
Classifying Con-
tinuous Labels:
A Simple Tweak
to Make Regres-
sion Robust

Ziyu Bao

Classifying
Continuous

Labels: A Simple
Tweak to Make
Regression
Robust

by

Ziyu Bao

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday July 4, 2022 at 1:00 PM.

Student number: 4436113
Project duration: September 1, 2019 – July 4, 2022
Thesis committee: Dr. Jan van Gemert, TU Delft, Supervisor, Committee Chair

Dr. Silvia-Laura Pintea, TU Delft, Daily Supervisor, Committee Member
Dr. Cynthia Liem, TU Delft, Committee Member

This thesis is confidential and cannot be made public until July 4, 2022.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This report presents the work of my master’s thesis project on the topic of “Classifying Regression
Labels: A Simple Tweak to Make Regression Robust”. This research was conducted at Computer
Vision Lab of Pattern Recognition and Bioinformatics Group in TU Delft under the supervision of Dr.
Jan van Gemert.

First and foremost, I would like to express my deepest appreciation for my supervisor, Dr. Jan van
Gemert, for guiding me through the thesis process. I would like to express my deepest gratitude to
Dr. Silvia-Laura Pintea for being my daily supervisor during my thesis and in charge of most of my
questions and being always patient. This work cannot be done without her supervision. I would also
like to thank Dr. Cynthia Liem for her interest in my thesis and for evaluation of my work.

During the project, I have learned a lot. I have learned how to deal with outside environmental
changes because the project begins when COVID-19 breaks out. I have learned how to prioritize
things and make a wise plan.

Last but not least, I would like to thank my parents and friends for helping me to overcome all
obstacles during the project and for supporting me emotionally along the whole path.

Ziyu Bao
Delft, July 2022

iii

Contents

1 Scientific Paper 1

2 Background on Deep Learning 11
2.1 Development . 11

2.1.1 Perceptron . 11
2.1.2 Multi-Layer Perceptron (MLP) . 11
2.1.3 Convolutional Neural Network (CNN) . 11

2.2 Optimization . 14
2.2.1 Loss Function. 14
2.2.2 Gradient Descent . 14
2.2.3 Learning Rate. 15

2.3 Regularization . 15
2.3.1 Early Stopping . 15

3 Robust Regression 17
3.1 Definition . 17
3.2 Method . 17

3.2.1 M-Estimator . 17
3.2.2 Least Trimmed Squares (LTS) . 17

3.3 Deep Robust Regression . 18
3.3.1 Noisy or Corrupted Data . 18
3.3.2 Imbalanced Data . 18

4 Object Detection 21
4.1 Problem Definition . 21
4.2 Milestone Detector . 21
4.3 Application and Difficulty . 21

4.3.1 Pedestrian Detection . 21

5 Object Orientation Estimation 25
5.1 Problem Definition . 25
5.2 Methods. 25
5.3 Quantitative Evaluation. 25

Bibliography 27

v

1
Scientific Paper

1

Classifying Continuous Labels: A Simple Tweak to Make Regression Robust

Ziyu Bao
b13706948771@icloud.com

Dr. S. L. Pintea
silvia.laura.pintea@gmail.com

Dr. J. Gemert
j.c.vangemert@tudelft.nl

Delft University of Technology
Mekelweg 5, 2628 CD Delft, Netherlands

Abstract

Regression is difficult because of noise, imbalanced data
sampling, missing data, etc. We propose a method by clas-
sifying the continuous regression labels to tackle regression
robustness problems. We analyze if our method can help
regression, given that the class information is already in-
cluded in the regression labels. We start by extensively ex-
perimenting on 1D synthetic datasets and find out that clas-
sification can help regression when the data sampling is im-
balanced. This happens when the data are clean, noisy in
inputs and noisy in outputs, but not when they are partially
missing. We then validate our conclusion on the KITTI
dataset by estimating 3D object orientation. We conclude
that our method can help regression in real-world.

Keywords— regression, robustness, imbalance

1. Introduction
Regression, where the goal is to make models learn to

predict continuous labels, is one of the most fundamental
tasks in machine learning. Applications of regression tech-
niques exist ubiquitously in real world, e.g., facial landmark
detection [20, 33], head-pose estimation [16, 31], depth es-
timation [14, 15], age estimation [27, 28] and cell count-
ing [9, 29]. Although regression is fundamental and ubiq-
uitous, its performance is highly sensitive to noise, imbal-
anced sampling, missing data, etc. In this paper, we aim to
tackle this issue by investigating whether an auxiliary clas-
sification task, which learns to predict binned continuous
labels, can help regression to be robust and under which
circumstances can it help.

Classification in combination with regression for better
regression performance yields promising results. In [33],
Zhang et al. optimize facial landmark detection with het-
erogeneous classification tasks including gender estimation,

Figure 1. Overview of orientation estimation assisted by binning.
Instead of regressing to the ray orientation ∈ R spanning 360 de-
grees, multi-bin regression first divides the orientation into more
than one bin and learns in which bin the true orientation lies and
how to regress to it from the center orientation of that bin. The
best number of bins is task-dependent.

smile detection and head-pose classification. Tradition-
ally, researchers approach facial landmark detection as a
standalone problem. However, Zhang et al. demonstrate
that correlated classification tasks are helpful. Effectively
exploiting the intrinsic correlation can help detection to
be more accurate and constrain the solution space. Their
method achieves robust detection, especially of faces with
severe occlusion and pose variation. [30] analyzes the re-
view rating task and proves that using both classification
and regression losses to model the same target labels is bet-
ter than using either loss. They point out that both regres-

1

sion and classification have their own advantages. Although
classification achieves better results when the number of
target labels is small, regression utilizes ordinal informa-
tion and is suitable for a big range of target labels. [9]
transforms the traditionally regression-based cell counting
task into an image classification task because regression-
based predictions often deviate from the ground truth. How-
ever, they realize that a model trained only with a classifica-
tion method lacks the generalizability to unseen cell counts.
They demonstrate that regression has a better generalizabil-
ity and stability on unseen test images and propose an en-
semble scheme which combines the precision of classifica-
tion and the generalizability of regression. We build on this
trend and pay extra attention to the unique characteristics of
classification.

Our research question is: Can an auxiliary classification
task which learns binned regression labels help the main
regression task to be robust? Our hypothesis is yes. To an-
swer our research question, we carefully design our data.
From imbalanced regression [6], robust regression [24] and
zero-shot learning [21], we know that a complete list of data
settings should be imbalanced, noisy, and partially missing.
The meaning that the data is noisy is two-fold: noisy in
inputs and noisy in labels. Different levels of binning are
important. After validating our hypothesis on 1D synthetic
data, we validate it on the real-world KITTI [11] dataset
with the task of 3D object orientation estimation [18]. We
show in Figure 1 how binning in combination with regres-
sion solves a regression task in the real world.

The main contributions of this work are:
• We propose learning binned regression labels as an

auxiliary task for more robust regression. We show
that there is no additional information or target labels
needed.

• We analyze carefully and thoroughly, using controlled
data settings on synthetic data, to understand whether
and how the auxiliary classification task can help re-
gression and demonstrate that it helps when the data
sampling is imbalanced.

• We prove that our finding generalizes well to the real
world by validating it on a 3D orientation estimation
task using the KITTI dataset.

