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Frank P. Groeneveld
Delft University of Technology
The Netherlands
F.P.Groeneveld@student.tudelft.nl

ABSTRACT

The complexity of modern web applications increases as
client-side JAVASCRIPT and dynamic DOM programming
are used to offer a more interactive web experience. In
this paper, we focus on improving the dependability of such
applications by automatically inferring invariants from the
client-side and using those invariants for testing. By combin-
ing JAVASCRIPT code instrumentation and tracing we infer
runtime program invariants. Furthermore, we dynamically
analyze DOM-trees and use learning algorithms to detect
template-based invariants per user interface state, across
various states, as well as across multiple execution runs. Our
open source implementation of the technique is agnostic to
server-side technology and capable of automatically using
the detected invariants for testing web applications. We
demonstrate through a series of case studies that (1) code-
level and structural invariants exist in web applications with
a large client-side state, (2) they can be automatically de-
tected, (3) they can serve as regression test oracles.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Verification, Design

Keywords

Web applications, invariant detection, test automation

1. INTRODUCTION

There is a growing trend to move software applications
towards the Web. Facilitated by advances made in recent
Web 2.0 technologies, people are in increasing numbers us-
ing the web as a programming platform to create a wide
range of web-based systems. Thus, web-browsers not just of-
fer the possibility to navigate through a sequence of HTML
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pages, but enable rich user interaction via graphical user
interface components.

While this positively affects user-friendliness and interac-
tiveness of web applications, it comes at a price: Today’s web
applications rely on the use of (untyped) JAVASCRIPT, con-
tain client-side programmatic manipulation of the browser’s
Document Object Model (DOM-tree), and are stateful as
well as asynchronous in nature. This combination of tech-
niques (collectively called Ajax [8]) is hard to master, mak-
ing programming web applications an error-prone endeavor
[14].

The purpose of this paper is to investigate how we can
improve the dependability of modern web applications by
means of invariants. Invariants can be used for documen-
tation purposes at the design and code level; they can be
used to integrate self-monitoring capabilities into applica-
tions; and they can serve as oracles in automatically gener-
ated test suites.

Unfortunately, creating invariants manually is difficult
and time consuming, which may be one of the reasons that
widespread adoption of invariants in practice is not yet
achieved [4]. To remedy this, a substantial body of research
is available aimed at the automated generation of invariants.
The best-known of these approaches is Daikon, which can
infer all sorts of invariants based on observations of concrete
variable values [7].

The central question of this paper is whether we can apply
automatic invariant detection to today’s web applications,
and to what extent this can help to increase the dependabil-
ity of these applications.

To answer this question, we first look at the pure JAVA-
SCRIPT level. We trace JAVASCRIPT variables and changes
to the browser’s DOM-tree, use Daikon to infer invariants
from these traces, and show how we can inject the result-
ing invariants back into the application. The resulting so-
lution is agnostic to server-side technology, and capable of
automatically using the detected invariants for testing web
applications. Furthermore, we study the DOM-trees in suc-
cessive user interface states, in order to find commonalities
(invariants) within states, across states, and across multiple
runs.

We provide an implementation of our approach in an (open
source) tool we called INVARSCOPE, as an extension upon
our existing CRAWLJAX! infrastructure for testing and anal-
ysis of web applications. Using this implementation, we eval-
uate the effectiveness of our approach on five different open
source web applications. The evaluation compares the de-

"http://crawljax.com
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Figure 1: Processing view of our JavaScript and
DOM invariant detection approach.

rived invariants to hand-written invariants. It demonstrates
that the approach is (1) more effective as the client is more
stateful; (2) at least as effective in finding (seeded) faults as
hand-written assertions; and (3) capable of covering about
70% of the hand-written assertions.

This paper is further structured as follows. In the next
section, we provide an outline of our overall approach for
automatically detecting dynamic invariants in web applica-
tions. In Sections 3 and 4, we describe the methods for de-
tecting JAVASCRIPT and DOM invariants respectively, and
how the inferred invariants can be used to test web appli-
cations. Section 5 presents the implementation details of
our tool INVARSCOPE and Section 6 reports on the results
of our empirical evaluation. We follow up with a discussion,
related work, and concluding remarks.

2. APPROACH

Our approach for finding invariants in web applications
is primarily concerned with the client-side (browser) and
it is agnostic to server-side technology. The approach is
comprised of two main parts, namely, JAVASCRIPT invariant
and DOM invariant detection.

JAVASCRIPT is becoming increasing important in mod-
ern web applications. Its primary use is to retrieve data
from the server, perform some computation, and update the
DOM of the page to reflect state changes. The first part
of our approach focuses on automatically detecting dynamic
JAVASCRIPT program invariants by tracing and analyzing
client-side JAVASCRIPT variables.

The DOM forms a central component of today’s dynamic
web applications, through which all user interface updates
and modifications take place in a browser. Structural invari-
ants over the DOM-tree can act as an oracle for conducting
sanity checks on the run-time behavior of web applications
[14]. The second part of our approach analyzes client-side
user interface state changes to infer dynamic invariants over
the DOM-tree.

Similar to most invariant derivation techniques [5, 7], our
invariant detection method is based on a workflow composed
of the following main steps:

1. Finding a way to log value changes;

2. Executing the program to produce an execution trace;

3. Deriving possible invariants using the trace data that

was produced in the previous step.

Figure 1 depicts the architectural view of our overall in-

variant detection approach. The bold numbers correspond
to each of the main steps.

