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Gas-solid granular flows with non-spherical particles occur in many engineering applications such as
fluidized beds. Such flows are usually contained by solid walls and always some particles move close
to a wall. The proximity of a wall considerably affects the flow fields and changes the hydrodynamic
forces and torque acting on particles moving near the wall. In this paper, we numerically investigate
the drag, lift and torque acting on a non-spherical particle in the vicinity of a planar wall by means of
lattice Boltzmann simulations. To gain an exhaustive understanding of the complex hydrodynamics
and study the influence of various geometrical and flow parameters, a single 2D elliptical particle is
selected as our case study. In the simulations, the effect of particle Reynolds number, distance to the wall,
orientation angle and aspect ratio on drag, lift and torque is studied. Our study shows that the presence of
a wall causes significant changes in hydrodynamic forces, with increasing or decreasing drag and lift
forces, depending on the distance from the wall. Even the direction of lift and torque may change,
depending on both the distance from the wall and particle orientation angle. Also, an ellipse with higher
AR experiences larger hydrodynamic forces and torque whatever the gap size and orientation angle.
� 2018 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder

Technology Japan. All rights reserved.
1. Introduction

Granular systems, i.e. assemblies of solid, macroscopic particles,
are worth studying because they are commonly encountered in
various engineering applications in the energy, chemical and agri-
cultural industries [1–5]. Hence, understanding the characteristics
and hydrodynamics of granular materials in a fluid flow is of great
importance to increase the efficiency of these applications.

It has been shown that the shape of a particle is one of the most
important parameters influencing the hydrodynamics of a granular
system [5,6]. It is believed that a significant fraction (estimated
around 70%) of processed granular materials have non-spherical
shape [5,7]. However, in many studies that deal with granular sys-
tems, particles are assumed to be perfect spheres [8–10] due to the
fact that the shape characterization of non-spherical particles is a
complex process, with various aspects, such as roundness, aspect
ratio, irregularity and sphericity, influencing the hydrodynamics
[11,12]. Despite much research on hydrodynamics of non-
spherical granular particles [5,13–16], significant efforts are still
required to accurately predict the hydrodynamic forces acting on
non-spherical particles under various flow conditions.

In engineering equipment with granular particles, such as
fluidized beds, some of the particles move in the vicinity of a wall.
The presence of the wall will change the drag force acting on those
particles and, more importantly, the particles experience a trans-
verse lift force known as wall-induced lift [17]. The wall-induced
lift is caused by two different competing mechanisms [18,19]. First,
the presence of a wall breaks the symmetry of the generated wakes
behind the particle which generally results in an effective lift force
directed away from the wall. Second, flow relative to the particle
will accelerate faster in the gap between the particle and the wall.
According to inviscid theory, the pressure in the gap decreases
resulting in a lift force directed toward the wall. The wall effect
on hydrodynamic forces decays rapidly as the distance between
the particles and wall increases, and for distances of the order of
10 (spherical) particle diameters, the wall effect can be reasonably
ignored [20].

Investigations of the effect of wall proximity on hydrodynamic
forces, i.e. drag and lift forces and torque, acting on non-spherical
particles are scarce [21,22] and most of the research work available
in the literature is limited to spherical particles [9,10,17,19,23–25].
The purpose of this paper is to investigate the effect of wall
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Fig. 1. One-dimensional representation of a regular lattice and a curved-wall
boundary.
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proximity on hydrodynamic forces and torque acting on
non-spherical particles in a shear flow up to moderate Reynolds
number. In order to gain a better understanding of the complex
hydrodynamics, a single two-dimensional elliptic particle is
selected as a case study. The effect of flow Reynolds number,
gap size (or minimum separation distance from the wall), and
orientation on drag and lift forces are studied. For this purpose,
the lattice Boltzmann method (LBM) is applied as a capable and
accurate technique for simulating the fluid flow.

The rest of this paper in organized as following. In Section 2, the
numerical method is presented briefly. Results and discussions are
presented in Section 3, follow by concluding remarks in Section 4.

2. Numerical method

2.1. LBM for fluid flow

In In the past two decades the LBM, a mesoscopic numerical
method based on kinetic theory [26], has become an alternative,
capable and computationally efficient technique for simulating
various complex fluid flows [27–29]. The simple form of the gov-
erning equations, space–time locality, straightforward parallelism,
easy grid generation and capability of incorporating complex
microscopic interactions are the main advantages of LBM com-
pared with conventional CFD methods based on Navier–Stokes
equations. The general lattice Boltzmann equation with the BGK
collision operator is expressed as [26]:

