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Abstract

During team time trials in road cycling changing schemes are used to spread the workload over the cyclists
in the team. Models that provide predictions of race performance already exist for individual time trials. It is
proposed that with a performance model for team time trials, the performance of different strategies can be
compared and optimised.

In literature combinations of mechanical resistance models and physiological models are used to deter-
mine the performance of individual time trials. The aerodynamic interaction between cyclists is very impor-
tant to the effectiveness of a strategy. Coefficients of drag reduction between cyclists in a team time trial are
presented in several studies, however most studies use groups of only four cyclists, which is not useful for a
team time trial with eight cyclists. Only two studies report data for groups up to eight cyclists. These two mod-
els show different behaviour and are both used to asses the performance of strategies. Also two physiological
models were used.

In the model provided in this study the resistances are calculated from the kinematics resulting from the
evaluated strategy. The mechanical resistance model, including the aerodynamic interaction model calcu-
lates the power required to perform the strategy. The physiological model calculates the physiology during
the race, which determines if the cyclists are able to sustain the prescribed strategy.

Genetic algorithm optimisation is used to optimise the strategy parameters, such as initial position and
times spend in first position. The velocity is optimised for each evaluated strategy configuration. A con-
vergence test was performed to determine the parameters for the genetic algorithm, which are used in the
optimisation of strategy.

Using the standard strategy, where cyclists only change from first to last position, different orders are com-
pared. From this study it was determined that the mean velocity over a 30 km team time trial could be raised
by a maximum of 0.228 m/s by improving the order, depending on the model configuration. It was found
that the best performing orders were those where the mean performance difference of following cyclists was
lowest.

Two different strategies have been assessed where cyclists still always change from first, but not necessarily
last position have been assessed on their performance. With those more complex strategies the mean velocity
could be increased with 0.358 m/s over a 30 km team time trial.

The model still lacks validity, but gives a relevant insight in the performance of different team time trial
strategies. The validity can either improved by using track test to validate the drag reduction coefficients or
by using power data from a team time trial to show that the model predicts realistic physiology. Of those two
methods the last is preferred.
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1
Introduction

This report is a study on the optimisation of team time trial strategy, this first paragraph will explain the
basics of team time trials in road cycling, after which the details and modelling is described. Team time trials
are races in which a team of cyclists compete to finish a predefined course in the lowest amount of time
possible. Within the race the cyclists interact with each other, but not with the other teams or other vehicles
on the road, thereby making it a team effort. The cyclists are usually with six to eight and drive close after each
other to reduce the drag of the cyclists in the tail of the line, this is commonly known as drafting or straying.
The cyclists are not allowed to push each other and the drafting effect does not have the same effect in every
position in the group, the cyclists change their position throughout the race. A common way to do this is to
spend some time in first position, than steer to the side of the group and reduce the power output to move to
the tail of the group where, the speed is brought up to the that of the other cyclists until it is possible to pick
in to the last position, as demonstrated in figure 1.1. As this repeats each cyclist moves into the front relative
to the others, until it reaches the first position and it changes to the last position. It is possible and allowed to
use another method to change positions however it is very uncommon.

The full rules of team time trials can e found in the regulation of the ICU [26]. A lot of specific rules can be
determined by the organiser of the event. However it is stated that a team time trial should be with at least
two and no more than 10 cyclists. The distance of the race should not exceed 100 km, for elite men and 50 km
for elite women. The members of the team may use the aerodynamic advantages by drafting from each other,
but not from vehicles from the organisation or team support. Neither are teams allowed to draft from other
competing teams that are on the same course. There are more rules regarding courses and organisation, but
this roughly sketches the outlines of the regulations that affect the strategy.

The goal of this study is to determine performance for different team time trial strategies with respect
to each other, in order to try a large amount of strategies a model for simulations is required. This model
should model the behaviour of the aerodynamic and physiological behaviour accurately in order to asses the
differences between strategies, however it does not necessarily need to exactly match real performance. A
mathematical model for the team time trial needs three components: a mechanical of resistance model, a
physiological model and an aerodynamic interaction model as illustrated in figure 1.2. The resistances how
the power requirements are related to the velocity additionally, it should also include the effects of acceler-
ation and slopes. The physiology should describe the ability of power production, including endurance and
intermittent exercise. The modelling of aerodynamic interaction will describe the reductions in aerodynamic
resistance, this is important, because the changing of position is a result of the aerodynamic dissimilarities
between positions.

The mechanical model links the kinematics to the forces and thereby power output by the cyclist. Many
configurations have been used in publications,[3, 12, 14, 15, 18, 23, 24, 36, 38–40, 42, 45, 46] of which «nearly»
all of them contain aerodynamic drag and rolling resistance, which are two largest sources of resistance. Some
include the forces generated by gravity on sloped roads [18, 23, 24, 36, 40, 45, 46]. Only two studies report the
effects of lean on the forward dynamics of the bicycle [39, 45] and the mechanical efficiency of the bicycle is
only mentioned in one study [45].

1



2 1. Introduction

Figure 1.1: Regular changing dynamics in a team time trial of four cyclists. The changing cyclist starts in firts position, moves around the
group and ends in fourth position.

Figure 1.2: An overview of the most important effects to model in a team time trial, resistance (drag and rolling resistance), power
production and exertion and aerodynamic drag reduction, spread across three cyclists.



1.1. List of symbols 3

The physiology should provide a mathematical description with on the ability of the cyclist to produce
power output over time. Eventually the physiological model should lead to a form in which it can determine
weather or not a certain power is producible by the cyclist. The theory of Monod and Scherrer (1965) [30]
defines a power to time relationship, more commonly known as the Critical Power Theory. This determines
the maximum time a constant power can be delivered by a cyclist. This theory is extended by recovery models
of Skiba et al. (2012) [43] and Bartram (2017) [5], creating a model which can model a physiological state (an-
earobic work) throughout an exercise, from this state it can be determined if it was possible for the athlete to
perform this exercise. Another model is the bioenergetic model by MArgaria and Morton [33, 41] (Margaria-
Morton model). This model is more based on the bio-chemistry inside the body and also models two physio-
logical states of an athlete, which can determine weather the exercise was possible. The critical power model
is easier to determine for a cyclist, with only two variables, the Margaria-Morton model is harder to fit with
eight free variables, but is capable of describing a more detailed physiological behaviour of the cyclist.

As mentioned earlier in team time trials drafting is used to increase performance. In order to implement
this effect in the team time trial model, the drafting of the cyclists has to be quantified. Several studies have
been performed on the drafting effect, when cycling in groups [4, 8, 10, 16–18, 22, 27, 29]. Of these studies
four are dedicated to the team pursuit in track cycling and provide data for four cyclists [4, 10, 16, 22] and
only two provide data to group seizes up to eight [8, 27]. The discussed studies can also be differentiated by
the method of assessment, these are distinguished in three categories: computational flow dynamics (CFD)
[8, 16, 27], wind tunnel tests [4, 10] and field tests [10, 17, 22, 29]. These studies describe the drag reduction
for every position in the group.

In this study a model will be used in an optimisation to determine optimal strategy in team time trials.
As presented in figure 1.1 the strategy that is currently most used is to have a fixed order where every cyclist
drives roughly ten to thirty seconds in first position and then changes to last position. In first position the drag
is the highest, thus is the required power output is high. Depending on the capability of the cyclist and it’s
state at the moment the cyclist will adjust the time spend in that position, shorter if weaker or tired and longer
if stronger or in a more energetic state. Cyclists that are much weaker than the others, are often dropped out
of the group during the race.

1.1. List of symbols
In table 1.1 a list of symbols used throughout this study is provided.



4 1. Introduction

Table 1.1: List of common symbols used throughout this study

Symbol Units Description
ρ kg /m3 density
ϕ r ad slope angle
A f m2 Frontal area, projected frontal area.
Cdr − Coefficient of drafting, drag reduction due to drafting
Cd − Coefficient of aerodynamic drag
Cd A m2 Drag area, combination of drag coefficient and corresponding area
Cr − Coefficient of rolling resistance
D N Drag
Fr N Rolling resistance
Fsl ope N slope force (projection of gravity on forward direction)
g m/s2 gravitational acceleration
m̂t kg total effective mass of bicycle and cyclist
mb kg bicycle mass
mc kg cyclists mass
mt kg total mass of bicycle and cyclist
P W power
v m/s forward velocity
C P J Critical power (CP-model)
W ′ J Anearobic work capacity (CP-model)
W ′

bal J dynamic anaerobic work capacity state (CP-model)
Φ - Relative height of oxidative feed to phosphagen reserve (MM-model)
λ - Relative height of connection of glycogen to phosphagen reserve (MM-model)
θ - Relative maximum height of glycogen reserve (MM-model)
D1 W Admittance of oxidative feed (MM-model)
D2 W Admittance corresponding to glycolitic production of ATP (MM-model)
D3 W Admittance corresponding to the recovery of glycogen supply (MM-model)
CP J Relative energy capacity of the phosphagen supply (MM-model)
CG J Relative energy capacity of the glycogen supply (MM-model)
EP J Absolute energy capacity of the phosphagen supply (MM-model)
EG J Absolute energy capacity of the glycogen supply (MM-model)



2
Modelling of the team time trial

performance

2.1. Introduction
A mathematical model is used to model the physiology of the cyclists during a team time trial. The model is a
combination of three models, which are the mechanical, physiological and aerodynamic interaction model.
The mechanical model is defined by the equation of motion of the cyclist. The physiological model uses the
the cyclists power, from the equation of motion to model the cyclist’s physiological state(s). The aerodynamic
interaction model is modelled by a constant of drag reduction, this constant can be calculated using the cy-
clists group positions and aerodynamic drag areas of the cyclists. In this chapter explanations the model, how
it is used in simulations, physiological models and aerodynamic models that can be used with this model. A
schematic overview is provided in figure 2.1

2.2. Mechanical model
The mechanical model can be described by the equation of motion. In figure 2.2 the free body diagram of
the cyclist is considered. Out of plane forces and lean are neglected. The motion of the cyclist is restricted
in the vertical direction due to the ground contacts. The equation of motion is defined in this direction. The
equation of motion has terms related to slope related forces, rolling resistance, aerodynamic drag and power
production by the cyclist. Those last two terms have interaction with the aerodynamic interaction models
and physiological models.

A lot of studies have provided a mechanical model that is used to model forces acting on a cyclist. In ta-
ble 2.1. It is shown that all considdered researches consider rolling resistance and aerodynamic drag. Some
studies performed an analysis at constant velocity and did not include acceleration. Also a fair amount of
studies performed an analysis without road incline and therefore did not include forces as a result of inclina-
tion in the road surface. centrifugal forces are not considered much, nor is the chain efficiency.

2.2.1. Equation of motion of the individual cyclist
The equations of motion for the individual cyclist corresponding to figure 2.2. The equation is shown in equa-
tion 2.1, the physiological model calculates the time derivative from the current state and the cyclist’s power
output and the aerodynamic drag reduction coefficient is defined by the aerodynamic interaction model as a
function of a cyclist’s group position.

Pi

vi
= m̂i ·ai +

(
mgCr

)
i +

(
1

2
ρCd Av2

)
i
+mi g tan

(
ϕ(xi )

)
(2.1)

5



6 2. Modelling of the team time trial performance

Figure 2.1: A schematic overview of the mathematical model. The inputs are shown at the top and consist of the velocities, conditions
and positions of the cyclists in the group. With conditions environmental conditions and course specific parameters are meant. The
outputs are the changes in physiological states of all cyclists.

Table 2.1: parts accounted for by different studies that use a mechanical model to address resistances in cycling. The headers of the
tabel are abbriviated, Rol = rolling resistance, Acc = acceleration, Grad = forces introduced by gravity and road inclination, Centripetal =
(lateral) centripetal forces, Efficiency = efficiency of the chaindrive

Study Effects modelled
Drag Rolling Acc Grad Centripetal Efficiency

Candau et al. (1997) [11] x x
Baldisera (2017) [3] x x
de Koning et al (1999) [14] x x x
Debraux et al (2011) [15] x x
di Prampero et al (1979) [40] x x x
di Prampero (2000) [39] x x x x x
Fitton et al. (2018) [18] x x x x
Gordon (2005) [42] x x
Hennekam and Botsema (1991) [23] x x x
Hettinga et al. (2012) [24] x x x
Olds et al. (1993) [36] x x x x
Padilla et al (2000) [38] x x
Underwood and Jeremy (2010) [45] x x x x x x
Van Ingen Schenau and Cavanagh (1990) [46] x x x x
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Figure 2.2: A free body diagram of the cyclist and bicycle combination.

2.3. Physiological model
The physiology is an important part of the model, with the physiological model it is determined if the physio-
logical effort of producing the power is achievable. The physiological models derive the states from the power
output over the team time trial. The power effectively defines the derivative of the physiological state(s) of
the cyclist, which result in the physiological states by forward integration. Multiple physiological models are
used in this study.

Different models Different models can be used to model physiological performance, the two models used
in this study are the critical power model and Margaria-Morton whole-body bioenergetic models. The critical
power model is mostly used in cycling performance modelling, since the tests to obtain the cyclists specific
values are relatively easy. [2, 6, 7, 25, 35, 47, 48] With this model multiple recovery methods have been pro-
posed [5, 34, 43], where the model by Bartram seems to fit best for elite cyclists and therefore is used as
the recovery model with the CP-model[5]. Another physiological model is provided by Margaria and Mor-
ton [33, 41], this model is based on the biochemistry involved in mechanical power production. This model
therefore models the performance, more detailed. Because of it’s detail it is hard to fit such model to a cyclist,
no publications have been found doing so. From it’s degrees of freedom it is however derived that at least
eight tests are required.

