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Adaptation of ecosystems’ root zones to climate change critically affects drought resilience and vegeta-
tion productivity. However, a global quantitative assessment of this mechanism is missing. In this study, 
we analyzed high-quality observation-based data to find that the global average root zone water storage 
capacity (SR) increased by 11%, from 182 to 202 mm in 1982–2020. The total increase of SR equals to 1652 
billion m3 over the past four decades. SR increased in 9 out of 12 land cover types, while three relatively 
dry types experienced decreasing trends, potentially suggesting the crossing of ecosystems’ tipping 
points. Our results underscore the importance of accounting for root zone dynamics under climate 
change to assess drought impacts. 
© 2025 Science China Press. Published by Elsevier B.V. and Science China Press. All rights are reserved, 

including those for text and data mining, AI training, and similar technologies. 
1. Introduction 

The root zone, underlying the land surface, cannot be directly 
observed at large scales with currently available observation tech-
nology. As such, it remains one of the most uncertain components 
of the global terrestrial ecosystem [1,2]. Climate change has inten-
sified and extended meteorological droughts (i.e., precipitation 
deficits relative to atmospheric evaporation demand) [3,4], which 
are often associated with terrestrial ecosystem degradation, mor-
tality, or even collapse [5,6]. Paradoxically, however, observations 
of vegetation greening indicate that, hitherto, increasing droughts 
have not resulted in an overall decline of global-scale vegetation 
[7,8]. Most studies attribute the increase in vegetation productivity 
to the CO2 fertilization effect and land-use management [7,8]. Nev-
ertheless, the role of belowground root zone adaptation to drought 
has largely been overlooked. 

The root zone water storage capacity (SR) of terrestrial ecosys-
tems is a buffer to guarantee vegetation access to moisture during
critical periods of drought [9,10]. For a given SR, the vertical distri-
bution of moisture may vary and its quantity does not necessarily 
correspond to the total volume of water in the unsaturated zone, 
but rather to the part of the soil moisture that is accessible to roots. 
For example, in the Loess Plateau of China where the unsaturated 
zone is thick, the root zone is limited to the active shallow layer 
of the topsoil [11]. On the other hand, in karst and rocky substrates, 
the root zone may encompass not only the soil water storage but 
also the fissure water storage in the bedrock [12]. In rainfall-
runoff processes, SR controls the partitioning of precipitation into 
drainage and evaporation. As such it is a key parameter not only 
in hydrological models but also in land-surface models, where it 
controls latent and sensible heat fluxes, as well as in ecohydrolog-
ical models where it regulates vegetation dynamics [13,14]. It is 
well-documented that the accurate estimation of SR significantly 
improves hydrological and land-surface model performance [13– 
15]. Large-sample data analysis revealed that ecosystems tend to 
optimize their root zones to allow for the most efficient extraction 
of water from the substrate, thereby meeting water demand (evap-
oration) while minimizing their carbon expenditure for root 
growth and maintenance [16–18]. SR, as an integrated reflection
ing, and 
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of root density, distribution, depth, and lateral extension can serve 
as an effective proxy for belowground biomass.

Ecosystems’ root zones are part of ecosystems’ survival strategy 
and adaptive capacity and respond dynamically to changes in cli-
matic and anthropogenic drivers [19]. Such changes in SR, directly 
feed back to evaporation and biomass production, thus dynami-
cally enhancing the water cycle as a whole [9,20]. Globally, SR var-
ies across climatic zones and landscapes, with larger SR in areas 
with high seasonality, high aridity, longer dry periods, and larger 
rainfall variability (for example, tropical savanna and Mediter-
ranean climate), and smaller SR under relatively stable conditions 
(for example, tropical rainforests and temperate climates). Human 
activities, such as deforestation and irrigation, can also alter SR.  In
experimental catchments in the USA and Germany, SR was 
observed to sharply decline immediately after deforestation, and 
then gradually recover over 5–13 years [21]. Irrigation on agricul-
tural land provides additional water during dry periods, artificially 
reducing the exposure of vegetation to droughts, leading to a smal-
ler SR than under natural conditions [10]. 

Although SR is a key variable in runoff generation, drought resi-
lience, and land-atmosphere interactions, a global quantitative 
assessment of the temporal evolution and spatial variation of SR 
in response to climate change and anthropogenic activities is miss-
ing. Classical approaches to estimate SR are based on combining 
information of soil texture and rooting depth from field observa-
tions using look-up tables by land-use categories, which are prob-
lematic to upscale. More importantly, being mostly snapshots in 
time, these approaches ignore the temporal dynamics of SR [22]. 
Inverse model approaches based on satellite data of precipitation, 
evaporation, and other meteorological factors have previously 
been shown to be valuable in estimating rooting depths at large 
scales. However, such approaches require extensive parameteriza-
tions and assumptions on soil-plant-water relationships [16,23]. 
Some terrestrial biosphere models now use aboveground biomass 
changes as a surrogate of belowground responses [24]. However, 
the underlying assumption of a stationary plant biomass allocation 
remains to be tested. 

