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A B S T R A C T

The global installed capacity of floating offshore wind turbines is projected to increase by at
least 100 times over the next decades. Station-keeping of floating offshore renewable energy
devices is achieved through the use of mooring systems. Mooring systems are exposed to
a variety of environmental and operational conditions that cause corrosion, abrasion, and
fatigue. Regular physical in-service inspections of mooring systems are the golden standard for
monitoring their health status. This approach is often expensive, inefficient, and unsafe, and
for this reason, researchers are focusing on developing tools for digital solutions for real-time
monitoring. Floating offshore renewable energy devices are usually equipped with a wide range
of sensors, some low-cost, low/zero maintenance, and easily deployable (e.g., accelerometers
on the tower), contrary to others (e.g., direct tension mooring line measurements), producing
real-time data streams. In this paper, we propose exploiting the data coming from the first type
of sensors for mooring systems health status nowcasting. In particular, we will first rely on
state-of-the-art supervised shallow and deep learning models for predicting the health status
of the different sections of the mooring lines. Then, since these supervised models require
types and amount of data that are seldom available, we will propose new shallow and deep
weekly supervised models that require a very small amount of data regarding worn mooring
lines. Results will show that these last models can potentially have practical applicability and
impact for real-time monitoring of mooring systems in the near future. In order to support
our statements, we will make use of data generated with a state-of-the-art digital twin of
the mooring system, OrcaFlex1, for a floating offshore wind turbine reproducing the physical
mechanism of the mooring degradation under different loads and environmental conditions.
Results will show errors around 1% in the simplest scenario and errors around 4% in the most
challenging one, confirming the potentiality of the proposed approaches.
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1. Introduction

Floating Offshore Wind Turbines (FOWTs) are an increasingly favored source of floating offshore renewable energy, and the
otal installed capacity is on the cusp of a rapid expansion [1]. The global installed capacity of FOWTs has already exceeded 60

megawatt and is projected to increase at least 100 times over the next decade with over 6 gigawatt of FOWTs projects earmarked
for the future [2]. Station-keeping of floating offshore renewable energy devices is achieved through the use of mooring systems [3]
that fix the structure to the seabed. A large-scale FOWTs farm may require up to 100÷200 mooring lines, each approximately 100÷250
meters long [4,5]. Many of the current economic barriers to FOWTs are related to preventing station-keeping failures because of
their catastrophic consequences on the FOWTs [6,7].

Mooring systems are exposed to a variety of environmental and operational conditions that cause corrosion, abrasion, and
fatigue [8,9]. These mechanism have as main results a reduction in the chain diameter reducing then structural integrity and
mechanical characteristics of the mooring line [10]. In order to monitor mooring systems’ health status and minimize failures,
regular inspections are required [11]. Regular physical in-service inspections are currently the golden standard [12]. Generally,
this task is carried out using divers or remotely operated vehicles [8]. Diver inspections are not favored due to the risk related to
operating in deep water and human bias [13]. Remotely operated vehicles are employed with limited success since they need to be
re-calibrated between successive measurements (e.g., to avoid errors in transmitting their positioning and the damage location) [14].
However, the inspection-based approach to mooring systems health status monitoring is expensive and inefficient [12]. For this
reason, industry and academia are focusing their attention on developing tools for digital real-time monitoring [14].

State-of-the-art approaches to monitor the health status of mooring systems are based on Integrated Marine Monitoring Systems
(IMMS), which exploit numerical methods in combination with a series of measurements to assess their condition [8,15].

Numerical methods exploited in IMMS are mostly based on three families [13]: physical (PMs), data-driven (DDMs), and hybrid
(HMs) models. PMs require a deep knowledge of the physical phenomena since they use as a predictor a physical model of the
reality [16]. The higher the detail in modeling the equations which describe the physical phenomena, the higher the expected
accuracy of the results and the computational time required for the simulation. DDMs, instead, infer the desired model directly
from historical data collected and require no need of any a-priory knowledge of the underlying physical phenomena [17]. From a
computational point of view, these models have an expensive training phase (i.e., the phase of the construction of the model), but
this phase is performed only one time, and once the model is trained, the prediction is computationally inexpensive [18]. However,
since these models do not exploit physical knowledge, they often require a significant amount of data for the learning phase [19].
In particular, DDMs often require labeled data, namely data referring to healthy and degraded mooring lines: while the former
is abundant and cheaply available, the latter is not in real applications [8]. HMs are a combination of PMs and DDM where the
DDM model compensates the secondary effects not modeled by the PM, and the PM helps the DDM in reducing the amount of
historical data required to train it [20]. Nevertheless, HMs require to have a reasonably accurate and computationally inexpensive
PM available which is most of the time not the case for mooring lines [16].

IMMS mostly rely on directly monitoring the tension in the mooring lines as a method of assessing their integrity [21]. Pilot
Projects, such as the Hywind floating wind farm in Scotland, demonstrate that direct tension monitoring devices are an effective
solution to the problem of mooring system health monitoring [22]. In particular, for the Hywind Pilot Park, direct line sensors
were installed into the bridles of individual mooring lines on FOWTs. More broadly, e.g., for offshore oil and gas floating structures,
multiple solutions have been proposed and commercially applied, such as the subsea inclinometers [23,24]. These devices measure
line angle, which is then converted into the tension estimate through simple equations or precomputed look-up tables [25]. The
direct impact of the mooring system integrity on the safety of the onboard personnel drove initiatives such as the 2017 Joint
Industry Project on Mooring Integrity [25], which considered the currently available solutions: direct tension measurement, tension-
angle measurement, tension–stress (electromagnetic) measurement, sonar and visual (cameras). The very same project also studied
less common approaches: hull-mounted sonars (monitoring the mooring line declination), seabed-mounted sonars (monitoring the
catenary shape), optical scanning apparatus for ropes (monitoring strain in the taut mooring lines), and depth sensors (monitoring
the changes in pressure). These solutions, while effective, have some drawbacks [25–27]: (i) the high costs of direct line tension
sensors installation make it infeasible for large FOWTs installation, (ii) direct line tension sensors operating sub-sea for an extended
period of time require itself a monitoring system (i.e., a meta-monitoring), increasing the complexity of the final system, (iii)
incapability of detecting a failure in the lower segments of the chain (touchdown point and along the seabed towards the anchor),
and (iv) insufficient measurement (refresh) rates for detecting rapidly increasing tension. For this reason, a significant number of
low-cost, low/zero maintenance, and easily deployable alternative sensors have been developed to perform health status monitoring
of mooring systems monitoring through alternative measurements. Examples of these sensors are anemometers and lidars for wind
speed and direction and accelerometers and gyroscopes anchored to the FOWT tower, which provide information about the weather
conditions and FOWT tower displacements and accelerations. Previous works [18,19] have shown that with these inputs, it is
possible to predict in a real application the mooring line tensions, removing the necessity of relying on costly and hard-to-maintain
sensors [26].

There is a large body of literature on the problem of monitoring the health status of mooring systems based on numerical
models. As previously described, each method is characterized by a specific type of leveraged numerical model, i.e., PM, DMM, or
HM, the data sources fed to the models, i.e., low-cost, low/zero maintenance, and easily collectable (e.g., accelerometers data) or
not (e.g., direct tension data), and what they try to estimate (e.g., fatigue or wear).