2.3.1. Critical power
The critical power model by Monod and Scherrer (1965) [30] is based on a mathematical relationship be-
tween exercise power and duration. According to the model each cyclists has a critical power (C P ) which the
cyclist is able to sustain for a very long time, this corresponds to aerobic power production. When producing
above this power, a limited capacity of anaerobic work (W ′). The average power over an exercise is shown in
equation 2.2, where tl i m is the duration of the exercise.

Pl i m =C P + W ′

tl i m
(2.2)
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Wmax =C P · tl i m +W ′ (2.3)

The dynamical state of the anaerobic work capacity is defined by W ′
bal , during a depletion of the anaerobic

reserve the change of the state of anaerobic work capacity is the amount of power delivered above the critical
power, see equation 2.4. By integrating this over an exercise duration (tl i m) using any power (Pl i m) larger
than CP, the original relation from equation 2.3 is obtained, thus this equation satisfies the original model.
The original model only models the expenditure and not the recovery. [30, 32]

dW ′
bal

d t
=C P −P P >C P (2.4)

Bartram’s recovery model [5] The recovery of Bartram’s model is modelled as a first order differential equa-
tion, based on the theories of Skiba et al (2012) [43] and Morton and Billat (2004) [34]. This first order dif-
ferential equation equation 2.5a has one parameter corresponding to the refill rate (τ), this time constant is
modelled as a function of recovery power Dcp = C P −P , see equation 2.5b. This equation is fitted to tests
performed by elite cyclists.

dW ′
bal

d t
= W ′−W ′

bal

τ
C P > P (2.5a)

τ= 2287.2 · (C P −P )−0.688 (2.5b)

Skiba’s recovery model [43] The recovery model by Skiba is most standard in physiological modelling, how-
ever there are some conflicting things on this model. First of all the recovery equation reported by Skiba et
al (2012) [43] contains an equation where it’s units mismatch and also does not correspond to the behaviour
shown, this equation is slightly altered, such that the behaviour corresponds and the units match. An addi-
tional point is that when the power output approaches critical power, the recovery rate does not approach
zero, which result in that a slightly varying power output around CP has a much higher performance, thus
also resulting that the accuracy of determining the CP is corrupted. At last the model is not fitted to a cycling
test or tested with elite athletes, which makes it less useful with respect to the Bartram Model.
The model itself is based on the recovery kinetics proposed by Morton and Billat (2004) [34], with the equation
shown in equation 2.6a. Just as in Bartram’s model the time constant τ is fitted as a function of the recovery
power: equation 2.6b.

dW ′
bal

d t
= W ′−W ′

bal

τ
C P > P (2.6a)

τ= 546e−0.01·(C P−P ) +316 (2.6b)

2.3.2. From critical power to critical velocity
Using the mechanical model the critical power can directly be linked to a velocity, at critical power this value
is defined as the critical velocity (CV). The critical velocity is, a velocity that can be maintained for a long time.
This variable is influenced by environmental parameters (ρ, ϕ) and cyclist or bicycle parameters (Cr , Cd A).
The critical velocity can be useful in determining the group velocity during a team time trial.

2.3.3. Margaria-Morton Physiological Models
The Margaria-Morton models are based on physiological processes in the body rather than mathematical
relations found in tests. These models are mostly used to explain phenomena in exercises. [33, 41] These
models could also be fitted to athletes.

Instead of one aerobic capacity as described in the critical power model, this model has two anaerobic
capacities. The first anaerobic capacity is related to the bodies capacity of phosphates, used in the produc-
tion of ATP, which is directly used in production of mechanical work by the muscles. The second anaerobic
capacity is related to the supply of sugars in the form of lactate or glycogen, this reacts much slower than
the phosphates. Another component in this process is the aerobic feed of energy, which contributes to the
continues refilling of both anaerobic capacities.
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Figure 2.3: Hydraulic flow representation of the generalised MM model.

A schematic hydraulic flow model is presented in 2.3. In this model the volume flow rates represent energy
flows and the capacities energies. The P tank represents the potential energy production of phosphates. The
G tank represents the energy potential of stored glycogen (or lactates?). The O tank represents oxygen supply
which is taken from the environment and therefore infinite in capacity, but limited in feed. The power output
is directly depletes the P tank, the level difference created by depletion causes flows from O and G tank to
the P tank. The flow from P to G, representing recovery of glycogen, is much slower than the flow in opposite
direction.

This model models the flow of energy inside the athletes body more accurate than the critical power model,
however a lot of parameters of this model are required to use this model in predictive modelling. Little infor-
mation has been published on how to fit a such a model to an athlete and the constraints to the parameters.
[31]
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Figure 2.4: The drafting coefficients versus the position in the group for multiple group sizes (2,4,6 and 8

. The left plot corresponds to Íñiguez & Íñiguez de-la-Torre [27], the right plot corresponds to Blocken. [8]
The two studies both present data that is

2.4. Aerodynamic interaction model
In the aerodynamic interaction model the drafting is modelled. Several studies tried to model the aerody-
namic interaction by means of CFD simulations [8, 16, 27], wind tunnel tests [4, 10] and field test using bicycle
mounted power meters [10, 18, 22]. Only two studies have been

2.4.1. implementation of drafting
In order to account for drafting in the equation of motion therefore the formulation from [29] is used, ex-
pressed in equation 2.7a. Another way of approaching this is by assuming that the cyclists effective air velocity
is reduced by the other cyclists, this results in equation 2.7b.

D = 1

2
ρCdr Cd Av2 (2.7a)

D = 1

2
ρCd Ave

2 ve
2 =Cdr v2 (2.7b)

2.4.2. Comparison of Aerodynamic interaction studies
Two aerodynamic drag reduction studies are performed on groups of cyclists with up to eight cyclist [8, 27],
more studies are used to determine drag reductions in groups of four cyclists. [4, 10, 16, 18, 22, 29] The two
studies reporting drag reduction of groups up to 8 cyclists show different behaviours for the development of
drag reduction through the positions of cyclists in the group, see 2.4. A comparisson of the drafting coefficient
in groups of four cyclists are shown in 2.5a, where the first two bars in each position represent the results from
Íñiguez and Blocken.

Observing groups of four cyclists When observing 2.5a, it is found that the three studies, which are not
able to model eight cyclist show lower values, in the last two positions. Especially the studies of Fitton [18]
and Barry [4] which use field tests and wind tunnel tests respectively, where Defraye [16] also uses CFD. Wind
tunnel tests and even more field tests are a more representative study of drag, therefore also drag reduction.
This makes it very likely that coefficients of drafting are lower (drag reduction is higher) than both Blocken [8]
and Íñiguez [27] report.
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(a) Comparison of drag reduction coefficient (Cdr ) as function of group position coefficient for groups of four cyclists.

(b) Comparison of drag reduction, in terms of ratio in power consumption with respect to the first cyclist in the group, as
function of group position coefficient for groups of four cyclists.

Figure 2.5: Comparisson of drag reduction of groups of four cyclists.
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Drafting values The drafting values of all studies are compared. In figure 2.4 the drafting coefficients for
groups of two, four, six and eight cyclists are compared between the two studies simulating groups up to
eight cyclists. [8, 27] The values used in these studies are shown in table 2.2 for Íñiguez & Íñiguez de-la-
Torre [27] and in table A.2 for Blocken et al. [8]. The data from groups of three, five and seven cyclists was
not provided by the study of Blocken et al. [8], therefore these values were interpolated. The method of
interpolation is explained in appendix A. In this chapter also an attempt is provided to use groups of four
cyclist to extrapolate their values, however the analysis showed that the interaction over more than 3 positions
is to high to neglect. This leads to the need of fitting a wake function, in order to extrapolate drag reduction
in groups of four cyclists.

Table 2.2: Drafting coefficients as reported by Íñiguez & Íñiguez de-la-Torre

Gr. Size Cdr 1 Cdr 2 Cdr 3 Cdr 4 Cdr 5 Cdr 6 Cdr 7 Cdr 8

1 100
2 96 74
3 96 71 72
4 96 69 68 70
5 95 68 67 67 69
6 95 68 67 67 67 69
7 95 67 66 66 66 66 68
8 95 67 66 66 66 66 66 68

Drafting coefficients, expressed as the percentage of the drafting drag value of the original solo drag value.
Table 2.3: Drafting coefficients as reported by Blocken et al. with groups of 3, 5 and 7 interpolated using the alortighm form (refCorrec-
tAppendix)

Gr. Size Cdr 1 Cdr 2 Cdr 3 Cdr 4 Cdr 5 Cdr 6 Cdr 7 Cdr 8

1 100
2 97 86
3 97 83 78
4 97 82 75 73
5 96 82 75 70 69
6 97 82 75 69 67 68
7 96 82 75 70 66 66 66
8 97 82 75 65 66 65 64 65

Drafting coefficients, expressed as the percentage of the drafting drag value of the original solo drag value.

2.5. Simulation framework
The goal of the simulation is to assess the performance of a strategy. The strategy is simulated up to the point
where either the physiological states get out of their bounds, or enough cyclists have finished. The equations
of motion are used to determine the power output of the cyclists, this is used by the physiological model to
calculate the physiological states. The physiological states by themselves can show a lot about the workload
relative distribution during the team time trial, but more important is to define, weather or not the simulated
condition is actually achievable. From the simulation the finish time is used to determine the performance.
In case of a physiological failure, another method is used to come to a finish time.

2.5.1. constraints
The goal of the simulation is to obtain the physiological states of a cyclist during a team time trial, this means
that all other free variables have to be pre-defined. The cyclists travel over the course, the three dimensional
environment is brought down to just one free coordinate, distance (s). The position on the map, height and
slope are all a function of the distance coordinate, and corresponding to a specified course.

In a real course there will very likely be turns, roundabouts and possibly speed bumps that affect the strat-
egy of a team time trial, however these effects are neglected in this study. In turns the travelling velocity is
limited and changing position is harder or not possible, these effects could be useful when preparing for a
real team time trial, however in this study races without course constraints are simulated.
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Figure 2.6: The velocity profile and definition of section velocity

2.5.2. Strategies
With the strategy is determined as a function of time, what the positions are as a function of time, also the
group velocity is determined and the time it takes to change position. The velocity of the group can vary from
section to section and is specified at the point of change in position. The position is integrated from velocity
during the simulation, the velocity and accelerations of individual cyclists is determined by whether or not
the cyclist is in the group or changing. In the group the velocity and accelerations of all cyclists are equal, the
velocity is linear interpolated between the values at the beginning of the section.

Velocity of changing cyclist The velocity of the changing cyclist is determined from the distance from be-
tween the old and new positions and the time of changing. A plot is made with the velocities of both group and
changing cyclist and is shown in 2.6, with the corresponding equations in equation 2.8. The section velocity
vsec [i ] is the velocity at the beginning of section i. The velocity profile of the changing cyclist is characterised
by three phases, first is the decelerating phase, second is the constant velocity phase and last is the acceler-
ating phase. During the accelerative and decelerating phase, the acceleration,with respect to the group (∆a),
is set to 0.2m/s2 and is negative during decelerating phase and positive in acceleration phase. The duration
of changing (∆tchang e ) is also specified, the velocity difference is matched such that the cyclist ends in the
correct position, see equation 2.9. Since the velocity in begin and end are equal to the group velocity, the
acceleration and deceleration phase need to of the same length and are defined by equation 2.10.

vchang e (t ) =


vg r oup (t )−∆a · (t − tsec [i ]) , tsec [i ] ≤ t < tsec [i ]+∆tdec

vg r oup (t )−∆vchang e , tsec [i ]+∆tdec < t ≤ tsec [i ]+∆tchang e −∆tacc

vg r oup (t )+∆a · (tsec [i ]+∆tchang e − t
)

, tsec [i ]+∆tchang e −∆tacc ≤ t ≤ tsec [i ]+∆tchang i ng

(2.8)

∆S =
∫ (

vchang e (t )− vg r oup (t )
)

d t

=∆vchang e −a ·∆tdec −a ·∆tacc

(2.9)

∆tacc =∆tacc =∆tdec =
∆vchang e

a
(2.10)

Drift correction Because of the forward integration a drift is introduced, which is partially corrected for this
effect originates from the conversion of continuous functions to discrete data sets. All integrated variables
are effected by this effect. During the simulations for the most part velocity is prescribed, because a fixed
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time step was used the accelerations can be calculated from this prescribed velocity. The velocity only devi-
ates from the prescribed velocity, when cyclists are dropped out of the group. The velocity integrated from
the acceleration is used rather than the prescribed velocity because this is will effect the energy balance, be-
tween mechanical work performed by the cyclist and the kinetic energy. The accelerating and de-accelerating
phases in the changing procedure will be exactly of exactly the same duration and therefore the velocity will
not have any drift due to this procedure, the distance is slightly effected. Therefore the cyclist will be of from
the aimed position after changing. Since the spacing between cyclist should be fixed, when in formation, the
drift can be corrected for the cyclists right after the changing procedure is performed. This is done by adding
a peak in the velocity profile, which corrects the distance with respect to the others.

2.5.3. Differential equations
The set differential equations can be defined as a function that calculates the state derivative with respect to
time as a function of the state and the time. The state contains all the variables which are integrated. Since the
simulation contains multiple cyclists the states of all cyclist. The mechanical model has the travelled distance
(s) and velocity (v) as states. The critical power model has the dynamic anaerobic work capacity (W ′

bal ) and
the Margaria-Morton model has the two energy levels (hP and hG ) as states.