In contrast to these methods, the mass curve technique (MCT), 
initially developed for determining reservoir capacity in civil engi-
neering [25], allows for model- and scale-independent estimates of 
SR. The MCT approach relies on the water balance and merely 
requires cumulative vertical inflow (rainfall, snowmelt, and irriga-
tion) and outflow (dry spell evaporation) [9], which are all observ-
able variables from in-situ measurements, reanalysis data, and 
satellite remote sensing [10]. Such time series of inflows and out-
flows are used to infer water deficit during dry spells, where the 
largest deficit over a sufficiently long period of time can be 
assumed to represent the actual SR. The MCT approach has previ-
ously been used to estimate present-day SR at both the catchment 
and global scale and has been shown to yield similar results as the 
inverse modelling approach and outcompete the look-up table 
approach [10,20]. Nevertheless, the MCT approach has yet to be 
used for quantifying global SR dynamics in a changing 
environment. 

In this study, we aim to quantify the spatial and temporal pat-
terns of SR, identify the drivers of observed change, and explore the 
contributions of SR change to global greening. We applied the MCT 
approach to state-of-the-art high-quality reanalysis data to esti-
mate SR from 1982 to 2020 at the grid cell, regional, and global 
scales. Furthermore, we investigated the effect of drought duration 
and average daily water deficit on SR trends. To explore the adap-
tation of global ecosystems to drought, we analyzed the relation-
ship between belowground SR and aboveground Leaf Area Index 
(LAI) changes in conjunction with variations in the aridity index 
(AI) at grid cell and regional scales. 
3020
2. Materials and methods 

2.1. Data 

To estimate SR, we used the daily evaporation, precipitation, 
snowmelt, irrigation, and temperature data. The daily evaporation, 
precipitation, snowmelt, and temperature were obtained from the 
ERA5 reanalysis product, with a spatial resolution of 0.5°, covering 
the period 1971–2020. Irrigation data for 1971–2010 were derived 
from the ensemble average of four model outputs (WaterGAP, H80, 
LPJmL, and PCR-GLOBWB), adjusted by correction factors based on 
the difference between modelled estimates and reported records 
[26], with monthly temporal resolution and 0.5° spatial resolution. 
For the period 2011–2020, we assumed irrigation remained con-
stant at 2010 levels. Monthly irrigation data were downscaled to 
daily resolution based on ERA5 daily evaporation. The input evap-
oration, precipitation, snowmelt, and irrigation data are shown in 
Fig. S1 (online). 

The LAI and AI were used to explore the adaptation of ecosys-
tems to drought, combined with SR. This study employed three 
satellite-derived LAI products: GIMMS LAI4g, GLOBMAP LAI, and 
GLASS LAI. GIMMS LAI4g was constructed using spatiotemporally 
consistent BPNN models, the latest PKU GIMMS NDVI product, 
and high-quality global Landsat LAI samples to mitigate the effects 
of satellite orbital drift and sensor degradation [27]. It provided a 
half-month temporal resolution for the period 1982–2020, with a 
spatial resolution of 0.083°. To remove abnormal data in GIMMS 
LAI, values exceeding three times the maximum or falling below 
one-third of the minimum value of the three preceding and follow-
ing temporal data points were excluded. Missing values in time 
series were subsequently filled using linear interpolation, and data 
were smoothed with Savitzky-Golay filtering with a window width 
of 7 and a smoothing polynomial of 3. GLOBMAP LAI was the fusion 
of MODIS and AVHRR with a half-month temporal resolution for 
1982–2000 and an 8-day resolution for 2001–2020 with a spatial 
resolution of 0.073° [28]. GLASS LAI, which was generated using 
general regression neural networks (GRNNs), integrated satellite 
LAI time series and AVHRR surface reflectance data, providing an 
8-day temporal resolution and a spatial resolution of 0.05° for 
1982–2018 [29]. All three LAI datasets were resampled to a coarser 
resolution of 0.5°, and the annual average LAI for each dataset was 
calculated for further analysis. 

The AI for the period 1982–2020 in this study was calculated 
through annual potential evaporation and precipitation using Eq. 
(1): 

AIn PEn 
Pn 

1 

where is the aridity index in year n, is the annual potential 
evaporation in year n, is the annual precipitation in year n. The 
potential evaporation was obtained from Global Land Evaporation 
Amsterdam Model (GLEAM), available at a daily temporal resolu-
tion and 0.25° spatial resolution for the period 1982–2020. The data 
were resampled to 0.5° to match other datasets. Annual precipita-
tion was derived from ERA5 daily precipitation. 