The challenges that we face in this work are imposed by
the fact that our execution environment is the browser: To
trace JAVASCRIPT variable and DOM state changes we need
access to the run-time properties of the web application in
the browser. To produce an execution trace, the web appli-
cation needs to be driven in a real web browser. The execu-
tion should preferably run as much of the JAVASCRIPT code,
as possible and execute it in different ways, for instance,
with different values for function arguments. It should also
visit as many DOM state changes as possible. To find use-
ful invariants, it is necessary to have an extensive execution
trace, which would be too expensive to produce by hand. In
order to automate the execution step, it is possible to use a
test suite that uses browser controlling libraries such as Se-
lenium? or Watir.® In case test suites are either non-existent
or do not produce enough trace data, automated crawling
techniques [13] can be used to produce an execution trace,
as done in our approach.

Once an execution trace is obtained, the data has to be
analyzed to infer likely invariants. Extensive research has
been carried out on detecting likely program invariants [3,
6, 7, 9]. Most of these techniques are based on a brute-
force method [18]: For all variables, consider all possible
invariants to be true, iterate over the list of found values,
and remove any invariant item that fails with these values.
Our JAVASCRIPT invariant detector is based on an extension
of the Daikon tool [7], and our DOM invariant detector uses
our own brute-force algorithm to analyze and find invariants
on the DOM elements and their attributes.

We use the derived JAVASCRIPT and DOM invariants for
automatically adding assertions in JAVASCRIPT source code
and creating conformance checkers for the DOM-tree, re-
spectively. These checks can be turned on or off depending
on the state of the web application development and testing.
During regression testing, with the checks on, the results can
be used to debug detected errors. They can provide precise
information on where the invariants failed, including the file-
name, line number, and function name of the program point
for JAVASCRIPT invariants. For failing DOM invariants, a
snapshot of the DOM state as well as the location of the
failing invariant on the tree are provided.

3. JAVASCRIPT INVARIANTS

3.1 JavaScript Instrumentation

The approach we have chosen for logging JAVASCRIPT
variables is on-the-fly JAVASCRIPT source code transforma-
tion to add instrumentation code. We intercept all the JA-
VASCRIPT code that passes from the server to the browser,
using a proxy [2]. First we parse the intercepted source code
into an Abstract Syntax Tree (AST). We then traverse the
AST in search of program points to add instrumentation
code.

JavaScript Program Variables. Our first interest is
the range of values of JAVASCRIPT variables. We probe func-
tion entry and function exit points, by identifying function
definitions in the AST and injecting statements at the start,
end, and before every return statement. We instrument the

2 http://code.google.com/p/selenium/
http://watir.com
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function update() {

/% set the ‘class’ attribute */

getElementById(‘contentPane’).setAttribute("class",
"red");

/* change the ‘class’ attribute using jQuery */
$(#contentPane).attr(‘class’, "blue");

}

Figure 2: DOM manipulation through JavaScript.

var ¢ = $(‘#’°+id).attr(‘class’);

if (!(c == ‘blue’ || c == ‘red’)) {
/* not true, add an entry to the assertionFailure
list */
entry = new Array();

/% scriptname, functionname, line number */
entry.push(‘example.update.21’);

/* invariant that failed x*/

entry.push(id + ‘attr: class=’ +
$(‘#°+id).attr(‘class’) + ‘ not in [blue, redl’);
window.assertionFailures.push(entry);

save (new Array(‘example.js:::POINT12’, addvariable(
"$(‘#contentPane’).attr(‘class’)",
$(‘#contentPane’).attr(‘class’)));

$(‘#contentPane’).attr(‘class’, ‘blue’);
save (new Array(‘example.js:::POINT13’, addvariable(

"$(‘#contentPane’).attr(‘class’)",
$(‘#contentPane’).attr(‘class’)));

Figure 3: Instrumented JavaScript code for logging
DOM modifications.

code to monitor value changes of global variables, function
arguments, and local variables.

Per program point, we yield information on script name,
the function name and the line number, used for debugging
purposes. Per variable we collect information on name, run-
time type and actual values. The runtime type is stored
because JAVASCRIPT is a loosely typed language, i.e., the
types of variables cannot be determined syntactically, thus
we log the variable types at runtime.

Dynamic DOM Modifications through JavaScript.
The other interesting case to include in the execution trace
is how certain DOM elements and their attributes are modi-
fied at runtime through JAvAScRIPT. For instance, by trac-
ing how a class attribute of an anchor (i.e., A) element
is changed during various execution runs, we can infer the
range of values for the class attribute of the anchor tag.

Based on our observations, DOM modifications are usu-
ally exercised in a certain “pattern” through JAVASCRIPT.
Once the pattern is reverse engineered, we can add proper in-
strumentation code around the pattern to trace the changes.
As an example, Figure 2 shows such a pattern. First, some
JAVASCRIPT function or framework is used to find the de-
sired DOM element. Next, a function is called on the re-
turned object. This function does the actual modification of
the DOM-tree. The range of possible values for the class
attribute of the contentPane element are red and blue in
this example.

Our current approach is capable of recognizing DOM mod-
ification patterns that are carried out through standard JA-
VASCRIPT API, as well as the widely used jQuery AJAX li-
brary.* After recognizing a pattern in the parsed AST, we
add instrumentation code that reads and logs the value of
the DOM attribute before and after the actual modification.