2.5.4. Solving of differential equations
The differential equation is solved using an euler integration scheme. The state denoted with X contains
position data as well as the physiological states. The physiological states, velocity and position of all cyclists.
Only the group velocity is predefined, so not individual velocities and acceleration, those are calculated in the
same process as the physiological state differences. The difference in physiological state, acceleration and
velocity are de state derivatives. The states are determined by numerical integration using Euler integration
scheme as shown in equation 2.11. Here Xi is the current state, Xi+1 the next state and ∆ti the time step.

Xi+1 = Xi + dXi

d t
·∆ti (2.11)

The usage of more accurate and complex solvers were considered. For example a fourth order Runge-Kutta
solver is likely to give a much more accurate integration. The simulation as it is, has lots of logical stage
switches which are harder to implement while using higher order solvers. The way it is programmed is that
there are numerous variables called from the integration loop that are not stored in the states, therefore the
state derivatives are not a function of only time and state, which makes it harder to use higher order solvers.
It must also be noted that between the compared simulations the changing behaviour is more or less equal,
accelerations and durations of changing are kept equal between simulations, therefore a small integration
error will be present in both of the compared simulations and thereby not influence the results.

2.6. Cyclists standardisation
During this report standardised cyclists will be representing varying cyclists performance characteristics in
a team. Team time trials are often a part of a multiple stage event meaning that, the cyclists selected will
likely vary in performance characteristics. The results of this study are generated by using parameters for
standardised cyclists. The parameters associated with these standards as well as a performance comparison
is discussed.

2.6.1. Parameters
The standardisation of cyclists is split up into two categories, the mechanical standards and the physiological
standard. Within the physiological standards there are of course two types, corresponding to critical power
and Margaria-Morton models. The mechanical standards are the masses and coefficients of resistance. The
standardisation for mechanical coefficients is done per weight class (heavy, medium or light). The physiolog-
ical parameters are split into classes of power output (super strong, strong, medium, weak).

Mechanical standards
Within the mechanical constants some vary per class and others are independent, the varying parameters
are cyclist mass and drag area, the others are the same for all cyclists. The three classes correspond to a body
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mass (mc ), heavy (80 kg), medium (70 kg) and ligth (60 kg). Heil (2002) [21] made an estimation of frontal
area of a cyclist with respect to the body mass independent of length, this scaling is used to scale the drag
area with the masses, neglecting change in drag coefficient. The drag area was assumed to be 0.22m2 for the
medium cyclist and scaled to the heavy and light cyclist. The coefficient of rolling resistance (Cr ) is taken
from the Vittoria Corsa Speed tires tested by [1] at an inflation pressure of 8.3 Bar. The bicycle mass is taken
from Team Sunweb’s time trial bicycles, the Giant Trinity Advanced Pro TT. Table 2.4 shows the paramters for
the cyclists’ weight classes.

Table 2.4: Standardised mechanical coeficients in weight classes.

Weight class mc mb m̂t Cr Cd A
(-) kg kg kg - m2

Heavy 80 8.7 90 0.0027 0.24
Medium 70 8.7 80 0.0027 0.22
Light 60 8.7 70 0.0027 0.20

Physiological CP standards
For the cyclists standardisation, the critical power is varied in steps of 30W over four categories, the anaerobic
capacity is scaled proportional with the critical power. This way if a power output is considered which is a
proportion of the critical power above the critical power, the time to exhaustion is equal for all cyclists. The
recovery is done by either Bartram’s [5] model, which do not require cyclist specific parameters. The results
are shown in table 2.5.

Table 2.5: Standardised physiological coeficients in strength classes for the CP-model.

Power class CP W’
() W kJ
Super strong 450 25.0
Strong 420 23.3
Medium 390 21.7
Weak 360 20.0

Physiological MM standards
The MM-model coefficients are fitted to their CP-model counterparts, the full method and analysis can be
found in B. The MM-model is with assumptions fitted to the outcomes of four tests which were generated
by simulations using the CP-model. Of the four tests, two were related to endurance and one to intermittent
exercise. It is argued that a more realistic result could be found if the model was fitted to real athletes.

Table 2.6: Standardised physiological coeficients in strength classes for the CP-model.

parameter units Weak Medium Strong Super Strong
Φ - 0.2 0.2 0.2 0.2
λ - 0.1 0.1 0.1 0.1
θ - 0.4 0.4 0.4 0.4
D1 = R1−1 W 461.7 500.1 538.6 577.1
D2 = R2−1 W 1290 1398 1505 1613
D3 = R3−1 W 960.0 1040 1120 1200
CP kJ 10.00 10.83 11.67 12.50
CG kJ 72.72 78.78 84.84 90.90

2.7. Model Sensitivity
With the sensitivity analysis the influence of an individual cyclist’s mechanical, physiological and aerody-
namic parameters as well as environmental parameters are assessed. In this analysis no simulations are used
to eliminate the effects different strategies might have. The team time trial performance is in large extend
dependent on the individuals’ critical velocities. Which is the velocity corresponding to the critical power
and can be maintained until fatigue will arise, which is after around 40 minutes [28].
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2.7.1. Mechanical and aerodynamic interaction
From the equation of motion the critical velocity is determined, the change in critical velocity resulted by the
change of a parameter by 1 % determines the sensitivity of that parameter. The equation of motion is written
in a polynomial form, from which the critical velocity (2.12). Since the equation is a third order polynomial
function there will be three solution, however only one of the solutions found is a real number, this is the
solution that is used.

mt · g · (Cr + sinϕ
) ·CV + 1

2
ρCdr Cd ACV 3 −C P = 0 (2.12)

Spar = f r acδCV CV (2.13)

The method for determining the influences in power, can be determined for various conditions. Three
conditions have been chosen, the first is a solo cyclist on flat terrain. The second is a cyclist in a group with
a drafting coefficient of 78 %, corresponding to the third position, by Blocken’s model [8], also on flat terrain.
The third is a solo cyclist on a slope of 3 degrees (5.2 %). The cyclist considered is a strong, medium weight
standardised cyclist and all situations are modelled at critical velocity (CV ), which is the velocity correspond-
ing to P =C P . All parameters are shown in table 2.7 and the results of variation tests are shown in table 2.8.
The influence is given as a percentage increase in critical velocity, as an effect of the increase by 1 % of the
considered parameter.

Table 2.7: The parameters used in the variation cases

Parameter Units case 1 case 2 case 3
Strength class - Strong (C P = 420) Strong (C P = 420) Strong (C P = 420)
mc kg 70 70 70
mb kg 8.7 8.7 8.7
mt kg 78.7 78.7 78.7
Cr − 0.0027 0.0027 0.0027
ϕ deg 0 0 3
Cd r − 1 0.78 1
Cd A m2 0.22 0.22 0.22
v m/s 14.25 70 3.72
g m/s2 9.81 9.81 9.81
ρ kg /m3 1.225 1.225 1.225

Table 2.8: The results of the variation tests, values correspond to the change in power per percent change in the constant with respect to
the original value.

parameter Influence case 1 Influence case 2 Influence case 3
CV 14.25m/s 15.45m/s 3.720m/s
mc −0.00270% −0.00300% −0.0676%
mb −0.0220% −0.0240% −0.543%
Cr −0.0247% −0.0269% −0.0300%
ϕ 0.00% 0.00% −0.580%
ρ −0.323% −0.114% −0.129%
Cdr −0.323% −0.114% −0.129%
Cd A −0.323% −0.114% −0.129%

discussion The sensitivity of the mechanical model is assessed the sensitivities found vary a lot between
the cases. On flat terrain (case 1 and case 2) the parameters corresponding to drag (ρ, Cdr , Cd A) are high
in sensitivity. Also the velocity is high, meaning that much more power is required with a slight increase of
velocity, in other words by applying more power the velocity will only rise slightly. In the flat terrain cases the
masses do not have a large influence. In the third case, where there course is 3 deg uphill, the masses have a
much larger role with respect to the aero dynamic variables, also the terrain has a high sensitivity. In absolute
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values the slope angle has an equal sensitivity in both cases, only the rise of one percent of the original value
is zero for the first two cases (since the value is zero). The rolling resistance does not have a high sensitivity in
any of these cases.

2.7.2. Physiological
In order to asses the sensitivity of the physiological model, the change in mean power output of the cyclists
is studied. The simulation consists of a 10 km flat team time trial, where the group velocity is optimised for
the lowest end time as described in 3.2.3. Each physiological variable for both CP-model and MM-model is
varied individually and the results are compared. The influence on performance is expressed in mean power
over all cyclist over the whole race. The simulation was performed with a group of eight cyclists of strength
class medium. The changing scheme was set such that each ten seconds a cyclist changed in 1 seconds from
first to last position. The results are shown in 2.9. The first column shows the parameter, the second column
shows the value from which is evaluated and the third shows the relative increase in power as a function of
the 1 % increment in parameter.

Table 2.9: The results of the variation tests, values correspond to the change in power per percent change in the constant with respect to
the original value.

varied parameter Base value Influence on power
CP 390W 0.893%
W’ 21.7k J 0.130%
Φ 0.2 −0.113%
λ 0.1 −0.0278%
θ 0.4 −0.0095%
D1 500.1W 0.85%
D2 1398W 0.0042%
D3 1040W 0.0025%
CP 10.83k J 0.0488%
CG 78.78k J 0.349%

Discussion CP The results in 2.9 show that for the CP-model the critical power is more influential to perfor-
mance than the anaerobic capacity. The influence of CP to the power is about seven times the influence of
W’, this can be explained by the power profile of the team time trial. The team time trial is an intermittent ex-
ercise, increasing the CP will result in more or longer recovery phases, more recovery and less depletion of the
anaerobic reserve in expenditure phases. Increasing the W’ will only increase the endurance in expenditure
phases and increase recovery.

Discussion MM Within the MM-parameters, the parameter D1 is most influential to mean power output,
as can be seen in 2.9. Within the admittances to the power flows D1 is far larger than the other two, the
parameter D1 is just as CP from the CP-model related to aerobic power production. Also within the relative
sizing constants (Φ, λ and θ), the one related to aerobic power production (Φ) is the most influential. Also
with this model the effect of the size of anaerobic capacity is little with respect to the influence of constants
related to aerobic power production

Conclusion Constants related to the production of aerobic power are most influential to the mean power
production of a team time trial. Comparing these the influence of the mechanical parameters on the power
consumption, it can be concluded that the constants related to aerobic power production are about as influ-
ential as aerodynamic parameters in flat team time trials ad more influential than mass and slope parameters
in team time trials with gradients smaller than 5.2 %.

2.8. Validity
This model still lacks in validity This is mainly because the used aerodynamic interaction coefficients are not
reproduced during a track test. Drag reduction values of groups with a maximum of four cyclists are reported,
but unusable since this study specifically evaluates team time trials in road cycling in which coefficients of
groups up to eight cyclists are required.
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One way to improve the validity of the model presented in this study is to improve the validity drag re-
duction coefficients. This can be done by reproducing the values from the CFD tests in a track test, as are
performed on groups of four cyclists [10, 18, 22].

Another way to increase the validity is to simulate a strategy that was performed in a real race. For example
the velocity could be optimised while maintaining the same changing scheme in order to assess the best
achievable finish time given the strategy and compare this to the performed result. However in order to do
this, for a group of cyclists both a physiological model has to be fitted and aerodynamic drag area of all cyclists
has to be determined accurately.



3
Optimising Strategy

The strategy of a team time trial can be described by a lot of parameters. The most defining are the times
spend in positions and the positions of cyclists over time. Different less important parameters are the change
duration and the acceleration and deceleration while changing. Alternatively the wheel gaps and lateral de-
viations can be modelled, however the current model is unfit to do so since there is no data on the change of
aerodynamic drafting coefficients as a function of these parameters is undefined. In this study only the main
parameters, cyclists positions and times spend in positions are assessed in later studies it is also possible to
vary the other parameters.

3.1. Strategies
As explained in chapter 2 the strategy is the description of the cyclists position in the group, change duration,
velocity during the race. For each different section, where the cyclists have the same position in the group,
including the part where the cyclists change their position; the strategy contains their velocity, the time it
should take to perform the change their position, and the positions of all cyclists and the time the start time
of this configuration. For a 40 minute race with eight cyclist where the cyclists keep their formation over 20 s
this yields 120 formations, leading to 1320 free variables. In real races strategies are simplified by a set of rules
to make the strategy less complex, for example always change from first to last position, or when tired reduce
time in first position. In this section the strategies will be explained and how they are optimised.

3.1.1. Regular strategy
The most regular strategy is used as the baseline in this study, it is performed by many teams in professional
road cycling. The team starts in a predefined order. Changing happens from first to last position, where all
other cyclist effectively shift one position forward, due to the absence of the previously first cyclist in group,
see figure 3.2. To differ the workload between cyclists in a team, the time for each cyclist in first position (head
time) is varied among the cyclists.

Using the regular strategy the number of free variables is reduced. Using the previous example of a 40
minute race, the positioning options has been reduced by a factor 120 (8 ·120 to 8) and the time of changing
options by a factor 15 (120 to 8). The group velocity can be defined by sections of the course, or made as a
function of the courses slope. This leads to a strategy that has two free parameters per cyclist with additional
velocity parameters.

19



20 3. Optimising Strategy

Figure 3.1: A position change according to the regular strategy, the circled numbers denote the group position of the cyclists. The cyclist
in first position changes to the last position, therefore all other cyclists shift to one position in front.

