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Preface
I have been interested in the exploration of space ever since I was a young boy. So, after finishing
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be the next step. After getting introduced to the concept of photon sailing, I started exploring the
possibilities of writing my thesis on this subject. The futuristic idea of exploring other stellar systems
has been in my imagination for a long time which made the choice of applying the concept of sailing
in the Alpha-Centauri system an easy one to make. After a lot of work in the past months, this work
represents the end of my study career and marks the start of my working career.

I could not have achieved this by myself and therefore I want to thank some people. First and
foremost, I want to thank Jeannette Heiligers, who was my daily supervisor during the thesis. I am
really thankful for the weekly meetings we had which always pushed me in the right directions if I ran
into a problem. During these, I was often amazed about all the knowledge she had regarding photon
sailing and the numerical methods I have used. She also organised a weekly meeting with fellow students
working on photon sailing in their theses. These students also helped me a lot by having a critical view
during the progress presentations, but also gave an encouraging feeling when things were not going as
planned. Therefore, I want to thank my fellow students for their time and enthusiasm during these
weekly meetings.

I also want to thank my friends who supported me when I was working, but also distracted me
during the days off. Last but not least, I want to thank my roommate and parents who often asked
how the process with all the ’weird circles’ was going, which they saw on my screen. During these daily
coffee breaks with my parents or roommate, I often got the energy back to continue working on my
thesis.

Luc Haagh
Delft, August 2023
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Executive Summary
This thesis investigates the existence of periodic orbits in the Alpha-Centauri (𝛼-Cen) system with the
use of a photon sail. These periodic orbits are designed around the classical Lagrange points and stay
in the plane of motion of 𝛼-Cen A and B, also called planar Lyapunov orbits. In this research, only
the colinear Lagrange points, namely L1, L2 and L3 are taken into consideration. The 𝛼-Cen system is
the stellar system closest to our own, at a distance of 4.37 lightyears. It is a triple-star system, with
𝛼-Cen A and B in binary motion. The third and smaller star Proxima Centauri orbits this inner binary
system. The system also includes a few confirmed (possibly habitable) exoplanets. Both the relative
proximity and the exoplanets that are present in the system make it a scientifically very interesting
destination for the first interstellar mission.

Planar Lyapunov orbits have been designed in other systems before. Examples of such systems are
the Earth-Moon and Sun-Earth systems. These systems have been modelled as a restricted three-body
problem, which contains two large bodies and one body with a negligible mass. For systems where the
two primaries orbit in (almost) circular motion, the circular restricted three-body problem (CR3BP)
is mostly used, while the elliptical restricted three-body problem (ER3BP) is used for systems with
elliptical motion. In the case of 𝛼-Cen, the two primaries orbit their barycenter in a very elliptical
orbit with an eccentricity of 𝑒 = 0.5208. Therefore, the ER3BP is used as a basis in this research to
model the binary system of 𝛼-Cen. In this model, 𝛼-Cen A and B are the two primary bodies and the
spacecraft is the third body with a negligible mass. At periastron, Proxima Centauri has a distance of
approximately 4300 AU to the barycenter of the system. The maximum distance of 𝛼-Cen A and B to
the barycenter is approximately 36 AU. Therefore, it is assumed that the photogravitational effect of
Proxima Centauri can be neglected.

In mission designs to travel towards 𝛼-Cen, photon-sail acceleration is a frequently used method of
propulsion due to the continuous photon radiation pressure on the sails. Therefore, research has already
been conducted on the photon-sail dynamics in the 𝛼-Cen system itself. Examples of such research are
identifying artificial equilibrium points and designing trajectories between the equilibrium points. The
photon-sail acceleration adds an extra term to the equations of motion of the ER3BP. The magnitude
of the photon-sail acceleration depends on the lightness number of the sail. The lightness number is a
parameter which quantifies the performance of the sail, as it is defined as the ratio of the photon-sail
acceleration over the gravitational acceleration. Due to the addition of the photon sail in the model,
the photon-radiation pressure (PRP) augmented ER3BP is used to design the planar Lyapunov orbits.
In this report, photon radiation pressure is used as a general term for solar radiation pressure, as the
latter only applies for the emitted radiation from the Sun.

A multiple shooting differential correction (MSDC) algorithm is used to design the planar Lyapunov
orbits. As an initial guess, the spacecraft at the Lagrange point is perturbed in the direction of the
eigenvector associated to the imaginary eigenvalue of the linearised equations of motions (EoM) in the
CR3BP. This perturbed spacecraft is propagated until it crosses the line between the two main bodies
again. The MSDC divides the initial trajectory in multiple segments with patch points between the
segments and tries to make the entire orbit continuous in two levels. The first level corrects the velocity
of each patch point in order to reach the next patch point. This is done by propagating the trajectory
and the state transition matrix (STM) forward. The STM linearly approximates the change in the state
at the end of the propagation when changing the state at the beginning of the propagation. With the
STM, an approximation is made of the required change in the initial velocity to reach the next patch
point. The MSDC continues with changing the initial velocity until the difference between the final
position of the propagation and the position of the next patch point is smaller than 10−9 in dimen-
sionless units. With such small differences, it is assumed that the trajectory is continuous in terms of
position. The second level of the MSDC tries to make the trajectory continuous in velocity by changing
the positions of the patch points. Using the STM, the velocity difference at a certain patch point is
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iv 0. Executive Summary

minimised by relocating the previous patch point, the patch point with the velocity difference itself
and the following patch point. After relocating all patch points of the trajectory once, the first level
is activated again. This iterative process continues until the norm of all velocity differences is smaller
than 10−4 in dimensionless units.

Due to the eccentricity of the system, the equations of motions are dependent on the true anomaly
of the system. To ensure periodicity of the orbit, the period of each orbit should be 2𝜋 or a fraction
of that. This adds an extra constraint to the design of the periodic orbit. This makes it hard for the
MSDC to converge the initial guess to a periodic orbit in the PRP-augmented ER3BP. Therefore, the
initial guess is made in the CR3BP which is used to design a family of periodic orbits with varying
periods. The orbits with periods of 2𝜋

𝑛 , where n is an integer, are used as input in the ER3BP. In
small steps, the eccentricity is increased until it reaches a value of 𝑒 = 0.5208. After that, the lightness
number is also increased until the MSDC can not converge the trajectory to a periodic orbit. In this
way, families of PRP-augmented planar Lyapunov orbits are derived with increasing lightness numbers
up to a defined 𝛽𝑚𝑎𝑥 = 2.

There are three different results depending on the orientation of the sail when increasing 𝛽. First of
all, the periodic orbit can shrink in size for larger lightness numbers. If the sail is placed in such a way
that the PRP acceleration keeps relatively high, the orbit will continue to shrink until the maximum
velocity 𝑉𝑚𝑎𝑥 converges to 0, which means that an artificial equilibrium point (AEP) will be created.
This means that, independent of the orientation, 𝛽𝑚𝑎𝑥 is equal to the lightness number required to
create an AEP close to one of the stars. For 𝛼-Cen A, this means that 𝛽𝑚𝑎𝑥 ≈ 0.727 and for 𝛼-Cen B
that 𝛽𝑚𝑎𝑥 ≈ 1.86. Another option is that when the periodic orbit is shrinking, that the effect of the
photon sail is decreasing. This is achieved when the normal vector of the sail is pointed perpendicular
to the photon rays when the spacecraft is in between the two stars. The smaller orbits stay close to
the line between 𝛼-Cen A and B, so the effect of the sail is minimised. Therefore, 𝑉𝑚𝑎𝑥 converges to
a constant value greater than 0, which means that 𝛽𝑚𝑎𝑥 = 2. Lastly, if the PRP acceleration is too
small or too large, the periodic orbit will expand, resulting in 𝑉𝑚𝑎𝑥 going to infinity. Therefore, 𝛽𝑚𝑎𝑥 is
achieved at the vertical asymptote of 𝑉𝑚𝑎𝑥. Lyapunov orbits around L2 and L3 in the classical ER3BP
with an initial true anomaly of 0 are very close to the primary bodies. Therefore, 𝑉𝑚𝑎𝑥 tends to go
to infinity for most orientations except for the orientation where the normal vector is always placed
parallel to the photon rays of the closest star. In this case, the orbit converges to an AEP. If the initial
true anomaly is changed to 𝜋, the orbit is further away from the stars, resulting in more orientations
reaching 𝛽𝑚𝑎𝑥 = 2.

To further explore 𝛼-Cen, trajectories between two planar Lyapunov orbits are designed. Using
the adaptive differential evolution (JADE) algorithm, a population of vectors evolves over generations.
Each individual of the new generation is compared to the previous generation and the best individual
remains. The JADE algorithm is more elaborate compared to the standard differential evolution al-
gorithm. The crossover probability parameter is adapted over the different generations, making this
parameter less problem-dependent. The trajectory is divided into a departure and arrival leg and the
JADE algorithm tries to minimise the Euclidean error between the states at the ends of these legs. The
lightness number of the sail during the trajectory is set to 𝛽 = 0.1, 0.5 and 2 to investigate its effect.
For 𝛽 = 0.1, the Euclidean error is relatively high at a dimensionless value in the range of 1E-1 to 1E-3,
depending on the chosen Lyapunov orbits. For 𝛽 = 0.5 and 2, the Euclidean error is negligible which
means that the trajectory can be assumed to be continuous. The time of flight (TOF) of the trajectory
for 𝛽 = 2 is almost 25% lower compared to the trajectory for 𝛽 = 0.5.

Only five different steering laws were used to identify the planar Lyapunov orbits. These orientations
resulted in a maximum PRP acceleration if 𝛼 = 0 deg or a minimum PRP acceleration for 𝛼 = 90 deg.
Therefore, it is reccommended to further investigate the orientations between these boundary conditions
to get an overview of the possible orientations to reach 𝛽𝑚𝑎𝑥 = 2. The tipping points between the three
options when increasing the lightness number can give more insight in the PRP-augmented dynamics
of 𝛼-Cen. Next to that, it is recommended to use a time-constrained MSDC algorithm to decrease
the TOF of the trajectories between the Lyapunov orbits. Using the continuation method to slowly
decrease the constrained TOF will result in a smaller TOF.
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1
Introduction

Humanity has been gazing into the sky for centuries wondering what is out there. Since the 20th century,
the first spacecraft have been launched to explore the space around us, starting with orbits around our
own Earth and eventually exploring our entire Solar System. The next step in the exploration of
humanity is expected to be travelling to another stellar system. With the use of a futuristic photon
sail, it can be possible to visit the 𝛼-Centauri system within a lifetime. In this research, the dynamics
of a photon sail within the 𝛼-Centauri system is investigated as a basis for a future mission towards our
closest neighbour.

1.1. History of photon sailing
The first concepts of photon sailing can be traced back to the 17th century when Johannes Kepler
observed the trail of a comet, which he thought to be caused by the Sun. He imagined that a spacecraft
with a large sail could use these forces as a method of propulsion. Later, Maxwell published his theory
that light has momentum, which means that it can exert a force on an object [4]. Throughout the
early 20th century, scientists like Konstantin Tsiolkovsky and Fridrikh Tsander extended the thought of
photon sailing and performed important theoretical research [5]. Tsiolkovsky envisioned the use of large
mirrors to reflect sunlight onto spacecraft sails, while Tsander proposed employing thin metal foils to
capture the Sun’s radiation. At the end of the 20th century, the first photon sail missions were proposed
to rendezvous with Halley’s comet [6]. At this time, the first experiments were conducted to validate
the feasibility of the technology.

The first launch of a photon sailcraft was a major milestone. In 2010, the Interplanetary Kitecraft
Accelerated by Radiation of the Sun (IKAROS) was launched by the Japanese Aerospace Exploration
Agency (JAXA). IKAROS successfully deployed its sail and demonstrated the first successful application
of photon sailing. The sail deployed in space is shown in Figure 1.1a. The IKAROS mission performed a
flyby of Venus using a sail of almost 200 m2 [7]. NASA followed up with a second demonstration mission
in 2010, called Nanosail-D. This sail was significantly smaller, having a surface area of approximately
10 m2 and was in a low Earth orbit [8]. The aim of this mission was to test the deployment of a sail
to eventually be able to deorbit end-of-life spacecraft in future missions. After that, The Planetary
Society’s LightSail program has continued to launch photon sails into space. LightSail 1 was launched
in 2015 and successfully deployed its solar sail. This first mission was to validate the deployment of
a photon sail which layed a base for the second photon sail. LightSail 2 was launched in 2019 and
demonstrated controlled photon sailing in low Earth orbit [9]. The deployed LightSail 2 is shown in
Figure 1.1b. The most recently planned mission was the NEA Scout mission by NASA, which was
launched at the end of 2022 and would have performed a flyby of a near-Earth asteroid. However,
NASA was unable to make contact after the launch, after which NEA Scout was considered a failed
mission1.

As a future mission, the Breakthrough Starshot initiative announced plans to send small photon

1https://www.nasa.gov/centers/marshall/news/2022/nea-scout-status-update.html Retrieved on
22/06/2023
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1.2. Alpha Centauri 5

(a) IKAROS [10] (b) LightSail 2 [9]

Figure 1.1: Deployed photon sails in space

Table 1.1: Radius, mass, luminosity and distance to the barycenter of the stars in the 𝛼-Cen system [1]

Star Radius, R⊙ Mass, M⊙ Luminosity, L⊙
Distance to
barycenter, AU

𝛼-Cen A 1.2234 1.1055 1.519 5.2 - 16.4
𝛼-Cen B 0.8634 0.9373 0.5002 6.1 - 19.4
Proxima Centauri 0.1542 0.1221 0.0015 4300 - 13000

sails to the 𝛼-Centauri system, using a powerful laser array for propulsion2. This ambitious project
has generated a large amount of interest and gave some new attention to the concept of photon sailing.
Ongoing research on photon sailing focuses mainly on improving the materials of the sail, the deployment
mechanisms, and navigation systems [8].