f iðx
*þe

*

iDt; t þ DtÞ � f iðx
*
; tÞ

Dt
¼ �1

s
ðf iðx

*
; tÞ � f eqi ðx*; tÞÞ ð1Þ

where x
*
is a spatial coordinate, t is time, f iðx

*
; tÞ is the density dis-

tribution function associated with discrete velocity direction i,

and s is the relaxation time of the fluid. The discrete velocities e
*

i

in the ith-direction, for the D2Q9 lattice are given by e
*

0 ¼ 0 and

e
*

i ¼ kiðcos hi; sin hiÞ with ki ¼ 1; hi ¼ ði� 1Þp=2 for i ¼ 1—4 and
ki ¼

ffiffiffi
2

p
; hi ¼ ði� 5Þp=2þ p=4 for i ¼ 5—8. The order number

i ¼ 1—4 and i ¼ 5—8 represent the rectangular and the diagonal
directions of the lattice, respectively. Also, f eqi is the equilibrium dis-
tribution function, defined as:

f eqi ¼ wiq 1þ ðe*i � u
*Þ

c2s
þ ðe*i � u

*Þ
2

2c4s
� ðu* � u*Þ

2c2s

2
4

3
5 ð2Þ

where cs ¼ 1=
ffiffiffi
3

p
is the lattice speed of sound, u

*
is the velocity, and

wi are the weighting factors, equal to 4/9 for i ¼ 0, 1/9 for i ¼ 1—4
and 1/36 for i ¼ 5—8. The local mass density, the viscosity, velocity
and the pressure in lattice units are calculated as q ¼ P

if i,

m ¼ ðs� 0:5Þ=3, u* ¼ ðPi e
*

if iÞ=q and p ¼ qc2s , respectively.
Eq. (1) is usually solved through standard collision and stream-

ing steps as:

Collision : ef iðx*; t þ DtÞ ¼ f iðx
*
; tÞ � Dt

s
ðf iðx

*
; tÞ � f eqi ðx*; tÞÞ ð3Þ

Streaming : f iðx
*þe

*

iDt; t þ DtÞ ¼ ef iðx*; t þ DtÞ ð4Þ

where ef i represents the post-collision state. The simulation is per-
formed on a square Cartesian grid where for convenience dimen-

sionless lattice units are utilized, i.e. D x
* ¼ Dt ¼ 1. During the

streaming step the particles move from a node to its neighbor node,
according to the set of discrete velocities. Computationally speak-
ing, during the streaming step all distribution functions are copied
to the adjacent node in the direction of the lattice vector. Therefore,
the streaming step involves very little computational effort. During
the collision step the particles relax towards local equilibrium
according to the collision operator.

In this research for computing the fluid force on a body, the
momentum exchange approach [30] after the streaming step is
applied:

F
*

¼
X
all xb

X8
i¼1

e
*

i½ef iðx*b; tÞ þ ef �iðx*f ; tÞ� ð5Þ

where �i ¼ �i and the summation is done over all boundary nodes

x
*

b, which are connected to a fluid node in the i direction according

to x
*

b ¼ x
*

f þ e
*

iDt (see Fig. 1).

2.2. No-slip boundary condition

One important and outstanding issue in the LBM is that of solid
boundary conditions needed to effectively model the interactions
between fluid flow and a solid wall. In LBM, the boundary condi-
tions influence the accuracy and stability of the computation. In
the conventional CFD methods, the boundary conditions are
defined using macroscopic variables (such as velocity), whereas
in the LBM, the boundary conditions are enforced by changing
the distribution functions, but no physically based boundary con-
straints for the distribution functions are provided. Therefore com-
pared to traditional CFD methods, the LBM suffers from unknown
variables at boundaries. In other words, the difficulty of applying
boundary conditions in the LBM is to determine the particle distri-
bution functions leaving into the fluid domain, but which originate
from outside the bulk fluid domain (e.g. solid walls).

Fig. 1 depicts the schematic of the wall boundary condition for a
one-dimensional arbitrary shaped moving object between the lat-
tice nodes of spacing Dx. Because a no-slip boundary with a non-
moving wall can be modelled by mirroring the fluxes at the bound-
ary along each possible velocity directions separately, for one
dimension it is sufficient to only consider a one-dimensional pro-
jection of lattice direction with its intersection with a (curved) wall
boundary surface at xw. The curved-wall boundary may be located
at an arbitrary position between the solid and fluid nodes (i.e. xb
and xf ). The fraction of an intersected link in the fluid region is
expressed using a parameter q as q ¼ ðxw � xf Þ=Dx. Obviously,

0 6 q 6 1 and the distance between xb and xw is qD x
*
.

