planes (horizontal and vertical), as shown in Fig-
ure 6.48. In this way the user has a better view on the cloud in a vertical slice
and the vertical relationship is clearly interpreted. The vertical clipping plane is
aligned with the edge of the Plexipad. For clarification the reference grid of the
clipping planes can be displayed, otherwise the clipping may confuse the user
and it is not clear which plane is doing the clipping of the geometry. The clip-
ping technique is fully configurable (1 or 2 clipping plane(s), wire-frame ON/OFF,
clipping-planes reference grid ON/OFF).

Figure 6.49: Plexipad has attached two clipping planes and controls the vec-
tor data slicer. Velocity vectors (u, v, w) are visualized in a given slice. Vertical
velocity w is mapped onto the vector’s color (see also the Color Section).

211

Chapter 6. Case Studies: Visualization in VR

Moreover, the Plexipad can be used at the same time for visualization of
the data in a given slice of the data space. Figure 6.49 shows an interactive
exploration of the air velocity (u, v, w) inside and outside of the cloud. The color
mapper and the length of the vectors can be adjusted by the control widgets on
the Plexipad.

Figure 6.50: Plexipad with 2 clipping planes and direct data slicer that is show-
ing the vertical velocity w (see also the Color Section).

Figures 6.50 and 6.54 show a user exploring the vertical velocity in the cloud
with the direct data slicer. This way the user can study in detail the mixing
process inside the cloud. In the figures it is clearly visible that the air comes into
the cloud from the bottom and flows upwards inside. On the boundaries of the
cloud the air flows downward. In other visualization with the temperature data
θl we have seen more complicated and turbulent behaviour. But a general trend
seems to be that the warm moist air enters the cloud from beneath, while it cools
down on the sides and on the top of the cloud and moves down.

Color Mapping

A well-fitting color mapper is of a great importance for the data slicers. We have
tested several color mapping schemes on the cloud data, see Figure 6.51. Each
of the color mappers offers a different look on the data.

The color spectrum and the gray-scale work well in horizontal slices of the
data, when they are calibrated with the mapping slider widget to get enough
contrast in the textured slices, see Figure 6.51 a,c).

212

6.3. Visualization of Cumulus Clouds

An advantage of these direct color mappings is the visual uniqueness when
one data value projects onto one color. Disadvantage is that small gradients in
data are less visible. To facilitate this we have designed periodic color mapping
schemes (see also Section 5.2.3) with user-specified number of color cycles, see
Figure 6.51 b,d). In the periodic color mapping the gradients are visible, but one
color corresponds with several data values.

Figure 6.51: Color mapping scenarios: rainbow spectrum (a), periodic rainbow
spectrum (b), gray scale spectrum (c), periodic gray scale spectrum (d); (see also
the Color Section)

Interactive Streamlines

For visualization of the air flow we have implemented a virtual exploration tool
with interactively generated streamlines. It uses the vtk-streamline generator.

213

Chapter 6. Case Studies: Visualization in VR

Using multi-threading, it utilizes the processing power of the SGI Onyx 2 for in-
tegration of the streamlines. We support three streamline sources: a point source
(tip of the stylus), a line source (Figure 6.52) and a plane source (Figure 6.53).

Figure 6.52: Line source of streamlines is attached to the Plexipad.

The line source and plane source, respectively, are attached to the Plexipad.
Each time that the Plexipad moves, the streamlines are recomputed from new
positions. The dominant hand with the stylus can navigate in the cloud system,
operate the 3D GUI or can probe the data.

Figure 6.53: Plane source of streamlines is attached to the Plexipad.

In the same fashion the Plexipad can be used as a starting basis for particle
tracing. Special attention has to be given to the time dependence of this dataset
and a special time-dependent integration scheme has to be used. But we have
left this technique for future work.

214

6.3. Visualization of Cumulus Clouds

6.3.7 Cloud Visualization: Summary and Discussion

We have used several different visualization tools and configurations of the vi-
sualization pipeline to visualize the various modalities of the cumulus clouds.
Although the use of the point-based cloud visualization was good for a fast
overview of the cloud data, the pre-processed iso-surfaces provided a much bet-
ter volumetric visualization. To examine the interior of the clouds, an OpenGL-
based clipping-plane scheme has been implemented. The cloud clipping can be
naturally used in combination with the direct data slicer, which is attached to
the Plexipad, see Figure 6.54.

Figure 6.54: The user performs a two-handed exploration of the cloud data.
The non-dominant hand holds the Plexipad with clipping planes and direct
data slicer, while the dominant hand navigates and probes the data (see also
the Color Section).

The VRX framework handles the parallel processing of the data reading and
the update of the visualization tools. Therefore, the frame rate of the system
is well above 10 Hz, which results in a comfortable and interactive VE. When
playing back the simulation data using the time controller, the latency caused
by the hard disk reading and the tool updates is noticed from the slow update
of the visualization information. This however does not strongly affect the per-
formance and interactivity of the tools and the VE. The best play back frame rate

215

Chapter 6. Case Studies: Visualization in VR

can be achieved if only the necessary data files are read into memory (thus re-
ducing harddisk reading time). An advanced data management scheme based
on context data cropping is desirable.

Preliminary user tests with dr. Harm Jonker, who has provided us with the
simulation data, were very successful. He experienced no difficulties in navi-
gating through the data and was satisfied with the intuitive control of the data
slicers with the Plexipad. Using a correctly calibrated texture slicer, which visu-
alized vertical air momentum, he was able to identify the shells of downward
air flow alongside the cumulus clouds (Figure 6.54). He was very enthusiastic
about the use of the vector data slicer in combination with the cutting plane. Us-
ing this combination of tools on the Plexipad, he was able to cut trough a cloud
and inspect the momentum inside and outside the clouds, see Figure 6.49. He
noticed several interesting turbulent phenomena and unexpected air flow inside
the clouds. The intuitive (two-handed) control of the environment and tools al-
lowed him to directly inspect the data without great effort.

Based on these promising results, our research group is planning to continue
on this project. This will concentrate on the implementation tuning of automatic
extraction, clustering and tracking of clouds and other features such as vortices,
or places where turbulence occurs. In addition more visualization techniques
(e.g. particle tracing and streamlines in time-dependent datasets) and some ex-
ploration tools (e.g. region of interest in data) will be added.

216

Chapter 7

Conclusions and Future Work

This thesis describes research in the field of interaction and scientific visualiza-
tion in virtual environments. In this chapter, we summarize the main results and
draw overall conclusions. At the end, we give directions for future research.

7.1 Conclusions

Based on our survey (Chapter 2) of related work in the fields of Virtual Real-
ity and scientific visualization we have proposed our research agenda for this
thesis, which included the following main research topics: environments for
developing VR applications and design of VEs, interaction techniques for VEs,
alternative force feedback approaches, techniques and architectures for interac-
tive data visualization and exploration in VEs, and computational steering en-
vironments. This research has been performed on the Responsive Workbench.
During this research project we developed the RWB Library and RWB Simulator,
our basic software environment. On top of this we designed and implemented
the VRX toolkit, an interactive visualization toolkit for the Workbench.

Concepts described in this thesis have been applied in several case studies,
dealing with visualization of scientific data on the RWB. Within the Molecular
Dynamics case study we developed MolDRIVE, a system for visualization and
steering of MD simulations. The cumulus clouds case study was a test-bed ap-
plication during the development of VRX.

7.1.1 Development of Workbench Applications

In Chapter 3, we introduced the Virtual Workbench (equivalent name for the
Responsive Workbench) and described the technical characteristics of this sys-
tem. Section 3.3 discusses the design aspects of applications and VEs for the
Workbench. The RWB offers a large screen to visualize 3D models. It intensifies
3D perception of the models and the data, and combined 2D and 3D interfaces
can be used for the user interaction. Workbench applications use the laboratory
table metaphor or the window-on-the-world metaphor.

Section 3.4 presents basic concepts of the RWB Library. This library provides
a solid basis for developing VR applications for the Workbench and adds a nec-
essary ”VR functionality and behaviour” to the graphical objects, provided by
Performer and OpenGL.

The problem of developing and debugging applications has been addressed
with the RWB Simulator, see Section 3.5. The simulator provides the developer

217

Chapter 7. Conclusions and Future Work

with a birds-eye view on a simulated Workbench which runs the actual appli-
cation. The ability to play back a recorded Workbench session in the simulator
helps the developer during testing, debugging, previewing and creating still-
images and animations. Although the idea of a recording and playback option
seems simple and straightforward, most VR software environments do not pro-
vide this option. The RWB Simulator has proved to be a very useful tool.