1.2. Alpha Centauri
The Alpha-Centauri (𝛼-Cen) system has been observed for a long time as it is the third brightest star
in the night sky [11]. The stellar system can be seen from the Southern Hemisphere in the Centauri
constellation, as the stellar system has a declination of -60 deg. Until the 17th century, it was thought
that the 𝛼-Cen system was a single star. The 𝛼-Cen system is the stellar system closest to Earth at
a distance of 4.37 lightyears [11]. In 1689, while looking at a comet that passed in front of the 𝛼-Cen
system, Jean Richaud observed that the star was actually a binary system consisting of the stars 𝛼-Cen
A and B [12]. In 1915, a smaller star, 𝛼-Cen C or Proxima Centauri, which orbits the inner binary
system, was observed by Robert Thorburn Innes [13]. Later, it was found that this smaller star was
closer to the Sun than the other two stars in the system that were known before. This smaller star has
an orbital period around the binary system of approximately 550,000 years [14]. Its current position
and long orbital period imply that Proxima Centauri is the star closest to Earth since the first humans
started investigating the stars. In the future, the star will move to the far-side of the binary system as
viewed from Earth causing 𝛼-Cen A and B to be closer.

The 𝛼-Cen system consists of three stars, 𝛼-Cen A, B and C that all orbit the system’s barycenter.
𝛼-Cen C is officially called Proxima Centauri. The mass, radius and luminosity of the three stars are
shown in Table 1.1. In this table, all charachteristics of the stars are relative to the Sun, which is
represented by ⊙ as a subscript.

At the time of writing, three exoplanets have been observed around the smaller star Proxima Cen-
tauri. These planets are called Proxima b, c, and d [15],[16],[17]. Of these confirmed exoplanets,
Proxima b is a terrestrial planet within the habitable zone of the star. The habitable zone is defined to
be the region in a stellar system where liquid water could exist on an orbiting planet. Proxima c and
d are not in the habitable zone. To date, no exoplanets have been discovered inside the binary system.
The James Webb Space Telescope will search for planets around 𝛼-Cen A [18].

2https://breakthroughinitiatives.org/initiative/3 Retrieved on 22/06/2023
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6 1. Introduction

The relatively close proximity and the fact that there are exoplanets in the system make it a very
interesting stellar system to visit. In previous work, photon sailing was used to design a trajectory to
the 𝛼-Cen system [19]. The previously mentioned Breakthrough Starshot also aims to design a mission
to the system.

1.3. Previous work
Though mission scenarios towards the 𝛼-Cen system have been proposed, the photon-sailing dynamics
within the 𝛼-Cen system has not yet been investigated extensively. References [19],[20] and [21] have
investigated the dynamics of decelerating the photon sail in the 𝛼-Cen system after its interstellar
journey. More research on the dynamics of and within the 𝛼-Cen system was conducted by investigating
the artificial equilibrium points (AEPs). These AEPs have been investigated for the case of using a
photon balloon [22] and a photon sail [1]. Next to that, trajectories within the 𝛼-Cen system were
designed [23], [1] and [24]. The inner binary system in the 𝛼-Cen system is modeled in these papers
as a three-body problem, with a spacecraft as the third body. In other three-body problems, like
the Sun-Earth and Earth-Moon systems, motion around the (artificial) equilibrium points has been
investigated extensively [25], [26] and [27]. Such periodic motion has been used in missions to study
heliophysics and astrodynamics [28], [29]. Investigations into such motions in the 𝛼-Cen system are
lacking in the literature. Eventually, missions towards the equilibrium points in the 𝛼-Cen system can
be very insightful for heliophysical and astrodynamical studies because of the existence of two stars in
the inner binary system. Therefore, the motion around the equilibrium points should be investigated
first.

A multiple shooting differential correction (MSDC) algorithm is often used to find periodic orbits.
This method has been used in the circular restricted three-body problem (CR3BP) [25], in the photon
sail augmented CR3BP [30] and in the ER3BP [31]. Trajectories between the periodic orbits can
be used to investigate the binary system further and observe it from different viewing points. Such
heteroclinic-like trajectories within the 𝛼-Cen system have been investigated before using a genetic
algorithm [1].

1.4. Research objective
Due to the relative proximity and the precense of exoplanets, the 𝛼-Cen system is a very interesting
destination of the first interstellar travel with the use of photon pressure acceleration. As a basis to a
future mission, the dynamics within the system need to be investigated first. Therefore, the research
objective of this work is:

To design periodic orbits around the colinear Lagrange points
in the Alpha Centauri system and design heteroclinic-like

trajectories to connect these periodic orbits.

To be able to fulfill the research objective, the following research questions were made:

• What kind of planar Lyapunov orbits exist around the colinear Lagrange points in the 𝛼-Cen
system using photon-pressure acceleration?

– How do these Lyapunov orbits change when varying the lightness number of the photon-sail?

– What is the effect of the initial true anomaly on these Lyapunov orbits?

• Is it possible to travel between the designed Lyapunov orbits in the 𝛼-Cen system using photon-
pressure acceleration?

1.5. Report outline
The research is presented in the form of a journal article in Chapter 2. This journal article is written
in the style of the American Institue of Aeronautics and Astronautics (AIAA). The article starts with
an abstract and an introduction to the article. Then, a brief overview of the 𝛼-Cen system is given. A
dynamics model that suits this system is presented after that and in the following section, the method
and results of designing periodic orbits around the colinear Lagrange points are given. After that, the



1.5. Report outline 7

method and results of the heteroclinic-like trajectories between the designed periodic orbits are given.
Lastly, the article ends with the conclusions. In Chapter 3, more elaborate conclusions to the research
are given. The answers to the research questions are presented here. Next to that, recommendations for
future research are given here as well. The verification and validation of the used model is presented in
Appendix A. Lastly, the plots with all the planar Lyapunov orbits for their 𝛽𝑚𝑎𝑥 and its corresponding
𝑉𝑚𝑎𝑥 are shown in Appendix B.
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Photon-sail periodic orbits around the Lagrange points of the
Alpha-Centauri system

Luc C.J. Haagh
Delft University of Technology, 2629 HS, Delft, The Netherlands

The first mission proposals to visit the Alpha Centauri system use photon-sail acceleration

as a mode of propulsion to reach this stellar system closest to our own Solar System. To prepare

for a future mission, the photon-sail dynamics in the system is investigated. Planar Lyapunov

orbits around the colinear classical Lagrange points are designed to explore the Alpha Cen-

tauri system. This has been done before in other systems like the Earth-moon and Sun-Earth

systems, but not yet in an elliptical binary star system. Starting with an initial guess in the

circular restricted three-body problem without photon-sail acceleration, a Multiple Shooting

Differential Correction (MSDC) algorithm changes the trajectory to a periodic orbit. A fam-

ily of planar Lyapunov orbits is designed with increasing periods. Due to the eccentricity, the

period of a Lyapunov orbit should be equal to the rotational period of the stellar system. The

periodic orbits that satisfy this constraint are used to slowly increase the eccentricity of the

model until it reaches a value of 𝑒 = 0.5208, which is the eccentricity of the inner Alpha Cen-

tauri system. After that, the lightness number of the photon sail is increased to add photon-sail

acceleration to the model up to a defined maximum of 𝛽𝑚𝑎𝑥 = 2. A set of five constant steering

laws is chosen to investigate its effect. Next to that, the moment at which the periodic orbit

starts in terms of the true anomaly is varied as well. This results in a set of 40 families of pe-

riodic orbits with increasing lightness numbers. Depending on the orientation, the augmented

Lyapunov orbit either shrinks into smaller orbits or expands into larger orbits when increasing

the lightness number. If the orbit shrinks, it can either converge into an artificial equilibrium

point or the photon-radiation pressure on the sail can become minimal. In that case, the Lya-

punov orbit becomes (almost) independent of the lightness number and reaches 𝛽𝑚𝑎𝑥 = 2. If the

orbit expands, the maximum velocity will eventually go to infinity. At this vertical asymptote,

the maximum lightness number is found. The initial true anomaly of Alpha Centauri 𝜃0 has a

great effect on the Lyapunov orbits around L2 and L3 in the classical ER3BP. For 𝜃0 = 0, the

orbit either converges to an AEP or the maximum velocity goes to infinity. For 𝜃0 = 𝜋, a few

orientations can reach 𝛽𝑚𝑎𝑥 = 2. To further explore Alpha Centauri, an adaptive differential

evolution algorithm is used to design trajectories between the Lyapunov orbits. The perfor-



mance of the algorithm is expressed as the Euclidean difference between the states at the end

of the departure leg and the beginning of the arrival leg. Three different lightness numbers of

0.1, 0.5 and 2 are used for these trajectories. With a lightness number of 0.1, the dimensionless

Euclidean error is in the range of 1E-1 to 1E-3, depending on the Lyapunov orbits. With this

lightness number, the stars are also used as a gravity assist. For larger lightness numbers, the

Euclidean error becomes negligible in the range 1E-7. With a lightness number of 2, the time

of flight during the trajectory is significantly shorter. In future research, this can be further

reduced using an MSDC algorithm.

Nomenclature
Roman

n̂ Normal vector of the photon sail

A(r̂𝐴, 𝜽𝐴, 𝝓𝐴) Reference frame centred at photon sail

with respect to 𝛼-Cen A

B(r̂𝐵, 𝜽𝐵, 𝝓𝐵) Reference frame centred at photon sail

with respect to 𝛼-Cen B

OA (x̂OA , ŷOA , ẑOA ) Observer reference frame centred at

𝛼-Cen A

OB (x̂OB , ŷOB , ẑOB ) Observer reference frame centred at

𝛼-Cen B

SP (x̂SP , ŷSP , ẑSP ) Pulsating synodic reference frame

a𝑠 Photon-sail acceleration vector

r Position vector

u Child vector

v Velocity vector

V1,V2,V3 Parent vectors

X State vector

𝑎 Semi-major axis

𝐶 Constraints

𝐶𝑅 Crossover probability

𝑒 Eccentricity

𝐹 Scaling factor

𝑖 Inclination

𝐿 Luminosity

𝐿1, 𝐿2, 𝐿3 Colinear Lagrange points

𝑀 Mass

𝑁𝑝𝑎𝑟 Number of parameters

𝑁𝑝𝑜𝑝 Population size

𝑅 Radius

𝑇 Orbital period

𝑇1 Period of a single revolution

𝑈 Effective potential

Greek

𝛼 Cone angle

𝛽 Lightness number

𝛿 Clock angle
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𝜖 Conversion parameter for lightness number in

other star systems

𝜇 Dimensionless mass of 𝛼-Cen B

Ω Longitude of ascending node

𝜔 Argument of periapsis

Φ State transition matrix

𝜃 True anomaly

Abbreviations

𝛼-Cen Alpha-Centauri

AU Astronomical Unit

CR3BP Circular Restricted three-body problem

EoM Equations of Motion

ER3BP Elliptical Restricted three-body problem

JADE Adaptive differential evolution

MSDC Multiple Shooting Differential Correction

PRP Photon-radiation pressure

STM State transition matrix

TOF Time of flight

DE Differential evolution

Subscripts

� Sun

𝑚𝑎𝑥 Maximum

𝑥 Derivative with respect to x

𝑦 Derivative with respect to y

A Alpha-Centauri A

A Arrival leg

B Alpha-Centauri B

D Departure leg

I. Introduction
Humanity has been fascinated by interstellar travel for a long time. The urge to explore more and more of human-

ity’s surroundings is the driving motivation to visit another stellar system. Exploring other stellar systems also has a

significant scientific relevance, because it enables humanity to gather more knowledge of our Solar System and the

formation of stellar systems in general. The Alpha-Centauri (𝛼-Cen) system is the stellar system closest to our Solar

System and is therefore often considered to be the first destination of interstellar travel [1]. After the discovery of a

rocky exoplanet in the habitable zone of the system in 2016, interest to visit the system has increased even more [2].

However, travelling to the 𝛼-Cen system would take approximately 75,000 years when using conventional spacecraft

propulsion [3].

The use of photon-sail propulsion could drastically decrease the flight time for interstellar travel, although it uses

tiny photon-radiation pressure as its sole source of propulsion [4]. Photon sailing is a proven concept as a means of

propulsion in space. This has been demonstrated by missions like the IKAROS sail by JAXA, NASA’s NanoSail-D2
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and LightSail-1 and LightSail-2 by The Planetary Society [5], [6] and [7]. The improvement of photon-sail technology

can eventually lead to the possibility of interstellar travel towards the 𝛼-Cen system. When using futuristic designs of

photon sails, 𝛼-Cen can be reached in less than 80 years [3]. Possible missions with the goal of reaching places outside

our Solar system have been investigated before [8] and the Breakthrough Starshot Project is an example of a proposed

interstellar travel mission with the aim of reaching 𝛼-Cen ∗.

Although mission scenarios have been proposed, the photon-sailing dynamics within the 𝛼-Cen system has not yet

been fully investigated. References [3],[9] and [10] have investigated the dynamics of decelerating the photon sail in

𝛼-Cen after its interstellar journey. The dynamics of artificial equilibrium points has been investigated using a photon

balloon [11] and a photon sail [12]. Trajectories within the 𝛼-Cen system using photon-sail acceleration have been

investigated as well. Examples of such trajectories are polar orbits about 𝛼-Cen A and B [13], heteroclinic-like motion

between artificial equilibrium points [12] and a trajectory from 𝛼-Cen A and B towards Proxima Centauri [14]. The

photon-sail augmented 𝛼-Cen system presents a three-body problem. In other three-body problems, like the Sun-Earth

and Earth-Moon systems, motion around the equilibrium points has been investigated extensively [15], [16] and [17].