Figure 3 shows part of the instrumented JAVASCRIPT code
of the example in Figure 2. The save function, is called at
each program point and its argument is a new array, which
has a program point identifier as the first element, followed
by a number of arrays for the variables. These arrays contain
the name, type, and value of the variables. The addvariable
function finds out the types of the variables passed by the

4 http://jquery.com
TUD-SERG-2010-037

Figure 4: JavaScript invariant assertion code.

save function, at runtime and creates the arrays.

3.2 Logging the Trace Data

Since JAVASCRIPT does not support writing to files from
the browser® there is no way to communicate with the na-
tive file system of the machine running the browser. Hence,
saving the trace data generated on the browser poses a chal-
lenge.

Keeping the trace data in the browser’s memory or send-
ing each data item to the server can practically make the
browser very slow, due to the huge amounts of data and
high frequency of HTTP requests. Our solution is a hybrid
approach, in which we buffer a certain amount of trace data
in the memory (in an array), send them to the proxy server
as an HTTP request when the buffer’s size reaches a prede-
fined threshold, and immediately clear the buffer afterwards.
Since the data arrives at the server in a synchronized (or-
dered) manner, all we have to do on the server is concatenate
the tracing data into a single trace file.

3.3 Deriving JavaScript Invariants

In this step, using the obtained trace data, we generate
input files for Daikon, and feed those files to Daikon. Daikon
then derives likely invariants and the output is saved in a file.
We have extended Daikon with support for generating out-
put in JAVASCRIPT syntax. Thus the inferred invariants can
be used directly to create JAVASCRIPT assertions acceptable
by the browser’s JAVASCRIPT engine.

3.4 Using JavaScript Invariants for Testing

Once the invariants are detected, we use them for gener-
ating assertions that can be used in regression testing. Some
of such assertions need access to local variables within JA-
VASCRIPT functions. Since, generally speaking, most unit
testing tools (e.g., Selenium) only provide access to global
JAVASCRIPT variables in the browser, we had to find a way
to gain access to all the variables.

To tackle this problem, we use on-the-fly transformation
to inject the assertions directly into the JAVASCRIPT code, in
a similar fashion as adding the instrumentation code through
the proxy. This way the assertions gain access to all the
variables needed and can save the results, through the proxy,
to generate a test report after a test execution.

Figure 4 shows the automatically injected invariant asser-
tions, checking the class attribute of the example shown in
Figure 2.

-
° A specification has been proposed http://dev.w3.org/2006/webapi/
FileAPI.
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<html>
<body >
<h1>First state</hi1>
<p>This page contains:</p>
<ul id=‘elementlist’ class=‘list’>
<1li class=‘menuitem’>A paragraph</1li>
<1li class=‘menuitem’>A list</1li>
</ul>
<a href=‘/secondstate/’>Second state</a>
</body>
</html>

Algorithm 1 Inferring DOM invariants per state across
multiple runs.

Figure 5: String representation of a simple DOM-
tree.

//HTML
//BODY
//H1
//P
//UL[@id=‘elementlist’ and @class=°‘list’]
//LI[@class= ‘menuitem’]
//A[@href=/secondstate/’]

Figure 6: DOM Invariant for Figure 5.

4. TEMPLATE-BASED DOM INVARIANTS

In this section, we present our technique for automatically
analyzing the web application’s user interface state changes
to detect a specific type of invariants in web applications,
namely, template-based DOM invariants, i.e, unchanging
parts of the user interface. Compared to JAVASCRIPT in-
variants, the main difference here lies in the fact that these
invariants are not inferred from static program points but
from dynamic program states.

4.1 Detecting DOM-based State Changes

In order to infer invariants on the DOM-tree, we first
need access to the runtime representation of the tree in the
browser, as well as a way to visit different user interface
states to be able to compare DOM changes. Our approach
for driving the application state in the browser and access-
ing different DOM states is based on our previous work and
AJaX crawling tool CRAWLIAX [14]. CRAWLJAX automates
the state change detection phase, thus we can focus on an-
alyzing the dynamic DOM to detect the unchanging parts.
More details about the specifics of the crawler can be found
in [13, 14]. We analyze the DOM to infer invariants in three
different ways: per state, across multiple states, and across
multiple runs.

4.2 Invariants per DOM State

Our invariant derivation algorithm for a certain DOM-tree
generates an expression in XPath format for each element on
the tree, which describes the element, the attributes, and the
attribute values. We ignore textual values of elements. The
expressions are stored in such a way that the order, parents,
and children of each element are retrievable. Figure 6 depicts
an example of a derived DOM invariant for the simple DOM
instance shown in Figure 5.

4.3 Invariants across Multiple DOM States

To find DOM invariants that hold across multiple DOM
states, we use a brute-force algorithm. We first consider ev-
ery possible invariant to be true, and when a violation occurs
in a subsequent DOM state, the invariant is adapted accord-

4

Require: R: Set of runs, S: Set of DOM states for each run
1: procedure DErIVE (S, R)
2: for (i = 1,i =< S.size) do
iNVtemp < tnfer(DOM(R1(S;)))
for (j = 2,7 =< R.size) do
NVtemp < compare(inviemp, DOM(R;(S;))
end for
inv[S;] < iNVtemp
end for
end procedure

10:

Require: INV: Set of invariants, DOM: DOM-tree, 7: threshold
11: procedure CompARE (INV, DOM)

12: for (i = 0,i < INV.size) do

13: match <« false

14:  invariant < INVi]

15: element < DOM .exactMatch(invariant)

16: if (element == null) then

17: element < DOM .fuzzyMatch(invariant, T)
18: end if

19: if (element != null) then

20: children < element.getChildren()

21: if (invariant.getChildren().equals(children)) then
22: match < true

23: end if

24: end if

25: if (!match) then

26: INV.remove(invariant)

27: end if

28: end for

29: return INV
30: end procedure

ingly by removing the failing expression(s). This means the
DOM invariant list will decrease or stay equal in size, for
every iteration.