7.1.2 Interaction with Virtual Environments

Chapter 4 deals with interaction techniques in virtual environments. Based on
analysis of existing interaction techniques for object selection and manipulation,
and for navigation in the VE, we presented interaction techniques suitable for
the RWB, see Section 4.1. Collision detection, collision handling, and object con-
straints are important for realistic behaviour during manipulation of objects in
VEs. We presented our approach of interactive object collision detection and
handling, and a geometric approach to handling object constraints.

Section 4.2 presents a virtual force feedback method for manipulation of vir-
tual objects. We introduced the spring-based manipulation tools (spring, spring-
fork and spring-probe), which use the spring metaphor, providing visual force
feedback. The spring-fork is designed for direct object manipulation. The defor-
mation of the spring part of the tool (stretch, bend and twist) shows the forces
and torques acting on the tool. The spring-tools also give a visual feedback dur-
ing object collisions. The spring tools were tested on a simple assembly task.
Informal user tests indicate that these tools are very easy to use, and provide
realistic visual feedback.

The spring-fork has been adapted for distant object manipulation. We have
developed the spring manipulator, which has been used for particle steering
(manipulation with atoms) in a real-time Molecular Dynamics simulation, visu-
alized on the Workbench using the MolDRIVE system. In Section 4.3, we de-
scribed three methods for particle steering, of which the virtual spring manipu-
lator, to exert an external force by the user on a manipulated particle, seems the
most intuitive steering tool. The steering tools have been tested in electrolyte
and protein studies with MolDRIVE. These tools proved very successful. The
complete description of MolDRIVE case studies is in Section 6.2.

7.1.3 Exploration and Data Visualization in VEs

Chapter 5 presents our approach of exploration and data visualization in VR,
and the VRX toolkit. The description begins with our interaction and explo-
ration tools, see Section 5.1. We defined one- and two-handed interaction sce-
narios, which have been used for development of the tools. The tool set contains
tools for navigation (zoom tool, mini system tool, etc.), selection (ROI), probing
of data (point, line, plane and volume probe), and tools for particle steering.

218

7.1. Conclusions

We employed the real-world metaphors such as: magnifying glass (zoom
tool), pen and notepad (two-handed use of probing tools with the stylus in the
dominant hand and the Plexipad in the non-dominant hand), fishing rod (spring
manipulator), and other metaphors.

The two-handed interaction scenario, holding two dimensions of the Plexi-
pad in one hand and controlling the third dimension by the stylus in the other,
is useful for designing new easy-to-use interaction tools. This two-handed syn-
ergy between the stylus and the Plexipad is very intuitive and allows natural
exploration and probing of volumetric datasets.

The described interaction scenarios provide a good approach for develop-
ment of navigation and probing tools. These tools were initially developed for
the MolDRIVE system and were later incorporated in the VRX toolkit.

After presenting the intuitive interaction and exploration tools we described our
data visualization framework, the VRX toolkit, see Section 5.2. This toolkit en-
ables rapid development of visualization applications for the Workbench. VRX
uses a multiprocessing scheme and adaptive resolution of the probing tools for
enhancement of performance. The VRX tools were designed to be practical and
easy-to-use for data visualization in a VE. The VRX toolkit has been successfully
used for visualization of a time-dependent dataset in the cumulus clouds case
study, described in Section 6.3.

7.1.4 Lessons Learned

Development of VR Applications

While VR technology and VR software still urgently need standardization, sev-
eral open source initiatives try to address this problem (VR Juggler, OpenScene-
Graph, etc.). High-end VR visualization applications are usually built in toolkits
on top of Performer and OpenGL. In this sense, the decision we made 4 years
ago to build our own VR library was right. Due to this, we have also developed
a broad knowledge about VR systems and implementation of high performance
graphics and visualization software for VR.

Simulator environments are more or less necessary for development of VR
applications. With our concept of the RWB Library and the RWB Simulator we
go beyond conventional VR libraries, supporting the simulator mode (i.e. the
CAVE library and the CAVE simulator). In 1999, we observed that VE session
recording and playback facilities were very useful, yet not available in most VR
systems. In 2003, this observation is still true. Although this feature is relatively
easy to implement in a VR library, most of VR systems simply ignore the pos-
sibility to record user interaction with the application in the VE. In our system,
this simple feature increases the productivity in developing VR applications,
with a lot of user interaction, which has to be carefully designed and tested.

219

Chapter 7. Conclusions and Future Work

Interaction with VEs

Interaction is the most important issue in today’s VR. Although spatial inter-
action seems very natural, many users have problems in performing spatial in-
teractions in VEs. Providing a good stereo display is not at all enough. The
problems with 3D interaction are caused often by (too) inaccurate tracking of
input devices, wrong visual feedback during interaction, bad system response
due to high latency, not stimulating other sensations (acoustic, haptic or tactile
feedback), and sometimes complicated or un-natural usage of interaction tools.

Indeed, technical solutions include improvements in tracking accuracy, mini-
mizing of the system latency by optimizing the application processing pipeline,
and integration of additional devices to provide acoustic, haptic (force) or tactile
feedback.

In our system, we highlight the selected or manipulated objects and option-
ally provide sounds during the interaction (touch, un-touch, select, manipulate
and release events). This kind of feedback helps enormously. For further im-
provement we use passive haptic feedback provided by the physical surface of
the Plexipad and the screen of the Workbench. We usually put our interaction
widgets there. The effect is that the user feels a physical contact with an object
of the VE.

Less obvious solutions deal with a better visual feedback, a better design of VEs,
a better design of interaction tools with utilization of interaction metaphors from
the real world. Virtual Reality for data visualization purposes does not need to
mimic reality, but from our experience we can conclude that using real-world
metaphors (visual and behaviour metaphors) helps the users to work in the VEs.

Even a proper visual metaphor can utilize the dominance of human vision to
replace other human senses. An example of this is our approach of visual force
feedback. We use a visual spring metaphor to display forces during manipulation.
The spring-tool creates a flexible connection between the physical interaction
device and manipulated virtual objects. Further, the spring-tool can be used as
an input of the force into the VE.

Informal user tests have shown that most users very quickly accommodate
to such visual force feedback, even without exerting a physical force. The users
very easily learn to use manipulation techniques that are based on this princi-
ple. Our experience is that after a few seconds even VR non-experienced sub-
jects could use the spring-fork for the assembly task. Certainly, most people are
skilled at using a physical fork. Thus, we do not need to teach them to use it.
But the functionality of the physical fork is completely different from the virtual
spring-fork. Even then, when it is a good metaphor, people can efficiently use
such a manipulation tool.

220

7.1. Conclusions

The fishing rod metaphor, used in the spring particle manipulator, proved
also to be successful. For the users it is usually difficult at the beginning to get
used to the ray-casting technique, which is needed for particle selection. After
learning to select a particle, it is already easy to manipulate and exert a virtual
force on the particle. One important aspect is that the users must get used to
another kind of inertial forces, as they interact with very small atomic systems.

A good example of a behaviour metaphor for interaction is the pen and notepad
metaphor, represented with physical input devices (stylus and Plexipad). In
this case, the VE generates content and functionality of the virtual notepad as
opposed to the spring-tools, where the VE generates the tool itself. Also this
procedural metaphor helps people to use interaction techniques, derived from
such a metaphor.

At this point, we can conclude that for designing interaction techniques it is
important to look for suitable metaphors from real-life experience.

Data Visualization in VEs

From our research it became obvious that volumetric and multi-dimensional
time-evolving data, possibly containing complex 3D structures, can be visual-
ized and explored in a much more natural way in VEs, possibly sooner leading
to scientific (re)discoveries in the simulated data.

This experience has been obtained during working on the case studies and
co-operating with the scientists from other research groups, whose simulation
data we were visualizing on the Workbench. The scientists were rather enthu-
siastic about our techniques for interactive visualization on the Workbench and
about the new possibilities that VR offers. We have also tried to answer real
scientific questions from their research domains with the visualization on the
Workbench. Visualization in VR can give relatively quickly an answer but we
need to know what to look for.

We have learned that visualization in VEs is strongly dependent on the interac-
tion techniques. Therefore we have studied the methods of interaction exten-
sively, see Chapters 4 and 5. Visualization of data in VR is more exploratory
in nature than on desktop systems. The visualization environment should thus
encourage intuitive exploration of the VE, containing visual representations of
the data, and support quick probing, and measurements on the data. The usage
of good metaphors for the tools and for the tasks can help users to explore the
data. Two-handed data exploration with the Plexipad and the stylus has proven
to be an effective approach.