AIn PEn 

Pn 

To further evaluate the robustness of SR estimate, we employed 
multiple independent datasets, including PML-V2 [30] and FLUX-
COM evaporation products, Catchment Attributes, and MEteorol-
ogy for Large-sample Studies (CAMELS) dataset [31], and the 
long-term total water storage (TWS). PML-V2, derived from the 
Penman-Monteith-Leuning (PML) model, incorporated stomatal 
conductance theory to couple the gross primary production (GPP) 
process. Given the intrinsic trade-off between GPP and evapora-
tion, PML-V2 provided more accurate evaporation products than 
previous models for 2001–2020, with 8-day temporal resolution 
and 500 m spatial resolution. FLUXCOM was produced based on
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machine learning methods that integrated FLUXNET site-level 
observations, satellite remote sensing, and meteorological data. 
The dataset spanned 2001–2020, with monthly temporal resolu-
tion and 0.5° spatial resolution for 2001–2015, and 8-day temporal 
resolution and 0.083° spatial resolution for 2016–2020. Both PML-
V2 and FLUXCOM were resampled to 0.5°, and downscaled to daily 
temporal resolution referring to ERA5 daily evaporation. The 
CAMELS dataset provided daily meteorological forcing (including 
precipitation and temperature) and discharge for 453 catchments 
across the USA from 1980 to 2014. The long-term TWS was recon-
structed from Gravity Recovery and Climate Experiment (GRACE) 
by combining machine learning with time series decomposition 
and statistical decomposition techniques, covering the period 
1982–2019, with monthly temporal resolution and 0.5° spatial 
resolution [32]. 

In this study, land cover types were defined using the MODIS 
Land Cover Type product (MCD12Q1) for 2020 at a spatial resolu-
tion of 500 m. The dataset was resampled to 0.5° using a majority 
algorithm, which determines the new value of the cell based on the 
most popular values in the filter window. Glacier outlines (exclud-
ing the ice sheets in Greenland and Antarctica) were available from 
Randolph Glacier Inventory 6.0, lake boundaries were sourced 
from HydroLAKES, and global irrigation areas were obtained from 
Global Map of Irrigation Areas version 5. 

2.2. Mass curve technique (MCT) 

The mass curve technique (MCT), a deficit-based approach, was 
adopted to estimate SR [9,10,33,34]. The method relies on the 
water balance, where inflow ( to the root zone comprises daily 
precipitation, snowmelt, and irrigation, while outflow ( ) corre-
sponds to daily evaporation. Daily temperature is used to deter-
mine whether precipitation falls as rainfall or snowfall. If the 
temperature is below 0 °C, precipitation is considered as snowfall, 
and its value of rainfall for that day is set to zero. 

Fin) 
Fout 

The estimation of SR involved calculating the water deficit in the 
root zone when the outflow (daily evaporation) exceeded the 
inflow (the sum of daily precipitation, snowmelt, and irrigation). 
This deficit indicates that plants rely on the water stored in SR to 
sustain their water use, such as transpiration. The calculation of 
the outflow and inflow water deficit for each day is performed as 
follows Eq. (2): 

Atn tn 1 

tn 1 
tn 

Fout Findt 2 

tn 1 is the water deficit on day tn+1. The aggregate of water deficit 
in each day is the accumulative water demand Eq. (3): 
Atn 

Dtn 1 max 0 Dtn Atn tn 1 3 

1 is the accumulative water deficit on day tn+1. It should be noted 
that D never becomes negative, as it represents a continuous esti-
mate of the root zone storage reservoir. Considering the difference 
of seasonality variations across different climates (e.g., the monsoon 
climate with a dry period mainly in winter, while the Mediter-
ranean climate in summer), D does not get back up to zero and 
the deficit is carried over to the next year. In general, the inflow 
of the root zone exceeds the outflow for annual totals. Therefore, 
to exclude the influence of abnormal data, we removed grid cells 
where the average annual inflow was less than the outflow from 
1971 to 2020. In very rare cases, such as in arid regions, D may also 
accumulate over more than one year and data were reset if the 
accumulation extended over two consecutive years. This is because 
short-term plants dominate these regions, rapidly growing with 
early spring rain and snowmelt, completing their life cycle before 
the dry season, and surviving in seed or underground dormancy. 

Dtn 
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Even under multiannual droughts, vegetation in these regions does 
not endlessly expand root zones to adapt to climate variability. 

Since the SR reflects ecosystems’ long-term response to climate [9], 
we defined SR in a given year as themaximum of a number of years’ D: 

SR max Dt1 Dt2 Dtend 4 

Because earlier work has shown that globally ecosystems tune to a 
drought of once in about 10 years [9], we used the maximum D of 
the past ten years as the SR. For example, the maximum D from 
1973 to 1982 was referred to as the SR of 1982. Here, we used data 
from 1971 to 1972 as a spin-up period to prevent abnormal initial 
conditions. The conceptual illustration of the algorithm and some 
examples at the grid cell scale for calculating SR are shown in 
Figs. S2a and S3 (online). 

2.3. Trend analysis 

In this study, the temporal and spatial patterns of SR across glo-
bal vegetated lands were analyzed at different scales, including the 
global, grid cell, and regional scales. The global SR trend was esti-
mated using regression analysis, with area-weighted average SR 
calculated to account for the unequal area of 0.5° grid cells across 
latitudes. To assess the significance of the temporal trend, the stan-
dard deviation of SR was also computed. At the grid cell scale, SR 
trends were also derived by regression analysis, and the propor-
tions of land area exhibiting increasing or decreasing SR were quan-
tified based on area-weighted calculations. At the regional scale, 
we examined SR trends across 12 land cover types (Fig. S4 online), 
including evergreen needleleaf forests, evergreen broadleaf forests, 
deciduous needleleaf forests, deciduous broadleaf forests, mixed 
forests, closed shrublands, open shrublands, woody savannas, 
savannas, grasslands, croplands, and barren. For each land cover 
type, the trend of area-weighted average SR was estimated via 
regression analysis, and the standard deviation was calculated to 
evaluate the significance of the trend. 