The evaluation of the health status of the mooring systems with PMs requires a numerical prediction of the dynamic performance
2

during the life cycle of the floating structure [28]. Depending on the particular structure, anchoring system and location, the
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frequency or time domain PMs are employed to model the dynamic performance of the system and the effect of the drag forces,
motion amplitude, and wave amplitude on the tension in the mooring line sections [29]. Authors of [30] leveraged a time domain
quasi-static approach to account for the non-linear effects in wave and motion amplitude, which can have a significant impact on
fatigue in severe environmental conditions. Authors of [31] applied a dynamic approach, improving the quasi-static numerical
prediction by accounting for the drag and inertia forces, as well as the bending and torsional elasticity of the mooring line
segments. Authors of [32] developed a quasi-dynamic mooring line model, where the distributed forces along the mooring line
are computed as a function of the drag and inertial forces (similarly to the dynamic approach of [31]); however, the static solution
of the catenary shape is considered, aiming at high accuracy with low computational cost. Authors of [33] used a hybrid method
between Computational Fluid Dynamics and Finite Element Analysis dynamic models providing a solution for accurate, but more
computationally expensive, prediction of the dynamic response of highly coupled FOWT systems.

To model the wear in the catenary mooring lines other kinds of PMs need to be developed. In [34], the authors modeled the
ear of the chain links of a spar FOWT based on the motion predicted by a time domain multi-body dynamic model, with the

ontact stiffness and friction based on the Hertzian contact theory [35] and Finite Element Analysis solution. The method has been
ater validated through the chain diameter measurements, as reported in [36]. Authors of [37] demonstrated the use of Finite
lement Analysis to aid the selection of frequency for the ultrasonic guided waves approach for chain links health measurements.
uthors of [38] applied Finite Element Analysis to analyze the acoustic emission wave propagation along the structure to determine
ooring systems crack initiation and growth. Authors of [12], leveraged Finite Element Analysis to estimate the residual strength

f the mooring system components, aiding the decision about further maintenance steps. The Noble Denton led Mooring Integrity
or Floating Offshore Installations Joint Industry Project [39] formulated an analytical method to calculate inter-link wear of the
atenary mooring system, accounting for the effects of adhesion, corrosion, surface fatigue and erosion, both at the design and
peration stages.

There have been a number of successful studies that demonstrate the application of DDMs to reliably address monitoring offshore
evices [40–48].

Authors of [46] developed deep neural network approach to extract damage-sensitive features from vibration frequency data
oming from a lab-scale offshore jacket structure. Their model to classify damage under uncertainty was trained on data from a
inite element model and intact experimental data. The proposed damage detection model was shown to outperform traditional
DMs. In subsequent work on the same structure Mousavi et al. [47], authors created a dictionary learning-based approach to
lassify damage to the structure under varying working loads. Results showed that the exploratory method presented in this work
as promising for predicting certain classes of damage under varying working loads.

Specifically regarding monitoring station-keeping devices, the authors of [41] investigated fatigue damage of mooring lines
sing Artificial Neural Networks observing a significant influence of the environmental conditions (waves, wind, and currents) on
he tension bands in the mooring lines. Additionally, the authors of [43–45] demonstrated the benefits of using DDMs for monitoring
OWTs when it comes to scaling predictive tools site-wide. Nevertheless, the works of [43–45] are primarily focused on catching
xtreme tensions and snap loads in Mooring Lines rather than specifying an area of damage for preventative measures before it leads
o failure. Outwith the FOWTs industry, the authors of [40] employed DDMs to approximate the response of a mooring system in
lace of a computationally expensive PM, where they used a non-linear autoregressive exogenous model as a surrogate for a Finite
lement Analysis model to accurately simulate the mooring line tension response over a period of multiple hours. Furthermore,
he authors of [42] developed a Long Short Term Memory network for real-time monitoring of a mooring system for a Floating
roduction Storage Offshore. Their approach leveraged a synthetic dataset developed using a dynamic PM and was able to predict
he mooring line tension under different environmental conditions.

While the above studies are an important first step, there are just a few studies that demonstrate the application of DDMs to
ddress, with costs awareness, monitoring station-keeping devices, i.e., without direct tension monitoring [49–52]. The authors

of [49] developed a Position Response Learning System able to classify if a mooring line has catastrophically failed without relying
on direct tension measurements. Their system relies on synthetic data of a Floating Production Storage Offshore vessel to develop
a Deep Neural Network capable of detecting a mooring line failure: the system succeeded in its task with a classification accuracy
of 98%. Part of this work focused on detecting the most important features for the model to achieve good performance. The GPS
location, the acceleration of the platform in 6 degrees of freedom, and the environmental conditions were the features that led to
the highest accuracy. While the Position Response Learning System could be used to classify which specific mooring line has broken
with 60÷70% accuracy, this model does not provide insight into the degradation mechanism or the reason for the disconnection.
Additionally, as the mooring system degrades with time and the system dynamics deviate from the initial conditions, the Position
Response Learning System will be required to periodically relearn the response of the system to account for these changes. Authors
of [50] investigated the use of a Convolutional Neural Network to classify the condition of a mooring line for a Floating Production
Storage Offshore using trace images. Specifically, they rely on the offset traces of the platform in the horizontal plane alongside the
platform accelerations in 6 degrees of freedom as input to the model. The dataset was constructed using a PM supplied with different
points in time across a wide range of operating conditions. The system was able to classify the mooring system condition as intact
or damaged but could not give an indication of the possible failure mechanism until a close inspection of the line was carried out.
The authors of [52] exploited a Deep Learning model to detect damage of a floating production storage offshore mooring system.
Their study relied on synthetic data developed from a dynamic PM under different environmental conditions to infer the damage to
different tension legs: the ability to detect an area the damage was limited to the tension leg instead of localizing the area of damage.
Authors of [48] developed a convolutional neural network based approach to detect the damage magnitudes of the mooring lines
3
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of a barge platform. The proposed approach showed that when the dynamics of the mooring lines were investigated from structure
creep to failure the structural damages were clearly distinguished by the response of the yaw motions.

There is a very limited amount of research in the context of HMs with limited success for the reasons described in the introduction.
or example, HMs have been exploited to obtain the fatigue characteristics of individual mooring lines, simultaneously exploiting
ata coming from sensors mounted on the floating structure (e.g., accelerometers, gyroscopes, and satellite positioning) and the

knowledge encapsulated in already known PMs. The authors of [53] exploited the position and motion signals coming from the
sensors mounted on a Hywind Scotland Wind Turbine in combination with the transfer functions coming from a PM to infer the
mooring line tension cycles. Then, the conventional S-N curve method [54] and peridynamic fatigue analysis approaches [55] were
trialed to access the accumulated fatigue damage. Significant discrepancies in the line tension were obtained this way, and the actual
tension measured with load cells was observed. This was attributed to both the limitations in the monitoring system (e.g., lack of
acceleration data and a noisy signal obtained from the load cells) and limitation of the exploited PM (e.g., the assumption of idealized
ositions of the anchors and the discrepancies between the blade-pitch controller implemented in the PM and the one used by the
eal Wind Turbine).

The current methods for monitoring FOWTs mooring systems faces a significant challenge in effectively utilizing data from low-
ost, low-maintenance, and easily deployable sensors, such as tower accelerometers, for nowcasting the health status of mooring
ystems. This highlights the need to develop novel methods that can exploit the available data streams and infer the health status
ithout the need for costly inspections. The primary obstacle to achieve this goal is the lack of extensive labeled data on worn
ooring lines, which hampers the development and training of DDMs. In general, DDMs require sufficient data to accurately predict

he degradation state of mooring lines, yet acquiring such data in real-world scenarios is exceedingly rare.
Based on these premises, in this paper, we propose to build models able to estimate the degradation state of a mooring line based

n just low/zero maintenance and easily deployable alternative sensors, namely weather conditions and FOWT tower displacements
nd accelerations. In particular, since no reasonably accurate and computationally inexpensive PM is available for this purpose,
e will leverage DDMs purely. Moreover, since in real applications, labeled data referring to healthy and degraded mooring lines
re scarcely available, this study aims at designing and proposing multiple alternatives for the reduction of the use of labeled
ata towards a weekly supervised health status mooring line monitoring, targeting to reduce as much as possible the necessity
f labeled data at least to a level which is realistic to retrieve in the wild. For this purpose, we will first rely on state-of-the-art
upervised shallow and deep learning models for predicting the health status of the different sections of the mooring lines. Then,
ince these supervised models require types and amount of data that are seldom available, we will propose new shallow and deep
eekly supervised models that require a very small amount of data regarding worn mooring lines. Results will show that these

ast models have the potential to have practical applicability and impact for real-time monitoring of mooring systems of floating
ffshore renewable energy in the near future. To support our statements, we will make use of data generated with a state-of-the-art
igital twin of the mooring system to reproduce the physical mechanism of the mooring degradation under different loads and
nvironmental conditions.

