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Adaptation of ecosystems’ root zones to climate change critically affects drought resilience and vegeta-
tion productivity. However, a global quantitative assessment of this mechanism is missing. In this study,
we analyzed high-quality observation-based data to find that the global average root zone water storage
capacity (Sg) increased by 11%, from 182 to 202 mm in 1982-2020. The total increase of Sg equals to 1652
billion m> over the past four decades. Sy increased in 9 out of 12 land cover types, while three relatively
dry types experienced decreasing trends, potentially suggesting the crossing of ecosystems’ tipping
points. Our results underscore the importance of accounting for root zone dynamics under climate
change to assess drought impacts.
© 2025 Science China Press. Published by Elsevier B.V. and Science China Press. All rights are reserved,
including those for text and data mining, Al training, and similar technologies.

1. Introduction

The root zone, underlying the land surface, cannot be directly
observed at large scales with currently available observation tech-
nology. As such, it remains one of the most uncertain components
of the global terrestrial ecosystem [1,2]. Climate change has inten-
sified and extended meteorological droughts (i.e., precipitation
deficits relative to atmospheric evaporation demand) [3,4], which
are often associated with terrestrial ecosystem degradation, mor-
tality, or even collapse [5,6]. Paradoxically, however, observations
of vegetation greening indicate that, hitherto, increasing droughts
have not resulted in an overall decline of global-scale vegetation
[7,8]. Most studies attribute the increase in vegetation productivity
to the CO, fertilization effect and land-use management [7,8]. Nev-
ertheless, the role of belowground root zone adaptation to drought
has largely been overlooked.

The root zone water storage capacity (Sg) of terrestrial ecosys-
tems is a buffer to guarantee vegetation access to moisture during

* Corresponding author.
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critical periods of drought [9,10]. For a given Sg, the vertical distri-
bution of moisture may vary and its quantity does not necessarily
correspond to the total volume of water in the unsaturated zone,
but rather to the part of the soil moisture that is accessible to roots.
For example, in the Loess Plateau of China where the unsaturated
zone is thick, the root zone is limited to the active shallow layer
of the topsoil [11]. On the other hand, in karst and rocky substrates,
the root zone may encompass not only the soil water storage but
also the fissure water storage in the bedrock [12]. In rainfall-
runoff processes, Sg controls the partitioning of precipitation into
drainage and evaporation. As such it is a key parameter not only
in hydrological models but also in land-surface models, where it
controls latent and sensible heat fluxes, as well as in ecohydrolog-
ical models where it regulates vegetation dynamics [13,14]. It is
well-documented that the accurate estimation of Sk significantly
improves hydrological and land-surface model performance [13-
15]. Large-sample data analysis revealed that ecosystems tend to
optimize their root zones to allow for the most efficient extraction
of water from the substrate, thereby meeting water demand (evap-
oration) while minimizing their carbon expenditure for root
growth and maintenance [16-18]. Sk, as an integrated reflection
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of root density, distribution, depth, and lateral extension can serve
as an effective proxy for belowground biomass.

Ecosystems’ root zones are part of ecosystems’ survival strategy
and adaptive capacity and respond dynamically to changes in cli-
matic and anthropogenic drivers [19]. Such changes in Sg, directly
feed back to evaporation and biomass production, thus dynami-
cally enhancing the water cycle as a whole [9,20]. Globally, S var-
ies across climatic zones and landscapes, with larger Sk in areas
with high seasonality, high aridity, longer dry periods, and larger
rainfall variability (for example, tropical savanna and Mediter-
ranean climate), and smaller Sg under relatively stable conditions
(for example, tropical rainforests and temperate climates). Human
activities, such as deforestation and irrigation, can also alter Sg. In
experimental catchments in the USA and Germany, Sg was
observed to sharply decline immediately after deforestation, and
then gradually recover over 5-13 years [21]. Irrigation on agricul-
tural land provides additional water during dry periods, artificially
reducing the exposure of vegetation to droughts, leading to a smal-
ler Sg than under natural conditions [10].

Although Sg is a key variable in runoff generation, drought resi-
lience, and land-atmosphere interactions, a global quantitative
assessment of the temporal evolution and spatial variation of Sg
in response to climate change and anthropogenic activities is miss-
ing. Classical approaches to estimate Sg are based on combining
information of soil texture and rooting depth from field observa-
tions using look-up tables by land-use categories, which are prob-
lematic to upscale. More importantly, being mostly snapshots in
time, these approaches ignore the temporal dynamics of Sg [22].
Inverse model approaches based on satellite data of precipitation,
evaporation, and other meteorological factors have previously
been shown to be valuable in estimating rooting depths at large
scales. However, such approaches require extensive parameteriza-
tions and assumptions on soil-plant-water relationships [16,23].
Some terrestrial biosphere models now use aboveground biomass
changes as a surrogate of belowground responses [24]. However,
the underlying assumption of a stationary plant biomass allocation
remains to be tested.