We model the surface of a non-spherical particle as a no-slip
boundary, using the so-called Bouzidi scheme [31]. Bouzidi et al.
[31] proposed a method with second-order accuracy that does
not require the extrapolations from the ghost nodes in solid wall.
The Bouzidi scheme combines the bounce-back concept with
quadratic interpolation of the distribution functions from the
internal fluid nodes. For q < 0:5:

ef �iðxf ; t þ DtÞ ¼ qð1þ 2qÞef iðxf ; tÞ þ ð1� 4q2Þef iðxff ; tÞ
� qð1� 2qÞef iðxfff ; tÞ ð6Þ

and for q P 0:5:
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ef �iðxf ; t þ DtÞ ¼ 1
qð1þ 2qÞ

ef iðxf ; tÞ þ 2q� 1
q

ef �iðxf ; tÞ � 2q� 1
2qþ 1

ef �iðxff ; tÞ ð7Þ

It is worth mentioning that, form a coding perspective, when
using the curved boundary schemes, it is more efficient to combine
collision and streaming to one step. Because streaming simply cor-
responds to shifts of indices labelling spatial nodes of f i, this means

that: ef �iðxb; tÞ ¼ ef �iðxf ; t þ 1Þ or ef iðxff ; tÞ ¼ ef �iðxf ; t þ 1Þ and so on.
Therefore, the curved boundary schemes can be re-written without

involving the after-collision distribution function ef i.
It is well-known that the exact location of the no-slip boundary is

viscosity-dependentwhen bounce back or interpolation schemes are
used together with the BGK collision model and the plane of zero
velocity is not exactly located halfway along the link for flows with
varying velocity gradients [26,32,33]. This implies that the hydrody-
namic solution will differ for the same grid at different viscosities,
even though the governing physical parameters of the problem, e.g.
Reynolds number, are fixed. The reason is that the relaxation time
simultaneously controls the fluid viscosity and the discretisation
errors. Hence, solutions obtainedwith the BGKmodel generally exhi-
bit s-dependent and therefore viscosity-dependent characteristics.

In order to resolve the s-dependent error, which is also called
boundary slip velocity error, several strategies can be adopted.
The most general approach is to replace the BGK collision model
by the more complex collision models such as MRT model [34].
Note that this boundary slip velocity error is not present in linear
solutions, such as Couette flow, and it stems from the O(Dx2) term
in the bounce-back closure relation. It means that for fixed values
of s, the boundary slip error decreases with a second-order rate as
function of grid resolution [32,33]. Therefore, to guarantee consis-
tent errors across simulations one needs to simultaneously tune
the relaxation time, the grid number and, to a smaller extent, the
macroscopic velocity. This issue is discussed more in Section 3.1.

2.3. Inlet/outlet boundary condition

The well-known Zou and He boundary condition [35] is used for
the inlet boundary. Assuming that the velocity on the inlet bound-
ary ðUin;Vin ¼ 0Þ is known, the unknown distribution functions at
inlet are given by f 1 ¼ f 3 þ 2qinUin=3, f 5 ¼ f 7 þ 0:5ðf 4 � f 2Þ þ
qinUin=6 and f 8 ¼ f 6 þ 0:5ðf 2 � f 4Þ þqinUin=6 where qin ¼ ½f 0 þ f 2 þ
f 4 þ 2ðf 3 þ f 6 þ f 7Þ�=ð1� UinÞ.

For the outflow, the convective boundary condition is applied.
The convective boundary condition can be written as [36]:

@v
@t

þ Uo
@v
@x

¼ 0; x ¼ N ð8Þ
Fig. 2. (a) Schematics of shear flow around an elliptic particle close to a wall and (b) eff
different gap sizes.
where v is an arbitrary function and where Uo is a typical velocity
normal to the outlet boundary which is defined as [37]:

Uo ¼ UmaxðtÞ � maxfuðN � 1; j; tÞg ð9Þ
where 0 � j � M and M + 1 are the number of nodes in the (N � 1)th
layer in the y direction. Note that Uo is time dependent, which is
taken from the last time step when one calculates the distribution
functions at the outlet. The mesoscopic representative of the con-
vective boundary condition for the unknown distribution functions
at outlet boundary located at x = N is expressed as follows [37]:

f iðN; j; t þ DtÞ ¼ f iðN; j; tÞ þ jf iðN � 1; j; t þ DtÞ
1þ j

ð10Þ

where j ¼ Uðt þ DtÞ, which is known after the streaming step at the
(N � 1)th layer.
3. Results & discussions

3.1. Problem statement

A schematic of the flow configuration and boundary conditions
is shown in Fig. 2(a). The flow enters the computational domain
(channel) with a uniform velocity, (Uin, 0). No-slip and free-slip
boundary conditions are applied to the bottom and top of the chan-
nel boundaries, respectively. The length of the channel is L and the
upper and lower walls are separated by a distance H. An elliptic
particle is placed in the domain with the major and the minor
diameters equal to a and b, respectively. Hence, the particle aspect
ratio is defined as AR = a/b. The major diameter of the ellipse is
fixed a = 50 lattice nodes, and the size of the computational
domain is set H = Ny = 12a = 600 and L = Nx = 14a = 700 (for Re <
50) or L = Nx = 25a = 1250 (for Re � 50) lattice nodes. The particle
orientation with respect to the main flow direction (x axis) is
defined by h. The minimum distance (or gap size) between the
particle surface and wall is indicated by h ranging from a/20
(�3 lattice nodes) to 8a (400 lattice nodes).