The rest of the paper is organized as follows. In this section we provided an overview on FOWT mooring systems, a review of
he related work on numerical models for modeling mooring systems, a description of the open challenges in the literature, and
he contributions of this work. Section 2 will describe the problem and the available data to address it. Section 3 will detail the
roposed methodology. Section 4 will assess the effectiveness of the proposal of Section 3 in addressing the problem described in
ection 2 exploiting the data described in the very same section. Finally, Section 5 concludes the paper.

. Problem description and available data

This section is devoted to the formalization of the problem and the description of the available data to address it.
The FOWT considered for this study is the OC4-DeepCwind, a semi-submersible floating wind turbine developed by the National

enewable Energy Laboratory in partnership with industry partners.2 The platform consists of a central buoyant hull supporting the
ower, surrounded by an array of three large-volume cylindrical hulls. The large second moment of waterplane area of the platform
rovides high stability, significantly reducing the motions of the system in wind and waves, which, among other benefits, reduces
he stress on the turbine’s components and increases its lifespan. It is designed to be anchored to the seabed in deep waters (hence
he name ‘‘DeepCwind’’) where the wind is stronger and more consistent than closer to shore. The OC4-DeepCwind platform sits
n the surface of the water and is anchored to the seabed with mooring lines. The OC4-DeepCwind turbine has a rated capacity
f 5 MW and a rotor diameter of 172 m. Fig. 1 depicts the OC4-DeepCwind highlighting the mooring system and the considered
ensing equipment. In particular, we will consider

• gyroscopes positioned on the tower to measure surge, sway, and heave angular velocity, acceleration, and displacement;
• accelerometers positioned on the tower to measure surge, sway, and heave velocity, acceleration, and displacement;
• load-pins and declinometers, anchored where the mooring line is attached to the fairleads, to measure mooring line tension

and tension-angle;
• lidar to measure the wind speed.
Weather information, providing, e.g., significant wave height and main waves direction, are usually retrieved from the

eteorological Service.3 Note that, in this study, we considered each mooring line to be composed of three sections of the same

2 www.nrel.gov/docs/fy14osti/60601.pdf
3 www.metservice.com
4
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Fig. 1. OC4-DeepCwind highlighting the mooring system and the considered sensing equipment.

length, studying the health status of each section. The first section is the one attached to the FOWT, the third one is the one attached
to the seabed, and the second one is placed in between.

Since there is no real data available, providing also information about the health status of the different sections of the different
mooring lines, we will leverage data generated with a state-of-the-art digital twin of the mooring system. To develop the digital
twin, we leverage OrcaFlex,1 a leading software package for marine systems design and analysis of a FOWT, able to reproduce the
physical mechanism of the mooring degradation under different loads and environmental conditions and consequently the realistic
data that are required in our study.

In more detail, we exploited OrcaFlex to synthetically generate a time series of data generated by the gyroscope, the
accelerometer, the mooring lines load-pins and the mooring lines declinometers at 8 different collinear wind and wave directions
(namely {0, 15, 30,… , 105} degrees) under different health status conditions of the different sections of the different mooring lines.
In more detail, we exploited OrcaFlex to synthetically generate a time series of data generated by the gyroscope, the accelerometer,
the mooring lines load-pins, and the mooring lines declinometers at 8 different collinear wind and wave directions (namely
0, 15, 30,… , 105 degrees) under different health status conditions of the different sections of the different mooring lines. For each
experiment, the wind speed has been consistently maintained at a constant 4 meters per second and the significant wave height has
been set at 1.1 meters with a peak wave period of 8.7 s. The choice to maintain constant environmental conditions, with a fixed
wind speed, significant wave height, and a peak wave period was made to ensure that the primary focus of the study was on the
effect of the degradation of the mooring lines themselves, rather than the influence of varying environmental forces.

Note that authors are aware that some sensors (e.g., lidar) can be prone to errors [56]. Nevertheless, since data have been
generated with OrcaFlex, these inaccuracies and their impact have not been considered in this work. Exploiting the platform wet
geometry symmetry, and the fact that the mass distribution is largely symmetrical with respect to the vertical axis, only the angles
between 0 and 105 degrees have been considered in this analysis. Furthermore, following the same approach described in the
technical specification IEC61400-3-2 [57], the wind speed and wave significant height and peak period have been maintained
constant over each load case considered. Finally, OrcaFlex allowed us to consider all the possible combinations of the degradation
state of the sections of the mooring lines, i.e., Section 𝑖 ∈ {1, 2, 3} of Mooring Line 𝑗 ∈ {1, 2, 3} can be healthy (no reduction in the
chain diameter due to the main degradation mechanism of corrosion, abrasion, and fatigue as stated in the introduction) or degraded
(10% reduction in the chain diameter), for a total of 29 = 512 combinations. Then, by multiplying together the 8 different collinear
wind and wave directions with the 512 combinations of possible decay states, we had to run a total of 4096 Orcaflex simulations
with each one producing 2 hours of gyroscope, accelerometer, mooring lines load-pins, and the mooring lines declinometers data.
The details of these data have been summarized in Table 1.

It is important to note that the threshold of 10% in the reduction in the chain diameter has been selected according to the
literature. In fact, as the authors of [58,59] state, for chain components, the relationship between diameter reduction and breaking
load reduction is non-linear: ≈10% reduction to the diameter of a mooring chain is considered to reduce the minimum breaking
load of the component by ≈20%. Authors of [60] state that historically widely accepted industry criteria for reducing component
breaking strength before replacement is 10% for permanent offshore units. Although the industry is trying to move away from this
5
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Table 1
Available data description.
Sensor Data acquired Type Sampling Duration

frequency

Gyroscope

Roll
Velocity

Time Series 10 Hz 2 hours

Acceleration
Displacement

Pitch
Velocity
Acceleration
Displacement

Yaw
Velocity
Acceleration
Displacement

Accelerometer

Surge
Velocity
Acceleration
Displacement

Sway
Velocity
Acceleration
Displacement

Heave
Velocity
Acceleration
Displacement

Lidar Wind Direction Scalar – –

Mooring Lines 1, 2, and 3 Tension

Time Series 10 Hz 2 hLoad-Pins

Mooring Lines 1, 2, and 3 Tension angle
Declinometer

prescriptive criteria stated in [60] to a risk-based inspection regime, the use of a maximum 10% diameter reduction is considered
by authors of this paper as conservative for modeling a corroded chain component.

In this work, we want to face multifold problems. The general one is to predict the status (i.e., whether the reduction in the
chain diameter is above or below 10%) of the mooring system based on the data of Table 1. More specifically, we want to address
this general problem by trying to

• predict the status of all the sections of each mooring line, not simply the whole mooring system;
• avoid the use of mooring line tension and tension angle sensors that are, from one side, very informative on the reduction in

the chain diameter but, from the other side, are costly and require maintenance themselves;
• reduce, as much as possible, the need for labeled data in general (i.e., data with associated mooring line health status) and

specific data about unhealthy mooring sections that are seldom available in real applications.

3. Methodology

In this section, we will describe the proposed methodology for addressing the problem described in Section 2 leveraging the data
described in the same section.