2. Related Work

2.1. Robust Regression

Robust regression assumes that the data distribution vi-
olates assumptions of the regression method, and aims to
improve the regression method such that it is not affected
even when violations occur. The M-estimator [13] and its
alternatives [2, 22, 23] optimize the loss method design
and are resistant to outliers in response variables. How-
ever, they are less robust to heteroscedastic errors which

depend on the input. What’s more, better loss designs can
always be combined with our auxiliary classification task
to achieve further improvement. Other robust regression
methods use deep learning to learn data distribution auto-
matically [3, 19]. One drawback is that they have to design
correct hyperparameters and define correct dependence re-
lations for the model to learn. They are interesting works
that go in another direction from our approach. Data aug-
mentation and re-sampling techniques [7, 8] are other ap-
proaches which focus on mitigating violations of assump-
tions of the data distribution. They are effective methods
but are not efficient in time. All the methods are great, but
our approach is something different.

2.2. Regression with Classification Loss

Classification has been shown to improve regression.
Pose classification helps landmark localization to be more
accurate [33]. Ordinal class information of the depth helps
the exact depth to regress better [10]. However, there are
also papers which do not report a better performance, e.g.
[12], and there are conditions for classification to help re-
gression in [33] and [10]. In [33], task-wise early stopping
is used. [10] uses the ordinal information instead of treating
the classes as irrelevant “buckets”. In this paper, we do not
only validate that classification can improve regression, but
we take this one step further and analyze in which condi-
tions this happens.

2.3. Curriculum Learning

Curriculum learning follows a coarse-to-fine scheme and
achieves loss function robustness and faster convergence
[26]. Since Bengio et al. [5] first introduce the concept
of curriculum learning in the context of classification, the
coarse-to-fine approach has been used in different compo-
nents of the learning process. Belagiannis et al. [4] typi-
cally use progressively higher resolution images to achieve
state-of-the-art pose regression performance. The coarse-
to-fine scheme here is serial. However, our approach fol-
lows a parallel coarse-to-fine scheme: Classification can be
seen as a coarse learning task because the binned labels are
less precise than the continuous ones, and we learn regres-
sion and classification at the same time. We prove that par-
allel coarse-to-fine scheme also achieves loss function ro-
bustness under certain circumstances.

3. Method
3.1. Classification-Assisted Regression (CAR) Loss

Figure 2 explains our proposed method. The goal is to
learn a continuous label. We calculate the minimum and
maximum of all labels of the training dataset. We then dis-
cretize the range into a number of bins. The number of bins
is a hyperparameter, and needs hyperparameter searching

2

Target Continuous Label

Input

MSE Loss

Discrete Bin Label

Cross Entropy Loss

Backbone
Traditional Regression
Method

Goal

Figure 2. Overview of our proposed CAR method. The goal is
to learn the continuous regression label. The continuous label is
transformed into the discrete bin label after doing statistics on the
range of the training target labels. Learning the discrete label is the
auxiliary task. Learning the regression label is the main task. Both
tasks are learned at the same time. We learn the main regression
task by the MSE loss and the auxiliary classification task by the CE
loss of target classification labels from the results of an indicator
function of the target continuous labels. There is no additional
information needed. The traditional regression method only learns
the former. The last layer of the model architecture is usually an
FC layer or an ensemble of FC layers. This module can be attached
to any backbone architectures.

for the best performance. We perform our 1D experiments
with the following numbers of bins: 2, 4, 8, 16, 32, 64,
128, 256, 512. In our 3D object orientation estimation ex-
periments, we use 2 and 4 bins. After dividing the range
into bins, the target continuous label has its corresponding
discrete classification label. We use non-overlapping bins
in 1D experiments. We use overlapping bins in 3D exper-
iments. In 3D experiments, one continuous label can have
two bin labels. We choose the bin that has a lower center
value. The overlap is one-sixth of the size of a bin. Af-
ter defining both labels, two predictions are calculated from
two heads of any sort of backbone models. In 1D experi-
ments, we use a Multi-Layer Perceptron (MLP) with a sin-
gle hidden layer of 10 nodes. The regression prediction is
from a matrix multiplication of the hidden-layer results with
a Fully-Connected (FC) layer of 1-by-10. The classifica-
tion prediction is a vector whose size is equal to the num-
ber of bins, and it is obtained from the result of a Soft-max
function of the result of another matrix multiplication of the
hidden-layer results with another FC layer of bin-number-
by-10. In 3D experiments, the backbone model is VGG19
[25]. The regression label is transformed into two regres-

sion labels: sine and cosine of the angle, which co-define a
unique angle. The regression branch contains 2 FC layers,
instead of 1. The first FC layer is of 256-by-512 × 7 × 7
and the second FC layer is of 256-by-256. The ReLU [1]
function is used as the activation function between the FC
layers. The classification branch has the same architecture.
The 3D object orientation estimation task first requires ob-
ject detection. We train the MS-CNN [18] as the object de-
tector and the result of it is provided to the VGG19. After
obtaining the regression and classification predictions, we
use the Mean Squared Error (MSE) loss between the regres-
sion predictions and the target continuous labels to calculate
the loss of the regression head and the Cross Entropy (CE)
loss between the classification probability predictions and
the results of the indicator function of the target continuous
labels to calculate the loss of the classification head, and
then sum up the two, and use gradient descent to jointly up-
date the backbone. In 3D experiments, the loss is summed
up with the object detection losses and is used to jointly up-
date the MS-CNN and the VGG19. Our loss is defined as:

L =
1

n
Σ(y − ŷ)2 − 1

m
Σm

i=11bini
(y) · log(ŷi) (1)

“n” is the dimensionality of the target continuous label.
If the regression label is uni-dimensional, “n” is 1. “y” is the
target regression label and “ŷ” is the predicted regression
value. “m” is the number of bins. “1bini

(y)” is the indicator
function of “y”. It is 1 if bini is where the target lies, and
it is 0 if not. “ŷi” is the predicted classification probability
for that bin to be where the target lies.

3.2. Controlled Settings

In 1D experiments, we use 4 different settings of data.
They are “Clean Inputs and Outputs”, “Noisy Inputs”,
“Noisy Outputs” and “Out-of-Distribution Testing”. At
each setting, we use 4 different levels of imbalance of the
distribution of the target continuous labels. In 3D experi-
ments, there is only one data setting, which is the inputs and
outputs of the KITTI dataset. We manually construct a sub-
set with “Mildly Imbalanced” label distribution, so that we
compare two levels of target label distribution, i.e. “Mildly
Imbalanced” and “Severely Imbalanced”.

3.3. Training and Evaluation

We have training, validation and testing splits of datasets.
We draw the validation sets from a joint distribution as the
training sets. We respectively use the CAR loss and the
MSE loss to train and compare their performances in test-
ing. After at least 100 epochs of convergence in 1D ex-
periments and 5 epochs of convergence in 3D experiments,
we take the weights of the model whose performance mea-
sure on the validation set is the lowest as the weights of

3

the model for testing. In 1D experiments, the performance
measure for the validation set and the testing set is the MSE.
In 3D experiments, the performance measure is the offi-
cial metric of KITTI, i.e., Average Orientation Similarity
(AOS) [11], for measuring orientation estimation perfor-
mance with object detection. AOS is defined as follows:

AOS =
1

11
Σr∈{0,0.1,...,1} max

r̃:r̃≥r
s(r̃) (2)

“r” is the recall threshold of the object detection. “s(r̃)”
is the cosine similarity of all objects detected with a recall
higher than “r”. s(r̃) ∈ [0, 1]. Its normalized value over 11
recall thresholds, i.e. the AOS, is also in [0, 1]. “s(r)” is
defined as:

s(r) =
1

|D(r)|
Σi∈D(r)

1 + cos∆
(i)
Θ

2
δi (3)

“D(r)” is the set of all positively detected objects above
the recall threshold “r”. “∆(i)

Θ ” is the difference between
the predicted and the target orientations. “δi” is to record if
“i”-th object has been calculated with the ground truth, and
it avoids multiple predictions from matching to the same
ground truth.