Figure 3.2: A position change according to the variable return position strategy, the circled numbers denote the group position of the
cyclists. In this case the cyclist first position goes to the third position, the cyclist in position four remains in position four, but will have
to make room for to let the cyclist in third position, the cyclist in position two and three become the cyclists in position one and two
respectively, but keep their velocity constant.
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3.2. Optimisation
Optimisations can be performed to estimate the optimal inputs to a strategy. For each strategy inputs can
be defined, such as initial positions, head times or velocity. The optimisation uses an objective function to
determine a score, this score is minimised by altering the inputs to the objective function, such that the score
will be lowest. In the optimisations in this study the score is the finish time of a team time trial, which is
the time in which four cyclists pass the finish line. For applicability the values are presented as the average
velocity over the race, which is computed by dividing the race distance by the finish time.

3.2.1. Objective Function
To optimise performance an objective function is used, this function gives a score to the strategy, which is
minimised. The objective function is the simulation, the finish time is used as the objective value, therefore an
performance optimisation will always optimise towards a lower finish time, if the optimisation is convergent.
It could be that one of the cyclists fails to execute prescribed strategy, in this case the simulation is terminated.
To compute the finish time in cases of physiological failure, it is assumed that the cyclists are able to complete
the race by cycling at a velocity of 30 km/h. This velocity is used to compute the time required to complete
the maintaining distance and added to the time of failure. This "motivates" the optimisation to move the
moment of failure towards the finish, for a better convergence.

3.2.2. Separating the Problem
The free variables of a strategy are composed of two types, the continuous variables and the integer constraint
variables. The continuous variables in this problem are the velocities of sections of the race. The integer
constraint variables are the initial positions, the return positions and the head times. The head times could
also be presented as continuous numbers, however they are set in steps of 10 seconds to reduce the size of
the problem. To asses a strategy the velocities are not provided as inputs, but optimised at each iteration of
the strategy optimisation. This is done to improve the convergence of the problem.

3.2.3. Velocity Optimisation
For each strategy in the optimisation, the velocity is optimised to give maximum result over the simulation,
given the specified strategy. The strategy could contain multiple velocities, for example when the slope varies
along the course, different sections will have most likely have different ideal velocities, therefore the velocity
is a multiple input, single output optimisation.

The algorithm used for the velocity optimisation is the derivative free method. This method is chosen
because the velocity optimisation has both continuous input (velocity) and continuous output, from which
a gradient can be computed. The algorithm is set to optimise until the input velocity difference is lower than
0.005 m/s.

3.2.4. Strategy Optimisation
Genetic algorithm is used to optimise strategy since it is able to handle problems with many local minima
and integer constraints and is still able to find the global minimum. The strategy parameters that were varied
in this study are, initial positions, times spend in first position, and «return position», of which only the times
spend in first position are continuous. Since the interest is in the global optimum and not the local optima,
the are also discretized to steps of 10 seconds.

The genetic algorithm uses an evolution inspired method of crossing and mutating bit strings that contain
the inputs of the objective function. The population size determines how many sets of bit strings are con-
sidered in each generation. The input of the genetic algorithm is converted to a bit string, the length of the
bit string defines the complexity of the problem. The higher the complexity the lower the convergence rate,
meaning a larger population size and/or number of generations is needed to achieve the same accuracy. The
optimisation of different strategies require different inputs. These inputs are if necessary discretized. The
complexity of the inputs are listed below. Note that all numbers have to be rounded upwards.

• Order: The order is selected from a list of all possible orders depending on the number of cyclists (nc )
the complexity depends on the length of the list, the list has nc ! inputs, meaning the complexity is
c = log2 nc ! bits.
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• Head times: the head times are discretized in steps of 10 seconds, with a maximum of 60 s. meaning
there are six options, this results in three bits per cyclist. If multiple routines are used, the amount
needs to be multiplied by the number of routines nr , hence: c = 3 ·nc bits.

• dropping distance: The dropping distance can be defined in parts of a fifteenth of the total course
length. Therefore the complexity is four bits per cyclists: c = nc ·4 bits.

The maximum number of generations was set to 200, however during the convergence tests, this was never
exceeded. The rest of the parameters was set to the default settings of MATLAB’s built in genetic algorithm
optimisation.
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3.3. Convergence
It is determined that a genetic optimisation will be used to generate the results, however the accuracy of opti-
misation depends on the problem as well as the parameters of the genetic algorithm. The genetic algorithm is
performed with use of the optimisation toolbox in MATLAB. This toolbox has a function for genetic algorithm
[13], which is used. Four parameters (three independent) are varied to asses their influence on accuracy and
computational costs. The population size is closely related to the computational costs. The population size
determines the number of function evaluations per generation. If the population size causes better conver-
gence, the amount of generations required reach a required accuracy is lower. Elite ratio, mutation ratio and
crossover ratio influence the convergence, and thereby also the computational costs, but the influence on the
computational costs is not as high as that from the population size. Therefore using a low complexity problem
the convergence of different combinations of the Elite-, Mutation- and crossover-ratio are compared.

First a case with lower complexity is used to determine the cross-over ratio, mutation ratio and elite ratio of
the genetic algorithm in a strategy optimisation of low complexity. This test simulated a group of four cyclists
over a race of five kilometres. A second test, with higher complexity was used to determine the population
size, for the best convergence. This test was with eight cyclists over a race of kilometres.

3.3.1. Elite, mutation and crossover ratio
multiple configurations of elite, mutation and crossover ratio are compared using a small complexity prob-
lem. The population is split in three categories to produce the next generation, these three categories are
elite, mutation and crossover; it is therefore that the sum of the elite-, mutation- and crossover-ratio needs to
be 100 %. In this problem from a 5 km team time trial with four cyclists, the order and head times are opti-
mised. This results in 17 bit complexity. For every population size in every test the optimisation is performed
20 times, to provide enough data points. The configurations are based on [20], not all parameters are indi-
vidually varied to reduce computational costs, the objective is a well converging combination rather than the
optimum since the convergence tests will be far more computationally expensive with respect to the actual
optimisations. For all configurations the test are performed on populations sizes 20, 40, 80, 160, 320 in order
to be able to detect their convergence over population size. Later the population size will be selected. The
used configurations are presented in table 3.1. in the first three configurations the elite count was set to 5 %
and the mutation ratio was varied, test 1 is according to the standard options from MATLAB’s genetic algo-
rithm. In [20] it was said that for small population (4, 8) sizes a mutation ratio of 15 % was preferred and for
larger population sizes (64, 128) 1 % or 2 % performed better. This lead to the hypothesis that a fixed number
of elites and mutations (throughout the population sizes) would perform well, therefore in test 4 the number
of elites and the crossover ratio are kept constant and in test 5 the both the number of elites and number of
mutated are kept constant.

The results are presented in figure 3.3 in terms of the average velocity. The red line is the value of the
maximum velocity of all data sets, the error is defined as the difference of a data point to that value. In this
graph it is shown that the two tests with a fixed number of elites (4, 5) did not perform well with respect to the
rest, with the largest error with the largest population size. The third test with a low mutation rate took very
long to get good convergence, with a large error at a population size of 160. Test 1 and 2 both performed well.

From this little tests it cannot be concluded that a fixed number of elites is not preferred, however given the
results presented results it does not seem better. There is no test where the number of mutated is fixed and
the number of elite is varied along the population sizes, however the results with the fixed number of elites
do not motivate to do so. As test 1 were the standard MATLAB configurations it was no surprise that they
preformed so well. Test two shows a better convergence with both population sizes 80 and 160, with respect
to test 1.

It is chosen to proceed with the configuration from test 2 with an equal elite ratio and a higher mutation
ratio and a lower crossover ratio with respect to the MATLAB’s standard (test 1). With these settings the tests
will be repeated for an optimisation with higher complexity and all considered model configurations.
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Table 3.1: The configuration for the small complexity convergence test

Convergence test Population sizes Elite count Mutation count Crossover ratio
1 20 5 % 15 % 80 %

40 5 % 15 % 80 %
80 5 % 15 % 80 %
160 5 % 15 % 80 %
320 5 % 15 % 80 %

2 20 5 % 35 % 60 %
40 5 % 35 % 60 %
80 5 % 35 % 60 %
160 5 % 35 % 60 %
320 5 % 35 % 60 %

3 20 5 % 5 % 90 %
40 5 % 5 % 90 %
80 5 % 5 % 90 %
160 5 % 5 % 90 %
320 5 % 5 % 90 %

4 20 20 % (=4) 0 % (=0) 80 %
40 10 % (=4) 10 % (=4) 80 %
80 5 % (=4) 15 % (=12) 80 %
160 2.5 % (=4) 17.5 % (=28) 80 %
320 1.25% (=4) 18.75% (=60) 80 %

5 20 20 % (=4) 10 % (=2) 70 %
40 10 % (=4) 5 % (=2) 85 %
80 5 % (=4) 2.5 % (=2) 92.5 %
160 2.5 % (=4) 1.25 % (=2) 96.25 %
320 1.25% (=4) 0.625% (=2) 98.125%

Figure 3.3: Convergence plot of the performed optimisation on the small complexity porblem
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3.3.2. Population size
With the configurations from the small complexity test, the convergence tests are performed again on a prob-
lem of larger complexity, that is the same size as those used later in the study. From these convergence test not
only the population for further optimisation is selected, but also the standard deviations are defined, which
are used in the statistics of the results. As the standard deviations are expected to be different for the different
model configurations, the convergence test is performed for all four model configurations used to obtain the
results later. It is therefore also important that an optimisation is performed that results in high standard
deviations. The optimisation that is preformed is a order and head times optimisation, with dropping. This
results in a 72 bit complexity optimisation. In order to drive the optimisation results to a high standard de-
viation a very different group was selected, containing two super strong, two strong, two medium and two
weak cyclists. In order to obtain a decent amount of head turns the simulation was performed over a 10 km
flat road. As with the small complexity test, for each population size 20 optimisations were performed.

The results for the larger complexity test are presented in figure 3.5 and the errors in figure 3.6. From the
velocity results it is shown that the means rise towards the estimated maximum velocity, defined as the largest
mean velocity found in the data set an plotted as the red horizontal line. Also the standard deviation shrinks
with the population size, as is plotted in figure 3.4. It is shown that generally the convergence up to population
sizes 80 or 160 is significant and from there it begins to flatten out. Taking in consideration the convergence
of both means, standard deviation and the computational costs it is selected to continue with a population
size of 160. In cases where more accurate results are required it can be decided to run more optimisations.

Figure 3.4: The standard deviation on the velocity of the results from the genetic algorithm optimisation against population size.
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(a) CP-Bartram - Blocken (b) MM - Blocken

(c) CP-Bartram - Íñiguez (d) MM - Íñiguez

Figure 3.5: Absolute mean race velocity values for the convergence of an optimisation with a 72 bits complexity using a head time
optimisation. The same graph is shown for the convergence tests in all four model configurations

(a) CP-Bartram - Blocken (b) MM - Blocken

(c) CP-Bartram - Íñiguez (d) MM - Íñiguez

Figure 3.6: Error in mean race velocity values for the convergence of an optimisation with a 72 bits complexity using a head time optimi-
sation. The same graph is shown for the convergence tests in all four model configurations



3.4. Conclusion 27

3.4. Conclusion
In this convergence analysis different parameter combinations have been tested with the genetic algorithm.
It is concluded that with the settings, elite ratio = 5 %, mutation ratio = 35 % and cross-over ratio = 60 % a
decent convergence is achieved for a head times optimisation problem. The final convergence test with a
complexity of 64 bits has shown that the standard deviation drops steep along the tested population sized
20, 40 and 80, and and it becomes less steep when passing the population size of 160. The final standard
deviations for the model configurations are presented in table 3.2. These standard deviations correspond
to a head time optimisation with a considered group of two super strong, two strong, two medium and two
weak cyclists. It is assumed that these standard deviations are representative for all head times optimisations
with the considered group formation and a complexity equal or lower than 64 bits. Therefore these standard
deviations are used in the statistical analysis throughout the study.

Table 3.2: The standard deviations from the convergence tests at a population size of 160 for the four used model configurations.

Model configuration standard deviation on mean velocity
CP-Blocken 0.0387 m/s
CP-Íñiguez 0.0311 m/s
MM-Blocken 0.0235 m/s
MM-Íñiguez 0.0203 m/s





4
Analysis of a standard team time trial

Before diving into optimising different strategies, an evaluation of a standard strategy team time trial is
performed. The analysis will be in three steps, at first the analysis will be made on a team time trial without
any balancing. Secondly the performance is improved by performing workload balance by means of adjusting
the times spend in first position for different cyclists. In the third case, cyclists are also dropped from the
group during the race, to further balance the workload.

4.1. Analysis of the regular strategy without workload balancing
A reference case is presented of a team time trial where a group of cyclists from various strength classes,
without any workload balancing measures. The group consist of eight cyclists, where two cyclists from each
strength class are considered, meaning: two super strong, two strong, two medium and two weak. All cyclists
are from the same weight class, medium. The starting order is in descending strength class, so first the two
super strong, then the two strong, then the two medium and at the end the two weak cyclists. The considered
race is a flat 30 km time trial, which is completed with a constant velocity of 15.182 m/s. The team uses
a standard strategy, where all cyclist do 30 seconds in first position and change from first to last position.
The simulation was performed using the CP-model for physiology and Blocken’s aerodynamic interaction
coefficients. The resulting physiological states are presented in figure 4.1.

The results from the physiological state show that the depletion of the anaerobic capacity is disproportional
higher for the weaker cyclists with respect to the others. As presented in figure 4.1 the anaerobic capacity
(W ′

B al ) of the weak cyclists are nearly empty at the end of the race, while all other cyclists still have more than
half of their capacity left. The mean power output during the race of all cyclists lays between 376 W and 380 W,
meaning that the workload is divided more or less equal among the cyclists, however this is below the critical
power for the super strong, strong and medium cyclists, but above the critical power for the weak cyclist.