The problem we want to address in this work can be mapped to conventional learning from data framework [61,62], in which
one has to consider an input space  (i.e., the data of Table 1) and an output space  and the goal is to estimate the unknown
rule 𝜇 which maps 𝑋 ∈  and 𝑌 ∈  . In our case, the output space is binary  = {±1} (i.e., 𝑌 = −1 means reduction in the chain
diameter is below 10% and 𝑌 = +1 means above 10%). In order to estimate the unknown rule 𝜇 a series of historical examples,
namely the dataset 𝑛 ∶

{(

𝑋1, 𝑌1
)

,… ,
(

𝑋𝑛, 𝑌𝑛
)}

(i.e., the 4096 samples described in Section 2) is available. When 𝑛 contains both
elements in the input space and the associated labels from the output space, the problem is named supervised and, more specifically,
in our case, the problem is named binary classification [61]. When 𝑛 contains just elements in the input space, which means that
the associated labels from the output space are not explicitly known (or known only for just a few elements), the problem is called
unsupervised (or weekly/semi-supervised) [61]. Finally, when 𝑛 contains elements from the input space and only few of them
label, but we know that most of the input space is coming from elements associated with 𝑌 = 1, the problem is called anomaly
(novelty/outlier) detection [63,64].

A learning from data algorithm 𝒜 tries to approximate 𝜇 based on 𝑛. More specifically, an algorithm 𝒜 , where  are the
hyperparameters that characterize the algorithm, maps 𝑛 into a model 𝑓 inside a space of possible ones  . Currently, there are two
main families of learning algorithms in the literature: namely shallow [61] and deep [62]. The difference relies on how the input
space  is preprocessed. For shallow learning algorithms,  is first mapped, by means of a handcrafted feature engineering phase,
into a vector 𝝓(𝑋) ∈ R𝑑 , named representation, able to well represent  while discarding the unuseful information [65,66]. For deep
learning algorithms,  is mapped into a representation 𝝓(𝑋) ∈ R𝑑 by means of an architecture able to learn the best mapping without
6
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fixing it a priori [62,67]. Then, based on this representation 𝝓(𝑋), different simple shallow algorithms (e.g., Linear Models [68],
nsemble Methods [69,70], and Bayesian Methods [71]) make the actual prediction of 𝑦 ∈  .

The error that the model learned by 𝒜 , namely 𝑓 , commits in approximating 𝜇 is measured with reference to a metric [72,73]
and is deeply influenced by choice of the algorithm 𝒜 and its hyperparameters . In this work, since we want to detect if a section
of mooring exhibits a reduction in the chain diameter below 10% (𝑌 = −1) or above 10% (𝑌 = +1) we will measure the overall
percentage of error (%ER), the percentage of false positive (%FP), and the percentage of false negative (%FN). This error must be
optimized during the Model Selection phase [74]. Finally, the performance of the final model needs to be assessed during the Error
Estimation phase [74]. Obviously, 𝑛 cannot be exploited to perform all the necessary phases described above since we cannot
use the data in 𝑛 to construct a model and assess its performance simultaneously. For this reason, 𝑛 is split into three mutually
exclusive sets of data called learning 𝑙, validation 𝑣, and test 𝑡 sets such that

𝑛 = 𝑙 ∪ 𝑣 ∪ 𝑡, 𝑙 ∩ 𝑣 = ⊘, 𝑙 ∩ 𝑡 = ⊘, 𝑣 ∩ 𝑡 = ⊘. (1)

Then, the 𝑙 is exploited to learn 𝑓 with 𝒜 , 𝑣 to choose 𝒜 and , and 𝑡 to assess the performance of the 𝑓 learned with the
best 𝒜 and . To ensure the statistical relevance of the results, the procedure needs to be repeated multiple times (in our case
30 times), reporting the average results [74]. Note that, when we deal with an anomaly detection problem and then we use an
anomaly detection algorithm, 𝑙 does not need to contain labeled samples and so just 𝑣 and 𝑡 needs to contain labeled samples.
This strongly reduces the necessity of labeled samples to the smallest possible amount [75,76].

In the next section, we will incrementally address the multifold problems described in Section 2, i.e., predict whether the
reduction in the chain diameter is above or below 10% based on the data of Table 1, as follows

• first, in Scenario 1 (see Section 3.1) we will solve a binary classification problem (i.e., whether the reduction in the chain
diameter is above or below 10% for all the mooring line sections) using both shallow and deep learning in a fully supervised
way using

– a complete dataset, i.e., we suppose to have the whole dataset of Table 1 for each combination of the health status of
each mooring line section (Scenario 1 A);

– a partial dataset, i.e., we assume to have the dataset of Table 1 for each combination of the health status of each mooring
line section but without the information about tension and tension angle (Scenario 1B);

• then, in Scenario 2 (see Section 3.2) we will solve an anomaly detection problem, i.e., whether the reduction in the chain
diameter is above 10% for all the mooring line sections, using both shallow and deep learning in a weakly supervised way
using a partial dataset, i.e., we suppose to have the dataset of Table 1 without the information about tension and tension angle,
to know that most of the samples are coming from healthy mooring line sections, and to have just minimal amount of labeled
data.

The purpose of these models is to reach the ability to address all the requests of the practical application described in Section 2
and to have a different baseline for comparison in Section 4 to measure what is the impact on the performance of the resulting
data-driven monitoring systems incrementally adding the requests of the practical application.

3.1. Fully supervised: from Shallow to Deep Models

Scenario 1 A and 1B can be mapped into a series of simple binary classification problems (more precisely 9 binary classification
problems since we have 3 mooring lines each composed of 3 sections), i.e.,  = {±1} where 𝑌 = −1 means that the reduction in the
chain diameter is below 10% while 𝑌 = +1 means that it is above. However, there is a difference with the input space  , i.e., for
Scenario 1 A  counts of all the information of Table 1 while for Scenario 1B  counts the same information except for the tensions
and tension angles.

In order to solve these binary classification problems we will consider both shallow and deep models.
Shallow models rely on a simple idea. First,  is mapped in a new space by means of the mapping 𝝓 ∶  → R𝑑 based on

previous knowledge about the problem or based on classical signal processing techniques [66,77]. Then, on this new space, a linear
(e.g., Support Vector Machines [68], Kernel Methods [68], or Ensemble Methods [69,70]) shallow model is applied. Simply feeding
the raw features of Table 1 to the shallow model will never work [78]. In our case, for the scalar variables of Table 1, we kept them
as is, while for the time series we performed a feature engineering phase following state-of-the-art approaches proposed in [79–83]
where classical signal processing techniques have been applied in order to extract from the time series a vector of representation
composed by variables such as the mean, the median, and the signal magnitude area for both the time and frequency domains
for a total of 𝑑 = 1010 for Scenario 1 A and 𝑑 = 650 for Scenario 1B. The Fast Fourier Transform was used to obtain frequency
components.