To further explore ecosystem adaptation strategies to climate 
change, we also analyzed the trends of LAI and AI via regression 
analysis at the global, grid cell, and regional scales from 1982 to 
2020. The LAI data used in this study represented the average of 
three datasets (GIMMS LAI4g, GLOBMAP LAI, and GLASS LAI). Since 
GLASS LAI dataset was only available for 1982–2018, we estimated 
the average of three LAI datasets for 2019–2020 by constructing a 
regression model. This model was developed using 10% random 
samples of the average LAI values calculated from all three datasets 
(GIMMS LAI4g, GLOBMAP LAI, and GLASS LAI) and from two data-
sets available for the full period (GIMMS LAI4g and GLOBMAP LAI) 
during 1982–2018 (Fig. S5 online). 

2.4. Attribution analysis 

Based on the MCT method, SR represents the maximum accu-
mulation of water deficit in the root zone during drought periods 
and can be decomposed into two main components: drought dura-
tion and average daily water deficit during drought, where SR is 
equal to the product of drought duration and average daily water 
deficit (Figs. S2 and S3 online). We defined drought duration as 
the days corresponding to the SR accumulated period (Fig. S2b 
online); and the average daily water deficit was determined by cal-
culating the average difference between outflow (daily evapora-
tion) and inflow (daily precipitation, snowmelt, and irrigation) 
during the drought duration (Fig. S2b online). 

In this study, we investigated the impact of two drivers on SR 
from 1982 to 2020 at the global, grid cell, and regional scales, 
and these two drivers correspond one-to-one with SR. Based on this 
decomposition, if SR increases, it must be caused by an increase in
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drought duration, average daily water deficit, or both; and vice 
versa. We categorized the factors driving SR changes into three 
main categories (Fig. S2b online): (1) If the direction of SR trend 
is the same as the drought duration but opposite to the average 
daily water deficit, the SR change is considered to be dominated 
by changes in drought duration. (2) If the direction of SR trend is 
inverse to drought duration but the same as the average daily 
water deficit, the SR change is considered to be dominated by 
changes in the average daily water deficit. (3) If the direction of 
SR trend coincides with both drought duration and average daily 
water deficit, changes in both factors are considered to contribute 
to the change in SR. 

Using regression analysis, we assessed trends in drought dura-
tion and average daily water deficit at the global, grid cell, and 
regional scales, and determined the respective contributions of 
the two to the changes in SR. The trends in drought duration and 
average daily water deficit were independent variables, enabling 
us to understand the relative importance of these two factors in 
driving the observed changes in SR over time. 

2.5. Uncertainty analysis 

To further evaluate the robustness of SR estimates, we employed 
two additional evaporation datasets and two independent 
approaches for validation. Firstly, PML-V2 and FLUXCOM from 2001 
to 2020 were used as input evaporation at the grid cell scale to esti-
mate SR by the MCT method. The global average SR trends derived 
from these datasets were then calculated by regression analysis. 

Secondly, we applied the calibration of a hydrological model to 
streamflow observations to estimate root zone water storage 
capacity at the catchment scale. The FLEX hydrological model, 
which simulates catchment hydrological processes [35,36], was 
used in this study. The model has 10 free parameters that require 
calibration, including Sumax, which represents the root zone water 
storage capacity. The input data came from the CAMELS dataset 
[31]. To assess the temporal variation of the model parameters, 
we employed the Dynamic Identification Analysis method (DYNIA) 
[37]. In this study, we generated 40,000 sets of parameter combi-
nations within the feasible range for 10 parameters, using a Monte 
Carlo framework and a Latin hypercube sampling technique. Each 
parameter set was associated with a streamflow simulation, for 
which a performance metric is calculated by the Kling-Gupta effi-
ciency (KGE) with a five-year moving window [38]. We selected 
the optimal parameters with the highest KGE for each period and 
catchment, and then compared the trends between Sumax and SR 
in 453 catchments. The distribution of the catchments is shown 
in Fig. S6 (online). 

Thirdly, we used total water storage (TWS) variability, defined 
as the difference between the maximum and minimum TWS value 
in a year, as another validation for SR. We calculated global average 
TWS variability from 1982 to 2019 through area-weighted calcula-
tion and analyzed the Spearman rank correlation between SR and 
TWS variability. Glacier regions, lakes, and areas irrigated with 
groundwater over 80% were excluded from this analysis, since SR 
mainly considers the change of subsurface water deficit. 