Such periodic motion has been used in missions to study heliophysics and astrodynamics [18], [19]. Investigations on

such motions in 𝛼-Cen are lacking in the literature. Eventually, missions towards the equilibrium points in the 𝛼-Cen

system can be very insightful for heliophysical and astrodynamical studies because of the existence of two stars in the

inner binary system. Therefore, the motion around the equilibrium should first be investigated.

A multiple shooting differential correction (MSDC) algorithm is used to find periodic orbits in the photon-sail

elliptical restricted three-body problem (ER3BP). This method has been used before to find periodic orbits in the

circular restricted three-body problem (CR3BP) [15], in the photon-sail CR3BP [20] and in the ER3BP [21]. This

MSDC is also used to design trajectories between periodic orbits. Such trajectories can be used to further investigate

the binary system and observe it from different viewing points. These heteroclinic-like trajectories within the 𝛼-Cen

system have been investigated before using a genetic algorithm [12], which often results in a trajectory that is not fully

continuous. In this work, the MSDC is used to further decrease the discontinuity in the photon-sail trajectories. This

method has been used in several Sun-planet systems [22], [23], [24], but again not under the effect of gravity and photon

emission of two stars.

The 𝛼-Cen system is elaborated on in Chapter II and the dynamics model used in this research is discussed in

Chapter III. The method and results of finding periodic orbits around the equilibrium points are shown in Chapter IV.

The same is done for the method and results of designing a trajectory between the periodic orbits in Chapter V.

∗https://breakthroughinitiatives.org/initiative/3 Retrieved on 29/03/2023
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II. Alpha Centauri
The 𝛼-Cen system consists of three stars, 𝛼-Cen A, B, and C, which all orbit the system’s barycenter. 𝛼-Cen C

is officially called Proxima Centauri and will be referred to as such in this paper. The mass, radius, luminosity and

distance to the barycenter of each star are provided in Table 1. In this table, all values are relative to those of the Sun,

which is represented by the subscript �.

Table 1 Radius, mass, luminosity and distance to the barycenter of the stars in the 𝛼-Cen system [12]

Star Radius, R� Mass, M� Luminosity, L�
Distance to
barycenter, AU

𝛼-Cen A 1.2234 1.1055 1.519 5.2 - 16.4
𝛼-Cen B 0.8634 0.9373 0.5002 6.1 - 19.4
Proxima Centauri 0.1542 0.1221 0.0015 4300 - 13000

Stars 𝛼-Cen A and B form a binary system orbiting their barycenter, which is visually represented in Figure 1. In

Figure 1a, the orbit is represented in the observer reference frames OA(x̂OA , ŷOA , ẑOA ). Frame OA is centred at 𝛼-Cen

A and ẑOA points to Earth, which means that the plane perpendicular to ẑOA is the ”plane of the sky” in Figure 1b. On

this plane, x̂OA points North and ŷOA completes the right-handed reference frame. In Figure 1b, the ”plane of the sky”

is the plane perpendicular to the zenith of the Earth. The apparent orbits are projected on the plane of the sky, which

are the orbits as we observe them from Earth. Both 𝛼-Cen A and B orbit their common barycenter with a period of

79.9 years [12] and an eccentricity of 0.5208. The inclination is defined as the angle between the orbital plane and

the ’plane of the sky’ and has a value of 79.320 deg. All Keplerian elements of 𝛼-Cen B in OA are shown in Table

2. Here, the longitude of the ascending node is measured east of the vector x̂OA . Figure 1b shows a three-dimensional

visualisation of the orbits in frame OB , which is similar to frame OA , but the centre is shifted to the barycenter of the

system.

Table 2 Keplerian elements of 𝛼-Cen B in reference frame OA [12]

Parameter Unit Value
Semi-major axis 𝑎 AU 23.517
Eccentricity 𝑒 - 0.5208
Inclination 𝑖 deg 79.320
Longitude of ascending node Ω deg 205.064
Argument of periapsis 𝜔 deg 232.006
Orbital period 𝑇 yr 79.929

III. Dynamics model
To model the motion of a photon sail within 𝛼-Cen, the dynamical framework of the ER3BP is used due to the high

eccentricity of the inner binary system. An additional term for the Photon-radiation pressure (PRP) force is added in
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(a) (b)

Fig. 1 Orbits of 𝛼-Cen AB system in a) OA and b) OB [12]

the equations of motion (EoMs). This results in the PRP-augmented ER3BP.

A. Photon-Radiation Pressure augmented Elliptical Restricted Three-Body Problem

In the ER3BP, the two primary bodies 𝛼-Cen A and B have an elliptical orbit around their common barycenter. It is

assumed that the third body, the photon sail, has a negligible mass and that its motion is only affected by the gravitational

acceleration of the two primaries and the PRP acceleration, because the two primaries are photon-emitting sources. To

describe the EoM in the elliptical restricted three-body problem, a pulsating synodic reference frame is used. The

pulsating synodic reference frame SP(x̂S,P , ŷS,P , ẑS,P) places the centre of the reference frame at the barycenter

between the two primary bodies. The x̂S,P-axis is defined in such a way that both 𝛼-Cen A and B are located on this

axis with the positive direction toward 𝛼-Cen B. The ẑS,P-axis is in the direction of the angular momentum vector of

the binary system, and the ŷS,P-axis completes the right-handed reference frame. As an observer in an inertial frame

looking towards the reference frame centre from the positive ẑS,P-direction, the reference frame is rotating. Due to

the eccentricity of the orbits of the stars, this rotation is non-uniform. Due to the pulsating frame, the stars are fixed

along the x̂S,P-axis even though the distance of the stars to the barycenter varies depending on the true anomaly (𝜃)

of the system, because of the eccentricity of the system. For that reason, the non-uniform rotating, pulsating synodic
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reference frame S𝑃 is used. Frame S𝑃 pulsates, which means that in addition to a rotation, it contracts and expands

in such a way that both stars are stationary on the x̂-axis. A visual representation of this reference frame is shown in

Figure 2, where the non-uniform rotational velocity is represented with the vector 𝝎. The vector from 𝛼-Cen A or B

towards the spacecraft is denoted using r𝐴 and r𝐵, respectively.

In frame SP , the EoMs are defined as [25]:

𝑥′′ − 2𝑦′ =
1

1 + 𝑒 cos 𝜃

(
𝛿𝑈

𝛿𝑥
+ a𝑠,𝑥

)
(1)

𝑦′′ + 2𝑥′ =
1

1 + 𝑒 cos 𝜃

(
𝛿𝑈

𝛿𝑦
+ a𝑠,𝑦

)
(2)

𝑧′′ + 𝑧′ =
1

1 + 𝑒 cos 𝜃

(
𝛿𝑈

𝛿𝑧
+ a𝑠,𝑧

)
(3)

Here, the differentiation on the left-hand side occurs with respect to the true anomaly of the system. The photon-sail

acceleration vector is denoted using a𝑠 and will be defined later. The effective potential combines the gravitational and

centripetal potentials and is denoted as𝑈. This effective potential is defined as:

𝑈 =
1
2
(𝑥2 + 𝑦2 + 𝑧2) + 1 − 𝜇

| |r𝐴 | |
+ 𝜇

| |r𝐵 | |
(4)

The equations of motions are dimensionless in terms of mass, distance and time. The unit of mass is the sum of the

mass of 𝛼-Cen A and B. The unit of distance is defined as the instantaneous distance between 𝛼-Cen A and B, and the

unit of time is defined as the inverse of the mean motion of the two stars. Therefore, the dimensionless orbital period

becomes 2𝜋. The dimensionless mass of 𝛼-Cen B, 𝜇 is introduced using:

𝜇 =
𝑀𝐵

𝑀𝐴 + 𝑀𝐵
(5)

Table 1 provided the masses of 𝛼-Cen A and B as 1.1055 and 0.9373 times the mass of the Sun, respectively. Using

Eq. 5 this results in a dimensionless mass of 𝛼-Cen B of 𝜇 = 0.4588. In reference frame SP , 𝛼-Cen A is located at

[−𝜇,0,0] and 𝛼-Cen B is located at [1-𝜇,0,0], which can be seen in Figure 2.

B. Photon-Radiation Pressure Acceleration

The photon-sail accelerations are part of the EoMs of the spacecraft in Eqs. 1 - 3. In our own Solar System, the Sun is

the main photon-emitting source. In the 𝛼-Cen system, both 𝛼-Cen A and B emit photons that accelerate the spacecraft.

For that reason, the photon acceleration term (a𝑠) is the sum of the acceleration from 𝛼-Cen A (a𝑠,𝐴) and 𝛼-Cen B

(a𝑠,𝐵). To determine the PRP acceleration caused by the photon pressure, an ideal sail is assumed. An ideal photon
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Fig. 2 Schematic of the 𝛼-Cen A/B elliptical restricted three-body problem and reference frame SP(x̂, ŷ, ẑ) (not
to scale)

sail reflects all incoming photons and does not absorb any photons. In addition, it is assumed that there is pure specular

reflection of the photons, which means that the angle of reflection is the same as the angle of incidence. Therefore, the

acceleration vector is parallel to the normal vector (n̂) of the photon sail [4]. The direction of n̂ is defined using the

cone angle and the clock angle 𝛼 and 𝛿, respectively. These angles are defined within the frames A(r̂𝐴, 𝜽𝐴, 𝝓𝐴) and

B(r̂𝐵, 𝜽𝐵, 𝝓𝐵), which are shown in Figure 3. Here, 𝝓𝐴 and 𝝓𝐵 are defined as being in the ẑ-direction. Then, 𝜽𝐴 and

𝜽𝐵 complete the right-handed reference frames. In Figure 3b, the subscript 𝑖 stands for A or B.

(a) Reference frames SP ,A and B (b) Definition of cone- and clock angles (𝛼 and 𝛿)

Fig. 3 Photon sail orientation [12]

In both reference frames A and B, the normal vector n̂𝑖 is defined as:

n̂𝑖 =
[
cos(𝛼𝑖) sin(𝛼𝑖) sin(𝛿𝑖) sin(𝛼𝑖) cos(𝛿𝑖)

]𝑇
, 𝑖 = 𝐴, 𝐵 (6)

To determine the orientation of the normal vector of the photon sail in frame SP , a reference frame transformation

is performed from frames A and B to SP using:

n̂SP =

[
r̂𝑖 𝜽𝑖 𝝓𝑖

]
n̂𝑖 , 𝑖 = 𝐴, 𝐵 (7)
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From now on, the normal vectors n̂ are given in the SP frame, as the PRP acceleration will also be defined in this

frame. For two emitting sources, the PRP acceleration vector is given as [12]:

a𝑠 = a𝑠,𝐴 + a𝑠,𝐵 = 𝛽𝐴
1 − 𝜇
| |r𝐴 | |2

(r̂𝐴 · n̂)2n̂ + 𝛽𝐵
𝜇

| |r𝐵 | |2
(r̂𝐵 · n̂)2n̂ (8)

Here, the lightness number 𝛽 is a parameter to indicate the performance of the photon sail in terms of the acceleration

it can produce. It is defined as the ratio of the PRP acceleration to the gravitational acceleration and, therefore, depends

on the characteristics of the photon sail and the star(s) it orbits [4]. For that reason, a separate lightness number is

introduced for 𝛼-Cen A and B. If a star has a larger mass than our Sun, the gravitational acceleration will be larger,

which would decrease the lightness number of the sail with respect to a sail in proximity of the Sun. On the other hand,

a higher luminosity of the star increases the photon-pressure acceleration, which increases the lightness number. The

relation between the lightness number around the Sun (�) compared to that around other stars is given by [3]:

𝛽𝑖 = 𝛽�
𝐿𝑖𝑀�
𝐿�𝑀𝑖

= 𝜖𝑖𝛽� , 𝑖 = 𝐴, 𝐵 (9)

One of the first photon sails in space, IKAROS, had a lightness number with respect to the Sun of 𝛽� = 0.001

[26]. More modern photon sails, such as that of the NEA Scout, are reaching values in the order of 𝛽� = 0.01 [27].

This shows that the performance of photon sails is improving rapidly. In the future, the lightness number is expected

to increase to a range between 0.025 and 0.04 [28]. Using more futuristic photon sails with new materials such as

graphene, the lightness number can increase massively, up to 𝛽� = 1779 [3].

Current photon sails also absorb part of the incoming photons, which increases the temperature of the sail. As a

means of thermal control, only one side has a reflective side and the other side is used for thermal emission. Therefore,

only the reflective side can be pointed towards the photon source, which means that the normal vectors n̂𝐴 and n̂𝐵 ideally

need to align. However, future photon sails are expected to have a reflective coating on both sides. As travelling to

𝛼-Cen is considered a futuristic mission, it is assumed that a two-sided reflective sail is available at that time. Therefore,

only two-sided sails are considered in this research. This means that both n̂𝐴 = n̂𝐵 and n̂𝐴 = −n̂𝐴 are possible.

IV. Periodic Orbits
Periodic orbits around the classical Lagrange points in the 𝛼-Cen system are designed using a MSDC algorithm.

In this paper, only planar Lyapunov orbits around the colinear Lagrange points are designed. The triangular Lagrange

points in systems where the secondary body has a small mass are stable, making them scientifically interesting, as

natural bodies can stay at this Lagrange point. However, for systems where the mass of the secondary body is larger

than the Gascheau’s value, so 𝜇 > 0.0385, the triangular Lagrange points are not stable, which is the case for 𝛼-Cen [29].