Table 2 shows the list of measures applied in both time and frequency domain signals.
At the end of this feature engineering step, we applied a series of state-of-the-art top-performing classification algorithms4 [84,

85]: Linear and Nonlinear (Gaussian Kernel) Support Vector Machines [68] (respectively LSVM and KSVM), Random Forest
(RF) [70], and XGBoost (XGB) [69]. Each one of these models have a series of hyperparameters that need to be tuned. LSVM
has the regularization hyperparameter 𝐶 while KSVM has both 𝐶 and the kernel coefficient 𝛾 to be tuned. In RF we need to tune

4 Results in Kaggle www.kaggle.com, the most popular Machine Learning competition website, shows how Support Vector Machines, Random Forest, and
7

GBoost algorithms are the top winners.

http://www.kaggle.com
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Table 2
Features engineered from the time series of Table 1.
Function Description

mean Mean value
var Variance
mad Median absolute value
max Largest value in array
min Smallest value in array
sma Signal magnitude area
energy Average sum of squares
iqr Interquartile range
entropy Signal Entropy
correlation Correlation coefficient between series
kurtosis Signal Kurtosis
skewness Signal Skewness
maxFreqInd Largest frequency component
argMaxFreqInd Index largest frequency component
meanFreq Frequency signal weighted average
skewnessFreq Frequency signal Skewness
kurtosisFreq Frequency signal Kurtosis
ampSprec Amplitude Spectrum of the frequency signal
angle Phase angle of the frequency signal

Table 3
Hyperparameters and hyperparameters search space for all algorithms
tested in this work.
Algorithm Hyperparameters

LSVM 𝐶 ∶ {0.001, 0.01, 0.1, 1, 10, 100}

KSVM, OCSVM 𝐶 ∶ {0.001, 0.01, 0.1, 1, 10, 100}
𝛾: {0.1, 0.01, 0.001, 0.0001}

RF

𝑛𝑓 ∶ {𝑑1∕3 , 𝑑1∕2 , 𝑑3∕4}
𝑛𝑙 ∶ {1, 3, 5, 10}
𝑛𝑑 ∶ {5, 7, 10}
𝑛𝑡 ∶ {1000}

XGB

𝑙𝑟 ∶ {0.01, 0.02, 0.03, 0.04, 0.05}
𝑛𝑑 ∶ {3, 5, 10}
𝑚𝑙 ∶ {0, 0.1, 0.2}
𝑛𝑏 ∶ {0.6𝑛, 0.8𝑛, 1𝑛}
𝑛𝑓 ∶ {0.5𝑑, 0.8𝑑, 1𝑑}

TCN

𝑙𝑟: {0.0001, 0.0005, 0.001, 0.005, 0.01}
𝑑𝑟,0 ∶ {0.1, 0.15,… , 0.5}
𝐶 ∶ {0.00001, 0.00005, 0.000001}
ℎ𝑙 ∶ {1, 2, 3, 4}
𝑛𝑖 ∶ {16, 32, 64, 128, 256}
𝑘𝑠,𝑖 ∶ {3, 5, 7, 9, 11}

GKNN 𝑘 ∶ 3{1,2,3,4,5,6}

the number of features to randomly sample from the entire set of features at each node of each tree 𝑛𝑓 , the maximum number of
lements in each leaf of each tree 𝑛𝑙, and the maximum depth of each tree 𝑛𝑑 . As RF performance improves increasing the number
f trees, 𝑛𝑡, we set it to 1000 as a reasonably large number but yet computationally tractable. Finally, in XGB we need to tune
he learning rate of the gradient 𝑙𝑟, the max depth of arch tree 𝑛𝑑 , the minimum loss reduction 𝑚𝑙, number of training samples
o randomly sample from the whole training set for each tree creation 𝑛𝑏, and the number of feature to randomly sample from
he entire set of features at each node of each tree 𝑛𝑓 . The summary of these hyperparameters with the associated search space is
eported in Table 3.

In order to further improve the performance of the shallow models, we decided to add a dimensionality reduction step to remove
ll the uninformative variables, which may be numerous due to the comprehensive feature engineering phase [86]. In particular,
or each training phase of each model, we applied the permutation feature importance method [70,87,88], using the mean decrease
f accuracy as a metric, and removed all the features with no positive impact according to this metric. Then we retrained the model
n this reduced feature set. The pipeline we proposed for shallow models is depicted in Fig. 2. As a final note, with shallow models,
e need to create a different model for each one of the 9 targets [61].

Shallow models have one main limitation: their dependency on handcrafted and experience-based features identified through
feature engineering step which may include too many irrelevant features or leave out important features. Deep models allow

s to overcome these limitations. Relying on state-of-the-art architectures able to address temporal analysis, such as the classical
8

nd the bidirectional Long-Short-Term Memory network (LSTM) [89,90], it is possible to learn the features from the data. Even if
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Fig. 2. Pipeline for the fully supervised shallow models.

owerful, classical and bidirectional LSTM networks have recently shown to have some limitations [83,91] in practical applications.
o overcome LSTM limitations, we decided, similarly to [83,91], to substitute the LSTM blocks with Temporal Convolutional
etwork (TCN) residual blocks [92–94] which are able to focus on multiple temporal scales for each raw time series independently.
he proposed architecture is reported in Fig. 3. There are three main peculiarities of the proposed deep multiple temporal scale
rchitecture based on TCN: (i) the convolutions in the architecture are causal, namely, there is no information leakage from future
o past, (ii) the architecture can handle different sequences lengths and map them to an output sequence of the same length like the
STMs, and (iii) the architecture is able to handle long effective history. For what concerns (i) the TCN uses causal convolutions.
or what concerns (ii), it is due to the use of 1D fully-convolutional network model where each hidden layer has the same length
f the input layer; zero padding of length (kernel size−1) is added to preserve the previous length. As for (iii) we employed dilated

convolution that enables a large receptive field [95] without employing too deep TCN residual blocks. In particular, we defined a
standard architecture where the different raw time series are fed to the TCN layer which is in charge of extracting the representation
that is then fed directly to a dense L2 regularized layer to produce the required 9 outputs directly. The network has been trained
with the ADAM optimizer empowered with one-cycle learning rate. This architecture has a series of hyperparameters that need to
be carefully tuned: the learning rate 𝑙𝑟, the dropout rate 𝑑𝑟,0 on the last TCN layer and the final dense fully connected layer, the
number of TCN blocks ℎ𝑙 for each time series, the number of filters in each block 𝑛𝑖 (𝑖 ∈ {1,… , ℎ𝑙}), the kernel dimension 𝑘𝑠,𝑖 for
each series 𝑠 and each block 𝑖, and the L2 regularization on the weight of the entire network 𝐶 (see Table 3). Note that, in this case,
the hyperparameters configuration space explodes since we have, possibly, different configurations of the kernel dimension for each
time series. For this reason, to reduce this hyperparameters configuration space and consequently reduce the number of weights of
the final network (both for LSTM and TCN based deep models), we decided on a twofold strategy. The first one is to reduce the
number of input series from the original 24 for Scenario 1 A and 18 for Scenario 1B. In fact, it is reasonable to assume that many
of these series contain redundant information. In order to address this issue, we rely on shallow models as suggested in [83]. In
particular, similarly to the feature reduction phase implemented in shallow models, we implemented a time series reduction phase.
Using the permutation importance again with a mean decrease of accuracy as a metric, we permuted not the engineered features
but the original time series discarding all the time series that non positively contribute according to the mean decrease of accuracy.
Thanks to this reduction in the number of input time series, the TCN based architecture strongly reduces the number of weights
to tune and the hyperparameters configuration search space. The second strategy to reduce the hyperparameter search space is to
randomly search on it, not performing the grid search as suggested in [96]. The pipeline we proposed for deep models is depicted
in Fig. 4.

3.2. Weakly supervised: from Shallow to Deep Models

Scenario 2 can be mapped into a series of simple anomaly detection problems (more precisely 9 since we have 3 mooring lines
each composed of 3 sections), i.e., an anomaly is when the reduction in the chain diameter is above 10%. The input space  of
Scenario 2 counts all the information of Table 1 except for tensions and tension angles.

In order to solve these anomaly detection problems, we can rely on, as we did in Section 3.1, both shallow and deep models.
Shallow models rely, similarly to what is explained in Section 3.1, on a simple pipeline. First,  is mapped in a new space

by means of the mapping 𝝓 ∶  → R𝑑 based on previous knowledge about the problem or based on classical signal processing
techniques [66,77]. In this section, we will rely on the same feature engineering phase described in Section 3.1. Then, in this new
space, top shallow learning algorithms for anomaly detection problems are exploited. According to [64,73], two anomaly detection
methods based on Kernel Methods [68] and K-Nearest Neighborhood [68] respectively, are the top choices in this context. In
particular One-Class Support Vector Machines (OCSVM) [68] is a boundary-based anomaly detection method inspired by Kernel
Methods, which enclose the inlier class in a minimum volume hypersphere and like Kernel Methods can also be extended to non-
linearly transformed spaces using the Kernel trick. The hyperparameters of OCSVM are the same as the ones of KSVM. The Global
K-Nearest Neighborhood (GKNN), inspired by the K-Nearest Neighborhood, has been originally introduced as an unsupervised
distance-based outlier detection method [97]. The hyperparameter GKNN is the number of neighbors to be considered 𝑘. The
summary of these hyperparameters with the associated search space is reported in Table 3. Note that, contrary to what has been
done in Section 3.1, we cannot further improve the performance by adding a dimensionality reduction step since we do not have
enough labeled samples. The pipeline we proposed for shallow models is depicted in Fig. 5.