In contrast to these methods, the mass curve technique (MCT),
initially developed for determining reservoir capacity in civil engi-
neering [25], allows for model- and scale-independent estimates of
Sg. The MCT approach relies on the water balance and merely
requires cumulative vertical inflow (rainfall, snowmelt, and irriga-
tion) and outflow (dry spell evaporation) [9], which are all observ-
able variables from in-situ measurements, reanalysis data, and
satellite remote sensing [10]. Such time series of inflows and out-
flows are used to infer water deficit during dry spells, where the
largest deficit over a sufficiently long period of time can be
assumed to represent the actual Sg. The MCT approach has previ-
ously been used to estimate present-day Sk at both the catchment
and global scale and has been shown to yield similar results as the
inverse modelling approach and outcompete the look-up table
approach [10,20]. Nevertheless, the MCT approach has yet to be
used for quantifying global Sg dynamics in a changing
environment.

In this study, we aim to quantify the spatial and temporal pat-
terns of Sg, identify the drivers of observed change, and explore the
contributions of Sg change to global greening. We applied the MCT
approach to state-of-the-art high-quality reanalysis data to esti-
mate Sg from 1982 to 2020 at the grid cell, regional, and global
scales. Furthermore, we investigated the effect of drought duration
and average daily water deficit on Sk trends. To explore the adap-
tation of global ecosystems to drought, we analyzed the relation-
ship between belowground Sz and aboveground Leaf Area Index
(LAI) changes in conjunction with variations in the aridity index
(Al) at grid cell and regional scales.
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2. Materials and methods
2.1. Data

To estimate Sg, we used the daily evaporation, precipitation,
snowmelt, irrigation, and temperature data. The daily evaporation,
precipitation, snowmelt, and temperature were obtained from the
ERAD5 reanalysis product, with a spatial resolution of 0.5°, covering
the period 1971-2020. Irrigation data for 1971-2010 were derived
from the ensemble average of four model outputs (WaterGAP, H80,
LPJmL, and PCR-GLOBWAB), adjusted by correction factors based on
the difference between modelled estimates and reported records
[26], with monthly temporal resolution and 0.5° spatial resolution.
For the period 2011-2020, we assumed irrigation remained con-
stant at 2010 levels. Monthly irrigation data were downscaled to
daily resolution based on ERA5 daily evaporation. The input evap-
oration, precipitation, snowmelt, and irrigation data are shown in
Fig. S1 (online).

The LAI and Al were used to explore the adaptation of ecosys-
tems to drought, combined with Sg. This study employed three
satellite-derived LAI products: GIMMS LAI4g, GLOBMAP LAI, and
GLASS LAIL GIMMS LAI4g was constructed using spatiotemporally
consistent BPNN models, the latest PKU GIMMS NDVI product,
and high-quality global Landsat LAI samples to mitigate the effects
of satellite orbital drift and sensor degradation [27]. It provided a
half-month temporal resolution for the period 1982-2020, with a
spatial resolution of 0.083°. To remove abnormal data in GIMMS
LAI, values exceeding three times the maximum or falling below
one-third of the minimum value of the three preceding and follow-
ing temporal data points were excluded. Missing values in time
series were subsequently filled using linear interpolation, and data
were smoothed with Savitzky-Golay filtering with a window width
of 7 and a smoothing polynomial of 3. GLOBMAP LAI was the fusion
of MODIS and AVHRR with a half-month temporal resolution for
1982-2000 and an 8-day resolution for 2001-2020 with a spatial
resolution of 0.073° [28]. GLASS LAI, which was generated using
general regression neural networks (GRNNSs), integrated satellite
LAI time series and AVHRR surface reflectance data, providing an
8-day temporal resolution and a spatial resolution of 0.05° for
1982-2018 [29]. All three LAI datasets were resampled to a coarser
resolution of 0.5°, and the annual average LAI for each dataset was
calculated for further analysis.

The Al for the period 1982-2020 in this study was calculated
through annual potential evaporation and precipitation using Eq.
(1):
Al,

— PEy

Pn’

(1)

where Al, is the aridity index in year n, PE, is the annual potential
evaporation in year n, P, is the annual precipitation in year n. The
potential evaporation was obtained from Global Land Evaporation
Amsterdam Model (GLEAM), available at a daily temporal resolu-
tion and 0.25° spatial resolution for the period 1982-2020. The data
were resampled to 0.5° to match other datasets. Annual precipita-
tion was derived from ERA5 daily precipitation.