We ignore the classification performance in validation
and testing. We repeat 16 times per setting of experiments.
If “best” models using CAR loss to train has lower per-
formance measures than “best” models using MSE loss to
train, and the standard deviations of the performance mea-
sures are mutually exclusive, we conclude in that experi-
ment a confirmation to our research question.

4. Experiments
4.1. 1D Synthetic Sinusoidal Curves Fitting

4.1.1 Dataset

The synthetic dataset contains 2048 data points. The regres-
sion labels are the outputs of Equation 4.

y = 2 sin(2x), x ∈ [0, 2π] (4)

“x” are the inputs. “y” are the outputs. “y” belongs to
[−2, 2]. Figure 3 explains different settings of our data. The
left-most “Target Label Distribution” column depicts the
distribution of “y”. There are 4 levels of severity of imbal-
ance of “y”, depicted from the first row to the 4th row. The
last row depicts the uniform distribution of “y” in testing.
Their corresponding classification labels are equally-spaced
labels. In the right 4 columns, the classification labels are
depicted as 4 different levels of shading in the background
when the number of bins is equal to 4. Each row of the right
4 columns has the distribution of “y” the same as the “Tar-
get Label Distribution” column. The right 4 columns are 4

different settings of our experiments, namely, from left to
right, “Clean Inputs and Outputs”, “Noisy Inputs”, “Noisy
Outputs” and “Out-of-Distribution Testing”. The details of
the four settings are:

• The “Clean Inputs and Outputs” setting. The inputs
are uniformly distributed in [0, 2π] and the regression
labels follow Equation 4.

• The ‘Noisy Inputs” setting. The inputs are shifted uni-
formly at a distance of [-0.4π, 0.4π] away from their
corresponding inputs in the clean setting. The regres-
sion labels follow Equation 4 with shifted “x”’s.

• The ‘Noisy Outputs” setting. The inputs are uniformly
distributed in [0, 2π]. The regression labels are the re-
sults of Equation 4 and then are shifted uniformly at a
distance of [-2, 2] away from their initial results. One-
sixteenth of the regression labels are forced to change
into outliers, i.e. their values are either ±4 of the initial
results of Equation 4.

• The “Out-of-Distribution Testing” setting. We divide
the inputs in the clean setting into 8 equally-spaced in-
tervals, and then divide each interval into halves. We
use the left halves in training and the right halves in
testing. The regression outputs follow Equation 4. The
training set and the testing set are mutually exclusive.

We repeat the experiment of one setting 16 times. By
one setting, we mean the same level of imbalance, the same
number of bins and the same inputs and outputs setting. At
each repetition, we randomly select a mean of the Gaussian
distribution of the regression labels. We experiment with
{2, 4, 8, 16, 32, 64, 128, 256, 512} bins. To make sure all
classification labels exist, we enforce that every bin in 512
bins contains at least 1 data point. This is why the “Mod-
erately Imbalanced” row of the “Target Label Distribution”
column has a straight blue line at the bottom. In total, we
perform 4 levels of imbalance × 9 numbers of bins × 4
inputs and outputs settings × 16 repetitions = 2304 repeti-
tions.

4.1.2 Experiment 1: Can classification help regression,
and under which circumstances?

Figure 4 shows the performances on 1D synthetic testing
sets of training using the MSE loss compared with training
using the CAR loss. The columns are the 4 data settings
and the rows are the 4 levels of imbalance. The y-axis of
each grid cell represents the testing MSE values. The range
of each y-axis is [0, 1.15] for consistency across cells. Each
solid circle of the CAR method depicts the means of the
MSE’s of 16 repetitions, and the error bars depict the stan-
dard deviations. The upper error bar has a length of a stan-
dard deviation. So is the lower error bar. The x-axis of each
grid cell is the numbers of bins, from 2 to 512. The MSE
method is not relevant to the numbers of bins. We draw it

4

The Sinusoidal Functions of Different Settings of 1D Synthetic Data with the Number of
Bins Equal to 4

Se
ve

re
ly

Im

ba
la

nc
ed

M
od

er
at

el
y

Im
ba

la
nc

ed
M

ild
ly

Im

ba
la

nc
ed

U
ni

fo
rm

U
ni

fo
rm

Target Label Distribution Clean Inputs and Outputs Noisy Inputs Noisy Outputs Out-of-Distribution Testing

Training
Testing

Figure 3. Overview of different data settings of 1D experiments with the number of bins equal to 4. The left-most column depicts different
levels of severity of imbalance of the Gaussian distribution of the regression labels. The right 4 columns depict the sinusoidal curves of
four settings of inputs and outputs. In the right 4 columns, the x-axis of each grid cell represents the inputs. The y-axis of each grid cell
represents the targets. The upper 4 rows depict the data in training. The bottom row depicts the data in testing. The rows in the right 4
columns have the same data distributions as the rows in the left-most column. This grid provides an intuitive understanding of different
settings of the data in 1D sinusoidal curve fitting experiments.

as a line instead of a poly-line. The mean is depicted as
the solid straight line. The standard deviation is depicted
as the shaded stripes above and below the straight line. We
draw error bars and shaded stripes to show if they are dis-
connected or not. If the error bars and the shaded stripes are
not connected, the difference is statistically significant.

Conclusion 1: Classification can help regression. The
“Severely Imbalanced” row of the “Clean Inputs and Out-
puts” column in Figure 4 is one obvious example from
which we can conclude that classification can help regres-
sion. From 2 bins to 512 bins, the CAR method has lower
MSE means than the MSE method. From 4 bins to 512
bins, the CAR method has lower MSE means than the MSE
method with disconnected standard deviations. Someone
may expect the margin between the MSE line and CAR

poly-line becomes larger as the number of bins increases.
In fact, we would expect a threshold number of bins, under
which, the CAR method performs increasingly better than
the MSE method as the number of bins increases, and above
which, the two methods show an equal margin between their
performances across all numbers of bins. This is in align-
ment with the behavior in [18]. The best number of bins is 8
in this setting. Increasing the number of bins even decreases
the performance of our CAR method. This trend also exists
in the “Noisy Inputs” and “Noisy Outputs” columns. The
reason may be that increasing the number of bins eventu-
ally decreases the amount of training data within each bin,
and classification becomes so similar with regression that
no “coarse-to-fine” effect is possible.

Conclusion 2: The severity of imbalance is the rea-

5

The 1D Sinusoidal Curve Fitting Results with 16 Repetitions of Each Setting

Se
ve

re
ly

Im

ba
la

nc
ed

M
od

er
at

el
y

Im
ba

la
nc

ed
M

ild
ly

Im

ba
la

nc
ed

U
ni

fo
rm

Clean Inputs and Outputs Noisy Inputs Noisy Outputs Out-of-Distribution Testing

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

MSE
CAR

Figure 4. This is the performance, measured by the MSE on the testing sets, between using the MSE loss and the CAR loss to train. The
rows are 4 levels of imbalance of the training label distributions. The columns are 4 data settings. In each grid cell, the x-axis is the
numbers of bins, and the y-axis is the MSE values. The range of the y-axis is the same across cells, and it is [0, 1.15]. Because using the
MSE loss to train is not affected by the numbers of bins, the MSE method is drawn as a straight line. If the circles of the poly-line of the
CAR method are lower than the straight line of the MSE method, and the error bars are disconnected, the CAR method outperforms the
MSE method. This figure shows in each setting whether the CAR method outperforms the MSE method.

son that classification can help regression. Along the
“Clean Inputs and Outputs” column in Figure 4, we com-
pare the levels of imbalance. We see that, as the imbalance
decreases, the margin between CAR and MSE becomes
smaller and eventually becomes insignificant when the label
distribution is “Mildly Imbalanced” and “Uniform”. This
trend also exists in the “Noisy Inputs” and “Noisy Out-
puts” columns. In the “Noisy Inputs” and “Noisy Outputs”
columns, the CAR poly-line even goes higher than the MSE
line in the “Uniform” row. We conclude that the severity of

imbalance is the cause for classification to help regression.
Conclusion 3: The means of the Gaussian distribu-

tions of the regression labels is irrelevant to the winning
of the CAR method. In one setting, the label distribution
is the only changing factor. The means of the label distribu-
tions is relevant if the error bars are long.

