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Root cause analysis of ATC delays: A case study
on KLM flights at Schiphol Airport

L. Kestens
Supervised by Dr. Ir. J.M. Hoekstra

Control & Operations, Faculty of Aerospace Engineering
Delft University of Technology, Delft, The Netherlands

Abstract—Due to the continuous growth of air traffic up
to the year 2020, the air transportation network has become
more complex, and the airports and airspace busier. However,
capacities have not grown at the same rate as air traffic, making
Air Traffic Control one of the most encountered primary delays.
A data driven approach is taken in order to expose the drivers of
the ATC delays for KLM Royal Dutch Airlines flights at Schiphol
Airport. The used data consists of public and proprietary data,
and contains information related to the weather, KLM flight
operations, operational data, and Airport Collaborative Decision
Making. To perform the analysis, two causal methods were used,
association rule mining as a baseline method and a Bayesian
network as the state-of-the-art model. Both methods were able
to identify various conditions that trigger and/or prevent ATC
delay occurrence, and agreed on the majority of the identified
influential factors of the ATC delay. It was found that the main
influences of ATC delay are the average startup delay of flights
in the 20 minute time interval of the flight’s departure, as well
as the received pure ATFM delay and the assigned regulation
delay key. Additionally, other influential parameters on the ATC
delay related both to the amount of traffic volume and congestion
at the airport, as well as individual variables of the flight, such
as the propagation of arrival delay, the number of updates in
the CDM process and the delay in the closure of the doors.
The main discrepancies in the results could be attributed to the
limitations of both methods. In general, it was found that both
methods are suitable to diagnose direct causes or influencing
factors on a target variable. The Bayesian network method was
found to be more suitable to better understand a system and the
dynamics between a large number of variables, as the conditional
dependencies can be observed from the learned structure, and
are not hidden in a large number of frequent patterns. However,
first diagnoses of influential variables can also be done using
association rule mining, which could find more indirect effects
on the target variable compared to the Bayesian network, in
which indirect relations might be lost in the structure learning
process.

Index Terms—Air Traffic Control, Flight Delays, Air Traffic
Control Delays, Bayesian Network, Association Rule Mining

I. INTRODUCTION

C IVIL air traffic has experienced exponential growth over
the last decades. Due to its growth, the aviation network

has become increasingly complex, and the capacity of airports
and airspace has not grown at the same rate as air travel.
This has caused more flight delays, which impact multiple
stakeholders, such as the airline itself, its passengers and the
airports in their flight network [1]. These delays furthermore
translate into large financial and economic consequences for
the stakeholders, especially the airline [2]. These consist of

direct costs, but also of indirect costs such as the long term
effects on passenger loyalty, market share and airline revenue
[3]. For all these reasons, it is important to better understand
delays, and possibly use this knowledge to further reduce
them.

One of the delay sources in air transportation is Air Traffic
Control (ATC). ATC is part of the system of Air Traffic
Management (ATM), of which the main purpose is to ensure
safety as well as efficiency, by keeping aircraft separated both
vertically as longitudinally [4]. This type of delay is typically
received before departure, while the aircraft is still at the gate.
In general, it is issued due to an imbalance between demand
and offered capacity of the runway(s), airspace, and gates [5].
However, ATC delay can also be experienced while the aircraft
is already en-route. The causes of these en-route delays can
mainly be attributed to the ATC capacity according to the
Air Navigation Service Providers (ANSP), as well as staffing,
weather and disruptions or actions in the ATC system [6].

In essence, ATC delay can be distinguished in two types of
delay, startup delay, represented as dstartup, and ATFM delay
dATFM . When a flight is regulated, its ATC delay is defined
by the total received ATFM delay, otherwise the startup delay
represents the flight’s ATC delay. Where ATFM delay is
caused by regulation in the airspace, is startup delay caused
by local delay at the departure airport. Therefore, the ATFM
delay is defined as the difference between the Calculated Take-
off Time (CTOT) and the scheduled take-off time without the
regulation, which is the sum of the Scheduled Off-Block Time
(SOBT) and the Standard Taxi-Out time (STXO), shown in
Equation 1. A regulated flight receives a CTOT, such that
the number of aircraft using the regulated airspace can be
controlled [7]. Both the CTOT and SOBT have the format
of a timestamp, whereas the STXO represents a duration and
is thus expressed in minutes.

The Target Start-up Approval Time (TSAT) is a timestamp
issued by ATC, which is a function of the issued Target Off
Block Time (TOBT), which is translated into a Target Take-
Off Time, TTOT, as seen in Equation 3 [8]. The TTOT is
established by assigning the earliest possible take-off time,
taking into account the Estimated Taxi-Out Time (EXOT) of
the aircraft to the runway. The TSAT is then found by reversing
the calculation as seen in Equation 4 [8]. The startup delay is
defined as the difference between the TSAT and the TOBT,
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which is shown in Equation 2 [8].

dATFM = CTOT− SOBT− STXO (1)

dstartup = TSAT− TOBT (2)

TTOT >= TOBT+EXOT (3)

TSAT = TTOT-EXOT (4)

ATC delays are classified as initial delays, but can have
a tremendous impact throughout the flight operation network
of an airline due to aircraft, passenger and crew connectiv-
ity, which can result in reactionary delays for other flights
[9]. However, reactionary delays are not only impacting the
operations of the airline, but can also propagate to other
airlines and airports [10, 11, 12]. This connectivity in the
flight network is said to be the most challenging aspect in
any transport system [1]. Therefore, this research aims to find
the root causes of the ATC delays with a case study on KLM
flights at Amsterdam Schiphol Airport. The ATC delay that is
used as a target variable in this research is the specific ATC
delay received upon departure from the airport. However, in
order to perform a full analysis, one observation represents
a turnaround procedure at the airport, such that the columns
contain information on both the arrival and departure process
at Amsterdam Schiphol Airport. Additionally has the scope of
this research project been limited in both time and space. This
research focuses on the ATC delays in the Dutch airspace,
and the used data relates to the day of operation. The research
objective of this study has been formulated as follows.

The main research objective is to expose the drivers
of the ATC delays encountered by KLM flights at
Schiphol Airport, by performing a root cause anal-
ysis of these ATC delays.

A lot of research on flight delay has been done in earlier
studies, in which different specific research fields can be distin-
guished. One of these areas is flight delay propagation, which
has been studied thoroughly [2, 11, 13, 14, 15]. Additionally,
the use of machine learning algorithms to predict delays has
gained research interest in recent years [16, 17, 18, 19]. An-
other research field is found in the analysis and development
of airline/airport disruption models to manage flight delays, for
different levels in the operation [20, 21, 22]. The research area
of this study is situated in the causal analysis of delays, which
has received less attention than the aforementioned research
fields, and it is seen as an on-going research area [1].

However, in recent years the causal influences of delays
in flight networks have been researched by several studies.
Fernandes et al. [23] used machine learning models to predict
departure delay, but additionally used data-based sensitivity
analysis to further analyse what the most influencing factors
are on the made predictions. Compared to most other studies
in this research area, which often focused on delays in a
network of airports or in a geographical region, Fernandes
et al. [23] analysed delays of a single airline in the EU, which
is similar to the case study of this research project. In a

study by Diana [24], latent constructs of flight delays were
researched using Confirmatory Factor Analysis. This method
can be used to find causal relationships among variables, but
also requires to make prior assumptions about the variables
and their underlying relationships, which does not allow to
find complex and unexpected relationships in a big data set.
Additionally, arrival delays and their patterns were researched
by Abdel-Aty et al. [25] using frequency and regression
analysis. The results obtained from the regression analysis
were found to be poor, and therefore more advanced statistical
techniques had to be used, namely logistic regression and the
analysis of variance (ANOVA) method, which led to better
results.

Sternberg et al. [1] has used the data mining method
association rule mining using the Apriori algorithm for finding
the main reasons of departure delay at the largest Brazilian
airports. Similarly, Proença et al. [26] have also studied
flight delay patterns by using diverse subgroup set discovery
algorithms, which is another data mining method. This study
focused on flight information that is available six months prior
to operation, with the aim to be able to avoid delays by making
changes in block times and crew schedules. These data mining
methods allowed to expose underlying and more complex pat-
terns, compared to a conservative statistical correlation analy-
sis. Additionally, recent research by Rodriguez-Sanz et al. [27]
and Truong [28] has focused on the discovery and analysis of
the main drivers of delays using a Bayesian network analysis.
This is a probabilistic graphical model, which allows to find
and quantify complex and hidden dependencies among the
variables, by using inference methods and sensitivity analyses.

The novelty of this research work lies in the combination
of focusing on ATC delays specifically, whereas most of
earlier studies only analysed general arrival and/or departure
delays, which is combined with a focus on a single airline,
namely KLM Royal Dutch Airlines. This permits to take
into account the specific processes, practises and data of the
airline. Additionally, two methods are used for causal analysis,
namely association rule mining and a Bayesian network, which
were found to be most suitable for this application from the
performed literature review. By comparing their findings and
results, the performance and value of these methods for causal
analysis can be investigated.

The content of the remainder of this research paper is as
follows. In section II the methodology is presented, which
consists out of the description of the data acquisition and
processing, and the selection and implementation of the causal
methods. This is followed by the presentation of the results
in section III, which are discussed in detail under section IV.
Finally, the conclusions on this research work are drawn in
section V, which is followed by recommendations for future
work.

II. METHOD

This section presents the developed methodology of this
research. This could be split into 2 different phases. First, the
required data and its sources had to be identified, acquired and
preprocessed. Additionally, the methods used for causal anal-
ysis had to be selected and developed. As a baseline method,
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Association Rule Mining (ARM) was selected, whereas a
Bayesian Network (BN) was used as the state-of-the-art model.

A. Data Acquisition & Preprocessing

In order to be able to discover complex patterns in the data,
information from several sources, both public and proprietary,
was carefully selected and acquired. The available data ranges
from the 15th of November 2018, until the 31st of December
2019, which spans a total of 412 days. These dates were
selected both due to availability constraints, and as the airspace
was at its most congested point in this period, before the
relapse of aviation in the year 2020 due to the enormous
impact of the Covid-19 pandemic. The following data sources
were made available for this research and used:
• KLM flight data
• KLM route data
• CDM data
• Operational data from the Dutch ANSP
• Weather data in the Dutch airspace
• Dutch FIR data
Collaborative Decision Making (CDM) is the process of

sharing information on the operational processes between
multiple stakeholders and operators at an airport, with the
goal of enhancing informed decision making for all parties
[8]. This source contained information on changes in flight
state, and milestones in the CDM process such as the TOBT
and TSAT, which was only available for flights handled by
KLM ground services. From the KLM data base, individual
flight information was retrieved, ranging from identification
data to performance related information. Additionally, this
data could be used to link the flight data to the other data
sources. The KLM route data was retrieved from a separate
data base, which contained all waypoints included in the
flight’s flight plan. From the Dutch ANSP, the LVNL, informa-
tion on runway usage, capacity declarations, regulations and
demand on arrival, departure and the Initial Approach Fixes
(IAF) was retrieved. In these data, all flights at the airport
were included, where non-KLM flight information was made
anonymous. Finally, hourly weather information was gathered
on all available weather stations in the Netherlands from the
KNMI, and information on the layout of the Dutch Flight
Information Region (FIR) such as waypoint locations and
sector definitions were found from the public Aeronautical
Information Publication.

Most of the data in these sources required individual prepro-
cessing before the data could be integrated on the KLM flight
data. This was mostly the case for the CDM, operational and
weather data. The operational data was mostly transformed
into data per 20 minute interval, such that this could be
merged with the flight data. The CDM data set had a vertical
data format, and thus the transformation mostly concerned
extracting features that allowed the data set to be represented
as a horizontal data set, meaning that each flight represented
one row or observation. Additionally, the weather information
from all stations were aggregated using the weighted average
method to hold weather information on each sector in the
Dutch FIR, with separate weather information for Amsterdam

Schiphol Airport. After this, all resulting data sets were
integrated with each other. Finally, the inbound and outbound
flight data sets were linked to each other, such that one
data set was obtained, where one observation represented one
turnaround operation of a KLM flight at Schiphol Airport. The
total number of observations in the data set was 139,177 at this
point. This obtained data set then needed to be preprocessed
before it could be used as input into the causal methods. This
included outlier removal, handling missing values, uni- and
multivariate discretization, and finally feature selection.

The first step that was taken was to remove the observations
which missed values for a substantial part of the columns. This
step removed observations in particular that were missing data
from a specific source, which resulted in a large number of
missing values for the same columns. This was done for each
of the sources, such that the observations that missed opera-
tional, CDM and/or weather data could be directly removed.
This resulted in a data set with length 131,045 which means
that 5.8% of the observations were removed.

Secondly, outliers in the data set needed to be identified
and removed, in order to prevent the bias introduced by
these values to be retrieved in the found results [29]. A
basic and very common method in the detection of outliers
is by considering all values that deviate more than 3 times
the standard deviation, σ, from the mean of the variable, µ,
shown in Equation 5 and 6 [29]. If the underlying data is
normally distributed, this will result in keeping 99.7% of the
observations. This type of outlier detection is thus parametric,
as it makes assumptions on the distribution of the data.

outlier > µ+ 3 · σ (5)

outlier < µ− 3 · σ (6)

However, not all variables that had to be checked for outliers
could be assumed to have a normal distribution. Therefore,
outlier detection was also done by performing clustering,
where the data records that fall outside of the identified clusters
are considered as outliers [29]. Multiple types of clustering
algorithms exist but for outlier removal in particular, it is
beneficial to use a density based cluster, which works by
searching for regions with a high density of observations. By
exploring the density of the data, these methods do not require
the user to set the number of clusters, and observations which
are located in low density regions are automatically classified
as outliers. Therefore, the DBSCAN clustering algorithm,
a commonly used density based method, has been used in
order to identify outliers. The disadvantage of density based
clustering algorithms is that in contrast to the well-known
K-Means clustering algorithm for example, it has a higher
computational complexity as it compares all points in the data
set to every other point. This disadvantage however did not
outweigh the added benefits of using the DBSCAN algorithm
for outlier identification [29].

Finally, after all outlier detection and removal steps, which
are summarised in Table I, the data set comprised of 122,436
rows, which each represented 1 turnaround procedure of a
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TABLE I
SUMMARY OF OUTLIER REMOVAL ACTIONS.

Explanation Outlier removal method
Air Traffic Control delay Standard deviation
Difference departure and
ATC delay

Standard deviation

Arrival delay Standard deviation
Slot delay evolution
+ Slot delay dynamics

DBSCAN algorithm

Pure ATFM delay Standard deviation
Waiting for departure Standard deviation
Waiting for ground handling
+ actual taxi in time

DBSCAN algorithm

Delay induced by regulation
Standard deviation +
DBSCAN algorithm

KLM flight at Schiphol Airport. This indicates that 6.6% of
the input data set was classified as an outlier.

After outlier removal, 6.9% of the 122,436 flight
observations had one or more missing values in the attributes.
Missing values in data can be handled in several manners,
such as removal or imputation, and depends heavily on the
size and type of data set [29]. One of the possibilities is
to simply remove the observations with the missing values.
This approach can be used if there are sufficient observations
available, and when the observations with the missing values
are drawn from the same distribution as the complete data
set. Therefore, the distribution of the data points with missing
values was analysed and it was decided to remove these
observations, as they represented the same distribution of
values as the full data set. Finally, all data cleaning steps and
their impact on the data set size are summarised in Table II.

TABLE II
SUMMARY OF DATA PROCESSING STEPS AND NUMBER OF REMOVED

OBSERVATIONS.

Processing step % removed Resulting number
of observations

Initial cleaning 5.8 131,045
Outlier detection 6.6 122,436
Handling missing values 6.9 113,939

As a next step in the data processing, a redundancy analysis
was done among the features, meaning that the pairwise corre-
lation between all features has been computed and analysed.
This was done to minimise the redundancy in the features
included in the final data set, which should be combined
with selecting the most relevant features for the model [30].
This redundancy analysis was performed before the variables
were discretized, as the variables hold the most information
in their original format. This data processing step allowed to
identify variables which held very similar information and thus
only one of the similar variables should be further considered
in the data set. For the continuous variables, the Spearman
correlation coefficient, rs, using the ranked difference between
two variables Di (Equation 7 [31]), was used, whereas the
correlation among the discrete attributes was analysed using
the entropy based measure Mutual Information (MI) (Equa-

tion 8 [30]). The variables which were found to be redundant
as they had a high correlation with another attribute and similar
correlation values with respect to other variables are shown in
Table III.

rs = 1− 6
∑N

i=1D
2
i

N3 −N (7)

MI(X;Y ) =
∑

x∈X

∑

y∈Y
P (x, y) log

P (x, y)

P (x)P (y)
(8)

TABLE III
REMOVED REDUNDANT ATTRIBUTES.

Deleted variable(s) Redundancy with
Difference dew point &
temperature

Horizontal view

Number of runway operations+
demand values

The runway usage rate

Delay duration of specific
delay codes

Arrival/Departure delay

Doors closed delay inbound flight Arrival delay
Regulation indicators Reason for regulation
CFMU-reason for regulation IATA delay code for regulation
Indicator of arrival, departure or
en-route regulation

IATA delay code for regulation

Number of TTOT updates Number of TSAT updates
Difference TTOT and Target TTOT ATC delay
First/last waypoint used Sector used
Number of CTOT updates inbound Pure ATFM delay inbound
Waiting for departure ATC delay
Time between ready and start taxi ATC delay
Difference turnaround time
planned and actual

Arrival delay, ATC delay

Hour of operation Time of day operation
Month of operation Season
Horizontal view & ceiling Visibility condition

Demand on IAFs
Capacity and demand
imbalance on IAFs

The next step in the data processing phase was to discretize
the continuous variables, as both the selected methods are lim-
ited to be used with solely discrete data sets. When discretizing
continuous variables, it is evident that information will be lost.
Therefore, it is important to minimise the information loss
by using the most suitable method and number of categories.
In this research, the data was discretized using the K-Means
clustering algorithm. In K-Means clustering, the centroids of
the clusters are initiated randomly, after which the observations
are assigned to the cluster of the nearest centroid, measured
in euclidean distance. After this, the centroids are updated to
be the mean value of all observations belonging to the cluster,
which is repeated until the clusters and their centroids are
no longer alternated [29]. However, this clustering method
requires the number of clusters to be specified by the user.
The optimal number of clusters was determined by selecting
the number of clusters which returned the maximum point
of curvature on the graph in function of the cluster’s inertia.
The inertia of a clustering measures the total squared distance
between the data points and the centre of their assigned
cluster, and can thus only decrease for an increasing number

6



of clusters. By using the point of maximum curvature, the
number of clusters is optimised as adding extra clusters does
not lead to major improvement in the inertia of the obtained
clusters.

K-means clustering was used for univariate and multivariate
clustering. Univariate clustering indicates that only 1 variable
is used as input into the algorithm, and that thus the output
consists of that variable being discretized into bins. For
multivariate clustering, several variables are used as an input
for the clustering algorithm, meaning that the result is a single
clustering label, which now holds information on the values of
all input variables. This is also known as variable aggregation,
and helps to reduce the amount of features present in the data
set. The following aggregated features were created:
• Wind speed: aggregation of the average wind speed and

the speed of the maximum wind gust.
• Wake turbulence category: aggregation of the percentage

of light, medium and heavy category flights in 20 minute
time interval of the flight’s departure.

• Demand, capacity and difference capacity and demand
on the IAFs: demand, capacity and difference capacity
and demand of the three individual IAFs in the Dutch
FIR.

• CDM stability: aggregation of the percentage of TSAT
and TOBT adherence and TOBT stability of the flights
in 20 minute time interval of the flight’s departure.

• Average CDM updates: aggregation of the average num-
ber of TSAT and TOBT updates of the flights in 20
minute time interval of the flight’s departure.

• Slot delay information: aggregation of the difference
between the first and last slot delay of the flight, as well
as the difference between the maximum and minimum
assigned slot delay of a flight.

Additionally to the K-Means clustering method, binning
by equal frequency was also used, for specific variables.
This method returns bins with a varying width, but each
bin contains approximately the same number of observations.
This method was applied in particular on the target variable,
ATC delay, in order to ensure that each bin would occur
frequently enough to be analysed by the causality methods.
In this method, the number of bins was determined manually,
and in case of the ATC delay variable set to be 4, such that
each of the bins of ATC delay would occur approximately 25%
of the time. Additionally, the pure ATFM delay and company
induced delay were forced into a discretization of 0 and >0.
For the variable relating to the regulation rate, the found bins
were slightly adjusted to have 0 as a separate category as this
indicated that no regulation was active.

The result of the discretization process is either a single
label, for multivariate clustering, or in the case of univariate
discretization an interval, where this interval denotes the
range of values included in the bin.

Finally, the features which held the most relevant informa-
tion in relation to the ATC delay had to be selected to be used
as input for the causal analysis methods, as their computational
complexity grows exponentially with the number of variables.
The final step in the feature selection process was to select the

features with the highest dependence or correlation with ATC
delay, in order to discover complex and statistically significant
patterns in the data. This was again done using the Mutual
Information criterion, only this time the metric was only
computed between each feature and the target variable, ATC
delay. From these results, the features were ranked on score
and the top 30 features were selected, which was a result of a
trade-off between including as much information as possible,
model complexity, and computational load. However, these
attributes were not the final selection. Additional attributes of
interest from an airline perspective, and which did not belong
to the best 30, were manually selected to be kept in the data
set, and are listed below.

• Weather information at departure (visibility, wind speed
& direction) and visibility at arrival

• TSAT adherence of individual flight, and of flights 20
minute time interval of the flight’s departure (CDM
stability)

• Difference capacity and demand at arrival/departure
• Aircraft type
• Weekday of departure
• Short turnaround time indicator
• Peak indicators at arrival/departure
• Waiting for ground services & boarding duration

The final data set consisted out of 46 variables in total. The
majority of the used variables are straightforward and could be
directly found in the data sources. However, part of the used
variables are constructs of the original variables and require
some additional explanation.

• TOBT adherence: True when no TOBT update larger than
5 minutes is made in the last 20 minutes before TOBT
[32].

• TSAT adherence: True when the aircraft has called ready
within the TSAT window (+- 5 minutes of TSAT) [32].

• Actual runway usage rate: Computed by taking the
moving average departure or arrival rate by taking the
mean time between the flights in a time window of 20
minutes, and the runway usage rate is then 60 minutes
divided by this average timing between flights.

• Difference capacity and actual runway usage rate: The
difference between the declared capacity in aircraft move-
ments per hour and the actual usage rate of the active
runways in aircraft movements per hour.

• The number of updates of CDM milestones: This variable
exists for multiple milestones, such as the TOBT, TSAT,
and CTOT. This variable is simply the count of the
number of updates a flight has received for the respective
CDM milestone in its turnaround/departure process.

• Peak runway indicators: These variables indicate whether
the inbound/outbound flight arrived/departed during an
outbound, inbound, combination of inbound and out-
bound or off peak period.

• Regulation delay key: For both inbound and outbound
flights, a regulation can be assigned. The reason for this
regulation is translated in an IATA delay key, which
are standardised delay codes, and also exist for specific
ATFM delays. The explanation of these codes can be
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found in Table IV [33].
• Average startup delay: This variable indicates the average

startup delay of the departed flights in the 20 minute time
window, 10 minutes before and after the observed flight
departed.

• Ratio of regulated flights: This variable indicates the ratio
of regulated flights to the total number of departed flights
in the 20 minute time window, 10 minutes before and
after the observed flight departed.

• Pure ATFM delay: The delay caused by the regulation of
the flight, caused by the initial issued CTOT. Additional
delay caused by the airline not being able to comply with
this CTOT is not counted as pure ATFM delay.

• Company induced delay: This is the delay that is caused
by the airline, because the flight cannot adhere to its
issued CTOT in case of a regulation. The additional
delay caused by changing the CTOT is then assigned as
company induced delay.

• Regulation induced delay: The difference between the
departure delay before regulation, and the departure delay
after the flight was regulated.

• All doors closed delay: The difference between the actual
all doors closed moment and scheduled all doors closed
moment.

• Difference TTOT and Optimal TTOT: The difference
between the actual Target Take-off Time and the optimal
TTOT of the flight. When positive, this means that the
TTOT was later than the optimal TTOT and vice versa.
The optimal TTOT in the CDM process is the time that
is optimal for that flight, and is issued in order to be able
to get an earlier slot [34].

• Boarding duration: The duration between the flight state
changed to boarding, and the change to flight state gate
is closing.

• Visibility: This variable is an aggregation of the horizontal
view and the ceiling. The states are good, marginal and
Low Visibility Procedures (LVP), and are based on the
conditions defined by the Dutch ANSP.

TABLE IV
IATA DELAY CODES & REASONS [33].

Delay code Description
81 ATFM due to ATC en-route demand/capacity
82 ATFM due to ATC staff / equipment en-route
83 ATFM due to restriction at destination airport
84 ATFM due to weather at the destination
98 ATFM due to industrial action outside own airline
99 ATFM due to unknown reason

B. Association Rule Mining

As a baseline method, Association Rule Mining (ARM)
also known as Frequent Pattern Identification (FPI) was used.
This is a knowledge discovery in databases method, which is
done by identifying recurring or frequent patterns in the input
data set [29, 35]. ARM has been used in a previous study
by Sternberg et al. [1], to determine and analyse frequent
patterns in departure delays at Brazilian airports. This data
mining method allowed to identify underlying associations

and correlations in the data set, which were missed by the
statistical correlation analysis in that same research paper.

This data mining method allows the algorithm to discover
association rules, which can be presented as A → B, where
A is also known as the antecedent and B the consequent
[1]. This example is an association rule of length 2, but also
multiple conditions can be present in both the antecedent and
consequent, for example A, B→C, which is a rule with length
3. The standard input data format is a transactional database,
which implies that every column is binary, indicating whether
the condition is observed for the data record. Not every data
set comes in this standard format, and therefore the discretized
data set used in this research needed to be one-hot-encoded,
before it could be used in the ARM algorithm. When one-
hot-encoding the 46 variables included in the final data set,
this led to 178 columns. Furthermore can one distinguish two
steps in ARM. The first step in this data mining method is
to find the frequent item sets, which are sets of variables that
frequently occur together in the data set. Once these frequent
item sets have been found, the association rules are made by
permuting the found conditions in formats of antecedents and
consequents, which is the rule generation step. In order to
perform ARM, several algorithms have been developed [29].
These algorithms differentiate themselves in the manner they
obtain or mine the frequent item sets from the input data. The
most known include Apriori, FP-growth and Eclat [36, 37, 38].
Both Apriori and FP-growth are suitable for horizontal data
sets, and thus for this application. In FP-growth, the frequent
item sets are found by using the observational data as a starting
point, and building a frequent pattern tree or FP-tree. This
approach eliminates the need to generate and calculate the
parameters for each possible association rule, compared to the
Apriori method. Therefore, the FP-growth algorithm is used
in this research, as it is more scalable to use on large data sets
and computationally faster [39].

This data mining method has been implemented into a
Python environment using the open source package mlxtend
[40]. The final algorithm used in order to mine frequent
patterns from the data set is shown in algorithm 1, and the
second step in this algorithm, FP-growth, is explained in
more detail in algorithm 2. It can be seen that the results of
algorithm 1 contain the total set of association rules, R, and
the filtered rules, Rfiltered. The filtering is done based on the
target variable t, which is the ATC delay, as defined by the
scope of this research. The filtering function returns the set of
rules in which the consequent consists of a condition of the
ATC delay, such that Rfiltered only contains patterns leading
to this variable.

However, one of main challenges in this method remains
to manage the search space, as the number of possible rules
grows exponentially with the number of variables and their
cardinality [35]. Another challenge is the identification of
the rules which hold the most information, as the found
number of rules is often very large. In order to manage
these aforementioned challenges, the method uses different
hyperparameters and measures in order to limit the search
space and to identify the most relevant association rules.
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Algorithm 1: Association rule mining algorithm.
Input:Data set D, minimum support MinSup,

minimum confidence MinConf , maximum length
rules K, target variable t

1) Dencoded = One-Hot-Encode(D)
2) FI=FP-growth(Dencoded,MinSup,K)
3) R,Rfiltered=association rules (FI ,MinConf ,t)

Output:Association rules R, filtered association
rules Rfiltered

Algorithm 2: FP-growth algorithm details.
Input:Encoded Data set Dencoded, minimum support
MinSup, maximum length rules K

1) Supportvariables=Calculate support of each variable in
data set (Dencoded)

2) Dranked=rank data observations from high support to
low (Dencoded,Supportvariables,MinSup)

3) FP-tree,FI= Build tree (Dranked,K)
Output:Frequent item sets FI

Rule length The rule length is the maximum length of a
frequent item set, and consequently an association rule. For
a low value of this parameter, the rules are more simple
and general. For increasing rule length, the discovered rules
become more complex, as more conditions can be included,
and more rules are discovered. Therefore, this parameter
should be optimised carefully as setting it too low may result
in only finding simple patterns, whereas a too high value will
return too many rules, which makes it hard to filter to the most
relevant ones.
Support The support of a condition is simply the frequency
of the condition in the data set. Thus, the Support(X=x,Y=y)
is the frequency of variable X equals x and variable Y equals
y. The mathematical formulation of this measure is shown in
Equation 9 [29].
Confidence The confidence of an association rule is
the conditional probability of the consequent, given the
antecedent. For example, Confidence (X=x→ Y=y), is the
conditional probability of Y equals y, when variable X equals
x. The confidence value of a rule can be expressed as the
ratio of support, as seen in Equation 10 [29].