3. Results 

3.1. Increasing trend of global SR with increasing drought duration 

Over the past four decades, global evaporation has exhibited a 
predominantly increasing trend, while precipitation has decreased 
in the mid-to-low latitudes, snowmelt has declined in high-
latitude regions, and irrigation has shown a slight overall increase 
(Fig. S7 online). These trends indicate a drying global climate, 
3022
which in turn contributes to the increase in SR. On a global scale, 
the average SR increased from 182 mm to 202 mm from 1982 to 
2020, with a trend of 0.56 mm a−1 (P = 0.000) and a standard devi-
ation of 6.80 (Fig.1a). Multiplied by the terrestrial vegetation area 
(85 million km2 ), the total increased volume of SR over this period 
amounts to approximately 1652 billion m3 , equivalent to the total 
storage capacity of 42 Three Gorges reservoirs, the world’s largest 
hydraulic engineering project. However, this overall trend was not 
consistent throughout the study period. Most of the increase in SR 
took place 1991−2007, with a trend of 1.11 mm a−1 and a standard 
deviation of 5.37. In 1982−1990, SR in fact slightly decreased, and 
in 2008−2020, SR reached a plateau (Fig.1a). 

Furthermore, we found a concurrent increasing trend in both SR 
and AI (Fig. 1a; Fig. S8 online). To further explore how drought 
affects SR, we decomposed SR changes into contributions from 
drought duration (L in days) and average daily water deficit during 
drought ( D in mm d−1 ) to determine whether SR variation is pri-
marily driven by the duration or intensity of drought (Fig. 1b). 
Overall, global SR increase was significantly influenced by increas-
ing drought duration (Fig. 1b). However, the contributions of 
drought duration and average daily water deficit varied across dif-
ferent periods, with average daily water deficit driving SR changes 
in the first period (1982−1990) and drought duration playing a 
more prominent role in the recent period (1991−2020; Fig. 1b). 

W 

3.2. Spatial pattern of SR variation and its drivers 

The changes in SR were spatially heterogeneous. At the grid cell 
scale, we observed increasing SR trends in 65% of the global vege-
tated land (53%, P < 0.1; 12%, P ≥ 0.1), and decreasing trends in 
35% (24%, P < 0.1; 11%, P ≥ 0.1; Fig. 2a; Fig. S9 online) over past four 
decades. Increasing trends were common in central USA, central 
Africa, northern Eurasia, and central South America, whereas 
decreasing trends were mostly found in dry regions of the western 
USA, southern Asia, northern China, southern Africa, and north-
eastern Australia. 

We further examined the drivers of SR change for each grid cell. 
Among regions with increasing SR, 54% were associated with an 
increase of drought duration, 21% with a rise in average daily water 
deficit, and 25% with an increase of both (Fig. 2b). In regions with 
decreasing SR, we found diminishing proportions of influence from 
drought duration, average daily water deficit, and the combined 
effect of both factors, accounting for 43%, 35%, and 22%, respec-
tively (Fig. 2b). Overall, changes in drought duration played a dom-
inant role in SR dynamics. 

Across 12 land cover types, we observed increasing SR trends in 
9 types and decreasing trends in 3 relatively dry types from 1982 
to 2020 (Fig. 3). Increasing trends were found in forests, savannas, 
grasslands, and croplands, with the largest increase observed in 
deciduous broadleaf forests (1.10 mm a−1 , standard deviation: 
14.32), followed by mixed forests (0.93 mm a−1 , standard devia-
tion: 10.75). Decreasing trends were detected in shrublands and 
barren lands, with closed shrublands experiencing the largest 
decline (0.94 mm a−1 , standard deviation: 15.59). Further analysis 
of the drivers of SR change revealed that increases in most land 
cover types were primarily associated with the increase in drought 
duration (Fig. S10 online). The decline in SR for shrublands was 
mainly linked to a decrease in average daily water deficit, while 
in barren lands, reductions in both drought duration and average 
daily water deficit contributed to SR decrease (Fig. S10 online). 

3.3. Comparison between belowground SR and aboveground greenness 

To explore ecosystems’ adaptation strategies to climate change, 
variations in belowground SR were compared with aboveground
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Fig. 1. Trends of global average SR and its drivers. (a) Trends of global average SR during the period 1982 to 2020. SD denotes the standard deviation. The dots represent the 
values of SR for each year. (b) Trends of drought duration and average daily water deficit in global vegetated land from 1982 to 2020. The time is divided into three segments: 
1982–1990, 1991–2007, and 2008–2020, corresponding to the divisions in Fig. 1a. The trend lines TL and represent the changes in drought duration and average daily 
water deficit, respectively. To indicate the significance of the regression coefficients, the following symbols are used: * P < 0.1, ** P < 0.01, *** P < 0.001. 