As there are no natural objects expected at the triangular Lagrange points, this paper solely focuses on planar Lyapunov
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orbits around the colinear Lagrange points. As these orbits stay on the xy-plane, the defined three-dimensional dynamics

model in Section III is reduced to a two-dimensional model.

A. Methodology

The MSDC algorithm is an iterative process at two levels, which is visualised in Figure 4. An initial guess is

improved to a continuous trajectory in terms of position in Figure 4a. This first level is described in Subsection IV.A.1.

The approach of the second level is shown in Figure 4b, where the trajectory is made continuous in both position and

velocity. This process is described in Subsection IV.A.2. The method used in this section has been described by Howell

and Pernicka [17].

(a) Level 1: Design continuous trajectory in terms of
position (Subsection IV.A.1)

(b) Level 2: Design continuous trajectory in terms of
position and velocity (Subsection IV.A.2)

Fig. 4 Two-level iterative process of multiple shooting differential correction [15]

The algorithm finds a solution by linearising the EoM to ¤X = 𝐴X. Here, the state vector X ∈ R4 belongs to the

two-dimensional phase space and is therefore the column vector; [𝑥, 𝑦, ¤𝑥, ¤𝑦]𝑇 . From literature [12], the matrix 𝐴(𝜃) in

the PRP-augmented ER3BP model is defined as

𝐴(𝜃) =


0 𝐼

𝐾
1+𝑒cos(𝜃 ) 𝑆

 , with 𝐾 =


𝑈𝑥𝑥 + 𝛿𝑎𝑠,𝑥

𝛿𝑥 𝑈𝑥𝑦 + 𝛿𝑎𝑠,𝑥
𝛿𝑦

𝑈𝑦𝑥 + 𝛿𝑎𝑠,𝑦
𝛿𝑥 𝑈𝑦𝑦 + 𝛿𝑎𝑠,𝑦

𝛿𝑦

 , 𝐼 =


1 0

0 1

 , 𝑆 =


0 2

−2 0

 (10)

The first step of the algorithm is to make an initial guess of the periodic orbit around a Lagrange point. This is done

by perturbing a spacecraft at the Lagrange point along the eigenvector which is associated to the imaginary eigenvalue

of matrix A(𝜃). These eigenvectors correspond to stable motion around the Lagrange point. The size of the perturbation
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is set to 0.01 in dimensionless units. After applying the perturbation, the new state is propagated forward until it passes

the x̂-axis in the same direction as it started. The trajectory is divided in N segments, where each segment starts at a

separate patch point. In Figure 5, the initial guess for a periodic orbit around the L1 point is shown.

Fig. 5 Initial guess for a periodic orbit around L1

Here, the trajectory is not continuous in both position and velocity as the last segment of the trajectory does not

arrive at the first patch point. Therefore, the first level of the MSDC algorithm is used to make the trajectory continuous

in position first.

1. Continuous trajectory in position

The first step is to make the trajectory a continuous path of multiple segments in terms of position. The MSDC

uses the State Transition Matrix (STM), denoted as Φ(𝜃, 𝜃0) to correct the state of each patch point (X𝑖) in order to

reach the next patch point (X𝑖+1). As the aim is to find a periodic orbit, the last patch point is corrected in such a way

that it reaches the first patch point. The initial STM (Φ(𝜃0, 𝜃0)) is an identity matrix 𝐼 of size 4x4 and is propagated

using the derivative of the STM which is calculated using 𝛿Φ
𝛿𝜃 (𝜃, 𝜃0) = 𝐴(𝜃)Φ(𝜃, 𝜃0). Using the state X𝑖 , the trajectory

and STM are numerically propagated. After this propagation, there is a difference between the position at the end of

the propagated trajectory (r 𝑓 ) and the position of the next patch point (r𝑖+1). The goal of the algorithm is to minimise

this difference in position 𝛿r 𝑓 . The difference in state 𝛿X 𝑓 can be linearly approximated using Eq. 11 [17]. Here, the

subscript 𝑖 stands for the patch point at the start of the segment. The subscript 𝑓 belongs to the state at the end of the

propagated trajectory and the subscript 𝑖+1 belongs to the state of the next patch point. The relation in Eq. 11 is used to

correct the velocity of the patch point to minimise 𝛿r 𝑓 . The last term in this equation is added to linearly approximate

𝛿X 𝑓 for a change in time of flight 𝛿(𝜃 𝑓 − 𝜃𝑖).
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𝛿X 𝑓 =



𝛿𝑥 𝑓

𝛿𝑦 𝑓

𝛿 ¤𝑥 𝑓

𝛿 ¤𝑦 𝑓


� Φ(𝜃 𝑓 , 𝜃𝑖)



𝛿𝑥𝑖

𝛿𝑦𝑖

𝛿 ¤𝑥𝑖

𝛿 ¤𝑦𝑖


+



¤𝑥 𝑓

¤𝑦 𝑓

¥𝑥 𝑓

¥𝑦 𝑓


𝛿(𝜃 𝑓 − 𝜃𝑖) (11)

As the state vector X 𝑓 contains four different states and the goal is to minimize 𝛿r 𝑓 , only the first two rows of the

matrix equation are considered. Using these first two rows, the effect of changing the initial state on the final position

is linearly approximated. It is assumed that the initial position is correct, and therefore they do not change. In these

two rows, there are three remaining unkowns, 𝛿 ¤𝑥𝑖 , ¤𝑦𝑖 and 𝛿(𝜃 𝑓 − 𝜃𝑖). To solve these unknowns, Eq. 11 is rewritten in

the linear form:

𝐿u = b (12)

Here, 𝐿, u and b are the matrices and vectors defined as

𝐿 =


Φ13 Φ14 ¤𝑥

Φ23 Φ24 ¤𝑦

 𝑓 , u =



𝛿 ¤𝑥𝑖

𝛿 ¤𝑦𝑖

𝛿(𝜃 𝑓 − 𝜃𝑖)


and b =


𝛿𝑥 𝑓

𝛿𝑦 𝑓

 = 𝛿r 𝑓 (13)

To make the trajectory continuous in position, the goal is to minimise 𝛿r 𝑓 in terms of the smallest Euclidean norm

for Eq. 12, the following relation is used:

u = 𝐿𝑇 (𝐿𝐿𝑇 )−1b (14)

With this equation, the required change in initial velocity is approximated. By iterating this process until 𝛿r 𝑓

converges below a tolerance of 𝜖 < 10−9, a state for each patch point is found. Using the initial guess which was shown

in Figure 5, the trajectory is made continuous in terms of position. This results in the trajectory shown in Figure 6.

The trajectory is designed to be continuous in terms of position, but there is still a velocity difference 𝛿v between the

segments, at each patch point.
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Fig. 6 Trajectory continuous in position using MSDC algorithm

2. Continuous trajectory in velocity

Next, the velocity difference between the segments 𝛿v are minimised by looking at two subsequent segments simul-

taneously. For example, the initial and final states of segment 1 are denoted using the subscriptions ’o’ and ’p−’. For

segment 2, the patch points are denoted as ’p+’ and ’f’ for the initial and final state. These denotations are visualised

in Figure 7. The difference in velocity at the patch point 𝑝 between the two segments is defined as 𝛿v𝑝 = v𝑝+ − v𝑝− .

Here, v𝑝+ is known by integrating backward from X 𝑓 toward X𝑝+ and v𝑝− is known by integrating forward from X0

toward X𝑝− .

Fig. 7 Two subsequent segments which are continuous in position

To make the trajectory continuous in velocity, the positions of all three patchpoints r𝑜, r𝑝 and r 𝑓 are changed in

such a way that the 𝛿v𝑝 is minimised. using the following variation of Eq. 11 [17]

𝛿X𝑝+ =



𝛿𝑥𝑝+

𝛿𝑦𝑝+

𝛿 ¤𝑥𝑝+

𝛿 ¤𝑦𝑝+


� Φ(𝜃𝑝+ , 𝜃 𝑓 )



𝛿𝑥 𝑓

𝛿𝑦 𝑓

𝛿 ¤𝑥 𝑓

𝛿 ¤𝑦 𝑓


+



¤𝑥𝑝+

¤𝑦𝑝+

¥𝑥𝑝+

¥𝑦𝑝+


𝛿(𝜃𝑝+ − 𝜃 𝑓 ) (15)
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The STM is divided into four smaller matrices of size 2x2 as

Φ(𝑡𝑝 , 𝑡 𝑓 ) =


𝐴𝑝 𝑓 𝐵𝑝 𝑓

𝐶𝑝 𝑓 𝐷 𝑝 𝑓

 (16)

Using this notation for the STM and dividing the states into position, velocity and acceleration, Eq. 15 can be

rewritten as


𝛿r𝑝+

𝛿v𝑝+

 =


𝐴𝑝 𝑓 𝐵𝑝 𝑓

𝐶𝑝 𝑓 𝐷 𝑝 𝑓



𝛿r 𝑓

𝛿v 𝑓

 +

v𝑝+

a𝑝+

 (𝛿𝜃𝑝
+ − 𝛿𝜃 𝑓 ) (17)

Then, the first vector equation is used to solve 𝛿v 𝑓

𝛿v 𝑓 = 𝐵−1
𝑝 𝑓 𝛿r𝑝+ − 𝐵−1

𝑝 𝑓 𝐴𝑝 𝑓 𝛿r 𝑓 − 𝐵−1
𝑝 𝑓 v𝑝+ (𝛿𝜃𝑝+ − 𝛿𝜃 𝑓 ) (18)

This is then substituted into the second vector equation of Eq. 17 to find an equation for 𝛿v𝑝+

𝛿v𝑝+ = (𝐶𝑝 𝑓 − 𝐷 𝑝 𝑓 𝐵
−1
𝑝 𝑓 𝐴𝑝 𝑓 )𝛿r 𝑓 + 𝐷 𝑝 𝑓 𝐵

−1
𝑝 𝑓 𝛿r𝑝+ − (𝐷 𝑝 𝑓 𝐵

−1
𝑝 𝑓 v𝑝+ − a𝑝+ ) (𝛿𝜃𝑝+ − 𝛿𝜃 𝑓 ) (19)

The same method is used for the first segment which is propagated from patch point 𝑜 to 𝑝− . For this segment, the

STM is also divided into four 2x2 matrices as follows

Φ(𝑡𝑝 , 𝑡𝑜) =


𝐴𝑝𝑜 𝐵𝑝𝑜

𝐶𝑝𝑜 𝐷 𝑝𝑜

 (20)

The relation between 𝛿v𝑝− and a change of the positions r𝑜 and r𝑝 is then as follows

𝛿v𝑝− = (𝐶𝑝𝑜 − 𝐷 𝑝𝑜𝐵
−1
𝑝𝑜𝐴𝑝𝑜)𝛿r𝑜 + 𝐷 𝑝𝑜𝐵

−1
𝑝𝑜𝛿r𝑝− − (𝐷 𝑝𝑜𝐵

−1
𝑝𝑜v𝑝− − a𝑝− )(𝛿𝜃𝑝− − 𝛿𝜃𝑜) (21)

Subtracting 𝛿v𝑝+ and 𝛿v𝑝− will result in a change in velocity discontinuity (𝛿Δv𝑝). As the goal of this method

is to set the velocity discontinuity at patch point 𝑝 to zero, the required change is set to the existing discontinuity by

integrating backwards and forwards towards point 𝑝. Therefore, 𝛿Δv𝑝 = −Δv𝑝 . The subtraction of Eq. 21 from Eq.