Support(X = x) = P (X = x) =
Frequency(X=x)

Total records
Support(X = x, Y = y) = P (X = x ∪ Y = y)

(9)

Confidence(X = x→ Y = y) = P (Y = y|X = x)

=
Support(X = x, Y = y)

Support(X = x)

(10)

The aforementioned hyperparameters need to be set by the
user. As a trade-off between the number of rules generated and
the ability to mine specific rules, the maximum length of a rule
was set to be 4. The minimum support value determines how

often a condition or pattern needs to occur before it can be
considered as frequent, and thus be included in an association
rule. Higher support values will return patterns with a high
frequency in general, and will reduce the number of found
rules. In order to determine this hyperparameter, the method
applied by Sternberg et al. [1] was used, where the support is
a function of how often a pattern should occur on average
per day, expressed in Equation 11. The result of applying
Equation 11, considering that the data set is made up of
113,939 observations (N ) spread over 412 days, is shown in
Table V. It was decided to use an average daily occurrence,
denoted as µoccurrence, of 25 as the support limit, leading to
a value of 0.09. Finally, the minimum confidence threshold is
used in the process of making association rules from the found
frequent item sets, as its computation requires an antecedent
and consequent. Its minimum value was determined based on
the minimum probability of any of the conditions of the ATC
delay, such that the rules found have a higher conditional
probability than purely the occurrence of delay [1]. The used
expression is presented in Equation 12.

µoccurrence ·Ndays

N
= MinSup (11)

P (dATC |conditions) >= P (dATC),

P (dATC) = MinConf
(12)

TABLE V
MINIMUM AVERAGE OCCURRENCE PER DAY OF RULE AND

CORRESPONDING MINIMUM SUPPORT VALUES.

Occurrence per day Support
10 0.036
20 0.072
30 0.108
27.65 0.1
24.9 0.09

Next to the measures of support and confidence to represent
the strength of an association rule, an additional correlation
measure can be used, namely lift, presented in Equation 13
[29]. The lift measure can be used to identify rules which do
not actual consist of a causal relationship, but are detected as
the consequent has a high support [1]. Therefore, the lift of
a rule can also be seen as the correlation, as a lift value of
1 indicates that the conditional probability of Y = y given
X = x is equal to the probability of Y = y, and thus X = x
and Y = y can be said to be independent. Lift values larger
than 1 thus indicate a positive correlation, whereas values less
than 1 show that the antecedent and consequent are actually
negatively correlated [29].

Lift(X = x→ Y = y) =
Confidence (X = x→ Y = y)

Support (Y = y)
(13)

A common method to interpret and analyse the found
association rules is by selecting the most significant rules and
analyse them. In this study, the metric used for significance
is lift. However, it is also common that this selection of
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association rules returns patterns with a lot of overlap between
them, meaning that they are not diverse enough to discover all
relevant patterns [26, 41]. Therefore, additional measures can
be used to ensure analysing the most significant patterns, but
also the ones having the least amount of redundancy among the
rules. Therefore, a redundancy measure is implemented next to
the significance measure, in order to ensure diversity in the top
discovered patterns [26, 41]. This redundancy measure should
represent the degree of overlap with other frequent patterns,
which have a higher significance value. Therefore, it counts
the number of rules with a higher lift value that have the
same condition in the antecedent, for each condition in the
rule’s antecedent. Finally, this is normalised for the number
of antecedents of the rule. This implies that the pattern with
the highest lift will have a redundancy measure of 0 by default,
as no rule has a higher significance than this one.

C. Bayesian Network

As a state-of-the-art method, the Bayesian Network (BN)
model was selected. This method has been used in earlier
studies researching causes of flight delays by Rodriguez-Sanz
et al. [27] and Truong [28]. A Bayesian network was selected
as it has been found that it has excellent properties for causal
analysis. This is because it can be constructed based on
an input data set and identify the conditional dependencies
between the variables. Additionally, by using analysis tech-
niques as Bayesian inference, the main causes or drivers of a
variable and their influence on that variable can be analysed
and quantified [27, 28]. According to Rodriguez-Sanz et al.
[27], Bayesian network analysis is a very suitable method
to analyse airport saturation or flight delays for multiple
reasons. First of all can the found structure be interpreted
in a straightforward manner, and can it be used for causal
analysis. Secondly is a BN a probabilistic model, which is
beneficial as flight delays are a highly stochastic process.
Lastly, BN allows to analyse the influence and relationships
between multiple variables in the network, which enables the
detection of complex relationships and interactions among the
variables [27].

A Bayesian network is a graphical presentation of a joint
probability distribution [42]. It comprises of two main ele-
ments, a graphical structure, which is also known as a Directed
Acyclic Graph (DAG), and Conditional Probability Tables
(CPT) for every node/variable in the network [9, 27]. The
DAG represents which nodes or variables are conditionally
dependent on each other by means of links, whereas the
CPTs represent the quantitative information, and contain actual
probabilities [27]. When constructing a BN, the term structure
learning refers to the process in which the DAG is built, which
is followed by parameter learning to obtain the CPTs [43].

P (X1, . . . , Xm) =
m∏

i=1

P (Xi | X1, . . . , Xm) =
m∏

i=1

P (Xi | Oi)

(14)
In Equation 14, the mathematical expression is shown for

the joint probability of a network structure with m variables,
P (X1, . . . , Xm), and that this joint distribution is equal to the

product of the conditional probabilities of the variables, Xi,
on the variables in their parent set, denoted as Oi [28, 42].
Xi can also been seen as the child node of the variables in
its parent set Oi.

1) Structure Learning: There are multiple ways on how
a Bayesian network graph can be constructed. If there is
enough knowledge on the problem, or the causal relationships
are already known, a Bayesian network can be constructed
manually. However, constructing a large network from ref-
erence literature and/or expert knowledge is not sufficient to
capture the complex and large amount of relationships between
the included variables. In this case, the DAG can be learned
from pure observational data, for which multiple methods exist
[44]. In score based functions, a scoring function is used to
measure the degree that the found structure represents the
underlying data [45]. However, different structures need to
be found in order to evaluate their fit to the data using the
scoring function, which is done by the search method. The
search method is often a heuristic method, as the number of
possible DAGs is very large, and grows exponentially with the
number of variables or nodes. The second type of structure
learning method is dependency based or constraint based
learning, which works with conditional independence tests on
the variables in the input data set, and the most commonly
used one is the PC-algorithm [44, 46]. Hybrid methods are
then a combination of the score based and constraint based
algorithms [47, 48]. In hybrid learning, the main idea is to
find the undirected links between the nodes, using conditional
test of independence as in constrained based methods. The
found undirected structure is then the input for the score based
function, which optimises the direction of the found links
[47, 48]. The hybrid learning algorithm used in this research is
based on the algorithm developed by Tsamardinos et al. [47],
and is a combination of the constraint based PC-algorithm and
hill climb search score based method.

The number of possible DAG structures grows exponentially
with the number of nodes or variables, as shown in Equa-
tion 15. Therefore, using exhaustive search methods which
consider all possible structures becomes computationally im-
possible when having more than a few variables. As a heuristic
search method, hill climb search was used in combination
with tabu search. The hill climb method looks for the best
improvement in the neighbouring solutions, and is therefore
very sensitive to finding local maxima as the best found
solution [49]. The addition of the tabu search method allows
to save recently visited solutions and exclude them from
the possible next states, which helps the hill climb search
algorithm to escape from local maximum solutions [49].

NDAG = 2m·(m−1) (15)

In the research field of BN, there is no consensus on which
structure learning algorithm leads to the best results, as this
is often highly dependent on the input data set [43, 46, 50].
Overall, for large networks, it is beneficial to use score based
learning methods as they make use of heuristics to learn
the DAG structure. Considering the size of the network and
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the expected amount of edges, only score based and hybrid
learning methods have been considered.

In both hybrid and score based learning methods a scoring
function needs to be used to optimise the structure of the
BN, of which the most commonly used ones are K2, BDeu
and Bayesian Information Criterion (BIC). The former two
are Bayesian scoring functions, whereas the BIC method is
classified as an Information Theory method, which aims to
maximise the log-likelihood function of the model on the input
data.

In order to select the best performing structure learning
algorithm, their performance had to be checked on an indepen-
dent and separate data set, which has also been used for verifi-
cation purposes. The used data set was sampled from an open
source available Bayesian network with 37 nodes and 46 links,
named ALARM, which has been developed by researchers and
has been commonly used to test the performance of different
structure learning algorithms [51]. As the actual Bayesian
network structure is known, the learned structures by the
different algorithms could be assessed on their performance.
The data set used as an input for the structure learning
algorithms was sampled for 100,000 observations, resulting
in a data set size of 100,000 x 37, which is in the same
order of magnitude of the size of the data set that will be
the input to analyse the ATC delays in this research. The
Structural Hamming Distance (SHD) was used to asses the
performance of the learning method. This metric counts the
number of additional, missing, or wrong oriented edges in the
learned structure compared to the actual model, meaning that
its value should be minimised [47]. The performance of the
different structure learning algorithms on this ALARM data set
is shown in Table VI. It can be seen that the hybrid algorithm
outperforms the score based method on both run time and
finding the correct structure (SHD). However, when the hybrid
method was applied to the ATC delay related data set, it was
found that its computational complexity is heavily dependent
on the data set used as input. This could be explained by
the fact that there are a lot more dependencies between
the variables in the ATC delay related data set compared
to the used data set sampled from the reference ALARM
network. This led to an increase in the number of conditional
independence test that had to be executed, making the hybrid
learning algorithm computationally very heavy. Therefore, the
hill climb algorithm was selected. From Table VI, it can be
seen that optimising the K2 score had the best performance in
terms of SHD, and this scoring function was found to perform
best for large data sets in earlier studies [52]. Therefore, the
K2 scoring function was selected as an optimiser for the
structure learning in this research. The formula of the K2
scoring function is shown in Equation 16 [45]. Here, G denotes
the DAG, D the input data set, m the number of variables,
ri the number of states of variable Xi, and qi the number of
configurations of the parents set of variable Xi. Nij and Nijk

respectively represent the number of instances that the parent
set of variable i takes value j, and the number of instances
that this happens and the variable Xi takes value k.

Additional to the structure learning method used, other
hyperparameters can be specified in the structure learning

process: the maximum amount of parent nodes in the network
and the nodes which cannot be included in the network, also
known as the black list.

gK2(G : D) = log(P (G))+

m∑

i=1




qi∑

j=1

[
log

(
(ri − 1)!

(Nij + ri − 1)!

)
+

ri∑

k=1

log (Nijk!)

]
 (16)

Maximum number of parents The larger this number, the
larger to computational complexity of learning the structure
and analysing it. Thus, a trade-off must be made between
learning the most correct network and computational com-
plexity. From iterations, it was found that the number of
conditional dependence relationships, or links, is high in the
data set and associated structure. Therefore, it was decided
to limit the number of parents to a maximum of 3, as this
balanced the representation of dependencies and complexity
in the network. Additionally, this is in line with the maximum
length parameter of the baseline method, which was set to be
4, meaning that maximum 3 conditions could lead to another
condition.
Black list These include all links that cannot be added to the
network, and are set by the user. If the black list is empty,
the network can learn links that are in reality not possible.
For example, information on the outbound flight cannot cause
inbound flight information, or flight information cannot lead
to the season or aircraft type used. Additionally, as ATC delay
is the target variable due to the defined scope of this research,
it was chosen to have this node as an ending node, in order
to be able to analyse the structure bottom up. Therefore, the
following links are included in the black list of the structure
learning algorithm, which consisted in total out of 676 links:
• All variables → season
• All variables → aircraft type
• All variables → weekday
• All variables → time of the day, peak indicators
• ATC delay → all variables
• Outbound related variables → inbound related variables
2) Parameter Learning: There are two methods available to

learn the parameters of the BN, also known as the conditional
probability tables associated with each node [53]. One way to
estimate these CPTs is to use Maximum Likelihood Estimation
(MLE), which essentially maximises the probability that the
data was created by the network structure, P (data|model)
[53]. This method is relatively sensitive to overfitting, as the
resulting CPTs are fully based on the learned model and data.

An alternative to MLE is to use Bayesian estimation for
the conditional probability tables [53]. In this method, initial
conditional probability tables are created based on a Dirichlet
distribution, which is very often used as a prior in Bayesian
probability theory and applications. These CPTs are then
updated using the model and the input data, which is more
conservative compared to the MLE method, and thus reduces
the risk of overfitting the parameters. A drawback of this
method is that the equivalent sample size of the Dirichlet
distribution needs to be set, which has a large influence on
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TABLE VI
RESULTS OF DIFFERENT STRUCTURE LEARNING ALGORITHMS ON THE ALARM DATA SET, N=100,000, P VALUE=0.05.

Run time (s) SHD (-) Scoring function (-)
Algorithm K2 BDeu BIC
Hill climb K2 934.0 26 -941.798E3 -941.588E3 -944.809E3
Hill climb BDeu 765.1 35 -941.636E3 -941.224E3 -944.282E3
Hill climb BIC 731.8 34 -942.651E3 -942.252E3 -944.317E3
Hybrid K2 576.7 18 -959.115E3 -958.928E3 -959.622E3
Hybrid BDeu 656.5 17 -959.124E3 -958.928E3 -959.622E3
Hybrid BIC 627.7 17 -970.762E3 -970.488E3 -971.404E3

the obtained results [54]. Therefore, it was assumed that
in this research there is sufficient data available to prevent
overfitting of the conditional probability tables to the data,
and the MLE method was adopted.

3) Inference: Once the Bayesian network structure and
parameters have been learned from the data set, the network
can also be used to better understand and quantify the causal
relationships and interactions between the different variables
by applying inference [28]. Inference can be used to make
predictions on missing variables and to perform a sensitivity
analysis by quantifying the effect of fixing certain variables in
the network on the probability distribution of other variables
in the network [27]. The following definitions are used in
inference theory [55]:
Query A set over which the posterior probability must be com-
puted in the inference method, given the evidence. Example :
P (U |X = x)
Evidence The set of variables that is fixed in the query, and
thus serves as input to the inference algorithm. Example:
X = x in P (U |X = x)

Inference can be done in two ways, namely exact and
approximate inference [53]. A commonly used method to per-
form exact inference is Variable Elimination. In this method,
the posterior probability is found by working through the net-
work starting from the evidence. Here, each time a summation
is done over all states of a variable, it is eliminated from
the distribution [53]. By doing so, the inference algorithm
is working itself through the network structure, starting from
the nodes present in the evidence. This method can become
very computationally expensive for complex networks as an
increasing number of joint and conditional probability distri-
butions need to be computed, over a large number of nodes.

When the BN grows in number of nodes and links, exact
inference becomes too computationally complex, and approx-
imate inference methods can be used in its analysis. Approx-
imate methods use sampling to perform inference, and one
of the most commonly used approximate inference methods
is likelihood weighting [55]. In this method, the evidence
variables are fixed to a certain state as specified in the input
evidence. Additionally, the other nodes are sampled based on
the learned conditional probability tables. However, as the
evidence variables are fixed to a certain state, they cannot be
sampled according to their CPTs based on the values of their
(possible) parent nodes. Therefore, the likelihood weight, L,
is introduced for each sample, which reflects the probability
of the evidence variable taking this state, based on its parent
configuration [55]. The posterior probability distribution of a

variable given the evidence can then be obtained by dividing
the sum of the likelihood per state of the variable by the total
sum of the likelihood in the sampled data set, as illustrated in
Equation 17 [55]. However, in order to obtain a good approxi-
mation of the real probability distribution, the required sample
size had to be determined, such that the law of large numbers
would apply. The required sample size was determined by
producing probability distributions of the target variable for
different sample sizes under the same set of evidence. The
evidence was varied along all possible states of the variables
arrival delay, TOBT updates, the difference between the ca-
pacity and actual used runway rate during departure, and the
wind speed category during departure. These variables were
chosen due to their diverse positions in the learned Bayesian
network, as will be seen in the result section. The result for the
variable arrival delay at the state [1;39] is plotted in Figure 1.
Considering all included variables and states, it was found
that for each of these specified evidence values the probability
distribution stabilised at 100,000 samples. Therefore this is the
required sampling size to obtain valuable results.

P ′ (X = xi | E = e) =

∑∏
j L (Ej = ej) if X = xi∑∏

j L (Ej = ej)
(17)
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Fig. 1. Determination of the required sample size in inference using arrival
delay [1;39] as evidence.

Additional to inference, it is interesting to look at the
Markov Blanket (MB) of the variables of interest. The MB
is the subset of variables that is needed to infer the value
of the variable of interest, and thus the subset of variables
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that makes that particular variable independent of all other
attributes in the BN [42]. In Bayesian networks, this subset of
variables consists out of the parent nodes, the children nodes
and their respective parent variables.

Finally, all the aforementioned processes and steps in BN
modelling were implemented into the software environment
used, Python. This was done making use of the open source
module pgmpy, which consists of dedicated functions to con-
struct and analyse Bayesian networks [56].

D. Verification

After implementation of both the FP-growth ARM and
Bayesian network methods, verification was necessary to en-
sure correctness.

The verification process of the FP-growth methodology was
done by using a very small example data set on the method,
which allowed to calculate all support and confidence values
and construct the FP-tree manually. The used data set consisted
of 3 observations and 5 variables. The manually calculated
results could then be compared to the results found by the
implemented Python algorithm. It was found that the manually
obtained results matched the results of the computer model,
meaning that the FP-growth method works correctly and is
thus successfully verified.

For the Bayesian network methodology, verification was
done using standard BNs available from Bayesian model
software modules in R and Python [57]. It was chosen to select
two verification models, one named ’Cancer’, categorised as
a small network with 5 variables and 4 edges, and ’ALARM’,
categorised as size medium with 37 variables or nodes and
46 edges [51, 55]. By using these standard models, the true
Bayesian networks are known and available. By sampling data
according to the DAG and the corresponding CPTs, data sets
which represent the BNs could be obtained. Subsequently,
these sampled data sets were used as input for the BN model
learning algorithms, which allowed to compare the learned
structures to the true models. Several metrics can be used
to assess the quality of the learned structure. Tsamardinos
et al. [47] developed and used a measure for assessing the
quality of fitted and learned structures from data, namely the
Structural Hamming Distance (SHD). This metric counts the
number of additional, missing, and wrong oriented edges in
the learned structure compared to the actual model [47]. A
learned structure representing the actual model well will have
a low value for this metric, whereas structures with less good
solutions will have higher values for the SHD.

All learning methods were applied to the data sets sampled
from the small and medium reference networks. It was found
that the algorithms worked as expected. The exhaustive search
method on the small network for example had a much higher
run time, but also outperformed the hill climb method. Next
to this could it be observed that the hybrid and score based
functions returned different solutions, as expected. This im-
plies that the algorithms have been correctly implemented and
thus that the method is verified.

E. Validation

After verification, validation was required to ensure that the
results obtained by the methods are credible. The approach
taken in this research is a common method in data mining
methods, namely the use of a separate training and test data
set, also known as hold-out [29]. These data sets need to be
the same for both methods, in order to be able to compare
their performance. It was determined to use a training and test
data set ratio of 90% to 10%, which resulted in a data set size
of 102,545 and 11,394 observations respectively.

Earlier studies using ARM for data mining purposes, albeit
with different applications, have used this validation method
and found it most suitable for this method [58, 59]. In order
to validate the results found by ARM, the test set is also used
as an input data set and the same algorithm is run on it. The
found association rules from both the training and test data set
are compared and if the statistical measures such as support
and confidence deviate for more than a set threshold, the rule
is seen as unstable and thus not validated. As a threshold, 5%
was used, which has been commonly used in the validation
process of association rules [60].

The results of the validation process are shown in Table VII.
It was found that more than 97% of the rules in both the
training and test set were also found in the association rules
of the other data set. From these corresponding rules, none of
them had a deviation in the support and confidence values of
more than 5% between the test and training set, meaning all
of the common rules between the test and training set were
validated. These results imply that the found association rules
are present along the entire data set and thus are actual frequent
patterns. From this point, only the validated set of association
rules will be used in the result and discussion section.

TABLE VII
RESULTS OF THE ARM VALIDATION.

% rules validated
training set

% rules validated
test set

98.0 97.7

For BN, prediction can be used for validation, which is most
commonly used for this method [55]. Here, the test data set is
used as input to the prediction process, which is a more clas-
sical validation approach for machine learning models [28].
In order to make predictions on a single target variable, the
BN uses the Markov blanket of that variable. This is possible
as all the variables in the Markov blanket are known from
the test data set, which makes the target variable independent
of all variables in the structure which are not included in the
Markov blanket [42]. As a Bayesian network is inherently a
probabilistic method, it cannot return a single value, but always
returns a probability distribution. Therefore, the predictions
can be made according to the Maximum A Posterior (MAP)
method, or stochastic. The MAP method implies that the state
of the variable that is being predicted is determined by the
state with the highest probability in the posterior distribution
resulting from inference. The stochastic prediction method
computes the probabilities of the states in the same manner,
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however, the predicted state is determined stochastic using
the computed probabilities. In this validation process, the
predictions are done according to the MAP method, as this
generally results in the highest obtained predictive accuracy.

The accuracy of the predictions is expressed as a percentage,
as this is an application of classification due to the discretiza-
tion. For the target variable ATC delay, an overall predictive
accuracy of 47.2% was obtained. Additionally, the confusion
matrix on the made predictions could be used to analyse
the prediction accuracy in more detail, which is presented in
Table VIII. The values in the matrix are again expressed as a
percentage, such that each row adds up to 100. It can be seen
that in the case the BN does not predict the correct class of
ATC delay, the highest percentage of falsely made predictions
for each of the bins is found in the nearest neighbouring bin.

TABLE VIII
CONFUSION MATRIX FOR THE PREDICTION ON THE ATC DELAY

VARIABLE IN PERCENTAGE.

Predicted values
<0 (0,4] (4,9] >=9

<0 25.5 56.2 15.8 2.5
(0,4] 0.3 66.7 25.5 7.5
(4,9] 0.2 41.7 42.0 16.1

Actual
values

>=9 1.1 7.6 36.0 55.3

However, when all the data is present except for the target
variable, which is being predicted, only the variables in the
Markov blanket of ATC delay will determine the prediction.
Therefore, only a small part of the BN is validated using
this method. For this reason, other variables in the DAG
have also been predicted using the hold out test set, and
the resulting predictive accuracy is shown in Table IX. These
variables were selected to be the number of TOBT updates,
arrival delay, difference between capacity and actual usage
rate during departure, and wind speed during departure due
to their different positions in the structure, such that other
parts of the structure could be validated. It can be seen that
for all these variables, the predictive accuracy exceeds that
of the ATC delay. This might be explained by the position
of these variables in the network compared to the ATC delay
variable. When making predictions using a BN, all variables
are known, except the variable that is being predicted. The
value of the predicted variable is thus completely defined by
the variables in the Markov blanket of the predicted variable,
as the definition states. As the ATC delay variable only has
three parent nodes and no children nodes, which are two
implications of using the black list and limiting the number
of parents in the network, these three variables determine
the value of the ATC delay completely. The other predicted
variables in the network also have only three parent nodes,
but they also have children nodes, which are also included in
the Markov blanket, as well as their parent nodes. Therefore,
many more variables are included in the determination of these
variables. It can thus be concluded that the limitations used
in the structure learning of the BN have limited the predictive
accuracy of the target variable.

TABLE IX
PREDICTIVE ACCURACY OF OTHER KEY VARIABLES IN THE BN.

Variable Predictive accuracy %
TOBT updates 80.2
Arrival delay 79.5
Difference capacity
and actual runway usage during departure 71.9

Wind speed during departure 54.0

III. RESULTS

A. Association Rule Mining

After performing validation, the number of validated fre-
quent patterns was found to be 3,341,323. When filtered to
only contain patterns leading to the ATC delay variable, 13,002
association rules remained. Figure 2 displays the average
metrics of the filtered association rules, which only contain
consequents consisting of the ATC delay variable. It can be
seen that the average support values are almost equal for all
four classes, but in the lift and confidence metrics a trend
can be observed. The lowest class of ATC delay both has the
highest confidence as well as lift. One of the middle classes,
with values between 4 and 9 minutes, has the lowest values
in confidence as well as lift, meaning that these patterns are
less strong on average than the other classes of ATC delay.
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Fig. 2. The average metrics of the filtered association rules per class of ATC
delay.

Table X shows the top 10 discovered frequent patterns
based on the lift value. It can be observed that these rules
indeed have a lot of commonalities in terms of conditions
present in the antecedents and consequent. This is a known
phenomenon, as it is very common in data mining methods
that the most significant association rules or patterns are found
to be redundant and overlapping [26, 41]. All these 10 most
significant rules contain the conditions of TOBT adherence
and no IATA delay key assigned, which in combination
with various other conditions lead to an increased probability
of having an ATC delay below 0 between 130 and 144%,
compared to the probability of an average flight having below
0 minutes ATC delay. The antecedent conditions additional
to the TOBT adherence and the delay key mostly relate to

14



TABLE X
THE 10 ASSOCIATION RULES WITH HIGHEST LIFT VALUES.

Antecedent Consequent Support Confidence Lift
Delay key category dep = None ˆTOBT adherence = True ˆTSAT updates = [0.0;14.0] ATC delay = (-38.001;0.0] 0.10 0.62 2.43
Delay key category dep = None ˆTOBT adherence = True ˆAverage startup delay = [-281.5;5.5] ATC delay = (-38.001;0.0] 0.09 0.62 2.43
Delay key category dep = None ˆTOBT adherence = True ˆTOBT updates = [0.0;1.0] ATC delay = (-38.001;0.0] 0.11 0.60 2.36
Delay key category dep = None ˆTOBT adherence = True ˆAverage CDM updates = 0 ATC delay = (-38.001;0.0] 0.09 0.60 2.34
Delay key category dep = None ˆTOBT adherence = True ˆPure ATFM delay dep = 0 ATC delay = (-38.001;0.0] 0.12 0.59 2.33
Delay key category dep = None ˆTOBT adherence = True ˆRegulation induced delay = [-6.0;2.0] ATC delay = (-38.001;0.0] 0.12 0.59 2.31
Delay key category dep = None ˆTOBT adherence = True ˆCompany induced delay = 0 ATC delay = (-38.001;0.0] 0.12 0.59 2.30
Delay key category dep = None ˆTOBT adherence = True ˆAll doors closed delay = [-35.0;3.0] ATC delay = (-38.001;0.0] 0.12 0.59 2.30
Delay key category dep = None ˆTOBT adherence = True ˆTSAT adherence = True ATC delay = (-38.001;0.0] 0.12 0.59 2.30
Delay key category dep = None ˆTOBT adherence = True ATC delay = (-38.001;0.0] 0.12 0.59 2.30

TABLE XI
THE 10 ASSOCIATION RULES WITH LOWEST REDUNDANCY VALUES.

Antecedent Consequents Support Confidence Lift Redundancy
Delay key category dep = None ˆTOBT adherence = True ˆTSAT updates = [0.0;14.0] ATC delay = (-38.001;0.0] 0.10 0.62 2.44 0
Season = S ATC delay = (9.0;55.0] 0.11 0.28 1.22 0
Arrival delay = [1.0;39.0] ATC delay = (9.0;55.0] 0.10 0.28 1.20 0
Short turnaround time = 0 ATC delay = (9.0;55.0] 0.09 0.27 1.17 0
Delay key category dep = None ˆTOBT adherence = True ˆ
Average startup delay = [-281.5;5.5]

ATC delay = (-38.001;0.0] 0.09 0.62 2.43 0.67

Average usage rate of runways dep = [60.7;90.1] ATC delay = (9.0;55.0] 0.10 0.32 1.37 1
TSAT updates = [15.0;30.0] ATC delay = (9.0;55.0] 0.10 0.31 1.35 1
Time of day = midday ATC delay = (0.0;4.0] 0.09 0.27 1.04 1
TOBT updates = [0.0;1.0] ˆDelay key category dep = None ˆTOBT adherence = True ATC delay = (-38.001;0.0] 0.11 0.60 2.36 1.33
Pure ATFM delay dep = 0 ˆDifference TTOT and optimal TTOT = [-5400.0;-239.0] ˆ
TSAT updates = [0.0;14.0]

ATC delay = (-38.001;0.0] 0.09 0.56 2.20 1.33

the CDM information of that flight, namely TSAT adherence,
low number of TSAT and TOBT updates, low average startup
delay in 20 minute time interval, and low number of average
updates of the TSAT and TOBT in that same 20 minute
interval, denoted as the average CDM updates. Additionally,
also regulation related variables such as the pure ATFM delay,
regulation and company induced delay at departure are present.
It can also be seen that the most significant association rules
all have the lowest category of ATC delay as a consequent.

Table XI shows the top 10 association rules when filtered
on minimal redundancy and secondary maximum lift. It can
be observed that the rules displayed differ from the most
significant rules in Table X. As expected is the most significant
rule also the rule with the lowest redundancy, due to the
used definition. Compared to the most significant ones, also
patterns leading to the highest category of ATC delay are now
included. As expected, other conditions are also present in the
antecedents of the patterns. Arrival delay for example leads
to an increased probability of 20% of receiving an ATC delay
higher than 9 minutes, as well as the number of TSAT updates
between 15 and 30 results in approximately 30% additional
probability. Also the short turnaround indicator, the season and
departure rate are now observed in the antecedent column.

Additionally, the same analysis of the most significant
and least redundant patterns was repeated for each set of
association rules leading to each category of the ATC delay.
The most important antecedent conditions found from this

analysis are summarised per ATC delay category in Table XII.
For the ATC delay class <0, the found patterns were the same
as the ones presented in Table X, meaning that all patterns
consisted of the antecedent conditions TOBT adherence and
no delay key present, and other conditions related to CDM
updates en regulation information. These patterns were found
to have the highest significance, with 130-144% in increase in
the probability of receiving ATC delay below 0 minutes.