TWD 
greenness (as represented by LAI), alongside changes in AI at both 
grid cell and regional scales. During 1982–2020, both SR and LAI 
increased in a considerable fraction of global vegetated land 
(57%), while 8% showed SR increases with LAI decreases, 4% exhib-
ited concurrent declines, and 31% experienced SR decreases with 
LAI increases (Fig. 4). Concurrent increases in SR and LAI were pre-
dominantly found in central USA, the northern Amazon rainforest, 
eastern Europe, Siberia, eastern Asia, and the Congo rainforest, 
which were mostly in drying regions (Fig. S11 online). This sug-
gested that vegetation in these areas was able to enhance SR to 
adapt to increasing droughts while sustaining aboveground green-
ing, supported by sufficient water availability. Concurrent SR 
increase and LAI decrease were mainly concentrated in the boreal 
and tundra regions of northern North America and northern Asia, 
implying that the resilience of these ecosystems was threatened 
by climate drying. As drying intensified, these ecosystems required 
larger SR to access more water to sustain basic physiological func-
tions. But the limited water availability constrained their ability to 
sustain aboveground productivity increase. Areas with both SR and 
LAI decreasing were distributed across the world, but were more 
common in arid regions. These ecosystems might already be tran-
sitioning or collapsing due to drought-driven stress. In response, 
they reduced both SR and LAI as an adaptive strategy for survival, 
or in more extreme cases of water scarcity, this would manifest 
as degradation. Decreasing SR trends that coincide with increasing 
LAI trends mainly appeared in regions of extreme humidity (such 
as northern South America and Malay Archipelago) and intensive 
human activities (such as western Europe, India). This might be 
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explained by climate wetting (Fig. S11 online), shallow groundwa-
ter [39] and/or human-induced land cover change (such as agricul-
tural expansion and/or intensification) [2,8,40]. 

As for different land cover types, SR and LAI simultaneously 
increased in 9 out of 12 types in 1982–2020 (Fig. 3; Fig. S12 
online), suggesting ecosystem in most types enhanced the root 
zone to adapt to intensified drought (Fig. S13 online). In contrast, 
three relatively dry types exhibited declining SR despite increasing 
drought, while LAI continued to increase (Fig. 3; Figs. S12 and S13 
online). This divergence may be explained by the positive effects of 
CO2 fertilization and rising temperature, which potentially offset 
the negative impacts of decreased SR on vegetation greenness. In 
particular, LAI increases in closed shrublands and barren lands 
were likely driven by CO2 fertilization [7], whereas the greening 
in open shrublands was more associated with rising temperatures, 
which enhanced photosynthesis and led to longer growing seasons 
[7]. 

3.4. Validation of SR trends using independent datasets and methods 

To further validate our findings, we used multiple independent 
datasets and methods to verify the SR trends at both global and 
catchment scales. At the global scale, PML-V2 and FLUXCOM global 
evaporation datasets were employed to estimate the SR trend by 
MCT in 2010–2020, which are based on an energy-balance 
approach and an entirely data-driven algorithm, respectively. SR 
estimates derived from PML-V2 closely aligned with those from 
ERA5 in magnitude, and both exhibited a similar increasing trend
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Fig. 2. Spatial pattern of SR changes and its drivers. (a) Spatial distribution of the direction of SR trends 1982–2020. TSR denotes the trend of SR. The histogram shows the 
percentage of areas with different SR change types across global vegetated land (total 85 million km2 ). (b) Dominant drivers affecting SR change at grid cell scale. L, WD d L 
+ denote drought duration, average daily water deficit, and both factors, respectively. The histogram shows the percentage of areas with different dominant factors for SR 
changes across the global vegetated land. 

, an 
WD 
to ERA5, with growth rates of 1.93 mm a–1 for PML-V2 and 
1.57 mm a–1 for FLUXCOM (Fig. 5a), reinforcing the reliability of 
our estimate. Moreover, the global average SR showed a positive 
rank correlation with intra-annual TWS variability from GRACE 
(r = 0.52, P = 0.001; Fig. S14 online) for 1982–2019. This provides 
another evidence showing the synchronicity between enhanced 
terrestrial total water deficit and increasing SR, as the maximum 
deficit of root zone water storage. 

At the catchment scale, long-term water balances also provided 
additional support for SR increases under climate change. Using 
streamflow records from 453 CAMELS catchments across the USA 
from 1980 to 2014 [31], we calibrated the root zone water storage 
capacity parameter Sumax in a standard process-based hydrological 
model (FLEX) [35,36] via the Dynamic Identification Analysis 
(DYNIA) method [37,38]. Results showed that 86% (391 out of 
453) catchments demonstrated an increasing trend of Sumax in 
1980–2014, offering strong and independent evidence to support 
our main findings (Fig. 5b). 
4. Discussion 

This study showed a global increasing trend in SR over the past 
four decades caused by increasing drought (primarily driven by 
drought duration, but also by the average daily water deficit during 
drought), as reflected in the aridity index (AI). Intensifying drought 
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increases ecosystems’ water demand; as a result, ecosystems allo-
cate more carbon and nutrients to enhance their root zone systems 
[41], leading to an increase in SR to sustain water supply. We found 
that global SR slightly decreased from 1982 to 1990, then sharply 
increased until around 2007, after which it levelled off. Notably, 
SR decreased abruptly in shrublands and barren lands (Fig. 3), while 
LAI showed a slight increasing trend (Fig. S12 online). However, the 
increase in aboveground biomass (LAI) does not indicate improved 
ecosystem resilience and may instead signal an expanding but 
more vulnerable ecosystem risk [42]. This potentially implies that 
ecosystems in these land cover types may have crossed ecosys-
tems’ thresholds or tipping points, which aligns with the break-
points detected in global arid ecosystems using rain-use 
efficiency [43] and Normalized Difference Vegetation Index (NDVI) 
in remote sensing observations [44]. Additionally, the decreasing 
SR in arid regions shortens the response time to drought [45], con-
sistent with reports of degradation and regime shifts in arid grass-
lands, deserts, and drylands globally [43]. 