To further evaluate the robustness of Sk estimate, we employed
multiple independent datasets, including PML-V2 [30] and FLUX-
COM evaporation products, Catchment Attributes, and MEteorol-
ogy for Large-sample Studies (CAMELS) dataset [31], and the
long-term total water storage (TWS). PML-V2, derived from the
Penman-Monteith-Leuning (PML) model, incorporated stomatal
conductance theory to couple the gross primary production (GPP)
process. Given the intrinsic trade-off between GPP and evapora-
tion, PML-V2 provided more accurate evaporation products than
previous models for 2001-2020, with 8-day temporal resolution
and 500 m spatial resolution. FLUXCOM was produced based on
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machine learning methods that integrated FLUXNET site-level
observations, satellite remote sensing, and meteorological data.
The dataset spanned 2001-2020, with monthly temporal resolu-
tion and 0.5° spatial resolution for 2001-2015, and 8-day temporal
resolution and 0.083° spatial resolution for 2016-2020. Both PML-
V2 and FLUXCOM were resampled to 0.5°, and downscaled to daily
temporal resolution referring to ERA5 daily evaporation. The
CAMELS dataset provided daily meteorological forcing (including
precipitation and temperature) and discharge for 453 catchments
across the USA from 1980 to 2014. The long-term TWS was recon-
structed from Gravity Recovery and Climate Experiment (GRACE)
by combining machine learning with time series decomposition
and statistical decomposition techniques, covering the period
1982-2019, with monthly temporal resolution and 0.5° spatial
resolution [32].

In this study, land cover types were defined using the MODIS
Land Cover Type product (MCD12Q1) for 2020 at a spatial resolu-
tion of 500 m. The dataset was resampled to 0.5° using a majority
algorithm, which determines the new value of the cell based on the
most popular values in the filter window. Glacier outlines (exclud-
ing the ice sheets in Greenland and Antarctica) were available from
Randolph Glacier Inventory 6.0, lake boundaries were sourced
from HydroLAKES, and global irrigation areas were obtained from
Global Map of Irrigation Areas version 5.

2.2. Mass curve technique (MCT)

The mass curve technique (MCT), a deficit-based approach, was
adopted to estimate Sg [9,10,33,34]. The method relies on the
water balance, where inflow (F;,) to the root zone comprises daily
precipitation, snowmelt, and irrigation, while outflow (F,,) corre-
sponds to daily evaporation. Daily temperature is used to deter-
mine whether precipitation falls as rainfall or snowfall. If the
temperature is below 0 °C, precipitation is considered as snowfall,
and its value of rainfall for that day is set to zero.

The estimation of Sg involved calculating the water deficit in the
root zone when the outflow (daily evaporation) exceeded the
inflow (the sum of daily precipitation, snowmelt, and irrigation).
This deficit indicates that plants rely on the water stored in Sg to
sustain their water use, such as transpiration. The calculation of
the outflow and inflow water deficit for each day is performed as
follows Eq. (2):

2)

Afn%tnAl Lﬁnﬂ Fout - Findt-
At,—t,,, 1S the water deficit on day t,.;. The aggregate of water deficit
in each day is the accumulative water demand Eq. (3):

D[n—l = max (07 Dtn + A[n"tnﬂ ) (3)

D, ., is the accumulative water deficit on day ty+1. It should be noted
that D never becomes negative, as it represents a continuous esti-
mate of the root zone storage reservoir. Considering the difference
of seasonality variations across different climates (e.g., the monsoon
climate with a dry period mainly in winter, while the Mediter-
ranean climate in summer), D does not get back up to zero and
the deficit is carried over to the next year. In general, the inflow
of the root zone exceeds the outflow for annual totals. Therefore,
to exclude the influence of abnormal data, we removed grid cells
where the average annual inflow was less than the outflow from
1971 to 2020. In very rare cases, such as in arid regions, D may also
accumulate over more than one year and data were reset if the
accumulation extended over two consecutive years. This is because
short-term plants dominate these regions, rapidly growing with
early spring rain and snowmelt, completing their life cycle before
the dry season, and surviving in seed or underground dormancy.
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Even under multiannual droughts, vegetation in these regions does

not endlessly expand root zones to adapt to climate variability.
Since the Sy reflects ecosystems’ long-term response to climate [9],

we defined Sy in a given year as the maximum of a number of years’ D:

++De)- 4)

Because earlier work has shown that globally ecosystems tune to a
drought of once in about 10 years [9], we used the maximum D of
the past ten years as the Sg. For example, the maximum D from
1973 to 1982 was referred to as the Sg of 1982. Here, we used data
from 1971 to 1972 as a spin-up period to prevent abnormal initial
conditions. The conceptual illustration of the algorithm and some
examples at the grid cell scale for calculating Sg are shown in
Figs. S2a and S3 (online).