For one higher class of ATC delay, between 0 and 4 minutes,
the average startup delay being low, low number of TSAT
updates and no regulation delay key were found to be the
antecedents of the most significant frequent patterns found.
These conditions were combined with other variables such as
a low all doors closed delay, low ratio of regulated flights in the
20 minute time window of departure, and a small difference
between the actual TTOT and the optimal TTOT of that flight.
Additionally, the probability of this delay category is increased
during the winter and for Embraer aircraft types.

For the class (4,9], the most influential factors are again
average startup delay and the absence of a regulation. How-
ever, the average startup delay state has increased compared
to the lower classes of ATC delay, to values between 5.5 and
12.5 minutes. Additionally, also the number of TSAT updates
was found to be influential, without the addition of other
conditions, with values between 15 and 30 updates resulting in
an increased probability of 24% for ATC delay in class (4,9].
Also the departure rate or runway usage rate at the airport and
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arrival delay above 1 minute were found in the association
rules, but both lead to a small increase in the probability of
just 3%.

It was found that for the highest class of ATC delay, the
most influential factor is a high average startup delay (≥5.5),
which leads to an increased probability of he highest class
of ATC delay between 47 and 50%. This condition is found
in combination with the presence of an outbound peak during
departure, denoted by value 2, the outbound flight taking place
on a weekday, good visibility conditions on either arrival or
departure, or when the flight did adhere to its assigned TSAT.
When sorting the rules on redundancy instead of significance,
other antecedent conditions could also be identified. As dis-
cussed before does an arrival delay between 1 and 39 minutes
make it 20% more likely for a flight to receive high ATC
delay. Additionally, when the TSAT is updated between 15
and 30 times, the probability rises with even 33%, and a flight
in summer during the off-peaks months leads to an increased
probability of 22%. Finally, the influence of a short turnaround
time being not true, thus the flight having a long turnaround
time, was found to increase the probability of the highest ATC
delay class with 17%.

B. Bayesian Network

The optimised DAG found by the structure learning algo-
rithm can be found in Figure 3, which consists out of a total of
46 nodes and 115 links, with a total K2 score of 3, 248, 136.4.
The nodes have been coloured according to the category of
the variable: Fixed variables(1-11), flight (delay) data (12-23),
CDM data (24-32), and operational data (33-45).

1) Structure Analysis: When looking at the structure, it
can be noted that the nodes of the same colours are often
grouped together and thus have a lot of dependencies between
each other. The CDM (green) and flight delay data (orange)
also have a lot of conditional dependencies between several
nodes from the groups, showing a strong relationship between
the CDM information and different flight delay variables.
Additionally, the fixed conditions in pink often influence the
operational variables (blue), and can be found at the top of the
network, indicating that they are the drivers of several other
variables in the network, as expected, and due to the inclusion
of part of these variables in the black list.

First of all, the Markov blanket of the ATC delay is
analysed. It can be seen that the average startup delay, the
regulation delay key and the assigned pure ATFM delay of
the flight directly influence the ATC delay. The maximum
number of parents in the network was set to 3 in order to
limit the network complexity, and together with the use of
the black list, this has shown to have implications on the
accuracy of the found structure, as discussed in the validation
method of section II. Therefore, the ATC delay variable has
been split into four binary variables, one for each category, and
the structure learning algorithm was run again. The maximum
number of parents was still set to be 3, meaning that in total
12 parents nodes could possibly be found if the parent nodes
of each ATC delay class would be unique. In the obtained
structure, the parent nodes of the 4 ATC delay variables now

TABLE XII
SUMMARY OF THE MOST INFLUENTIAL CONDITIONS ON ATC DELAY PER

CATEGORY.

ATC
Delay Antecedent Lift

<0

TOBT Adherence = True ˆ
Delay key category = None ˆ
TOBT updates = [0;1] / TSAT updates = [0;14] /
Average startup delay = [-281.5;5.5] /
Average CDM updates = ’0’/
Pure ATFM delay = 0 /
TSAT adherence = True /
All doors closed delay = [-35.0;3.0]

2.30-2.44

(0,4]

Average startup delay = [-281.5;5.5] ˆ
Regulation delay key departure = 0 ˆ
Difference TTOT and optimal TTOT = [-181;481] \
Ratio regulated flights = [0.0;0.2] \
Season = W \
Aircraft type = E75/90 \
All doors closed delay = [-35.0;3.0]

1.53-1.57

Regulation delay key departure = 0 ˆ
TSAT updates = [0;14] ˆ
Difference TTOT and optimal TTOT = [-181;481] \
Ratio regulated flights = [0.0;0.2] \
All doors closed delay = [-35.0;3.0]

1.51-1.54

Difference capacity and usage arr = [10,59] 1.10
Time of day dep = Midday 1.03

(4,9]

Average startup delay = [5.5,12.6] ˆ
Regulation delay key departure = 0 ˆ
Visibility departure = Good \
Company induced delay = 0 \
Visibility arrival = Good \
TSAT adherence = True

1.39-1.43

TSAT updates = [15,30] 1.24
Actual runway usage departure = [43.5,60.7] 1.03
Arrival delay = [1.0;39.0] 1.03

≥9

Average startup delay = [5.5,12.6] ˆ
weekday = 1/ Peak indicator dep = 2 /
TSAT adherence = True /
Visibility arr = Good / Visibility dep = Good /
Company induced delay = 0

1.45-1.47

Actual runway usage departure = [60.7,90.1] 1.37
TSAT updates = [15,30] 1.35
Season = Summer (off peak) 1.22
Arrival delay = [1,39] 1.20
Short turnaround time = 0 1.17

included 5 distinct variables. For the lowest ATC delay class,
the average startup delay was replaced by the departure delay
key category. In the two middle classes, both the regulation
delay code and average startup delay were still parent nodes,
but the third parent node was the number of TSAT updates and
the departure delay key category for the ATC delay classes
(0;4] and (4;9] respectively. Lastly, in the parent configuration
of the highest class, the regulation delay key was replaced by
the departure delay key category.

Looking at the structure, some initial observations can be
made. It can be directly observed that the weekday variable
is not connected to any of the other nodes, meaning that this
variable is conditionally independent of all variables, as well
as the other way around. Additionally, the nodes number 18
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and 43, the delay key category and the regulation delay key of
the outbound flight are both central nodes in the network, as
they each have the maximum number of parent nodes, 3, but
have 8 and 9 child nodes respectively. The delay key of the
flight is dependent on the arrival delay of the inbound flight, as
well as the received pure ATFM delay of the outbound flight,
and lastly whether or not there is a short turnaround period.
The delay key category then influences many variables related
to the CDM process, namely the TSAT/TOBT updates and
adherence, but also the variables of the all door closed delay
and the induced regulation delay. The delay key of regulation
is conditionally dependent on very different variables, such as
the sector used in the Dutch airspace, the season and aircraft
type. The nodes influenced by this central variable are mostly
related to specific regulation information, as expected, such as
the number of CTOT updates, the ratio of regulated flight in
the 20 minute time frame, the company induced delay, and the
multiple regulation indicator.

Finally, it is interesting to analyse the parent and child nodes
of variables that are directly influenced by the performance
of the processes of the airline itself. Therefore, nodes 12,
15, 16, 17, 23, 24, 27 and 28 are discussed in more detail.
From these eight variables, 3 of them, waiting for ground
services, company induced delay and boarding duration are
end points in the network, meaning that their value does not
influence the probability of any other variable directly when
analysing the structure top down. The arrival delay is driven
by the assigned ATFM delay of the inbound flight, as well as
the difference between the capacity and the actual usage rate
of the runways on arrival and the rate of regulation. A child
node of the arrival delay is the received ATFM delay of the
departure flight, which is directly influencing the ATC delay.
Additionally, the waiting for ground services time is dependent
on the arrival delay, however this variable has no influence
on another variable. Both the TSAT and TOBT adherence
are dependent on the assigned departure delay key category.
Additionally, the TOBT adherence is influenced by the TSAT
adherence, which is dependent on the turnaround time of the
flight. The number of TOBT updates a flight receives is also
dependent on the turnaround time, as well as the adherence
of the TOBT, but influences the all doors closed delay of the
flight. Finally, the following relation could be identified from
the network, starting from the above discussed variables to the
ATC delay:
TSAT adherence → TOBT adherence → TOBT updates →
all doors closed delay → TSAT updates → Average startup
delay → ATC delay.

2) Inference: The method of inference was used to analyse
the obtained BN. As explained in section II, this was done
using approximate inference, specifically weighted likelihood,
with a sample size of 100,000. The results are shown in Fig-
ure 4-12. In these figures, the influence of different variables
on the probability distribution of the ATC delay, or other
variables of interest, is illustrated by means of a bar plot.
Each category of the evidence variable is represented with
a different colour, such that bars of the same colour add up
to 1, representing the complete probability distribution across
the categories of the target variable.

Figure 4 presents the influence of the two direct parent
nodes of the ATC delay variable, namely the pure ATFM
delay and the regulation delay key on departure. It can be
clearly observed that both of these variables have a strong
influence on the probability distribution of the ATC delay,
as expected due to their position in the network. Thus, if a
regulation is present, the probabilities of larger values of ATC
delay increase. The result of inference using the third parent
node in the obtained network, the average startup delay, is
shown in Figure 5. Again, it can be seen that this variable
has a profound influence on the ATC delay, where the highest
class of the average startup delay even leads to more than
60% probability of encountering more than 9 minutes of ATC
delay.

One of the interesting variables that influences the average
startup delay is the ratio of regulated flights in the same 20
minute time interval, and its influence on the average startup
delay is also shown in Figure 5. Additionally, the influence of
the ratio of regulated flights on the ATC delay was analysed
and displayed in Figure 6, as well as the influence of the
average number of CDM updates received by the flights in
the same 20 minute time interval. It can be observed that both
variables influence the probabilities of receiving the different
classes of ATC delay. When the percentage of regulated flights
increases, the probability for a high ATC delay (≥9) also
increases, whereas the opposite can be said for the class
between 0 and 4 minutes. In terms of the number of CDM
updates, class 2, which is the class with a high average
number of TSAT updates, the same relation can be seen,
again decreasing the probability of low ATC delay values and
increasing the high ATC delay probability.

Figure 7 shows the results of performing inference with
the inbound and all doors closed delay variables fixed as
evidence. It can be observed that the impact on the probability
distribution of the ATC delay is less pronounced compared to
the variables that are the direct parent nodes of the ATC delay,
however an effect can still be observed. Figure 8 represents the
probability distribution of the ATC delay for different assigned
IATA delay key categories. It can be seen that the ATFM delay
reason increases the ATC delay probability enormously, and
flights with reactionary or weather delay key categories also
have an increased probability to obtain the highest class of
ATC delay, which is in line with what was obtained for the
arrival delay influence. Additionally, the probability of having
less than 0 minutes ATC delay increases when there is no
initial delay key assigned (’None’).

Figure 9 presents the influence of the variables relating
to the number of CDM updates a flight received during its
departure process, namely of the TOBT and the TSAT, two
key milestones in the determination of the startup delay. It
can be observed that both variables have an influence on the
probability distribution of the ATC delay, however the number
of TSAT updates seems to have a larger impact compared to
the TOBT. When a flight has more than 30 TSAT updates,
the probability of having the largest category of ATC delay
rises to approximately 40%, whereas this is less than 20%
for the lowest category of TSAT updates. Looking at the
impact of the TOBT updates, the probability of having the
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Fig. 3. The resulting learned Bayesian network structure.

highest ATC delay category is 28% for TOBT updates higher
than 5, whereas this probability is 22% for TOBT updates
between 0 and 1. The influence of the TOBT and TSAT
adherence are also visualised, and can be found in Figure 10.
The influence of the adherence to these CDM milestones
is less pronounced than the number of updates. Especially
for the TOBT adherence, the influence is marginal to none,
whereas the impact of the TSAT adherence on the probability
distribution remains limited around 5%.

Figure 11 shows the results of the actual runway usage
rate or departure rate and the difference between the capacity
and the actual departure rate upon departure, both expressed

in number of aircraft movements per hour. The resulting
probability distributions show that the probability for higher
classes of ATC delay increases with increasing departure
rate. Additionally, the variable of the difference between
the capacity and actual departure rate shows that when the
declared capacity is exceeded, leading to negative values, the
probability for high values of ATC delay increases.

Finally, the results of inference with the season and short
turnaround time indicator fixed as evidence are visualised in
Figure 12. For the season, a small change in the probability
distribution of the ATC delay category (0.0;4.0] and ≥9 can
be observed, namely that the former is more probable during
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(b) Regulation delay key for departure.

Fig. 4. Influence departure regulation variables on ATC delay.
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(b) Influence ratio of regulated flights on average startup delay.

Fig. 5. Influence average startup delay on ATC delay and ratio of regulated flights on average startup delay.
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(b) Average number of CDM updates of flights in 20 minute time frame.

Fig. 6. Influence of variables of flights in same 20 minute time window.
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(b) All doors closed delay.

Fig. 7. Influence of earlier delay information on ATC delay.
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Fig. 8. Influence of the departure delay key category on ATC delay.
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Fig. 9. Influence number of CDM milestone updates on ATC delay.
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Fig. 10. Influence CDM adherence variables on ATC delay.
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(b) Difference capacity and actual runway usage rate departure.

Fig. 11. Influence of operational variables during departure on ATC delay.
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Fig. 12. Influence of fixed variables on ATC delay.
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the winter, and the latter during the summer months. For the
short turnaround time indicator, 0 meaning a long turnaround
and 1 a short turnaround, no influence could be found, as seen
in the visualisation.

IV. DISCUSSION

In this section, the presented results from section III are
discussed. Additionally, the findings of the two methods are
compared, which is followed by a discussion of the limitations
of the used methodology and made assumptions.

A. Association Rule Mining

By performing the analysis of the most significant and
diverse patterns per ATC delay category, the most influential
conditions on the target variable could be found. It can be
concluded that mostly the absence of an assigned delay key
and TOBT adherence are key in the increase of the probability
of receiving no ATC delay. Additionally, the average startup
delay in the 20 minutes time interval of departure could be
observed in the strongest rules, for almost all categories. The
same holds for the TSAT updates of the flight, but in general
did these patterns have lower lift values, and thus leading
to a less strong pattern. In the patterns of the ATC delay
between 0 and 4 or 4 and 9 minutes the condition of having
no outbound regulation also led to the most strong patterns,
which indicates that flights that are not regulated actually have
a higher probability of having this delay category, due to their
received startup delay.

Other conditions could also be noticed, such as the all doors
closed delay lower than 3 minutes increases the probability of
having lower than 4 minutes ATC delay. Also the season being
winter was found to increase the probability of ATC delay in
category (0,4], as well as having a ratio of regulated flights
between 0 and 0.2. This means that a low number of regulated
flights actually leads to more chance of having between 0 and
4 minutes ATC delay.

A number of conditions were found in combination with
these most influential conditions. For example in the associa-
tion rules of the ATC delay classes (4,9] and ≥9, the variables
relating to good visibility on arrival and departure were found
in combination with the average startup delay. This implies
that even when there is good visibility, which is not expected
to influence the ATC delay and congestion at the airport in
a negative manner, the probability of having a higher ATC
delay increases, despite these good visibility conditions being
present. The same could be observed for the TSAT adherence
being True. It can be that the variables of visibility and TSAT
adherence do influence the ATC delay probability negatively
when taking on other states, however ATC delay can also be
high when these conditions are not in adverse conditions. This
effect also shows that when multiple conditions are present
in the antecedent of an association rule, not necessarily all
conditions have an influential relationship on the consequent.
This is due to the fact that the ARM method adds these
additional conditions as they are very frequent, but do not
directly cause the consequent.

The data mining method also found that a long turnaround
process increases the probability of having an ATC delay
of more than 9 minutes. This is an unexpected effect, as a
short turnaround process could possibly increase the delay
encountered as the scheduled time for all the processes might
be shorter. This could be the result of flights with a long
turnaround time being not prioritised by the ground handling
agent, the operations control centre and air traffic control.
In the definition of the short turnaround time indicator, the
actual turnaround time was used in the formulation of this
variable. Therefore it could also be that the received delay
would increase the turnaround time to be over the limit of
what is considered a short turnaround time, which was 1.5 and
3 hours for European and Intercontinental flights respectively.

When observing the association rules when sorted on re-
dundancy, patterns are found that have either the smallest or
largest ATC delay category as the antecedent, as displayed in
Table XI. This implies that the most significant patterns can be
found for these two classes, and that the patterns of the other 2
bins of ATC delay have overlap with them and/or have a lower
rule strength. It was also observed that part of the conditions
that lead to an increased probability of having an ATC delay
of (4,9] and ≥ 9 are similar. For example, in the frequent
patterns of both classes, the most influential conditions are an
average startup delay of larger than 5.5 minutes, TSAT updates
larger than 14, and arrival delay between 1 and 39 minutes.
However, the increased probability is higher for the class ≥
9, compared to the class between (4,9] minutes, as can be
seen by the corresponding lift values. This was already found
by looking at the average values of the rule strength, shown
in Figure 2, where it was found that the class (4,9] of ATC
delay leads to less strong patterns on average. This could be
explained by the fact that multiple conditions influence the
ATC delay of a flight. The class between 4 and 9 minutes
is situated between the extreme values of ATC delay. This
results in the fact that the most important influences of high
ATC delay can lead to this class, but also influences of the
lower ATC delay can lead to this value, as flight delay remains
a stochastic process. Therefore, the significance of the found
patterns is less strong.

It should be noted that not all conditions of a variable
can be assessed for their influence on the target variable. An
example of this is the following; an arrival delay between 1
and 39 minutes is found to have influence on the probability
of occurrence of the highest category of ATC delay. However,
the class of arrival delay large than 40 minutes is not found
in the identified frequent patterns, as this large delay does
not occur frequent enough for the ARM method to include it
in the pattern analysis. Therefore, this method is suitable to
get an initial understanding of the patterns in the data, but it
lacks the ability to perform deep (sensitivity) analyses. This
can potentially be solved by using discretization methods such
as binning by equal frequency, where each resulting bin has
an equal frequency occurrence in the data set. Therefore, the
full range of states of each condition can possibly be included
in the mining methodology.

Lastly, adverse weather conditions were not seen as an
influence in any of the results. This can be an implication of
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the minimum support value, which was set to 9%, which might
have been too high to include the bad weather conditions in
the mining process as well. Considering operational variables
that are related to the declared capacity and the difference with
the demand and the actual runway usage rates, none of them
could be retrieved in the most significant patterns, only the
actual departure rate. This association rule showed that higher
departure rates (>60 aircraft/hour) relate to a larger probability
for the highest values of ATC delay, which shows the impact
of traffic volumes on the ATC delay.

B. Bayesian Network

The three nodes that directly influence the ATC delay
in the found BN structure are the average startup delay,
the pure ATFM delay and the regulation delay key of the
outbound flight. The latter two can be explained as, by the used
definition, ATC delay consists of the slot or ATFM delay if a
flight is regulated, and therefore these two variables directly
relate to this delay. If a flight was not regulated, by definition,
the ATC delay consists of the startup delay. It is interesting
to note that the average startup delay in the 20 minute time
interval of the flight is directly influential on the ATC delay
of an individual flight, which shows that the ATC delay of
a flight is heavily influenced by the situation of congestion
at the airport itself, which is more influential than individual
performance of the flight. When the input data set included a
binary variable of each of the ATC delay categories, allowing
the model to identify up to 12 parent variables, the departure
delay category and number of TSAT updates could also be
found in the parent configurations of these variables. This
implies that the three parent nodes in the original network have
a very strong influence on the ATC delay for all categories, as
the separation of ATC delay into four variables did only add 2
additional parent nodes. However, for each ATC delay class,
a unique combination of parent nodes was obtained, meaning
that the drivers of each of the classes of ATC delay slightly
differ, which was also observed in the results of the baseline
method.

An interesting parent node of the average startup delay is
the ratio of regulated flights. For increasing ratio of regulated
flights in the 20 minute time frame, the probability of high
values of average startup delay bins increase compared to
the probabilities associated with the lower ratios of regulated
flights. This can be explained by the use of the departure
manager, which will prioritise flights with a regulation and
thus Calculated Take-off Time. This results in other flights
in that same time interval to be not prioritised, leading to an
increase in their startup delay. Furthermore does this variable
also influence the ATC delay. Especially the probability of
the highest class of ATC delay is influenced a lot by the
number of regulated flights. Again the same explanation can be
followed. However, lower ratios of regulated flights increase
the probability of receiving between 0 and 4 minutes of ATC
delay. Here, less regulations lead to less strict take-off times,
due to the absence of an issued CTOT, leading to no or less
heavy prioritisation of other flights and thus less extreme
values of ATC delay in that time window. Additionally, it

was observed that the number of CDM updates of flights
in the same 20 minute time interval influences the ATC
delay. It was found that state 2 of this variable, meaning a
high number of average TSAT updates, returns the highest
probability for an ATC delay ≥ 9. State 1, which represents
a higher number of average TOBT updates, has less influence
on the distribution. The number of TSAT updates is high
when there are a lot of changes in the departure manager and
availability of the runways. Therefore, this parameter shows
that a high congestion at the airport indeed leads to increased
chances of high ATC delay, as expected, and that the ground
handling process of other flights can heavily impact the ATC
delay of a flight as well.

From the inference results, no influence of the TOBT
adherence could be found on the probability of the target
node, and also the adherence to the TSAT was found to have
a limited influence. Both these variables are included however
included in the chain of variables influencing the ATC delay.
When looking at the number of updates of these milestones,
larger influences on the ATC delay probability distribution
could be found. Furthermore did the results show that the
number of TSAT updates have a lot more influence than the
number of TOBT updates, but for both variables influence on
the ATC delay probability distribution could be found. The
difference in influence importance can be explained by the
fact that a TSAT update can be triggered when the TOBT
is updated, however this can also be due to other factors.
When the TSAT is altered without a TOBT update, this can
imply that the difference between them is growing as the TSAT
delayed, therefore increasing the ATC delay. When a TOBT
is updated, the difference with the newly issued TSAT does
not change by definition, which results in less influence on the
ATC delay.

The arrival delay factor influences the ATC delay as well,
where inbound delay of more than 1 minute increases the
probability for higher values of ATC delay slightly. Flights
with arrival delay are likely to have delay outbound due to
the propagation of delay. Another driver of the ATC delay in
the network was the all doors closed delay. This variable was
found to be influenced by the number of TOBT updates and
is thus linked to the ground process of the flight. Additionally,
it also influences the TSAT updates, as the longer the flight
is not ready, the TSAT will need to be updated. However,
the all doors closed delay is not only dependent on the
ground and handling processes, but can also be linked to
other delay factors, such as (missing) passengers. This can
be seen as the delay key category of the flight also directly
influences the duration of this delay type. The departure delay
key category was found to also influence the ATC delay. A
profound increase in the highest class of ATC delay probability
was seen in case of an ATFM delay key, again, this is as
expected due the definition of ATC delay. Also the reactionary
category was found to increase the probability of high ATC
delay, which is in agreement with the found influence of the
arrival delay on ATC delay, as discussed before. If a flight has
no registered delay key, the probability of having low ATC
delay, (<4 minutes) increases. This could be explained by the
fact that flights with no initial delay have finished all there
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turnaround and departing processes in time, such that they
can depart during their originally scheduled slot, leading to
less overall congestion and delays.

The difference between the offered capacity and the actual
used runway rate did not have a direct link with the ATC delay
in the BN structure, however, its value was found to influence
the probability of the ATC delay categories. It was found that
more actual runway movements than the offered capacity lead
to increased probability for high ATC delay, and the same
relationship could be found between the arrival capacity usage
and arrival delay of flights. Thus, larger delays occur when
the capacity is being overused. This might indicate that the
capacity is actually underdeclared, which leads to more delays.

Inference results with the season fixed as evidence did also
alternate the probability distribution of the ATC delay. Here,
it could be seen that winter season led to reduced probability
in the highest class of ATC delay, ≥9, and increased the
probability between 0 and 4 minutes. Therefore, it can be
said that large delays are more likely to occur during the
summer months, whereas small delays are more likely during
the winter, which might be a result of higher traffic volumes
during the summer months. It is also interesting to notice
that the BN inference did find a difference between the
winter and summer, but there is no difference between the
summer months off peak and on peak, as was expected due to
increased volumes of flights during the on peak months of the
holiday season (July-August). Additionally, the influence of
the short turnaround indicator was analysed using inference,
and it was found that this actually did not influence the
probability distribution. It was expected that a short turnaround
would increase the probability for ATC delay, as the various
turnaround procedures have a smaller scheduled time, and
there is less time to absorb the inbound delay to prevent
reactionary delay for the departing flight. While it was found
that the arrival delay and outbound reactionary delay in fact
increase the probability for ATC delay, other factors with a
larger impact where found which are not directly linked to the
turnaround time of a flight. Alternatively, it could also be that
the BN did not find a relationship due to the large number of
nodes and links that are present between the short turnaround
indicator and the target variable in the structure, which might
have caused the effect to be lost.

C. Comparison of Methods

First of all, it can be said that both methods recognise the
direct influence of the average startup delay in the 20 minute
time interval on the ATC delay, as well as the influence of the
presence of a regulation. The secondary influences, such as
the number of TSAT updates, arrival delay, ratio of regulated
flights, all doors closed delay and the actual departure rate
could also be seen in the obtained results of both methods.
In these observed drivers of ATC delay, both methods showed
that the conditions leading to an increased probability for the
two highest classes of ATC delay are very similar. However,
the strength of the patterns was found to be higher for the
highest class, ≥9, compared to the ATC delay category of
(4;9]. Thus, more extreme values of ATC delay show more

distinct patterns, which was expected. As flight delays are a
stochastic process, the middle classes of delay can also be a
result of conditions that generally lead to high or low values
of delay, which reduces the strength of the found patterns.

Furthermore did the two methods agree on the fact that the
weather conditions during arrival and departure did not have
a direct influence on the ATC delay. Especially the visibility
variable was expected to influence the target variable, due to
the reduced capacity at marginal or low visibility procedure
conditions. It could be verified that marginal and low visibility
procedure (LVP) conditions did increase the probability of low
realised departure rates, as expected. However, the BN was
built such that a relationship was found between the departure
rate and the ATC delay, where increasing departure rates led to
increasing probability of high classes of ATC delay, indicating
the importance of traffic volumes. Due to the restriction in
the number of parent nodes and thus links in the structure,
the indirect influence of the bad visibility conditions was not
included in the learned network. As mentioned before, it could
be that the ARM method did not capture the effect of these
conditions on the ATC delay due to the used support value,
which was likely too high to include the small frequency
of bad weather days. It can thus be hypothesised that both
methods did not recognise the influence of the weather on the
ATC delays, due to the limitations of the made assumptions.

However, also differences in the obtained results between
the methods could be found. The ARM method found that
there is an influence of the weekday on the ATC delay,
whereas the learned Bayesian network does not link this
variable to any other variable in the data set. This could
also be an implication of the used black list in the structure
learning process, which enforced the weekday indicator to only
have children nodes. Additionally, the methods found opposite
results with respect to the the influence of a short turnaround
time. The ARM method identified that a long turnaround
would increase the probability of having a high ATC delay,
however using inference on the BN, no large influence of this
variable could be seen on the ATC delay. This might be caused
by the fact that the BN results are dependent on the learned
structure, which was limited by the black list and the number
of nodes. As the short turnaround time variable is located far
from the ATC delay, the relation observed by the ARM might
be lost by the learned structure. From these discrepancies,
it can thus be said that the ARM method is able to detect
more indirect relationships, such as the short turnaround time
and the weekday indicator, compared to the Bayesian network.
Here, indirect relationships can be lost due to the number of
variables that are located between them, and the limitation in
the number of links in the structure, due to the use of the black
list and the maximum number of parents.

Another discrepancy in the results could be found in the
influence of the TOBT adherence. This variable was found
to be very influencing for the occurrence of low ATC delay
by the baseline method when combined with no delay key
assigned upon departure. This effect was less profound in the
BN model, where the TOBT adherence was found to have
very limited effects on the probability distribution of the ATC
delay. It can be suspected that the ARM method identified this
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pattern due to the high frequency of this pattern in the data
set, but not necessarily implying a causal relationship. This
is an effect of having multiple conditions in the antecedent,
which can lead to the fact that only part of the antecedent
actually has a causal influence on the ATC delay, and the other
conditions in the antecedent have a high frequency, which
leads to them being included in the frequent pattern. However,
the discrepancy found in the influence of the TOBT adherence
could also be a result of the structure learning process, which
might have lost the relation between the two variables due to
the high dependence and correlation of the TOBT adherence
with the other CDM related variables.

As mentioned before, a disadvantage of the ARM method is
that only the effect of the state of a variable that is present in
the frequent patterns can be identified. The influence of other
states of that same variable cannot be assessed as they are not
found to be frequent enough. An example is the influence
of the average startup delay variable. It was found by the
ARM method that the middle class increases the probability
of receiving a higher ATC delay. When using the BN, the
same relationship was found, however it could be observed
that the highest class of average startup delay increased that
probability even more. This was not possible to assess with the
results of the ARM method, as this state was not found as an
antecedent condition. The exact same phenomenon could be
found in number of TSAT updates, all doors closed delay and
arrival delay. By using the BN, it was possible to analyse the
influence of having reactionary, ATFM and weather delay key
categories assigned, which were not identified by the baseline
method, for that same reason.