We found that most terrestrial ecosystems have tended to 
increase their SR to adapt to intensifying droughts, while simulta-
neously sustaining Earth’s greening over the past four decades. 
How ecosystems adapt or respond to changing climatic conditions 
is diverse. For instance, they may cope with increasing drought 
through aboveground greening due to CO2 fertilization, or by 
increasing SR, undergoing ecosystem transition (e.g., forest to 
savannah, or savannah to dry land) [46], or shifting in microbial
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Fig. 3. Change of SR in different land cover types in 1982–2020. SD denotes the standard deviation. 

Fig. 4. The comparison between SR and LAI from 1982 to 2020. The spatial pattern illustrates the areas with different colors for the four combinations of positive/negative TSR 
(Trend of SR) and TLAI (Trend of LAI) in 1982–2020. The white regions represent areas with no vegetation cover and high uncertainty data. The accompanying histogram 
demonstrates the proportion of different combinations in the global vegetated area.

3025
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Fig. 5. More independent evidence supporting the increasing trend of root zone water storage capacity. (a) Trends of global average SR estimated by PML-V2 and FLUXCOM 
for 2010–2020. (b) The scatter comparison of SR and Sumax trend of 453 CAMELS catchments in the USA for 1980–2014. One dot represents one catchment. 
communities [47]. Our finding implies that increasing SR is likely 
one of the most effective and swift responses of ecosystems to 
intensifying drought. In regions with increasing SR, ecosystems 
are still adapting to a changing climate. In regions with decreasing 
SR, ecosystems may have reached the limit of their adaptive capac-
ity. Neglecting SR dynamics in climate impact assessments can, 
thus, lead to both under- and overestimations of climate risks to 
ecosystem health [46,48].

As an important part of the underground carbon pool, the root 
zone is critical for the global carbon budget. An enhanced root zone 
enables plants to access more water and nutrients, promoting the 
accumulation of both aboveground and belowground biomass and 
increasing organic matter input into the soil, ultimately enhancing 
the carbon sink. Based on the assumption of a proportional rela-
tionship between SR and belowground biomass (Supplementary 
material and methods online), our study implicated a potential glo-
bal increase in belowground biomass of 12.1 (9.6–14.4) GtC from 
1982 to 2020. The largest increase might be occurred in evergreen 
broadleaf forests (3.9 GtC total, 3.5 tC ha–1 ), potentially underscor-
ing the importance of tropical ecosystems in the global carbon sink 
[49]; while the largest total reduction might be observed in open 
shrublands (−0.1 GtC), with the largest unit area reduction in 
closed shrublands (−2.1 tC ha−1 ; Fig. S15 online). Although the 
assumption is reasonable, it does not consider the exponential 
decay of root biomass with depth and nutrient dynamics, which 
may introduce biases in belowground biomass estimates, particu-
larly in water-unlimited regions. In this context, combining SR with 
an asymptotic equation [50] may offer a useful approach for esti-
mating fine root carbon. Nevertheless, further refinement and val-
idation through controlled experiments or field studies are needed. 

Globally, the increase in belowground root zone (11%; Fig.1a) 
slightly exceeded that of aboveground greening (10%; Fig. S16 
online). Although plant biomass allocation among leaves, stems, 
and roots is commonly assumed to be a constant value [51], this 
assumption lacks rigorous testing. The root-leaf ratio is a vital 
expression to capture biomass allocation in plants, as both leaves 
and roots generally function as the resource-acquiring organs, in 
contrast to stems [52]. Our findings reveal that changes in roots 
and leaves–here loosely interpreted as trends in SR and LAI, respec-
tively–have the same direction in 61% of vegetated areas, but 
diverge in the remaining 39%. This suggests that plant biomass 
allocation does not remain fixed under climate change, challenging 
the common assumption of constancy. 

In this study, SR inferred by the climatological forcing reflects 
the ecosystems’ actual response to climate change. It demonstrates 
that ecosystems enable to overcome the largest drought in the per-
iod of record. Similar to the storage capacity of an artificial reser-
voir, SR represents the maximum storage capacity needed to 
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ensure water supply during a critical drought, even though it is 
not fully utilized by ecosystems at all times. This redundancy is 
essential to guarantee water availability during droughts, with an 
acceptable probability of occurrence (i.e., the design return period). 
However, it is important to note that the climate-driven MCT 
method employed here is diagnostic rather than prognostic. As 
such, our findings describe historical ecosystem adjustments in 
SR and should not be directly extrapolated to future conditions. 
In scenarios where drought will intensify and persist, further stud-
ies are needed to consider the full effects of climate change on veg-
etation physiology to project future SR variation. 