Table 4.1

cyclist Head Time Average power effective workload
Super strong 1 30 s 382 W 85.1 %
Super strong 2 30 s 383 W 85.1 %
Strong 1 30 s 382 W 90.9 %
Strong 2 30 s 381 W 90.6 %
Medium 1 30 s 380 W 97.5 %
Medium 2 30 s 380 W 87.4 %
Weak 1 30 s 380 W 105.5 %
Weak 2 30 s 380 W 105.5 %

29
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Figure 4.1: An example of the W ′
B al states of cyclists during a team time trial. The top two lines represent the super strong cyclist, the

two lines below that, the strong cyclists, followed by two medium cyclists, and the bottom lines represent two weak cyclists. The head
times of the cyclists are equal with 30 s in this example.

4.2. Head time optimisation
A workload balancing is attempted by adjusting the head times corresponding to the strength class of the

cyclists. The head times were optimised with the with the genetic algorithm, with population size of 160,
only one optimisation was performed.The physiological states are much closer together throughout the race.
The velocity was raises with 0.207 m/s from no workload balance to 15.389 m/s with head times balancing.
The resulting physiological states are presented in figure 4.2. In this graph is shown that it is still the weak
cyclist that limit the group performance. It is therefore suggested that dropping these two cyclists somewhere
during the race will allow them to perform their contribution to the overall performance, while not having to
complete the entire course.

4.3. Head time optimisation with dropping
With dropping the result in terms of velocity is raised with 0.223 m/s from head times optimisation to

15.613 m/s. Therefore the dropping can be considered as important as the head times balancing. The physi-
ological states are presented in figure 4.3. Because both the weak and the medium cyclists are dropped during
the race a higher velocity could be achieved. It can be seen that while the group is still with eight or six cy-
clists the physiological states of the strong and super strong cyclists remain high, however when the group
size drops to four the the anaerobic reserve is depleted rapidly. This is of course because both the mean drag
over the positions rises and the cyclists will visit the high drag first position more frequent.

4.4. Discussion
As a result of the efforts to reduce the time the weakest cyclists spend in first position and increase the time
the stronger cyclists spend in first position it is shown in figure 4.4 that the workload is more balanced with
the head time optimisation and even more balanced if also dropping is considered. In this graph on the
horizontal axis the cyclists are presented, each having a bar corresponding to the cases of no balancing, head
times balancing and head times balancing with dropping. On the vertical axis the relative workload is given as
a percentage. The relative workload is given by the mean power divided by the critical power. When a cyclists
is dropped the power until the drop point is considered. The work demands using the different strategies
are not exactly equal. Still the strategies use workload balancing to increase their performance therefore
the strategy performs as expected if the workload is balanced correctly. It is shown that the balancing with
head times is better than with no balancing. And that with head times optimised an dropping considered
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Figure 4.2: An example of the W ′
B al states of cyclists during a team time trial. The physiological states alternate through each other and

are therefore slightly difficult to distinguish, however from top to bottom the states of two super strong, two strong, two medium and
two weak cyclists are displayed. The head times are 10 s for weak, 20 s for medium, 30 s for strong and 40 s for super strong cyclists.

Figure 4.3: An example of the W ′
B al states of cyclists during a team time trial. The physiological states alternate through each other and

are therefore slightly difficult to distinguish, however from top to bottom the states of two super strong, two strong, two medium and
two weak cyclists are displayed. The head times are 10 s for weak, 20 s for medium, 30 s for strong and 40 s for super strong cyclists.
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Figure 4.4

the strategy is much more balanced than the others. Even so with all strategies the weak cyclists perform
relatively more workload than the other cyclists.

4.5. Conclusion
The workload balancing strategies evaluated in this chapter have shown that head times balancing improves
the workload distribution and the performance. Head times optimisation with dropping improves workload
distribution even more and also the performance is better, considering this group of cyclists. Even with head
time balancing and dropping it could not be avoided that the weaker cyclists take up more relative work-
load. During the following chapters strategies will be evaluated that attempt to distribute the workload even
further.



5
Order optimisation

Four orders have been suggested for different reason, these orders are compared by applying a head time
optimisation and assessing their performance. The selected orders will be tested on a flat road of 30 km. The
group is composed of eight cyclists, of which every physiological strength group is represented by two cyclists,
resulting in two super strong, two strong, two medium and two weak cyclist. The simulations are performed
with all cyclists of weight class medium. Since there is no incline in the course this is present. During the
team time trial dropping cyclists is included in the strategy and the time of the fourth cyclist counts. To asses
an order a head time optimisation is applied, to optimise the workload among the cyclists. The optimisations
are performed for four model configurations: CP Bartram - Blocken, CP Bartram - Íñiguez, MM - Blocken,
MM - Íñiguez. The orders which are selected come from different perspectives and are presented in table 5.1.
The reasoning why the orders are selected is discussed in the following paragraph.

Order 1 The first order has each cyclist of a different strength class be followed by one that is equal or
weaker than itself, apart from the last where a weak cyclists is followed by the super strong cyclist that started
in first position. When considering Blocken’s aerodynamic interaction model, the cyclists in second and third
position will have an increased drag from the cyclists further downstream. This makes that the head times
of the two cyclists in front will effect the workload of the considered cyclist. This is far less the case when
considering Íñiguez’s aerodynamic interaction model. And the strength class jump from super strong to weak
makes that the two super strong cyclists should not have too long head times, to reduce workload on the weak
cyclists.

Order 2 The second order is selected because in contrast to the first order it, the cyclists will be negatively
affected by the drag increase in second and third position in Blocken’s aerodynamic interaction model. Un-
der the assumption that the optimisation will pick large head times for stronger cyclists, the result will be that
over the high head times will be more spread, making the cyclists have more equal recovery times, therefore
not more for the weaker cyclists. This order was suggested because of practical advantages rather than theo-
retical advantages, because of the spread of the physiological capacity, the frequency of changing will be more

Table 5.1: The orders considdered in the order analysation

Order no Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Pos. 6 Pos. 7 Pos. 8
1 Super

Strong
Super
Strong

Strong Strong Medium Medium Weak Weak

2 Super
Strong

Weak Super
Strong

Weak Strong Medium Strong Medium

3 Super
Strong

Medium Strong Weak Super
Strong

Medium Strong Weak

4 Super
Strong

Strong Medium Weak Weak Medium Strong Super
Strong
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constant, theoretically this does not change much, however in reality this is expected to improve structure in
the group.

Order 3 The third order is quite similar to the second, however in this case the strength level differences
are reduced, such that there is a minimum of one and a maximum of two levels. This way the physiological
capability is spread over the group, while reducing the strength difference with respect to order 2.

Order 4 The fourth order is focussed on having the lowest performance difference among the following
cyclists. This done because than a cyclist will be in second position when a cyclists of similar performance
is in first, meaning that a large amount of time spend in first position results a large amount of time spent in
second position by a cyclist of similar performance.

Hypothesis It is expected that while using Blocken’s aerodynamic interaction model, the orders that allow
for the largest workload differences will result in the best scores. This will be the order 4 as best. It is expected
that letting the super strong cyclists be followed by the weak cyclists, the contribution of the super strong
cyclists to the group performance will be reduced. Therefore it is expected that with Blocken’s aerodynamic
interaction model order 1 will perform worse with respect order 4 and significantly better than order 2 and
order 3. It is also expected that with Blocken’s aerodynamic interaction model order 3 will perform better
than order two. Since the workload distribution with Íñiguez’s aerodynamic interaction model the workload
distribution is much less effected by the order that the there will be no significant differences among the
orders.
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Table 5.2: Results in form of the average velocity of the group during the 30 km team time trial with different orders, with dropping (n =
5 for all optimisations)

Order no Result CP, Blocken Result CP, Íñiguez Result MM,
Blocken

Result MM,
Íñiguez

1 15.428 m/s 15.897 m/s 15.440 m/s 15.772 m/s
2 15.291 m/s 15.864 m/s 15.354 m/s 15.752 m/s
3 15.327 m/s 15.823 m/s 15.335 m/s 15.704 m/s
4 15.519 m/s 15.902 m/s 15.460 m/s 15.798 m/s

Table 5.3: Significance of the hypotheses over the different models

Hypothesis Result CP, Blocken Result CP, Íñiguez Result MM,
Blocken

Result MM,
Íñiguez

Order 4 > Order 1 Confirmed
(P = 0.0001)

Not significant
(P = 0.3981)

Not significant
(P = 0.0866)

Confirmed
(P = 0.0227)

Order 3 > Order 2 Not significant
(P = 0.2621)

Confirmed
(P = 0.0185)

Not significant
(P = 0.1002)

Confirmed
(P = 0.0001)

Order 1 > Order 2 Confirmed
(P = 0.0000)

Confirmed
(P = 0.0453)

Confirmed
(P = 0.0000)

No (P = 0.0563)

Order 1 > Order 3 Confirmed
(P = 0.0000)

Confirmed
(P = 0.0001)

Confirmed
(P = 0.0000)

Confirmed
(p = 0.0000)

5.1. Results
The results of the optimisations for the order are presented in terms of their mean velocity. The velocities
corresponding to different orders are presented in table 5.2, these are the means of all five optimisations. The
results are considered significant if p < 0.05.

The mean values correspond to nearly all hypotheses, only the mean velocity of order 2 is lower than that
of order 3 in stead of larger, while using the CP-Blocken model configuration. In all other cases the results
are as expected, however not all of the hypothesis can be confirmed with significance, weather or not the
hypotheses are confirmed is presented in table 5.3. The first hypothesis that order 4 is better than order 1 is
confirmed by two model configurations (CP-Blocken and MM-Íñiguez), as expected the differences are not
large (0-0.030 m/s) except for the CP-Blocken configuration where the difference is 0.091 m/s. The second
hypothesis that order 3 is better than order 2 is confirmed by two model configurations (CP-Íñiguez and MM-
Íñiguez). In the CP-Blocken configuration it was found that order 2 performs better than order 3, but without
statistical significance. The third hypothesis is, that order 1 is better than order 2 is confirmed by three out
of the four model configuration, only the model configuration MM-Íñiguez did not confirm this. The last
hypothesis that order 1 is better than order 3 is confirmed by all model configurations.

5.2. Discussion
When observing the results in table 5.2 it becomes clear that the differnces in the CP-Blocken model config-
uration are largest, with a maximum difference of 0.228 m/s. The smallest difference in all other model con-
figurations are considerably lower (0.079 m/s for CP-Íñiguez, 0.096 m/s for MM-Blocken, 0.094 m/s for MM-
Íñiguez). That the differnces when using Íñiguez’s aerodynamic interaction model are slower is expected,
however it was expected that the differences in when using the MM-Blocken configuration would be larger.
In B it is demonstrated that both model react different to different types of intermittent exercise. It could
well be that the differences in physiological reaction to the different power profiles, introduced by the strat-
egy in combination with Blocken’s aerodynamic interaction model, is less with the MM-model than with the
CP-model.

Even though the difference in drafting coefficients in second, third and fourth positions have such little
differences in Íñiguez’s aerodynamic interaction model, there are still clear benefits of the workload balancing
techniques in orders 1 and 4. With Íñiguez’s aerodynamic interaction model the highest drag beside the first
position was found in the last position instead of the second position, when a cyclist spends a long time in
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(a) Drop times for the weak cyclists for the results of the simulations of all four orders using all four model configurations

(b) Drop times for the medium cyclists for the results of the simulations of all four orders using all four model configura-
tions

Figure 5.1: Relative drop times (tdrop/tfinish) of the weak and medium cyclists over all optimisations, catagorised by order and model
configuration. «maybe adjust y labels, drop time is not ideal»

first position, it is not the cyclist behind, but the cyclist in front (who is now in last position) that is affected.
With the considered orders there is no order that benefits from this effect, it also has to be considered that
the drag increase in the last position with respect to the one-but-last position is also present in Blockens
aerodynamic interaction model only with less difference.

It is expected that if workload balancing is successful, the cyclists of weak and medium strength class are
dropped out of the group late. Figure 5.1 shows the drop times, for the medium and weak cyclists. A drop
time of 10 % means that the cyclist is dropped at 10 % of the finish time, a drop time of 100 % means that the
race is completed and effectively the cyclist is not dropped. In figure 5.1a the drop times for the weak cyclist
is shown, the results here seem to be more model dependent than order dependent. It is shown that the weak
cyclist are in most occasions dropped very soon (before 20 %). It is presented in figure 5.1b that the cyclists
of medium strength are dropped later. It is clear that in the best performing orders (1 and 4), but also order 3,
the medium strength class cyclists are kept with the group longer than order number 2.

Since the weaker cyclists are dropped very soon (often before 20 %), the orders that remain after this event
are also important to assess. The orders remaining after the dropping of the two weak cyclists are presented in
table 5.4, with order 1 and 4, which have low differences between cyclists strength class of following cyclists,
there is still little difference after dropping. With order 2, the difference between strength classes of following
cyclists is reduced a lot, now the two super strong cyclists are placed after each other, followed by altering
medium and strong cyclists. With order 3 still has a lot of differences in following strength classes.