We start with the DOM-tree of the first state (i.e., index)
and infer the invariant expressions. From that state the rest
of the web application is then automatically crawled and
for each detected new state, the corresponding DOM-tree
is used to check which elements are changed (or missing)
and need to be removed from the DOM invariant instance.
Figure 7 depicts our DOM invariant approach schematically.
For this step, the invariants are inferred by comparing the
different DOM states, from left to right.

4.4 Invariants across Multiple Execution Runs

Modern AJAX user interfaces are dynamic in nature, i.e.,
revisiting the same state n times, can result in m subtle
differences in terms of content and structure [21]. To im-
prove the quality of the inferred DOM invariants for cop-
ing with this dynamic characteristic, we infer the invariants
through multiple execution runs of the web application. This
is shown in Figure 7 by comparing each state vertically in
different execution runs.

Algorithm 1 shows our algorithm for inferring invariants
across multiple execution runs. For each state S;, the corre-
sponding DOM states from all available runs are compared
against the inferred invariant document at that moment, as
shown in the DERIVE procedure. At each iteration, the in-
variants are adjusted if necessary to reflect dynamic condi-
tions. Eventually, after a number of execution runs, merely
the unchanging parts of each S; remain in the corresponding
invariant instance.

Once robust invariants have been detected for each dy-
namic state, we derive the DOM invariant that holds over
all the detected invariants, resulting in a site-wide DOM

TUD-SERG-2010-037
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Figure 7: DOM invariant derivation across multiple
states and execution runs.

invartant. This site-wide invariant captures the unchang-
ing skeleton or template of the whole web application DOM
state space.

4.5 Matching DOM Invariants

To cope with subtle differences when finding invariants
over multiple states, our algorithm checks the DOM-tree at
each new state against the already detected DOM invariants
at that moment. This checking algorithm is presented in
Algorithm 1 (lines 11-30), which is described in the following
paragraphs.

Exact Matching. The algorithm first checks whether
elements of the invariant can be found in the DOM-tree us-
ing the corresponding XPath expressions. These expressions
search for a match in the current DOM-tree using the ele-
ment type and attributes. For instance, the algorithm tries
toresolve //UL[@id=‘elementlist’ and @class=‘list’] to
a DOM element. If no match is found, the algorithm moves
to the fuzzy matching phase.

Fuzzy Matching. The fuzzy matching call (line 17)
first tries to find elements of the same type, by searching for
the XPath expressions without the attributes. For instance,
in the list example, we search only for //UL. This expression
will return all present UL elements from the DOM-tree. For
each of these elements, we then compare the attributes and
their values with the attributes and values of the invariant
element.

The comparison is carried out by calculating the number
of equal characters in the same order, which are contained in
the two inputs (the attribute value of the invariant element
and the attribute value of the actual DOM element). After
finding the number of equal characters, we use the Sgrensen
similarity index [15] to compare these two samples. The
Sgrensen similarity index is calculated using the formula:

2a
(b+¢)

in which b and ¢ represent the total number of characters
of each input and a is the number of equal characters found
in both b and ¢. For each DOM element, we take the av-
erage of all Sgrensen indices for its attribute values. The
elements are considered equal if this average is larger than
a threshold 7 (0 <=7 <=1).

Matching Based on Children. When at least one of
the previous methods (exact or fuzzy) finds a match (line

TUD-SERG-2010-037

indexr =

19), we use the children of both the found DOM element
(line 20) and the invariant to assess the quality of the match.
If the children are matched (checked recursively), we can call
it a match, i.e., the DOM element has the same tag name
and children as the invariant, so there is a high probability
that we have found a match.

Consider the DOM invariant shown in Figure 6 as the
current invariant. Running a simple “exact match” against
the UL element of Figure 5 will return one element. Next,
the children matching algorithm is used to check whether
the element has the same type of children as in the DOM
invariant. This turns out to be true, and thus we consider
the element to be present. If all the approaches fail to find
a match, an invariant is violated and that invariant element
is removed from the list (line 26).

4.6 Using DOM Invariants for Testing

The inferred invariant document can be used, for instance,
for search engine optimization (e.g., every page should con-
tain a H1), accessibility testing (e.g., menu must appear
after content), and regression testing.

In order to find the correct inferred invariant document
INV[S;] for a state S; during testing, we use the source
state along with the event causing the state transition to S;
as guidelines. Checking the invariants against the DOM-tree
of S; is carried out using the same algorithm as described
in Section 4.5, meaning that invariants fail when both the
exact and the fuzzy algorithm fail or the children can not be
correctly mapped. As an extra check, the order of the ele-
ments are checked to determine whether the DOM elements
are at the correct position according to the invariants.

The failures found by the testing algorithm are saved in a
report with detailed data about the failure, e.g, the current
DOM, the XPath and the XPath of the children, and the
failing invariant. This information is vital in making the
violations traceable.