Shallow models for anomaly detection have the same main limitation described in Section 3.1: they depend on handcrafted and
experience-based features identified through a feature engineering step which may include too many irrelevant features or leave
9
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Fig. 3. The proposed Deep Multi Scale Models architecture based on TCN.

Fig. 4. Pipeline for the fully supervised Deep Models.

Fig. 5. Pipeline for the weakly supervised shallow models.

out important features. Deep models, in Section 3.1, allowed us to overcome this limitation, learning this representation from the
data. Unfortunately, the same approach cannot be adopted here since we do not have labeled samples to learn this representation.

For this reason, we will learn this representation in a fully unsupervised way [62]. In particular, we replace as target to Fig. 3(a)
the reconstruction of the original series, namely we give as target to the neural network of Fig. 3(b) the original time series. This
10
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Fig. 6. Pipeline for the weakly supervised deep models.

allows us to learn a representation in a fully unsupervised way [98]. The hyperparameters of this network are the same as the one
of Section 3.1 reported in Table 3. Then, on top of this representation, we will rely on the shallow models that we just described
(OCSVM and GKNN) with the hyperparameters of Table 3. Also, in this case, we could not reduce the number of series as we did
for deep models in Section 3.1 since no labeled data are available. The pipeline we proposed for deep models is depicted in Fig. 6.

4. Experimental results

In this section, we will show the results of applying the methodology described in Section 3 to the problems described in Section 2
leveraging the data reported in the very same section.

In particular, Section 4.1 will report the results in the fully supervised Scenarios 1 A and 1B, comparing the results of Shallow
and Deep Models. Section 4.2, instead, report the results in the weakly supervised Scenarios 2 comparing, as in Section 4.1, the
results of Shallow and Deep Models.

Sections 4.1 and 4.2 also report a summary showing the decrease in performance for both Shallow and Deep Models, going from
Scenarios 1 A, i.e., the less realistic but also challenging one, to Scenarios 2, i.e., the most realistic but also challenging one.

4.1. Fully supervised: from Shallow to Deep Models (Scenario 1)

This section is devoted to the experimental evaluation of Shallow and Deep Models in Scenarios 1 A and 1B (see Section 3),
the fully supervised ones, testing the methodology presented in Section 3.1 leveraging the data described in Section 2. Note that
Scenarios 1 A and 1B differ just in the data, or better features, that are available to make predictions about the health status
(i.e., whether the reduction in the chain diameter is above or below 10%) of the 3 sections of the 3 mooring lines. In particular:

• Section 1 A exploits all the features of Table 1
• Section 1B exploits all the features of Table 1 except the information about tension and tension angle (i.e., information coming

from sensors that are costly, require maintenance, and are hard to deploy as described in Section 1).
Note that in this case 𝑙 = 0.8𝑛, 𝑣 = 𝑡 = 0.1𝑛, namely 80% of the data has been used for learning, 10% for validation and 10% for
test.

4.1.1. Exploiting tension and tension angle measurements (Scenario 1 A)
Let us consider Section 1 A.
Table 4 reports the quality (in terms of %ER, %FP, and %FN) averaged on the mooring lines and sections of the different Shallow

(LSVM, KSVM, RF, and XGB) and Deep (TCN) algorithms described in Section 3.1.
Table 5, instead, reports the quality (in terms of %ER, %FP, and %FN) for each mooring line and each section for the best

Shallow (XGB) and Deep (TCN) algorithms employed. The best Shallow and Deep algorithms have been chosen in accordance with
Table 4 considering the metric %ER.

From Tables 4 and 5 it is possible to observe that
• quality of the results is, in general, high. In fact, apart from the LSVM, all models report %ER below 5%;
• %FP and %FN are quite aligned to the %ER, meaning that the models are performing well in predicting whether the reduction

in the chain diameter is both above or below 10%;
• among the shallow model XGB resulted in being the best performing one immediately followed by RF. This is not surprising

and in line with what is described in Section 3.1;
• the deep model based on TCN strongly outperform XGB showing the actual potentiality of the proposed architecture;
• results are quite consistent also when looking at the quality of the best Shallow (XGB) and Deep (TCN) algorithms on the

different sections of the mooring lines;
• it is interesting to note that the 2nd section, the central one, seems to be consistently the harder one to be able to predict

correctly with the higher %ER.
11
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Table 4
(Scenario 1A): %ER, %FP, and %FN, averaged on the mooring lines and
sections, for the different shallow (LSVM, KSVM, RF, and XGB) and deep (TCN)
algorithms employed.

Algorithm %ER %FP %FN

Shallow

LSVM 7.4 ±1.1 7.4 ±1.1 7.3 ±1.2
KSVM 4.4 ±0.6 4.4 ±0.7 4.3 ±0.6
RF 3.1 ±0.5 3.2 ±0.5 3.0 ±0.5
XGB 2.1 ±0.3 2.0 ±0.3 2.2 ±0.3

Deep TCN 1.0 ±0.2 1.0 ±0.2 1.0 ±0.2

Table 5
(Scenario 1A): %ER, %FP, and %FN, for each mooring line and each section, for the best shallow (XGB) and deep (TCN) algorithms
employed.

Mooring XGB TCN
Line Section %ER %FP %FN %ER %FP %FN

1
1 1.8 ±0.2 1.8 ±0.2 1.8 ±0.2 0.9 ±0.1 0.9 ±0.1 0.8 ±0.1
2 2.1 ±0.3 1.8 ±0.2 2.4 ±0.4 1.1 ±0.2 1.0 ±0.2 1.1 ±0.2
3 2.2 ±0.4 1.9 ±0.3 2.6 ±0.4 1.0 ±0.1 0.9 ±0.1 1.0 ±0.1

2
1 2.1 ±0.3 1.9 ±0.2 2.3 ±0.4 0.9 ±0.1 0.8 ±0.1 0.9 ±0.1
2 2.5 ±0.3 2.3 ±0.3 2.8 ±0.4 1.3 ±0.2 1.3 ±0.2 1.3 ±0.2
3 1.9 ±0.2 2.0 ±0.2 1.7 ±0.3 0.9 ±0.2 0.8 ±0.2 1.0 ±0.2

3
1 2.1 ±0.4 2.1 ±0.4 2.1 ±0.3 1.1 ±0.1 1.0 ±0.1 1.1 ±0.1
2 2.6 ±0.4 2.6 ±0.3 2.5 ±0.4 1.2 ±0.1 1.3 ±0.2 1.0 ±0.1
3 1.7 ±0.2 1.6 ±0.2 1.8 ±0.2 1.1 ±0.2 1.1 ±0.1 1.0 ±0.2

Table 6
(Scenario 1B): %ER, %FP, and %FN, averaged on the mooring lines and sections,
for the different shallow (LSVM, KSVM, RF, and XGB) and deep (TCN) algorithms
employed.