It must be noted that in this study the aerodynamic drag area (Cd A) is equal for all cyclists, therefore a
cyclist of a higher strength class is also has a better performance. In situations where cyclists are of different
sizes and weights it is not the strength class but the critical velocity (CV) that determines it’s performance.
However it must also be noted that cyclists of different shapes ans seizes, also have different aerodynamic
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Table 5.4: The orders that remain after dropping the weaker cyclists

Order no Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Pos. 6
1 Super

Strong
Super
Strong

Strong Strong Medium Medium

2 Super
Strong

Super
Strong

Strong Medium Strong Medium

3 Super
Strong

Medium Strong Super
Strong

Medium Strong

4 Super
Strong

Strong Medium Medium Strong Super
Strong

interactions. For example Heimans et al. (2017) [22] has shown that when a larger cyclists following a smaller
cyclist results in a larger drag reduction for the following cyclist, than when the cyclists switch their positions.

5.3. Conclusion
It has been shown that when balancing workload over groups of cyclists, with a large variety in perfor-

mance, using only head times to balance the workload; the starting order is of great importance to perfor-
mance. Depending on the model that is used to asses the performance the performance difference ranges
between 0.079 m/s and 0.228 m/s in average velocity or 9.42 s to 28.8 s in finish time over a 30 km flat team
time trial. It was found that having less performance differences between the cyclists following each other
resulted in the best performing orders. The best performing order had a maximum of 1 level difference in
strength classes following each other. Orders where stronger and weaker cyclists were altered performed
significantly less than orders that minimised the performance differences between following cyclists. Aero-
dynamic differences among cyclists were not considered, but are expected to have influences on the results,
also this data is for a flat team time trial, if there would be a climb in the race, the effect of differences in mass
are also expected to influence the results.





6
Adjusted Return Positions Strategy

The workload balancing is performed by adjusting the ratio between time spend in different positions.
With the standard strategy, the amount of times a cyclists is in a specific position is equal over the cyclists,
considering that no cyclists is dropped. The times are balanced by adjusting the time of the cyclist in first
position. It is shown in chapter 4 that without dropping, this does not create enough balance in the presented
group (2 x super strong, 2 x strong, 2 x medium and 2 x weak). It is shown that the balancing error is reduced
severely by dropping weaker cyclists, however by doing so this increases the mean drag among cyclists and
therefore requiring more power to reach the same velocity. In this chapter a workload balancing method will
be presented that adjust the frequency that a cyclists is in different positions.

Instead of adjusting the amount of time spend in a position during a race by adjusting the duration of each
time the cyclist reaches that position; the amount of time can also be adjusted by changing the amount of
times a cyclist reaches that position. This strategy aims to do this by letting the cyclists change from first
position not only to last but any position. Each cyclist will have its own position to return to. An example of
a group of four cyclists is shown in figure 6.1. This means that the order is changing as the cyclists change
position. Also depending on the start order the changing with different return positions may turn out in a
different pattern. The aim is that by letting stronger cyclists return to positions in front of the last, the weaker
will get more time to recover from their workload contribution in the front positions. A difference between
the two aerodynamic interaction models is expected to be large and will be discussed in the next paragraph.

Using this strategy it is important to know which positions a cyclist recovers and which positions it expends.
The border between these physiological phases is described by the critical velocity. This critical velocity repre-
sents the velocity above which anaerobic energy is expended and above which anaerobic energy is recovered,
this is defined per position per cyclist. For both aerodynamic interaction models and different cyclists this
is visualised in figure 6.2, the two graphs represent the two aerodynamic studies. On the horizontal axis the
positions are noted, at each position there is a bar reaching to a critical velocity that belongs to the cyclist
type as is noted in the legend. As a short recap it is noted that if the velocity exceeds the critical velocity the
cyclist will not recover in this position. For both Blocken’s and Íñiguez’s models the highest critical velocity
for the weak cyclist is about 15.5 m/s (Blocken: 15.60 m/s, Íñiguez: 15.45 m/s). As this corresponds to the
maximum value found in the order optimisation, it is expected that the weak cyclist will not recover at all.
Even so the medium cyclists peak at around 16 m/s (Blocken: 16.05 m/s, Íñiguez: 15.895 m/s) Therefore also
they will need a lot of recovery time.
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Figure 6.1: An example of changing with the return positions strategy. In this example A changes to 3, B changes to 2 and C changes to 4.
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(a) Blocken

(b) Íñiguez

Figure 6.2: Critical velocities in different positions, using the CP model combined with Blocken’s aerodynamic interaction model (a) and
Íñiguez’s aerodynamic interaction model (b)
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6.1. Selected return positions
It was tried to optimise the return positions using the genetic algorithm, however the convergence turned

out poor, by trying different options manually a better result could be obtained very easily. It is expected that
the poor convergence of the optimisation is a result of the effect that by adjusting the return position of one
cyclist, the result could be that some of the cyclists do not get up front any more.

Instead of optimisation some configurations of return positions were tested. Starting with order 1 from
chapter 5, different orders were tried, however using most configuration the order changed to the same order
after a few changing routines. This was tested by performing simulations with the CP-Blocken model config-
uration, head times were set to 30 s for each cyclist on a 30 km flat course. The configuration started by having
all cyclists with return position 8 and then decreasing those of the cyclists that were the least depleted at the
end of the race. This resulted in the stronger cyclists returning to lower positions and weaker cyclists to later
positions. The configuration is presented in table 6.1, including initial positions and the return positions. As
explained in the previous section, the weak cyclists are not expected to have any recovery time, therefore the
medium cyclist return to position 6, leaving the two weak cyclists in the last positions. This way they do not
contribute a lot to the group however they do cause the drafting coefficients in positions 5, 6 and 7 to be lower
and thereby contribute to the group performance.

Table 6.1: The initial positions and return positions for the two selected configurations

Cyclist initial position Return positions
Super strong 1 1 4
Super strong 2 2 4
Strong 1 3 5
Strong 2 4 5
Medium 1 5 6
Medium 2 6 6
Weak 1 7 8
Weak 2 8 8
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6.1.1. hypotheses
It is expected that using this strategy, large differences in individual performance are balanced better. Since

this group composition has large individual differences, it is expected that this strategy performs better than
the head time balancing for the tested order. It is also expected that there will be a small difference between
the head times optimisations and the fixed head times cases in the advantage of the head time optimisation.

Since with Blocken’s aerodynamic interaction model has a reduced drafting and therefore higher drag in
positions 2, 3 and 4 with respect to Íñiguez’s model, it is expected that with Íñiguez’s model there will be
less difference between the velocities found in the order optimisation and the return positions optimisation.
Regarding the fixed head times versus optimised head times in the return positions analysis about the same
difference is expected for both aerodynamic models.

6.2. Results
The outcomes of the simulation show some mixed results for this strategy. The results are presented in

table 6.2. It can be found that for Bocken’s aerodynamic model, the adjusted return positions result in a higher
velocity with respect to the head times optimisation. With Íñiguez’s model the results are exactly opposite. In
this case the statistical relevance is very high (p<0.0001).

Table 6.2

Strategy Result CP,
Blocken

Result CP,
Íñiguez

Result MM,
Blocken

Result MM,
Íñiguez

adjusted return positions 15.786 m/s 15.554 m/s 15.679 m/s 15.667 m/s
Head times (with dropping) 15.428 m/s 15.897 m/s 15.440 m/s 15.772 m/s
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(a) Blocken

(b) Iniguez

Figure 6.3: The workload balance graph including the balancing strategies: no balancing, head times balancing, head times balancing
with dropping and adjusted return positions, all corresponding to the optimisations performed using the CP physiological model
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6.3. Discussion
Considering the mean velocities in these results with respect to the critical velocities it is shown that in case

of the Íñiguez aerodynamic model the velocities get so high that the weaker cyclists need to be dropped in
order to achieve a higher velocity. The concept of this strategy is to let the weaker cyclists make a contribution
to the group performance. This is not achieved with Íñiguez’s model, however it is likely that in a different
group composition this strategy will have also have a positive effect. It is also because the tested configu-
ration was optimised on Blocken’s model that it is more likely to be not the best performing configuration
considering Iñiguez’s model.

In figure 7.1 it is presented that the workload is best distributed with Blocken’s aerodynamic model using
the return positions adjustment strategy, this is because in this case the mean power to critical power ratio is
high and about equal over all cyclists. When considering Íñiguez’s aerodynamic model the same strategy is
about as well distributed as no balancing strategy at al. This implies that the low velocities in the results with
this aerodynamic model are indeed because the workload is not well balanced.

Considering Blocken’s aerodynamic model a remarkable increase in velocity is achieved, with 0.358 m/s
for the CP physiological model and 0.239 m/s for the MM physiological model. It is shown in figure 7.1 that
the workload balancing worked at least using the CP physiological model. This figure shows the relative
performance a cyclist was able to deliver, it is shown in this figure that from the head times optimisation with
dropping, the stronger cyclist (strong and super strong) have now a higher relative workload with respect to
the weaker cyclists (medium and weak). Ideally this would be exactly equal for all cyclists it is expected that
if the head times would be optimised for this strategy the workload would be even more spread.

6.4. Conclusion
The concept of balancing workload through the adjustment of return positions has proven to have potential.
With Blocken’s areodynamic model depending on the considered physiological model an improvement of
0.358 m/s (CP) or 0.239 m/s (MM) is made. Using the considered group of cyclists and configuration no
improvement was found by using Íñiguez’s aerodynamic model. In this study it is only demonstrated that
this method of balancing has potential, but further study is required to define the properties of a case in
which this workload balancing technique can be advantageous. It must also be noted that this strategy shows
that the aerodynamic interaction model has a large influence on the effectiveness of the workload balancing
strategy.





7
Skipping Strategy

When using the different return positions strategy might seem interesting in theory it is expected to be
hard to execute. Not only does the changing cyclist need to know where to re-enter the group, but also the
cyclist, which is behind that position needs to leave a gap. In chapters chapter 4, chapter 5 and chapter 6 is
explained that a large part of the success in the strategy is determined by the ability of a strategy, to decrease
the workload on the weakest cyclists in the group. This has led to a new concept of changing, which is based
on the strategy with different return positions, however has a lower level of complexity in execution.

The new proposed strategy is version of the different return positions strategy where the return positions
are limited. With this strategy the two weakest cyclists in the group need to be determined. These cyclists
will be altering in changing along with the rest and occupying the last position. The way this works it that all
cyclists return to the 7th (out of 8) position except the two weakest, they always move to the tail of the group
(8th position). This way the two weakest cyclists will always leave a gap for the returning cyclist, except when
the other returning cyclist is also a weaker cyclist. The effect is that the two weakest cyclists will spend half of
the time in positions 1-7 with respect to the others. The finer workload balancing will be performed by head
times adjustments. The optimisations on this strategy will be performed with yet again the same group of
cyclists with two of each strength class. This will be easy to compare the results.

7.1. hypothesis
It is expected that with skipping and head times optimised, there will be more opportunity to balance the
workload between the stronger and the weaker cyclist. For this reason it is expected that skipping and head
times optimisation increases performance with respect to the head times optimised without skipping. It is
also expected that with the adjusted return positions and no head times optimisation, there will be even more
opportunity to balance workload among cyclist. Therefore it is expected that skipping and head times opti-
mised will not outperform the adjusted head times strategy. It is also expected that there will be a difference
in improvements between studies performed with Blocken’s aerodynamic model with resspect to Íñiguez’s
aerodynamic model. Since this strategy is partially based on the return positions adjustment strategy, which
did not improve the performance when using Íñiguez’s model. Also head time balancing is less problematic
with Íñiguez’s model it is expected that the improvements with this strategy are less present or it does not
perform better at all.

7.2. Results
The results of this optimisations show some remarkable results. The results are presented in table 7.1 here
the mean velocities over the race are displayed for the four model configurations. Also given are the results
for the head times optimisation of this order (also found in chapter 5) and the adjusted return positions,
without head times optimised. The optimisation was performed twice and the results that are displayed are
the means of these optimisations. The significance is presented in table ??.
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Table 7.1: The results in terms of mean velocity of the head times optimisation regarding using the skipping strategy (top row). The results
are compared to the results of the head times optimisation of the same order without skipping (= order 1 from order optimisation) and
the Adjusted return positions.

Configuration CP-Blocken CP-Íñiguez MM-Blocken MM-Íñiguez
Head times optimised with
skipping (n = 7)

15.628 m/s 16.069 m/s 15.549 m/s 15.975 m/s

Head times optimised without
skipping (n = 5)

15.428 m/s 15.897 m/s 15.440 m/s 15.772 m/s

Adjusted return positions (n =
1)

15.786 m/s 15.554 m/s 15.679 m/s 15.667 m/s

Table 7.2: The significance corresponding to the results and hypotheses fo rthe skipping strategy

Configuration CP-Blocken CP-Íñiguez MM-Blocken MM-Íñiguez
Head times optimised with
skipping performs better than
without skipping

Confirmed
(P = 0.0000)

Confirmed
(P = 0.0000)

Confirmed
(P = 0.0000)

Confirmed
(P = 0.0000)

Head times optimised with
skipping performs better than
the adjusted return positions

Denied
(P = 0.0001)

Confirmed
(P = 0.0000)

Denied
(P = 0.0000)

Confirmed
(P = 0.0000)

7.3. Discussion
It is surprising that with this strategy the results with Íñiguez’s aerodynamic interaction model perform better
than the in the head times optimisation, since with the adjusted return positions all results simulated with
Íñiguez’s model performed worse. However when the results are further analysed it was found that in both
optimisation performed with the CP-Íñiguez model it was found that the two weakest cyclists were dropped
before the first 25 % of the race. However this does mean that the contribution of the two weak cyclists within
this first section was effective enough to improve the result from the head times optimisation. With Blocken’s
aerodynamic model the results of the skipping strategy perform better than in the head time optimisation
and worse with respect to the adjusted return positions optimisation, just as expected.