Conclusion 4: Classification cannot help regression
when the testing data are out of distribution. The “Out-
of-Distribution Testing” column has a unique behavior. The
difference between the CAR poly-line and the MSE line

6

does not become smaller as the training label distribution
becomes less imbalanced. There is hardly any number of
bins, with which the error bars of the CAR circle are dis-
connected with the shaded stripes of the MSE line. This
shows that the CAR method does not help regression under
all tested circumstances when the training data are partially
missing or corrupted.

Conclusion 5: Noise makes classification harder to
help regression. We look at the columns of “Noisy Inputs”
and “Noisy Outputs” and can see that at the “Mildly Imbal-
anced” row, more than half of the circle points are higher
than the MSE line. However, in the “Clean Inputs and Out-
puts” column, only at the “Uniform” row, it happens that
more than half of circle points are higher than the MSE line.
This shows that noise can degrade the “helping” effect.

There are two other phenomena that are worth noting.
The first exists ubiquitously. The margin between the MSE
and CAR methods is not the same after a threshold num-
ber of bins. There are more than one “jumps” in the CAR
poly-lines. What causes the “jumps”? The second is the
tendency, in the “Out-of-Distribution Testing” column, that
the margin between the MSE line and the CAR poly-line in-
creases as the number of bins increases. They are interesting
phenomena which need further confirmation and examina-
tion.

4.2. 3D Real-World Object Orientation Estimation

4.2.1 Dataset

The KITTI dataset has 6732 training images and 749 test-
ing images. There are 32456 objects in the training images
and 4057 objects in the testing images. The objects include
cars, pedestrians and cyclists. Figure 5 shows the orienta-
tion label distributions of the training, validation and test-
ing sets. The orientation label distributions of the “Train-
ing” and “Validation” rows of the “Severely Imbalanced”
column is the same as those in the KITTI dataset. We ran-
domly select 10% of the original training images to form
the validation set, and the rest of them to form the training
set. The “Mildly Imbalanced” column shows label distribu-
tions of manually-selected images. We take a subset of the
images of the “Training” and “Severely Imbalanced” cell to
form the images of the “Training” and “Mildly Imbalanced”
cell, and make sure that the subset contains objects whose
orientations follow a uniform distribution. The labels of the
objects in the images end up with mildly imbalanced distri-
bution. We do the same for the validation set. The testing
sets of the “Severely Imbalanced” and “Mildly Imbalanced”
settings are the same subset of the original testing images.
In the “Severely Imbalanced” setting, we use 6059 images
to train, 673 images to validate and 80 images to test. In the
“Mildly Imbalanced” setting, we use 836 images to train,
72 images to validate and 80 images to test.

The Label Distributions of the Training, Validation and Testing Splits of
Two Levels of Imbalance of 3D Object Orientation Estimation Experiments

Tr
ai

ni
ng

Va
lid

at
io

n
Te

st
in

g

Severely Imbalanced Mildly Imbalanced

Figure 5. Overview of the label distributions of orientation estima-
tion experiments. The “Training” and “Testing” of the “Severely
Imbalanced” column shows the imbalance of data in real-world.
It has two peaks instead of one. The “Mildly Imbalanced” col-
umn is more uniform. It is from manual selection of the original
KITTI images. We show the difference between the “Severely
Imbalanced” and “Mildly Imbalanced” columns. They are essen-
tial control factors to demonstrate whether classification can help
regression in real-world and whether the imbalance is still the rea-
son.

4.2.2 Experiment 2: Can classification help regression
in real-world, and is the imbalance still the rea-
son?

Figure 6 shows the AOS performances of orientation es-
timation between models trained using the CAR method
and the MSE method, under “Severely Imbalanced” and
“Mildly Imbalanced” settings.

Conclusion 1: Classification can help regression in
real-world. We see in Figure 6 that “The CAR method:
multibin of 4 bins” has higher AOS values than “The MSE
method: single bin with sine and cosine” for both “Severely
Imbalanced” and “Mildly Imbalanced” settings, with dis-
connected error bars. We conclude that classification can
help regression in real-world.

Conclusion 2: The severity of imbalance is the reason
that classification can help regression in real-world.

We observe a threshold number of bins equal to 2 of the
“Severely Imbalanced” setting, and a threshold number of
bins equal to 4 of the “Mildly Imbalanced” setting. We see

7

The CAR method:

The Testing AOS Performances of Different Training Methods
Between Two Levels of Imbalance

The CAR method:
The MSE method:

Severely Imbalanced Mildly Imbalanced

A
O

S

Figure 6. This is the AOS results of the orientation estimation ex-
periments. We use the CAR method with the numbers of bins
equal to 2 and 4 for training, and we compare them with using
the MSE method for training. The CAR methods mostly outper-
form the MSE method with a large margin, especially under the
“Severely Imbalanced” setting.

that the CAR methods outperform the MSE method with
a large margin under the “Severely Imbalanced” setting,
and the CAR methods do not outperform the MSE method
with a large margin under the “Mildly Imbalanced” setting.
When the number of bins is equal to 2 under the “Mildly
Imbalanced” setting, the AOS value of the CAR method is
not higher than that of the MSE method with disconnected
error bars. We can conclude that the severity of imbalance
is the reason that classification can help regression in real-
world.

5. Conclusion
We propose a method to improve regression robustness

without using extra information. We call the method CAR.
We demonstrate empirically that the CAR method outper-
forms the traditional MSE method on both synthetic data
and real-world data. We investigate the unique properties
of the CAR method and find out the method works the best
when the data label distribution is highly imbalanced. We
demonstrate that this property holds for both synthetic and
real-world data.

6. Discussion
Analysis limitations. We use uni-dimensional labels,

both in synthetic and real-world datasets. This constrains
the domain of our method. Multidimensional regression
problems are popular nowadays, e.g. 3D human mesh re-
construction [32]. We do not perform the training correctly.
The CAR method has a higher scale than the MSE method,

but we do not use different learning rates. This can result
in faster convergence of the CAR method. We train ex-
haustively. This can lower the probability for us to com-
pare a converged CAR method with a non-converged MSE
method.

Method limitations. The number of bins is a hyperpa-
rameter and is searched by trial-and-error. In [3], Barron
treats the hyperparameters as adaptive variables, and he up-
dates the hyperparameters using gradient descent. We can
do the same with the number of bins. After registering the
number of bins as an adaptive variable, the indicator func-
tion to make the classification labels should be made con-
tinuous so that the number of bins can be updated automati-
cally. Our method assumes regression labels with upper and
lower boundaries, so that we can discretize the regression
labels into bins. [17] transforms infinite regression prob-
lems into finite regression problems using hypersphere. It
is an interesting further direction.