As both methods agreed on many of the determining factors
of ATC delay, both of them are suitable to investigate or
diagnose direct causes and influencing factors on certain
conditions. When it is the goal to better understand a system
and the dynamics between a large number of variables, the
Bayesian network method is more suitable, as the conditional
dependencies can be observed from the learned structure,
and are not hidden in a large number of frequent patterns.
However, first diagnoses of influential variables can also be
done using the ARM method, and this method can be said
to find more indirect effects on the target variable compared
to BN, in which indirect relations might be lost. However, it
is important to optimise the length of the rules well, as an
increasing number of conditions in the antecedent can also
add parameters which are not actually influential but simply
very frequent. Furthermore has the BN more possibilities to
use the model for analysing the impact of certain conditions on
the other variables in the network, which cannot be achieved
using ARM.

D. Limitations of the Methodology

In the developed methodology, discussed under section II,
several assumptions had to be made and parameters had to
be determined, which have impacted the results and led to
limitations.

First of all, the selected methods, ARM and BN, re-
quired discretization of the variables. It is inevitable that

discretization leads to loss of information. Next to the loss
of information do the used discretized bins of the variables
also heavily influence the relationships that can be found
by the methodology. This implies that other discretization
methods could have led to different patterns, their strength
and conditional dependencies between the variables.

Secondly does the computational complexity of both meth-
ods grow exponentially with the number of variables included.
This constraint has limited the number of features that could
be used in the analysis, and therefore a strict feature selection
method had to be adopted. By selecting the features which
held most dependence with the target variable, as discussed
in section II, the strongest patterns could be found. However,
it is likely that other patterns could have been obtained using
more of the available data, which are left unexplored.

Pure observational data has been used for the purpose
of this research. However, pure observational data always
contains deviations and imperfections, which cannot always
be identified and/or corrected. The faults in the data have
been removed in the data processing part of the methodology,
by applying outlier detection and handling missing values
accordingly. In addition to this was there only CDM data
available for the flights at Amsterdam Schiphol Airport which
have been handled by KLM ground services. This does not
give complete information of the situation of the airport, due
to proprietary data constraints.

Finally, the obtained results from both methods were af-
fected by the made assumptions and selected hyperparameters.
In order to limit the complexity of the BN, the number of
parents was limited to 3 in the structure learning process. This
limits the complexity of the network, which was necessary in
order to perform analysis on the learned structure. However,
if the number of parents was not limited, the number of
actual links in the network would increase, representing the
actual number of conditional dependencies present between
the variables, which might lead to a better prediction accuracy.
Moreover are the performed analysis using the BN and the
obtained results dependent on the performance of the struc-
ture and parameter learning algorithms used. In the baseline
method ARM the minimum frequency or support, used to
make a trade-off between limiting the number of identified
rules and finding the most significant ones, resulted in the
method to discard specific states of variables. These conditions
did not occur frequently enough, hence it was not possible to
analyse their influence on the target variable using only this
method.

V. CONCLUSION

This paper has presented the methodology and findings
of the performed research with the aim to analyse the root
causes of air traffic control delays, with a case study on KLM
flights at Amsterdam Schiphol Airport. Data was gathered and
integrated from multiple sources, spanning a period from 15
November 2018 to 31 December 2019, including flight (delay)
data, operational data on capacity, demand and actual traffic
volumes, CDM data and weather information. Two methods
were used for causal analysis, namely association rule mining
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using the FP-growth algorithm and a Bayesian network, using
heuristic hill climbing with tabu search as a structure learning
method.

The used methods agreed on the majority of the identified
influential factors of the ATC delay. It was found that the main
influences of ATC delay are the average startup delay of flights
in the 20 minute time interval of the flight’s departure, as well
as the received pure ATFM delay and the regulation delay
key. The two regulation regulated parameters were expected
to be found, as ATFM delay is included in the used definition
of ATC delay. The other variable, the average startup delay
in the 20 minute time interval, shows that the ATC delay
is profoundly impacted by the congestion at the airport of
departure.

In general, it was found that ATC delay is partially caused
by the situation at the airport. The traffic volume does influ-
ence the ATC delay, as a higher departure rate increased the
probability of high ATC delay categories. Also the congestion
at the airport, namely the average startup delay and the
average number of CDM updates, as well as the number
of regulations that have been issued in the 20 minute time
interval of departure impact the probability on receiving ATC
delay. The influence of the ratio of regulated flights might
be due to the prioritisation of regulated flights due to their
fixed CTOT, resulting in high startup delays for the remainder
of the flights. Furthermore, it could be found that delays are
more likely to occur when the actual departure rate exceeds
the declared capacity, both for general arrival delay as for ATC
delay upon departure. However, also individual performance
of a flight could be found as causes of increased probability
in ATC delay, such as reactionary delay, which is caused
by propagated delay from the arrival flight. Additionally, the
number of TSAT & TOBT updates a flight receives was found
among one of the causal influences, as well as the flight’s delay
in closing its doors, which was found to lead to an increasing
number of TSAT updates and therefore to a higher ATC delay.

In these identified influences, both methods found that in
general, the strongest patterns could be found for the lowest
and highest category of ATC delay, which was as expected due
to the stochastic nature of flight delays. Furthermore did the
two methods not find an influence of weather conditions on the
probability distribution of the ATC delay. This was most likely
a result of the limitations of both methods, namely the required
frequency or minimum support in the baseline method, and
the limitation of the number of parent nodes in the Bayesian
network structure learning.

The methods did not agree on certain patterns found. The
ARM method found that the TOBT adherence is an impor-
tant driver for having low ATC delay. However, this pattern
could not be validated when looking at the results found
from inference on the BN, although the TOBT adherence is
included in the chain in the network leading to the target.
When multiple conditions are present in patterns found by the
baseline method, it can be that only part of the conditions are
actually influencing the consequent, and that the additional
conditions in the antecedent only have a minor influence and
are mostly added in the pattern due to their high frequency.
Both methods also found opposite results with respect to the

short turnaround indicator. In the association rules, it was
found that a long turnaround actually increases the probability
of having a high ATC delay, whereas the BN could hardly find
a relationship between the two variables. These differences
could be explained by comparing the two methods. First
of all, the results of the Bayesian network are dependent
on the performance of the structure and parameter learning
algorithms. Additionally, the structure learning was limited as
certain links between nodes were forbidden and the maximum
number of parents was set to be 3 in order to reduce the
complexity of the BN. These limitations could explain the
different results as influential relationships could be lost due to
these parameters. This also influenced the prediction accuracy
of the BN, which was used as a validation method. The
prediction accuracy was found to only be 47.2% on the ATC
delay, whereas up to 80% accuracy was achieved for other
variables in the network. Again, this is an implication of
making use of the black list and the maximum number of
parent nodes, which constrained the ATC delay to only have
three parent nodes, and no child nodes, and thus a limited
amount of variables were used in the prediction process of
the target variable.

When using ARM to perform causal analysis, the disadvan-
tage is that this method did not allow to perform a full analysis
of each of the variables in the data set. If a condition is not seen
as frequent enough, it is excluded from the analysis and thus
cannot be analysed. This phenomenon was seen for several
variables in the data, as some states have a high influence
on the target variable according to the BN, but did not occur
sufficiently frequent to be found in the association rules.

It can be concluded that both methods are fit to perform
a diagnostic analysis of a system to determine causal or
influential relationships between variables. The BN is more
suitable to get a better understanding of an entire system,
which also allows to perform analysis on scenarios that did
not occur in the used data set, and assess the impact on the
other variables.

For future work, several recommendations can be made.
First of all, it is recommended to further investigate the
influence of setting less restrictive number of parents in the
structure learning of the BN on the prediction accuracy and the
extra found relationships. Additionally, as the discretization
method determines for a large part which relationships can
be identified from the data set, it is interesting to investigate
the influence of other possible discretization methods, such
as manual, equal frequency and equal width binning meth-
ods, on the found patterns and relationships. Also different
aggregation of the available features, such as crosswind, the
combination of peaks and time of the day could possibly
reveal more info on the influence on ATC delay. The level
of detail in the analysis could potentially be further increased
by creating separate models and thus analyses for various
groups of data with different underlying dynamics, such as
European/Intercontinental flights, summer and winter, flights
with a short and long turnaround time, and possibly regulated
and non-regulated flights. By doing so, it can be possible to
discover different and more detailed underlying drivers of ATC
delay per data group. However, building separate models can
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only be achieved when enough data is available per data group.
Furthermore is it recommended to generalise and validate the
applicability of the methodology by applying it to different
case studies, which can consist out of different airports and/or
airlines, or different aggregation levels, such as the ATC delay
per outbound peak or day. Finally, the obtained knowledge and
insights on ATC delay from this research can be used to create
or integrate ATC delay in a decision support model to optimise
KLM’s operations at their hub. In this context, the BN can
also be used to design, simulate and asses the effectiveness
and impact of mitigation strategies on the other variables and
the ATC delay.
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C
MUTUAL INFORMATION FEATURE

SELECTION & FINAL VARIABLES

C.1. MUTUAL INFORMATION WITH ATC DELAY

Table C.1 – MI scores of each feature with the target variable ATC delay, features in bold were selected into
the top 30, underlined features were manually added as they were of interest.

Feature MI score MI score normalised
avg_startup_delay_outbound 0.1096 1.0000
dly1_key_outbound 0.1062 0.9688
purdla_outbound 0.0883 0.8055
TSAT_updates_outbound 0.0583 0.5318
diff_TTOT_optimal_outbound 0.0529 0.4824
reg_dly_key_outbound 0.0522 0.4765
avg_cdm_updates 0.0474 0.4327
slotdla_info 0.0381 0.3477
adcdla_outbound 0.0381 0.3474
CTOT_updates_outbound 0.0369 0.3365
diff_capacity_actual_outbound 0.0191 0.1745
reg_induced_dla_outbound 0.0191 0.1744
avg_rate_dep_outbound 0.0163 0.1488
mregyn_outbound 0.0161 0.1468
sector_outbound 0.0143 0.1305
TOBT_updates_outbound 0.0114 0.1036
ratio_reg_flights_outbound 0.0098 0.0891
dep_rwy 0.0092 0.0841
time_of_day_outbound 0.0092 0.0840
arrdla_inbound 0.0079 0.0718
purdla_inbound 0.0074 0.0677
dly1_key_inbound 0.0068 0.0622
season 0.0064 0.0583
reg_dly_key_inbound 0.0055 0.0498
reg_rate_inbound 0.0046 0.0421
reg_reason_inbound 0.0045 0.0408
diff_capacity_actual_inbound 0.0043 0.0396
TOBT_adh_outbound 0.0042 0.0383
cindla_outbound 0.0041 0.0376
time_of_day_inbound 0.0037 0.0342
wtc_outbound 0.0031 0.0282
cdm_stability 0.0030 0.0272

Continued on next page
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Table C.1 – continued from previous page
Feature MI score MI score normalized

arr_rwy 0.0029 0.0260
short_tat 0.0025 0.0226
c_d_EHAMDEP_outbound 0.0024 0.0215
Average Rate Arr_inbound 0.0023 0.0211
reg_induced_dla_inbound 0.0023 0.0208
boarding_duration 0.0018 0.0168

mregyn_inbound 0.0017 0.0152
ac_type 0.0016 0.0149

TSAT_adh_outbound 0.0013 0.0116
DD_outbound 0.0012 0.0112
P_sector_inbound 0.0011 0.0101
DD_inbound 0.0011 0.0097
#ASRT_outbound 0.0011 0.0096
P_sector_outbound 0.0010 0.0093
wtc_inbound 0.0010 0.0092
c_d_IAFS 0.0010 0.0092
aircraft_swap_outbound 0.0008 0.0069
Visibility_outbound 0.0007 0.0065

time_in_tma 0.0007 0.0063
atxi_inbound 0.0006 0.0058
O_outbound 0.0006 0.0058
wind_speed_sector_outbound 0.0006 0.0054
R_inbound 0.0006 0.0054
peaks_rwy_outbound 0.0006 0.0053

O_sector_inbound 0.0005 0.0049
c_EHDEP_outbound 0.0005 0.0048
wind_speed_sector_inbound 0.0005 0.0045
O_sector_outbound 0.0005 0.0044
c_IAFS 0.0005 0.0044
dominant sector_inbound 0.0004 0.0040
STACK_inbound 0.0004 0.0040
wind_speed_inbound 0.0004 0.0039
peaks_rwy_inbound 0.0004 0.0036

R_outbound 0.0004 0.0035
time_in_fir 0.0004 0.0035
O_inbound 0.0004 0.0035
eur 0.0004 0.0034
c_d_EHAMARR_inbound 0.0004 0.0033
#EXOT_outbound 0.0003 0.0032
M_outbound 0.0003 0.0031
Visibility_inbound 0.0003 0.0029

weekday_outbound 0.0003 0.0028

wind_speed_outbound 0.0003 0.0027

M_inbound 0.0003 0.0025
weekday_inbound 0.0003 0.0025
TOBT STABLE_outbound 0.0003 0.0023
c_EHARR_inbound 0.0002 0.0019
S_inbound 0.0002 0.0017
Y_outbound 0.0001 0.0012
aircraft_swap_inbound 0.0001 0.0010
wags_inbound 0.0001 0.0009

Y_inbound 0.0001 0.0009
Continued on next page
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Table C.1 – continued from previous page
Feature MI score MI score normalized

S_outbound 0.0001 0.0007
cindla_inbound 0.0000 0.0003
GOA_inbound 0.0000 0.0001
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C.2. FINAL LIST OF VARIABLES

Table C.2 – Final list of included variables, their unit and discretized values.

Variable Unit Discretization

Time of day departure - morning (<13h)/midday(13h-18h)/evening(>18h) in Local time

Time of day arrival - morning (<13h)/midday(13h-18h)/evening(>18h) in Local time

Peak indicator arrival - 0 (no)/1(inbound)/2(outbound)/3(combination)

Peak indicator departure - 0 (no)/1(inbound)/2(outbound)/3(combination)

Visibility arrival - Good/Marginal/LVP

Visibility departure - Good/Marginal/LVP

Wind speed departure - 0/1/2

Wind direction departure degrees [0.0;130.0][140.0;240.0]/[250.0;360.0]

Season - W(Winter)/S(Summer off-peak)/S-peak(July/August)

Aircraft type - widebody/737/E75-90

Weekday departure - 0(no weekday)/1(weekday)

Arrival delay min [-80.0;0.0]/[1.0;39.0]/[40.0;175.0]

Delay key category arr -

none/aircraft&ramp_handling/Reactionary/specific/

flight_ops&crew/ATFM/pax&baggage/airport&gov_auth/

tech&aircraft_equipment/Damage&failure/cargo/weather/Other

Pure ATFM delay arrival min [0.0;13.0]/[14.0;50.0]/[51.0;193.0]

Waiting for ground services min [0.0;1.0]/[2.0;3.0]/[4.0;19.0]

All doors closed delay dep min [-35.0;3.0]/[4.0;22.0]/[23.0;101.0]

Company induced delay min 0/>0

Delay key category dep -

none/aircraft&ramp_handling/Reactionary/specific/

flight_ops&crew/ATFM/pax&baggage/airport&gov_auth/

tech&aircraft_equipment/Damage&failure/cargo/weather/Other

Pure ATFM delay dep min 0/>0

Info on slot delay - 0/1/2

Short turnaround indicator - 0(long turnaround)/1(short turnaround)

Regulation induced delay dep min [-49.0;-7.0]/[-6.0;2.0]/[3.0;15.0]/[16.0;58.0]

Boarding duration min [0.0;10.9]/[10.9;24.0]/[24.0;121.5]

TOBT updates - [0.0;1.0]/[2.0;5.0]/[6.0;33.0]

TSAT updates - [0.0;14.0]/[15.0;30.0]/[31.0;124.0]

CTOT updates - [0.0;1.0]/[2.0;4.0]/[5.0;30.0]

TSAT adherence - True/False

TOBT adherence - True/False

Difference TTOT and optimal TTOT sec [-5400.0;-239.0]/[-181.0;481.0]/[539.0;5280.0]

Average startup delay min [-281.5;5.5]/[5.5;12.6]/[12.6;73.5]

Average CDM updates - 0/1/2

Average CDM adherence - 0/1/2

Difference capacity and usage dep aircraft/hour [-50.7;1.0]/[1.0;19.7]/[19.7;66.5]

Difference capacity and usage arr aircraft/hour [-54.8;-12.5] /[-12.5;10.0]/[10.0;59.5]

Difference capacity and demand dep aircraft/20 min [-24.3;0.0]/[0.3;7.0]/[7.3;24.7]

Difference capacity and demand arr aircraft/20 min [-31.7;-2.3]/[-2.0;5.3]/[5.7;21.7]

Ratio regulated flights - [0.0;0.2]/[0.2;0.4]/[0.4;1.0]

Departure runway - 18L/24/18C/09/36L/36C/27

Sector used during dep - sector1/sector2/sector3/sector4/sector5

Regulation reason arrival -

0/C-ATCCapacity/G-AerodromeCapacity/W-Weather/

O-Other/V-EnvironmentalIssues/P-SpecialEvent/E-AerodromeServices

/N-IndActionnon-ATC/S-ATCStaffing/T-ATCEquipment

Regulation rate arrival aircraft/hour 0(no regulation)/[10;49]/[50;68]

Regulation delay key arr - 0.0(no regulation)/81.0/82.0/83.0/84.0/89.0/98.0/99.0

Regulation delay key dep - 0.0(no regulation)/81.0/82.0/83.0/84.0/98.0/99.0

Multiple regulation indicator dep - 0(no multiple regulations) /1(multiple regulations)

Average usage rate of runways dep aircaft/hour [2.9;43.5]/[43.5;60.7]/[60.7;90.1]

ATC delay min (-38.001;0.0]/(0.0;4.0]/(4.0;9.0]/(9.0;55.0]
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Table C.3 – The clustering centres of the different variables included into the aggregation variable average
CDM updates of flights in 20 minute time frame of departing flight.

Labels
Average CDM updates

Average #TSAT updates Average #TOBT updates

0 10.97 1.00
1 14.86 2.78
2 28.31 1.87

Table C.4 – The clustering centres of the different variables included into the aggregation variable average
CDM adherence of flights in 20 minute time frame of departing flight.

Labels
Average CDM adherence

% TSAT adherence % TOBT adherence % TOBT stability

0 95 75 99
1 98 92 99
2 88 53 97

Table C.5 – The clustering centres of the different variables included into the aggregation variable slot delay
information.

Labels
Slot delay information

Dynamics slot delay (min) Evolution slot delay (min)

0 1.24 -0.23
1 52.43 20.78
2 36.39 -31.58

Table C.6 – The clustering centres of the different variables included into the aggregation variable wind
speed departure.

Labels
Wind speed departure

Average wind speed (0.1 m/s) Maximum wind gust (0.1 m/s)

0 29.40186 50.97019
1 94.60235 146.3851
2 57.75105 92.22337

Table C.7 – The definition used in the states of visibility.

Visibility Horizontal view (m) Ceiling (ft)
Good ≥5000 ≥1000
Marginal <5000 & ≥1500 <1000 & ≥300
LVP <1500 <300

Table C.8 – The definition used in short turnaround time indicator

Labels Actual turnaround time (h)
Short turnaround time Intercontinental flights European flights
0 >3 >1.5
1 ≤3 ≤1.5



D
VERIFICATION RESULTS

D.1. ASSOCIATION RULE MINING

Table D.1 presents the small sample data set used as input to verify the developed association rule mining
method using the FP-growth algorithm. The result of one-hot-encoding this data set can be seen in Table D.3,
which was based on the individual support or frequency of the conditions, shown in Table D.2. Finally, the
manually constructed FP-tree that was built to find the association rules is visualised in Figure D.1.

Table D.1 – Data set used for verification.

TOBT STABLE_outbound TOBT ADH_outbound TSAT ADH_outbound regulated_outbound season
TRUE TRUE TRUE FALSE S
TRUE TRUE TRUE TRUE W
TRUE FALSE FALSE TRUE S

Table D.2 – The support values of all the one-hot-encoded variables in the verification data set.

Variable Support
TOBT STABLE_outbound -True 1
TOBT ADH_outbound - True 0.667
TSAT ADH_outbound - True 0.667
Season -S 0.667
regulated - True 0.667
TOBT ADH_outbound - False 0.333
TSAT ADH_outbound - False 0.333
Season - W 0.33
Regulated - False 0.333

Table D.3 – Ordered on support and one-hot encoded data of the verification data set.

Ordered one-hot-encoded data
TOBT Stable True, TSAT ADH True, TOBT ADH True, Summer, Non regulated
TOBT Stable True, TSAT ADH True, TOBT ADH True, Winter, Regulated
TOBT Stable True, Summer, Regulated, TSAT ADH False, TOBT ADH False

53



54 D. VERIFICATION RESULTS
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Figure D.1 – FP-tree constructed manually for verification purposes.

D.2. BAYESIAN NETWORK
Table D.4 displays the required run time and structural hamming distance for the different Bayesian network
structure learning algorithms on the Cancer Bayesian network. Table D.5 shows the same performance indi-
cators, but a data set sampled from Alarm Bayesian network, with a sample size of 100,000. Additionally, the
values of all available scoring functions are added.

Table D.4 – Run time and SHD results for the different structure learning algorithms on the Cancer
verification data set.

Run time (s) SHD (-)

Algorithm
sample size
100,000

sample size
1 M

sample size
100,000

sample size
1M

Exhaustive K2 62.5 95.0 3 3
Exhaustive BIC 54.2 109.9 0 0
Exhaustive BDeu 59.5 96.3 0 0
Hill climb K2 3.1 26.4 3 3
Hill climb BIC 3.0 26.3 3 0
Hill climb BDeu 3.0 26.6 4 4
PC 2.8 24 1 0
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Table D.5 – Results of different structure learning algorithms on the sampled ALARM verification data set,
n=100,000.

Run time (s) SHD (-) Scoring function (-)
Algorithm K2 BDeu BIC
Exhaustive K2 / / / / /
Exhaustive BDeu / / / / /
Exhaustive BIC / / / / /
Hill climb K2 934.0 26 -941.798E3 -941.588E3 -944.809E3
Hill climb BDeu 765.1 35 -941.636E3 -941.224E3 -944.282E3
Hill climb BIC 731.8 34 -942.651E3 -942.252E3 -944.317E3
Hybrid K2 576.7 18 -959.115E3 -958.928E3 -959.622E3
Hybrid BDeu 656.5 17 -959.124E3 -958.928E3 -959.622E3
Hybrid BIC 627.7 17 -970.762E3 -970.488E3 -971.404E3
PC / / / / /





E
INFERENCE BAYESIAN NETWORK

E.1. SAMPLING SIZE DETERMINATION

In approximate inference, sampling is used to determine the influence of the fixed evidence variables on
other nodes in the network. When sampling, the correct sample size needs to be determined in order to ob-
tain stable results, and that the obtained probability distribution of the nodes would approximate the actual
distribution as good as possible. Therefore, four variables with very different positions in the network were
used as evidence in order to determine the required sample size. In Figure E.1-E.4 the resulting probability
distributions of the ATC delay variable is shown, in function of a varying sample size up to and including
150,000. It can be seen that for all inference cases the probability distribution stabilised when using 100,000
data points in the sampling process.
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Figure E.1 – The probability distribution of target variable ATC delay in function of the sampling size in
approximate inference, with arrival delay as specified evidence.
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Figure E.2 – The probability distribution of target variable ATC delay in function of the sampling size in
approximate inference, with number of TOBT updates as specified evidence.
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Figure E.3 – The probability distribution of target variable ATC delay in function of the sampling size in
approximate inference, with the difference between the capacity and the actual departure rate as specified

evidence.
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Figure E.4 – The probability distribution of target variable ATC delay in function of the sampling size in
approximate inference, with the wind speed during departure as specified evidence.

E.2. INFERENCE RESULTS

This section presents additional results obtained from the inference analysis on the constructed Bayesian
network.

E.2.1. AIRLINE INFLUENCE VARIABLES
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Figure E.5 – Influence of TSAT adherence on TOBT
adherence.
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Figure E.6 – Influence of TOBT adherence on TOBT
updates.
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Figure E.7 – Influence of TOBT updates on all doors
closed delay.
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Figure E.8 – Influence of all doors closed delay on
TSAT updates.

E.2.2. VERIFICATION OF MODEL

The inference method could also be used to additionally verify the obtained Bayesian network. The results of
this are presented in Figure E.9-E.12.
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Figure E.9 – Influence of visibility during arrival on
the departure rate in aircraft per hour during

departure of the flight.
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Figure E.10 – Influence of visibility during departure
on the departure rate in aircraft per hour during

departure of the flight.
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Figure E.11 – Influence of peak indicator during
departure on the departure rate in aircraft per hour.
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Figure E.12 – Influence of the difference between
capacity and actual arrival rate on arrival delay.

E.2.3. INFLUENCE ON ATC DELAY
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Figure E.13 – Influence of wind direction during
departure on ATC delay.
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Figure E.14 – Influence of wind speed during
departure on ATC delay.
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Figure E.15 – Influence of visibility during arrival on
the ATC delay.
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Figure E.16 – Influence of visibility during departure
on the ATC delay.
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Figure E.17 – Influence of time of day during arrival
on ATC delay.
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Figure E.18 – Influence of time of day during
departure on ATC delay.
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Figure E.19 – Influence of the peak indicator during
arrival on ATC delay.
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1
INTRODUCTION

Civil air traffic has experienced exponential growth over the last years. The International Civil Aviation organ-
isation, ICAO [2], reported that the sector has grown at an average rate of 5% per year since 1995, in contrast
with an average growth of 2.8% for the world’s economy. Due to this growth in air traffic, the system and
operations have become more complex, resulting in busier airports and airspace, leading to more flight de-
lays. Delays impact multiple stakeholders, such as the airline, its passengers and the airports in their flight
network [3]. Furthermore do these delays have large financial and economic consequences for the involved
stakeholders, especially the operating airline [4]. This is not just due to the direct costs of delays, but also
because of the long term effects of delays on passenger loyalty, market share and airline revenue [5]. For all of
these consequences, it is important to better understand delays, and possibly use this knowledge to further
reduce them.

Air Traffic Control (ATC) is a critical element in the system of Air Traffic Management. Its main purpose
is to ensure a safe and efficient flight, by keeping aircraft separated both vertically as longitudinally [6]. Air
traffic control can be described as a sequential timeline or process that consists out of several control and
decision points, which facilitates the necessary communication between the controller and aircraft in an ef-
ficient manner [6]. Unfortunately, Air Traffic Control is also a source of delay in civil aviation. ATC delays are
initial delays, but they still have an enormous impact as they can trigger reactionary delays throughout the
operations of an airline. This is due to aircraft, passenger and crew connectivity [7]. However, these initial
ATC delays do not only impact the operations of the involved airline, but can also propagate to other airlines
and airports by causing an imbalance between capacity and demand in the airspace [8–10]. ATC delays can
thus result in very large impacts throughout the entire network, originating from a single flight delay. There-
fore, delays are said to be the most challenging aspect in any transport system [3].

This document contains the literature review for a research project investigating the root causes of the ATC
delays, with a case study on KLM Royal Dutch Airline flights at Amsterdam Airport Schiphol. ATC delay is one
of the most encountered primary delays due to the increase in air traffic, and Amsterdam Airport Schiphol
is even seen as the driver of Air Traffic Flow Management (ATFM) delay in the Eurocontrol Network [11].
Therefore, the main objective of this research has been formulated as follows.

The main research objective of this master thesis is to expose the drivers of the ATC delays encoun-
tered by KLM flights at Schiphol Airport, by performing a root cause analysis of these ATC delays
and their impact on the KLM network.

Next to the research objective, several research questions have been established:

1. Which data of the different stakeholders is relevant for the ATC process at Schiphol Airport and KLM
flights?

2. What root cause analysis / causal analysis techniques are valuable in the context of the research?

3. What are the root causes of ATC delays for KLM flights at Schiphol airport?

The scope of this research project is limited both in time and space. This research will focus on the ATC delays
in the Dutch airspace, and data incurred on the day of operation. Additionally, the perspective on delays is
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not limited to single arrival or departure ATC delays, but will focus on a turnaround procedure. This means
that the flights will be analysed from a cruise-to-cruise perspective, in comparison to the common gate-to-
gate representation. This means that the inbound and outbound flight at Amsterdam Airport Schiphol (AMS)
are connected in a single data sample.

This research work is novel as the causes of ATC delays have never been researched using a data driven ap-
proach. For the majority of the comparable research studies, the work focused solely on the drivers of the
general departure and/or arrival flight delays. Additionally, the root cause analysis of pure departure/arrival
delay has almost never been combined with a focus on just one airline. This perspective makes it possible
to take into account the specific processes and airline data in the analysis. Hence, this research is novel as it
aims to combine the root cause analysis of specific Air Traffic Control delays together with a focus on a single
airline. To determine these causes, a state-of-the-art method will be used in combination with a baseline
model. This approach allows to assess the added value of the state-of-the-art method. Additionally, the re-
sults of this research will reveal the processes and situations that lead to ATC delays for KLM flights at their
hub airport. By obtaining this information, steps can be taken to improve this, which can potentially reduce
the ATC delays and the high costs related to them.

The remainder of this literature review is structured as follows. In chapter 2, the current Air Traffic Manage-
ment system is reviewed. This is followed by an analysis of the occurrence of delays in air transport networks,
presented in chapter 3. In chapter 4, an extensive description of the available causal models is presented,
together with a review of their applicability for this research project. Subsequently, the required data, sources
and available processing methods are discussed in chapter 5. Finally, a work flow diagram illustrating the
research approach and work packages is presented in chapter 6, which is followed by the conclusions in
chapter 7.