The Reynolds number is defined as Re = UinD/m, where D = (ab)0.5

is the equivalent diameter of the elliptical cylinder. In this paper,
the relaxation time is fixed s = 0.56 for all presented simulations.
Considering the fixed size of the ellipse in all simulations, various
Re numbers are obtained by varying the fluid velocity, Uin.

The location of the center of the ellipse, XO, from the inlet
boundary may have an important effect on the hydrodynamics of
the flow field. Fig. 2(b) shows that the drag force acting on an
ellipse with AR = 4 decreases monotonically, for all presented gap
sizes, as the ellipse center is placed further from the inlet bound-
ary. This behavior is more evident when the gap size, h, becomes
smaller. However, the drag force remains almost constant when
ect of horizontal displacement of the ellipse center, XO, on drag force for AR = 4 and
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XO is far enough from the inlet boundary. The results show that the
maximum difference between XO = 5a and XO = 8a is not signifi-
cant, so we use XO = 5a as the location of the center of the ellipse
in this study. Hence, the outlet boundary is truncated at 20a from
the ellipse center to avoid boundary effects on the development of
wakes behind the particle.

It is worth mentioning that the boundary layer thickness of
wall, d, can be calculated as d=a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pXO=aRe
p

[38]. Considering
XO = 5a, the wall boundary layer thickness for Re = 5, 25 and 100
is 1.7a, 0.6a and 0.4a, respectively. Hence, we can conclude that
the particle will cross the wall boundary layer when the gap size
becomes small. For example, the particle in the flow with Re = 5
will be completely out of the wall boundary layer if h = 3a, will
cross the wall boundary layer if h = a/2 and will be completely
inside the wall boundary layer if h < 0.7a. However, the wall
boundary layer thickness at Re = 100 and XO = 5a is smaller than
the major diameter of the particle, a, hence it is obvious that the
particle only cross the boundary layer when h is very small and
never is placed inside the boundary layer.

It can be shown that the slip velocity error can be kept small for
s close to Dt/2, and on the contrary, for larger relaxation times, the
error becomes unacceptably large. A similar geometry to our case
study is Poiseuille flow, which can be used to obtain an approxima-
tion to the error for our work. The effective width of the channel in
lattice units, Heff, for a Poiseuille flow in a 2D lattice-aligned chan-
nel is given by: H2

eff = Ny
2 + 48m2 � 1 [39], where Ny is the number of

lattice points across the channel and m is the viscosity in lattice units.
Typically at Re > 1 the larger system sizes and smaller relaxation
times combine to reduce the relative error. As we mentioned earlier,
we fix the relaxation time s = 0.56 for all presented simulations
which results in m = 0.02. Considering the number of lattice nodes
in the cross-stream direction, i.e. Ny = 700, the effective width is Heff

= 699.8, a relative error less than 0.01%. Hence, the slip velocity error
could be ignored in our study.

3.2. Numerical results

In this section, the effect of various effective parameters, i.e. gap
size, Re number, orientation and AR on hydrodynamic forces acting
on the particle are presented.
Fig. 3. Flow streamlines around an ellipse with AR = 3, Re = 5,

Fig. 4. Flow streamlines around an ellipse with AR = 3, Re = 25
3.2.1. Gap size effect
In order to show the effect of gap size on hydrodynamic forces

we focus on an elliptic particle with AR = 3 and h = 0�. Figs. 3 and 4
show the streamlines around the ellipse at various gap size for Re
= 5 and 25, respectively. These figures are for h = 3a, h = a, h = a/5
and h = a/20. Since the Re number for both cases is small, the flow
around the ellipse remains attached when particle is far from the
wall (i.e. for h = 3a and h = a). As the distance from the wall
increases, the symmetry in streamlines becomes more evident.
By decreasing the gap size the effect of the wall on the hydrody-
namics of flow is pronounced. For h = a/5, the gap flow increases
both in terms of velocity and mass flow rate and a free jet is
formed. As a result, a downstream recirculation region is gener-
ated. It can be seen that the recirculation region for h = a/5 is
slightly away from the particle, which is possibly due to strong
gap flow. At the smallest presented gap size, i.e. h = a/20, the gap
flow becomes weaker. Keeping in mind the relatively thick bound-
ary layer at the particle’s position, a weak gap flow is expected. In
this case, the ellipse forms an obstacle to the approaching flow, a
recirculation region is formed very close to the particle and most
of the fluid is directed over the top of the particle.

The dependence of the drag and lift forces on the gap size for
both Re = 5 and 25 are presented in Fig. 5. It can be seen that the
drag force is a constant value when the particle is far from the wall
and then increases with decreasing the gap size to around h � a
(for Re = 5) and h � a/2 (for Re = 25) due to the effect of the wall.
This increase in drag force can be justified in terms of the added
viscous effect arising from the presence of the wall. However, by
further decreasing the gap size to very small sizes the drag force
decreases. The effect of the wall on the flow near an elliptic particle
with its longer axis ordinated to the wall (i.e. h = 0�) is to slow
down the gap flow which results in a reduction in viscous friction
on the wall facing side of the particle.