Algorithm %ER %FP %FN

Shallow

LSVM 12.0 ±2.5 12.0 ±2.6 12.1 ±2.3
KSVM 7.5 ±1.6 7.5 ±1.5 7.5 ±1.7
RF 5.5 ±1.1 5.4 ±1.1 5.6 ±1.2
XGB 4.3 ±0.9 4.3 ±0.9 4.2 ±1.0

Deep TCN 3.1 ±0.7 3.1 ±0.6 3.1 ±0.7

4.1.2. Neglecting tension and tension angle measurements (Scenario 1B)
Let us consider Section 1B.
Table 6 reports, analogously to Table 4, the quality (in terms of %ER, %FP, and %FN) averaged on the mooring lines and sections

f the different shallow (LSVM, KSVM, RF, and XGB) and deep (TCN) algorithms described in Section 3.1.
Table 7 reports, analogously to Table 5, the quality (in terms of %ER, %FP, and %FN) for each mooring line and each section, for

he best shallow (XGB) and deep (TCN) algorithms employed. The best Shallow and Deep algorithms have been chosen in accordance
ith Table 4 considering the metric %ER.

From Tables 6 and 7, it is possible to derive comments quite similar to the ones derived from Tables 4 and 5. The only difference
s in the slight decrease in performance with respect to the one obtained in Section 1 A. This, as discussed in the previous sections,
s not surprising since we are removing information to make the desired predictions (i.e., tension and tension angle time series).

hat is interesting at this point is to evaluate the performance loss obtained by removing this information.
For this reason, in Table 8 a comparison between Scenario 1 A versus Scenario 1B is reported. In particular, we reported the

uality (in terms of %ER, %FP, and %FN) averaged on the mooring lines and sections, for the best shallow (XGB) and deep (TCN)
lgorithms employed in each of the two scenarios under consideration.

From Table 8, it is possible to observe that the loss in performance is not negligible (i.e., we go from ≈ 2% to ≈ 4% of %ER for
GB and from ≈ 1% to ≈ 3% for TCN) but the resulting performance is, for sure, acceptable in a practical application taking into
ccount that we remove the necessity of installing and maintaining other components (i.e., the tension and tension angle sensors).

.2. Weakly supervised: from Shallow to Deep Models (Scenario 2)

This section is devoted to the experimental evaluation of Shallow and Deep Models in Scenarios 2 (see Section 3), the weakly
upervised one, testing the methodology presented in Section 3.2 leveraging the data described in Section 2.

Note that Scenario 2 is, in some sense, an evolution of Scenario 1B. In fact, analogously to Scenario 1B, in Scenario 2, we do not
12

everage information coming from costly sensors with maintenance needs and hard to deploy (i.e., information about tension and
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Table 7
(Scenario 1B): %ER, %FP, and %FN, for each mooring line and each section, for the best shallow (XGB) and deep (TCN) algorithms
employed.

Mooring XGB TCN
Line Section %ER %FP %FN %ER %FP %FN

1
1 3.8 ±0.6 4.0 ±0.6 3.6 ±0.6 2.9 ±0.6 2.8 ±0.5 2.9 ±0.8
2 4.9 ±1.2 5.2 ±1.2 4.7 ±1.3 3.3 ±0.5 3.5 ±0.5 3.0 ±0.5
3 3.7 ±0.9 3.5 ±1.0 4.0 ±0.9 3.2 ±0.6 3.0 ±0.6 3.4 ±0.6

2
1 3.7 ±0.7 3.8 ±0.7 3.7 ±0.8 2.5 ±0.5 2.8 ±0.4 2.3 ±0.6
2 4.7 ±0.8 4.9 ±0.8 4.5 ±0.9 4.0 ±0.8 3.7 ±0.6 4.4 ±0.9
3 4.2 ±1.2 4.3 ±1.2 4.2 ±1.3 2.7 ±0.6 2.6 ±0.8 2.8 ±0.5

3
1 4.1 ±0.9 3.8 ±0.7 4.4 ±1.2 2.7 ±0.7 3.2 ±0.8 2.3 ±0.6
2 5.1 ±1.0 5.5 ±1.0 4.7 ±0.9 3.6 ±1.0 3.6 ±1.0 3.7 ±0.9
3 4.1 ±1.0 3.9 ±1.0 4.2 ±1.0 2.9 ±0.5 3.0 ±0.4 2.9 ±0.6

Table 8
Scenario 1A versus Scenario 1B: %ER, %FP, and %FN, averaged on the mooring lines and
sections, for the best shallow (XGB) and deep (TCN) algorithms employed.

Algorithm Scenario %ER %FP %FN

Best Shallow (XGB) 1A 2.1 ±0.3 2.0 ±0.3 2.2 ±0.3
1B 4.3 ±0.9 4.3 ±0.9 4.2 ±1.0

Deep (TCN) 1A 1.0 ±0.2 1.0 ±0.2 1.0 ±0.2
1B 3.1 ±0.7 3.1 ±0.6 3.1 ±0.7

tension angle) to make predictions. The problem is further complicated because we have just a minimal amount of labeled data,
and most of the samples are from healthy mooring line sections. Instead, the goal is the same as Scenarios 1 A and 1B, namely,
predicting whether the chain diameter reduction is above or below 10%.

Note that in this case, 𝑡 = 0.1𝑛, namely 10% of the data has been used for the test. 𝑣, namely how much data has been used for
alidation, has been described later in this section while the rest of the data has been used for learning (note that in this scenario
n the learning set, only healthy data is present).

At this point, we can report the results.
Table 9 reports the quality of the different shallow (OCSVM and GKNN) and deep (TCN+OCSVM and TCN+GKNN) algorithms

veraged on the mooring lines and sections described in Section 3.2 varying the number of labeled samples 𝑣 employed in the
alidation set 𝑣.

From Table 9, it is possible to observe that
• the Shallow models and the TCN+GKNN, in this case, are not able to achieve satisfying performance with %ER ≫ 5%;
• TCN+OCSVM, when a reasonable amount of labeled samples (i.e., 𝑣 = 60 or 𝑣 = 90) is available, are able to achieve satisfying

performance of %ER ≈ 4%. When the amount of labeled samples is too low (i.e., 𝑣 = 30) also TCN+OCSVM is not able to
achieve and %ER ≤ 5%;

• also, in this case, the errors are generally consistent, but with respect to Scenarios 1 A and 1B, we can see that there is,
generally, a higher value of the %FP. This is not surprising as in the training set, most of the samples in 𝑛 are coming from
healthy mooring line sections 𝑌 = −1;

• all the models based on GKNN (i.e., shallow GKNN and deep TCN+GKNN) are consistently underperforming the one based on
OCSVM (i.e., shallow OCSVM and deep TCN+OCSVM); Also in this case, the results are not surprising since, as discussed in
Section 3.2, OCSVM have shown in the past to be much more powerful than GKNN.

To further confirm these observations, we report in Table 10, the quality of the best shallow (OCSVM) and best deep
(TCN+OCSVM) algorithms employed for each mooring line and each section with 𝑣 = 60 labeled samples in the validation set
𝑣. The value 𝑣 = 60 has been chosen as the best compromise between a realistic amount of labeled data for practical application
and the performance of the model. The best shallow and deep algorithms have been chosen in accordance with Table 9 considering
the metric %ER.

From Table 10, it is possible to observe that
• results are quite consistent over the different sections of the mooring lines, but, as noted for Tables 5 and 7, the 2nd section

of each mooring line results to be the harder to estimate correctly;
• the %FP is usually above the one of the %FN but, at least form the TCN+OCSVM %FP is always ≈ 5% so acceptable from a

practical point of view.
Moreover, analogously to what happened when moving from Scenario 1 A to Scenario 1B, moving from Scenario 1B to Scenario 2

implies a decrease in performance which is, in this case, a little more noticeable. This, as discussed in the previous sections, is again
not surprising since we are removing information to make the desired predictions (i.e., tension and tension angle time series) but
also labeled samples to the algorithms. Also, in this case, it is interesting to analyze better the performance loss obtained by further
removing information from the algorithm.
13
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Table 9
(Scenario 2): %ER, %FP, and %FN, averaged on the mooring lines and sections, for the different
shallow (OCSVM and GKNN) and deep (TCN+OCSVM and TCN+GKNN) algorithms employed
varying the number of labeled samples 𝑣 employed in the validation set 𝑣.