Another aspect is that from VEs an interactive response to user’s actions is
expected. Visualization, probing and exploration tools for VEs should enhance
the responsive nature of the VEs.

221

Chapter 7. Conclusions and Future Work

The VRX approach forms a solid basis for semi-immersive visualization on
the Responsive Workbench. The computational steering and visualization en-
vironment in the MolDRIVE system has also clearly demonstrated the advan-
tages of steering remotely running simulations and interactive visualization of
the data in VEs, as shown on the Workbench and in the CAVE.

7.2 Future Work

Obviously, future work includes extension of the concepts and the techniques
described in this thesis. The work should also try to address several general
long-term research topics.

7.2.1 Extension of Concepts and Techniques Developed

The VRX concept should be extended with a generalized computational steer-
ing environment to support the ”ultimate Workbench metaphor”, a visual and
interactive VR laboratory. A good computational steering of remote simula-
tions, running on supercomputers, is therefore desirable. The VRX toolkit can
be further improved in volumetric visualization techniques for VR, such as di-
rect volume rendering and interactive iso-surface generation.

The research with MolDRIVE and protein modeling should definitely be
continued. Improvements in MolDRIVE performance using the VRX toolkit are
necessary. Finding better and faster particle representations is desirable, so that
we can visualize more than ten thousand particles. The particle steering tech-
niques should be extended for manipulation of groups of particles with new
multi-spring tools.

The cloud visualization in the cumulus clouds case study has demonstrated
that VRX works well for static frames of the dataset, but several open prob-
lems remain: visualization of large time-dependent datasets (i.e. generation of
streamlines, or particle tracing); how to play back or animate the large time-
evolving datasets in VEs. The most crucial requirement is here to keep frame
rates at the high level of interactivity.

To get closer to the end-users of visualization in VR (scientists, non-VR&VIS
experts), it should be studied whether integration of VRX with an existing net-
work builder visualization system, such as OpenDX or AVS Express, could help
with a better acceptation of this technology for applications in the scientific do-
main. We believe that extension of the network builder concept might help.

Although we have clearly demonstrated utilization of VR for visualization
and exploration of scientific data on several case studies, more evidence is still
needed and we need to perform formal usability and validation studies.

222

7.2. Future Work

7.2.2 Long-Term Topics

The technological VR issues will still include: improvement of display tech-
nologies, more realistic rendering, maximizing rendering speed, minimizing the
system latency, more accurate and wider range tracking, and better acoustic and
haptic augmentation of VEs.

Virtual Reality needs to get closer to the potential users and needs to find
more production-stage applications. Although a number of experimental VR
toolkits exist, it is still difficult to implement an application for a given VR sys-
tem. Therefore two things are desirable: better standards, both on the hardware
and the software level, and VR must become affordable. One of the current
trends, also for scientific visualization, is the development of personal desktop
VR systems, driven by relatively cheap PCs and equipped with affordable dis-
play technology, instead of the expensive large projection-based systems.

Each VR system has its own specifics, determining possible styles of interaction.
There is still a great demand for natural and effective user interfaces and inter-
action techniques for existing VR systems. For technical and conceptual reasons
the techniques that work well in HMDs or in CAVEs do not always work prop-
erly (or do not make any sense) on Workbenches, and vice versa. For example,
on the Workbench the user does not need to look around or fly through a virtual
world as in CAVEs or HMDs. An improved categorization of the interaction
styles and techniques for different VR systems is therefore needed.

In the context of scientific visualization in VEs, interaction will for a long
time be an important issue and topic for future research. Selection and ma-
nipulation of objects, and navigation in VEs (travel specification, way-finding,
keeping context) are generally still not satisfactory. Possible improvements in-
clude acoustic and haptic enrichment of interaction, more conscious utilization
of real-world metaphors, and recognition of interaction gestures. Use of the
voice as an additional input device and speech recognition have a potential to
improve natural communication between a human and a computer or another
human in collaborative VEs.

Visualization tools for VEs are expected to be highly interactive, with a fast re-
sponse. Due to the large size of data or complexity of visualization techniques
used (streamlines, iso-surfaces, volume rendering, etc.), the system response
may become very slow. This effectively means that for certain techniques and
amounts of data we do not have enough resources yet to guarantee computation
and data access in real time.

Part of the solution may be the time-critical computing [Bryson & Johan,
1996; Funkhouser & Séquin, 1993], which should guarantee some result within
a given time budget while meeting the user requirements. First, the time budget
for various techniques has to be determined. And after that, it has to be decided
which visualization algorithm with which parameters meets the time budget.

223

Chapter 7. Conclusions and Future Work

Accuracy versus speed tradeoffs can be used to keep the computation time of
the visualization algorithm within the budget.

In some cases it also seems reasonable to use a hierarchical representation of
the data with different levels of detail. During visualization and exploration in
the VE it should be possible to switch between the data representations.

Another approach may utilize distributed and parallel visualization. The
idea is to run the visualization algorithm on a parallel supercomputer, collect
the results and send them to the graphics server that controls the virtual envi-
ronment. The system and network latencies are here the big issues.

A problem related to potentially very large datasets is that most interaction
(selection, manipulation) and visualization tools are based on ”small problems”.
Therefore an effort should be also put in the development of scalable interaction
tools (i.e. selection and manipulation of 50 particles from 10.000 in total), and
the development of scalable visualization tools for large datasets.

A promising approach to deal with large time-dependent datasets is feature ex-
traction, feature tracking, event detection and iconic visualization [Sadarjoen,
1999; Reinders, 2001]. Instead of working with the large dataset during the ex-
ploration phase in the VE, the data should be preprocessed off-line: selection
and extraction of features, calculation of the feature attributes, the features can
be tracked in time, and finally visualized with icons (spheres, ellipsoids, trees,
etc.). Iconic visualization (simple geometrical objects) seems to be very suitable
for virtual environments. These feature-processing techniques should be defi-
nitely further extended and applied also in the context of data visualization in
VEs. The question is, whether the preprocessing phase (selection of a feature,
extraction and tracking) could be also performed directly in the immersive VE,
or would it still be better to do this step off-line on a desktop system.

A great field for future work is also collaborative visualization in virtual envi-
ronments. VEs naturally encourage co-operation of scientists in visualization
and exploration of the data. In recent years, the phrase ”telecollaboration” has
been established, when multiple participants interact with a shared dataset and
with each other over a network [Sawant et al., 2000].

Finally, we conclude with a question towards the future: ”Will scientists ever use
virtual reality and scientific visualization without programmers or service providers to
help them?”. Unfortunately, the VR technology and visualization systems for
VR are still very premature and rather difficult to use and to operate for non-
experts. It is important that we will continue in convincing the scientists from
other research disciplines of the advantages of visualization in VR. It has taken
computer graphics several decades to win the trust of the scientific community.
Let’s hope that VR will be accepted more quickly.

224

Bibliography

Agrawala, M., Beers, A., Fröhlich, B., Hanrahan, P., McDowall, I., & Bolas, M.
1997. The Two-User Responsive Workbench: Support for Collaboration
Through Individual Views of a Shared Space. Pages 327–332 of: Proc. ACM
SIGGRAPH ’97.

Arthur, K., Preston, T., Taylor II, R.M., Brooks, F.P., Whitton, M.C., & Wright,
W.V. 1998. Design and Building the PIT: a Head-Tracked Stereo Workspace
for Two Users. In: Proc. Immersive Projection Technology ’98.

Barzel, R., & Barr, A.H. 1988. A Modeling System Based on Dynamic Con-
straints. ACM Computer Graphics, 22(4), 179–188.

Beckers, J. 1999. Molecular Simulations of porous silica and β-Alumina. Ph.D. thesis,
TU Delft, Department of Applied Sciences, Computational Physics Section.

van den Bergen, G. 1999. A Fast and Robust GJK Implementation for Collision
Detection of Convex Objects. Journal of Graphics Tools, 4(2), 7–25.
http://www.win.tue.nl/~gino/solid/.

Bier, E.A., Stone, M.C., Pier, K., Buxton, W., & DeRose, T. 1993. Toolglass and
Magic Lenses: The see-through interface. Pages 73–80 of: Proc. ACM SIG-
GRAPH ’93.

Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., & Cruz-Neira, C.
2001. VR Juggler: A Virtual Platform for Virtual Reality Application Devel-
opment. Pages 89–96 of: Proc. IEEE Virtual Reality ’01,.

Bowman, D., & Hodges, L. 1995. User Interface Constraints for Immersive Virtual
Environment Applications. Tech. rept. GIT-GVU-95-26. Georgia Institute of
Technology. Technical Report.