A similar trend is observed for the lift force. As we mentioned
earlier, the wall-induced lift force is due to two mechanisms. The
vorticity generated at the particle surface advects and diffuses
downstream, interacts with the wall and results in a lift force
directed away from the wall. On the other hand, the fluid is accel-
erated in the gap between the particle and the wall in the limit of
an inviscid flow. This effect results in a local low pressure region in
h = 0� for (a) h = 3a, (b) h = a, (c) h = a/5 and (d) h = a/20.

, h = 0� for (a) h = 3a, (b) h = a, (c) h = a/5 and (d) h = a/20.



Fig. 5. Drag and lift forces as a function of gap size, h, for an elliptic particle with AR = 3 and h = 0� at (a) Re = 5 and (b) Re = 25.

Fig. 6. Rotating torque as a function of gap size, h, for an elliptic particle with AR = 3
and h = 0� at Re = 5 and Re = 25.
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the gap that corresponds to a net lift force directed towards the
wall. The lift force is zero when the particle is far from the wall.
However, by decreasing the gap to a/2 (for Re = 5) or a/5 (for Re
= 25), the lift force increases significantly. For large gap sizes the
effect of wall-directed lift force (with negative sign) is insignificant
and the lift force directed away from the wall (with positive sign) is
dominant. However, when the particle gets very close to the wall,
the wall-directed lift force becomes larger, resulting in a decrease
in net lift force.

The torque acting on the particle for both Re = 5 and 25 is shown
in Fig. 6. It is clear that the torque follows the trends of the drag
and lift forces. The torque is close to zero when the particle is far
from the wall. From this figure it is evident that the wall tends to
increase the torque when the particle gets closer to the wall. The
present ellipse with AR = 3 and h = 0� in a flow with low Re number
behaves like a streamlined bluff body as the boundary layers on the
top and bottom surface experience only mild pressure gradients,
and they remain attached along almost the entire length. The wake
behind the ellipse is very small, and the drag is dominated by the
viscous friction inside the boundary layers. As we mentioned ear-
lier, by approaching the wall the wall facing side of the ellipse
experiences larger positive viscous drag compared to the upper
face, this results in a positive (or counter clockwise rotating) tor-
que acting on the particle. By decreasing the drag and lift forces
at very small gap sizes, the torque decreases as well.
3.2.2. Re number effect
Fig. 7 show the streamlines around an elliptic particle with AR

= 4, h = 90� with h = 3a, a/2 and a/20 at different Re numbers. It can
be seen that (see top panels in Fig. 7) when the particle is far from
the wall (i.e. at h = 3a), the flow around the ellipse closely resem-
bles that of an isolated elliptical cylinder, as two steady and
roughly symmetric recirculation regions are formed behind the
ellipse at Re = 5. By increasing the Re number, the vortex shedding
from the upper and lower sides of the particle is started (Re = 50)
and finally the well-known von-Karman vortex street is formed
at Re = 100.

It is worth mentioning that the difference in vortex shedding is
due to the lower dimensionality. As a matter of fact, a 2D particle
(here: an ellipse) may be conceived as infinity long cylinder with-
out any variation in the third direction, whereas it is not the case
for a 3D particle (here: an ellipsoid). According to the literature,
the wake grows more slowly for this axisymmetric flow around a
3D bluff body than for the planar flow around a 2D cylinder. In gen-
eral, a 3D body is characterized by lower hydrodynamic loads
(such as Drag force) than those acting on a 2D body of analogous
cross-shape. This is, in a sense, reasonable, since the disturbance
caused by a 3D body is lower due to the possibility of flow in an
additional direction. As an example, for flow around a 2D circular
cylinder the wake behind the cylinder first becomes unstable to
perturbations at a critical Reynolds number of about Recr = 46 ± 1
(see [40,41]). Above this Reynolds number, a small asymmetric
perturbation in the near wake will grow in time and lead to an
unsteady wake and Von Karman vortex shedding. However, in con-
trast to the cylinder, for the 3D sphere wake, the bifurcation lead-
ing to a time-dependent flow and vortex shedding occurs near the
critical Reynolds number Recr = 212 [42,43].

When the particle gets closer to the wall, i.e. at h = a/2 (see mid-
dle panels in Fig. 7), the fluid flow structure downstream of the
ellipse is strongly affected by the presence of the wall. At Re = 5,
one single steady recirculation region is formed behind the particle
due to the strong gap flow which is like a free jet. By increasing the
Re number to 50 the flow becomes unstable and vortices are shed
from the cylinder into the wake region behind it. In this case, the
sizes of the vortices shed from the upper and lower sides of the
ellipse are different due to the effect of the wall, and the vortices
shed from the lower side move faster downstream than those shed
from the upper side due to the strong gap flow. At Re = 100, the
vortex region becomes complex and the vortices become larger
and migrate away from the cylinder due to the strong gap flow.