5. TOOL IMPLEMENTATION

We have implemented our JAVASCRIPT and DOM invari-
ant detection approach in a tool called INVARSCOPE. IN-
VARSCOPE is released as open source and is available for
download. ©

In the JAVASCRIPT instrumentation component, we use
Mozilla Rhino” to parse JAVASCRIPT code to AST, and back
to the source code after instrumentation. The AST gener-
ated by Rhino’s parser has traversal API’s, which we use to
search for program points where instrumentation code has
to be added. For instrumenting JAVASCRIPT code on-the-
fly, we use an integrated version [2] of WebScarab’s proxy,®
to intercept all the incoming requests from the server. This
enables us to analyze and modify the content of responses
that contain JAVASCRIPT code, embedded in HTML files or
in separate JAVASCRIPT files.

To generate an execution trace of the JAVASCRIPT code
and analyze the dynamic DOM changes, once the JAVASCR-
IPT code is instrumented and sent to the browser, we use
CRAWLJAX [13, 14] to automatically crawl the web applica-
tion. CRAWLJAX opens the web application in a real browser,

6 http://spci.st.ewi.tudelft.nl/content/invarscope/
http://www.mozilla.org/rhino/

http://www.owasp.org/index.php/Category: OWASP_WebScarab_
Project
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Figure 8: Processing view of the invariant checking
phase of InvarScope.

dynamically finds all the present clickable elements for each
state, and executes them to find new states recursively. This
way, we explore the web application’s user interface state in
the browser systematically to produce a large enough execu-
tion trace. Subsequently, we feed the produced JAVASCRIPT
execution trace to Daikon [7] to detect JAVASCRIPT invari-
ants.

Our DOM invariant detection algorithm is implemented
as a plugin for CRAWLJAX. This plugin is executed every
time CRAWLJAX visits a new state. For each new state,
it obtains the current DOM-tree and reverse engineers the
XPath invariants for each DOM element. The click-path, a
concatenation of the names and XPaths of all elements that
were clicked to reach that state, is used to derive a unique
filename to store the invariants. In each run, the invariant
finding/checking algorithm is applied and the results using
the unique filename are stored.

Figure 8 shows how the detected JAVASCRIPT and DOM
invariants are used for regression testing. The JAVASCRIPT
invariants are injected into the JAVASCRIPT source code as
assertions using the proxy (similar to 3.4). The DOM in-
variants are checked in each newly detected state as well.
Any failure detected is stored in a test report.

6. EMPIRICAL EVALUATION

In order to evaluate our approach, we have conducted case
studies for assessing the (1) JAVASCRIPT (code-level) invari-
ants and (2) DOM (structural) invariants detected by our
technique. The research questions can be summarized as
follows:

RQ1 In what kind of web applications can we automatically
derive invariants?

RQ2 How useful are the automatically derived invariants?

RQ3 What is the manual effort involved, in comparison to
hand-written invariants?

Our (additional) experimental data are available at this
link. ©

6.1 Study 1: JavaScript Invariants

Experimental Subjects. For our first study, our se-
lection criteria for experimental subjects include web appli-
cations that make use of JAVASCRIPT and standard HTML
(no flash) on the browser.

6

Table 2: Manually and automatically found Java-
Script invariants.

[
3 g

-

s & O
Custom JS code (LOC) 250 370 310
Automatically Found Invariants
Total Number of Invariants 150 3852 10
- Function Entry 53 1531 4
- Function Exit 91 2319 6
- DOM Manipulations 6 2 0
Unique Invariants 34 291 6
Manual Effort (minutes) 4 2 3
Manually Found Invariants
Total Number of Invariants 30 20 5
- Function Entry 13 10 3
- Function Exit 7 3 1
- In Middle of Function 10 7 1
Manual Effort (minutes) 70 60 20
Fault Detection
Detected by Automatic Inv. 50% 80% -
Detected by Manual Inv. 40% 40% -

Same Game: Our first subject is a web-based implemen-
tation of the Same Game® puzzle. This game was imple-
mented, using jQuery, by two graduate students of our group
who have experience in developing modern web applications.
It consists of about 250 lines of custom JAVASCRIPT code.*°

Tunnel: Our second subject is an open source web-based
implementation of a tunnel game.'! In this game, the player
controls an airplane and the objective is to avoid hitting a
moving wall. It is written using jQuery and consists of about
370 custom lines of JAVASCRIPT code.

The Organizer: The Organizer is an open source web ap-
plication'? that can be used as a task manager and orga-
nizer. It is written as a Java EE application using WebWork,
Spring JDBC, and the Prototype AJAX library.

Setup. To address RQ1, we selected two extreme sub-
jects (Same Game and Tunnel), in which JAVASCRIPT code
is used extensively and the entire state is maintained in the
browser. We also included the third case (The Organizer),
as an instance of a simple AJAX web application, to make a
comparison. To answer RQ2, we decided to compare auto-
matically derived invariants with invariants that are found
manually by developers. Therefore, we asked the students
to manually examine each subject and document possible
JAVASCRIPT invariants as well as the time taken to come up
with the invariants. In total 30 manual invariants were doc-
umented for Same Game (70 minutes), 20 for the Tunnel
(60 minutes), and 5 for The Organizer (20 minutes). Af-
terwards, we ran INVARSCOPE on each subject to automati-
cally detect invariants. To answer RQ3, we documented the
time that was needed to infer the invariants manually and
automatically. For each web application, INVARSCOPE in-
strumented the custom JAVASCRIPT code and dynamically
crawled the states to produce an execution trace. The trace
data for Same Game, Tunnel, and The Organizer became 11
MB, 63 MB, and 3 MB respectively. The traces were then
subsequently fed to Daikon to infer likely invariants.