The ERA5 evaporation data employed in this study to derive SR 
is expected to reproduce realistic evaporation dynamics, since the 
model-simulated evaporation from the land surface model HTES-
SEL [15,53] is adjusted based on assimilation using remotely 
sensed soil moisture and near-surface atmosphere conditions 
(e.g., air temperature and specific humidity) [54]. It has been 
shown that the assimilation procedure is able to correct evapora-
tion for irrigation effects, even when irrigation is not applied in 
the land surface model [55]. Our results are further supported by 
the independent global evaporation datasets (PML-V2 and FLUX-
COM; Fig. 5a), catchment-scale water balances (Fig. 5b), and 
intra-annual variations in TWS (Fig. S14 online). Moreover, a 
meta-analysis from field experiments across 110 published studies 
indicated that vegetation expands its root systems globally in 
response to the elevated concentration of CO2 [56], corroborating 
our finding of global increases in SR. The increasing trend of SR is 
also consistent with globally drying trends of soil moisture [57], 
as vegetation water use reduces soil moisture and increases SR. 

Despite the use of state-of-the-art methods and datasets, and 
alignment with independent sources, the estimated SR remains 
subject to uncertainties associated with forcing data quality. In 
particular, due to limited station density, ERA5 precipitation esti-
mates are less accurate in desert regions [58], which have been 
excluded from this study. Snowmelt may be overestimated in 
high-latitude regions [59], but its impact is relatively minor com-
pared to evaporation and precipitation. The irrigation data derived 
from four models (WaterGAP, H80, LPJmL, and PCR-GLOBWB) con-
tain substantial uncertainties and are adjusted using correction 
factors to better align with reported data [26] to improve their 
accuracy. 

This study primarily focuses on disentangling the effects of the 
proximate drivers, ‘‘drought duration” and ‘‘average daily water 
deficit during drought” on SR changes. These drivers reflect the 
combined influences of natural fluctuations and human-induced 
changes in climate and land properties. While our analysis does 
not explicitly isolate the role of rising atmospheric CO2, its effects 
are implicitly considered, as both vegetation and hydrological pro-
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cesses respond to CO2, temperature, and precipitation. Future stud-
ies should further differentiate the contributions of various drivers, 
including human activities and elevated CO2 concentrations, to SR 
variations. Additionally, the relationship between belowground 
SR and aboveground greenness across different plant genera 
remains insufficiently understood and requires exploration using 
higher-resolution datasets. Although recent research has reported 
increased forest mortality under intensifying drought, such signals 
were not captured in this study, likely due to limitations in the spa-
tial resolution (coarse 0.5° grid) and temporal scale (long-term 
trends exceeding ten years) [60]. These constraints may obscure 
short-term, localized variations in SR and vegetation indices, high-
lighting the need for finer-scale observations in future 
assessments. 

To the best of our knowledge, this is the first study to quantify 
the spatio-temporal variation of SR at the global scale. We believe 
this study has improved our understanding of the mechanism of 
terrestrial ecosystems’ resilience to drought and the role of below-
ground adaptation in maintaining the terrestrial biosphere within 
a safe operating space for humanity. 
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nicus.eu/datasets/derived-era5-single-levels-daily-statistics?tab= 
overview). The irrigation data were sourced from the global grid-
ded monthly sectoral water use dataset (https://zenodo.org/ 
record/1209296#.Y2TrHWlByUk). For potential evaporation, we 
used data from the Global Land Evaporation Amsterdam Model 
(https://www.gleam.eu/). The LAI data were obtained from GIMMS 
LAI4g (https://zenodo.org/record/7649108), GLOBMAP LAI 
(https://zenodo.org/record/4700264#.Y_777D1ByUk), and GLASS 
LAI (http://www.glass.umd.edu/Download.html). To classify land 
cover types, we utilized data from MODIS Land Cover Type Product 
(MCD12Q1) (https://lpdaac.usgs.gov/products/mcd12q1v006/). 
PML-V2 evaporation data were produced by Zhang et al. (https:// 
developers.google.com/earth-engine/datasets/catalog/CAS_ 
IGSNRR_PML_V2_v018?hl=zh-cn). FLUXCOM energy fluxes data 
were accessible from the Data Portal of the Max Planck Institute 
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for Biogeochemistry (https://www.bgc-jena.mpg.de/geodb/pro-
jects/Home.php). The hydrological model inputs were publicly 
available from CAMELS (https://doi.org/10.5065/D6MW2F4D). 
The long-term TWS data were reconstructed by Li et al. (https://da-
tadryad.org/stash/dataset/doi:10.5061/dryad.z612jm6bt). The gla-
cier outlines (excluding the ice sheets in Greenland and 
Antarctica) were available from Randolph Glacier Inventory 6.0 
(https://nsidc.org/data/nsidc-0770/versions/6), the lake outlines 
were sourced from HydroLAKES (https://www.hydrosheds.org/ 
products/hydrolakes), and the irrigation areas were obtained from 
Global Map of Irrigation Areas version 5 (https://www.fao.org/ 
aquastat/zh/geospatial-information/global-maps-irrigated-areas/ 
latest-version). 
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Supplementary data to this article can be found online at 
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