2
AIR TRAFFIC CONTROL

This chapter introduces the concept of Air Traffic Control (ATC). Air Traffic Control is actually part of the Air
Traffic Management system. Additionally, The determinants and influencing factors of the different capaci-
ties in the airspace are discussed.

2.1. AIR TRAFFIC MANAGEMENT
ATC is actually a subdivision of Air Traffic Management (ATM), which is introduced in this section. First of all,
the division and layout of the airspace is presented, followed by an explanation of the flight plan and planned
trajectory of a flight. Additionally, the concepts of regulations and Airport Collaborative Decision Making are
discussed.

2.1.1. AIRSPACE DIVISION
Airspace is subdivided into different control zones. The division of airspace in the Amsterdam Flight Infor-
mation region (FIR) can be seen in Figure 2.1 [12]. A Flight Information Region can be seen as the largest
division of airspace, which is again subdivided into different airspace zones. The FIR often contains the en-
tire airspace of a country for smaller countries, such as The Netherlands. For larger countries, their airspace
can be divided into several FIRs. In general, a FIR can be subdivided into four different areas or zones of
airspace, and each are controlled by other air traffic controllers and centres. These division areas within a FIR
are discussed below in more detail and are illustrated in Figure 2.1 [12].
Control Zone (CTR)
This zone in the airspace is the airspace directly surrounding the airport. This area is controlled by Tower
Control (TWR), which controls the aircraft on the ground and on the runways as well.

Terminal Manoeuvring Area (TMA)
This part of the airspace is managed by approach control (APP). The TMA connects the Initial Approach Fixes
(IAF) to the final approach in the Control Area or CTR, but also connects departing flights from the CTR to the
airways in higher parts of the airspace. This area is thus characterised by climbing and descending aircraft.

Control Area (CTA)
The CTA, or Control Area, is managed by the Area Control Centre (ACC). The CTA is bound at an upper flight
level of 24,500 feet, as seen in Figure 2.1 [12]. The control area contains the Initial Approach Fixes and thus
also the holding areas or stacks.

Stacks
Stacks are areas in the airspace where aircraft are held before they are allowed to make their final approach to
the runway via the Initial Approach Fix (IAF). These areas can be seen as the ’waiting areas’, before receiving
clearance from approach control to enter the TMA for final approach.

Upper Airspace (UTA)
The upper airspace is defined to be above an altitude of 24,500 foot or FL245. This area is controlled by
upper area control, which is Maastricht Upper Area Control (MUAC) for the Amsterdam FIR. In this part of
the airspace, aircraft are in their en-route phase and follow fixed airways.
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Figure 2.1 – A schematic overview of the airspace in the Amsterdam FIR [12].

In Figure 2.2 the Control Area sectors in the Dutch airspace are plotted. This information has been found
from the Aeronautical Information Package (AIP) for the Netherlands, provided by LVNL, the Air Navigational
Service Provider (ANSP) in the Dutch Airspace [13]. As can be seen, the areas in the North and South-East of
The Netherlands are not part of any control area. This is because this airspace is reserved for military use. In
general, the layout of these sectors is dynamic, and dependent on the demand at that moment in time [14].
When demand is high, the CTA is split in the highest possible number of sectors, such that the offered capacity
is maximised. However, when demand is below capacity, sectors can be merged such that less controllers are
necessary.

Figure 2.2 – The different sectors in the Amsterdam CTA according to the AIP.

In order to regulate the incoming and outbound traffic in the TMA and CTA, Standard Instrument Depar-
tures, SIDs, and Standard Arrival Routes, STARs, are present in the airspace. SIDs and STARs are fixed routes
which connect the departure runway to the en-route airway,and the en-route airway to the initial approach
fix respectively. As mentioned before, the STARs are designed to connect aircraft from their en-route airway
to the initial approach fix and final approach. For Amsterdam Airport Schiphol, three Initial Approach fixes
are present [13]:

• ARTIP
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• SUGOL

• RIVER

Each of these Initial Approach Fixes have corresponding waiting areas, also better known as stacks, which
have been discussed previously.

2.1.2. TRAJECTORY & PLANNING
For each flight, the planned trajectory has to be made and described in a flight plan, which is done 6 to 3
hours before take-off [15]. In ATM, there are different flight trajectories that can be distinguished [16]:

• User preferred trajectory

• Procedure optimal trajectory

• Network optimised trajectory

• Actual flown trajectory

The user preferred trajectory can be seen as the path the aircraft would fly in case of a free route airspace. In
practise, this would mean that all flights would be executed at minimal costs by taking the shortest/fastest
path to their destination, also known better as free flight. However, the airspace consists out of navigation
points, and an aircraft should follow a path connected by these nodes [14]. Therefore, a flight’s flight plan
consist out of a sequence of navigation points and a specified altitude, which can also be seen as the proce-
dure optimised trajectory [14, 16]. The network optimised trajectory is the flight plan with the incorporated
feedback of the network manager, in order to control the capacity in the airspace. Finally, the actual flown
trajectory is the actual flight path taken.

Based on the aforementioned definitions of the trajectories, three different stages of flight efficiency that
have been defined by Bronsvoort et al. [16]:

• Strategic efficiency

• Pre-tactical efficiency

• Tactical efficiency

The tactical efficiency is defined as the difference between the actual flown trajectory and the flight plan
route optimised for the airspace situation, also known as the network-optimised trajectory. The pre-tactical
and strategic efficiency are then the difference between the network optimised and flight plan trajectory and
the user preferred trajectory. The pre-tactical and tactical efficiency can be seen as measures relating to the
impact of demand and capacity imbalances before departure and en-route respectively, because of ground
holdings and en-route ATC interventions [16].

2.1.3. REGULATIONS
Regulations is a mechanism that is managed by the Central Flow Management Unit (CFMU) and is part of
Air Traffic Flow Control Management system [17]. Regulations are installed for flights which are likely to
experience en-route congestion end thus airborne delay. In order to avoid this, these flights are regulated
and kept on the ground to reduce the airspace congestion and resulting delays [17].

When a flight is regulated, it will receive a Calculated Take-off Time (CTOT), which is issued by the CFMU.
The aim of using the calculated take-off time for each of the regulated flights, is to manage the number of
aircraft using the regulated airspace at a specific time, and thus ensuring that capacity is not exceeded [15].
This CTOT allocation is based on the filled flight plan, which entails the planned or predicted trajectory of the
aircraft and assigns a CTOT based on a ’First Planned First Served’ principle [18]. These slots are calculated
using CASA, the Computer Assisted Slot Allocation.

In a study by Ruiz et al. [18], it has been shown that this principle of allocating Air Traffic Flow Man-
agement (ATFM) slots does not take into account the complex network that air transport is, and thus does
not provide the overall most efficient solution. By regulating flights, slots of other flights are also impacted,
and this can become problematic when multiple regulations are active for a flight. The regulation which has
the biggest impact on the flight’s trajectory is also known as the most penalising regulation, which can have a
positive or negative impact on other flights via interactions due to multiple regulations along the flight’s flight
path [18].
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Regulations are used with an aim to make use of the
airspace’s capacity as efficient as possible, however,
some of the taken actions to manage ATFM is in con-
tradiction with what is seen efficiency by airports and
airlines. For example, flights who receive a regulation
induced delay might speed up during the flight to ab-
sorb this delay, and thus their initial filed flight plan
does not accurately represent their trajectory anymore
[15]. This unpredictable behaviour can potentially
lead to an incident of exceeding the capacity, which
can be followed by time period of capacity under-
usage.
The phenomena of unanticipated peaks in arrival
of air traffic in congested or regulated areas of the
airspace is also known as ’air traffic bunching’ [15].
The bunching peaks experienced are in fact a result
of ’operational behaviour’, which leads to operational
noise, and thus can deviate from what was initially
planned by the CFMU. Examples of operational be-
haviour and noise are for example airline and airport
practises to absorb the regulated ground delay [15]. An
illustration of the regulation process by the CFMU and
how this can lead to unexpected peaks and lows in the
actual operations is shown in Figure 2.3 [15]. Stolz and
Ky [15] state that in practise, this risk leads to an under-
declaration of capacity by the network controllers and
ANSPs, which is again inefficient and leads to more
ground holding ATFM delays than what would be nec-
essary in theory.
Stolz and Ky [15] also acknowledges the effect of hub
operations on regulations, and therefore also on air
traffic bunching. The operational model of a hub is
actually in contrast to the idea of Air Traffic Flow Man-
agement, which aims to spread out the demand evenly
such that the airspace capacity is not exceeded. How-
ever, hubs are characterised by their departure/arrival
banks, which are time blocks with a high number of
inbound/outbound flights, in order to be able to make
as many connections between flights as possible.

Figure 2.3 – Schematic overview of an air traffic
regulations and its possible bunching effects [15].

However, keeping flights at the ground is not guaranteed to be the most optimal solution, as this can also
cause congestion at the airport of departure [19]. Additionally, the ground holding programs can not take
into account developments on the airspace or arrival airport capacity when assigned the regulation, and can
therefore be found to be unnecessary. Therefore, Carlier et al. [19] claimed that the ground delay resulting
from regulations is not always more efficient than en-route delay.

2.1.4. AIRPORT COLLABORATIVE DECISION MAKING
Flight delay is a manifestation of the interactions between various stakeholders involved in the flight process,
such as the airline, airport operator, the slot coordinators and the air navigational service providers [20].
Therefore, Airport Collaborative Decision Making, A-CDM, has been introduced. This is a concept in which
multiple stakeholders and operators at an airport share information on the operational processes and thus
enhance informed decision making for all parties [21]. The following parties are involved in the information
sharing process [22]:

• Airport operations

• Airlines operations
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• Ground handling

• Network controller (Eurocontrol in EU)

• Air Traffic Control

By implementing Airport Collaborative Decision Making, there are a number of common goals for these in-
volved stakeholders. The most important ones related to airline punctuality and ATC delays are as follows
[22]:

1. Improve the predictability

2. Improve on-time performance

3. Reduce the amount of ATFM slot missed and wasted

4. More flexible planning of the pre-departure process

5. Reduce apron and taxiway congestion

6. Optimise the use of airport infrastructure and resources such as runways, gates, ramps and parking
spots.

A-CDM or simply CDM, is a system that works with a milestone approach. These milestones are characterised
by different events in the turnaround process. In this approach, the different parties or stakeholders are
each responsible for several milestones, of which the updates are shared with all stakeholders, such that the
flight process information is coherent and complete for all [22]. A graphical and sequential illustration of the
milestones in the turnaround process used in the A-CDM process is displayed in Figure 2.4 [22].

Figure 2.4 – Overview of flight phases & CDM milestones [22].

As one of the goals of CDM is to increase the flexibility and predictability of the turnaround and departure
process, estimations have to be made for different milestones. Equation 2.1 shows how the Target Off Block
Time (TOBT) is estimated before the aircraft has arrived at the airport [21]. The Minimum Turn Around Time
(MTT), is issued by the Main Ground Handling Agent (MGHA) of the respective flight.

TOBT = EIBT + MTT (2.1)

After the aircraft is in-block, the Main Ground Handling Agent (MGHA) is responsible for updating the TOBT.
The used definition at Amsterdam Airport is that at the moment of TOBT, all ground handling activities have
been finished, all doors are closed and all boarding equipment have been removed from the aircraft, and thus
is the MGHA the stakeholder which can define this milestone.



72 2. AIR TRAFFIC CONTROL

Figure 2.5 – Determination of TSAT in CDM pre-departure planning [21].

During the turnaround process, the Target Start-up Approval Time (TSAT) and the Target Take-off Time
(TTOT) are supplied by Air Traffic Control [21]. The TSAT is a function of the issued TOBT, which is translated
into a Target Take-Off Time, TTOT, as seen in Equation 2.2. The TTOT is established by assigning the earliest
possible take-off time, taking into account the estimated taxi-out time (EXOT). The TSAT is then found by
reversing the calculation as seen in Equation 2.3 [21]. The TSAT is thus subject to change, as it depends on
TOBT, TTOT, or CTOT for regulated flight, and EXOT changes and runway usage and/or capacity. The interde-
pendencies between these milestones and how they are used to update each other are illustrated in Figure 2.5
[21].

TTOT > TOBT+EXOT (2.2) TSAT = TTOT-EXOT (2.3)
Also the Actual Start-up Request Time (ASRT) is issued by ATC, which is done at the moment the cockpit has
declared it is ready, on the condition that this happens in the flight’s TSAT [21]. The TSAT window is defined
to be -/+ 5 minutes from the declared TSAT. The CDM process comes thus with certain responsibilities for the
involved parties. ATC is responsible for delivering a TSAT based on the calculated TOBT or CTOT to the pilot.
It is the pilots responsibility to then declare that the aircraft is ready within the received TSAT window [21].

Additional to the milestones, the CDM system also registers changes in the flight states of a flight at the air-
port. These flight states and their link with the different flight phases and CDM milestones are depicted in
Figure 2.6 [21]. It can be seen that for the different flight phases, inbound, turnaround and outbound, several
flight states are defined, which are shown and explained in more detail in Table 2.1 [21]. One should note that
these flight states have been defined particularly for the implementation of A-CDM at Amsterdam Airport
Schiphol, and might not be applicable to other airports.

Figure 2.6 – Flight states in CDM system at Amsterdam Airport [21].
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Table 2.1 – Flight States per flight phase for CDM@AMS [21].

Inbound Turnaround Outbound
SCH = Flight scheduled SCH = Flight scheduled RDY = Flight ready
CNX = Flight cancelled CNX = Flight cancelled TAX = Flight taxiing
AIR = Flight airborne BRD = Flight boarding AIR = Flight airborne
FIR = Flight airborne in Dutch airspace GCL = Gate closing RTN = Flight returning
TMA = Flight in approach
FNL = Flight on final
TAX = Flight taxiing
IBK = Flight in-blocks
IDH = Flight in indefinite holding,
unable to continue approach
DIV = Flight diverting
GOA = Flight go-around

2.2. CAPACITY
In the previous section, Air Traffic Management has been introduced, in which capacity is a crucial part. In
this section, the different capacities that are present in the airspace are introduced and discussed. In general
each part of the airspace is assigned a nominal capacity, however, these can vary dynamically based on the
weather and other operational conditions [17].

2.2.1. AIRPORTS
The capacity for airports is often expressed in the number of arrivals and/or departures per hour [23]. The ca-
pacity of an airport is constrained by the use of the runways and availability of ramps and gates. Additionally,
the airport’s capacity is determined under a set of operating conditions [23]:

• Weather conditions: ceiling & visibility

• Air Traffic Control capacity

• Aircraft mix

• Nature of operations

Runway capacity and airport capacity are not equal to each other, as runway capacity is part of the total
airport capacity [22]. In general, the runway capacity is the most limiting factor in terms of airport capacity.
Again, the runway capacity can be expressed as a function of the following elements [23]:

• Air Traffic Control capacity

• Demand

• Environment

• Runway configuration

Air Traffic Control capacity will be treated in the upcoming subsection. Demand is an influencing factor as
the types of aircraft requesting to use the runway have an influence on the capacity, and is actually equal to
the airport capacity constraint ’aircraft mix’. As the wing tip vortices strength and speed vary with the size of
the aircraft, different separation minima exist for consecutive operations of aircraft of different sizes. This is
not only due to the wake turbulence, but also due to different runway occupation times due to varying speeds.
For Amsterdam airport, it is reported by Eurocontrol that the mix of aircraft is actually the most constraining
factor for the runway throughput [24].

The environment constraint contains factors such as wind conditions, visibility and ceiling, but also noise
abatement measures, which can limit certain runway combinations or limit runway usage during specific
hours of the day.

Lastly, also the runway configuration at the airport determines the capacity. Here, the number of runway
crossings and parallel/intersecting runway operations are taken into account. Parallel operations offer the
highest capacity [25]. However, due to the presence of (cross)wind, and to optimise taxi times, intersecting
runway operations can be beneficial. However, due to the associated risks of intersecting runway operations,
this reduces the offered capacity. The runway configuration at Amsterdam Airport is shown in Figure 2.7 [26].

Amsterdam Airport Schiphol is, like most hub airports in Europe, a slot coordinated airport [27]. The slot
coordination is handled by an external party, the Airport Coordination the Netherlands [28]. Amsterdam
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Figure 2.7 – Runway layout at Amsterdam Airport [26].

Airport Schiphol has been completely saturated for the last years. The airport’s slots have been limited at a
yearly amount of 500,000, which was reached in 2017.

As mentioned before, AMS is the major hub airport for KLM Royal Dutch airlines. This means that the
airport is characterised by inbound and outbound banks, in order to ensure as many connection possibilities
as possible. For illustrative purposes, the network model of Air France-KLM is illustrated in Figure 2.8 [29]. As
mentioned before is the hub and spoke model inherently in contrast with the demand capacity balance, as
there are large peaks of inbound and outbound traffic during small time periods [15]. Additionally, AMS was
one of the driving airports of ATFM delay in Europe during 2019, according to Eurocontrol [11].

Figure 2.8 – Hub and spoke network model of the Air France-KLM group[29].

During the inbound and outbound peaks, the runway configurations change, and thus influence the capacity
of the airport. During the inbound peaks, two landing and one take-off runways are active, whereas during
the outbound peak 2 runways are used for departure and one for landing [30]. In transition phases between
the in- and outbound peaks are sometimes four runways at the same time in usage [30].
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2.2.2. AIR TRAFFIC CONTROL
In Air Traffic Control, there are a number of control centres that can be distinguished, such as TWR, APP, ACC
and UAC, as discussed in the previous section. Each of these control centres control a different part of the
airspace. Therefore, in this section, a distinction is made between the capacity managed by the ANSP, LVNL
in the Netherlands, and the Upper Area Controller or Network Controller, Eurocontrol.

AIR NAVIGATIONAL SERVICE PROVIDER

Air Traffic Control capacity determines the capacity of the runway throughput as they ensure that all flights
are kept at a safe distance from each other. This is translated into minimum separation minima, which are
again dependent on a number of factors (aircraft size, radar availability, operational sequence, and the time
spent on the runway) [23]. Next to the separation minima, there are other factors related to ATC determining
the capacity, such as the level of technology of the ATC system, the strategy used for sequencing and the
length of the common path of the Instrument Landing System [23].

Aircraft type influences the runway occupation time, and thus do slower aircraft reduce the capacity of
the runway. Additionally, the wake turbulence induced by aircraft influence the separation minima between
different aircraft types, and thus also capacity [23].

The Initial Approach Fixes and the corresponding stacks also have a capacity. The nominal capacities
are expressed in aircraft per hour, and are the following: ARTIP:30, RIVER:21 & SUGOL:26. These capacities
are dynamically managed by imposing regulations on them. The regulations of the stacks are indirectly also
related to the arrival rate at AMS, as these regulations are installed to reduce the number of holdings at the
stacks when the demand is higher than the runway capacity.

Additionally, Air Traffic Control actions can not always be predictable or consistent [31]. The consistency of
air traffic control decisions to install ground delays has been studied by Kulkarni et al. [31]. In this research,
it was found that on days where the weather forecast, the Terminal Aerodrome Forecast (TAF), was accurate,
the decision consistency for installing ground delay programs had higher consistency than for days where the
TAF was inaccurate.

NETWORK CONTROLLER

The Network controller and Upper Area Controller are for the Dutch Airspace the same organisation, Euro-
control. The upper airspace in the Netherlands and its capacity is managed by Maastricht Upper Area Control
(MUAC). As this research project focuses on flights arriving and departing from Schiphol Airport, the upper
area airspace will not to subject to analysis.

Eurocontrol is also in charge of the Air Traffic Flow Management, and is thus also consists out of the
Central Flow Management Unit. As mentioned before is the CFMU responsible for imposing regulations [17].
The main task of this unit is to manage the imbalance between the demand and capacity, at strategic, pre-
tactical and tactical levels in the operation.





3
DELAYS IN AIR TRANSPORT NETWORKS

This chapter discusses the different types of delays that can occur in air transportation. Additionally, the
delay dynamics and potential impacts are discussed, as well as the strategies that have been implemented to
avoid, manage and mitigate these delays.

3.1. TYPES OF DELAYS
In this section, the different types of delays which can be encountered in air transportation are discussed. The
most general definitions of delay are arrival and departure delay. However, there are multiple more specific
types of delays, which are part of the general arrival or departure delays, such as reactionary delays, en-route
delays and Air Traffic Control (ATC) or Air Traffic Flow Management (ATFM) delays.

3.1.1. TOP LEVEL DELAY TYPES
The most general types of delays are related to when they occur in the flight process, such as departure, arrival
and turnaround delay. These top level delay types however do not address the reason of the delay, such as the
other delay types discussed further in this section.

Departure delay can be easily defined as the difference between the actual time of departure and the
scheduled time of departure. These terms are interchangeable with the actual off block time (AOBT) and the
scheduled off block time (SOBT), shown in Equation 3.1.

Arrival delay can then be defined as the difference between the actual time of arrival and the scheduled
time of arrival. These are also known as the actual in block time (AIBT) and the scheduled in block time
(SIBT), which is formulated in Equation 3.2.

Departure delay = AOBT−SOBT (3.1) Arrival delay = AIBT−SIBT (3.2)

In some studies, turnaround delay has been used as a measure of flight delay [32]. The turnaround delay of
a flight can be defined as the additional delay encountered during the turnaround process of a flight, but the
definition of what is actually defined as departure delay and turnaround delay remains rather unclear and
hard to separate from each other. The definition of turnaround delay will not be further used in this research
project and the work will just distinguish between arrival and departure delay.

3.1.2. REACTIONARY DELAY
Reactionary delay was the most common delay reason in both 2018 and 2019, causing 46.4% and 44.4% of the
delays respectively [33]. Reactionary delay is a flight delay that is caused by the delay of previous flights. A
graphical illustration of this kind of delay is presented in Figure 3.1 [34]. As can be seen from Figure 3.1, delay
has a high probability to result in reactionary delays if multiple flight legs follow closely upon each other.
Therefore, especially for flights in Europe, the first flight of the day has a high impact on the rest of the day, as
there are no overnight flights and the night stop can thus absorb all accumulated delay of the previous day.
Therefore, the dynamics of reactionary flight delay is different for Intercontinental (ICA) flights, as there are
no night stopovers, longer flight times, and longer turnaround times in general.

3.1.3. AIRSPACE/EN-ROUTE DELAY
Airspace delay is the result of a number of Air Traffic Control (ATC) actions, with the primary aim of keeping all
aircraft separated at a safe distance [35]. These actions consist of queuing, rerouting, holding, speed control

77



78 3. DELAYS IN AIR TRANSPORT NETWORKS

Figure 3.1 – Reactionary delays throughout a sequence of flight legs [34].

and aircraft vectoring [19, 35]. Additional to keeping the aircraft separated, also weather events can result in
deviations, and possible resulting congestion, adding to the en-route delay.

Airborne delays are often a result of congested airspace. These mostly occur in the Terminal Manoeuvring
Area of large, mostly hub, airports [36]. In these busy TMA’s, the air traffic management consists out of two
tasks, one being the separation of the aircraft, and the second the management of the air traffic flow through
the TMA [36]. In order to efficiently make use of the capacity and therefore minimise airborne delays, Arrival
Sequencing and Scheduling is used. If done effectively, it has been shown that this reduces the experienced
airborne delays significantly [36].

3.1.4. ATC DELAY
Air Traffic Control (ATC) is a critical element in the system of Air Traffic Management. Its main purpose is
to ensure a safe and efficient flight, by keeping aircraft separated both vertically as longitudinally [6]. Air
traffic control can be described as a sequential timeline or process that consists out of several control and
decision points, which facilitates the necessary communication between the controller and aircraft in an
efficient manner [6]. Unfortunately, Air Traffic Control is also a source of delay in civil aviation. ATC delay
consists out of two different types of delays, Air Traffic Flow Management delay (ATFM) and start-up delay.

ATC delay of a flight can be received at the gate, before departure, which is better known as start-up delay.
In essence, there are four main possibilities for this delay, which are all a result of an imbalance between the
demand and the capacity, shown below [20].

• Runway capacity

• Airspace capacity

• Availability of gates

• Arrival acceptance rate

However, ATC delays also include ATFM delays. ATFM delays are the result of regulations in the airspace,
as discussed in chapter 2. ATFM delays are mostly allocated on the ground, but can also be experienced
en-route, as discussed above. In 2019, 9.9% of the flights in the Eurocontrol area experienced en-route Air
Traffic Flow Management (ATFM) delay, with an average of 1.57 minutes per flight [33]. The causes of these
delays can mainly be attributed to the Air Traffic Control (ATC) capacity according to the Air Navigation Ser-
vice Providers (ANSP) [33]. Other causes are said to be staffing, weather and disruptions or actions in the ATC
system [33]. Overall, the percentage of delayed ATFM flights reduced slightly between 2018 and 2019, while
the number of delays caused by ATC capacity restrictions actually increased by 6.6% [33].

At the base of ATFM delays lies the discrepancy between the offered capacity and the demand. In order to
manage the demand at airports, slot coordination has been installed across European Airport [27], such that
the demand is known at a strategic level in the operation. For en-route airspace, the demand is only known
in the tactical phase of the operations, as the filed flight plans denote the intended route taken. The flight
plan is typically filed between 6 and 3 hours before departure [15], which is a very short time frame for the Air
Navigational Service Providers and Network Controllers to supply the needed capacity [37]. In order to match
the demand and the offered capacity, regulations are imposed, meaning that flights are assigned ground delay
and a CTOT slot. In a more mathematical way, this ground ATFM delay can be expressed as the difference in
the Calculated Take-Off Time (CTOT), which is issued by the CFMU, and the initially Estimated Take-Off Time
(ETOT), as shown in Equation 3.3 [38].
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ATFM delay = CTOT−ETOT (3.3)

These ground delays are installed as airborne congestion is unsafe due to increased controller workload.
Additionally, ground delay is also environmentally friendlier than en-route delay, as investigated by Carlier
et al. [19]. However, the total minutes of ground delay due to ATFM restrictions was estimated to be higher
than the delay minutes in case of airborne holdings and rerouting [19]. Although ground delays are more cost
efficient in terms of fuel and emissions, the increase in delay minutes due to ground holdings results in the
fact that ground delays are actually more expensive than the en-route or airborne manoeuvres, according to
Lehouillier et al. [17].

3.1.5. IATA DELAY CODES

IATA, the International Air Transport Association, has established delay codes and descriptions, such that the
same codes are used among all airports and airlines. Table 3.1 presents the codes related to ATFM restrictions
(81-84), airport facilities (87-89), and reactionary delays (91-96), and are the ones deemed to be most relevant
in the context of this research. The use of these delay codes are useful as they allow to trace the delay reason
more in-depth than using the types of delays discussed earlier in this section.

Table 3.1 – IATA delay codes & reasons [39].

Delay code Description Delay code Description

81
ATFM DUE TO ATC
EN-ROUTE DEMAND / CAPACITY

83
ATFM DUE TO RESTRICTION
AT DESTINATION AIRPORT

82
ATFM DUE TO ATC STAFF /
EQUIPMENT ENROUTE

84
ATFM DUE TO WEATHER
AT DESTINATION

87 AIRPORT FACILITIES 88
RESTRICTIONS AT DESTINATION
AIRPORT

89
RESTRICTIONS AT
AIRPORT OF DEPARTURE

91 LOAD CONNECTION 92 THROUGH CHECK-IN ERROR
93 AIRCRAFT ROTATION 94 CABIN CREW ROTATION
95 CREW ROTATION 96 OPERATIONS CONTROL

3.2. DELAY PROPAGATION
As discussed in the previous section, a flight delay can cause subsequent flights to also be delayed, which is
generally denoted as reactionary delay. This phenomena is better known as delay propagation. Flight delay
propagates through the operation of the airline due to aircraft, crew and passenger connectivity [7]. If a flight
arrives late, it is evident that the subsequent flight with that same aircraft will have a high probability of also
being delayed, and the same principle holds for the flight scheduled with the late arrived cabin/cockpit crew.
Lastly, subsequent flights can also be delayed due to the large amount of connecting passengers from the
late flight. This is especially the case for hub airports of airlines, where the operation is fit to ensure a large
possibility of flight connections. Additionally, due to legal crew and aircraft restrictions, such as minimum
rest, duty times and maintenance intervals, initial delays can have large implications on subsequent flights,
as valuable resources become unavailable for operation. Additional to the flight delay propagation in the
airline’s operation, the delay can also propagate to other airports and airlines, as the demand capacity balance
in the airspace can be shifted and disturbed [40].

In order to model and better understand the flight delay propagation across different flights and airports,
several approaches have been used. One of these methods is the usage of queuing models [9, 41, 42]. Ad-
ditionally, agent based models have received an increased attention as well [10], as well as dynamic analysis
models [43]. Lastly, Bayesian networks have been widely studied for the application of delay propagation, as
it can represent network structures and links between the nodes. The propagation of delays across different
airports has been modelled by Xu et al. [8], whereas the propagation effects within one airline’s operation
has been studied by Wu and Law [7]. A comparable but simpler approach than Bayesian networks has been
taken by AhmadBeygi et al. [44], where propagation trees have been used to model the propagation of delay
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throughout flight legs due to aircraft and crew connectivity. An illustration of delay propagation within the
operations of a single airline is given in Figure 3.2 [44].

Figure 3.2 – Illustration of flight delay propagation across flights of a single airline [44].

3.3. DELAY MANAGEMENT
As delays often occur in air traffic and can have large implications on the entire operation, airlines have delay
management and mitigation strategies. These strategies can be planned, meaning that they are taken into
account in the strategical or tactical phase of the operation. Examples of these are as follows [45].

• Reserve crews

• Turnaround time buffers

• Flight time buffers

Additionally, airlines also have strategies that can be executed on the day of operation in case of disruptions.
These include the following.