References
[1] A. F. Agarap. Deep learning using rectified linear units

(relu). arXiv preprint arXiv:1803.08375, 2018.
[2] M. G. Akritas, S. A. Murphy, and M. P. Lavalley. The theil-

sen estimator with doubly censored data and applications to
astronomy. Journal of the American Statistical Association,
90(429):170–177, 1995.

[3] J. T. Barron. A general and adaptive robust loss function.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4331–4339, 2019.

[4] V. Belagiannis, C. Rupprecht, G. Carneiro, and N. Navab.
Robust optimization for deep regression. In Proceedings of
the IEEE international conference on computer vision, pages
2830–2838, 2015.

[5] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-
riculum learning. In Proceedings of the 26th annual interna-
tional conference on machine learning, pages 41–48, 2009.

[6] P. Branco, L. Torgo, and R. P. Ribeiro. Smogn: a pre-
processing approach for imbalanced regression. In First in-
ternational workshop on learning with imbalanced domains:
Theory and applications, pages 36–50. PMLR, 2017.

[7] P. Branco, L. Torgo, and R. P. Ribeiro. Pre-processing ap-
proaches for imbalanced distributions in regression. Neuro-
computing, 343:76–99, 2019.

[8] L. Camacho, G. Douzas, and F. Bacao. Geometric smote for
regression. Expert Systems with Applications, page 116387,
2022.

[9] X. Ding, Q. Zhang, and W. J. Welch. Classification beats re-
gression: Counting of cells from greyscale microscopic im-
ages based on annotation-free training samples. In CAAI In-
ternational Conference on Artificial Intelligence, pages 662–
673. Springer, 2021.

[10] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao.
Deep ordinal regression network for monocular depth esti-
mation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2002–2011, 2018.

8

[11] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In 2012
IEEE conference on computer vision and pattern recogni-
tion, pages 3354–3361. IEEE, 2012.

[12] G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. R-
cnns for pose estimation and action detection. arXiv preprint
arXiv:1406.5212, 2014.

[13] P. J. Huber. Robust estimation of a location parameter. In
Breakthroughs in statistics, pages 492–518. Springer, 1992.

[14] M. Klingner and T. Fingscheidt. Online performance pre-
diction of perception dnns by multi-task learning with depth
estimation. IEEE Transactions on Intelligent Transportation
Systems, 22(7):4670–4683, 2021.

[15] L. Liebel and M. Körner. Multidepth: Single-image depth es-
timation via multi-task regression and classification. In 2019
IEEE Intelligent Transportation Systems Conference (ITSC),
pages 1440–1447. IEEE, 2019.

[16] H. Liu, S. Fang, Z. Zhang, D. Li, K. Lin, and J. Wang. Mfd-
net: Collaborative poses perception and matrix fisher distri-
bution for head pose estimation. IEEE Transactions on Mul-
timedia, 24:2449–2460, 2021.

[17] P. Mettes, E. van der Pol, and C. Snoek. Hyperspherical pro-
totype networks. Advances in neural information processing
systems, 32, 2019.

[18] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka. 3d
bounding box estimation using deep learning and geometry.
In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pages 7074–7082, 2017.

[19] D. A. Nix and A. S. Weigend. Estimating the mean and vari-
ance of the target probability distribution. In Proceedings
of 1994 ieee international conference on neural networks
(ICNN’94), volume 1, pages 55–60. IEEE, 1994.

[20] R. Ranjan, V. M. Patel, and R. Chellappa. Hyperface: A deep
multi-task learning framework for face detection, landmark
localization, pose estimation, and gender recognition. IEEE
transactions on pattern analysis and machine intelligence,
41(1):121–135, 2017.

[21] B. Romera-Paredes and P. Torr. An embarrassingly simple
approach to zero-shot learning. In International conference
on machine learning, pages 2152–2161. PMLR, 2015.

[22] P. Rousseeuw and V. Yohai. Robust regression by means of
s-estimators. In Robust and nonlinear time series analysis,
pages 256–272. Springer, 1984.

[23] P. J. Rousseeuw. Least median of squares regression. Journal
of the American statistical association, 79(388):871–880,
1984.

[24] P. J. Rousseeuw and M. Hubert. Robust statistics for outlier
detection. Wiley interdisciplinary reviews: Data mining and
knowledge discovery, 1(1):73–79, 2011.

[25] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[26] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe. Curriculum
learning: A survey. arXiv preprint arXiv:2101.10382, 2021.

[27] Y. Tingting, W. Junqian, W. Lintai, and X. Yong. Three-stage
network for age estimation. CAAI Transactions on Intelli-
gence Technology, 4(2):122–126, 2019.

[28] M. Xia, X. Zhang, L. Weng, Y. Xu, et al. Multi-stage feature
constraints learning for age estimation. IEEE Transactions
on Information Forensics and Security, 15:2417–2428, 2020.

[29] W. Xie, J. A. Noble, and A. Zisserman. Microscopy cell
counting and detection with fully convolutional regression
networks. Computer methods in biomechanics and biomed-
ical engineering: Imaging & Visualization, 6(3):283–292,
2018.

[30] J. Xu, H. Yin, L. Zhang, S. Li, and G. Zhou. Review rating
with joint classification and regression model. In National
CCF Conference on Natural Language Processing and Chi-
nese Computing, pages 529–540. Springer, 2017.

[31] T.-Y. Yang, Y.-T. Chen, Y.-Y. Lin, and Y.-Y. Chuang. Fsa-
net: Learning fine-grained structure aggregation for head
pose estimation from a single image. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1087–1096, 2019.

[32] W. Zeng, W. Ouyang, P. Luo, W. Liu, and X. Wang. 3d
human mesh regression with dense correspondence. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7054–7063, 2020.

[33] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark
detection by deep multi-task learning. In European confer-
ence on computer vision, pages 94–108. Springer, 2014.

9

2
Background on Deep Learning

Deep learning includes statistics and predictive modeling. It is a subdivision of machine learning and
artificial intelligence (AI). Compared with machine learning, it is more complex and has a higher need
of data. It has a wide range of applications, such as object detection [29], object orientation estimation
[12], facial landmark detection [28], human pose estimation [27] and semantic segmentation [11].

2.1. Development
2.1.1. Perceptron
Deep learning is also called deep neural networks (NN) learning. The adjective “neural” refers to neu-
roscience [10], which is the inspiration of neural networks and the starting point of current success of
deep learning. A perceptron is an “artificial” neuron, and it is the most basic unit of an NN. Figure 2.1
shows the architecture of a biological neuron and an artificial neuron. An artificial neuron is composed
of 3 key units. They are a weight matrix, a summing unit and an activation function. The weight matrix
closely resembles the dendrites of a biological neuron. The summation and activation are done in the
unit closely resembling the cell nucleus. The output of the activation function is passed to the second
neuron. The process closely resembles a signal being passed through by the axon. We will cover
activation functions in details later.

2.1.2. Multi-Layer Perceptron (MLP)
MLP builds on the idea of a single perceptron and combines multiple perceptrons to form an artificial
neural network. Many people call MLP as a “vanilla” artificial neural network [13] because it often
has only one hidden layer. Figure 2.2 shows the architecture of an MLP with a single hidden layer
of 3 neurons. The hidden layer result ℎ̂ is computed by a matrix multiplication with the inputs �̂� as
in Equation 2.1, and the output layer result �̂� is computed by a matrix multiplication with the hidden
layer result ℎ̂ as in Equation 2.2. 𝑤ℎ and 𝑤𝑜 are respectively the weights between the input layer and
the hidden layer, and the weights between the hidden layer and the output layer. “𝑎()” refers to an
activation function.