Detected Invariants.  The results are shown in Ta-

9 http://en.wikipedia.org/wiki/SameGame
10 http://crawljax.com/same-game
11 http://arcade.christianmontoya.com/tunnel/
http://www.apress.com/book/downloadfile/2931
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Table 1: Examples of JavaScript faults injected and detected (Study 1).

Subject [ Fault injected [ Aut. Inv. [ Man. Inv.
x and y arguments of the mark function call were swapped v v
Same Game | Dash was removed from HTML attribute of the cell, x and y coordinates were concatenated | X X
without a separator.
The updateBoard function draws the board and checks whether the game has finished. The | v X
check whether all colors are removed was modified to always evaluate to true. This change
has the annoying effect that every time a cell is clicked, a “game won” message is displayed
The starting score of the game was changed to be negative instead of zero. v v
Code that is used to verify that the tunnel is never wider than a certain value was removed. | X X

Tunnel

tunnel.

This means the plane can be kept in the middle of the screen without ever touching the

not be moved anymore.

The code that modifies the position of the plane was removed. This means the plane could

The score increment rate was changed to be much faster, almost equal to the frame rate.

ble 2. In the Same Game, INVARSCOPE inspected 44 pro-
gram points, of which 10 where function entry points, 18
were function exit points, and 16 were DOM modification
points. For these program points, a total of 150 invariants
were found, of which 34 were unique ones. For the func-
tion entry and exit points, we found approximately 5 asser-
tions per point. Some interesting invariants were found: the
method that marks a cell as “to be removed” has three pa-
rameters, namely, two coordinates and the color of the cell
that is clicked. INVARSCOPE came up with invariants that
made sure the x and y coordinates were always valid, i.e., x
>= 0, width > x,y >= 0 and height > y. These invariants
are very useful to detect off-by-one errors. Furthermore,
it found an invariant to make sure the value (color) argu-
ment was a valid color: (value == 1.0 || value == 2.0
|| value == 3.0). This invariant also makes sure we can-
not mark cells that were already empty, because those cells
have a color value of zero.

Another interesting invariant detected is the fact that the
height and width variables that define the board size are
considered to always be equal to some constant value, which
is exactly what the developers of the application had doc-
umented as an invariant. Furthermore, some interesting
DOM modification invariants were detected. For example, a
function that adds the clickable class attribute to elements
that, according to the game rules, should be clickable was
extended with an invariant check to verify the class was ac-
tually added to the elements.

For the Tunnel application, in total 102 program points
were inspected, 51 entry points and 51 exit points. The to-
tal number of invariants found was 3852, of which 291 were
unique. Approximately 37 assertions were found per pro-
gram point. Some of the interesting results includes, for
instance, invariants to check that the plane is always po-
sitioned between the two walls and the space between the
two walls is always large enough (280, 300 or 320 pixels).
However, some false positives were also detected. One ex-
ample is the check score < ship_x. When the user plays
long enough, he might get a score that is higher than the
x coordinates of the ship, which will result in failures. To
avoid these kind of false positives, a more extensive execu-
tion trace will probably help, since it can invalidate these
invariants.

Merely 10 invariants were automatically discovered in The

Organizer, mostly constants, out of which only 6 were unique.

Most of the JAVASCRIPT code contains only AJAX functions
to retrieve data from the server and update the page, which
makes it quite difficult to manually document JAVASCRIPT
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invariants for this subject as well.

Fault Injection. To assess the usefulness of the in-
variants, the students were first asked to turn the manually
detected invariants into actual assertions in the JAVASCR-
IPT code of each subject. Then, they were asked to inject
10 faults in the web applications, without telling us about
their nature. Mutation testing has been proven to be an ef-
fective vehicle for assessing the quality of a testing technique
[1, 23]. Hence, mutation operators (mostly taken from [1,
16]) were also manually injected into the subjects: Replace
an integer constant C by 0, 1, -1, ((C)+1), or ((C)-1); Flip
an arithmetic, relational, logical, increment/decrement, or
arithmetic-assignment operator; Negate the decision in an
if or while statement; Delete a statement; Swap function
arguments.

Afterwards, each faulty version of the applications was
first checked with the manually added assertions. Then
that same faulty version was tested by INVARSCOPE. IN-
VARSCOPE automatically inserted the detected invariants in
the JAVASCRIPT code through the proxy and ran the ap-
plication. The number and type of errors detected by each
approach (manual and automatic) were noted.

Table 1 shows some examples of the faults introduced in
Same Game and Tunnel and how they were detected by the
manual and automatic invariant assertions. Since the num-
ber of invariants was not significant in The Organizer, we
ignored the fault seeding phase for this experimental sub-
ject. In total, the automatically detected invariants found
50% of the seeded faults in the Same Game and 80% of them
in the Tunnel. The manual invariants detected 40% of the
faults in both the Same Game and Tunnel.