Bowman, D., & Hodges, L. 1997a. An Evaluation of Techniques for Grabbing
and Manipulation Remote Objects in Immersive Virtual Environments.
Pages 35–38 of: Proc. ACM Interactive 3D Graphics ’97.

Bowman, D., & Hodges, L. 1997b. User Interface Constraints for Immersive
Virtual Environment Applications. Pages 35–38 of: Proc. IEEE VRAIS ’97.

Brederson, J.D., Ikits, M., Johnson, C.R., & Hansen, C.D. 2000. The Visual Haptic
Workbench. Pages 46–49 of: Proc. Phantom Users Group Workshop ’00.

225

Bibliography

Brinckman, M. 2002. Visualization of Cumulus Clouds on the Virtual Workbench.
Tech. rept. DUT-ITS-CG-02-07. TU Delft, Department of Information Tech-
nology and Systems, Computer Graphics Section. Internal research report
(in Dutch).

Brooks, F.P. 1988. Grasping reality through illusion - interactive graphics serving
science. Pages 1–11 of: Proc. ACM Human Factors in Computer Systems ’88.

Brooks, F.P. 1999. What’s Real About Virtual Reality. IEEE Computer Graphics
and Applications, 19(6), 16–27.

Brown, J.M., & Colgate, J.E. 1994. Physics-based Approach to Haptic’s Display.
In: Proc. ISMCR ’94. Topical Workshop on Virtual Reality.

de Bruin, P.W., Vos, F.M., Post, F.H., Frisken-Gibson, S.F., & Vossepoel, A.M.
2000. Improving Triangle Mesh Quality with SurfaceNets. Pages 804–813 of:
Medical Image Computing and Computer-Assisted Intervention – Proc. MICCAI
’00. Pittsburgh, PA, USA.

Bryson, S. 1994a. Approaches to the Successful Design and Implementation of
VR Applications. In: Course Notes, ACM SIGGRAPH’94.

Bryson, S. 1994b. Virtual Environments in Scientific Visualization. Pages 201–220
of: Proc. ACM VRST’94.

Bryson, S., & Johan, S. 1996. Time Management, Simultaneity, and Time-critical
Computation in Interactive Unsteady Visualization Environments. Pages
255–261 of: Proc. IEEE Visualization ’96.

Bryson, S., & Levit, C. 1992. The Virtual Windtunnel. IEEE Computer Graphics
and Applications, 12(4), 25–34.

Bues, M., Blach, R., Stegmaier, S., Häfner, U., Hoffman, H., & Haselberger, F.
2001. Towards a Scalable High Performance Application Platform for Im-
mersive Virtual Environments. Pages 165–174 of: Proc. Immersive Projection
Technology and Eurographics Virtual Environments ’01.

Burdea, G.C. 1996. Force and Touch Feedback for Virtual Reality. Publishers City.
ISBN 0-471-02141-5.

Burdea, G.C., & Coiffet, P. 1994. Virtual Reality Technology. Jonh Wiley.

Cohen, J., Lin, M., Manocha, D., & Ponamgi, K. 1995. I-COLLIDE: An Interactive
and Exact Collision Detection System for Large-Scaled Environments. Pages
189–196 of: Proc. ACM Interactive 3D Graphics ’95.
http://www.cs.unc.edu/~geom/I_COLLIDE.html.

Coquillart, S., & Wesche, G. 1999. The Virtual Palette and the Virtual Remote
Control Panel: A Device and an Interaction Paradigm for the Responsive
Workbench. Pages 213–216 of: Proc. IEEE Virtual Reality ’99.

Cruz-Neira, C., Sandin, T.A., & de Fanti, R.V. 1993. Surround-Screen Projection-
Based Virtual Reality: The Design and Implementation of the CAVE. Pages
135–142 of: Proc. ACM SIGGRAPH ’93.

226

Bibliography

Cutler, L.D., Fröhlich, B., & Hanrahan, P. 1997. Two-handed Direct Manipulation
on the Responsive Workbench. Pages 107–114 of: Proc. ACM Interactive 3D
Graphics ’97.

Dai, P., Eckel, G., Göbel, M., & Wesche, G. 1997. Virtual Space: VR Projection
System Technologies and Applications. Tech. rept. GMD/IMK. Internal report
on AVOCADO framework.

van Dam, A., Forsberg, A.S., Laidlaw, D.H., LaViola, J., & Simpson, R.M. 2000.
Immersive VR for Scientific Visualization: A Progress Report. IEEE Com-
puter Graphics and Applications, Nov/Dec, 26–52.

Darken, R., & Sibert, J.L. 1993. A Toolset for Navigation in Virtual Environments.
Pages 157–165 of: Proc. ACM SIGGRAPH ’93.

Durbeck, L.J.K., Macias, N.J., Weinstein, D.M., Johnson, C.R., & Hollerbach, J.M.
1998. SCIrun Haptic Display for Scientific Visualization. In: Proc. Phantom
Users Group Meeting ’98.

Durbin, J., SwanII, J.E., Colbert, B., Crowe, J., King, R., King, T., Scannell, Ch.,
Wartell, Z., & Welsh, T. 1998. Battlefield Visualization on the Responsive
Workbench. Pages 463–466 of: Proc. IEEE Visualization ’98.

Durlach, N.I., & Mavor, A.S. 1995. Virtual Reality - Scientific and Technological
Challenges. National Research Council.

Eckel, G., Hiatt, S., & Galgani, D. 1997. Iris Performer: Programmer’s Guide. Sil-
icon Graphics, Inc. Electronically available from: http://www.sgi.com/
software/performer/manuals.html.

Foley, J.D., van Dam, A., Feiner, S, & Hughes, J. 1990. Computer Graphics: Princi-
ples and Practice. Fifth, revised edn. Addison-Wesley Publishing Company.

Foulser, D. 1995. IRIS Explorer: A Framework for Investigation. IEEE Computer
Graphics, 29(2), 13–16. http://www.nag.co.uk/Welcome_IEC.html.

Fröhlich, B., Tramberend, H., Agrawala, M., & Baraff, D. 2000. Physically-Based
Manipulation on the Responsive Workbench. Pages 5–12 of: Proc. IEEE VR
’00.

Fuhrman, A., Schmalstieg, D., & Gervautz, M. 1998. Strolling Through Cy-
berspace With Your Hands in Your Pockets: Head Directed Navigation in
Virtual Environments. Pages 216–225 of: Proc. Eurographics Virtual Environ-
ments ’00.

Funkhouser, T., & Séquin, C. 1993. Adaptive Display Algorithm for Interactive
Frame Rates during Visualization of Complex Virtual Environments. Pages
247–254 of: Proc. ACM SIGGRAPH ’93.

Garland, M. 1999. Quadric-Based Polygonal Surface Simplification. Ph.D. thesis,
School of Computer Science, Carnegie Mellon University,Pittsburgh. Soft-
ware and thesis available at:
http://www.cs.cmu.edu/~garland/quadrics/.

227

Bibliography

Garvic, I. 2001. Real-time, interactive simulations on the Virtual Workbench. M.Sc.
thesis, TU Delft, Department of Applied Sciences, Computational Physics
Section.

Germans, D., Spoelder, H.J.W., Renambot, L., & Bal, H.E. 2001. VIRPI: A High-
Level Toolkit for Interactive Scientific Visualization in VR. Pages 109–120 of:
Proc. Immersive Projection Technology and Eurographics Virtual Environments
’01.

Gottschalk, S., Lin, M., & Manocha, D. 1996. OBB-Tree: A Hierarchical Structure
for Rapid Interface Detection. Pages 171–180 of: Proc. ACM SIGGRAPH ’96.
http://www.cs.unc.edu/~geom/OBB/OBBT.html.

Grant, B., Helser, A., & Taylor II, R.M. 1998. Adding force to a Stereoscopic
Head-Tracked Projection Display. Pages 81–88 of: Proc. IEEE VRAIS ’98.

Guiard, Y. 1987. Asymmetric Division of Labor in Human Skilled Bimanual
Action: The Kinematic Chain as Model. Journal of Motor Behaviour, 19(4),
486–517.

de Haan, G. 2002. Interactive Visualization on the Virtual Reality Responsive Work-
bench. M.Sc. thesis, TU Delft, Department of Information Technology and
Systems, Computer Graphics Section.

de Haan, G., Koutek, M., & Post, F.H. 2002. Towards Intuitive Exploration Tools
for Data Visualization in VR. Pages 105–112 of: Proc. ACM VRST ’02.

Haase, H. 1994. How Scientific Visualization Can Benefit from Virtual Environ-
ments. CWI Quarterly, 7(2), 159–174.