𝑣 Algorithm %ER %FP %FN

30
Shallow OCSVM 10.8 ±3.5 10.1 ±3.0 11.5 ±3.9

GKNN 15.5 ±5.1 14.0 ±4.6 17.1 ±5.6

Deep TCN+OCSVM 5.7 ±1.6 4.9 ±1.3 6.4 ±1.8
TCN+GKNN 9.8 ±3.0 8.8 ±2.8 10.7 ±3.3

60
Shallow OCSVM 8.3 ±2.4 7.5 ±2.1 9.0 ±2.7

GKNN 12.2 ±3.9 11.4 ±3.8 13.0 ±4.0

Deep TCN+OCSVM 4.3 ±1.3 3.9 ±1.2 4.7 ±1.4
TCN+GKNN 7.3 ±2.3 6.7 ±2.1 7.9 ±2.5

90
Shallow OCSVM 6.8 ±1.8 6.3 ±1.7 7.2 ±1.8

GKNN 9.5 ±2.6 8.5 ±2.1 10.4 ±3.0

Deep TCN+OCSVM 3.4 ±1.0 3.2 ±0.9 3.6 ±1.1
TCN+GKNN 6.0 ±1.9 5.4 ±1.6 6.7 ±2.1

Table 10
(Scenario 2): %ER, %FP, and %FN, for each mooring line and each section, for the best shallow (OCSVM) and best deep (TCN+OCSVM)
algorithms employed with 𝑣 = 60 labeled samples in the validation set 𝑣.

Mooring OCSVM TCN+OCSVM
Line Section %ER %FP %FN %ER %FP %FN

1
1 7.9 ±1.9 8.2 ±1.7 7.6 ±2.1 4.0 ±1.0 4.2 ±1.1 3.8 ±0.9
2 8.4 ±2.1 7.2 ±2.3 9.7 ±2.0 4.7 ±1.6 4.5 ±1.3 5.0 ±2.0
3 7.4 ±2.0 6.0 ±1.8 8.7 ±2.3 4.2 ±1.2 4.2 ±0.9 4.2 ±1.5

2
1 7.6 ±2.3 7.7 ±1.6 7.6 ±2.9 4.2 ±1.3 3.3 ±1.2 5.1 ±1.4
2 9.2 ±3.0 8.4 ±2.1 10.0 ±3.9 4.9 ±1.6 4.0 ±1.2 5.9 ±2.0
3 7.7 ±2.1 7.1 ±2.2 8.3 ±2.0 3.7 ±1.1 3.5 ±1.4 3.9 ±0.9

3
1 8.1 ±2.2 7.4 ±2.6 8.8 ±1.8 4.0 ±1.1 3.7 ±1.2 4.3 ±1.0
2 10.2 ±3.3 8.8 ±2.5 11.6 ±4.2 5.1 ±1.8 4.3 ±1.3 6.0 ±2.3
3 8.1 ±2.7 7.1 ±2.0 9.0 ±3.5 3.8 ±0.9 3.2 ±0.9 4.4 ±0.9

Table 11
Scenario 1A versus Scenario 1B versus Scenario 2: %ER, %FP, and %FN, averaged on the mooring
lines and sections, for the best shallow (XGB for Scenarios 1A and 1B and OCSVM for Scenario 2)
and best deep (TCN for Scenarios 1A and 1B and TCN+OCSVM for Scenario 2) algorithms employed.
For Scenario 2 𝑣 = 60 labeled samples in the validation set 𝑣.

Algorithm Scenario %ER %FP %FN

Shallow XGB 1A 2.1 ±0.3 2.0 ±0.3 2.2 ±0.3
1B 4.3 ±0.9 4.3 ±0.9 4.2 ±1.0

OCSVM 2 8.3 ±2.4 7.5 ±2.1 9.0 ±2.7

Deep TCN 1A 1.0 ±0.2 1.0 ±0.2 1.0 ±0.2
1B 3.1 ±0.7 3.1 ±0.6 3.1 ±0.7

TCN+OCSVM 2 4.3 ±1.3 3.9 ±1.2 4.7 ±1.4

For this reason, in Table 11, a comparison between Scenario 1 A, Scenario 1B, and Scenario 2 is reported. In particular, we
eported the quality of the best shallow and best deep algorithms employed in each of the three scenarios under consideration
veraged on the mooring lines and sections. For Scenario 2 𝑣 = 60 labeled samples in the validation set 𝑣.

From Table 11, it is possible to observe that the loss in performance is, in this case, consistent
• for shallow models we go from ≈ 2% in Scenario 1 A to ≈ 4% in Scenario 1B of %ER for XGB and to ≈ 8% in Scenario 2 for

OCSVM
• for deep models we go from ≈ 1% in Scenario 1 A to ≈ 3% in Scenario 1B of %ER and to ≈ 4% in Scenario 2 for TCN-OCSVM

with a slightly higher %FN with respect to the %FP.
evertheless the resulting performance are, for sure, acceptable in a practical application ≈ 5% taking into account that we remove

the necessity of installing and maintaining other components (i.e., the tension and tension angle sensors) and we limited the necessity
or labeled samples that are seldom available in practical applications.

. Conclusions

In this paper, we proposed exploiting data from low-cost, low-maintenance, and easily deployable sensors (e.g., tower accelerom-
ters) for mooring systems health status nowcasting based on Deep machine learning models considering a very small amount of
ata regarding worn mooring lines.
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In line with the growing need for renewable energy production, the global installed capacity of floating offshore wind turbines
s projected to increase by at least 100 times over the next decades. Station-keeping of floating offshore renewable energy devices is
chieved through the use of mooring systems, which are exposed to a variety of environmental and operational conditions causing
orrosion, abrasion, and fatigue. Regular physical in-service inspections of mooring systems for monitoring their health status are,
till nowadays, the golden standard but they are often expensive, inefficient, and unsafe, and for this reason, digital solutions for real-
ime monitoring are required. Floating offshore renewable energy devices are usually equipped with a wide range of sensors, some
ow-cost, low/zero maintenance, and easily deployable (e.g., accelerometers on the tower) contrary to others (e.g., direct tension
ooring line measurements), producing real-time data streams that can be effectively leveraged by machine learning models for

eal-time monitoring. Of course, being able to perform this monitoring employing just the low-cost, low-maintenance, and easily
eployable sensors is a plus. Moreover, first relying on state-of-the-art supervised Shallow and Deep learning models for predicting
he health status of the different sections of the mooring lines we showed that it is possible to perform real-time monitoring with just
ow-cost, low-maintenance, and easily deployable sensors. Then, since these supervised models require types and amounts of data
hat are seldom available, we proposed new Shallow and Deep weekly supervised models that require a very small amount of data
egarding worn mooring lines. Results showed that these last models have the potential to have practical applicability and impact
or real-time monitoring of mooring systems in the near future. In order to support our statements, we made use of data generated
ith a state-of-the-art digital twin of the mooring system, OrcaFlex,1 for a floating offshore wind turbine reproducing the physical
echanism of the mooring degradation under different loads and environmental conditions. Results have shown errors around 1%

n the simplest scenario (fully supervised with all the information available) and errors around 4% (weakly supervised one with
nly cheap information available) in the most challenging one, confirming the potentiality of the proposed approaches. It is also
orth noting that some limitations are still present. For instance, even though the sensors are low-maintenance, they still need to
e checked and calibrated regularly to ensure accurate data collection. Moreover, the sensors might be susceptible to environmental
nfluences (like temperature, humidity, or saltwater corrosion), which could affect their performance and longevity. In the future,
e plan to collaborate with the industry to check the quality of the proposal in a real environment, increasing the readiness level
f this technology.
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