Findings. Based on our experimental results we can
conclude that:

e [t is possible to automatically derive program invari-
ants in web applications that make extensive use of
JAVASCRIPT in the browser. The higher the degree of
the state on the client, the more invariants are likely to
be found. This is evident from the two games, which
have their entire application state in the browser. The
Organizer on the other hand only retrieves data from
the server and updates the DOM-tree using JAVASCR-
IPT, and thus does not result in many invariants.

e The automatically detected invariants are of such qual-
ity that it is possible to use them as assertions for au-
tomatic fault detection. They score even higher than
manually written invariant assertions.

e The amount of manual effort required to automatically
instrument, trace, and infer invariants is only a frac-

7



Groeneveld et. al. — Automatic Invariant Detection in Dynamic Web Applications

SERE

Table 3: Examples of DOM faults injected and detected (Study 2).

Subject

Fault injected

Detected by DOM Inv.

modified the menu that is shown on all pages

removed the image tag of the logo from the header.

The Organizer

replaced the menu, which is located in a table row, to the bottom of the table. This means
that the menu is shown at the bottom of the page instead of at the top

re-ordered elements

Bookstore re-ordered elements of registration form

replaced the search block

Yellow Pages

removed enclosing TR and TD elements of a link in the menu.

= AN EIRNENEN

tion of the time needed for manually looking for and
documenting invariants.

e We also compared the manually defined invariants with
those derived automatically. Similar to the discoveries
of Polikarpova et al. [19], the automatically detected
invariants cover about 70% of the manually written
assertion clauses in our case studies.

6.2 Study 2: DOM Invariants

Experimental Subjects. To evaluate our DOM in-
variant derivation approach, we used three subjects. The
first one is The Organizer as explained in Section 6.1.

The second subject is called Bookstore,'® which is an open
source web application that can be used to sell books online.
It includes a user registration system, product voting, cat-
egories, shopping cart, and administration of various web
shop aspects.

The third subject is Yellow Pages,** an open source web
application in which the user can find contact information by
browsing different categories or searching for specific terms.

Setup and Results. The DOM invariant detection
plugin in INVARSCOPE was used in three runs to generate
invariants on the DOM-tree of each web application. We set
the threshold (7) to be 0.7, which provided the best results
for this case study. Here, we were mainly interested in how
useful the inferred DOM invariants are (RQ2). Thus again
we asked our students to inject a number of faults affecting
the DOM into each of our experimental subjects. Table 3
shows some examples of the types of DOM faults injected
(remove, modify, and replace DOM elements) and whether
they were detected by the invariants.

Each faulty version was automatically checked by our tool
and the results can be seen in Table 4. For each subject, the
table presents the total number of dynamic states and DOM
elements examined, the total number of inferred invariants,
the minimal and maximal state invariants, and the number
of faults injected and successfully detected.

Findings. Based on our data we can conclude that:

e It is possible to automatically derive DOM invariants
in any type of web application that is based on HTML
and DOM (this excludes Flash and other proprietary
implementations). In our case study, we found a huge
number of invariants automatically by analyzing the
DOM-trees.

e The detected invariants can indeed be used for auto-
matic fault detection and regression testing. We were
able to detect around 85% of the injected faults auto-
matically.

13 http://gotocode.com/apps.asp?app_id=3
http://gotocode.com/apps.asp?app_id=4
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Table 4: DOM evaluation rgsults after 3 runs.
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Dynamic States 20 67 93
DOM Elements 2957 8914 10731
Invariants Detected 2389 4717 4843
Minimal Number of Invariants 118 68 41
Maximal Number of Invariants | 120 110 57
Injected Faults 14 10 12
Detected Faults 12 9 9

7. DISCUSSION

Applicability. During the development and evalua-
tion of our JAVASCRIPT invariant deriver we found out that
it cannot find satisfying results for all types of web appli-
cations. For example, simple websites that use JAVASCR-
IPT to merely show and hide HTML elements are not good
candidates. We believe the best applications are computa-
tion intensive web applications that carry out most of the
computation and maintain a significant part of the appli-
cation state on the client side. Our DOM invariant de-
river is, however, applicable to all kinds of web applications,
varying from static web pages to very dynamic web appli-
cations. The DOM invariants inferred are a very specific
type of structural invariant (template-based) and thus not
capable of capturing the exact structure of complex DOM
nodes. Our testing and invariant derivation methods are
fairly generic, i.e., they can be used with manual web appli-
cation “crawling” or automation tools such as CRAWLJAX or
Selenium.

Generated, Compressed, or Obfuscated JavaScr-
ipt. A number of frameworks, such as the Google Web
Toolkit (GWT), exist that automatically generate most of
the client-side code. While our approach infers useful in-
variants for hand-written JAVASCRIPT code, invariants or
assertion failures found in generated code are not meaning-
ful to developers, because errors detected by the invariants
cannot easily be traced back to their source, e.g., Java for
GWT applications.

The use of a proxy to intercept JAVASCRIPT source code
infers a limitation as well, namely the fact that it can merely
be used for web applications that use no encrypted connec-
tions. Finally, during the evaluation, we found out that
minified, compressed, or obfuscated JAVASCRIPT files might
not be parsed correctly with Rhino and thus no representa-
tive execution trace can be obtained.

Threats to Validity. Concerning external validity, our
study is performed on a limited number of web applications.
Generalizing the results based on these studies might harm
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validity, although the selected cases represent the type of
web applications targeted by our research. We did conduct
more case studies on different kinds of web applications, but
we had problems in correctly deriving invariants due to bugs
in Rhino, Daikon and our own tool implementation. A list
of these cases and the cause of their failure can be found at.
5 Our DOM modification through JAVASCRIPT implemen-
tation is currently limited to web applications that use plain
JAVASCRIPT (without any libraries) or jQuery. Adding sup-
port for recognizing patterns of other libraries, such as Dojo
or Prototype, can be added without much effort, however,
the results need to be evaluated in the future.