Haase, H., Strassner, J., & Dai, F. 1996. VR Techniques for the Investigation of
Molecular Data. Computers and Graphics, 20(2), 207–217.

Haber, R.B., & McNabb, D.A. 1990. Visualizations idioms: A conceptual model
for scientific visualization systems. Pages 75–83 of: Nielson, G.M., Shriver,
B.D., & Rosenblum, L. (eds), Visualization in scientific computing. IEEE Com-
puter Society Press.

Halle, M. 1997. Autostereoscopic displays and computer graphics. Computer
Graphics, 31(2), 58–62.

van Hees, J., & den Hertog, J. 2002. MolDRIVE: a system for remote interactive MD
simulations on a Virtual Reality Responsive Workbench. M.Sc. thesis, TU Delft,
Department of Applied Sciences, Computational Physics Section.
http://visualization.tudelft.nl/~michal/MolDRIVE.

Herndon, K., van Dam, A., & Gleicher, M. 1994. The challenges of 3D interaction.
SIGCHI Bulletin, 26(4), 36–43.

Hibbard, W., & Santek, D. 1990. The VIS-5D System for Easy Interactive Vi-
sualization. Pages 129–134 of: Proc. IEEE Visualization ’90. Available from:
http://www.ssec.wisc.edu/~billh/vis5d.html.

228

Bibliography

Hibbard, W., Anderson, J., Foster, I., Paul, B., Jacob, R., Schafer, C., & Tyree,
M. 1996. Exploring coupled atmosphere-ocean models using Vis5D. Int.
Journal of Supercomputer Applications, 10(2), 211–222.

Hinckley, K., Pausch, R., Goble, J.C., & Kassel, N.F. 1994. Passive real-world
interface props for neurosurgical visualization. Pages 452–458 of: Proc. ACM
CHI’94.

Hubbold, R., Cook, J., Keates, M., Gibson, S., Howard, T., Murta, A., West, A.,
& S.Pettifer. 1999. GNU/MAVERIK: A micro-kernel for large-scale virtual
environments. Pages 66–73 of: Proc. ACM VRST ’99,.

Humphrey, W., Dalke, A., & K.Shulten. 1996. VMD - Visual Molecular Dynam-
ics. Journal of Molecular Graphics, 13(1), 33–38.

Insko, B.E. 2001. Passive Haptics Enhances Virtual Environments. Ph.D. thesis,
UNC Chapel Hill, Computer Science Department.

Johnson, A., & Leigh, J. 2001. Tele-Immersive Collaboration in the CAVE Re-
search Network (chapter). Collaborative Virtual Environments: Digital Places
and Spaces for Interaction, 225–243.

Kabbash, P., Buxton, W., & Sellen, A. 1994. Two-handed input in a compound
task. Pages 444–451 of: Proc. ACM CHI ’94.

Kapoor, A., Leigh, J., Wheless, G., Lascara, C., Johnson, A.E., Park, K.S., & De-
fanti, T.A. 2000. Cave6D: A Tool for Collaborative, Interactive Immersive
Visualization of Environmental Data. In: Proc. ACM CVE ’00.
Available from: http://www.evl.uic.edu/akapoor/cave6d/.

Kindratenko, V., & Bennett, A. 2000. Evaluation of Rotation Correction Tech-
niques for Electromagnetic Position Tracking Systems. Pages 13–22 of: Proc.
Eurographics Virtual Environments ’00.

Koutek, M., & Post, F.H. 2000. Dynamics in Interaction on the Responsive Work-
bench. Pages 43–54 of: Proc. Eurographics Virtual Environments ’00.

Koutek, M., & Post, F.H. 2001a. A Software Environment for the Responsive
Workbench. Pages 428–435 of: Lagendijk, R.L., & Heijnsdijk, J.W.J. (eds),
Proc. ASCI ’01. ASCI, Netherlands.

Koutek, M., & Post, F.H. 2001b. Dynamics Manipulation Tools for the Respon-
sive Workbench. Pages 167–168 of: Hirose, M., & Tamura, H. (eds), Proc.
International Symposium on Mixed Reality ’01. University of Tokyo, Japan.

Koutek, M., & Post, F.H. 2001c. Spring-Based Manipulation Tools for Virtual
Environments. Pages 61–70 of: Proc. Immersive Projection Technology and Eu-
rographics Virtual Environments ’01.

Koutek, M., & Post, F.H. 2002. The Responsive Workbench Simulator: A Tool
for Application Development and Analysis. Pages 255–262 of: Skala, V. (ed),
Journal of WSCG ’02.

229

Bibliography

Koutek, M., van Hees, J., Post, F.H., & Bakker, A.F. 2002. Virtual Spring Manip-
ulators for the Particle Steering in Molecular Dynamics on the Responsive
Workbench. Pages 55–62 of: Proc. Eurographics Virtual Environments ’02.

Krüger, W., Fröhlich, B., Bohn, C.A., Schüth, H., Strauss, W., & Wesche, G. 1995.
The Responsive Workbench: A Virtual Work Environment. IEEE Computer,
July, 42–48.

Kuo, E., Lanzagorta, M., Rosenberg, R., S., Julier, & J., Summers. 1999. VR Sci-
entific Visualization in the GROTTO. Page 81 of: Proc. IEEE Virtual Reality
’99.

LaViola, J. 2000. MSVT: A Virtual Reality-Based Multimodal Scientific Visual-
ization Tool. Pages 1–7 of: Proc. IASTED International Conference on Computer
Graphics and Imaging ’00.

Lécuyer, A., Coquillart, S., & Kheddar, A. 2000. Pseudo-Haptics Feedback: Can
Isometric Input Devices Simulate Force Feedback? Pages 83–90 of: Proc.
IEEE VR ’00.

Leech, J., Prins, J.F., & Hermans, J. 1996. SMD: Visual Steering of Molecular
Dynamics for Protein Design. IEEE Computational Science and Engineering,
7(4), 38–45.

Lin, M., & Gottschalk, S. 1998. Collision Detection between Geometric Models:
A Survey. Pages 37–56 of: Proc. IMA Conference on Mathematics of Surfaces
’98.

Lindeman, R., Sibert, J., & Hahn, J. 1999. Hand-Held Windows: Towards Effec-
tive 2D Interaction in Immersive Virtual Environments. Pages 205–212 of:
Proc. IEEE Virtual Reality ’99.

Lovejoy, S., Desaulniers-Soucy, N., Lilley, M., & Schertzer., D. 2000. Empirical
Analysis of the continuum Limit in Rain. Pages 402–404 of: Proc. of 13th
International Conference on Clouds and Precipitation.

Lucas, B., Abram, G. D., Collins, N. S., Epstein, D. A., Gresh, D. L., & McAuliffe,
K. P. 1992. An Architecture for a Scientific Visualization System. Pages 107–
113 of: Proc. IEEE Visualization ’92.
Formerly IBM Visualization Data Explorer, now open source:
http://www.opendx.org.

Massie, T.M., & Salisbury, J.K. 1994. The phantom haptic interface: A device for
probing virtual objects. Pages 295–301 of: Proc. ASME Haptic Interfaces for
Virtual Environments and Teleoprator Systems ’94.

McCormick, B.H. 1987. Visualization in scientific computing. Computer Graphics,
21(6). Special Issue.

Meissner, M., Huang, J., Bartz, D., Mueller, K., & Crawfis, R. 2000. A Practical
Evaluation of Popular Volume Rendering Algorithms. Pages 81–90 of: Proc.
Volume Visualization and Graphics Symposium ’00.

230

Bibliography

Mine, M.R. 1995. Virtual Environment Interaction Techniques. Tech. rept. TR95-018.
UNC Chapel Hill, Computer Science Department.

Mine, M.R. 1996. Working in a Virtual World: Interaction Techniques Used in the
Chapel Hill Immersive Modeling Program. Tech. rept. TR96-029. UNC Chapel
Hill, Computer Science Department.

Mine, M.R. 1998. Making virtual worlds work in a real world. Pages 38–44 of:
Proc. Eurographics Virtual Environments ’98.

Mine, M.R., Brooks, F.P., & Sequin, C.H. 1997. Moving Object in Space: Ex-
ploiting Proprioception in Virtual Environments. Pages 19–26 of: Proc. ACM
SIGGRAPH ’97. ACM.

Mirtich, B. 1998. V-Clip: Fast and Robust Polyhedral Collision Detection. ACM
Transactions on Graphics, 17(3), 177–208.
http://www.merl.com/projects/vclip/.

Moore, M., & Wilhelms, J. 1988. Collision Detection and Responce for Computer
Animation. ACM Computer Graphics, 22(4), 289–298.