• Aircraft swaps.

• Slot swaps on coordinated airports.

The actions taken to manage the delays and disruptions in the flight network are not taken randomly, but
the different components are handled and recovered in a sequential manner, due to the influencing factors
between these components: aircraft → crew → ground operations → passengers [46].

In the research area of delay management and mitigation, linear programming models have been mostly
applied. Bolić et al. [37] have worked on a linear programming model, which can manage and prevent delays
on a strategical level, meaning that the planning is done several months before the operation. The delay
management is achieved by the redistribution of flights, such that the capacities at the airports and airspace
are not exceeded. Another linear programming model was developed by Santos et al. [47], which aims at
optimising the operational decision making process of delaying flights at a hub or not, while minimising the
incurred costs. Lulli and Odoni [48] recognised that in Europe, Air Traffic Flow Management is a complex
problem due to the capacity constraints that are both present at the airports as in en-route airspace, and has
aimed to reduce the delays by using a linear programming model as well. This model aims to optimise the
cost of delay on a strategic level, and achieves this by assigning both ground and airborne delays to flights.
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CAUSAL ANALYSIS MODELS

Traditionally, causal relations are discovered and identified by performing experiments [49, 50]. However,
performing experiments to find causal relations is not possible for every process or application. Experiments
are often expensive, time-consuming or not feasible [50]. Therefore, interest has increased in methods that
can find causal relations from pure observational data, eliminating the need for practical experiments [49].
Therefore, in this chapter, different causal models are presented and discussed.

4.1. STATISTICAL METHODS
This section discusses different statistical methods which have been used in the past to identify influential
factors or causal relationships between the independent and dependent variables.

4.1.1. CORRELATION COEFFICIENTS
Correlation is not equal to causation [51]. However, when there is a sequential trend in the data, correlation
between variables can indicate a causal relationship as well. There are several correlation coefficients that
can be used, described below [52].
Pearson correlation This is a coefficient which denotes the linear relationship between variables, with a
range between +1 and -1. +1 is a perfect linear relationship, 0 is no relationship and -1 denotes a perfect
negative linear relationship between the variables [52]. Its formula is shown below in Equation 4.1 [52]. One
should be noted that the main assumption for this coefficient is that the variables should be normally dis-
tributed, and thus cannot be used on all variables.

Spearman correlation This coefficient denotes the level of association between two variables, eliminating the
linearity from the Pearson coefficient. It is a non-parametric statistical test, such that there are no require-
ments on the data distribution, in contrast with the Pearson coefficient [52]. The formula is shown below in
Equation 4.2, where R and S are the ranked values of x and y [52].

rp =
∑n

i=1 (xi − x̄)
(
yi − ȳ

)√∑n
i=1 (xi − x̄)2

√∑n
i=1

(
yi − ȳ

)2
(4.1)

rs = 1− 6
∑n

i=1 D2
i

n3 −n
, where Di = Ri −Si (4.2)

These coefficients have been used in research studies with the aim of finding causal relationships among
variables for various applications [3, 53, 54]. In the context of flight delay, Sternberg et al. [3] used the Pearson
coefficient to initially investigate the correlation of the attributes with flight delay. This however did not
lead to any strong correlations, whereas other methods did find strong influential factors. Therefore, these
coefficients can be used for initial data exploration and processing, but are less adequate to be used for a full
causal analysis in a big data context.

4.1.2. REGRESSION ANALYSIS
Regression analysis is another statistical method that has been widely applied in the research field in order to
better understand the influences on flight delays. Regression can be used to predict the target value, but also
to find and quantify the influence of the independent variable(s) on the value of the target variable [52]. The
formulas of bivariate and multiple regression are shown in Equation 4.3 and 4.4 [52]. In bivariate regression,
there is only 1 independent variable, whereas for multiple regression, m attributes are used.

81
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yi = a +bxi +εi (4.3) yi = a +
m∑

i=1
bxi +εi (4.4)

Initiated by Mayer and Sinai [55], regression analysis has been applied to the problem of airline delays, which
has been built upon by Santos and Robin [27] and Aydemir et al. [56]. In these research papers, the regression
analysis focuses on the economic drivers of air traffic delay, and therefore uses independent variables such
as market concentration, slot coordination, and the presence of a hub airline/airport.

Additionally, Liu et al. [57] used linear regression and the Multinominal Logit model to estimate the causes
of en-route flight inefficiency. Additional to linear regression, an attempt has been made by Mohammadian
et al. [58] to capture non linear relations between flight delay and independent variables, by making use of log
linearity. In another study by Abdel-Aty et al. [59], a (mathematical) frequency analysis to discover patterns
in flight delay was performed. Next to this, statistical regression analysis was used, aiming to find the influ-
encing factors of the detected delay patterns. Initially, simple linear and logarithmic regression were used,
but these led to poor results. Therefore, Abdel-Aty et al. used logistic regression and the analysis of variance
(ANOVA) method, which led to a better model fit.

In essence, the influence of independent parameters or variables can be captured by performing a regression
analysis [60]. However, Yu et al. [60] acknowledged that for high-dimensional data, regression analysis cannot
capture the influence of certain independent variables on the dependent variable, as this correlation or causal
relation is often indirect, unclear, or very complex.

4.1.3. GRANGER CAUSALITY
A technique often used in past research is the Granger causality statistical test [61, 62]. This test takes two time
series as input, and determines whether there is a causal relationship between the two inputs. This statistical
test and its application have two main ideas [63]:

1. The cause of an effect occurs earlier than the effect.

2. The information relating to the cause improves the ability to predict the behaviour of the effect, com-
pared to using all available past information to predict the effect.

Additional to the above mentioned principles, it should be noted that Granger causality is limited to detect
linear relationships between the two time series [45, 63]. Additionally, the metric analyses entire time series.
This has the implication that if a causal effect is only present in a smaller time window, this effect will be
averaged over the entire time window and thus will result in less significant results [63].

Equation 4.5 [63], can be used to asses whether Y j causes Yi according to the Granger test. σ2 (Yi |U−)

denotes the variance of the residuals when all information U is available. σ2
(
Yi |U−\Y −

j

)
then denotes again

the variance of the residuals, but now the information of Y j is excluded from U . If the expression in Equa-
tion 4.5 holds, this means that the values of Yi can thus better be predicted when the information of Y j is
taken into account, and thus it can be said that Y j Granger causes Yi [63]. One of the reasons this causality
test has been widely applied in past research, is due to its ability to distinguish causal relations from simple
correlations between variables [63].

σ2 (Yi |U−) <σ2
(
Yi |U−\Y −

j

)
(4.5)

Du et al. [64] have used an alternative mathematical and statistical approach than Belkoura and Zanin. Equa-
tion 4.6 and Equation 4.7 defined by Du et al. [64], show the regression methods used to determine the residu-
als, which are used in Equation 4.5. The null hypothesis of the test is that Y j does not cause Yi , and therefore,
its coefficients in Equation 4.6, b1,b2, ...,bpi j should all be zero [64]. It should be noted that variable pi j

denotes the lag taken into account, as the cause should always occur earlier in time than the effect.

yT
i =

pi j∑
m=1

am yT−m
i +

pi j∑
m=1

bm yT−m
j +εT (4.6) yT

i =
pl j∑

m=1
am yT−m

i +εT (4.7)

As it determines the causal relationships between time series, this method has often been used to determine
causal relations between airport delay and delay propagation through multiple airports, such as done by Du
et al. [64], Belkoura and Zanin [63] and Mazzarisi et al. [65]. Due to the restriction to capture only linear
causality, many studies have combined Granger causality with non-linear causality metrics and tests [45, 63].
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As Granger causality is a temporal causality method, and is a linear model, this method is not applicable
in the big data context of this research project, which aims to find complex and non-linear causal relations
between not necessarily temporal attributes.

4.2. FREQUENT PATTERN IDENTIFICATION
Frequent pattern identification is a form of Knowledge Discovery in Databases, which is achieved by identi-
fying recurring patterns in the data set [66, 67]. This mining method allows the algorithm to detect and learn
association rules in the data set, which can be presented as A -→ B, where A is denoted as the antecedent
and B the consequent [3]. Here, the antecedent can be a set of items which occur in the data set, whereas the
consequent always is a single item which does not occur in the antecedent. In general, there are two main
challenges to this method [66]. The first one is to manage the number of possible rules and thus the search
space, as this grows exponentially with the number of variables and the number of values these variables can
take. Additionally, identifying the rules which hold the most information remains challenging, as the found
number of rules is often very large.

The advantage of using rule generation as data mining method over for example regression analysis, is
that it can identify underlying and complex associations and correlations in the data set, as proven in a study
by Sternberg et al. [3].

Support and confidence are both measures which can be used to asses the validity of the mined rules, and
thus act as a filter on the identified rules [68]. Therefore, minimum thresholds need to be defined for both the
support as confidence measures. These measures can be defined as follows [3, 69].

Support This measure is simply the percentage of the data records that contain the items. Thus, Support(X=x,Y=y)
is the percentage of records in the data set, where variable X equals value x and at the same time, variable Y is
equal to y. The mathematical formulation of this measure is shown in Equation 4.8 [67].

Confidence This measure represents the conditional probability of two variables. For example, Confidence
(X=x→ Y=y), is the conditional probability that variable Y will equal y when it is given that variable X is equal
to x. From the data set, the confidence of a certain rule can be expressed as the ratio of support, as seen in
Equation 4.9 [67]. The confidence of a rule is in fact the support of both the antecedent and consequent,
divided by the support of the antecedent, in analogy with Bayes’ conditional probability theorem.

Support(X = x) = P (X = x) = Frequency(X=x)

Total records
Support(X = x,Y = y) = P (X = x ∪Y = y)

(4.8)

Confidence(X = x → Y = y) = P (Y = y |X = x) = Support(X = x,Y = y)

Support(X = x)
(4.9)

At first sight, these measures might appear to be similar, however, they represent different characteristics of
a rule. The confidence of a rule is a measure of the strength of the rule, whereas the support denotes the
statistical significance of a rule [69].

As mentioned before, the identified rules are filtered by setting minimum values for the support and con-
fidence of the association rules. In a study by Sternberg et al. [3], Equation 4.10 was used to set the minimum
value of the confidence, as it was required to identify rules which had a higher probability for delay due to the
antecedents than the general probability for delay from the used data set. In that same study, the minimum
support threshold was set by setting thresholds on the amount of times the rule should occur per day on av-
erage. The minimum support is then equal this value, divided by the total number of days in the data set, as
illustrated in Equation 4.11.

P ( delay | antecedentconditions ) Ê P ( delay ) = min confidence (4.10)

min support = Required frequency in a day

Total number of days
(4.11)

However, even with the measures of support and confidence, the number of rules detected by the algorithm
can still be very high. In order to further reduce the number of found rules in a data set, several methods
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have been developed to only retain the "interesting" rules found from the data set. One of these methods
is constraint-based mining, where only the rules are kept which satisfy the user’s specifications [68]. Addi-
tionally, the found rules’ support and confidence can be used to express correlation. Some of the available
correlation measures are Lift, Cosine and All-confidence [68]. Sternberg et al. [3] has used an additional cor-
relation measure on the extracted rules [67, 68], the Lift measure, presented in Equation 4.12 [3]. By using the
lift measure, rules which do not actual consist of a causal relationship, but are detected as the consequent is
very frequent in the data set can be filtered out [3]. When a consequent occurs very frequently in the data
set, this will lead to a high support value for this consequent, ultimately reducing the lift measure of this rule.
The lift measure can also be seen as a correlation measure [67]. In case that a rule has a lift value of 1, this
indicates that the conditional probability of Y = y when X = x is equal of the probability of Y = y , and thus
X = x and Y = y can be said to be independent. A value of less than 1 then indicates that the antecedent and
consequent are actually negatively correlated, while a value > 1 indicates a positive correlation [67].

As an example of the general method, Table 4.1 contains five data records from a fictitious data set. Here, the
association rule between Weather=fog→Type of Delay = ATC delay is investigated. The support of Weather=fog
is in this example 60%, as it occurs for three records out of five. The same applies for the support of Type of
Delay = ATC delay, which is also 60%. The support of Weather=fog → Type of Delay = ATC delay together is in
this case 40%. Thus, using Equation 4.9, the confidence of this rule, Weather=fog → Type of Delay = ATC delay,
is equal to 66.67%, which leads to a lift value of 1.11. The latter value can be interpreted as the probability of
having an ATC delay is 11% higher in the presence of fog [3].

Table 4.1 – Example data set for frequent pattern mining.

Weather Type of Delay
Fog ATC delay
Rain ATC delay
Fog Maintenance
Fog ATC delay
Cloudy Crew rotation

Lift(X = x → Y = y) = Confidence (X = x → Y = y)

Support (Y = y)
(4.12)

An implication of using this method, is that the input data needs to be discretized in order to obtain rules
which satisfy the support and confidence minima [3]. This means that binning and categorisation are crucial
steps in the process, as working with continuous data leads to very low support values in the data, making it
harder to detect the frequent patterns. The available data processing and transformation methods are dis-
cussed in more detail in chapter 5.

Association rule mining has originally been developed for retail applications, where dependencies between
products could be detected using this method. However, the use of this method has been expanded success-
fully to other industries and applications, such as flight delay analysis [3]. For the process of association rule
mining, multiple methods exist [68]:

• Apriori algorithm

• FP-growth algorithm

• Eclat algorithm

The first two algorithms are used for horizontal data sets, whereas the Eclat algorithm, developed by Zaki
et al. [70], has been developed for vertical data sets, which is not applicable in this research project.

The Apriori algorithm was developed by Agrawal and Srikant [71] and is commonly used. It is based on
the assumption that all subsets of a frequent item set are also frequent, meaning that an item set containing
a sub item set that is not frequent can also be seen as not frequent and therefore discarded. However, the
Apriori algorithm still performs candidate generation, as it lists all possible rules first, after which is will prune
the rules in order to reduce them. This algorithm will thus start with the analysis of all ’rules’ with length
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one. This will be pruned according to the thresholds set for support. After this, the rules of length 2 will be
formed and their support will be calculated. Again, the rules which do not fulfil the support minimum will
be filtered out. This process is continued up to a user defined variable , k, denoting the maximum length
of the rules, which makes it a bottom up approach, as it generates all possible rules starting from length 1
[72]. The Frequent Pattern growth, or FP-growth, algorithm is an algorithm that can perform association
rule mining without the generation of each ’rule’ candidate, and has been developed by Han et al. [72]. The
method works following a ’divide-and-conquer’ method, and constructs a so-called Frequent Pattern tree, or
FP-tree, from the compressed data [67]. This does not require to generate every potential rule, as done in
the Apriori method. Han et al. [68] claims that this algorithm can reduce the search time significantly, as the
algorithm searches in a more targeted manner, which makes it more scalable and computationally faster [67].
The FP-growth algorithm works in the following steps:

1. Start with 1-length rules and determine the support, rank the occurrence according to the support and
filter the variables for minimum support.

2. Rank the attributes of all the data records from highest support to lowest support above the minimum
threshold.

3. Build the FP-tree based on all data records in the data base: start from the root node and work down by
adding the frequent patterns from the data set. This is done by checking whether the pattern is already
in the tree. If it is, the counter is updated, and if it is not, an extra node is added and the count is set to
1.

This process is illustrated using the same example used by the developers of the algorithm Han et al. [72], and
is shown in Table 4.2 and Figure 4.1. By using this approach, the FP-growth algorithm captures all frequent
patterns which are present in the data set, and the height or size of the tree is limited by the maximum length
of frequent pattern in the data set. Especially for longer patterns does this method outperform the Apriori
algorithm in terms of computational time.

Table 4.2 – Example data set for the
FP-growth algorithm [72].

Original Data Record Ordered Data Record
f,a,c,d,g,i,m,p f,c,a,m,p
a,b,c,f,l,m,o f,c,a,b,m
b,f,h,j,o f,b,
b,c,k,s,p c,b,p,
a,f,c,e,l,p,m,n f,c,a,m,p

Figure 4.1 – Example of a frequent pattern tree [72].

4.3. BAYESIAN NETWORKS
This section presents the method of Bayesian Networks (BN). This method has been widely applied in the
research area of flight delay, especially for delay propagation throughout a network of airports or flights [7, 8].
Rodriguez-Sanz et al. [32] have used a BN to perform an analysis of the factors influencing flight delays. This
application of the method allows to investigate causal relationships between the variables, which is in line
with the objective of this research.

4.3.1. THEORETICAL BACKGROUND
In essence, a Bayesian Network is a graphical presentation of a joint probability distribution [51]. Bayesian
networks consist out of two elements, a graphical tree structure, also known as a Directed Acyclic Graph
(DAG), and a Conditional Probability Table (CPT) for each node in the network [7, 32]. The graphical tree con-
tains all information regarding the qualitative information on the relationships between the nodes, whereas
each conditional probability table contains quantitative information. A node in the structure represents a
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variable, whereas the links between the nodes represent direct dependency between the variables connected
by the link [32].

Equation 4.13 is the formula representing the joint probability of a network structure , P (X1, . . . , Xn), and
how this is equal to the product of the conditional probabilities of the variables, Xi , on the variables in their
parent set, Oi [51, 73].

Equation 4.14 shows a practical example of Equation 4.13, used by Wu and Law [7] in the context of flight
delay. Here, t is the departure delay for flight j , and k, q,c, p, g are all independent variables possibly influ-
encing the departure delay probability of flight j . It should be noted that P j (t | k, q,c, p, g ) is also known as
the posterior probability of delay for flight j [7].

P (X1, . . . , Xm) =
m∏

i=1
P (Xi |Oi ) =

m∏
i=1

θXi |Y Oi (4.13)

P j (t | k, q,c, p, g ) = P (t ,k, q,c, p, g )

P (k, q,c, p, g )
= P (k, q,c, p, g | t )P j (t )

P (k, q,c, p, g )
∀ j (4.14)

By applying Bayes’ theorem, all variables on the right side in Equation 4.14 can be computed using historical
flight data, and therefore it makes it possible to get all probability distributions, as done and proven in Wu
and Law [7].

An example Bayesian Network is shown in Figure 4.2 [32], where variables x2 and x3 are the parent vari-
ables of the variable x4, and x4 is again a parent variable of x5. Alternatively, x5 can also been seen as the child
node of x4.

Figure 4.2 – Illustrative example of causal inference in a Bayesian Network [32].

4.3.2. CONSTRUCTING BAYESIAN NETWORKS
There are multiple ways on how a Bayesian Network can be constructed. If there is enough knowledge on the
problem, or the causal relationships are already known, a Bayesian Network can be constructed manually,
such as done in the work by Wu and Law [7] and Xu et al. [8]. However, constructing a large network from
reference literature and/or expert knowledge, is not sufficient to capture the complex and large amount of
relationships between the attributes. Therefore, when the necessary knowledge is not present or sufficient, a
BN can also be constructed from historical data, as done by Rodriguez-Sanz et al. [32] and Truong [73]. There
are multiple steps when generating a BN from data, which are the following [32, 74]:

1. Create the variables

2. Learn the structure

3. Learn the parameters

Structure learning concerns finding the most suitable DAG for the underlying data, whereas parameter learn-
ing relates to finding the parameters associated with the found DAG, also known as the Conditional Probabil-
ity Tables [74].

For learning BN structures from data, multiple algorithms have been developed [75]. In general, the algo-
rithms can be divided into two groups, one where the variables or nodes should be ordered already, and one
where the node ordering is left unknown [75]. The latter requires no prior knowledge about the relationship
between the variables, but also makes the learning algorithm more complex and computationally heavier, as
relationships between all the variables need to be investigated [75].
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Additional to the division of algorithms based on the presence of node ordering, the algorithms can be fur-
ther split into search & scoring based algorithms, and dependency or constraint based ones [75]. A schematic
overview of the different types of Bayesian Network Learning methods is presented in Figure 4.3.
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Figure 4.3 – Types of Bayesian Network learning algorithms.

SCORE BASED

For scoring based algorithms, the algorithm uses a scoring function in order to represent the fit of the Bayesian
Network to the data [76]. Therefore, these algorithms use a scoring function, which is optimised to maximise
the fit of the BN to the data. In order to evaluate the found structures using the scoring method, these algo-
rithms always use a search algorithm to find the possible Bayesian Network structures. The scoring functions
can again be grouped into two major types, the Bayesian scoring function and Information Theory based
functions [76]. Bayesian Scoring functions are scoring functions which represent and maximise the poste-
rior probability, p(G|D), and the most commonly used ones are K2, BD and BDeu [77]. Information theory
functions are likelihood based, where the scoring function represents the log-likelihood, LL(G|D) [77].

As for the scoring functions, there are many different search algorithms available and researched for ap-
plication in Bayesian Network learning [76]. Local search algorithms have been popular, but due to the ex-
ponential growth of the search space of possible DAGs, heuristic search methods have been used as well.
Heuristic methods are methods which are likely to find a good solution to the problem, but they do not guar-
antee to find the most optimal solution [78]. In essence, heuristic methods are iterative, where each iteration,
the algorithm searches for a better feasible solution than currently found in previous iterations. Well-known
examples of heuristic methods are tabu search, branch and bound, simulated annealing and genetic or evolu-
tionary algorithms. Tabu search was used in a study on airport delay by Truong [73], as it was found by earlier
studies to discover the global optimum solution, as it has the ability to flee local optimums. Rodriguez-Sanz
et al. [32] used a hill climbing with random restarts search method, which is an extended local search algo-
rithm.

Equation 4.15 shows the objective function, where G∗ denotes best fitted structure [76]. Equation 4.17-
4.20 show commonly used Bayesian scoring functions, K2, BD and BDeu,respectively [76]. The symbols used
in these functions are explained in Table 4.3. The prior probability distribution, p(G), is often assumed to be
uniform, which makes it the same value for every possible DAG [76, 77]. Therefore, this part of the scoring
function becomes a constant factor, and can be removed in the optimisation procedure [76].

It should be noted that scoring functions are often developed for the usage on solely discrete data, as
ri denotes the number of states of variable. Therefore, these scoring function require the discretization of
continuous data. However, in a study by Dojer [79], scoring functions have been transformed to handle a mix
of discrete and continuous data.

G∗ = arg max
G∈Gn

g (G : D) (4.15) Ni j =
ri∑

k=1
Ni j k (4.16)

gK 2(G : D) = log(p(G))+
n∑

i=1

[
qi∑

j=1

[
log

(
(ri −1)!(

Ni j + ri −1
)
!

)
+

ri∑
k=1

log
(
Ni j k !

)]]
(4.17)

For the BD and BDeu functions, the prior distributions of the variables are assumed to be Dirichlet dis-
tributed, which is a generalisation of the K2 function [76]. Γ represents the Gamma function, and ηi j k are the
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Table 4.3 – Explanation of the variables used in Bayesian Scoring Functions, retrieved from the expressions
used in work by de Campos [76].

Variable Meaning
g Scoring function
D Data set
G The Directed Acyclic Graph
p(G) Prior probability of DAG G
n Number of variables in data set D
ri Number of states of variable Xi

qi Number of configurations of parent set Pag (Xi )
wi j , j = 1, ..., qi Configuration of parent set of Xi

Ni j k
Number of instances in data set where variable Xi takes
on value xi k and parent set is takes configuration wi j

Ni j
Number if instances in data set where parent set of variable Xi

takes configuration wi j

Ni k
Number if instances in data set where variable Xi

takes value xi k

η Equivalent sample size
p(.|G0) probability distribution prior Bayesian Network G0

hyperparameters of the Dirichlet prior distributions. However, the determination of these hyperparameters
is not straightforward [76], and therefore, the BDeu scoring function has been developed. In the BDeu scor-
ing function, the hyperparameters can simply be estimated using the expression in Equation 4.18, where η

denotes the equivalent sample size [76]. Therefore, the BDeu scoring function is the most commonly used in
learning Bayesian networks [80].

ηi j k = η×p
(
xi k , wi j |G0

)
(4.18)

gBD (G : D) = log(p(G))+
n∑

i=1

[
qi∑

j=1

[
log

(
Γ

(
ηi j

)
Γ

(
Ni j +ηi j

))
+

ri∑
k=1

log

(
Γ

(
Ni j k +ηi j k

)
Γ

(
ηi j k

) )]
(4.19)

gBDeu(G : D) = log(p(G))+
n∑

i=1

 qi∑
j=1

log

 Γ
(
η
qi

)
Γ

(
Ni j + η

qi

)
+

ri∑
k=1

log

Γ
(
Ni j k + η

ri qi

)
Γ

(
η

ri qi

)
 (4.20)

For information theory based functions, the log-likelihood of the DAG G is maximised given the data set
D , formulated in Equation 4.21 [77]. However, Log-likelihood has a high probability to overfit. Therefore,
a number of scoring functions have been developed which add a penalising term in the log-likelihood ex-
pression. This is shown in Equation 4.23, where the penalising term a function of the number of samples
and the complexity of the found network |G|, which can be calculated using Equation 4.24 [77]. One of the
most commonly used scoring functions is Bayesian Scoring criterion (BIC) scoring function, also known as
the Minimum Description Length (MDL), shown in Equation 4.22 [77, 80].

LL(G | D) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Ni j k log

(
Ni j k

Ni j

)
(4.21) BIC(G | D) = LL(G | D)− 1

2
log(N )|G| (4.22)

φ(G | D) = LL(G | D)− f (N )|G| (4.23) |G| =
n∑

i=1
(ri −1) qi (4.24)

CONSTRAINT/DEPENDENCY BASED

Dependency based or constraint based methods work with conditional independence tests on the variables
in the input data set. The found network relies thus on the effectiveness of the used conditional independence
test. Cheng et al. [75] and Natori et al. [81] mention three possible conditional independence tests:

• Conditional mutual information test

• Likelihood ratio chi-squared
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• Pearson chi-squared

The conditional independence between variables is often expressed in terms of d-separation, which is often
used when using graphical network structures or DAGs. D-separation determines whether a path between
two variables is closed, meaning that these two variables are conditional independent. Applying this to the
example Bayesian Network shown in Figure 4.2, it can be said that variable x5 is d-separated from variables
x2 and x3, given variable x4. It can thus be stated that variable x5 is conditionally independent from variables
x2 and x3, given variable x4. Mathematically, this can be formulated as follows: x5 |= x2, x3 | x4.

One of the most commonly used constrained based algorithms is the PC algorithm [49, 80, 82]. In this
method, the structure is learned by starting from a complete, undirected DAG G , where all variables or nodes
are connected by edges. The algorithm then performs a conditional independence test on the variables, and
in case variables are d-separated, the link between them is removed [82]. The tests for conditional indepen-
dence are done as follows. First, the complete independence of two variables, x and y is tested, and repeated
for all combinations of variables in the data set. If the two variables are independent, as shown in Equa-
tion 4.25, the link between them is removed [82]. The following step is to test the conditional independence
of variables which were not independent, given a neighbouring variable. If the two variables are found to be
conditionally independent or d-separated, as shown in Equation 4.26, where z is a neighbouring node of x,
the link between them is removed [82].

Another popular constraint based algorithm is the Fast Causal Inference Algorithm (FCI) [49], which can
also detect unmeasured or confounding variables.

x |= y | ; (4.25) x |= y | z (4.26)

COMPARISON

Several scientific studies have focused on researching the performance of the different algorithms for learn-
ing Bayesian networks [74, 81]. According to Natori et al. [81], score based methods are computationally
more demanding, which makes them only applicable to relatively smaller networks. However, they are also
seen as more accurate [81]. de Campos [76] agrees that score based methods are more accurate, as the re-
sults of dependency based methods can be unreliable due to the conditional independence tests. However,
de Campos also recognises the computational complexity of the dependency based method as an important
drawback of the method, which is in contrast with what was stated by Natori et al. [81]. Additionally, Scutari
et al. [74] made an extensive comparison of the two classes of methods, by using both real-world and simu-
lated data sets. Scutari et al. found that for small networks, dependency based algorithms are actually more
accurate. Additionally, score based functions using tabu search outperformed the other methods in compu-
tational time, for most of the cases [74]. Additionally, Acid et al. [80] studied several learning algorithms on
a single data set. They found that, in contrast to other work, scoring algorithms did not perform better than
dependency based ones, in fact the latter had a better performance.

It can thus be concluded that there is no real consensus on the performance and computational load
differences between the two methods. Overall, score based methods are said to have the best performance,
but this is not universally confirmed. Therefore, this can be potentially incorporated in the research questions
of this project.

4.3.3. BAYESIAN NETWORKS FOR CAUSAL ANALYSIS OF FLIGHT DELAYS
When established, Bayesian networks can be used in many ways [32, 73]. One of them is to make predictions
about the resulting variable. This is called forward inference, and can be achieved by setting the value of the
parent or input nodes [32]. Additionally, the network can also be used to understand the main causes or influ-
encing factors of the dependent variable in a child node [73]. This can be done by using backward inference,
which is the opposite of forward inference, and thus requires the fixation of the variable in the child node [32].

Bayesian networks have been widely applied in the research area of flight delay, especially for delay propa-
gation throughout a network of airports or flights [7, 8]. Additionally, BN have also been used by Rodriguez-
Sanz et al. [32] to perform a causal analysis of flight delays, where the attributes in the data set represented
the nodes and the links represented causal inference, or conditional dependence. The latter application of
Bayesian networks is by far the most interesting in this research project, as it also aims to discover complex
causal relationships between the variables in a big data context.
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Wu and Law [7] acknowledged that Bayesian networks are less fit to be used in a big data or machine learning
environment, as the increased complexity and variable numbers can make the computational cost very high
or even impracticable. Especially for an increase in the number of variables or attributes, the search space
of possible Bayesian Network structures grows exponentially [82]. However, as the relationships between the
variables or nodes need to be statistically significant, Bayesian networks still require a large number of data
tuples or records, as investigated by Zuk et al. [83].