Sg =max (D, Dy, , -

2.3. Trend analysis

In this study, the temporal and spatial patterns of Sk across glo-
bal vegetated lands were analyzed at different scales, including the
global, grid cell, and regional scales. The global Sg trend was esti-
mated using regression analysis, with area-weighted average Sy
calculated to account for the unequal area of 0.5° grid cells across
latitudes. To assess the significance of the temporal trend, the stan-
dard deviation of Sg was also computed. At the grid cell scale, Sg
trends were also derived by regression analysis, and the propor-
tions of land area exhibiting increasing or decreasing Sg were quan-
tified based on area-weighted calculations. At the regional scale,
we examined Sg trends across 12 land cover types (Fig. S4 online),
including evergreen needleleaf forests, evergreen broadleaf forests,
deciduous needleleaf forests, deciduous broadleaf forests, mixed
forests, closed shrublands, open shrublands, woody savannas,
savannas, grasslands, croplands, and barren. For each land cover
type, the trend of area-weighted average Sz was estimated via
regression analysis, and the standard deviation was calculated to
evaluate the significance of the trend.

To further explore ecosystem adaptation strategies to climate
change, we also analyzed the trends of LAI and Al via regression
analysis at the global, grid cell, and regional scales from 1982 to
2020. The LAI data used in this study represented the average of
three datasets (GIMMS LAI4g, GLOBMAP LAI, and GLASS LAI). Since
GLASS LAI dataset was only available for 1982-2018, we estimated
the average of three LAI datasets for 2019-2020 by constructing a
regression model. This model was developed using 10% random
samples of the average LAl values calculated from all three datasets
(GIMMS LAI4g, GLOBMAP LAI, and GLASS LAI) and from two data-
sets available for the full period (GIMMS LAI4g and GLOBMAP LAI)
during 1982-2018 (Fig. S5 online).

2.4. Attribution analysis

Based on the MCT method, Sk represents the maximum accu-
mulation of water deficit in the root zone during drought periods
and can be decomposed into two main components: drought dura-
tion and average daily water deficit during drought, where Sy is
equal to the product of drought duration and average daily water
deficit (Figs. S2 and S3 online). We defined drought duration as
the days corresponding to the Sg accumulated period (Fig. S2b
online); and the average daily water deficit was determined by cal-
culating the average difference between outflow (daily evapora-
tion) and inflow (daily precipitation, snowmelt, and irrigation)
during the drought duration (Fig. S2b online).

In this study, we investigated the impact of two drivers on Sg
from 1982 to 2020 at the global, grid cell, and regional scales,
and these two drivers correspond one-to-one with Si. Based on this
decomposition, if Sk increases, it must be caused by an increase in
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drought duration, average daily water deficit, or both; and vice
versa. We categorized the factors driving Sg changes into three
main categories (Fig. S2b online): (1) If the direction of Sk trend
is the same as the drought duration but opposite to the average
daily water deficit, the Sz change is considered to be dominated
by changes in drought duration. (2) If the direction of Si trend is
inverse to drought duration but the same as the average daily
water deficit, the Sg change is considered to be dominated by
changes in the average daily water deficit. (3) If the direction of
Sg trend coincides with both drought duration and average daily
water deficit, changes in both factors are considered to contribute
to the change in Sg.

Using regression analysis, we assessed trends in drought dura-
tion and average daily water deficit at the global, grid cell, and
regional scales, and determined the respective contributions of
the two to the changes in Sg. The trends in drought duration and
average daily water deficit were independent variables, enabling
us to understand the relative importance of these two factors in
driving the observed changes in Sk over time.

2.5. Uncertainty analysis

To further evaluate the robustness of Sk estimates, we employed
two additional evaporation datasets and two independent
approaches for validation. Firstly, PML-V2 and FLUXCOM from 2001
to 2020 were used as input evaporation at the grid cell scale to esti-
mate Sg by the MCT method. The global average Sg trends derived
from these datasets were then calculated by regression analysis.

Secondly, we applied the calibration of a hydrological model to
streamflow observations to estimate root zone water storage
capacity at the catchment scale. The FLEX hydrological model,
which simulates catchment hydrological processes [35,36], was
used in this study. The model has 10 free parameters that require
calibration, including Symax, Which represents the root zone water
storage capacity. The input data came from the CAMELS dataset
[31]. To assess the temporal variation of the model parameters,
we employed the Dynamic Identification Analysis method (DYNIA)
[37]. In this study, we generated 40,000 sets of parameter combi-
nations within the feasible range for 10 parameters, using a Monte
Carlo framework and a Latin hypercube sampling technique. Each
parameter set was associated with a streamflow simulation, for
which a performance metric is calculated by the Kling-Gupta effi-
ciency (KGE) with a five-year moving window [38]. We selected
the optimal parameters with the highest KGE for each period and
catchment, and then compared the trends between S, mnax and Sg
in 453 catchments. The distribution of the catchments is shown
in Fig. S6 (online).