When considering the workload distribution graphs as presented in figure 7.1 the first thing that might
surprise is the high relative workload of the weak and medium cyclists, this is explained by the fact that be-
cause they are dropped soon in the race they deplete their anaerobic work capacity in a shorter time and are
therefore able to produce a higher power according to the critical power theory [30]. Considering the graph
corresponding to Íñiguez’s aerodynamic model the relative workload for both skipping is about equal to that
of head times with dropping and does therefore provide no explanation to why the skipping strategy works
better than the head times balancing with dropping strategy. When observing the graph corresponding to
Blocken’s aerodynamic interaction model the strongest four cyclists have a lower relative workload with re-
spect to those of the adjusted return positions, which does explain why it is not performing better, however
just as with Íñiguez’s aerodynamic model the relative workload results of the four strongest cyclists with the
skipping strategy are more or less equal to those with the head times balancing strategy.

7.4. Conclusion
This strategy provides an attempt at better workload distribution while being less complex to execute with
respect to the adjusted return positions strategy. The results show that it causes an increment of 0.088 m/s
to 0.210 m/s with respect to the head times balancing, depending on the model configuration. Because the
results show that the weaker cyclists are still dropped soon in the race it is unclear why this method performs
this much better.
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(a) Blocken

(b) Iniguez

Figure 7.1: The workload balance graph including the balancing strategies: no balancing, head times balancing, head times balancing
with dropping and adjusted return positions, all corresponding to the optimisations performed using the CP physiological model





8
Conclusion

8.1. Model
In the analysis of the standard strategy and the optimisation of the new proposed strategies the model

has shown that it gives good insights in the physiological states and power requirements during a team time
trial. These power requirements and physiological states have been used to identify the cyclists in that are
withholding the team from reaching higher mean velocities. The workload balances have been proven a
good measure for how well the work is distributed in the group, which turns out to have a large influence on
performance.

The differences in performance of cyclists that are simulated has a large influence on the optimal strategy.
During this analysis standardised cyclists are used, however when real cyclists are tested it is important that
the combination of their physiology and aerodynamics, resulting in the critical velocity is determined with
accuracy.

The model lacks in validation, the combination of the mechanical and physiological model have been
widely used in simulations of individual time trials[19, 24, 42, 45]. It is therefore that the only undetermined
part of the model is the aerodynamic interaction. A lot of studies doing so with groups of four cyclists have
been published[4, 10, 16, 18, 22, 29]. However the only two studies that have been published on the aerody-
namic interaction in groups of up to eight cyclists have used poorly validated computational flow dynamics
studies to do so. Since different strategies cause different results when using different aerodynamic models it
is important that the aerodynamic interaction models are validated.

Even better then improving the validity of the aerodynamic interaction is to validate the models capability
of estimating performance of a strategy. This could be done by comparing race results to the simulated result.
This simulated result can be performed with the changing scheme that was used in the actual race.

Two physiological models have been used in this study however the different behaviour of the two models
has not lead to a lot of differences in outcomes of strategies. The Margaria-Morton (MM) model could model a
cyclist in more detail than the Critical Power (CP) model, however in this study it is not demonstrated that the
different behaviour also resulted in different conclusions. It cannot be concluded that there is no advantage
of using the MM model over the CP model since in this study the MM model is not fit to real cyclists, however
when continuing with the standardised cyclists as presented in this model there is no advantage of using the
MM model.

8.2. Strategy
During this study it is determined that the performance of the team time trial relies on the distribution

of workload over the cyclists in the team. In this study the strategy was optimised for a group with large
physiological differences among the team members. It is determined that when simulating with Blocken’s
aerodynamic model, the strategy can be improved such that the mean velocity over a team time trial is raised
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by 0.358 m/s or 0.239 m/s for the CP and MM physiological models respectively. This is done by altering
the return positions, such that every cyclists has it’s own designated position to return to instead of letting al
cyclists return to the last positions, when changing from first. When simulating with Íñiguez’s aerodynamic
model, it was found that skipping worked best and was able to improve the mean velocity over the team time
trial by 0.521 m/s simulated with the CP physiological model.

While remaining in the standard changing strategy, the order has proven to be of great influence to the
results. When only using head times to balance a team during a team time trial the workload distribution is
very dependent on the order that is used. It is found that between the best and the worst simulated orders
the results expressed in mean velocity over a 30 km race ranges between 0.079 m/s and 0.228 m/s. The lowest
improvement was found while simulating with the MM-Íñiguez configuration and the highest improvement
was found while using the CP-Blocken combination.



9
Recomendations

The developed model is used to gain insights in the strategies used during team time trials ans also to
improve the strategies. The model has provided information regarding the workload among different cyclists
in a team during the race and has helped develop new strategies that could potentially improve team time trial
performances. However the model remains invalidated in this study. The model has been used to evaluate a
single case, which is a flat time trial of 30 km with a single configuration of cyclists. The model has potential
to evaluate a wide range of different cases. In this chapter will be explained both how the model could be
improved and how the existing or improved model could be used to optimise more situations.

9.1. Model
A model of a team time trial was developed but it still lacks validity, also the model could be improved to
simulate with higher detail. The aerodynamic models that are used in the different configurations of this
model have shown very different behaviour. It is essential to determine which model suits the considered
reality best.

9.1.1. Validation of the aerodynamic interaction
Since the two aerodynamic models show such a different behaviour and have lead to different conclusion in
this study, a validation of the aerodynamic interaction has to be made. It is advised to do this in a field test
while using power meters, since this method of assessment lies close to the use case in application. Alterna-
tively a wind tunnel test could be done. It has been shown in A that it is also essential to do this with a larger
groups size, at least five, but more preferable eight cyclists.

9.1.2. Individual aerodynamic characteristics
Recent studies [4, 18, 22] have also shown that the aerodynamic characteristics of the cyclists in the group
have an influence on the coefficient of drafting that applies to the cyclists. During this study the considered
cyclists where equal in size, however when a real time of different individuals is considered this will be impor-
tant. The study of Heimans et al. (2017) provided a good framework that could be used to include the effect
of different individual aerodynamic characteristics into the teams drafting model.

9.1.3. Additional aerodynamic improvements
The world of aerodynamics is more complex than drag areas and drafting coefficients, the applicability of the
model would increase by including these details into the model. Winds are not included in this situation, the
effects of head and tail winds can be included relatively easily, by separating forward velocity and air velocity.
However when side winds are being considered this becomes more complex. When side winds occur in team
time trials cyclists tend to introduce a lateral offset in their position in the group in order to remain drafting.
It would be interesting to also include these effects in the model, such that the strategic decisions could be
adapted to the weather conditions.
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9.1.4. Overall performance validation
The aerodynamic interaction seems to be the least validated component of the model. However together
with the physiology and resistance models it determines the time trial performance. The highest level of
validation would be if it could be determined that the performance of this model would be accurate. This
requires a fits of the desired physiological modes to a real team of cyclists, also the aerodynamic drag area
and rolling resistances of these cyclists should be determined. This way a strategy of a real performed team
time trial can be fed into the model and the performance can be compared to asses the model validity.

Relative validity With such large amount of parameters to determine, which in their way have inaccuracies
the exact finish time will likely not match very accurate, however when multiple time trials are performed
using different changing strategies. The differences in finish time or mean velocity can be compared to those
of the model predictions. This way it could be ensured that the strategy optimisations by making use of the
model will result in an improvement of performance in reality without predicting accurate finish times.

9.2. Studies using the existing model
This study focusses on the development of a model to predict and compare performances in team time trials
as well as optimising performance of the team time trial. Since this study contains much information about
different model types and variation in strategies and group composition is decreased. A follow up study could
provide much more information about the performance of strategies and different strategy concepts. In this
section some ideas, which are currently labeled as interesting, are explained.

9.2.1. Performance difference on different slopes
In this study a few strategies have been analysed on a 30 km flat team time trial using only one group forma-
tion. There are still a lot of variation possible. In this section a few examples are given of additional cases that
are expected to enrich this study with interesting results.

Order and inclination In the order optimisation no variation is made in cyclists weigh class or road incli-
nation. It will be interesting to see how the optimal orders change with the inclination of the course. This can
be done by taking the order that is now considered, which consists of two super strong cyclists, two strong
cyclists, two medium and two weak and altering their weight. Specifically if the super strong cyclists become
of the heavy weight class and the weak cyclists of light. This way depending on the road inclination the crit-
ical velocity of the cyclists change in the advantage of the weak cyclists and at the disadvantage of the super
strong cyclists. This could even be performed with a course that has both a flat and inclining part.

More balanced groups The current considered group has a lot of variation between cyclists, which make
the workload distribution important. It would be interesting to place in contrast to that a group where the
cyclists are more balanced, for example six strong and two medium cyclists. It is expected that the strategies
proposed to balance the workload have less effect in these cases, but it is unknown if they will perform worse,
it could be that in cases that need less workload balancing these strategies may not have a large advantage,
they still perform well.



A
Interpolation of cyclist drafting coefficient

This chapter describes the method of interpolation of drag reduction on cyclists in groups of various sizes,
where the goal is to get drag reductions for a group of any number of cyclists. Two studies have been per-
formed where the aerodynamic interaction of groups of eight cyclists have been tested, both lack validity.
The study of Íñiguez and Íñiguez de-la-Torre (2009) [27] tested the drafting coefficients of all group sizes up
to nine. The study of Blocken et al. (2013) [9] tested only with group sizes 1, 2, 4, 6 and 8 More studies have
been performed on configurations with four cyclists also varying individual drag areas and postures. In order
to use both studies for up to eight cyclists an interpolation has to be performed use all cyclists configurations.
Possibly the same method of interpolation could be used to extrapolate the drag reduction in groups of four
cyclists to groups of eight cyclists. This study attempts to describe the drafting coefficients of a group, but of-
ten the drag reduction is mentioned. With the drafting coefficient (Cdr ), the drag in the group with respect to
the solo drag value is meant. The relative drag reduction (R) is the ratio between drag difference between solo
and in group and the solo drag value and is related to the drafting coefficient as described in equation A.1.

R = 1−Cdr (A.1)
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Figure A.1: This figure shows the working principal of the explained method, the coefficients (β) are placed above the cyclists, the relative
reduction coefficient for each row corresponds to the boxed cyclist.

A.1. Method
In this section a mathematical framework is presented on how the drafting coefficient is related to the posi-
tion in the group when the group is in an in-line formation and how it is used to estimate the coefficients in
groups of sizes which are not tested. An in-line formation means that the cyclists are cycling after each other,
where the rear wheel of a leading cyclist is followed by the front wheel of a trailing cyclist. In this analysis the
effects of side winds an misalignments in the group are neglected.

A.1.1. Framework
Let a group of cyclists consist of (NGr oup ) cyclists travelling in in-line formation, the drag reduction of any
cyclists in the group is considered dependent on the amount of cyclists in front of the cyclist as well as the
amount of cyclists trailing behind this cyclist. The total drag reduction of a cyclist is described as the sum of
the contributions of the considered cyclists around him. The amount of cyclists that contribute to the drag
reduction is as a number of cyclists in front of the evaluated position N f r ont and a number of cyclists behind
the evaluated cyclist (Nr ear ). A configuration is denoted by: (N f r ont , Nr ear ).The total reduction for a cyclist
is described by the sum of the drag reduction contributions (β) of the relative positions for all positions that
are occupied in the region between N f r ont in front and Nr ear behind the cyclist, as shown in equation A.2a.
In this equation the factor ψ(i , j ) determines the existence of a cyclist in the relative position j with respect
to the cyclist in position i , as described in equation A.2b.

Ri =
Nr ear∑

j=−N f r ont

β[ j ] ·ψ(i , j ) (A.2a)

ψ=
{

1 i − j > 0∩ i − j ≤ Ng r oup ∩ i 6= j

0 otherwise
(A.2b)

Equation A.2 can be written into matrix form. Here the vector β can represent the drag reduction contri-
butions of the cyclists in the positions around the evaluated cyclists, meaning first the contributions of all
cyclists which are in front followed by the contributions of the cyclists behind the evaluated cyclist. If the
values for ψ(i , j ) are brought into a matrixΨi j , the presence matrix, the drag relative drag reductions (R) can
be produced by equation A.3.

R =Ψβ (A.3)
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This paragraph will give an example on how to use the explained equation. A group of four cyclists is con-
sidered (Ng r oup = 4), the influence of drafting is determined by the presence of cyclist in the three positions
in front (N f r ont = 3) and three positions behind (Nr ear = 3), or configuration (3,3). The presence matrix is
shown in equation A.4. In this matrix the rows correspond to the relative drag reduction factors of a position,
the first row is for the first cyclist, the second for the second cyclist and so on. The first three columns corre-
spond to the positions in front of the evaluated cyclists, where the first is the furthest away from the evaluated
cyclist and the third, the one directly in front. The last three columns correspond to the following positions
directly after the evaluated cyclist. As presented for the first cyclist there are no cyclists in front and three
cyclists behind the evaluated cyclist. The vector containing the contributions to relative drafting reduction
(β) has rows that correspond to the positions the same as the columns of the presence matrix, such that the
multiplication results in the relative drag reduction for all positions.

Ψ=


0 0 0 1 1 1
0 0 1 1 1 0
0 1 1 1 0 0
1 1 1 0 0 0

 (A.4)

A.1.2. Least squares estimation
In this section the estimation of the drafting coefficient of the missing group sizes of Blocken’s aerodynamic
interactions study using a least square estimation. The study of Blocken describes groups with 1, 2, 4, 6 and
8, totalling in 21 drafting coefficients. For each of these drafting coefficients a row in the presence matrix can
be created, with a corresponding relative drag reduction. The equation where the relative drag reduction is
estimated is shown in equation A.5a, here the set ε represents the error in the estimateΨβ. The coefficients β
can be solved using least squares, as presented in equation A.5b in which the squared error (εT ε) is minimised.