19 results in
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−Δv𝑝 =

[
𝑀r𝑜 𝑀𝜃𝑜 𝑀r𝑝 𝑀𝜃𝑝 𝑀r 𝑓 𝑀𝜃 𝑓

]


𝛿r𝑜

𝛿𝜃𝑜

𝛿r𝑝

𝛿𝜃𝑝

𝛿r 𝑓

𝛿𝜃 𝑓



(22)

Here, the six values in the M-matrix are described as

𝑀r𝑜 = 𝐷 𝑝𝑜𝐵
−1
𝑝𝑜𝐴𝑝𝑜 − 𝐶𝑝𝑜 (23)

𝑀𝑡𝑜 = a𝑝− − 𝐷 𝑝𝑜𝐵
−1
𝑝𝑜v𝑝− (24)

𝑀r𝑝 = 𝐷 𝑝 𝑓 𝐵
−1
𝑝 𝑓 − 𝐷 𝑝𝑜𝐵

−1
𝑝𝑜 (25)

𝑀𝑡𝑝 = 𝐷 𝑝𝑜𝐵
−1
𝑝𝑜v𝑝− − 𝐷 𝑝 𝑓 𝐵

−1
𝑝 𝑓 v𝑝+ + a𝑝+ − a𝑝− (26)

𝑀r 𝑓 = 𝐶𝑝 𝑓 − 𝐷 𝑝 𝑓 𝐵
−1
𝑝 𝑓 𝐴𝑝 𝑓 (27)

𝑀𝑡 𝑓 = 𝐷 𝑝 𝑓 𝐵
−1
𝑝 𝑓 v𝑝+ − a𝑝+ (28)

In Eq. 22, there are six unknowns in two equations, being r𝑜, 𝜃𝑜, r𝑝 , 𝜃𝑝 , r 𝑓 and 𝜃 𝑓 . Again, the smallest Euclidean

norm of Δv𝑝 should be found, as was done using Eq. 14. Therefore, a change of position and time at points ’𝑜’, ’𝑝’

and ’ 𝑓 ’ can be achieved by using



𝛿r𝑜

𝛿𝑡𝑜

𝛿r𝑝

𝛿𝑡𝑝

𝛿r 𝑓

𝛿𝑡 𝑓



= −[𝑀𝑇 (𝑀𝑀𝑇 )−1Δv𝑝] (29)

The location of the three points is then updated by R𝑛𝑒𝑤 = R𝑜𝑙𝑑 + 𝛿r. Until now, the trajectory consisted of only

two segments and was not periodic. Therefore, more segments are added and extra constraints are added to make the

trajectory periodic and continuous in position and velocity.
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3. Increase the number of segments and add extra constraints

To ensure a periodic orbit, multiple segments and additional constraints are added to the algorithm. The general

form of Eq. 22, is shown in Eq. 30. Here, -Δv is the discontinuity at each patch point and 𝐶 stands for the extra

constraints that can be added to the problem. The additional segments causes the 𝑀-matrix to have more rows for each

internal patch point. These extra rows are shown in Eq. 31, above the dashed line. Next to adding extra segments,

additional constraints are needed to design a periodic orbit. A periodic orbit is designed once the end point of the last

segment ’𝑛’ coincides with the start point of the first segment ’0’. To maintain the periodic motion around the Lagrange

point, the EoMs in Eqs. 1-3 should be periodical as well. In a CR3BP, the EoMs are solely depending on the position

and velocity of a spacecraft, but in an ER3BP the EoMs are depending on the cosine of the true anomaly of the system

as well. Therefore, the EoMs are periodical over a period of 2𝜋, when keeping the state X constant. For that reason,

points ’𝑛’ and ’0’ should be continuous in position and velocity and the total time of flight (TOF) to go from ’0’ to ’𝑛’

should be 2𝜋, or a multiple or fraction of 2𝜋. For example, if the period of one revolution (𝑇1) is 𝜋, two revolutions are

needed for a periodical motion to occur. Therefore, the constraint 𝑇1 = 2𝑚𝜋
𝑁 , where 𝑚 and 𝑁 are integers is added to

the MSDC. Adding these constraints to an MSDC has been done before [30]. A generalised form of Eq. 22 is

[𝑀] [𝛿r] =


−Δv

𝐶

 (30)

Here, 𝐶 is a placeholder for any constraint that are added to the MSDC algorithm. When designing a periodic orbit,

the three constraints are added to the MSDC for a trajectory with 𝑛 segments. This results in the 𝑀-matrix, and vectors

𝛿r and −Δv where the constraints are under the dashed lines in the matrices, as follows

[𝛿r] =



𝛿r0

𝛿𝜃0

𝛿r1

𝛿𝜃1

𝛿r2

𝛿𝜃2

...

𝛿r𝑛−1

𝛿𝜃𝑛−1



,


−Δv

𝐶

 =



−Δv1

−Δv2

−Δv3

...

−Δv𝑛−1

®𝑟𝑛 − ®𝑟1

®𝑣𝑛 − ®𝑣1

𝑇1 − (𝜃𝑛 − 𝜃1)



(31)
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[𝑀] =



𝑀r𝑜1
𝑀𝑡𝑜1

𝑀r𝑝1
𝑀𝑡𝑝1

𝑀r 𝑓1
𝑀𝑡 𝑓1 0 0 . . . 0

0 0 𝑀r𝑜2
𝑀𝑡𝑜2

𝑀r𝑝2
𝑀𝑡𝑝2

𝑀r 𝑓2
𝑀𝑡 𝑓2 . . . 0

...
. . .

. . .
...

0 0 . . . 𝑀r𝑜𝑛−1
𝑀𝑡𝑜𝑛−1

𝑀r𝑝𝑛−1
𝑀𝑡𝑝𝑛−1

𝑀r 𝑓𝑛−1
𝑀𝑡 𝑓𝑛−1

I ®0 0 ®0 . . . . . . 0 ®0 −I ®0

−B−1
2,1A2,1 ®𝑎1 + . . . B−1

2,1 −B−1
2,1®𝑣−2 . . . . . . −B−1

𝑛−1,𝑛 B−1
𝑛−1,𝑛®𝑣+𝑛−1 B−1

𝑛−1,𝑛A𝑛−1,𝑛 −®𝑎𝑛 − . . .

B−1
2,1A2,1®𝑣1 B−1

𝑛−1,𝑛A𝑛−1,𝑛®𝑣𝑛

0 −1 0 0 . . . . . . 0 0 0 1


Using Eq. 14, the postions of the patch points are updated. This makes the trajectory discontinuous in position

again. Therefore, the MSDC algorithm returns to the first level of the algorithm to make the trajectory continuous in

position. The second level is then used to update the positions again for a trajectory closer to a continuous trajectory

in velocity. It iterates over these two levels of the algorithm until the Euclidean error of −Δv and the constraints are

below 10−4. The result of the iterative process is shown in Figure 8.

Fig. 8 Final solution for the trajectory of a periodic orbit around L1

4. Initial Guess

Due to the eccentricity of the ER3BP, the periodic orbit is restricted in terms of the period of the orbit. These

extra constraints make it hard to find a suitable initial guess that can be converged by the MSDC into a periodic orbit,

immediately. Therefore, the initial guess is done in the CR3BP. Using the continuation method which is explained

in Sec. IV.A.5, a family of periodic orbits is identified with the constraint for 𝑇1 in CR3BP. In Figure 9, a family of

periodic orbits around L1 is shown, where two periodic orbits are identified that satisfy the constraint 𝑇1 = 2𝑚𝜋
𝑛 . The
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red orbit has a period of 2𝜋 and the blue orbit has a period of 𝜋. In Figure 9b, all the periods of the orbits that are

displayed in Figure 9a are shown. Here, more orbits satisfy the constraint for 𝑇1, for example 𝑇1 = 3
2𝜋. However, in this

paper only periodic orbits with 𝑚=1 are considered. In Figure 9b, a horizontal line is added to show where the orbits

satisfy 𝑇1 = 2𝜋
𝑁 . The same has been done for Lyapunov orbits around L2 and L3, which are shown in Figures 10 and 11,

respectively. In both cases, only one orbit satisfies the period constraint with periods of 2𝜋.

(a) (b)

Fig. 9 Family of periodic orbits around L1 in the classical CR3BP

(a) (b)

Fig. 10 Family of periodic orbits around L2 in the classical CR3BP

The continuation method is used to increase the eccentricity. In the initial guess, the lightness number 𝛽 is also set

to zero, which means that there is no PRP acceleration present. This is done to have some freedom in the orientation of

the photon sail once a periodic orbit has been found in the classical ER3BP. Using the continuation method, multiple

periodic orbits for varying orientations of the photon sail can be identified.
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(a) Trajectories (b) Periods

Fig. 11 Family of periodic orbits around L3 in the classical CR3BP

5. Continuation method to increase eccentricity and photon-pressure acceleration

Using the continuation method, both eccentricity and PRP acceleration are slightly increased to find periodic

orbits in the PRP-augmented ER3PB. A continuation method can be used to slowly increase a parameter while us-

ing the MSDC. In previous research, the continuation method has been used to design a family of periodic orbits,

where the initial conditions are slightly changed [15],[31],[17]. Furthermore, parameters such as PRP acceleration

[22],[32],[33],[34],[35] or eccentricity [21],[36] can be increased in small steps. First, the eccentricity is slightly in-

creased since this is a fixed constraint in the system. In Section II, it was already mentioned that the eccentricity of

the system is equal to 𝑒 = 0.5208. The eccentricity is increased with steps of 0.001 to reach the required eccentricity

of the system. The states of the patch points before the use of MSDC for the next step in eccentricity X𝑒,0 is deter-

mined by looking at the final solution of the previous steps. The following relation is used to find the initial states

X𝑒,0 = X𝑒−1, 𝑓 + (X𝑒−1, 𝑓 − X𝑒−2, 𝑓 ). Here, the subscripts (𝑒 − 1, 𝑓 ) and (𝑒 − 2, 𝑓 ) refer to the converged solution at

the two previous eccentricities. If the system does not converge, smaller increments of eccentricity are used. Once

the continuation method has reached the required eccentricity, the same method can be used to increase the photon-

pressure acceleration. This is done by slightly increasing the lightness number. The continuation method is used to

slightly increase the lightness number with steps of Δ𝛽� = 10−4 until it reaches a maximum lightness number for which

the MSDC algorithm converges to a solution. If the algorithm continues to converge for larger lightness numbers, a

maximum of 𝛽 = 2 is defined.

B. Results of planar Lyapunov orbits

The set of colored Lyapunov orbits in Figures 9 - 11 are used to identify periodic orbits in the ER3BP by slowly

increasing the eccentricity of the system. As the orbit becomes dependent on the true anomaly of the system, the
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periodic orbit around L1 with a period of 𝜋 needs to orbit twice to make it periodic in the ER3BP as well. Next, the

true anomaly at the start of the orbit (𝜃0) should remain constant. To do that, the start of the orbit is defined as the

point where the orbit passes through the x̂-axis. This occurs twice in a periodic orbit with a period of 2𝜋 in the CR3BP

and four times for an orbit with a period of 𝜋 in the CR3BP. Changing the value of 𝜃0 results in a different periodic

orbit in the ER3BP. This means that there are an infinite number of periodic orbits. In this article, two values of 𝜃0 are

investigated: 𝜃0 = 0 and 𝜃0 = 𝜋. Therefore, a set of 8 different periodic orbits around the colinear Lagrange points has

been designed in the classical ER3BP. In Figure 12, the four Lyapunov orbits around L1 are shown. In Figure 12a, the

trajectories with 𝑇1 = 2𝜋 are shown and in Figure 12b, the trajectories with 𝑇1 = 𝜋 are shown. Figure 13 contains the

four trajectories in ER3BP around L2 and L3.

(a) 𝑇1 = 2𝜋 (b) 𝑇1 = 𝜋

Fig. 12 Lyapunov orbits around L1 in ER3BP with varying 𝜃0

(a) L2 (b) L3

Fig. 13 Lyapunov orbits around L2 and L3 in ER3BP with varying 𝜃0

The periodic orbits have been identified in the classical ER3BP of the 𝛼-Cen system. Next, the photon-sail accel-

eration is added using the same continuation method to increase the lightness number of the sail. Therefore, a set of
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constant steering laws of the sail must also be defined. Due to the fact that only planar Lyapunov orbits are considered,

the clock angle 𝛿 is set to 90 deg to ensure that the photon-sail acceleration in the ẑ-direction is zero. Besides that, the

cone angle 𝛼 is set to a constant value of 0 and 90 deg. The cone angle is defined in frame A and B, resulting in a set of

four constant steering laws, 𝛼𝐴 = 0 deg, 𝛼𝐴 = 90 deg, 𝛼𝐵 = 0 deg and 𝛼𝐵 = 90 deg. Lastly, a fifth constant steering law

is added in which the normal vector of the sail is set to always point in the direction parallel to the ŷ-axis. The constant

cone angle could have been set to any number, resulting in an infinite number of available periodic orbits. In this paper,

five constant steering laws have been investigated, resulting in a set of 5x8 = 40 periodic orbits in the PRP-augmented

ER3BP. Using the continuation method to increase the lightness number to a defined maximum of 𝛽 = 2, the maximum

lightness numbers achieved 𝛽𝑚𝑎𝑥 for the entire set are shown in Table 3.

Table 3 Maximum achievable lightness number of PRP-augmented Lyapunov orbits for different constant
steering laws. Table is coloured using Green: 𝛽 = 2, Blue: 𝑉𝑚𝑎𝑥 → 0 and Yellow: 𝑉𝑚𝑎𝑥 → ∞

Lagrange 𝜃0 = 0 𝜃0 = 𝜋
Point 𝛼𝐴 [deg] 𝛼𝐵 [deg] 𝛼𝐴 [deg] 𝛼𝐵 [deg]
(T1) 0 90 0 90 n̂ = [0 1 0] 0 90 0 90 n̂ = [0 1 0]
L1 (2𝜋) 0,7277 0,6188 1,0252 2 2 0,7276 2 0,9302 0,1903 2
L1 (𝜋) 0,7277 2 1,0544 2 2 0,7277 2 0,9032 2 2
L2 0,2661 0,2091 1,8641 0,1131 0,1353 0,6739 2 1,8628 0,5596 2
L3 0,7272 0,2444 0,844 0,0631 0,0539 0,7274 1,4528 0,7275 2 0,2773

In this table, the three colours represent three different types of Lyapunov orbits. First, the constant steering laws

that reach 𝛽𝑚𝑎𝑥 = 2 are shown in green. The steering laws shown in yellow and blue cannot achieve 𝛽 = 2. When the

lightness numbers for the steering laws in blue are increased, the Lyapunov orbits shrink in size. This also causes the

maximum velocity of the orbit to decrease as lightness numbers increase. On the other hand, the maximum velocity of

the orbits with the steering laws in yellow in Table 3 increases with higher lightness numbers. Eventually, the maximum

velocity tends to go to infinity, resulting in a maximum lightness number below 𝛽 = 2. In Figure 14, these three types

of Lyapunov orbits are shown. In Figure 14a, the orbital trajectories with their 𝛽𝑚𝑎𝑥 are shown. In Figure 14b, the

corresponding maximum velocities𝑉𝑚𝑎𝑥 of the Lyapunov orbits are shown for different lightness numbers. The same is

shown for Lyapunov orbits around L2 in Figure 15. The trajectories and the corresponding 𝑉𝑚𝑎𝑥 for all 40 orientations

are added in Appendix B of the main report. It can be seen that for the expanding Lyapunov orbits, 𝑉𝑚𝑎𝑥 eventually

tends to go to infinity. If the Lyapunov orbit converges towards one of the stars, the PRP-acceleration keeps decelerating

the spacecraft. Eventually, the maximum velocity goes to 𝑉𝑚𝑎𝑥 = 0, resulting in an artificial equilibrium point. On the

other hand, if the amplitude decreases while n̂ is not placed parallel to one of the stars, the PRP acceleration minimises

once the orbit stays close to the x̂-axis. This means that the effect of increasing the lightness number is minimised for

larger values of 𝛽.