Thirdly, we used total water storage (TWS) variability, defined
as the difference between the maximum and minimum TWS value
in a year, as another validation for Sg. We calculated global average
TWS variability from 1982 to 2019 through area-weighted calcula-
tion and analyzed the Spearman rank correlation between Sg and
TWS variability. Glacier regions, lakes, and areas irrigated with
groundwater over 80% were excluded from this analysis, since Sg
mainly considers the change of subsurface water deficit.

3. Results
3.1. Increasing trend of global Sk with increasing drought duration

Over the past four decades, global evaporation has exhibited a
predominantly increasing trend, while precipitation has decreased
in the mid-to-low latitudes, snowmelt has declined in high-
latitude regions, and irrigation has shown a slight overall increase
(Fig. S7 online). These trends indicate a drying global climate,
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which in turn contributes to the increase in Sg. On a global scale,
the average Sy increased from 182 mm to 202 mm from 1982 to
2020, with a trend of 0.56 mm a~! (P = 0.000) and a standard devi-
ation of 6.80 (Fig.1a). Multiplied by the terrestrial vegetation area
(85 million km?), the total increased volume of S over this period
amounts to approximately 1652 billion m?, equivalent to the total
storage capacity of 42 Three Gorges reservoirs, the world’s largest
hydraulic engineering project. However, this overall trend was not
consistent throughout the study period. Most of the increase in Sg
took place 1991-2007, with a trend of 1.11 mm a~! and a standard
deviation of 5.37. In 1982-1990, Sk in fact slightly decreased, and
in 2008-2020, S reached a plateau (Fig.1a).

Furthermore, we found a concurrent increasing trend in both Sg
and Al (Fig. 1a; Fig. S8 online). To further explore how drought
affects Sg, we decomposed Sz changes into contributions from
drought duration (L in days) and average daily water deficit during
drought (WD in mm d!) to determine whether Sg variation is pri-
marily driven by the duration or intensity of drought (Fig. 1b).
Overall, global Sg increase was significantly influenced by increas-
ing drought duration (Fig. 1b). However, the contributions of
drought duration and average daily water deficit varied across dif-
ferent periods, with average daily water deficit driving Sg changes
in the first period (1982-1990) and drought duration playing a
more prominent role in the recent period (1991-2020; Fig. 1b).

3.2. Spatial pattern of Sg variation and its drivers

The changes in Sg were spatially heterogeneous. At the grid cell
scale, we observed increasing Sg trends in 65% of the global vege-
tated land (53%, P < 0.1; 12%, P > 0.1), and decreasing trends in
35%(24%,P<0.1; 11%, P > 0.1; Fig. 2a; Fig. S9 online) over past four
decades. Increasing trends were common in central USA, central
Africa, northern Eurasia, and central South America, whereas
decreasing trends were mostly found in dry regions of the western
USA, southern Asia, northern China, southern Africa, and north-
eastern Australia.

We further examined the drivers of Sz change for each grid cell.
Among regions with increasing Sg, 54% were associated with an
increase of drought duration, 21% with a rise in average daily water
deficit, and 25% with an increase of both (Fig. 2b). In regions with
decreasing Sg, we found diminishing proportions of influence from
drought duration, average daily water deficit, and the combined
effect of both factors, accounting for 43%, 35%, and 22%, respec-
tively (Fig. 2b). Overall, changes in drought duration played a dom-
inant role in Sg dynamics.

Across 12 land cover types, we observed increasing Sk trends in
9 types and decreasing trends in 3 relatively dry types from 1982
to 2020 (Fig. 3). Increasing trends were found in forests, savannas,
grasslands, and croplands, with the largest increase observed in
deciduous broadleaf forests (1.10 mm a~!, standard deviation:
14.32), followed by mixed forests (0.93 mm a~!, standard devia-
tion: 10.75). Decreasing trends were detected in shrublands and
barren lands, with closed shrublands experiencing the largest
decline (0.94 mm a~!, standard deviation: 15.59). Further analysis
of the drivers of Sz change revealed that increases in most land
cover types were primarily associated with the increase in drought
duration (Fig. S10 online). The decline in Sg for shrublands was
mainly linked to a decrease in average daily water deficit, while
in barren lands, reductions in both drought duration and average
daily water deficit contributed to Sk decrease (Fig. S10 online).