At very small gap size (i.e. h = a/20), the flow is steady at Re = 5
and a recirculation region forms behinds the ellipse. For this very
small gap size, the ellipse looks like an obstacle to the fluid flow
and by increasing the Re number, the size of the recirculation
region behind it increases. At Re = 100, a secondary recirculation
region is also formed. It is worth mentioning that due to the small
gap size and also thick shear layer of the wall at low Re number



Fig. 7. Flow streamlines around an ellipse with AR = 4, h = 90� for various Re numbers (columns) and gap widths (rows).
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flows, the wall shear layer interacts with the lower shear layer on
the ellipse at this gap size. The negative wall shear layer cancels
part of the vorticity in the positive lower shear layer, thus the
lower shear layer is weakened. Consequently, the separated lower
shear layer is not strong enough to roll up to form a vortex, and it is
also not strong enough to affect the upper free shear layer. There-
fore, the wake development is rather stable and no significant dif-
ference can be observed from the vorticity contours during various
time periods.

The effect of Re number on the time-dependent drag force at
different gap sizes is shown in Fig. 8. It can be seen that the drag
force depends strongly upon Re number. Due to the vortex shed-
ding, the drag force is periodic when the ellipse is far from the wall.
When vortex shedding occurs, vortices are shed alternatively from
the top and the bottom of the particle. It causes fluctuations in the
pressure and flow velocity in the near wake of the ellipse and also
generates fluctuating forces on the ellipse. However, the drag force
is roughly a constant value when the Re is small or when the par-
ticle is very close to the wall (see Fig. 8c). As discussed earlier, in
this case the ellipse resembles an obstacle to the fluid flow and
only one stable recirculation region forms behind it. Also, one
can see that when the particle is far from the wall and the flow
is periodic, the frequency of vortex shedding increases as the Re
number becomes larger.

Like the drag force, the wall-induced lift force varies widely
with Re number and time as shown in Fig. 9. Generally, the aver-
aged wall-induced lift increases with Re number. For example,
the average of lift forces in Fig. 9(a) are equal to 10�3, 2 	 10�3

and 11 	 10�3 for Re = 5, 50 and 100 respectively. Also, it is clear
that when the ellipse is located far from the wall (i.e. h = 3a), the
lift force oscillates regularly due to the vortex shedding phenom-
ena at higher Re numbers. By decreasing the gap size to h = a/2, a
reduction in the amplitude of the fluctuations of the lift coefficient
is observed. This reveals that the strength of the vortex shedding is
reduced. If the ellipse gets closer to the wall (i.e. h < a/2, not shown
here), the amplitude of the fluctuating lift decreases further, which
affects the regularity in the time history of the lift force as the
peaks of the fluctuating lift coefficient become irregular. When
the particle gets very close to the wall (i.e. h = a/20, see Fig. 9c)
the regular oscillation of the lift force disappears completely for
all presented Re numbers, which is due to the formation of one sin-
gle stable wake behind the particle.

Fig. 10 shows the effect of Re number on torque acting on the
ellipse for different gap sizes. As shown in Fig. 6, for the ellipse



Fig. 8. Drag force acting on an ellipse with AR = 4, h = 90� at different Re numbers for (a) h = 3a, (b) h = a/2 and (c) h = a/20.

Fig. 9. Lift force acting on an ellipse with AR = 4, h = 90� at different Re numbers for (a) h = 3a, (b) h = a/2 and (c) h = a/20.
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with h = 90�, a large wake region is formed behind it. For all pre-
sented gap sizes, the size of the wake (i.e. stable recirculation
region or shedding area) behind the ellipse increases in size as
the Re number increases. As a result the pressure losses in the
wake due to eddy formation increases. Consequently the pressure
drag increases and becomes dominant compared to the viscous
drag. When Re is small, the size of wake is small and the effect of
the wall on the wake region is not high, resulting in a small torque
acting on the ellipse. By increasing the Re number, the effect of
symmetry breaking due to the existence of the wall become pro-
nounced (even for lager gap size, h = 3a) and the magnitude of
the torque increases.

As mentioned earlier, due to the existence of the wall the lower
shear layer on the ellipse is interacting with the wall shear layer at
relatively large gap ratios. This interaction is pronounced as the
wake region becomes larger in size due to the increase in Re num-
ber. The negative wall shear layer cancels part of the vorticity in
the positive lower shear layer of the ellipse, thus the lower shear
layer is weakened. As a consequence, the separated positive lower
shear layer is not strong enough, whereas the negative upper shear
layer is strong enough to roll up to form a vortex. This phenomena
results in a clockwise torque (i.e. with a negative sign) on the
ellipse.