Some patterns can be observed in Table 3 and Figures 14 and 15. The Lyapunov orbits around L1, with steering
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(a) Lyapunov orbits for achieved 𝛽𝑚𝑎𝑥 (b) 𝑉𝑚𝑎𝑥 for increasing lightness number

Fig. 14 PRP-augmented Lyapunov orbits around L1 with T1 = 2𝜋 and 𝜃0 = 0

(a) Lyapunov orbits for achieved 𝛽𝑚𝑎𝑥 (b) 𝑉𝑚𝑎𝑥 for increasing lightness number

Fig. 15 PRP-augmented Lyapunov orbits around L2 with 𝜃0 = 𝜋

laws in which the normal vector is pointed perpendicular to the stellar arrays when passing the x̂-axis often result in

a 𝛽𝑚𝑎𝑥 of 2. When this axis is passed, the spacecraft is closest to one of the primary bodies, resulting in a relatively

large PRP acceleration. This orientation occurs when the normal vector is kept at n̂ = [0 1 0]. In addition to that, it also

occurs for 𝛼𝐴 and 𝛼𝐵 = 90 deg. However, for the Lyapunov orbit around L1 with 𝑇1 = 2𝜋, the solar acceleration is still

too large for two steering laws. Looking at Figure 12a, setting 𝛼𝐴 = 90 deg results in the normal vector being almost

parallel to the photon rays from 𝛼-Cen B when the spacecraft is (almost) above or below 𝛼-Cen B. For the Lyapunov

orbit with 𝜃0 = 0, the spacecraft is relatively close to 𝛼-Cen B. Therefore, the combination of having the normal vector

parallel to the photon rays and being close to the star results in a too large PRP acceleration. The same occurs for the

Lyapunov orbit with 𝜃0 = 𝜋 and the orientation of 𝛼𝐵 = 90 deg.

The Lyapunov orbits around L2 and L3 in the classical ER3BP with 𝜃0 = 0 are very close to 𝛼-Cen A or B. This

causes the amplitude of the orbit to increase. However, if the normal vector of the sail is placed parallel to the photon

22



rays of the closest star, the orbit decreases until it converges to an AEP. For all other orientations, 𝑉𝑚𝑎𝑥 goes to infinity

as the orbit increases towards the star. Initiating the Lyapunov orbit at 𝜃0 = 𝜋, results in a larger distance to the stars in

the classical ER3BP, as shown in Figure 13. If the normal vector is (almost) parallel to the ŷ-axis, the PRP acceleration

is large enough for the orbit to decrease in size, not too large for 𝑉𝑚𝑎𝑥 to converge to 0. Therefore, the Lyapunov orbits

around L2 with 𝛼𝐴 = 90 deg and n̂ = [0 1 0], result in 𝛽𝑚𝑎𝑥 = 2. For Lyapunov orbits around L3, only 𝛼𝐵 = 90 deg

reaches 𝛽𝑚𝑎𝑥 = 2. The orientation n̂ = [0 1 0] converges toward an AEP at 𝛽𝑚𝑎𝑥 = 0.277.

Another pattern that can be observed in Table 3 is that most of the orientations where 𝑉𝑚𝑎𝑥 converge to 0 have

a 𝛽𝑚𝑎𝑥 close to 0.727. This can be explained by looking at the required lightness number for an AEP, in Figure 16

[12]. There is a contour line around 𝛼-Cen A which requires a lightness number of approximately 0.7. Therefore, the

orientations for which the Lyapunov orbits decrease towards 𝛼-Cen A will converge into an AEP with a value of 𝛽𝑚𝑎𝑥 =

0.727. Next to that, two Lyapunov orbits around L2 converge towards an AEP with 𝛽𝑚𝑎𝑥 = 1.86. These orbits decrease

toward 𝛼-Cen B, which has a contour line of 𝛽 = 1.8 around it. The last orientation that converges to 𝑉𝑚𝑎𝑥 = 0 is a

Lyapunov orbit around L3 with n̂ = [0 1 0]. Looking at the required normal vectors in Figure 16, this orientation occurs

at approximately x = 0. At y = ± 0.8, there are contour lines in the range of 0.2, which corresponds to the achieved

𝛽𝑚𝑎𝑥 = 0.277.

Fig. 16 Required lightness number to create an artificial equilibrium point for a two-sided photon sail [12]

Lyapunov orbits with 𝜃0 = 𝜋 have a higher chance of reaching 𝛽𝑚𝑎𝑥 = 2 for orbits around L2 and L3. Here, the

periodic orbits in the classical ER3BP orbit relatively close to one of the stars at the beginning of the orbit. In the

pulsating frame SP , the position vector remains constant regardless of the true anomaly. However, in the real situation,

the position vector is maximum at 𝜃 = 𝜋. Looking at the Lyapunov orbits around L1, the distances towards the stars are

much larger, which means that the change in the true anomaly does not have such a great effect.
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V. Trajectories between two periodic orbits
To further explore the 𝛼-Cen system, this section investigates the design of trajectories between the periodic orbits

in Section IV. This is done using an evolutionary algorithm, as it does not require a priori knowledge of the problem.

A. Evolutionary Algorithm

In low-energy transfers, genetic algorithms and differential evolution schemes are widely used [12][37]. In com-

parison, a differential evolution algorithm is a simpler method than a genetic algorithm, while it can achieve better

results [38]. In a differential evolution (DE) algorithm, each generation consists of a population with size 𝑁𝑝𝑜𝑝 . Each

individual 𝑖 in the population is a decision vector of size 𝑁𝑝𝑎𝑟 , which represents the number of parameters. A suitable

value of 𝑁𝑝𝑜𝑝 can be determined using [39]

𝑁𝑝𝑜𝑝 = ceiling

(
ln(1 − 0.51/𝑁𝑝𝑎𝑟 )

ln(1 − 0.17)

)
(32)

The values of the parameters can change when proceeding to the next generation to find the most optimal solution to

the problem. From the population, three ’parent’ vectors are randomly selected, which are denoted as V1, V2 and V3.

To proceed to the next generation, each parameter 𝑗 mutates with a chance of 𝐶𝑅%, which is the crossover probability.

In a standard DE, if the parameter mutates, the ’child’ vector u is determined using [40]

u𝑖, 𝑗 = V1, 𝑗 + 𝐹 (V2, 𝑗 − V3, 𝑗 ) (33)

Here, 𝐹 is the scaling factor. If ’child’ vector u𝑖 results in a more optimal solution than ’parent’ vector V𝑖 , the ’child’

vector will replace the ’parent’ vector. In this algorithm,𝐶𝑅 and 𝐹 are problem-specific control parameters that require

tuning to find the optimal values for a standard DE algorithm. A new adaptive DE algorithm is available to update the

control parameters during the optimisation process. This adaptive DE algorithm is called JADE [41] and is proven to

achieve faster optimal solutions [40]. In this algorithm, a fourth parent vector V𝑝
𝑏𝑒𝑠𝑡 , 𝑗 is randomly chosen of the 100𝑝%

best parents. Here, 𝑝 is a constant value between 0 and 1. The four parent vectors are then used to determine the child

vector using

u𝑖, 𝑗 = V1, 𝑗 + 𝐹 (V𝑝
𝑏𝑒𝑠𝑡 , 𝑗 − V1, 𝑗 ) + 𝐹 (V2, 𝑗 − V3, 𝑗 ) (34)

The JADE algorithm adapts the values of 𝐶𝑅 and 𝐹 at each generation. The value 𝐶𝑅 is a random number from the

normal distribution with a mean 𝜇𝐶𝑅 and a standard deviation of 0.1. The mean starts with 𝜇𝐶𝑅 = 0.5 and is updated

after every generation using

24



𝜇𝐶𝑅 = (1 − 𝑐)𝜇𝐶𝑅 + mean𝐴(𝑆𝐶𝑅) (35)

Here, 𝑐 is a constant parameter which is chosen at the start of the first generation. Mean𝐴 is the arithmic mean and 𝑆𝐶𝑅

is the set of all the crossover probabilities, for which the child vector was more successful than its parent. The scaling

factor 𝐹 is also updated after every generation, by choosing a random number from the Caucy distribution with 𝜇𝐹 as

location parameter and 0.1 as scale parameter. Again, 𝜇𝐹 is initiated with a value of 0.5 and then updated after every

generation using

𝜇𝐹 = (1 − 𝑐)𝜇𝐹 + mean𝐿 (𝑆𝐹) (36)

The set of successful values for 𝐹 is denoted with 𝑆𝐹 and mean𝐿 represents the Lehmer mean. This Lehmer mean is

calculated using

mean𝐿 =

∑
𝐹∈𝑆𝐹 𝐹

2∑
𝐹∈𝑆𝐹 𝐹

(37)

In this algorithm, two new parameters are introduced that are non-specific to the problem. These parameters are 𝑐,

which controls the parameter adaptation and 𝑝, which controls the greediness of the mutation. Both parameters are set

to 0.1 in this problem based on a trial-and-error method.

The method of using an evolutionary algorithm to find trajectories between two periodic orbits is based on the

method of Heiligers [12]. This method was used to find heteroclinic-like trajectories between two artificial equilibrium

points in 𝛼-Cen, but it can also be used for trajectories between periodic orbits [32]. To design such trajectories, the

trajectory is divided into two segments, the departure and arrival trajectory. The first trajectory will be denoted using

the subscript ’D’, and the latter will be denoted by the subscript ’A’. The departure trajectory is numerically propagated

from the departure point 𝑃𝐷 over a time span 𝜃𝐷,0. Both 𝑃𝐷 and 𝜃𝐷,0 are determined by the JADE algorithm. This

starting point lies along a periodic orbit that has been designed in Section IV.A, and the state at 𝑃𝐷 is denoted as

x𝐷,0. The trajectory is propagated forward from x𝐷,0 with a piecewise constant photon-sail attitude. These attitudes

are described by a set of cone angles, denoted as 𝛼𝛼𝛼𝐷 = [𝛼𝐷,1 𝛼𝐷,2 . . . 𝛼𝐷, 𝑓 ]. The arrival segment is propagated

backward starting from the arrival point 𝑃𝐴 with state vector x𝐴,0 at time 𝜃𝐴,0. Along the arrival segment, a similar set

of cone angles, 𝛼𝛼𝛼𝐴 = [𝛼𝐴,1 𝛼𝐴,2 . . . 𝛼𝐴, 𝑓 ] is employed. The time intervals in which these cone angles are constant are

denoted in the vector 𝜃𝜃𝜃𝛼 = [𝜃𝐷,1 𝜃𝐷,2 . . . 𝜃𝐷, 𝑓 𝜃𝐴,1 𝜃𝐴,2 . . . 𝜃𝐴, 𝑓 −1]. These parameters result in a decision vector

v = [𝜃𝐷,0 𝜃𝐴,0 𝛼𝛼𝛼𝐷 𝛼𝛼𝛼𝐴 𝜃𝜃𝜃𝛼]. The JADE algorithm is used to find the most optimal trajectory, which is defined as the

trajectory where the Euclidean distance between the state vectors at the end of the two segments is minimal. Therefore,

the objective of the algorithm is to find a vector v where | |x𝐷, 𝑓 − x𝐴, 𝑓 | | is minimal.
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A time constraint is added to the problem due to the eccentricity of the 𝛼-Cen system. When arriving at 𝑃𝐴, not only

should the state of the trajectory coincide with the state of the periodic orbit, but also the true anomaly of the system

should be the same. This is the reason why the vector 𝜃𝜃𝜃𝛼 does not contain 𝜃𝐴, 𝑓 . The parameter 𝜃𝐴, 𝑓 is constrained and

can be calculated using

𝜃𝐴, 𝑓 = 𝜃𝐴,0 − 𝜃𝐷,0 − sum(𝜃𝜃𝜃𝛼) (38)

B. Results

To investigate whether trajectories between the designed planar Lyapunov orbits in Section IV exist, a fixed depar-

ture orbit has been chosen. Two different arrival orbits have been chosen to investigate the effect of 𝜃0 on the trajectory.

As the goal of the trajectories is to explore 𝛼-Cen further, a combination of orbits around L2 and L3 have been con-

sidered as they span the entire system. As a departure orbit, the planar Lyapunov orbit around L2, with a cone angle

of 𝛼𝐵 = 0 deg and 𝜃0 = 0. The lightness number has been set to 0.1, as this value is futuristic, but is expected to be

achievable. The first arrival periodic orbit has been set to a planar Lyapunov orbit around L3, with a constant cone angle

of 𝛼𝐵 = 0 deg for 𝜃0 = 0. To be able to find a continuous trajectory from one orbit into the next, the lightness number

needs to be constant as well. Therefore, the lightness numbers of the arrival orbit and of the trajectory itself are also

set to 0.1. However, to investigate the effect of the lightness number on the trajectory, a second photon-sail trajectory

with 𝛽 = 0.5 is identified. The departure and arrival orbits remain the same, so with 𝛽 = 0.1, to isolate the effect of

the lightness number on the trajectory. A higher lightness number is expected to increase the maneuverability of the

spacecraft. Therefore, one segment is used in the departure and arrival leg for 𝛽 = 0.5. For 𝛽 = 0.1, three segments

are used in both the departure and arrival leg. The algorithm is run for 2500 generations and is repeated five times

using five different random seeds. The most optimal results of the JADE algorithm are shown in Figure 17. Here, in

Figure 17a the trajectory with 𝛽 = 0.1 and in Figure 17b the trajectory with 𝛽 = 0.5 are shown. It can be seen that

the trajectory with 𝛽 = 0.1 is relatively close to 𝛼-Cen A. It uses this star as a gravity assist to reach the arrival orbit.