3.3. Comparison between belowground Sk and aboveground greenness

To explore ecosystems’ adaptation strategies to climate change,
variations in belowground Sg were compared with aboveground
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Fig. 1. Trends of global average Sk and its drivers. (a) Trends of global average Sk during the period 1982 to 2020. SD denotes the standard deviation. The dots represent the
values of Sg for each year. (b) Trends of drought duration and average daily water deficit in global vegetated land from 1982 to 2020. The time is divided into three segments:
1982-1990, 1991-2007, and 2008-2020, corresponding to the divisions in Fig. 1a. The trend lines T, and Ty represent the changes in drought duration and average daily
water deficit, respectively. To indicate the significance of the regression coefficients, the following symbols are used: * P < 0.1, ** P < 0.01, *** P < 0.001.

greenness (as represented by LAI), alongside changes in Al at both
grid cell and regional scales. During 1982-2020, both Sg and LAI
increased in a considerable fraction of global vegetated land
(57%), while 8% showed Sy increases with LAI decreases, 4% exhib-
ited concurrent declines, and 31% experienced Sg decreases with
LAl increases (Fig. 4). Concurrent increases in Sg and LAI were pre-
dominantly found in central USA, the northern Amazon rainforest,
eastern Europe, Siberia, eastern Asia, and the Congo rainforest,
which were mostly in drying regions (Fig. S11 online). This sug-
gested that vegetation in these areas was able to enhance Sy to
adapt to increasing droughts while sustaining aboveground green-
ing, supported by sufficient water availability. Concurrent Sg
increase and LAI decrease were mainly concentrated in the boreal
and tundra regions of northern North America and northern Asia,
implying that the resilience of these ecosystems was threatened
by climate drying. As drying intensified, these ecosystems required
larger Sk to access more water to sustain basic physiological func-
tions. But the limited water availability constrained their ability to
sustain aboveground productivity increase. Areas with both Si and
LAI decreasing were distributed across the world, but were more
common in arid regions. These ecosystems might already be tran-
sitioning or collapsing due to drought-driven stress. In response,
they reduced both Sk and LAI as an adaptive strategy for survival,
or in more extreme cases of water scarcity, this would manifest
as degradation. Decreasing S trends that coincide with increasing
LAI trends mainly appeared in regions of extreme humidity (such
as northern South America and Malay Archipelago) and intensive
human activities (such as western Europe, India). This might be
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explained by climate wetting (Fig. S11 online), shallow groundwa-
ter [39] and/or human-induced land cover change (such as agricul-
tural expansion and/or intensification) [2,8,40].

As for different land cover types, Sg and LAI simultaneously
increased in 9 out of 12 types in 1982-2020 (Fig. 3; Fig. S12
online), suggesting ecosystem in most types enhanced the root
zone to adapt to intensified drought (Fig. S13 online). In contrast,
three relatively dry types exhibited declining Sg despite increasing
drought, while LAI continued to increase (Fig. 3; Figs. S12 and S13
online). This divergence may be explained by the positive effects of
CO, fertilization and rising temperature, which potentially offset
the negative impacts of decreased Sk on vegetation greenness. In
particular, LAI increases in closed shrublands and barren lands
were likely driven by CO, fertilization [7], whereas the greening
in open shrublands was more associated with rising temperatures,
which enhanced photosynthesis and led to longer growing seasons

(71
3.4. Validation of Sg trends using independent datasets and methods

To further validate our findings, we used multiple independent
datasets and methods to verify the Sk trends at both global and
catchment scales. At the global scale, PML-V2 and FLUXCOM global
evaporation datasets were employed to estimate the Sk trend by
MCT in 2010-2020, which are based on an energy-balance
approach and an entirely data-driven algorithm, respectively. Sg
estimates derived from PML-V2 closely aligned with those from
ERA5 in magnitude, and both exhibited a similar increasing trend
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changes across the global vegetated land.

to ERA5, with growth rates of 1.93 mm a™! for PML-V2 and
1.57 mm a~' for FLUXCOM (Fig. 5a), reinforcing the reliability of
our estimate. Moreover, the global average Sg showed a positive
rank correlation with intra-annual TWS variability from GRACE
(r=0.52, P=0.001; Fig. S14 online) for 1982-2019. This provides
another evidence showing the synchronicity between enhanced
terrestrial total water deficit and increasing Sg, as the maximum
deficit of root zone water storage.

At the catchment scale, long-term water balances also provided
additional support for Sg increases under climate change. Using
streamflow records from 453 CAMELS catchments across the USA
from 1980 to 2014 [31], we calibrated the root zone water storage
capacity parameter Symax in a standard process-based hydrological
model (FLEX) [35,36] via the Dynamic Identification Analysis
(DYNIA) method [37,38]. Results showed that 86% (391 out of
453) catchments demonstrated an increasing trend of Symax in
1980-2014, offering strong and independent evidence to support
our main findings (Fig. 5b).