Moreover, it can be seen from Fig. 10 that for a fixed Re number,
the magnitude of the rotation torque becomes smaller as the gap
size reduces. As is clear from Fig. 7, by approaching the wall, the
vortex shedding is suppressed due to the interaction between the
wall and the ellipse shear layers which in turn results in a decrease
in torque.
Fig. 10. Torque acting on an ellipse with AR = 4, h = 90� at diffe
3.2.3. Orientation effect
The velocity vectors of fluid flow around an ellipse with AR = 4

and different orientations at Re = 100 are shown in Figs. 11–13 for
h = 3a, h = a/2 and h = a/20, respectively. As is apparent from the
figures, the flow is affected significantly by the particle orientation
to the flow. It can be seen that when h = 0�, a fixed pair of recircu-
lation regions forms behind the ellipse and no vortex shedding is
observed. In this case, the ellipse behaves as a streamlined body
and the viscous (or friction) drag is the major contribution of the
drag force.

By increasing the orientation angle, for h = 3a and a/2 laminar
vortex shedding is observed in which vortices are shed alterna-
tively at either side of the ellipse at a certain frequency. By altering
the orientation from h = 0� to 90�, the ellipse frontal size increases,
the ellipse behaves like a bluff body which results in stronger vor-
tex shedding. The larger the wake, the greater the pressure drag.
The ellipse frontal size can act as an ultimate bluff body when its
longer diameter is located perpendicular to the flow direction, i.e.
h = 90�. As the angle of attack increases between h = 0� and h =
90�, a transition of streamlined body (viscous-drag dominant) to
bluff body (pressure-drag dominant) occurs.

At h = 3a, the effect of the wall on vortex street is not high.
However by decreasing the gap size to h = a/2, the wall may signif-
icantly affects the fluid flow for smaller orientation angles of the
ellipse. For both h = 30� and h = 150�, the lower shear layer on
the ellipse merges completely with the wall shear layer and almost
one-sided vortex shedding occurs. For the larger orientations (e.g.
h = 60�), the wall shear layer grows with the lower shear layer of
the ellipse, and subsequently sweeps it away resulting in a vortex
rent Re numbers for (a) h = 3a, (b) h = a/2 and (c) h = a/20.



Fig. 11. Flow velocity vectors around an ellipse with AR = 4, Re = 100, h = 3a for (a) h = 0�, (b) h = 30�, (c) h = 60�, (d) h = 90�, (e) h = 120� and (f) h = 150�.

Fig. 12. Flow velocity vectors around an ellipse with AR = 4, Re = 100, h = a/2 for (a) h = 0�, (b) h = 30�, (c) h = 60�, (d) h = 90�, (e) h = 120� and (f) h = 150�.

Fig. 13. Flow velocity vectors around an ellipse with AR = 4, Re = 100, h = a/20 for (a) h = 0�, (b) h = 30�, (c) h = 60�, (d) h = 90�, (e) h = 120� and (f) h = 150�.
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Fig. 15. Torque as a function of orientation angle, h, for an elliptic particle with AR
= 4 and Re = 100.
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street inclined to the wall. At a very small gap size, i.e. h = a/20, the
vortex shedding is suppressed for all orientations, the ellipse
behaves like an obstacle to the fluid flow and altering the orienta-
tion just changes the size of the recirculation region behind the
particle.

Fig. 14 shows the average of the drag and lift forces acting on an
elliptical particle with AR = 4 and different orientation angle at Re
= 100. Generally, the drag force is nearly constant at small angles
(i.e. when h? 0� or h? 180�). As the angle increases, the average
drag quickly rises, for all presented gap sizes, because of increases
frontal area and increase in boundary layer thickness. Also, it can
be seen from Fig. 13(a) that the drag force increases as the gap size
decreases from h = 3a to h = a due to the effect of the wall. How-
ever, by further decreasing the gap size to very small sizes the drag
force decreases. As we discussed earlier in Section 3.2.2, the wall
tends to slow down the gap flow at very small gap sizes which
results in a reduction in viscous drag force.

The lift force crucially depends on the orientation of the particle
relative to the fluid as its sign and magnitude changes significantly
by changing the orientation angle (see Fig. 14(b)). One can see that
the lift force acting on the particle for h = 0� has a positive sign
which directs the particle away from the wall. By increasing the
orientation angle slightly (i.e. 0� < h < 90�), the sign of lift force
changes and becomes negative which represents a wall-directed
lift force. By further increasing the orientation angle to h > 90�,
the particle experiences a positive lift force again. These changes
in the sign of the lift force are due to the orientation of the leading
surface of the ellipse. When the orientation angle is h < 90�, a wake
region with low pressure is formed behind the particle which
results in a negative lift acting on the particle. This negative lift
is added to the wall-directed lift force due to the accelerating
gap flow near the wall, which together lead to a strong wall-
directed lift force. By increasing the orientation angle to h > 90�,
the particles becomes more and more streamlined subjected to
the flow and the effect of wall-induced lift force due to the symme-
try breaking of the wake flow becomes dominant that results in a
positive lift force directed a way from the wall.