In the study by Wu and Law [7], the authors have applied the methodology to a small number of flights,
which were very limited in number of variables and states. However, Rodriguez-Sanz et al. has used 34,000
flights at Madrid airport to construct a Bayesian Network, which represented two busy Summer months in
2016. In the Bayesian Network developed by Xu et al. [8], also three months of airport flight data was used,
with a total of 18 nodes or variables.

4.4. MACHINE LEARNING
In past research, Machine Learning (ML) methods have been used for flight delay prediction, and in some
cases also to find the influencing factors of delay [60, 84]. The most commonly used models have been de-
termined from literature and are discussed in this section. In order to extract causal knowledge from these
machine learning models, Explainable Artificial Intelligence (xAI) is introduced and assessed for application
in this research.

4.4.1. MODELS
Many past scientific studies have researched different machine learning techniques and their performance
in the context of flight delays. From literature, the most commonly used machine learning models could
be identified and are listed below. These models vary from linear, relatively simple models such as linear
regression, to highly non-linear and complex methods, of which neural networks and random forests are
good examples.

1. Multiple Linear Regression [85]

2. Logistic Regression [32]

3. (Deep) Neural Networks[60, 84, 85]

4. Support Vector Machines [31, 84]

5. Random Forest [84, 86–88]

6. Decision tree [31, 88]

Figure 4.4 – Illustration of a feedforward NN [89].
In a study by Sridhar et al. [85], the linear regression model was compared to Neural Networks (NN). It was
found that the non-linear neural networks performed better in flight delay prediction than a (multiple) linear
regression model. Kulkarni et al. [31] used both Support Vector Machines (SVM) and decision tree classifiers
for flight delay prediction, but found no significant differences in the performance of the models. In a study
by Belcastro et al. [86], the Random Forest (RF) model was used as this method outperformed SVM, logis-
tic regression and other models in the preliminary results. Rebollo and Balakrishnan [87]also used random
forest, as it had the best performance out of a range of models including several regression models, decision
trees and neural networks. Fernandes et al. [84] followed the reasoning of Rebollo and Balakrishnan, but also
added neural networks and support vector machines due to their high performance in other studies. How-
ever, also in the work of Fernandes et al., RF outperformed NN and SVM. The authors of this study however
acknowledged that using a deep neural network with multiple hidden layers could improve the performance
of the neural network model, and possibly outperform RF [84].

From all these studies, it can be concluded that both random forest and neural network models are capa-
ble of detecting highly non-linear patterns in the data. These models are discussed in more detail below.

An illustration of the most straightforward neural network format is shown in Figure 4.4 [89]. A neural network
consists of multiple (hidden) layers, which each consist out of a number of nodes. The NN always consist out
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of an input layer, with the data set variables as input nodes, and an output layer, containing the predicted
value of the neural network. In between are a number of hidden layers, which consist out of a number of
nodes [90]. Both the number of hidden layers and associated nodes are to be set by the user. The nodes of
subsequent layers are connected with each other, and each link is characterised by a weight. The output of
the node is multiplied by the weight, and fed to a non-linear activation function at the other node [90]. This
process is illustrated in Equation 4.27, which shows how the outputs of the nodes of the previous layer are
summed together, and the output is fed to a non-linear activation function h, as shown in Equation 4.28 [90].

a j =
D∑

i=1
w (1)

j i xi +w (1)
j 0 (4.27) z j = h

(
a j

)
(4.28)

The most simple form of NN is the feedforward NN, also known as the Multilayer Perceptron [90]. Addition-
ally, there are also forms as Recursive Neural Networks and Deep Belief Networks [60, 89]. The most com-
monly used training method of neural networks is gradient descent and backpropagation. Here, the gradient
of the error function in function of the weights,E

(
w(τ)

)
, needs to be determined [90]. Then, gradient descent

can be used, such that the weights in the network are updated in the direction of a smaller error, formulated
in Equation 4.29, where η denotes the learning rate, a user set parameter, and τ the learning iteration or epoch
[90].

w(τ+1) = w(τ) −η∇E
(
w(τ)) (4.29)

Random forest is an ensemble model, which combines multiple decision trees. A decision tree is a top-down
model in which each internal node corresponds to a condition on an input variable [31]. Each of these nodes
then further splits into other nodes, as seen in the decision trees displayed on Figure 4.5 [91]. Decision trees
can be used for both classification as regression models. In case of classification, the ’Gini impurity’ or ’In-
formation Gain’ measures are used to assess the quality of a split in the decision tree [31]. For regression
purposes, an error metric such as the mean squared error or mean absolute error is used.

As the random forest model combines multiple decision trees, it makes the model less likely to overfit on
the data, compared to neural networks [92]. This is because the method learns the decision trees at the same
time, which later on combines the learned patterns and theories [86]. The working principle of this model is
illustrated below in Figure 4.5 [91].

Figure 4.5 – Illustration of the random forest model [91].

4.4.2. EXPLAINABLE ARTIFICIAL INTELLIGENCE
Explainable Artificial Intelligence(xAI) is used in many fields in order to make black box machine learning
models and its decisions more transparent and understandable [93]. As acknowledged in a review by Adadi
and Berrada [94], there are several reasons to use xAI on machine learning algorithms. One of them is ex-
planation of the model to discover new insights in the data, which is in line with the aim of this research.
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Therefore, xAI can be used is in causality research, and understanding the causal influences of the different
variables [93].

In general, machine learning models can only detect and learn correlations among the variables in the
training data set. However, explainable models and methods can help to validate whether the correlation
also entails a cause effect relation [93]. In this section, two particular xAI methods are discussed, namely rule
extraction and sensitivity analysis. The former can be classified as a model simplification method, whereas
sensitivity analysis is a feature relevance explanation method [93].

RULE EXTRACTION

Neural networks are great machine learning models, as they have the ability to capture complex and non-
linear patterns in the data sets. However, because of this feature, they are often considered as black-box
models and it is very hard to explain the reasoning of the model in an understandable manner. Therefore,
many rule extraction algorithms have been developed over the years. Rule extraction is a method applied to
black box machine learning models, with the aim to better understand how the neural network has come to
its predictions. In rule extraction , there are three main algorithm categories[95]:

• Decompositional

• Pedagogical

• Eclectic

The decompositional algorithms go at a node level in the neural network, and analyse each individual node
and weight of the network. Pedagogical algorithms do not depend on the internal structure of the neural
network, but also treats the learned network as a black box and determines the rules based on the in- and
output [95]. Lastly, the eclectic method is a combination of the decompositional and pedagogical approaches
[95].

Additional to the different types of algorithms used for discovery of the rules, there are also different types
of rules that can be extracted, which are shown below [95].

• If-then rules

• M-of-N rules

• Decision tree

The if-then rules are conditional, and have a format which specifies a certain condition on a variable, leading
to another variable condition [95]. M-of-N rules are extracted from boolean conditions, where M out of the
N sets need to be fulfilled [95]. Lastly is the decision tree also a sort of rule, as it is a white box model. The
manner in which it makes predictions can be retrieved and understood based on input data conditions at the
splits, as illustrated in the previous subsection.

Although many different rule extraction algorithms have been developed, some of these are restricted
to be used on pure discrete data sets [96]. Another concern about rule extraction is that it does belongs to
the model simplification class of xAI, meaning that it inherently simplifies the black-box neural network. By
doing so, the extracted rules may not represent the original model in an accurate manner, and thus important
information might be lost [97].

As the decompositional approach uses the information contained by the nodes and the weights, this
method is in general more transparent than the pedagogical approach. However, the latter has lower com-
putational complexity and loads because of that same reason [95]. Additionally, the pedagogical method is
more flexible in the architecture of the used neural network, as it does not analyse the layers and nodes be-
tween the in- and outputs [95]. However, as the decompositional and eclectic algorithms take into account
the neural networks internal format, they can achieve a higher accuracy, but this comes at a cost of a higher
complexity [96].

In the application of rule extraction for causal relationship discovery, the pedagogical approach has lit-
tle to no contribution. As the pedagogical approach draws rules based on the in and output of the neural
network, the use of a neural network in this application becomes redundant, as it is not aimed to make pre-
dictions about the occurrence of ATC delays. Therefore, this method has little value for determination of
causal relationships, and is therefore excluded in this research and the used methodology.
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SENSITIVITY ANALYSIS

As mentioned before, sensitivity analysis is a method that falls under the feature relevance area in xAI. In order
to determine feature importance, many methods have been researched. In Yu et al. [60], the feature relevance
was found by leaving one feature out of the data set and quantifying the (negative) impact on the accuracy of
the model. This method is very computationally heavy, as the model needs to be retrained for the importance
analysis of every feature, and the outcome is very dependent on the performance of the prediction method
[60]. If the model has a bad performance, the found feature relevance values will have low confidence as well.

Cortez and Embrechts [98] proposed a number of data-driven sensitivity analysis techniques, which can
be universally applied to supervised learning methods, in contrast to the rule extraction method, which has
been designed for neural networks. In sensitivity analysis (SA), the input variables of the model are varied
across their range of values, and the impact on the output of the model is quantified [97]. This method has
been used for feature selection, but also for explainability of the model [97].

The sensitivity analysis is done by letting the trained model predict the target outputs, originally ŷ , again, but
now with modified input attributes xa , resulting in predictions ŷa . Each of these attributes are discretized
into a number of levels, denoted as L. Thus when a variable xa for examples ranges between 0 and 4, and
L = 4, then xa j ∈ {0,1,2,3,4}, where j denotes the level of xa [98].

The sensitivity analysis techniques identified and developed in Cortez and Embrechts [98] are listed be-
low, of which the symbols are defined in Table 4.4.

• One Dimensional SA (1DSA) was developed by Kewley et al. [99],and is seen as a computationally effi-
cient method[97], with a complexity of Order O(M xLxP ) [98]. This method varies the input of only one
variable, while the other attributes are kept at their average value [97]. Therefore, this method cannot
detect the influence of features upon each other [98].

• Global SA (GSA) has been developed by Cortez and Embrechts [97]. It is a computationally demanding
method, but can detect more than 1D sensitivity analysis, as it varies multiple input features at the
same time. However, this comes at a high computational cost, with an order in function of the number
of features varied at the same time O(L#F xP ) [98].

• Data-based SA (DSA) was proposed by Cortez and Embrechts [98]. This method has the benefits of
Global SA, but has a lower computational load, with an order of O(M xLxNs xP ) [98]. This is achieved
by sampling the training data from the data set, with length Ns .

• Monte-Carlo SA (MSA) is used where the data required for training is not available, but the fitted model
is, which can be the case due to privacy issues [84]. The only difference with the DSA is that the data for
sensitivity analysis is taken from a uniform distribution, in stead of sampled from the actual data input.
Therefore, it has the same computational load as DSA [98].

• Cluster-based SA (CSA) is a method in which the variables are first clustered using a very fast method
[98]. CSA has a lower computational load as DSA, as the order is namely max(O(N xP ),O(M xL)) [98],
but also a reduced performance compared to GSA,DSA and MSA, as validated by Cortez and Embrechts
[98].

It can be seen that for sensitivity analysis, the number of features M , data samples N and computational
load of the data mining model P are important factors in the computational load of the sensitivity analysis.
As these techniques are applied to a data mining method, characterised by a high number of attributes and
data samples, this should be taken into account while selecting the best applicable method. However, DSA
and MSA, developed by Cortez and Embrechts [98], have achieved great reduction of the computational load.
Cortez and Embrechts even report that both methods perform well if only 1% of the data set is used in the
sample.

In order to quantify the sensitivity, several sensitivity metrics have been defined such as shown below [97, 98].
It should be noted that these metrics are only applicable to regression problems,and a higher value indicates
a higher importance of the input feature [97].
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Table 4.4 – Explanation of the variables used in sensitivity analysis, retrieved from the expressions used and
defined by Cortez and Embrechts [98].

Variable Meaning
P Data mining method to predict y based on input x
M Number of attributes or features
N Number of data samples
#F Number of features varied
x Input data set
xa Variable in input data set
ŷa Set of sensitivity responses
L Number of levels in the range of values of variable xa

xa j Level j of the variable xa

s Any of the defined sensitivity measures

• range Sr

• variance Sv

• gradient Sg

• average absolute deviation from median (AAD)

Sr = max
(

ŷa j : j ∈ {1, . . . ,L}
)
−min

(
ŷa j : j ∈ {1, . . . ,L}

)
(4.30)

Sg =
L∑

j=2

∣∣∣ŷa j − ŷa j−1

∣∣∣/(L−1) (4.31)

Sv =
L∑

j=1

(
ŷa j − ȳa

)2
/(L−1) (4.32)

Sd =
L∑

j=1

∣∣∣ŷa j − ỹa

∣∣∣/L (4.33)

Finally, the above sensitivity measures can be translated into a measure of relative importance, shown in
Equation 4.34 [100]. Here, s represents any of the sensitivity measures above [97], as the higher the vari-
ance, gradient or range of the sensitivity responses, the higher the impact of the attribute on the output ŷ .
Originally, the relative importance Ra was computed using the variance metric, Sv [100].

Ra = sa/
M∑

i=1
si ×100(%) (4.34)

Additional to the sensitivity measures, Cortez and Embrechts [97] also proposed a number of visualisation
methods for opening the black box models. One of them is to plot the output of Equation 4.34 in the form of
a bar plot, to visually illustrate the importance of the input features. Additionally, the Variable Effect Charac-
teristic curve (VEC) is proposed, which uses the results from the sensitivity analysis to visually represent the
influence of the input variable on the output [97, 98]. This is achieved by plotting the used input variables xa j

and outcomes ŷa j on the x- and y-axis respectively.
The work of Cortez and Embrechts [98] has been applied to flight delays by Fernandes et al. [84]. In this

study, three data mining techniques were used to perform prediction of flight delays, namely neural networks,
support vector machine and random forest model. The sensitivity analysis was executed using the RF model,
as this gave the best prediction performance. A disadvantage of this method is that only the relevance and
impact of one feature on the target variable is assessed. Therefore, sensitivity analysis cannot capture the
possible complex relationships between various attributes and the influence on the target variable.

4.4.3. NEURAL NETWORKS FOR CAUSAL MODEL LEARNING
Additional to making predictions, neural networks can be used in other forms and ways to retrieve (causal)
relationships in data, by rule extraction, as discussed before, and for causal inference, studied by Goudet et al.
[50].

In Goudet et al. [101], neural networks are used to find the causal model or DAG representing the data.
As discussed earlier, these Bayesian networks are often learnt using score based functions. However, these
functions are often not differentiable and thus cannot be used to train a neural network [50]. Therefore,
Goudet et al. proposed and developed a neural network that can be used for causal model discovery, the
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Causal Generative Neural Networks(CGNN). The main novelty of this method is that it uses neural networks
to model the probability distribution of variable Xi , given its parent set Oi , denoted as P (Xi |Oi ) [101].This
model has the following properties [101]:

• The edges in the DAG all have a confidence score.

• Multivariate dependencies between in- and output can be identified.

• The methods makes no assumptions on the prior distribution of the data or the generative model, and
it is therefore non-parametric.

The CGNN is in fact a Causal Functional Model, which can be simply expressed using Equation 4.35 [101].
The model is graphically illustrated in Figure 4.6, which shows the application of Equation 4.35, worked out
in Equation 4.36 [101]. As shown in Figure 4.6, the functions fi denote in fact a generative neural network
with 1 hidden layer [101]. A generative neural network is a network which is trained to generate new data
from an existing input data set. The neural networks used in this application are also generative, as the noise
vector can be used to develop a new data set as x̂1, x̂2, ..., x̂n .

Figure 4.6 – Illustration of the CGNN model, where functions fi each are a GNN with a hidden layer [101].

Xi = fi (Oi (G),Ei ) (4.35)


X1 = f1 (E1)
X2 = f2 (X1,E2)
X3 = f3 (X1,E3)
X4 = f4 (E4)
X5 = f5 (X3, X4,E5)

(4.36)

Like all other models, CGNN needs to be optimised as well. The optimisation process consists out of two
problems, one where the neural networks are optimised, and one where the found structure, the DAG, is
optimised.

The first is done using the Maximum Mean Discrepancy, of which the formulation is shown in Equa-
tion 4.37, where k denotes a kernel, which is most often the Gaussian Kernel [50]. A kernel is a function that
computes the dot product of its inputs [90]. D is the original data set, and D̂ is the data set sampled from
the causal structure analysed. The MDD will go to zero if the actual data xi and the data from the analysed
structure x̂ j is drawn from the same distribution, meaning that the found structure represents the data set
perfectly for an infinite number of data samples [101]. Therefore, this objective function should be minimised
to be optimal. The advantage of using this function in combination with a kernel, is that is becomes differen-
tiable. Therefore, the principle of gradient descent and backpropagation can be used to learn the networks
f̂i , as discussed earlier in this section [101].

ˆMMD = 1
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(
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)
(4.37)
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The optimisation of the found DAG is complex as the possible structures for a problem with m variables and
thus m nodes has an exponential number of possibilities of degree m [101]. Thus for big data approaches,
the search space for the number of possible DAGs is enormous. Without an efficient searching algorithm, the
computational load would make the problem unsolvable. Therefore, an initial structure can be formed using
feature selection methods, combined with a greedy search method, as proposed by Goudet et al. [101].
This combination of Bayesian networks and neural networks has been recently proposed by Goudet et al.
[101]. The concern with this method is that it might become very computationally heavy. Additional to find-
ing the DAG, which is already a computational challenge for a data set with a large number of features, mul-
tiple neural networks need to be trained. Therefore, this method is seen as out of scope for the research
objective and size of the data set.

4.5. COMPARISON OF CAUSAL METHODS
In this section, the previous discussed methods are compared. This is done in terms of performance and
applicability to the research objective and question, and in their scalability with respect to data set size.

4.5.1. PERFORMANCE FOR CAUSAL ANALYSIS
In this chapter, several causal models have been presented. For the state-of-the-art method, two large meth-
ods can be distinguished, machine learning with xAI and Bayesian networks.

Bayesian networks have excellent properties for causal analysis, as they can be constructed based on a
data set and represent the conditional dependencies between the variables. Additionally, through backward
inference in the network, the main causes or drivers of a variable can be found and quantified [32, 73]. Ac-
cording to Rodriguez-Sanz et al. [32], Bayesian networks are a good method to analyse airport saturation or
flight delays, for various reasons. First of all, they are white boxes, meaning that they can be interpreted
in a straightforward manner, and can be used for causal analysis. Additionally, the analysis is done from a
probabilistic perspective, which is very suitable for a stochastic process such as flight delays. Lastly, Bayesian
networks support multiple control variables, such that complex relationships and interactions among the
variables can be detected [32].

Although a lot of research has been performed in the field of learning the structure of a Bayesian Network[7,
8, 32, 49, 75, 76], a few challenges in the application of this method remain present [75]:

1. The need of node ordering for some algorithms.

2. The computational load & complexity.

3. The lack of public accessible algorithms & applicability to data mining applications.

The discussed machine learning models are actually models which are used for prediction purposes. How-
ever, this is not the goal of the research, but by using xAI, causal relationships can be discovered [93]. There-
fore, rule extraction and sensitivity analysis techniques have been investigated [93]. Rule extraction methods
have the disadvantage of simplifying the machine learning model, and therefore might not capture complex
relationships [98]. The sensitivity analysis on the other hand is rather computationally expensive especially
for high dimensional data sets, but has shown to give good results [84]. However, Adadi and Berrada [94] state
that sensitivity analysis is not often used as a pure explanation method, but more as a method to validate the
model and the learned patterns.

A drawback of using machine learning followed by an xAI method is that the knowledge discovered from
explaining the black box model is dependent on the performance of the machine learning model. If the model
does not have a good performance, and thus cannot capture the real complex patterns between the variables,
the explanation of this method will be of little value to expose the causes of the analysed dependent variable.
However, the same can be said about Bayesian networks. If the discovered BN does not fit the underlying data
well, the extracted knowledge will not represent reality.

4.5.2. REQUIRED AMOUNT OF DATA & DATA SCALABILITY
The scalability of (machine learning) methods is the influence that an increasing size of the data set has on
the computational performance of that method [102]. The size of a data set can increase in two dimensions,
the number of data records, and the number of attributes or features. The computational performance of a
method consists of the accuracy, required training or running time and the needed memory, and optimising
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a model often consists out of a trade-off between these parameters [102]. Therefore, evaluating the scalability
of a method requires the use of measures relating to accuracy/error, time and memory usage [102].

The scalability of a method is important to evaluate when the method wants to be used on a high dimen-
sional data set, in order to guarantee that the method can handle the amount of data. A data set is seen as
high dimensional when there is a very large amount of data samples, a large amount of input features, and/or
classification groups, according to Bolón-Canedo et al. [103]. Additionally, a data set is particularly high di-
mensional when the number of features is larger than the number of data samples [103].

For machine learning methods, the rule of thumb is that the more training data is used, the better the predic-
tion of the model, as illustrated in Figure 4.7 [104]. However, not only the number of samples in the data set
determines the performance of the prediction model, but also the number of attributes or features. As shown
on Figure 4.8 [104], the prediction of the model can deteriorate when the dimensionality becomes too large
in comparison with the size of the data set. This phenomena is also better known as ’The curse of dimen-
sionality’, resulting in the fact that high dimensionality can often lead to overfitting of the data and thus to a
reduced model performance [40, 104].

Figure 4.7 – The relation between error and size of
data set used for training for ML models [104].

Figure 4.8 – The relation between error and
dimensionality for ML models [104].

The random forest model requires less data than neural networks, and are less prone to overfitting [92]. Li
et al. [105] have developed a scalable RF model by making use of cloud computing. This model can handle
up to 110 GB of data, with about 10 million records and 1000 features. This is out of the scope of this research
project, and it is therefore deemed that random forests are scalable for the application in this research.

In the area of deep learning is the most common used method Deep Belief Networks, which is a com-
bination of multiple Restricted Boltzmann Machines. In general, this method outperforms classic machine
learning ensemble trees, such as random forest, but they also require a lot of data to train the model, and
are computationally heavy [106]. Additionally, these methods also reduce the need for feature selection and
reduction, as proven by Yu et al. [60] [106].

Support Vector Machines are generally outperformed by other non-linear models, as discussed earlier in
this chapter [84]. Additionally, SVM models do not have good scalability characteristics, due to their high
computational time and memory usage [106]. Also multivariate linear regression models suffer from these
characteristics, as they have a high training time and are not guaranteed to perform well on large data sets
[106].

In machine learning models, the data set also needs to be divided into a training and test data set. The
most common ratios have been investigated using past studies. Rebollo and Balakrishnan [87] used a test-
training data set ratio of 75%-25%. Yu et al. [60] used 60% of the flights for training, 20% for testing and the
remaining 20% for validation. Rodriguez-Sanz et al. [32] used a ratio of 90% and 10% to construct and test the
Bayesian Network.

As discussed before, the search space of finding the optimal Bayesian Network structure from data grows
exponentially with the number of attributes in the data set [7, 82]. However, as the relationships between the
variables or nodes need to be statistically significant, Bayesian networks still require a large number of data
tuples or records. In Zuk et al. [83], the number of samples needed to find the real structure of the data in
Bayesian networks is researched. Here, a distinction is made between the probability to underfit, thus not
capture the actual patterns in the data set, and the probability to overfit, where the structure is too adjusted
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to the input data set. It was found that the probability for underfitting errors decades exponentially with an
increase in the number of samples. For overfitting, this is not the case, and when using a data set with a large
number of samples, overfit errors become more likely than underfitting errors.

In contrast to what is discussed above, Rodriguez-Sanz et al. [32] states that BNs can efficiently perform
inference, even for a data set with a high number of variables. Also Kalisch and Buhlmann [107] acknowledges
that the exponential growth of the search space is a problem, also in the algorithm that they studied, the PC
algorithm. However, Kalisch and Buhlmann also claim that when a Bayesian Network structure is sparse, the
PC algorithm search space no longer grows exponential, making the computational load feasible. In order to
say that a BN is sparse, the number of possible node connections or parent nodes are limited per variable,
and one can assume that the number of nodes are approximately equal to the number of links [14].

In Table 4.5, the past studies which are somewhat comparable to this research project, their methodology and
used data is summarised. It can be seen that the amount of data samples used in the studies vary significantly.
For example, both Fernandes et al. [84] and Yu et al. [60] used (deep) neural networks and support vector
machines to make flight delay predictions, but Fernandes et al. only used a data set with a size of less than
2% compared to Yu et al. [60]. However, Yu et al. used deep neural networks, which needs a lot more training
data than conventional and supervised machine learning methods [106]. Rebollo and Balakrishnan [87] used
random forests and used as little as 3000 data samples to train the model. Additionally, both Fernandes et al.
[84] and Sridhar et al. [85] used feedforward neural networks where the input data was limited to 1000-5000
data samples, which both attained an accuracy of around 70%.

Both Rodriguez-Sanz et al. [32] and Truong [73] used Bayesian networks to find causal relationships for
flight delay. It can be seen from Table 4.5 that these studies actual use the highest number of attributes out
of all listed studies, although Bayesian networks do not scale well with the dimensionality of the data set.
Additionally, the difference in used data records of the two studies is large. In Truong [73], the author claims
that the number of data samples should be 100 times as large as the number of attributes, but does not use
this rule of thumb in the performed research.

Sternberg et al. [3] used almost 3,000,000 data samples for frequent pattern mining, using the Apriori algo-
rithm. However, in frequent pattern mining, the computational time is mostly determined by the number of
attributes and their range possible values. In Sternberg et al. [3], only 16 attributes were present in the data
set, but it is expected that the number of features of the used data set in this research will be larger due to the
large amount of data sources, as discussed in chapter 5.

Table 4.5 – Summary of previous research work and data used.

Reference Methodology Application Nr. Data samples Nr. Attributes

Rodriguez-Sanz et al. [32]
Score based
Bayesian Network

Madrid Airport 34,000 51

Truong [73] Bayesian Network US airport delay 1058 43

Fernandes et al. [84]
Data-based
sensitivity analysis of
NN, SVM & RF

EU charter flights 5484 33

Yu et al. [60] Deep belief network model Peking airport
528,471 total
317,082 training

16

Rebollo and Balakrishnan [87] Random Forest US delayed airports
3000 training
1000 test

..

Sridhar et al. [85]
Multiple linear regression
&NN

US flight delays
due to weather

Varying between
730-1293

...

Sternberg et al. [3]
Frequent pattern
data mining
Apriori algorithm

Brazilian domestic
flights

2,818,898 16

As introduced in the next chapter, the number of data records available for this research is in the order of
30,000. Comparing this to earlier studies, this might not be sufficient to use deep neural networks as they
require a lot of data to be trained correctly, as Yu et al. [60] used almost 10 times as many data samples.
Additionally, compared to the data samples used in earlier studies for random forest or feedforward neural
networks, as can be seen from Table 4.5, there is sufficient data available to use these methods.

Compared to the previous studies on Bayesian networks and the data set size, it can be said that there is
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sufficient data available to obtain meaningful results. The number of attributes is here the most constraining
factor, as many data sources from the different involved stakeholders are combined together.

4.5.3. CONCLUSION
Taking into account the presented performance, limitations and data scalability of the proposed methods,
the most suitable methods for this application can be selected.

For the baseline method, statistical analysis and frequent pattern mining have been discussed. It has
been shown that the statistical methods, such as correlation, regression and Granger causality can either
not capture complex dynamics between the variables, or they are not suitable due to the limitation to time
series analysis. Therefore, frequent pattern mining will be used, as it has been shown to discover underlying
complex relations between the variables in a study by Sternberg et al. [3]. Although the Apriori method is
most commonly applied and used by Sternberg et al., the FP-growth method has better scalability features
and has not yet been applied in the context of flight delays [68]. Therefore, this algorithm will be used for
association rule mining. This method remains a baseline method as it measures the statistical significance
and correlation between variables, but does this at the level of the value of each variable, and for multiple
variables at the same time. Frequent pattern mining has only been applied once to find the causes of flight
delays, and not to the causes of specific ATC delays, to the best of the author’s knowledge.

As a state-of-the-art method, Bayesian networks will be used. This method has a number of advantages to
be used in causal analysis, as listed earlier in this section. Compared to machine learning with xAI methods,
this method can better capture complex dynamics between multiple features and their impact on the depen-
dent variable [32]. The major concern of this method is the scalability with the size of the data set, however,
the work of Rodriguez-Sanz et al. [32] has proven that this is acceptable for the size of this problem, which is
comparable to the data size used in this study.

To the best of the author’s knowledge, these methods have not been compared for the causal analysis of
ATC delays. Therefore, this work will add to the body of knowledge by assessing and quantifying the perfor-
mance of both methods.





5
DATA SOURCES & PROCESSING

Due to the introduction of data recording systems, data warehouses and lakes, big data volumes have be-
come available in recent years for the aviation industry [108, 109]. This chapter discusses which data and its
sources are used in this research project, and which processing techniques exist to transform the raw data
into a data set which can be directly used in the developed models. According to Moreira et al. [109], the five
data processing steps for data mining models are the following: data integration & cleaning, transformation,
reduction and data balancing.

5.1. DATA SOURCES
The data of interest is the year 2019. Before the relapse of air traffic in the year 2020, air traffic had been ex-
periencing an average yearly growth of 5.5% [2]. Therefore, the airspace was at its busiest level in 2019, which
makes it good data to analyse the Air Traffic Control delays, due to their high occurrence in the saturated
airspace.