4. Discussion

This study showed a global increasing trend in Sk over the past
four decades caused by increasing drought (primarily driven by
drought duration, but also by the average daily water deficit during
drought), as reflected in the aridity index (Al). Intensifying drought

3024

increases ecosystems’ water demand; as a result, ecosystems allo-
cate more carbon and nutrients to enhance their root zone systems
[41], leading to an increase in Sy to sustain water supply. We found
that global Sy slightly decreased from 1982 to 1990, then sharply
increased until around 2007, after which it levelled off. Notably,
Sr decreased abruptly in shrublands and barren lands (Fig. 3), while
LAI showed a slight increasing trend (Fig. S12 online). However, the
increase in aboveground biomass (LAI) does not indicate improved
ecosystem resilience and may instead signal an expanding but
more vulnerable ecosystem risk [42]. This potentially implies that
ecosystems in these land cover types may have crossed ecosys-
tems’ thresholds or tipping points, which aligns with the break-
points detected in global arid ecosystems using rain-use
efficiency [43] and Normalized Difference Vegetation Index (NDVI)
in remote sensing observations [44]. Additionally, the decreasing
Sr in arid regions shortens the response time to drought [45], con-
sistent with reports of degradation and regime shifts in arid grass-
lands, deserts, and drylands globally [43].

We found that most terrestrial ecosystems have tended to
increase their Sk to adapt to intensifying droughts, while simulta-
neously sustaining Earth’s greening over the past four decades.
How ecosystems adapt or respond to changing climatic conditions
is diverse. For instance, they may cope with increasing drought
through aboveground greening due to CO, fertilization, or by
increasing Sg, undergoing ecosystem transition (e.g., forest to
savannah, or savannah to dry land) [46], or shifting in microbial
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communities [47]. Our finding implies that increasing Sy is likely
one of the most effective and swift responses of ecosystems to
intensifying drought. In regions with increasing Sk, ecosystems
are still adapting to a changing climate. In regions with decreasing
Sk, ecosystems may have reached the limit of their adaptive capac-
ity. Neglecting Sg dynamics in climate impact assessments can,
thus, lead to both under- and overestimations of climate risks to
ecosystem health [46,48].

As an important part of the underground carbon pool, the root
zone is critical for the global carbon budget. An enhanced root zone
enables plants to access more water and nutrients, promoting the
accumulation of both aboveground and belowground biomass and
increasing organic matter input into the soil, ultimately enhancing
the carbon sink. Based on the assumption of a proportional rela-
tionship between Sg and belowground biomass (Supplementary
material and methods online), our study implicated a potential glo-
bal increase in belowground biomass of 12.1 (9.6-14.4) GtC from
1982 to 2020. The largest increase might be occurred in evergreen
broadleaf forests (3.9 GtC total, 3.5 tC ha™'), potentially underscor-
ing the importance of tropical ecosystems in the global carbon sink
[49]; while the largest total reduction might be observed in open
shrublands (-0.1 GtC), with the largest unit area reduction in
closed shrublands (-2.1 tC ha™!; Fig. S15 online). Although the
assumption is reasonable, it does not consider the exponential
decay of root biomass with depth and nutrient dynamics, which
may introduce biases in belowground biomass estimates, particu-
larly in water-unlimited regions. In this context, combining Sg with
an asymptotic equation [50] may offer a useful approach for esti-
mating fine root carbon. Nevertheless, further refinement and val-
idation through controlled experiments or field studies are needed.

Globally, the increase in belowground root zone (11%; Fig.1a)
slightly exceeded that of aboveground greening (10%; Fig. S16
online). Although plant biomass allocation among leaves, stems,
and roots is commonly assumed to be a constant value [51], this
assumption lacks rigorous testing. The root-leaf ratio is a vital
expression to capture biomass allocation in plants, as both leaves
and roots generally function as the resource-acquiring organs, in
contrast to stems [52]. Our findings reveal that changes in roots
and leaves-here loosely interpreted as trends in Sg and LAI, respec-
tively-have the same direction in 61% of vegetated areas, but
diverge in the remaining 39%. This suggests that plant biomass
allocation does not remain fixed under climate change, challenging
the common assumption of constancy.

In this study, Sk inferred by the climatological forcing reflects
the ecosystems’ actual response to climate change. It demonstrates
that ecosystems enable to overcome the largest drought in the per-
iod of record. Similar to the storage capacity of an artificial reser-
voir, Sg represents the maximum storage capacity needed to
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ensure water supply during a critical drought, even though it is
not fully utilized by ecosystems at all times. This redundancy is
essential to guarantee water availability during droughts, with an
acceptable probability of occurrence (i.e., the design return period).
However, it is important to note that the climate-driven MCT
method employed here is diagnostic rather than prognostic. As
such, our findings describe historical ecosystem adjustments in
Sk and should not be directly extrapolated to future conditions.
In scenarios where drought will intensify and persist, further stud-
ies are needed to consider the full effects of climate change on veg-
etation physiology to project future Sy variation.