Mulder, J. D. 1998. Remote Object Translation Methods for Immersive Virtual
Environments. Pages 80–89 of: Proc. Eurographics Virtual Environments ’98.

Mulder, J.D., & van Liere, R. 2002. Personal Space Station. Pages 73–81 of: Proc.
VRIC ’02. Laval Virtual.

Mulder, J.D., van Wijk, J.J., & van Liere, R. 1999. A survey of computational
steering environments. Future Generation Computer Systems, 15, 119–129.

Okoshi, T. 1976. Three-Dimensional Imaging Techniques. Academic Press.

van de Pol, R., Ribarsky, W., Hodges, L., & Post, F.H. 1999. Interaction Tech-
niques on the Virtual Workbench. Pages 157–168 of: Proc. Eurographics Vir-
tual Environments ’99.

Poston, T., & Serra, L. 1996. Dextrous virtual work. CACM, 39(5), 37–45.

Poupyrev, I., Weghorst, S., Billinghurst, M., & Ichikawa, T. 1996. The Go-Go
Interaction Technique: Non-linear Mapping for Direct Manipulation in VR.
Pages 79–80 of: Proc. ACM UIST ’96.

Poupyrev, I., Weghorst, S., Billinghurst, M., & Ichikawa, T. 1997. A Frame-
work and Testbed for Studying Manipulation Techniques for Immersive
VR. Pages 21–28 of: Proc. ACM VRST ’97.

Prins, J.F., Hermans, J., Mann, G., Nyland, L.S., & Simons, M. 1999. A Virtual
Environment for Steered Molecular Dynamics. Future Generation Computer
Systems, 15.

Rantzau, D., Frank, K., Lang, U., Rainer, D., & Wössner, U. 1998. COVISE in
the CUBE: An Environment for Analyzing Large and Complex Simulation
Data. In: Proc. Immersive Projection Technology ’98.
http://www.hlrs.de/organization/vis/covise/.

231

Bibliography

Raskar R. et al. 1998. The Office of the Future: A Unified Approach to Image-
based Modelling and Spatially Immersive Displays. Pages 179–188 of: ACM
SIGGRAPH ’98, Course Notes.

Razzaque, S., Swapp, D., Slater, M., Whitton, M.C., & Steed, A. 2002. Redirected
Walking in Place. Pages 123–129 of: Proc. Eurographics Virtual Environments
’02.

Reinders, F. 2001. Feature-Based Visualization of Time-Dependent Data. Ph.D. thesis,
TU Delft, Department of Information Technology and Systems, Computer
Graphics Section.

Rohlf, J., & Helman, J. 1994. Iris Performer: A High Performance Multiprocessor
Toolkit for Realtime 3D Graphics. Pages 381–394 of: Proc. ACM SIGGRAPH
’94.
Formerly Iris Perfomer, now OpenGL Performer:
http://www.sgi.com/software/performer/.

Ruspini, D.C., Kolarov, K., & Hatib, O. 1997. The haptic display of complex
objects. Pages 345–352 of: Proc. ACM SIGGRAPH ’97.

Sadarjoen, A. 1999. Extraction and Visualization of Geometries in Fluid Flow Fields.
Ph.D. thesis, TU Delft, Department of Information Technology and Sys-
tems, Computer Graphics Section.

Sawant N. et al. 2000. The Tele-Immersive Data Explorer (TIDE): A Distributed
Architecture for Collaborative Interactive Visualization of Large Data Sets.
In: Proc. Immersive Projection Technology ’00,.

Sayle, R.A., & Milner-White, E.J. 1995. RASMOL: Biomolecular Graphics for All.
Trends in Biochemical Sciences, 20(9), 374.
http://www.umass.edu/microbio/rasmol.

Schmalstieg, D., Fuhrmann, A., Szalavari, Z., & Gervautz, M. 1998. ”Studier-
stube” - An Environment for Collaboration in Augmented Reality. Virtual
Reality - Systems, Development and Applications, 3(1), 37–49.

Schmalstieg, D., Encarnacao, L.M., & Szalavari, Z. 1999. Using Transparent
Props for Interaction With The Virtual Table. Pages 147–154 of: Proc. ACM
Symp. Interactive 3D Graphics ‘99.

Schroeder, W., Martin, K., & B.Lorensen. 1999. The Visualization Toolkit. 2nd edn.
Prentice Hall PTR. http://public.kitware.com/VTK.

Serra, L., Hern, N., Choon, C.B., & Poston, T. 1997. Interactive Vessel Tracing in
Volume Data. Pages 131–137 of: Proc. ACM Interactive 3D Graphics ’97.

Serra L. et al. 1999. An interface for precise and comfortable 3D work with
volumetric medical datasets. Pages 329–334 of: Proc. Medicine Meets Virtual
Reality: 7.

Siebesma, A.P., & Jonker, H.J.J. 2000. Anomalous scaling of cumulus cloud
boundaries. Phys. Rev. Letters, 85(1), 214–217.

232

Bibliography

Slater, M., Usoh, M., & Steed, A. 1995. Taking Steps: The Influence of a Walking
Technique on Presence in VR. Transactions on Computer-Human Iteraction,
2(3), 201–219.

Smith, G., & Stürzlinger, W. 2001. On the Utility of Semantic Constrains. Pages
41–50 of: Proc. Immersive Projection Technology and Eurographics Virtual Envi-
ronments ’01.

Smychliaev, I. 1998. Building a VR visualization application with a modular visual-
ization environment. Tech. rept. DUT-ITS-CG-98-08. TU Delft, Department of
Information Technology and Systems, Computer Graphics Section. Internal
research report.

Stoev, S.L., Schmalstieg, D., & Strassen, W. 2001. Two-Handed Through-the-
Lens Technique for Navigation in VEs. Pages 51–60 of: Proc. Immersive Pro-
jection Technology and Eurographics Virtual Environments ’01.

Stone, J.E., Gullingsrud, J., & Schulten, K. 2001. A System for Interactive Molecu-
lar Dynamics Simulation. Pages 191–194 of: Proc. ACM Symposium Interactive
3D Graphics ’01.

Stull, R.B. 1988. An Introduction to Boundary Layer Meteorology. Revised edition
1997 edn. Kluwer Academic Publishers. ISBN 90-277-2768-6.

Sutherland, I.E. 1970. Computer Displays. Scientific American, 222(June), 57–81.

Swan, J.E., Mueller, K., Moeller, T., Shareef, N., Crawfis, R., & Yagel, R. 1997. An
anti-aliasing technique for splatting. Pages 197–204 of: Proc. IEEE Visualiza-
tion ’1997.

Szalavari, Z., & Gervautz, M. 1997. The Personal Interaction Panel - a Two-
Handed Interface for Augmented Reality. Eurographics ’97, Computer Graph-
ics Forum, 16(3), 335–346.

Taubin, G. 2000. Geometric Signal Processing on Polygonal Meshes. In: State of
the Art Report, Eurographics 2000.
http://www.research.ibm.com/people/t/taubin.

Taylor II, R.M. 1999. Scientific Applications of Force Feedback: Molecular Simulation
and Microscope Control. SIGGRAPH ’99, Course notes.

Tramberend, H. 1999. AVANGO: A Distributed Virtual Reality Framework.
Pages 14–21 of: Proc. IEEE Virtual Reality ’99. http://imk.gmd.de/.

Upson, C., Faulhaber, T, Kamins, D., Laidlaw, D., Schleigel, D., Vroom, J., Gur-
witz, R., & van Dam, A. 1989. The Application Visualization System: A
Computational Environment for Scientific Visualization. IEEE Computer
Graphics and Applications, July, 30–42. http://www.avs.com.

Wernecke, J. 1994. The Inventor Mentor. Reading, Massachusetts, U.S.A.:
Addison-Wesley.
Formerly SGI Inventor, now Open Inventor:
http://www.sgi.com/software/inventor/manuals.html.

233

Bibliography

Wheless, G.H., Lascara, C.M., Cox, D., Patterson, R., Levy, S., & Hibbard, W.
1998. Cave5D and Virtual Director: Collaborative visualization and man-
agement of large, multivariate environmental datasets. In: Alliance ’98.
Available from: http://www.ccpo.odu.edu/~cave5d/homepage.html
New version: http://www-unix.mcs.anl.gov/~mickelso/CAVE2.0.html.

von Wiegand, T., Schloerd, D., & Sachtler, W. 1999. Virtual Workbench: Near
Field Virtual Environment System with Applications. Presence, 8(5), 492–
519.