The fault injection was carried out by two graduate stu-
dents, and although they have experience in developing AJAX
web applications, they do not replace real web developers
and the way they document invariants for web applications.
Another threat to validity could be the nature of the faults
injected. Although some of the injected faults are actual
faults, mutation testing was also used to produce different
(faulty) versions of the web applications. The use of muta-
tion operators is, however, shown to yield trustworthy re-
sults [1] in empirical assessments of test techniques.

With respect to internal validity, we tried to minimize the
number of bugs in the tools developed by writing JUnit tests
for the JAVASCRIPT invariant deriver and tester. However,
we also use various third party tools. We did encounter
several problems in some of them, so these libraries and
tools might harm the internal validity of our results.

As far as reliability is concerned, all the web applications
used in the evaluation as well as INVARSCOPE are publically
available.

8. RELATED WORK

Dynamic Invariants. The concept of using invariants
to assert program behavior at run-time is as old as pro-
gramming itself [4]. A more recent promising development
is the automatic detection of dynamic invariants through
dynamic analysis. Ernst et al. have developed Daikon [7], a
tool capable of inferring likely invariants from program ex-
ecution traces of several languages, including Java, C, and
C++. To derive the JAVASCRIPT invariants, we have used
and extended Daikon with support for JAVASCRIPT. Other
related similar tools that detect invariants include Agitator
(3], DIDUCE [9], and DySy [6]. DySy is somewhat different
than the rest, since it is based on an algorithm that uses
symbolic execution of the program as well as its concrete
execution to detect likely invariants. Lorenzoli et al. [12]
generate behavioral models from program executions in the
form of EFSMs, which represent constraints on data values,
and properties of interaction patterns and their interplay.
Swaddler [5] is an invariant detection tool for PHP that uses
Daikon.

JavaScript Analysis.  Most of the existing work on
JAVASCRIPT analysis is focused on detecting security vul-
nerabilities in dynamic web applications.

Kudzu [22] is a symbolic execution system for JAVASCRIPT
aimed at automated security vulnerability analysis. This is
done by automatically generating a test suite using symbolic
execution of the JAVASCRIPT source code. This test suite
can then be used to search for client-side code injection vul-
nerabilities. BrowserShield [20] applies dynamic instrumen-
tation to rewrite JAVASCRIPT code to conduct vulnerability
driven filtering using so-called policies. These policies are
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basic JAVASCRIPT functions that can, for example, disable
the construction of certain vulnerable ActiveX objects. Yu
et al. [24] propose a method in which untrusted JAVASCR-
IPT code is analyzed and instrumented [11] to identify and
modify questionable behavior.

JAVASCRIPT instrumentation has also been applied to mon-
itor client-side behavior. AjaxScope [10] is a dynamic instru-
mentation platform that enables cross-user monitoring and
just-in-time control of web application behavior.

To the best of our knowledge, our work is the first to in-
strument JAVASCRIPT code to produce an execution trace
and infer dynamic invariants from dynamic web applica-
tions.

DOM Analysis. In our previous work [14], we pro-
posed, ATUSA, an approach to use generic and application-
specific invariants on the DOM-tree to detect faulty states in
web applications. DoDOM [17] is a recently developed tool
to infer DOM invariants. Our approach differs from DoDOM
in a few aspects. DoDOM needs an actual user to interact
with the web application to produce invariants. DoDOM
derives invariants over a number of state transitions, while
our tool derives invariants per state, and site-wide invari-
ants. Finally, our tool analyzes DOM elements and their
children, while DoDOM looks at the DOM element and its
content, ignoring the children.

9. CONCLUDING REMARKS

Thanks to recent advances made in browser and web tech-
nologies, more and more applications are moved to the web.
The enabling client-side technologies such as JAVASCRIPT
and the DOM-tree, however, enlarge the complexity and
pose an increasing threat to dependability of such applica-
tions. In this paper, we proposed a technique in which pro-
gram and structural invariants can automatically be inferred
through dynamic analysis of web applications. The invari-
ants detected as such form a useful vehicle for regression
testing. The contributions of this paper can be summarized
as:

A method for detecting JAVASCRIPT invariants by in-
strumenting JAVASCRIPT code and tracing program
state changes, including programmatic manipulation
of DOM elements and their attributes;

e An algorithm for automatically analyzing web user in-
terface changes to detect template-based DOM invari-
ants per state, across different states, and across mul-
tiple program executions;

e The implementation of our technique in an open source
tool called INVARSCOPE. INVARSCOPE is integrated as
plugins in our AJAX crawling and testing tool CRAWL-
JAX, providing a mechanism in which the derived in-
variants can be used for regression testing of web ap-
plications;

e An empirical evaluation, by means of a number of case
studies, to demonstrate the efficacy and application of
our approach.

Future work encompasses conducting more case studies,
especially on industrial web applications. Augmenting our
JAVASCRIPT DOM modifications detector so that it is ca-
pable of coping with more patterns in other JAVASCRIPT
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libraries forms part of our future work as well. Another di-
rection we foresee is capturing the exact structure of complex
DOM structures in invariants. We currently only remove el-
ements from the initial invariant, in a brute-force manner.
We intend to add/remove elements based on their statistical
stability across multiple states/runs in the future.
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