The ERA5 evaporation data employed in this study to derive Sg
is expected to reproduce realistic evaporation dynamics, since the
model-simulated evaporation from the land surface model HTES-
SEL [15,53] is adjusted based on assimilation using remotely
sensed soil moisture and near-surface atmosphere conditions
(e.g., air temperature and specific humidity) [54]. It has been
shown that the assimilation procedure is able to correct evapora-
tion for irrigation effects, even when irrigation is not applied in
the land surface model [55]. Our results are further supported by
the independent global evaporation datasets (PML-V2 and FLUX-
COM; Fig. 5a), catchment-scale water balances (Fig. 5b), and
intra-annual variations in TWS (Fig. S14 online). Moreover, a
meta-analysis from field experiments across 110 published studies
indicated that vegetation expands its root systems globally in
response to the elevated concentration of CO, [56], corroborating
our finding of global increases in Sg. The increasing trend of Sy is
also consistent with globally drying trends of soil moisture [57],
as vegetation water use reduces soil moisture and increases Sg.

Despite the use of state-of-the-art methods and datasets, and
alignment with independent sources, the estimated Sg remains
subject to uncertainties associated with forcing data quality. In
particular, due to limited station density, ERA5 precipitation esti-
mates are less accurate in desert regions [58], which have been
excluded from this study. Snowmelt may be overestimated in
high-latitude regions [59], but its impact is relatively minor com-
pared to evaporation and precipitation. The irrigation data derived
from four models (WaterGAP, H80, LPJmL, and PCR-GLOBWB) con-
tain substantial uncertainties and are adjusted using correction
factors to better align with reported data [26] to improve their
accuracy.

This study primarily focuses on disentangling the effects of the
proximate drivers, “drought duration” and “average daily water
deficit during drought” on Sk changes. These drivers reflect the
combined influences of natural fluctuations and human-induced
changes in climate and land properties. While our analysis does
not explicitly isolate the role of rising atmospheric CO,, its effects
are implicitly considered, as both vegetation and hydrological pro-
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cesses respond to CO,, temperature, and precipitation. Future stud-
ies should further differentiate the contributions of various drivers,
including human activities and elevated CO, concentrations, to Sg
variations. Additionally, the relationship between belowground
Sk and aboveground greenness across different plant genera
remains insufficiently understood and requires exploration using
higher-resolution datasets. Although recent research has reported
increased forest mortality under intensifying drought, such signals
were not captured in this study, likely due to limitations in the spa-
tial resolution (coarse 0.5° grid) and temporal scale (long-term
trends exceeding ten years) [60]. These constraints may obscure
short-term, localized variations in Sz and vegetation indices, high-
lighting the need for finer-scale observations in future
assessments.

To the best of our knowledge, this is the first study to quantify
the spatio-temporal variation of Si at the global scale. We believe
this study has improved our understanding of the mechanism of
terrestrial ecosystems’ resilience to drought and the role of below-
ground adaptation in maintaining the terrestrial biosphere within
a safe operating space for humanity.
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The meteorological data used in this study were publicly avail-
able from the ERAS5 reanalysis product (https://cds.climate.coper-
nicus.eu/datasets/derived-era5-single-levels-daily-statistics?tab=
overview). The irrigation data were sourced from the global grid-
ded monthly sectoral water use dataset (https://zenodo.org/
record/1209296#.Y2TrHWIByUk). For potential evaporation, we
used data from the Global Land Evaporation Amsterdam Model
(https://www.gleam.eu/). The LAI data were obtained from GIMMS
LAl4g (https://zenodo.org/record/7649108), GLOBMAP  LAI
(https://zenodo.org/record/4700264#.Y_777D1ByUk), and GLASS
LAI (http://www.glass.umd.edu/Download.html). To classify land
cover types, we utilized data from MODIS Land Cover Type Product
(MCD12Q1)  (https://Ipdaac.usgs.gov/products/mcd12q1v006/).
PML-V2 evaporation data were produced by Zhang et al. (https://
developers.google.com/earth-engine/datasets/catalog/CAS_
IGSNRR_PML_V2_v018?hl=zh-cn). FLUXCOM energy fluxes data
were accessible from the Data Portal of the Max Planck Institute
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for Biogeochemistry (https://www.bgc-jena.mpg.de/geodb/pro-
jects/[Home.php). The hydrological model inputs were publicly
available from CAMELS (https://doi.org/10.5065/D6MW2F4D).
The long-term TWS data were reconstructed by Li et al. (https://da-
tadryad.org/stash/dataset/doi:10.5061/dryad.z612jm6bt). The gla-
cier outlines (excluding the ice sheets in Greenland and
Antarctica) were available from Randolph Glacier Inventory 6.0
(https://nsidc.org/data/nsidc-0770/versions/6), the lake outlines
were sourced from HydroLAKES (https://www.hydrosheds.org/
products/hydrolakes), and the irrigation areas were obtained from
Global Map of Irrigation Areas version 5 (https://www.fao.org/
aquastat/zh/geospatial-information/global-maps-irrigated-areas/
latest-version).

Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.scib.2025.06.027.
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