Yoshida, S., Yamada, K., Mochizuki, K., Aizawa, K., & Saito, T. 2002. Scope-
based Interaction: A Technique for Interaction in a Image-based VE. Pages
139–147 of: Proc. Eurographics Virtual Environments ’02.

Zachmann, G. 2000. Virtual Reality in Assembly Simulation - Collision Detection,
Simulation Algorithms, and Interaction Techniques. Ph.D. thesis, Darmstadt
University of Technology.

Internet References:
Web-AVS-int. The International AVS Centre (IAC).

http://www.iavsc.org/.

Web-Barco. Barco projection systems.
http://www.barco.com/projection_systems.

Web-CAVE5D. Cave5D atmospheric visualization package.
http://www.ccpo.odu.edu/~cave5d/.

Web-CAVElib. The CAVE Library and the CAVE Simulator.
http://www.ncsa.uiuc.edu/VR/.

Web-DelftHydraulics. WL|Delft Hydraulics.
http://www.wldelft.nl/.

Web-Dextro. Volume Interactions.
http://www.volumeinteractions.com.

Web-Dresden3D. SeeReal Technologies.
http://www.seereal.com.

Web-FakespaceSystems. FakeSpace Systems.
http://www.fakespacesystems.com.

Web-Fastrak. Fastrak tracking systems.
http://www.polhemus.com/ftrakds.htm.

Web-MD-demmpsi. DEMMPSI - MD simulation software.
http://www.cp.tn.tudelft.nl/FAQ/MD/Main.html.

Web-MD-gromacs. GROMACS - MD simulation software.
http://www.gromacs.org.

234

Bibliography

Web-MD-namd. NAMD - MD simulation software.
http://www.ks.uiuc.edu/Research/namd/namd.html.

Web-MD-particle-steering. MolDRIVE and particle steering in MD.
http://visualization.tudelft.nl/~michal/MolDRIVE.

Web-MR-toolkit. Minimal Reality (MR) Toolkit.
http://web.cs.ualberta.ca/graphics/MRToolkit.html.

Web-OpenGL. OpenGL API (Application Programming Interface).
http://www.sgi.com/software/opengl.

Web-OpenScenegraph. OpenSceneGraph : cross-platform (C++/OpenGL) library for
real-time visualization. http://www.openscenegraph.org/.

Web-Reachin. Reachin Systems.
http://www.reachin.se.

Web-RWB-lib. RWB-Library and Simulator.
http://visualization.tudelft.nl/~michal/RWBlib.

Web-SGI-Onyx. SGI Onyx family. http://www.sgi.com/visualization/onyx/.

Web-SpringMass. Spring-Mass Simulator.
http://links.math.rpi.edu/devmodules/mechanicalosc/springmass.

Web-SpringTools. Spring manipulation tools for VR.
http://visualization.tudelft.nl/~michal/SpringTools.

Web-Stereographics. CrystalEyes shutter glasses and other VR hardware:
http://www.stereographics.com/.

Web-SVE-lib. The Simple Virtual Environment (SVE) Library.
http://www.cc.gatech.edu/gvu/virtual/SVE/.

Web-TAN. TAN systems. http://www.tan.de.

Web-VR-lib. VRlib, Grotto-viewer for AVS.
http://www.ait.nrl.navy.mil/people/ekuo/vrlib-doc.

Web-VR-toolkit. VR Developers Toolkit.
http://www.lincom-asg.com/VrTool/.

Web-VTK-to-Perf. Conversion of VTK geometry into Performer:
http://brighton.ncsa.uiuc.edu/~prajlich/vtkActorToPF/.

235

Color Section

237

Color Section

Color Figure 1: Spring tool demonstration (see also Fig. 4.22 on p. 90)

Color Figure 2: Spring-fork demonstration (see also Fig. 4.31 on p. 97)

239

Color Section

Color Figure 3: MolDRIVE (DEMMPSI): particle steering performed with the
spring manipulator (see also Fig. 4.46 on p. 114)

Color Figure 4: MolDRIVE (Gromacs): particle steering of protein fragment
(see also Fig. 6.28 on p. 189)

240

Color Section

Color Figure 5: MolDRIVE (DEMMPSI): particle steering of the β-Alumina elec-
trolyte with the spring manipulator on the RWB (see also Fig. 4.47 on p. 115)

Color Figure 6: MolDRIVE (Gromacs): particle steering of protein fragment with
the spring manipulator on the RWB (see also Fig. 5.15 on p. 135)

241

Color Section

Color Figure 7: Visualization Client of MolDRIVE: time-control widget on the
Plexipad; region-of-interest, mini system and several data slicers demonstrated
in action (see also Fig. 6.21 on p. 184)

Color Figure 8: VRX Click-iso-surface tool: the data value on the selected point
(on the Plexipad) is used as the input for generating an iso-surface (see also
Fig. 5.13 on p. 132).

242

Color Section

Color Figure 9: VRX Scalar data slicer and Geometry clipper: cumulus clouds
(see also Fig. 6.50 on p. 212 and Fig. 6.54 on p. 215)

Color Figure 10: VRX Vector data slicer and Geometry clipper: cumulus clouds
(see also Fig. 6.49 on p. 211)

243

Color Section

Color Figure 11: Basic color mapping scenarios in VRX: rainbow spectrum (a),
periodic rainbow spectrum (b), gray scale (c), periodic gray scale (d); (see also
Fig. 6.51 on p. 213)

Color Figure 12: VRX Scalar data slicer tool: two-handed exploration of data
(see also Fig. 5.1 on p. 119)

244

Color Section

Color Figure 13: The direct vector data slicer is showing air velocity vectors
colored with vertical velocity. Point-based volume rendering shows the ql data
(liquid water). The horizontal data slicer (gray-scale color mapper) shows the qt
data (total water). On this slicer constraints are applied so that it can move only
in the Z direction, while the vector slicer can freely move with the Plexipad (see
also Fig. 6.45 on p. 209).

Color Figure 14: Plexipad contains a direct vector data slicer, showing air ve-
locity vectors colored with vertical velocity. The iso-surfaces show the cloud
volumes (see also Fig. 6.46 on p. 209).

245

Color Section

Color Figure 15: Optimized color scheme (bottom) with 96 different colors in
the HSI color space (see also Fig. 6.43 on p. 207)

Color Figure 16: Coloring of cloud clusters: the clustering method also supports
periodic boundaries (see also Fig. 6.41 on p. 206).

Color Figure 17: User-assisted tracking on the Virtual Workbench (see also
Fig. 6.42 on p. 207)

246

Summary

Scientific visualization is a well-established method for analysis of data, origi-
nating from scientific computations, simulations or measurements. Due to the
rapid progress in computer graphics and Virtual Reality (VR), we can see to-
day a number of serious VR applications. Among applications in science also
belongs visualization of data in virtual environments (VEs).

The potential of VR for three-dimensional visualization seems obvious. How-
ever, practically it is still very difficult to interact with virtual environments. De-
velopment of VR applications and design of VEs are also issues that need more
attention. Visualization and exploration of data in VEs requires development
of new visualization concepts different from those known from desktop work-
stations. These problems became motivation for this research project and this
thesis.

The practical VR implementation has been performed on the Responsive
Workbench (RWB). During the project we developed the RWB Library and RWB
Simulator, our application software development environment. On top of this
we designed and implemented VRX, an interactive visualization toolkit for the
Workbench.

Chapter 2 contains a survey of related work in the field of visualization in
VR, describing general principles of scientific visualization, the state of the art
in Virtual Reality, concentrating on the research issues of scientific data visual-
ization by means of VR. This chapter also gives a motivation of our work and
outlines the research agenda of this thesis.

Chapter 3 introduces the Virtual (or Responsive) Workbench, also briefly de-
scribing its technical aspects. Further, the design aspects of applications and
VEs for the Workbench are discussed. Interesting aspects are the laboratory ta-
ble metaphor and the window-on-world metaphor. The technical constraints
and Workbench specifics are reflected in the RWB Library. The concepts and
usage of this library are described in detail. Implications of the development of
RWB applications with the RWB Simulator are also discussed in the chapter.

247

Summary

Chapter 4 deals with interaction techniques in virtual environments. Af-
ter related work in this field, interaction techniques specifically suitable for the
Workbench are presented. This includes selection and manipulation of virtual
objects, and navigation and exploration of VEs. The VR aspects of object colli-
sions and constraints during object manipulation are also discussed.

The problem of providing force feedback on the Virtual Workbench has been
addressed by a force feedback method for manipulation of virtual objects that
can be used as an alternative to haptics. The spring-based manipulation tools
(spring, spring-fork and spring-probe) are introduced. These tools are based on
the spring metaphor, providing visual force feedback. The spring tools have
been further adapted into the spring manipulator, which has been used for par-
ticle steering (manipulation with atomic particles) in a real-time Molecular Dy-
namics simulation, visualized on the Workbench using the MolDRIVE system.
Three methods for particle steering are described and demonstrated with exam-
ple applications.