5.1.1. FLIGHT DATA
KLM flight data was accessed through the data warehouse of the industry partner, KLM Royal Dutch Airlines.
The data warehouse contains all flight records from KLM and KLM Cityhopper. The queried flight data was
filtered on the following conditions:

• The scheduled departure and arrival time in the year 2019.

• The actual arrival or departure airport is Amsterdam Airport Schiphol.

• The airline code is ’KL’, indicating KLM or KLM Cityhopper as operating airline.

• The flight number is < 2000, indicating a commercial flight.

In total, 249,517 flight records are present in the 2019 data set, which is an average of 683 flights a day. This is
lower than the average number of flights reported by KLM, which is a result of the filtering conditions above.
Out of all flights, 84.57% of all flights was a flight in Europe, with a total of 211,005 flights in total. Some
general statistics on the data set are shown in Table 5.1.

The format of this data set is horizontal, meaning that the one data sample represents one flown flight.
This must be transformed into a format where each data sample corresponds with a turnaround procedure at
Amsterdam Airport, as this research project looks at flights from a cruise-to-cruise point of view, and analyses
the turnaround process of one aircraft. This means that the in- and outbound flight of the same aircraft needs
to be coupled to form one data sample.

As a dependent variable, the last known ATC delay of a KLM flight is used. This variable is available for 24.2%
of the outbound flights, for a total of 30,224 flights in 2019. A box plot of this delay information is presented in
Figure 5.1. Here, the samples with delay values above 300 minutes or 6 hours have been removed, which were
a total of 6 flights or less than 0.1% of the data set. The shown attributes are, last known ATC delay, minimum
ATC delay, maximum ATC delay, pure ATC delay and local ATC delay. The pure ATC delay is the delay issued
by the CFMU, and the local ATC delay is the delay which is caused by congestion at the departure airport, in
this case AMS.
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The distribution of arrival and departure delay for KLM flights at AMS is shown in Figure 5.2. It can be
observed that the distribution of departure delays is shifted to the right compared to the arrival delay, and
the majority of the flights have positive flight delay. This indicates that many flight delays are incurred at the
airline’s hub.

Additionally, the average number of KLM flights and delays in function of time of the day are plotted in
Figure 5.3 and 5.4. The time of the day is expressed in Coordinated Universal Time (UTC). The plots have been
split for EUR and ICA flights, and it can be observed that the flight and delay distribution shows different
trends. For EUR flights, the departure delay shows an increasing pattern over the course of the day, which
cannot be seen for ICA flights. This is the result of the high fleet utilisation for European flights, with shorter
flight and turnaround times.

Table 5.1 – Statistics on KLM flights at AMS from 2019.

Metric (%) Inbound Outbound
Delayed 43.17 77.46
EUR 84.57 84.57
ICA 15.43 15.43
EUR & Delayed 45.27 77.09
ICA & Delayed 31.66 79.51
Regulated 53.50 20.68
Multiple regulations 13.88 5.83

Figure 5.1 – Boxplot of the ATC delay of outbound
KLM flights in 2019.

Figure 5.2 – Distribution of the delay of KLM flights at
AMS in 2019.

From that same data warehouse, the flight plan data or route data of all KLM flights is available. As the spatial
scope of this research is limited to the Dutch airspace, all the waypoints which are situated outside of this
area have been eliminated.

5.1.2. A-CDM DATA
Data from the A-CDM system at Amsterdam Airport Schiphol could be retrieved from the airport’s data base,
which is accessible through KLM. Here, the access is restricted to flights which were handled by KLM ground
handling services. This includes operations from KLM, KLM Cityhopper, Transavia, Alitalia,..

The retrievable A-CDM data is different for inbound and outbound flights. For all flights, variables such
as flight number, call sign, runway usage, aircraft type and registration and the CDM flight state (refer to
chapter 2) are present. Additionally, the data set for inbound flights contains the following information: SIBT,
ELDT, ALDT, EIBT, ramp & gate, the consecutive flight number and day of departure of the following flight.
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Figure 5.3 – Time distribution of the average number of KLM flights at AMS in 2019.

Figure 5.4 – Time distribution of the average delay of KLM flights at AMS in 2019.

The data set for outbound flights contains other CDM data and milestones: SOBT, TOBT, EOBT, TSAT, ASRT,
EXOT, AOBT, TTOT, CTOT, the used SID.

The A-CDM data is a vertical data set, which means that every update in the A-CDM process of a flight is
registered as a new data sample. As all other flight and route data is a horizontal data set, this data will need
to be aggregated to an individual sample per flight by extracting new features from the data set.

5.1.3. OPERATIONAL DATA
Operational data in the Amsterdam FIR and at Amsterdam Airport is received from LVNL, the Air Naviga-
tional Service Provider in the Dutch airspace. The following data has been made accessible to be used in this
research project:

• Runway usage & capacity declarations

• (Anonymous) demand data on departure/arrival at AMS and the IAFs in the AMS FIR per 20 min.
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• Outbound traffic data containing most penalising regulation, ETOT and ATOT.

• Inbound traffic data containing most penalising regulation, ETA and ATA.

• Regulation data including timing, reduced capacity rate, point of application and reason for regulation.

5.1.4. AIRSPACE INFORMATION
Information on the location of the different waypoints in the Dutch airspace could be retrieved from open
source navigation website [110]. The information regarding the sectors and the IAFs is found from the (elec-
tronical) Aeronautical Information Package [13]. The information of the CTA sectors was retrieved as the
coordinates defining the sector edges, which could be transformed into an area defined by these edge points.

5.1.5. WEATHER DATA
Hourly weather data on different weather stations across the Netherlands is available from the public database
of the weather institute of the Netherlands, the KNMI [111]. The locations of these weather stations are plot-
ted on the Dutch airspace division, as seen in Figure 5.5. The data includes wind direction and average speed,
maximum wind gust, temperature, dew point temperature, precipitation duration and hourly amount, air
pressure, horizontal visibility, cloud coverage, relative humidity, weather code, and the presence of fog, rain-
fall, snow, thunderstorms and ice formation.

Figure 5.5 – Plot of the available KNMI weather stations and their location per CTA sector.

5.2. INTEGRATION & CLEANING
This section discusses the different techniques available for data integration and cleaning. The data pipeline
and integration procedure of the above mentioned data sources and tables is presented.

5.2.1. INTEGRATION
Data integration is the process of combining the data records from different sources [67]. Additionally, this
also consist of the detection of discrepancies between the different data sets, such as varying values for the
same attribute. As discussed under section 5.1, the used data in this research project originates from different
data sources, and therefore comes in different data formats and layouts.

Figure 5.6 presents the data pipeline and integration procedures applied in this project. As it can be
seen, the integration process consists of multiple sequential merging procedures, due to the large number of
sources and associated data tables. It can be seen that most data needs to be pre-processed, which then leads
to an initial data table of the data available from that source. After this, several merging procedures have to be
done. It is important to split up the merging of the data into several sub processes, such that data tables can be
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integrated on a common column. For each integration procedure, the column(s) or key(s) on which the data
tables will be matched and merged are written next to the respective arrow. When all merging procedures are
done, the final data set can be reformatted, such that the in- and outbound flight of one aircraft are linked
with each other to form a single data sample.
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Figure 5.6 – Data integration pipeline.

5.2.2. CLEANING
Data cleaning consist out of the following steps: outlier removal, noise smoothing and handling missing data
values [67]. Each of them are discussed below.
Missing Values
for missing data values, there are several options to consider them in the data set [67]:

1. Ignore the record with missing attribute(s).

2. Fill in the missing attributes manually.

3. Use a global constant such as NaN, ’Not known’
or ∞.

4. Use a global constant of the attribute such as
mean or median.

5. Use a global constant, such as mean or me-
dian, of the attribute over the class of that data
record.

6. Estimate the value of the missing attribute by
using regression or decision tree models.

The first option is the simplest, however it lacks efficiency. It may be a good option in case the data record
has many or multiple missing attributes [67]. The second option is not often used as it requires too much
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manual work, and the missing value may not be known. Options three to six are good options to retain the
data record in the data set, but add bias in the data as the filled in value can be incorrect [67].

As discussed in the previous section are outbound flights with a missing value for the ATC delay omitted
from the data set, as it is crucial that the dependent variable is known in order to analyse its causes from
observational data. However, for other attributes, the other purposed methods can be used. It should be
noted that all the gathered data is data retrieved from actual observations, and it is therefore likely that values
will be missing in a large part of the data sets. This should however not always be a reason to discard the
observation.

Noise smoothing
Noise in the data can be removed by binning, where the bins each consist out of the same number of observa-
tions, and then the bin can be smoothed by replacing all values in the bin by the average of all observations of
the bin, or by replacing all values by the nearest edge of the bin [67]. These methods are denotes as smoothing
by bin means and bin boundaries respectively. Additionally, also regression can be used for data smoothing
[67].

Outlier removal
Outliers or anomalies are data points that are different than the other data samples, and thus by definition
have a low frequency in the data set [67]. The removal of outliers is important in order to eliminate the sam-
ples which are inaccurate and contain bias, and thus to prevent this bias to be retrieved in the found results
[32, 67]. Han et al. [67] stated the following: "Outliers are interesting because they are suspected of not being
generated by the same mechanisms as the rest of the data (Han et al.,2012, p 544)". In the context of this re-
search, the delay outliers might have different causal mechanisms, which can influence the found results.
However, Rodriguez-Sanz et al. [32] has been careful with outlier removal on a particular set of variables. Ac-
cording to Wu [112], the dynamics for short and long delays are very different. Therefore large delay values
should not immediately be regarded as outlier, as the data records can still hold valuable information regard-
ing the causes of long flight delays. Therefore, the choice of removing or including outliers in the data set can
have large implications on the obtained results, and a distinction can be made between error and interesting
outliers [113].

Outlier detection can be done in various ways [113]. One of the best known methods is the use of a box
plot [113], of which an example is shown in Figure 5.1. It can be seen that for the ATC delays, many outliers
are detected using this method. Outlier detection can also be done by approximating or assuming a normal
distribution, where outliers are standard identified as values which deviate more than three times the stan-
dard deviation from the mean [67]. However, this method has to make an assumption on the distribution
of the data. In order to overcome this, histograms can be used, which are non-parametric [67]. The basic
idea in this method is to identify all values that do not fall in a bin of the histogram as outliers, however the
specification of the bin width remains a user set parameter, which is hard to optimise [67]. Additionally, out-
lier detection can be done by performing clustering, where the data records that fall outside of the identified
clusters are considered as outliers [67]. The details on clustering techniques are discussed in more detail in
the next section.

5.3. TRANSFORMATION

The goal of data transformation is to represent the data in a better way, such that the model(s) can better
understand the data, and identify patterns in it [67].

5.3.1. NORMALISATION

Normalisation is a technique where the attribute’s values are mapped onto a new range, typically [0,1] or [-
1,1]. The aim of this is to reduce the extra weight an attribute might have due to its high values, which is
standardised by applying normalisation. Again, there are multiple methods for normalisation, such as min-
max normalisation and z-score normalisation, shown in Equation 5.1 and 5.2 for the attribute x [67].

x ′
i =

xi −minx

maxx −minx
(new-maxx − new-min x )+ new-min x (5.1) x ′

i =
xi − x̄

σx
(5.2)

Normalisation is necessary for methods where distance measurements or linear combinations of the input
are used, such as for neural networks and clustering algorithms [67]. The aforementioned normalisation
procedures are not necessary when using frequent pattern mining or Bayesian networks, but are needed
when the data is clustered as part of the data processing.
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5.3.2. DISCRETIZATION
Discretization is the process where continuous variables are mapped into discrete values, meaning that the
number of values the attribute can take is finite. In order to discretize attributes, different methods can be
used, such as conceptual hierarchy, binning and clustering analysis [3, 67].

Concept Hierarchy In this method, attributes are mapped to higher-level concepts [3, 67]. For example, the
capacity of a certain sector can be mapped to a higher order attribute such as ’maximum capacity’ or ’re-
duced’. This is a method that should be done manually in the data set.

Binning As discussed before, binning can be used as a smoothing technique, but also as a discretization
method. When determining the bins, two methods can be used, namely equal bin width and equal bin fre-
quency [67]. The latter means that each bin should contain an equal number of data observations, but will
most likely result in varying bin widths. Determining the number of bins for discretization is important as
this determines the quality of the resulting attribute [3].

Additionally, to actually discretize the data, again two methods can be used, bin by mean/median or bin
by bin edge [67]. Binning can also be used to generate the hierarchical concepts discussed above, when per-
formed recursively. It should be noted that the method of binning is sensitive to the user selected parameters,
such as the bin width, and to outliers [3].

Cluster Analysis Next to the binning technique, data can also be grouped using cluster methods, where the
bins are replaced by the identified clusters or groups [67]. As clustering methods use the distance or closeness
measures between the values, it performs well for discretization purposes. Additionally to cluster analysis,
decision trees can also be used for discretization [67]. This is a supervised learning method, and thus requires
training or data of which the discretization is known. This is not applicable in this application, as there is no
training data with labels available.

K-means clustering might be the most well known and used clustering algorithm. In this method, it is
required that the user determines the number of clusters beforehand [67]. When the number of clusters is
not known, density-based clustering algorithms can be used [106]. The best known algorithm in this area
is DBSCAN (Density Based Spatial Clustering of Applications in Noise), which separates clusters by finding
and distinguishing high and low density areas [106]. However, the computational load of DBSCAN is a dis-
advantage when working with large data sets, both in the number of samples and the number of attributes
[106].

5.3.3. ONE-HOT ENCODING
One-hot encoding is a data processing method which maps categorical attributes into binary and numerical
attributes, also known as categorical mapping [109]. This method is necessary for models to be able to inter-
pret and handle the categorical data, which cannot be done in text format. Frequent pattern mining does not
require this mapping, as it searches for patterns without using or interpreting the data. However, for Bayesian
network learning, a lot of formulas are used, which require numerical features. A downside of one-hot en-
coding is that the number of features or attributed grows for each attribute that needs to be encoded.

This method can be used to represent the aircraft type for example. This attribute has several possible
values, such as ’B737, B772,B787,A330,...’. The most important characteristic to be able to apply one-hot
encoding is that the number of categories is finite and limited in size. The aircraft type attribute can then be
mapped to binary attributes of the different categories. An example is illustrated below in Figure 5.7 [114].

Figure 5.7 – Example of one-hot encoding [114].
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5.4. DATA REDUCTION
Data reduction is a general term, which consist of several processes to reduce the data set, namely dimension-
ality reduction, numerosity reduction and data compression [67]. However, as only dimensionality reduction
is relevant for this project, this is the only method discussed.

Dimensionality reduction is a process in which the number of attributes or features in the data set are
reduced [67]. Dimensionality reduction can also be seen as attribute selection, as only the most important
attributes or features should be kept in the data set [109]. This should be done as irrelevant features increase
the probability of model overfitting and therefore reduce the model’s performance [40]. To reduce the number
of features, two main methods can be distinguished, listed below [67].

1. Feature Selection In this method, the number of features is reduced by selecting the most important
features from the original set.

2. Feature Extraction This type of method extracts new features out of the given data set, with a lower
dimensionality.

One of the most used methods for dimensionality reduction is Principle Component Analysis (PCA). This is a
feature extraction method, which extracts principle components from the data by performing an eigenvalue
and eigenvector analysis of the data set [67]. If the data set consists of m features, these orthogonal vectors will
have a length of m. An illustration of this is shown in Figure 5.8 [115]. This example is for a two dimensional
data set, and the two orthogonal principle components are denoted in blue and red. In this illustration, it
can be seen that the principle component vectors are oriented in the direction of the highest variance in the
data. The method can extract as many principle components as there are attributes or features in the data
set. However, the principle components are ranked, and can thus be filtered to only keep l vectors, the ones
with the highest variance, where l ≤ m [67]. PCA is performed as follows [67, 109]:

1. The data is normalised.

2. The principle components or eigenvectors are computed.

3. The principle components are ranked according to variance.

4. The weakest principle components are eliminated, such that the l eigenvectors with the highest vari-
ance remain.

5. The original data is projected onto the kept eigenvectors, and thus will only have l features.

Figure 5.8 – Illustration of the PCA method on a 2-dimensional data set[115].

A drawback of the PCA method is that the features or extracted principle components become less inter-
pretable, as the original features have been mapped onto another feature space. Additionally are the principle
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components orthogonal to each other, meaning that they are uncorrelated by definition. As finding complex
relationships between the observational data is the objective of this research, PCA might be a less suitable
method for dimensionality reduction, due to the loss of interpretability of the features.

Additionally, deep neural networks can also be used as feature reduction techniques, as done in a study by
Yu et al. [60]. In particular, a Deep Belief Network can be used, which consists out of multiple unsupervised
neural networks, such as Restricted Boltzmann [60]. In this method, the number of linked neural networks
each extract features from the input, which then again serve as input for the following neural network. How-
ever, this method also extracts new features from the attributes, which makes them not interpretable or linked
to the actual attributes.

Next to the PCA method, attribute (subset) selection can also be performed to reduce the number of features
of the input data set. The goal of this process is to remove irrelevant attributes in order to reduce the dimen-
sionality of the data set, and it is thus a feature selection method [67]. As the number of subsets of attributes is
an exponential search space, often heuristic methods are used to determine which attributes are of no or little
importance [116]. Often, "greedy" heuristic methods are used, which means that choices are made based on
what is the best solution at that point in time. In order to find the most suitable attributes, forward and back-
ward selection can be used [67, 116]. Forward selection implies that the subset is initially empty, and the best
attributes are added step by step. Backward selection implies that the subset initially contains all attributes,
which are then step by step removed if found to be the least relevant [67]. The assessment whether a feature
is kept in the subset or not, is often based on statistical tests, capturing independence between the attributes.

Additionally, wrapper and filter approaches can be segregated from each other [116]. A filter method is
a method where the feature selection is performed before the actual model is applied, whereas the wrapper
approach incorporates them into each other [116]. For filter approaches, the feature selection method is in-
dependent of the learning model, but with wrapper methods, the feature selection is combined and evaluated
using the learning method [117]. The wrapper method is computationally expensive, as the learning process
needs to be repeated for every evaluation of a feature subset [118]. However, an advantage of this approach
is that the feature subsets are fully evaluated in their performance, and thus wrapper can achieve an optimal
solution in theory, although this is not guaranteed due to computational limits [118].

Drugan and Wiering [116] proposed a feature selection algorithm, which uses the Minimum Description
Length (MDL) scoring function which is used to learn a Bayesian network. However, Drugan and Wiering
now propose to use the MDL to evaluate the features for the purpose of feature selection. As discussed before
is the MDL, also known as BIC, a measure of the log-likelihood of the Bayesian network on the data set. This
principle is used as a feature selection method by assessing the log-likelihood of the Bayesian network build
using the full data set, and the one built using the subset of features. The difference between the two is then
defined as the MDL-FS, the Minimum Description Length - Feature Selection [116]. The stopping criterion
for this feature selection algorithm is that when the next found Bayesian network does not outperform the
previously found one in terms of MDL-FS value, the algorithm is stopped and the solution is deemed as op-
timal [116]. Additionally, Ozçift and Gulten [119] have proposed a genetic algorithm in combination with a
Bayesian network to perform feature selection. This is again a wrapper approach, as the genetic algorithm is
combined with the BN. A genetic algorithm is a heuristic method, which evaluates the fitness of certain fea-
ture sets, and then adapts the feature set based on the best performing feature sets of the previous evaluation
round.

Combining a wrapper approach with a Bayesian network learning method will be very computationally
demanding, as the task of Bayesian network learning is already computationally complex when the set of
features is fixed. Therefore, a wrapper approach for feature selection is deemed to be too computationally
heavy for this application.

5.5. DATA BALANCING
For classifiers, an uneven distribution of the different classes in the data set leads to the inability to evaluate
the performance of classifiers [109]. A classifier can namely only be truly evaluated in its performance when
trained and tested on a balanced data set [87]. Over-sampling from minority data is a method that can be used
to ensure that the minority classes are well represented in the data and the data set becomes balanced. The
problem of data imbalances has mostly been researched and addressed for classification problems, however,
also for regression models data imbalance can have a negative impact on the model’s performance [120].

One of the most straightforward methods to balance the data is sampling. It can also be used as a data
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reduction method, as it can represent data in smaller subsets. Data sampling thus reduces the data set in
length, not in the number of attributes or features. The most two common methods for data sampling are
random sampling and stratified sampling [109]. Random sampling is the process where each data tuple or
record has the same probability to be part of the subset, whereas in stratified sampling the data set is split
into several sets according to an attribute, and one sample is drawn from each of these attribute sets. For
data imbalance, a popular method is the SMOTE, Synthetic Minority Oversampling Technique [109, 120].
This method generates ’synthetic’ or new data records which are similar to the data samples in the minority
group, and thus ’oversamples’ this group in the data [67, 109]. For classification problems, the class with less
data records is then oversampled, in order to achieve a balanced data sample [109]. In regression problems,
the target variable is continuous, and it is the goal to oversample values which are less frequent or rare [120].

In this research and the used methodology, data balancing is not needed. As concluded in chapter 4,
frequent pattern mining and Bayesian networks will be used as causal models. Both these methods work
with the frequency of values in the data set to mine relationships from the data set. Therefore, adjusting
the data set to obtain a balanced data set will change the frequency in the data set and therefore negatively
impact the results.



6
RESEARCH APPROACH

The research questions presented in chapter 1 need to be answered following a clear methodology, for which
the different models and methods have been discussed and selected in chapter 4 and 5. This chapter therefore
presents the taken approach to apply the purposed methodology to the case study of ATC delay for KLM
flights at Amsterdam Airport. First of all, the work is divided into several work packages, each consisting out
of specific tasks. Additionally, the sequential timeline and dependencies between these work packages are
illustrated using a work flow diagram.

6.1. APPROACH
The required tasks have been grouped together and divided into several work packages. The first two work
packages, and the largest ones, are the processing of the data and the implementation of the decided method-
ology into a software environment.

In order to guarantee that all steps are correctly performed, a thorough verification process needs to be
implemented. Verification is needed both in the data processing task, as well as for the implementation of the
causal models in a programming environment. Verification will be done by using simple test cases of which
the result is known beforehand. Additionally, it is done continuously throughout the data processing and
methodology development, as it needs to be incorporated in every step of the work packages before the next
step can be initiated. This continuous verification should prevent the discovery of mistakes at a late stage,
which leads to an increased workload and complexity to correct the made mistake.

Once the results of both causal models have been obtained, the validation process will start. This is the
process used to confirm that the obtained results represent reality. The validation strategy in this research
is to keep validation data separate from the data set used to generate the results. This allows to validate
the obtained results by comparing the results from the actual and the validation data set, which should be
comparable and thus show that the method actually performs in a consistent manner.

As described above, the experimental set-up of this research project consists out of the creation of one
or more causal analysis methods and its implementation into a computer programme. The hardware used
in this research project is the laptop received from KLM to perform the research project, a Lenovo ThinkPad,
model DEPLOY W10 STD V1909.01 / Node W10 STD US V1909.01. The processor on this machine is the
Intel(R) Core(TM) i5-6300U CPU @ 2.4GHz 2.5 GHz, with an installed memory of 8 GB RAM. For compatibility
reasons, it is highly preferred that the used software for both the data processing and causal analysis are
the same. Therefore, Python, version 3.7, will be used throughout the research project, as its has a large
availability of compatible modules and libraries, suitable for both the data extraction and processing, as well
as for the causal model. Additionally, Python offers a wide range of libraries compatible with SQL (Structured
Query Language), which is necessary in the project to access and extract data from the KLM databases.

6.2. WORK FLOW DIAGRAM
The developed work flow diagram for the next stage in this research project is presented in Figure 6.1. It
can be seen that the data processing and methodology development work packages are connected with the
verification work package with a recurrent arrow. This indicates a continuous or iterative process, meaning
that verification will be executed at each stage of the data processing and methodology development.

The planned duration of each of these work packages is shown in Table 6.1. The data processing and
methodology development are by far the largest work packages, and they are the first step in the remainder
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Figure 6.1 – Work flow diagram for the remainder of this research project.

of this project. For each of the work packages, time to document the steps taken and the made decisions has
been included into the planned duration. Additionally, time has been reserved to allow for some contingency
in the planning, as well as for holidays. As seen in Table 6.1, the completion of all work packages will take
approximately 24 weeks. After this period, the green light review is planned, which is followed by completing
the thesis report and finally the defence. According to the planning below, the green light review would be
planned in the week of the 16th of August 2021. A detailed overview of each task duration and planning of the
project can be found in Appendix A, in the form of a Gantt chart.

Table 6.1 – Planned duration of the work packages.

Work Package Duration (working weeks)
Data processing 8
Methodology development 6
Verification 1
Apply methods to case study 1
Process results 2
Validation 1
Comparison of methods 1
Interpretation of results 1
Contingency 1
Holidays 2
Total 24



7
CONCLUSIONS

This chapter presents the conclusions that can be drawn from the performed literature review on the subject
of the root causes of the Air Traffic Control delays for KLM flights at Amsterdam Airport Schiphol. The main
research objective of this master thesis is to expose the drivers of the ATC delays encountered by KLM flights
at Schiphol Airport, by performing a root cause analysis of these ATC delays and their impact on the KLM
network.

ATC delays consist out of two types, ATFM delays and start-up delays. The former are a direct result of reg-
ulations in the airspace, such that the aircraft is kept on the ground. Start-up delays are delays assigned to a
flight before departure, but the flight is not necessarily regulated.

It has been found that the system of Airport-Collaborative Decision Making captures the turnaround and
pre-departure dynamics of a flight at Schiphol, which can contain valuable information on the causes for
ATC delays. Additionally, regulations play an important role in ATC delays, for inbound flights at Amsterdam
Airport, which also affects the departure process and its on time performance. Additionally, application of
regulations can lead to air traffic bunching, resulting in unexpected arrival peaks. In order to prevent this, the
capacity in regulations can be declared to be lower, in order to reduce this risk of exceeding the capacity.

Causal relationships are traditionally investigated using experiments. However, in some applications, the
execution of experiments is very impractical or even impossible, as for this research. Therefore, a causal
analysis model has to be used to discover the causes of ATC delays from pure observational data. Two models
will be used, a baseline model and a state-of-the-art model, such that their performance and results can be
compared.

For the baseline model, several statistical methods have been investigated. This includes the well known
and used correlation coefficients, regression analysis and Granger causality, which is a statistical test that can
find causal relationships between time series. Additionally, frequent pattern mining has been researched,
a method which originates from the retail industry. This method mines the data set to find frequent pat-
terns in the data, using statistical significance and correlation measures. In past research, several algorithms
have been developed to perform frequent pattern mining, of which the most important ones are Apriori,
FP-growth and Eclat. The former two can be applied to horizontal data sets, and are thus applicable in this
research. The Apriori algorithm is computationally heavier than the FP-growth algorithm, as the former first
generates all possible rules from the data set. FP-growth uses a tree structure, which eliminates the need for
the generation of all possible rules. Additionally, FP-growth has never been used to study flight delays and its
drivers. Therefore, the FP-growth algorithm has been selected to perform frequent pattern mining as baseline
method.

For the state-of-the art model, both Bayesian networks and machine learning with an explainable artificial
intelligence method have been explored. Bayesian networks are very suitable for the analysis of causal rela-
tionships, due to their probabilistic characteristics and ability to use multiple attributes together. Bayesian
networks can be constructed using expert knowledge on the subject, but this is not suitable for big data ap-
plications with complex relations. However, Bayesian networks can also be learnt from observational data.
This can be done using multiple approaches. The main distinction can be made between score based and
constraint based methods. Bayesian networks have the disadvantage that the search space of possible net-
work structures grows exponentially with the number of attributes, and therefore has low scalability for high
dimensional data sets. For machine learning models, it was found from previous studies on flight delay pre-
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diction that random forests and neural networks had the best performance. For xAI methods, rule extraction
and sensitivity analysis have been investigated. Rule extraction has the disadvantage that it simplifies the
original model, causing important information to be lost. For sensitivity analysis, the results only show the
relevance and impact of a single feature on the target variable. This has the disadvantage that it can not fully
capture the relationships between various attributes and the dependent variable, and can still be computa-
tionally heavy in combination with the training time of the machine learning model. Therefore, it has been
decided to proceed with a Bayesian network approach to expose the drivers of ATC delays, as this method
was found to have the best characteristics for causal analysis of complex relationships.

The data used in this research originates from many different sources, due to the different stakeholders and
aspects of ATC delays. The sources include KLM flight data, operational LVNL data, weather and airspace
layout information and A-CDM data. The required data tables all come in different formats due to the variety
in sources, and therefore the data requires multiple integration processes. Once this is completed, the raw
data needs to be processed such that it can be used in the developed causal models. The most important data
processing methods for the used methodology are data cleaning, discretization and feature selection.

Once the methodology has been determined, the next steps in this research project had to be planned. The
required tasks have been divided into several work packages, which are shown in Table 7.1. The data process-
ing and methodology implementation in a software environment are by far the largest work packages. The
software that will be used is Python 3.7, as it has extensive libraries for data processing as well as the causal
analysis methods.

The duration of each of these work packages has been estimated and is presented in Table 7.1. In total,
the next phase of this project will take up about 24 working weeks, taking into account some contingency and
holidays. After this, the green light review will be planned, which is followed by the complete documentation
of the project, and finally the thesis defence.

Table 7.1 – Work packages and their planned duration for the next phase of the research.

Work Package Duration (working weeks)
Data processing 8
Methodology development 6
Verification 1
Apply methods to case study 1
Process results 2
Validation 1
Comparison of methods 1
Interpretation of results 1
Contingency 1
Holidays 2
Total 24
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