ℎ̂ = 𝑎(𝑤ℎ ⋅ �̂� + 𝑏ℎ) (2.1)

�̂� = 𝑎(𝑤𝑜 ⋅ ℎ̂ + 𝑏𝑜) (2.2)

The process of obtaining �̂� is called feed-forwarding. The MLP is sometimes also called a feedfor-
ward artificial neural network. Its layers are sometimes called fully-connected (FC) layers because all
nodes are connected to one another.

2.1.3. Convolutional Neural Network (CNN)
CNNs [17] are one of the most important factors of today’s success of deep learning. CNNs build on the
idea of MLP, and introduce convolutional layers instead of FC layers to solve computer vision problems.
CNNs are specially designed for grid inputs such as an image and a video. They are common inputs in

11

12 2. Background on Deep Learning

Artificial Neuron

Biological Neuron

Figure 2.1: Overview of a biological neuron and an artificial neuron. It is interesting to note how similar they are. The figure is com-
posed of two figures thanks to https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron

Input Layer
x

Hidden Layer
h

Output Layer
y

Figure 2.2: Overview of a single hidden layer MLP with 3 hidden neurons. It demonstrates the architecture of the MLP

https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron

2.1. Development 13

Figure 2.3: Overview of a simple CNN architecture, comprised of a convolutional layer, activation functions, a pooling layer and
2 FC layers [17].

Figure 2.4: A simple calculation happened in a convolutional layer [17]. The destination pixel is calculated by a weighted sum of
the input vector.

computer vision tasks. With CNNs, features of images can be extracted by machines instead of hand-
crafting. The depth of the model is often related to the number of convolutional layers applied. The
depth hence becomes important. It helps in extracting and recombining features. Figure 2.3 depicts a
simple CNN architecture. The layers to the outputs are usually comprised of FC layers. We first process
the input through a convolutional layer with a non-linear activation function, and then down-sample it by
a pooling layer. The convolutional layer, pooling layer and activation functions are explained in details
below.

Convolutional Layer
A convolutional layer is the main building block of an CNN. Figure 2.4 explains a simple calculation
happened in the convolutional layer. The “Pooled Vector” is what we call a convolution. The center of
it is placed on the input vector. The values of it are used as weights of the input vector pixels, and the
result of an activation function of the weighed sum of the input vector pixels is the destination pixel. An
RGB image contains “depth” dimension. The convolutions can also be 3-dimensional.

14 2. Background on Deep Learning

Figure 2.5: Common activation functions used in deep learning [7]. (a) Sigmoid, (b) Tanh, (c) ReLU, and (d) LReLU

Pooling Layer
The pooling layer is used to reduce the dimensionality of the representation of the result of the con-
volutional layer. With multiple convolutional layers and pooling layers, the complexity of the model is
reduced. In the case of a max-pooling layer, the pooling layer kernels are applied to the spatial dimen-
sion of the activated results of the convolutional layer, and find the pixel whose value is the highest in its
neighborhood. In the case of a 2-by-2 max-pooling layer applied with a stride of 2, the dimensionality
of the representation is 4 times smaller each time it passes through a pooling layer.

Activation Function
In Equation 2.1, 𝑤ℎ ⋅ �̂� + 𝑏ℎ is only a linear operation. It can be used to solve linear problems, but
not non-linear problems. Activation functions are non-linear functions, which brings non-linearity to the
model predictive ability. Common activation functions are depicted in Figure 2.5.

2.2. Optimization
2.2.1. Loss Function
Optimizing the artificial NNs is to find the optimum parameters of the layers by minimizing a metric
function, which we call a loss function. The loss function is continuous and end-to-end differentiable.
We build on top of Equation 2.2 and calculate the common loss function for regression, i.e. the Mean
Squared Error loss, as follows:

𝐿 = 1
𝑛Σ(𝑦 − �̂�)

2 (2.3)

“n” is the dimensionality of the target continuous label. If the regression label is uni-dimensional,
“n” is 1. “𝑦” is the target regression label and “�̂�” is the predicted regression value.

2.2.2. Gradient Descent
The reason that machine learning has “machine” in it is that the minimization of the loss is fully au-
tomatic. This is done by gradient descent. After obtaining the loss through the feedforward process,
we need to update all parameters, Θ, of the model in the direction of the negative gradient of the loss

2.3. Regularization 15

Figure 2.6: A scenario to decide when to stop training early [18]. We should stop training as the validation error curve starts to
rise.

function, − 𝛿𝐿
𝛿Θ . Remember that the loss function is differentiable. We use the chain rule of calculus

to propagate back how much each parameter of the model should change according to the negative
gradient of the loss.

2.2.3. Learning Rate
How much each parameter of the model should change according to the gradient descent is called a
“step size”. Learning rate is a hyperparameter used to define an optimal “step size” for the training. If
the learning rate is too big, the model can never converge to an optimum. If the learning rate is too
small, the training can be very slow and there is a risk for the model to converge to a local optimum.
Using right hyperparameters is an art in training deep learning models.

2.3. Regularization
Regularization is the method to avoid the model from being overly trained. An overly-trained model can
perform poorly on unseen testing data. This phenomenon is called overfitting. The easiest solution to
overfitting is to provide more than enough training data, so that perfectly fitting to the training data is
also perfectly fitting to the testing data. However, data are expensive and the testing domain in real-
world is large. Therefore, we use regularization methods to avoid overfitting and obtain the best model
using limited training data.

2.3.1. Early Stopping
Early stopping is one popular regularization technique. It is easy to use. We take a subset of our
training data to form a validation set. This set is not used to update the model. Instead, after each time
the model is updated using the rest of the training data, the performance is measured by the validation
set. The performance measure can be the loss function used in training, or a different metric. Figure
2.6 shows when we should stop training.

3
Robust Regression

3.1. Definition
Robust regression is about training regression models with noisy, corrupted or imbalanced data and
still being able to find the right relationship between the dependent and independent variables and
being able to make correct predictions on testing data. Take the MSE method for example, it is highly
affected by outliers in the dependent variables. Figure 3.1 shows, with outliers in the data, the degree
of the deviation of the MSE method from the true relationship, and how negligible the deviation is when
training with a robust regression method [1]. Because noisy and corrupted data are almost unavoidable
in the real-world, robust regression becomes important.

3.2. Method
3.2.1. M-Estimator
Huber [14] introduces theM-estimator. The “M” here represents “maximum likelihood”. TheM-estimator
assumes the true relationship to be the sample average. It achieves robustness both in mean and me-
dian estimation. It is robust to outliers in the independent variables. However, it is not better than the
MSE method when outliers exist in the dependent variables.

3.2.2. Least Trimmed Squares (LTS)
[22] introduces the LTS. It is better than the M-estimator because it is also robust to outliers in the
dependent variables. Instead of minimizing the sum of squares of residuals, as in the MSE method, it
minimizes a subset of samples. The rest samples remain unused. In this way, it possibly leaves out
outliers in computation.

Outliers

The MSE Method The Robust Method

Figure 3.1: A comparison between the MSE method and a robust regression method [1]. Outliers affect the MSE method and
not affect the robust method.

17

18 3. Robust Regression

y

Various Distribution Assumptions

Figure 3.2: A comparison between various distribution assumptions [1]. Different values of 𝛼 correspond to different loss func-
tions: L2 loss (𝛼 = 2), Charbonnier loss (𝛼 = 1), Cauchy loss (𝛼 = 0), Geman-McClure loss (𝛼 = −2), and Welsch loss
(𝛼 = −∞).