Comparing this to the trajectory with 𝛽 = 0.5, the trajectory stays farther away from the stars and mainly uses the PRP

acceleration to arrive at the second orbit. The characteristics of the trajectories are given in Table 4. The Euclidean

error | |x𝐷, 𝑓 − x𝐴, 𝑓 | | for the trajectory with 𝛽 = 0.1 has a relatively high value of 0.071. A solar sail with 𝛽 = 0.5 can

more easily ’steer’ through the stellar system, resulting in a continuous trajectory with a Euclidean error of 2.39E-7. It

can be assumed that this trajectory is continuous. Not only the Euclidean error is smaller, but also the required TOF is

shorter.

The same has been done for a different arrival orbit to see whether changing the 𝜃0 of the Lyapunov orbit has an

effect on the trajectory. Therefore, the new arrival orbit is around L3, with 𝛼𝐵 = 90 deg and 𝜃0 = 𝜋. The two trajectories

with varying 𝛽 are shown in Figure 18. Again, the trajectory with 𝛽 = 0.5 achieves a negligible dimensionless Euclidean
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(a) 𝛽 of trajectory = 0.1 (b) 𝛽 of trajectory = 0.5

Fig. 17 Trajectory between departure orbit: L2 with 𝛼𝐵 = 0 deg and 𝜃 = 0 and the arrival orbit: L3 with 𝛼𝐵 =
0 deg and 𝜃0 = 0. Both Lyapunov orbits have lightness number 𝛽 = 0.1

error of 1.65E-8, resulting in a continuous trajectory. The trajectory with 𝛽 = 0.1 has a Euclidean error of 0.004, which

is better compared to the trajectory in Figure 17, but not small enough to assume a continuous trajectory. Again, the

characteristics of the two trajectories are shown in Table 4.

(a) Lyapunov orbits for achieved 𝛽𝑚𝑎𝑥 (b) 𝑉𝑚𝑎𝑥 for increasing lightness number

Fig. 18 Trajectory between departure orbit: L2 with 𝛼𝐵 = 0 deg and 𝜃 = 0 and the arrival orbit: L3 with 𝛼𝐵 =
90 deg and 𝜃0 = 𝜋. Both Lyapunov orbits have lightness number 𝛽 = 0.1

The main difference between the trajectories in Figures 17 and 18 is that the latter trajectories are mostly outside

the periodic orbits, while the trajectories in the former stay within the stellar system. Both trajectories in Figure 17

even go between 𝛼-Cen A and B. To explore most of the system best, travelling between the stars gives a unique view

of the system.

Lastly, a trajectory from L2 to L3 is designed with 𝛽 = 2. The sail in both the Lyapunov orbits and the trajectory
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has this lightness number. This trajectory is shown in Figure 19. Due to the high lightness number, the spacecraft has

high maneuverability, which again results in a small Euclidean error. The characteristics of this trajectory are shown in

the last row of Table 4. The dimensionless Euclidean error is negligible, and the TOF of the trajectory is significantly

shorter compared to the other trajectories, caused by the high lightness number.

So, the results show that the JADE algorithm can identify continuous trajectories between planar Lyapunov orbits,

with negligible Euclidean errors between the departure and arrival legs. For lower lightness numbers, the algorithm

converges to a trajectory with a larger Euclidean error and also uses the stars for a gravity assist. In further research, the

designed trajectories can be used as an initial guess in a modified MSDC algorithm. For the lower lightness numbers,

the MSDC can further decrease the Euclidean error. Using an additional time constraint, the MSDC can also decrease

the TOF of the trajectory by using a continuation method to slowly decrease this time constraint.

Fig. 19 Trajectory between departure orbit around L2 with 𝛼𝐴 = 90 deg and 𝜃0 = 𝜋 and the arrival orbit around
L3 with 𝛼𝐵 = 90 deg and 𝜃0 = 𝜋. Lightness number of the periodic orbits and the trajectory is 𝛽 = 2

Table 4 Characteristics of five different trajectories between two planar Lyapunov orbits

Departure
Orbit 𝜃0,𝐷 Arrival Orbit 𝜃0,𝐷 𝛽 𝜃𝐴,0 𝛼𝐷 [deg] 𝛼𝐴 [deg] 𝜃𝛼,𝐷 𝜃𝛼,𝐴 | |x𝐷, 𝑓 − x𝐴, 𝑓 | | TOF

L2, 𝛼𝐵 = 0 0 L3, 𝛼𝐵 = 0 deg 0 0.1 0.75𝜋


−62.1
−12.9
27.2




5.26
−87.7
41.0



0.57
0.55
0.24

 𝜋

0.66
0.07
0.39

𝜋 0.071 2.48𝜋

L2, 𝛼𝐵 = 0 0 L3, 𝛼𝐵 = 0 deg 0 0.5 0.92𝜋 -62.6 30.7 0.75𝜋 1.25𝜋 2.39E-7 2.01𝜋

L2, 𝛼𝐵 = 0 0 L3, 𝛼𝐵 = 90 deg 𝜋 0.1 2𝜋


62.3
−90
−32.9



89.8
86.4
44.9



0.28
0.57
0.47

𝜋


1.56
0.003
0.39

𝜋 0.0044 3.28𝜋

L2, 𝛼𝐵 = 0 0 L3, 𝛼𝐵 = 90 deg 𝜋 0.5 0.80𝜋 26.0 33.2 1.55𝜋 0.53𝜋 1.65E-8 2.09𝜋
L2, 𝛼𝐴 = 90 𝜋 L3, 𝛼𝐵 = 90 deg 𝜋 2 0.35𝜋 -29.1 57.5 1.26𝜋 0.39𝜋 2.25E-8 1.65𝜋
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VI. Conclusions
In this paper, a number of PRP-augmented planar Lyapunov orbits around the colinear Lagrange points of Alpha

Centauri have been designed using an MSDC algorithm. Around the L1 point, periodic orbits with a period of 𝜋 and 2𝜋

exist in the CR3BP. For Lyapunov orbits around L2 and L3, only orbits with a period of 2𝜋 exist. These four periodic

orbits in the ER3BP are used as input in the continuation method to increase the lightness number. As the elliptical

model depends on the true anomaly of the system, the true anomaly is kept constant at the start of the orbit. This

constant value is set to 𝜃0 = 0 and 𝜃0 = 𝜋 to investigate the effect of starting the periodic orbit at a different moment.

When the lightness number is increased, the orientation of the photon sail is kept constant in a set of five different

constant steering laws, being 𝛼𝐴 = 0 deg, 𝛼𝐴 = 90 deg, 𝛼𝐵 = 0 deg, 𝛼𝐵 = 90 deg and n̂ = [0 1 0]. The lightness

number is increased until the MSDC algorithm does not converge anymore or if the lightness number reaches a defined

maximum value of 2. If the lightness number does not reach a value of 2, the maximum velocity converges to 0 or tends

to go to infinity. Orientations that constantly orient n̂ parallel to the rays of the closest star result in a 𝑉𝑚𝑎𝑥 of 0. The

PRP acceleration causes the Lyapunov orbit to keep decreasing in size until it converges into an AEP. Therefore, 𝛽𝑚𝑎𝑥

corresponds to the lightness number required to create an AEP close to the star. Orienting the sail in such a way that n̂ is

[0 1 0] when passing the x̂-axis, the PRP acceleration in the x̂-direction is limited because that is the moment when the

photon sail is closest to the star. Having enough PRP acceleration in the ŷ-direction results in a decreasing size of the

periodic orbit. The PRP acceleration becomes smaller as the size of the orbit decreases. Therefore, 𝑉𝑚𝑎𝑥 converges to

a value larger than 0 for increasing lightness numbers. These orientations result in 𝛽𝑚𝑎𝑥 = 2. If the orientation causes

the PRP acceleration in either direction to become too large or too small, 𝑉𝑚𝑎𝑥 increases for larger lightness numbers

and eventually reaches 𝑉𝑚𝑎𝑥 → ∞.

The planar Lyapunov orbits around L2 and L3 in the classical ER3BP are very close to the two primary bodies, for

𝜃0 = 0. For that reason, periodic orbits increase in size when the lightness number increases, resulting in 𝑉𝑚𝑎𝑥 going

to infinity. Only if n̂ is pointed parallel to the closest primary body, the PRP acceleration is large enough to converge

the Lyapunov orbits into an AEP. For another initial true anomaly, 𝜃0 = 𝜋 the Lyapunov orbits are larger and further

away from the primary bodies. Again, orienting n̂ = [0 1 0] when passing the x̂-axis results in 𝛽𝑚𝑎𝑥 = 2.

To further explore 𝛼-Cen, a trajectory between the identified Lyapunov orbits is designed using the adaptive JADE

algorithm. Three different lightness numbers are investigated, 𝛽 = 0.1, 0.5 and 2. The trajectory with 𝛽 = 0.1 has the

highest Euclidean error between the ends of the states of the departure and arrival legs of 0.071 and 0.0044, depending

on the arrival orbit. These trajectories also use the stars as a gravity assist as the relatively low lightness number does

not create enough maneuverability. The higher lightness numbers of 𝛽 = 0.5 and 2 result in a negligible Euclidean

error, as it mainly uses the PRP acceleration to travel through the system. When comparing these two larger lightness

numbers, the TOF decreases for larger lightness numbers. This TOF can be further reduced by using an MSDC with a

time constraint.
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3
Conclusions and Recommendations

The goal of this research is to design planar Lyapunov orbits around the colinear Lagrange points of
the Alpha Centauri system. By changing the lightness number and the true anomaly of the system at
the start of the Lyapunov orbit, multiple sets of families of Lyapunov orbits are designed. This is done
to investigate the effects of these parameters on the dynamics in the system. The designed periodic
orbits are then used to make an initial design for a trajectory between two Lyapunov orbits with the
use of an adaptive differential evolution. This trajectory can be improved with the use of a multiple
shooting differential correction algorithm in future research. In Section 3.1, the research question which
are given in Chapter 1 are answered. The results of the work are then used to give recommendations
on future work in Section 3.2.

3.1. Conclusion
The conclusions of the research are drawn by answering the research questions in Chapter 1.

1. What kind of planar Lyapunov orbits exist around the colinear Lagrange points in the Alpha-Cen
system using photon-pressure acceleration?

There are many families of planar Lyapunov orbits in the Alpha Centauri system. Due to the
eccentricity, the period of each Lyapunov orbit is constraint to be 2𝜋, or a fraction of that. For the
L2 and L3 points, there are only Lyapunov orbits with a period of 2𝜋. This means that the orbit of
the photon sail around the Lagrange point has the same period as the orbits of Alpha Centauri A and
B. In the case of Lyapunov orbits around L1, there exist orbits with a period of 2𝜋 and 𝜋. The latter
passes through the axis between Alpha Centauri A and B twice as much as compared to the orbit with
a period of 2𝜋. Both orbits around the L1 point stay in between Alpha Centauri A and B and have a
smaller trajectory. Due to the eccentricity of the system, the equations of motion depend on the true
anomaly of the system. Therefore, there is an infinite amount of Lyapunov orbits available depending
on the moment when the orbit starts. In this paper, two moments are investigated at which the orbit
starts. The true anomaly at these moments 𝜃0 has been chosen to be 0 and 𝜋. The designed Lyapunov
orbits are used to answer the subquestions as well.

• How do these Lyapunov orbits change when varying the lightness number of the photon-sail?

There are four different sets of periodic orbits considered in this research. One set around L2, one
around L3 and two around L1. Each set consists of two true anomalies at the start of the orbit and each
true anomaly consists of a set of 5 constant steering laws. This results in 40 different families of periodic
orbits with different maximum lightness numbers. For each orientation, the maximum lightness number
is shown in Table 3.1. Depending on the orientation, the Lyapunov orbit behaves in three ways when
the lightness number is increased, which is visualised in this table as well.

In some cases, the larger photon-pressure acceleration causes the photon sail to slow down, creating
a smaller trajectory. If the sail is orientated in such a way that the emitted photons keep decreasing the
spacecraft, the Lyapunov orbit converges towards an AEP. The maximum lightness number is the same
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Table 3.1: Maximum achievable lightness number of PRP-augmented Lyapunov orbits for different constant steering laws.
Table is colored where Green: 𝛽 = 2, Blue: 𝑉𝑚𝑎𝑥 → 0 and Yellow: 𝑉𝑚𝑎𝑥 → ∞

Lagrange 𝜃0 = 0 𝜃0 = 𝜋
Point 𝛼𝐴 [deg] 𝛼𝐵 [deg] 𝛼𝐴 [deg] 𝛼𝐵 [deg]
(T1) 0 90 0 90 n̂ = [0 1 0] 0 90 0 90 n̂ = [0 1 0]
L1 (2𝜋) 0,727 0,6188 1,0252 2 2 0,7276 2 0,9302 0,1903 2
L1 (𝜋) 0,7277 2 1,0544 2 2 0,7277 2 0,9032 2 2
L2 0,2661 0,2091 1,8641 0,1131 0,1353 0,6739 2 1,8628 0,5596 2
L3 0,7272 0,2444 0,844 0,0631 0,0539 0,7274 1,4528 0,7275 2 0,2773

as the lightness number required to create an AEP close to a star. If the Lyapunov orbit converges
towards 𝛼-Cen A, the maximum lightness number is 0.727 and if it converges towards 𝛼-Cen B, this
value is approximately 1.86. This first option is shown in the blue cells in Table 3.1. The second option is
that the sail is oriented in such a way that the spacecraft is slowed down again. However, once the orbit
becomes smaller, the spacecraft stays in between the two stars, which makes it possible to orient the
sail in such a way that only a limited amount of PRP acceleration is present. This causes the Lyapunov
orbit to become (almost) independent to the lightness number once the orbit is small enough. These
orientations reach the defined maximum lightness number of 2, which are shown in green in Table 3.1.
Lastly, the PRP acceleration can speed up the spacecraft. This causes the Lyapunov orbit to become
larger for an increased lightness number in the ER3BP. These larger orbits have an higher maximum
velocity as it orbits closer to the stars. Eventually, the maximum velocity tends to go to infinity. The
maximum achievable lightness number is reached at this vertical asymptote. These maximum velocities
are shown in yellow in Table 3.1.