Chapter 5 presents our approach to exploration and data visualization in
VR. The description begins with our interaction and exploration tools. One-
and two-handed interaction scenarios are discussed. The tools, derived from
the scenarios, were based on several real-world metaphors, which made these
tools very intuitive and easy to use. The navigation and probing tools developed
were incorporated in the VRX toolkit, of which the concepts and techniques are
also described in detail.

VRX is our modular object-oriented toolkit for exploratory data visualiza-
tion, and it enables rapid development of visualization applications for the Work-
bench. A multiprocessing scheme and adaptive resolution of the probing tools
is used for enhancement of performance.

Chapter 6 presents several case studies, dealing with visualization of scien-
tific data on the Workbench. Three main case studies are described: interactive
visualization of flooding scenarios, Molecular Dynamics visualization and com-
putational steering, and visualization of cumulus clouds.

The cumulus clouds case study served a test-bed application during the
development of VRX. For the Molecular Dynamics case study we developed
MolDRIVE, a system for visualization and steering of MD simulations. This
system has been used for studies of the β-Alumina electrolyte and several pro-
teins.

This thesis shows which aspects are necessary for the development of virtual
environments for visualization of scientific data. Interaction with the VEs is
studied extensively. It is clearly demonstrated by object manipulation and by
particle steering that visual force feedback, based on the spring metaphor, is a
good alternative approach to the physical force feedback (haptics).

248

Samenvatting

Wetenschappelijke visualisatie is een algemeen geaccepteerde methode voor
analyse van data afkomstig uit wetenschappelijke berekeningen, simulaties of
metingen. Door de snelle vooruitgang in computer graphics en Virtual Reality
(VR) zijn een aantal serieuze VR applicaties onstaan. Tot de applicaties in de
wetenschap behoort ook de visualisatie van data in virtuele omgevingen (VEs -
Virtual Environments).

Het potentieel van VR voor de 3D visualisatie lijkt overduidelijk. Echter, in
de praktijk is het nog steeds moeilijk om interactief met de virtuele omgevingen
te werken. De ontwikkeling van VR applicaties en het ontwerp van VEs zijn
problemen die ook de aandacht trekken. Visualisatie en exploratie van data in
VEs vereist de ontwikkeling van nieuwe visualisatie concepten die afwijken van
de bekende concepten van desktop workstations. Deze problemen vormen de
motivatie van dit onderzoeksproject en dit proefschrift.

De implementatie van experimentele VR omgeving is uitgevoerd op de Re-
sponsieve Workbench (RWB). Tijdens het project hebben wij de RWB Library
en de RWB Simulator, onze software ontwikkel omgeving, ontworpen. Hierop
hebben wij VRX ontworpen en geı̈mplementeerd, een interactieve visualisatie
toolkit voor de Workbench.

Hoofdstuk 2 geeft een overzicht van verwant werk op het gebied van visu-
alisatie in VR. Het beschrijft de algemene principes van wetenschappelijke visu-
alisatie, de stand van de techniek (state-of-the-art) in Virtual Reality, waarbij wij
ons concentreren op de onderzoeksvragen van de wetenschappelijke datavisu-
alisatie met behulp van VR. Dit hoofdstuk beschrijft ook de motivatie van ons
werk en schetst de onderzoeksagenda van dit proefschrift.

Hoofdstuk 3 introduceert de Virtual (of Responsive) Workbench en beschri-
jft ook kort de technische aspecten. Verder worden aspecten van het ontwerpen
van applicaties en VEs voor de Workbench gepresenteerd. Interessante aspecten
zijn de laboratorium-tafel metafoor en de window-on-world metafoor. De tech-
nische beperkingen en specifieke Workbench aspecten zijn terug te vinden in
de RWB Library. De concepten in deze library en het gebruik ervan worden
gedetailleerd beschreven. Verder worden in dit hoofdstuk implicaties van de
ontwikkeling van RWB applicaties met de RWB Simulator behandeld.

249

Samenvatting

Hoofdstuk 4 richt zich op interactietechnieken in virtuele omgevingen. Na
het verwante werk op dit gebied, worden geschikte interactie technieken voor
de RWB gepresenteerd. Daaronder verstaan we de selectie en manipulatie van
virtuele objecten, en de navigatie in, de en exploratie van VEs. Tevens worden
de aspecten in VR van botsende objecten en constraints op objecten tijdens de
manipulatie behandeld.

Het probleem van het verschaffen van force feedback op de Virtuele Work-
bench wordt opgelost door een force feedback methode voor manipulatie van
virtuele objecten die niet is gebaseerd op haptische of kracht terugkoppeling.
Hiertoe worden de spring-based manipulatie tools (spring, spring-fork, spring-
probe) geı̈ntroduceerd. Deze tools zijn gebaseerd op de veer (spring) metafoor,
die zorg draagt voor een visuele force feedback. De spring tools zijn aangepast
voor de spring manipulator, die wordt gebruikt voor de particle steering (ma-
nipulatie met atomaire deeltjes) in real-time Moleculaire Dynamica simulaties.
Er worden drie methoden van particle steering beschreven en gedemonstreerd
met behulp van voorbeeld applicaties.

Hoofdstuk 5 presenteert onze aanpak van de exploratie en de data visual-
isatie in VR. De beschrijving begint met onze interactie en exploratie hulpmid-
delen (tools). Eén- en twee-handige interactie scenario’s worden voorgesteld.

Deze tools, afgeleid van de scenario’s, waren gebaseerd op metaforen uit
de echte wereld, die ertoe leiden dat deze tools heel intuı̈tief en gemakkelijk te
gebruiken zijn. De ontwikkelde hulpmiddelen voor navigatie en probing waren
bevat in de VRX toolkit, waarvan het concept en de technieken ook uitvoerig
beschreven worden.

VRX is onze modulaire object-georiënteerde toolkit voor exploratieve datavi-
sualisatie; deze maakt een snelle ontwikkeling van visualisatie applicaties voor
de Workbench mogelijk. Multiprocessing opzet en adaptieve resolutie van de
probing tools worden gebruikt voor verbetering van de performance.

In hoofdstuk 6 worden enige case studies besproken, die handelen over vi-
sualisatie van wetenschappelijke data op de Workbench. Er worden drie hoofd
case studies beschreven: de interactieve visualisatie van scenario’s voor over-
stromingen, de visualisatie van moleculaire dynamica simulaties en computa-
tional steering, en tenslotte de visualisatie van simulaties van stapelwolken.

De case study van de stapelwolken diende als een proefapplicatie tijdens
de ontwikkeling van VRX. Voor de moleculaire dynamica case study hebben
wij MolDRIVE ontwikkeld, een systeem voor visualisatie en steering van MD
simulaties. Dit systeem werd gebruikt in het onderzoek van het β-Alumina
electrolyt en het eiwit onderzoek.

Dit proefschrift laat zien welke aspecten belangrijk zijn voor de ontwikkel-
ing van virtuele omgevingen voor de visualisatie van wetenschappelijke data.
De interactie met VEs is uitgebreid bestudeerd. Met behulp van object manip-
ulatie en particle steering wordt gedemonstreerd dat de visuele force feedback,
gebaseerd op de spring metafoor, een goede alternatieve aanpak is voor de
fysieke kracht terugkoppeling (haptic force feedback).

250

Curriculum Vitæ

Michal Koutek was born on 19th of November 1973 in Prague (the Czech Re-
public). In 1992, he received his Gymnasium diploma from Gymnázium U
Libeňského zámečku (GULZ) in Prague. In 1998, he received his M.Sc. degree
in electrical engineering and computer science from the Faculty of Electrical En-
gineering of the Czech Technical University in Prague. The title of his M.Sc.
thesis was: ”Optimizing motion of two legged figures”. Using OpenGL graph-
ics programming he developed an interactive system for inverse kinematics and
inverse dynamics of animated two-legged figures.

In 1998, he started his PhD research project at the Computer Graphics and
CAD/CAM group, the Faculty of Information Technology and Systems of Delft
University of Technology. The research project involved interaction and data
visualization in virtual environments. He also developed a basic software en-
vironment for applications on the Responsive Workbench. During his contract
period, he has also actively contributed to the teaching activities of the group.

In 2002, he joined the Applied Physics Department of the Vrije Universiteit
in Amsterdam, to conduct research on interaction with autonomous robots from
computer generated environments.

251