3.3. Deep Robust Regression
3.3.1. Noisy or Corrupted Data
[16] introduces a Gaussian negative log likelihood estimator. They assume that the training data is
noisy with a Gaussian distribution. If they model the standard deviation of the noise correctly, they
can learn the true relationship. They learn the means of the Gaussian model as the true relationship.
Their method is only tested on synthetic data. Barron [1] uses a general form of the Gaussian negative
likelihood loss. He defines a formula which extends from the Gaussian distribution and can reproduce
multiple existing loss functions as shown in Figure 3.2. He finds a way to update the standard deviation
parameter, 𝛼, and the scale parameter, 𝑐, using back propagation, and hence extends manual training
to adaptive deep learning.

3.3.2. Imbalanced Data
Unlike the case of noisy or corrupted data where we do not know the true distribution, in the case of
imbalanced data, we know the true distribution. The true distribution is to be balanced. [2, 26] use
resampling and synthetic data augmentation to balance out the data. [24] uses reweighting. Both of
them achieve convincing results. A result of reweighting is shown in Figure 3.3. Reweighting models
the testing distribution better than the least squares method, even when both were trained with the
same imbalanced distribution.

3.3. Deep Robust Regression 19

Figure 3.3: Reweighting compared with least squares method [20]. It clearly shows that reweighting models the testing distribu-
tion better. Both methods were trained under the training distribution.

4
Object Detection

4.1. Problem Definition
Object detection is the task to automatically detect instances in the images. The instances can be cars,
humans, animals, registration plates, etc. Sometimes the scope of an object detection task is broad
and requires detection of multiple modalities [6, 25], and the other times the scope of an object de-
tection task can be narrow and only requires one modality, e.g. face detection used in mobile phones
[15]. Constructing datasets should also consider negative input samples. Figure 4.1 shows the object
detection task in autonomous driving. The model not only detects various instances successfully, clas-
sifies them correctly, but also detects remote small instances successfully. In real-world, the task often
requires the model to process the input in real-time, which means e.g. 30 frames per second.

4.2. Milestone Detector
Figure 4.2 shows the development of object detectors over the past two decades. Before 2012, deep
learning was not used in object detection. Object detectors have to use sophisticated handcrafted
features. At that time, interesting feature descriptors were investigated and some of them are still highly
useful today, e.g. Histogram of Oriented Gradients (HOG) feature descriptor [4]. RCNN [9] leads the
era of two-stage detectors. The two-stage detectors follow a “coarse-to-fine” scheme, and first detect
the bounding boxes of any instances and then define what classes these instances belong. YOLO [19]
leads the era of one-stage detectors. Instead of first proposing detection and then refining the proposal,
YOLO divides the image into subdivisions and predicts bounding boxes and their probabilities at the
same time. One-stage detectors are faster in speed, but lower in localization accuracy, than two-stage
detectors. MS-CNN [3] is a two-stage detector. It can solve multiscale problems. For example, in
the KITTI [8] dataset, which is a dataset about objects on the road, pedestrians, cyclists and cars are
objects of different scales and all need detecting. MS-CNN is suitable for this problem.

4.3. Application and Difficulty
Object detection is the basic task for many computer vision tasks. For example, the object orientation
estimation task first requires correct pedestrian, cyclist and car detection. Facial Landmark localization
first requires correct face detection. Human pose estimation first requires correct human detection.
Here, we introduce the pedestrian detection task and its difficulties and challenges.

4.3.1. Pedestrian Detection
Pedestrian detection is an important task in autonomous driving. The success of Faster RCNN [21]
has promoted the progress of this area. The difficulties of pedestrian detection are:

• In real-world, the pedestrians can be captured from remote distances by cameras. The number
of pixels that comprise such pedestrians may be very few. In a benchmark dataset for pedestrian
detection [5], 15% of pedestrian objects are less than 30 pixels in height. Such data are hard for
correct detection and even harder for further tasks.

21

22 4. Object Detection

Figure 4.1: A multi-modality object detection task used in autonomous driving of vehicles [7]. It shows the difficulty of object
detection and the success of it. It successfully detects various instances and small instances.

2

Fig. 2. A road map of object detection. Milestone detectors in this figure: VJ Det. [10, 11], HOG Det. [12], DPM [13–15], RCNN [16], SPPNet [17],
Fast RCNN [18], Faster RCNN [19], YOLO [20], SSD [21], Pyramid Networks [22], Retina-Net [23].

regression”, etc. However, previous reviews lack fundamen-
tal analysis to help readers understand the nature of these
sophisticated techniques, e.g., “Where did they come from
and how did they evolve?” “What are the pros and cons
of each group of methods?” This paper makes an in-depth
analysis for readers of the above concerns.

3. A comprehensive analysis of detection speed up
techniques: The acceleration of object detection has long
been a crucial but challenging task. This paper makes an
extensive review of the speed up techniques in 20 years
of object detection history at multiple levels, including
“detection pipeline” (e.g., cascaded detection, feature map
shared computation), “detection backbone” (e.g., network
compression, lightweight network design), and “numerical
computation” (e.g., integral image, vector quantization).
This topic is rarely covered by previous reviews.

• Difficulties and Challenges in Object Detection

Despite people always asking “what are the difficulties
and challenges in object detection?”, actually, this question
is not easy to answer and may even be over-generalized.
As different detection tasks have totally different objectives
and constraints, their difficulties may vary from each other.
In addition to some common challenges in other computer
vision tasks such as objects under different viewpoints,
illuminations, and intraclass variations, the challenges in
object detection include but not limited to the following
aspects: object rotation and scale changes (e.g., small ob-
jects), accurate object localization, dense and occluded object
detection, speed up of detection, etc. In Sections 4 and 5, we
will give a more detailed analysis of these topics.

The rest of this paper is organized as follows. In Section
2, we review the 20 years’ evolutionary history of object
detection. Some speed up techniques in object detection will
be introduced in Section 3. Some state of the art detection

methods in the recent three years are summarized in Section
4. Some important detection applications will be reviewed
in Section 5. In Section 6, we conclude this paper and make
an analysis of the further research directions.

2 OBJECT DETECTION IN 20 YEARS

In this section, we will review the history of object detection
in multiple aspects, including milestone detectors, object
detection datasets, metrics, and the evolution of key tech-
niques.

2.1 A Road Map of Object Detection

In the past two decades, it is widely accepted that the
progress of object detection has generally gone through
two historical periods: “traditional object detection period
(before 2014)” and “deep learning based detection period
(after 2014)”, as shown in Fig. 2.

2.1.1 Milestones: Traditional Detectors
If we think of today’s object detection as a technical aes-
thetics under the power of deep learning, then turning back
the clock 20 years we would witness “the wisdom of cold
weapon era”. Most of the early object detection algorithms
were built based on handcrafted features. Due to the lack of
effective image representation at that time, people have no
choice but to design sophisticated feature representations,
and a variety of speed up skills to exhaust the usage of
limited computing resources.

• Viola Jones Detectors

18 years ago, P. Viola and M. Jones achieved real-time
detection of human faces for the first time without any
constraints (e.g., skin color segmentation) [10, 11]. Running

Figure 4.2: An overview of the milestone object detectors over the past two decades [29]. Object detectors are faster, more
robust, and suitable for multiscale.

4.3. Application and Difficulty 23

• In images on the road, there are many hard negative samples, e.g., the standing traffic signs and
the vertical water pipes. They look very similar to pedestrians and are in fact often detected by
our trained MS-CNN model.