• What is the effect of the initial true anomaly on these Lyapunov orbits?

Due to the fact that the start of the orbit is defined at the closest point to the star on the axis through
Alpha Centauri A and B, the initial true anomaly 𝜃0 has a big influence on the Lyapunov orbits. Espe-
cially in the case of orbits around L2 and L3 as these orbit relatively close to the stars. In the pulsating
frame, the position vector stays constant for a varying true anomaly, but the position is maximum at a
true anomaly of 𝜋 in the non-pulsating frame. Therefore, the relative distance to the star is maximised
by setting the initial true anomaly at 𝜋. In the case of 𝜃0 = 0, no orientation reaches the maximum
lightness number for Lyapunov orbits around L2 and L3. If 𝜃0 = 𝜋, in total 3 of the 10 orientations
reach the maximum lightness number. For orbits around L1, this does not have a great influence, as
the number of orientations that reach the maximum lightness number is the same for both values of 𝜃0.

A set of two periodic orbits is used to investigate the possibility of designing a trajectory between these
Lyapunov orbits. This is used to answer the last research question

1. Is it possible to travel between the designed Lyapunov orbits in the 𝛼-Cen system using photon-
pressure acceleration?

With the use of an adaptive differential evolution algorithm, an initial trajectory between the Lya-
punov orbits has been investigated. This is done between a Lyapunov orbit around L2 and L3 to fully
explore the Alpha Centauri stem. The algorithm minimises the Euclidean error between the final states
of a departure and an arrival leg. Three different lightness numbers have been used to design these
trajectories, 𝛽 = 0.1, 0.5, and 2. The trajectory with a lightness number of 0.1 had a remaining dimen-
sionless Euclidean error in the range of 1E-1 to 1E-3, depending on the chosen Lyapunov orbits. The
larger lightness numbers achieve a Euclidean error in the range of 1E-8. Therefore, it can be assumed
that the trajectory is continuous, so it is possible to travel between the Lyapunov orbits to further
explore Alpha Centauri.

3.2. Recommendations
Identifying the planar Lyapunov orbits around the colinear Lagrange points in Alpha Centauri is the
next step in investigating the dynamics in this system. However, much more can be investigated on the
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basis of this research. First, in this paper, five different constant orientations have been investigated.
These orientations are the limits of the sail, as the cone angles were set to 0 or 90 deg. To further
investigate the effect of the cone angle, a broader set of orientations should be used. The tipping points
between converging to an AEP or reaching the maximum lightness number can be of great interest. The
same can be said of the initial true anomalies. Again, the two boundary conditions have been observed,
𝜃0 = 0 and 𝜋, but the range in between has not been investigated. The tipping points in this range can
also provide insight into the dynamics.

In addition, different sets of periodic orbits can be researched in the future as well. For example,
vertical Lyapunov or halo orbits can be designed. Next, the periodic orbits around the triangular La-
grange points can be investigated. This does not limit to Alpha Centauri, but this method can be
used for any binary (stellar) system. This paper has focused on Alpha Centauri, but by changing the
eccentricity, the dimensionless mass parameter, and the luminosity of the stars, any stellar system can
be investigated. It not only limits two binary stellar systems, but can also be used to improve the
photon-sail dynamics in the Solar System by adding the luminosity of the gas giants.

It is also recommended to further improve the dynamical model in this paper. An example of such
an improvement could be to include the addition of eclipses. For now, the emitted photons could reach
the sail at any point. However, the photons cannot pass through the other star in reality. Another
example is to include a more realistic model of the photon sail in comparison to the ideal sail.

A recommendation for further research on the trajectories between the Lyapunov orbit is to optimise
the trajectories. This can be done by decreasing the time of flight of the trajectories using an MSDC. By
constraining the TOF and using the continuation method to slowly decrease this TOF, a more optimal
solution can be found. Besides that, the physical trajectory can also be optimised. For example, an
optimal solution could be to maximise the fraction of time spent in the habitable zone of Alpha Centauri.



A
Verification and Validation

This section is added to show the process of ensuring that the model is implemented correctly. This is
done for the dynamical model, the photon-sail model, the method to find periodic orbits and lastly the
method to find trajectories between the periodic orbits.

A.1. Dynamical model
The dynamical model is mainly based on the equations of motions (EoMs) of the elliptical restricted
three-body problem, the photon-sail model and the state transition matrix (STM). These three models
are verified to ensure that the models are implemented correctly.

A.1.1. Equations of motion
The dynamical model is based on the equations of motion. To verify the implementation of the dy-
namical model, the method to find the Lagrange points are investigated. First, the triangular Lagrange
points can be easily verified as they form an equilateral triangle with the two primary bodies. The
colinear Lagrange points can be verified using the literature from Ref. [32]. In this book, the colinear
Lagrange points are given for varying values of 𝜇. For three different values of 𝜇, the outcome of the
model is checked with the given values in Ref. [32]. For values of 𝜇 = 0.000001, 𝜇 = 0.1 and 𝜇 = 0.49,
it has been verified that the correct locations of the Lagrange points have been found.

A.1.2. Photon-sail model
The second step will be two verify the implementation of the photon sail model. This is done by
displacing the classical Lagrange points using a photon sail. This has been investigated before in Ref.
[1] and the results are shown in Figure A.1. Here, the required lightness number is displayed by the
colour of the contour lines in the plots. The left side corresponds to the possible equilibrium points for
a photon sail with one reflective side, while the right plot corresponds to a two sided reflective sail.

(a) One-sided sail (b) Two-sided sail

Figure A.1: Required lightness number for artificial equilibrium point in the 𝛼-Cen system from literature [1]

44
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By recreating these plots, the implementation of the photon sail acceleration can be verified. In
Figure A.2, it can be seen that the contour plots are exactly the same as in the literature. The photon
sail model does not only consist of the acceleration, but also the orientation of the sail. The arrows in
the plots correspond to the orientation of the sail. Both plots are similar to the ones in the literature
when comparing the orientation of the sail.

(a) One-sided sail (b) Two-sided sail

Figure A.2: Required lightness number for artificial equilibrium point in the 𝛼-Cen system

A.1.3. State transition matrix
Next to the artificial equilibrium points, the monodromy matrix is verified to check the STM of the
dynamical model. The monodromy matrix is used to investigate the stability of the system [1]. By
integrating the STM over the period of the system, so Φ(𝜃0 +2𝜋, 𝜃0), the monodromy matrix is found.
The eigenvalues 𝜆 of the monodromy matrix characterize the stability of the system. If the eigenvalues
satisfy |𝜆| ≤ 1, the system is stable. For a small Δ, the system is said to be almost stable if the
eigenvalues satisfy |𝜆| ≤ 1 + Δ. If this is not the case, the system is determined to be unstable. The
stability of the 𝛼-Cen system, which is modeled using the ER3BP has been researched before [1]. In
Figure A.3, the stability of the equilibrium points are shown. Here, the light-gray regions are infeasible
for AEPs, which have been shown in Figure A.2 as well. The black regions are unstable equilibrium
points. In Figure A.4, the linear stability is shown for a one-sided sail. Hereby the state transition
matrix is verified to have been implemented correctly.

(a) One-sided sail (b) Two-sided sail

Figure A.3: Linear stability of the equilibria in the 𝛼-Cen system, where white = stable, dark-gray = almost stable, black
= unstable and light-gray = infeasible [1]

A.2. Periodic orbits
To verify the method of designing periodic orbits, the results of the method are verified using previously
designed periodic orbits in the CR3BP [2], the PRP-augmented CR3BP [33] and the ER3BP [31]. In
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Figure A.4: Linear stability of the equilibria in the 𝛼-Cen system for a one-sided sail

Figure A.5, a family of Lyapunov orbits in the CR3BP of the Earth-Moon system[2]. In Figure A.5a,
the trajectories are shown and in Figure A.5b, the periods of these trajectories are shown. In Figure
A.6, a recreation of the family of orbits is made to verify whether the model is implemented correctly.
Both the trajectories and periods of these orbits are similiar to the ones in the literature. Therefore, it
is verified that the MSDC is implemented correctly to find periodic orbits in the CR3BP.

(a) Trajectories of the family of orbits (b) Periods of the family of orbits

Figure A.5: Lyapunov orbits around L1 in the CR3BP of the Earth-Moon system from literature [2]

(a) Trajectories of the family of orbits (b) Periods of the family of orbits

Figure A.6: Lyapunov orbits around L1 in the CR3BP of the Earth-Moon system

The next step is to verify the photon-pressure acceleration model to find PRP-augmented periodic
orbits. In Figure A.7a, a family of Lyapunov orbits around the L1 point in the PRP-augmented
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CR3BP of the Sun-Earth system are shown [33]. In Figure A.7b, the recreated family using the MSDC
algorithm is shown. Here, the recreated orbits have the same trajectories compared to the trajectories
in the literature. Therefore, it is verified that the PRP acceleration is implemented correctly.

(a) Family of orbits from literature [33] (b) Recreated family of orbits with MSDC

Figure A.7: Family of PRP-augmented Lyapunov orbits

The last step of verifying the method to find periodic orbits in 𝛼-Cen is to verify whether the method
works in the ER3BP as well. In literature, the difference between periodic orbits in CR3BP and ER3BP
in the Earth-Moon system are identified for the L1 and L2 point. These are shown in Figure A.8 and
A.10a, respectively [3],[31]. In Figure A.8, the effect of varying the true anomaly at the start of the
orbit is shown as well. Using the MSDC algorithm, the orbits around L1 and L2 are recreated as is
shown in Figures A.9 and 𝐴.10𝑏. These are the same as the orbits from the literature and therefore the
model is verified to work correctly.

(a) Periodic orbit with 𝜃0 = 0 (b) Periodic orbit with 𝜃0 = 𝜋

Figure A.8: Periodic orbits in the ER3BP (Orange) and CR3BP (Blue) around the L1 point of the Earth-Moon system
from literature [3]
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(a) Periodic orbit with 𝜃0 = 0 (b) Periodic orbit with 𝜃0 = 𝜋

Figure A.9: Periodic orbits in the ER3BP (Orange) and CR3BP (Blue) around the L1 point of the Earth-Moon system

(a) Lyapunov orbits from literature [31] (b) Recreated Lyapunov orbits

Figure A.10: Planar lyapunov orbits around L2 in CR3BP (red) and ER3BP (blue) in the Earth-Moon system
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Plots of planar Lyapunov orbits with

maximum lightness number

(a) Lyapunov orbits for achieved 𝛽𝑚𝑎𝑥 (b) 𝑉𝑚𝑎𝑥 for increasing lightness number

Figure B.1: PRP-augmented Lyapunov orbits around L1 with 𝑇1 = 2𝜋 and 𝜃0 = 0

(a) Lyapunov orbits for achieved 𝛽𝑚𝑎𝑥 (b) 𝑉𝑚𝑎𝑥 for increasing lightness number

Figure B.2: PRP-augmented Lyapunov orbits around L1 with 𝑇1 = 2𝜋 and 𝜃0 = 𝜋

49
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(a) Lyapunov orbits for achieved 𝛽𝑚𝑎𝑥 (b) 𝑉𝑚𝑎𝑥 for increasing lightness number

Figure B.3: PRP-augmented Lyapunov orbits around L1 with 𝑇1 = 1𝜋 and 𝜃0 = 0

(a) Lyapunov orbits for achieved 𝛽𝑚𝑎𝑥 (b) 𝑉𝑚𝑎𝑥 for increasing lightness number

Figure B.4: PRP-augmented Lyapunov orbits around L1 with 𝑇1 = 1𝜋 and 𝜃0 = 𝜋

(a) Lyapunov orbits for achieved 𝛽𝑚𝑎𝑥 (b) 𝑉𝑚𝑎𝑥 for increasing lightness number

Figure B.5: PRP-augmented Lyapunov orbits around L2 with 𝜃0 = 0
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(a) Lyapunov orbits for achieved 𝛽𝑚𝑎𝑥 (b) 𝑉𝑚𝑎𝑥 for increasing lightness number

Figure B.6: PRP-augmented Lyapunov orbits around L2 with 𝜃0 = 𝜋

(a) Lyapunov orbits for achieved 𝛽𝑚𝑎𝑥 (b) 𝑉𝑚𝑎𝑥 for increasing lightness number

Figure B.7: PRP-augmented Lyapunov orbits around L3 with 𝜃0 = 0

(a) Lyapunov orbits for achieved 𝛽𝑚𝑎𝑥 (b) 𝑉𝑚𝑎𝑥 for increasing lightness number

Figure B.8: PRP-augmented Lyapunov orbits around L3 with 𝜃0 = 𝜋
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