Also, it can be seen that from Fig. 14(b) that when h < 90�, the
magnitude of the wall-directed lift force becomes larger by
increasing the gap size, while for h > 90� the maximum magnitude
of lift force is observed when the gap size is the smallest. Generally
for h < 90�, by increasing the gap size the low pressure region
grows up and is pronounced which results in larger negative lift-
force. However for h > 90�, the effect of the low pressure region is
weakened due to the streamlining shape of the particle and the
main wall-induced lift force is due to the symmetry breaking of
vortices that are advecting from the particle surface. This symme-
try breaking becomes stronger as the gap size decreases. As a
Fig. 14. The average of the (a) drag and (b) lift forces as a function of o
result, by decreasing the gap size when h > 90�, the positive lift
becomes pronounced.

The torque acting on the ellipse as a function of orientation
angle is shown in Fig. 15. It can be seen that by increasing the ori-
entation angle up to 90�, the particle experience a negative (clock-
wise) torque. The reason is that the shear layer on the lower
surface of the particle interacts with the shear layer of the wall
with the negative sign and cancel out each other to some extent
(depending on the gap size). Hence, the shear layer on the upper
side of the ellipse with a negative sign is the dominant phe-
nomenon that results in a clockwise rotation of the particle. For h
>90�, the ellipse experiences a positive lift and drag forces leading
to positive counter clockwise torque.
3.2.4. Aspect Ratio effect
To show the effect of aspect ratio on flow structures, velocity

contour plots and vectors are shown in Fig. 16 for flow around
an ellipse with h = 90�, h = a, Re = 25 and different AR. As is appar-
ent from Fig. 16, the flow structure changes by varying the AR, as a
steady-state wake region is observed behind the ellipse with AR =
1 and 2, whereas for AR = 3 and 4 the time-dependent vortex shed-
ding is formed behind the ellipse. Fig. 17 shows the flow velocity
vectors around an ellipse with AR = 1 and 4 when h = 0� (or
180�), h = 2a and Re = 100. It is evident that by changing the orien-
tation angle, the cross-section and the resistance of the ellipse
against the flow changes and, as a result, the structure of wake
region changes. By increasing the AR when h = 0�, the ellipse
becomes more streamlined, and consequently, the wake region
remains steady-state, whereas the vortex shedding is visible for
AR = 1.

Fig. 18 shows the drag and lift forces and also torque acting on
an elliptical particle with different aspect ratios and different
rientation angle, h, for an elliptic particle with AR = 4 and Re = 100.



Fig. 16. Flow velocity vectors around an ellipse with h = 90�, h = a, Re = 25 for (a) AR = 1, (b) AR = 2, (c) AR = 3 and (d) AR = 4.

Fig. 17. Flow velocity vectors around an ellipse with h = 0�, h = 2a, Re = 100 for (a) AR = 1, (b) AR = 4.

Fig. 18. (a) Drag force, (b) lift force and (c) torque as a function of orientation angle, h, for an elliptic particle with various aspect ratios (AR), h = a and Re = 25.
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orientation angles with h = a and Re = 25. It is evident from Fig. 18
(a) that a particle with higher AR is subjected to larger drag force
when 0� < h < 180� whatever the gap size. As it was shown in
Fig. 16, by increasing the AR the wake behind the ellipse grows
more quickly and vortex shedding occurs sooner and as a result,
the pressure drag becomes the main contribution to the drag force
resulting in increases in the drag force. However, this trend is dif-
ferent for an ellipse with h = 0� (or 180�). As shown in Fig. 17, the
ellipse with larger AR and h = 0� becomes more streamlined, vortex
shedding is suppressed and the viscous drag grows to be the main
contribution to the drag force. Hence, the drag force decreases
when AR increases from 1 to 2 due to the vanishing of the vortex
shedding. By further increasing the AR to 3 and 4, the flow remains
attached to the surface of the ellipse and the viscous drag is pro-
nounced, resulting in an increase in the drag force.

Fig. 18(b) and (c) show that an ellipse with higher AR experi-
ences larger lift and torque. The magnitude of lift and torque
increases for increasing AR whatever the gap size and orientation
angle. However, the inflection points for lift and torque are h =
90� and h = 0� (or h = 180�), respectively. When h = 90� (or h = 0�),
the particle with higher AR is subjected to lower lift (or torque)
which is due to the effect of incidence angle, as expected.
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4. Conclusion

The lattice Boltzmann method was used to perform numerical
simulations for a detailed investigation of the effects of a solid wall
on drag, lift and rotation torque acting on a fixed non-spherical
(elliptical) particle. The effect of gap size, particle Reynolds number
and particle orientation were studied. The numerical results
showed that the presence of a wall significantly changes the flow
field and resulting hydrodynamic forces, as an increase or decrease
of the drag and lift forces depend on the gap size. Also the direction
of lift (i.e. wall-directed or directed a way from the wall) and tor-
que (i.e. clockwise or counter clockwise) change depending on
both the gap size and particle orientation angle. Also, our results
showed that an ellipse with higher AR usually experiences larger
hydrodynamic forces and torque whatever the gap size and
orientation angle.
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