• Occlusion is a common problem in object detection. Pedestrians are often occluded by other
pedestrians and objects on the road. Such data make both training and detection difficult.

5
Object Orientation Estimation

5.1. Problem Definition
Object orientation estimation is about predicting the orientation where the object faces. The target
facing orientation is a continuous scalar. It spans from 0 to 360 degrees. Often, we care about objects
that can move, e.g. cyclists, cars and pedestrians. We do not care about e.g. traffic signs and lights.
Estimating the orientation can help in predicting the situation that is about to happen, and prevent e.g.
collisions on the road. Figure 5.1 shows an example scenario of object orientation estimation on the
road.

5.2. Methods
People use mainly 3 methods in object orientation estimation. They are:

• representing the orientation as a point on a unit circle and minimizing the MSE loss,
• representing the orientation as an angle scalar and minimizing the angular difference by the co-
sine similarity,

• representing the orientation as a pair of a sine and a cosine and minimizing two MSE losses.
[12] reports that the third method is the best.

5.3. Quantitative Evaluation
Evaluation of object orientation estimation requires both evaluation of object detection and evaluation
of object orientation estimation within the bounding box. To evaluate object detection, we use the
precision and recall. Precision is the ratio of predicted detections that are correct. Recall is the ratio
of the number of correctly detected objects divided by all positive objects that need to be detected.

Figure 5.1: An example orientation estimation scenario [23] in real-world. Objects can be occluded. They have different lighting
conditions. Their scales are different.

25

26 5. Object Orientation Estimation

Using the recall of the object detection and cosine similarity between the predicted angle and the target
angle, we evaluate the object orientation estimation using the Average Orientation Similarity (AOS) as
follows:

𝐴𝑂𝑆 = 1
11Σ𝑟∈{0,0.1,...,1}max�̃�∶�̃�≥𝑟

𝑠(�̃�) (5.1)

“r” is the recall threshold of the object detection. “𝑠(�̃�)” is the cosine similarity of all objects detected
with a recall higher than “r”. 𝑠(�̃�) ∈ [0, 1]. Its normalized value over 11 recall thresholds, i.e. the AOS,
is also in [0, 1]. “𝑠(𝑟)” is defined as:

𝑠(𝑟) = 1
|𝐷(𝑟)|Σ𝑖∈𝐷(𝑟)

1 + 𝑐𝑜𝑠Δ(𝑖)Θ
2 𝛿𝑖 (5.2)

“D(r)” is the set of all positively detected objects above the recall threshold “r”. “Δ(𝑖)Θ ” is the difference
between the predicted and the target orientations. “𝛿𝑖” is to record if “i”-th object has been calculated
with the ground truth, and it avoids multiple predictions from matching to the same ground truth.

Bibliography
[1] Jonathan T Barron. A general and adaptive robust loss function. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 4331–4339, 2019.

[2] Paula Branco, Luís Torgo, and Rita P Ribeiro. Smogn: a pre-processing approach for imbalanced
regression. In First international workshop on learning with imbalanced domains: Theory and
applications, pages 36–50. PMLR, 2017.

[3] Zhaowei Cai, Quanfu Fan, Rogerio S Feris, and Nuno Vasconcelos. A unified multi-scale deep
convolutional neural network for fast object detection. In European conference on computer vision,
pages 354–370. Springer, 2016.

[4] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE
computer society conference on computer vision and pattern recognition (CVPR’05), volume 1,
pages 886–893. Ieee, 2005.

[5] Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian detection: A bench-
mark. In 2009 IEEE conference on computer vision and pattern recognition, pages 304–311. IEEE,
2009.

[6] Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz Hertlein, Claudius Glaeser, Fabian
Timm, Werner Wiesbeck, and Klaus Dietmayer. Deep multi-modal object detection and semantic
segmentation for autonomous driving: Datasets, methods, and challenges. IEEE Transactions on
Intelligent Transportation Systems, 22(3):1341–1360, 2020.

[7] Junxi Feng, Xiaohai He, Qizhi Teng, Chao Ren, Honggang Chen, and Yang Li. Reconstruction
of porous media from extremely limited information using conditional generative adversarial net-
works. Physical Review E, 100(3):033308, 2019.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition,
pages 3354–3361. IEEE, 2012.

[9] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580–587, 2014.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[11] Shijie Hao, Yuan Zhou, and Yanrong Guo. A brief survey on semantic segmentation with deep
learning. Neurocomputing, 406:302–321, 2020.

[12] Kota Hara, Raviteja Vemulapalli, and Rama Chellappa. Designing deep convolutional neural net-
works for continuous object orientation estimation. arXiv preprint arXiv:1702.01499, 2017.

[13] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[14] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics, pages
492–518. Springer, 1992.

[15] Ashu Kumar, Amandeep Kaur, and Munish Kumar. Face detection techniques: a review. Artificial
Intelligence Review, 52(2):927–948, 2019.

[16] David A Nix and Andreas S Weigend. Estimating the mean and variance of the target probability
distribution. In Proceedings of 1994 ieee international conference on neural networks (ICNN’94),
volume 1, pages 55–60. IEEE, 1994.

27

28 Bibliography

[17] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. arXiv preprint
arXiv:1511.08458, 2015.

[18] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pages 55–69.
Springer, 1998.

[19] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 779–788, 2016.

[20] Jiawei Ren, Mingyuan Zhang, Cunjun Yu, and Ziwei Liu. Balanced mse for imbalanced visual
regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 7926–7935, 2022.

[21] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015.

[22] Peter J Rousseeuw. Least median of squares regression. Journal of the American statistical
association, 79(388):871–880, 1984.

[23] Vishwanath A Sindagi, Yin Zhou, and Oncel Tuzel. Mvx-net: Multimodal voxelnet for 3d object
detection. In 2019 International Conference on Robotics and Automation (ICRA), pages 7276–
7282. IEEE, 2019.

[24] Michael Steininger, Konstantin Kobs, Padraig Davidson, Anna Krause, and Andreas Hotho.
Density-based weighting for imbalanced regression. Machine Learning, 110(8):2187–2211, 2021.

[25] Peng Tang, Xinggang Wang, Xiang Bai, and Wenyu Liu. Multiple instance detection network with
online instance classifier refinement. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2843–2851, 2017.

[26] Luís Torgo, Rita P Ribeiro, Bernhard Pfahringer, and Paula Branco. Smote for regression. In
Portuguese conference on artificial intelligence, pages 378–389. Springer, 2013.

[27] Alexander Toshev and Christian Szegedy. Deeppose: Human pose estimation via deep neural
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1653–1660, 2014.

[28] Yue Wu and Qiang Ji. Facial landmark detection: A literature survey. International Journal of
Computer Vision, 127(2):115–142, 2019.

[29] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20 years: A survey.
arXiv preprint arXiv:1905.05055, 2019.

	Scientific Paper
	Background on Deep Learning
	Development
	Perceptron
	Multi-Layer Perceptron (MLP)
	Convolutional Neural Network (CNN)

	Optimization
	Loss Function
	Gradient Descent
	Learning Rate

	Regularization
	Early Stopping

	Robust Regression
	Definition
	Method
	M-Estimator
	Least Trimmed Squares (LTS)

	Deep Robust Regression
	Noisy or Corrupted Data
	Imbalanced Data

	Object Detection
	Problem Definition
	Milestone Detector
	Application and Difficulty
	Pedestrian Detection

	Object Orientation Estimation
	Problem Definition
	Methods
	Quantitative Evaluation

	Bibliography