R =Ψβ+ε (A.5a)

β= (ΨTΨ)−1ΨT R (A.5b)

Amount of coefficients The amount of coefficients that are used are important to the result, also whether
the positions in front or behind the cyclists are considered, are important. There are 21 drafting coefficients
known, this means that the maximum of 14 coefficients (7,7) is over constraint and can be used, however it
might be that some coefficients have little influence. First the error in the fit is tested for all possible coeffi-
cients. After this a lower number of coefficients is selected to see how it changes the behaviour of the fit. Also
a fit is made to the data of just the test with four cyclists, to see how it fits if extrapolated to larger group sizes.
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Table A.1: The sum of squared error from the fits made to all tests from Blocken et al. (2013) [9], the columns represent the number of
coefficients considered belonging to positions behind the cyclist and the rows the number of coefficients belonging to positions in front
of the cyclists.

cyclists behind
cy

cl
is

ts
in

fr
o

n
t

0 1 2 3 4 5 6 7
0 16.18 % 16.15 % 51.73 % 15.67 % 15.37 % 15.35 % 15.17 %
1 6.21 % 6.11 % 5.93 % 5.91 % 5.75 % 5.75 % 5.70 % 5.43 %
2 3.38 % 3.21 % 3.21 % 3.14 % 3.14 % 3.13 % 3.03 % 3.03 %
3 2.29 % 1.64 % 1.62 % 1.62 % 1.61 % 1.56 % 1.56 % 1.56 %
4 1.83 % 0.87 % 0.86 % 0.86 % 0.84 % 0.83 % 0.82 % 0.82 %
5 1.80 % 0.61 % 0.61 % 0.60 % 0.60 % 0.60 % 0.60 % 0.59 %
6 1.75 % 0.43 % 0.36 % 0.36 % 0.36 % 0.34 % 0.33 % 0.31 %
7 1.75 % 0.27 % 0.25 % 0.25 % 0.25 % 0.22 % 0.21 % 0.18 %

Figure A.2: The coefficients contributing to the drafting for configurations (7,7) and (4,1).

A.2. Results
The results are separated in two parts, the interpolation in groups up to eight and in the extrapolation of the
drag reduction of a group of four, to groups of eight. With the interpolation all data from Blocken’s aero-
dynamic interaction study are used, to define the drafting coefficients in not tested group sizes. With the
extrapolation, from both Íñiguez and Blocken, the test with four cyclist is used to replicate all other group
sizes in order to determine whether this could also be done in studies that do not have data from larger group
sizes.

A.2.1. interpolation in groups up to eight
Multiple configurations of coefficients have been fitted to the data, the configurations (7,7) and (4,1) are high-
lighted, as well as the case with three in front and one behind for the estimation for a group of four cyclists.
The RMS error for all configurations of coefficients, fitted to all available data from Blocken’s study, are pre-
sented in table A.1. It is noticable that with considering contributions of at least three cyclists in front and
one behind, the RMS error is lower than 1 %. It is also shown that the contribution of considering a cyclist, in
front of the cyclists, to the accuracy is much larger than that of a cyclist, behind the cyclist of which the drag
reduction is computed. However an extra coefficient will always increase the accuracy. The coefficients of the
most accurate fit (configuration (7,7)) are compared to the original drafting coefficients and are presented in
figure A.1. The complete table of drafting coefficients is presented in table A.2, within the accuracy of 1 %
none of the coefficients of the original tests deviated from the reproduced value.

As mentioned earlier it might not be necessary to use all coefficients possible, therefore a comparisson is
made between the configuration with the maximum amount of coefficients and one with less coefficients,
which is chosen to be configuration (4,1). The coefficients for configurations (7,7) and (4,1) are presented in
figure A.2. The coefficients are remarkably similar, as are the resulting drafting coefficients for groups of 2, 4,
6 and eight cyclists, which is presented in figure A.3.
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(a) A group of two (b) A group of four

(c) A group of six (d) A group of eight

Figure A.3: The drag reduction coefficients of cyclists in groups of 2 (a), 4 (b), 6 (c) and 8 (d) cyclists, for both original study of Blocken
and fit from (7,7). «Maybe delete A.3 and include both (7,7) and (4,1) into these plots.»

Table A.2: Drafting coefficients from the fit with configuration (7,7). All coefficients of the tested data are exactly equal to the reproduced
data, when rounded to 1% accuracy.

Gr. Size Cdr 1 Cdr 2 Cdr 3 Cdr 4 Cdr 5 Cdr 6 Cdr 7 Cdr 8

1 100
2 97 86
3 97 83 78
4 97 82 75 73
5 96 82 75 70 70
6 97 82 75 69 67 68
7 96 82 75 70 66 66 67
8 97 82 75 69 66 65 64 65
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(a) A group of two (b) A group of four

(c) A group of six (d) A group of eight

Figure A.4: The relative drag reduction coefficients, test data form Blocken [9] (light-blue), versus the fit (3,1) from a group of four cyclists
(red).

A.2.2. Extrapolation from a group of four cyclists
Two fits are made to the tests with four cyclists form both Íñiguez and Blocken, the resulting fits to the other
group sizes are presented. The fits to Blocken’s tests with two, four, six and eight cyclists are presented in
figure A.4. Since the fit that is made uses four coefficients, and therefore has four degrees of freedom, the fit
to four cyclists is exact (RMS error = 0). In the cases with more cyclists it is shown that the fit has lower drag
reduction. The fit to the coefficients of Íñiguezes study is presented in figure A.5. As with the fit to Blocken’s
coefficients the drag reduction coefficients from the fit are exactly equal for four cyclists and have only small
errors for two cyclists. In the cases with six and eight cyclists the the fit is somewhat flattened; with which is
meant that the difference between coefficients is lower in the fit, than the differences from the coefficients
from the study.
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(a) A group of two (b) A group of four

(c) A group of six (d) A group of eight

Figure A.5: The relative drag reduction coefficients, test data form Íñiguez [27] (light-blue), versus the fit (3,1) from a group of four cyclists
(dark-blue).

A.3. Discussion
...
The RMS error in the coefficients are as presented in A.1 are relatively low, this is because al tests from Blocken
are considered, including one cyclist, and two cyclists. The test with one cyclists will according to the frame-
work always return that there is no drag reduction. The test with more cyclists will have more deviation in
the drafting coefficients of cyclists beyond fourth position. This can be explained since the relative drag re-
duction coefficients, from the Blocken’s coefficients in a group of eight to those of the fit in configuration
(7,7), shows only deviations larger than 0.5 % in positions five and six. The coefficients of configuration (4,1)
has more deviations, where the drag reduction coefficients corresponding to positions five seven and eight
exceed 0.5 % in absolute error.
For the extrapolation only using a test with four cyclists to determine the drag reduction factors, the results
show an RMS error to all tests of 2.9 % and 1.1 % for Blocken and Íñiguez respectively. The differences in rela-
tive power output (which is closely related to the drafting coefficient) are shown in figure A.6, with respect to
those differences the 2.9 % and 1.1 % are not large. The RMS error might suggest that the fit is performing well,
however when looking at the graphs figure A.4 it is shown that the behaviour is different. The estimated drag
reductions in cyclists in the back (position beyond fifth) of large groups (>4). The data of Íñiguez has devia-
tions that are most present in positions two and three of large groups (>4), which also seems like a structural
error.

A.4. conclusion
The missing coefficients of drag reduction form Blocken’s [8] drag reduction study were estimated by re-

lating a contribution to the reduction to each occupied positions around the cyclist. Many configurations
were tested, where they varied in how many positions in front and behind the cyclists were considered to
contribute to the reduction. The most accurate fit was found where all seven positions in front and all seven
positions behind the cyclists were considered. In this case the RMS error over all test with groups of 1, 2,
4, 6 and 8 cyclists is 0.18 % with this case. It was found that any configuration using at least four cyclists in
front and one behind works well as well, with an RMS error over all tests of 0.87 %. It was shown that both of
these examples showed a similar profile in drag reduction over the positions in the group, which was also in
correspondence to the original experiments.

It was suggested that the fit to data of the tests performed with four cyclists could predict the behaviour
in drag reduction in groups up to eight cyclists. This was tested by making a fit to the results of the tests
from both Íñiguez [27] and Blocken [9] with only four cyclists and comparing the resulting drag reduction of
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Figure A.6: Comparison of drag reduction, in terms of ratio in power consumption with respect to the first cyclist in the group, as function
of group position coefficient for groups of four cyclists.

all group sizes to the tests. The RMS errors in the drafting coefficients were 2.9 % and 1.1 % respectively. It
was found that the errors were largest in the positions beyond fourth for groups larger than four for Blocken’s
study. In the case of the fit to Íñiguez’s coefficients the errors were largest in positions two and three in groups
larger than four. It is shown in A.4 that the profile of drag reduction over positions in the group is altered when
interpolating from a group of four cyclists, and it is therefore concluded that it cannot be guaranteed that this
gives a representative result. The profile of drag reduction and thereby drafting coefficient over the positions
is important when comparing different strategies, disturbing this profile might induce advantage of certain
strategies.



B
Fitting the Margaria-Morton models

B.1. Introduction
In the literature the critical power model (CP-model) [30] is often used to model physiology, while the Margaria-
Morton model (MM-model) [33, 41] could give more detail than the critical power model. The reason that the
CP-model is so popular with respect to the MM-model is because it only uses two parameters, which is far
less than the eight used in the MM-model. Because the MM-model, describes the physiology in more detail
with respect to the CP-model it has potential to describe the complex physiology in team time trails better
than the CP-model.

The critical power model is often used in the modelling of individual time trials [14, 42], however in these
studies, no recovery of anaerobic capacity is required. Since team time trials are an intermitted exercise,
meaning that the power output of a cyclist fluctuates around the critical power, the model has to model re-
covery. The accuracy of the CP-model decreases when using a recovery model. [5, 44] It is therefore suggested
that the hard to fit MM-model could provide a better description of the cyclists ability to produce power.

B.2. The MM-model
The MM-model is a whole body bio-energetic model, where processes leading to power production are de-
scribed based on bio-chemical processes. The MM-model is often represented in a hydraulic flow model,
where flows represent power and volumes represent energy. The hydraulic flow model representation is
shown in figure B.1, where the three tanks are noted with O, P and G. The O-tank represents the oxidative
production of phosphates, which are used in the production of mechanical power. The O tank is infinite in
size, representing the oxygen in the environment. The P-tank represents the storage of ATP, and the G tank
represents the storage of carbohydrates, which supply energy to tank P through the glycolysis process. During
the glycolysis process, lactate is converted to lactic acid.

B.2.1. Differential equations
The MM-model is, in literature, described as a hydraulic flow model, however the result of this model are
only differential equations. The main differential equations are the two equations related to the change of
height in the tanks, shown in B.1a and B.1b. In these equations, there is a reference to powers P1 refers to the
power through R1 from tank (O to P), P2 is the power through R2 (G to P), P3 is the power through R3 (P to
G). The athletes power output is represented by Pout . These powers are dependent on resistances and hight
difference, but only under certain conditions and are therefore defined in B.1.

Cp · dhP

d t
=−Pout +P1+P2−P3 (B.1a)

Cg ·
dhg

d t
=−P2+P3 (B.1b)
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Figure B.1: Hydraulic flow representation of the generalised MM model.

Table B.1: Equations for the energy flows

value condition
P1

P1 = 1−hg

R1
hp > hO

P1 = 1−hO
R1

hp <= hO

P2

P2 = hg −hp

R2
hp < hg ∩λ< hg < 1−Θ

P2 = 0, hg = hp hg >= 1−Θ
P2 = hg −λ

R2
hp <=λ

P2 = 0, hg = hp hp >= hg

P3

P3 = hp−hg

R3
hp > hg ∩1−Θ>= hg >=λ

P3 = 0,hg = hp hg < 1−Θ
P3 = 0 hp <λ∪hp < hg
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Figure B.2: CP-model as an MM-model in hydraulic flow representation.

For the CP-model, the differential equations are different. There is only one state (WB al ) and two param-
eters (CP and W’). The differential equations are shown in B.2 where Bartram’s recovery equation is used.
[5]

dWB al

d t
=

{
P −C P P ÊC P

W ′−W ′
B al

2287.2·(C P−P )−0.688 P <C P
(B.2)

The model uses three relative sizing constraints (Φ, λ, θ), the capacities of both tanks and three resistances
of the energy flows between tanks (CP and CG ). Of the resistances R1 determines the aerobic power, R2 the
power from the glycolysis process and R3 the recovery of glycolysis. There are two physiological states, these
are the heights of the tanks in hydraulic flow representation and can directly be related to the fullness of the
reserves.

The height differences between tanks will trigger the flow through the tubes, which have a resistance. When
there is power output the level of tank P will lower, triggering flows from O and G into tank P, proportional
to the level differences. The resistances determine the flow rate per level difference (lower resistance gives a
larger energy flow).

B.2.2. Sizing
The relative sizing constants will determine for a large part the characteristics of the model. When the

level of P first reaches beneath the top of tank G, lactic acid is produced, meaning that the power output at a
steady state, where the level of P is at the top of G represents the anaerobic threshold. The same can be done
for critical power, in this case the levels of both P and G are ate steady state at the bottom of tank O.

It is, with some alternations, possible to the critical power model exactly, this is done by removing the
tank G and setting a top limit on tank P exactly at the level of the bottom of tank O, as shown in B.2. While
maintaining the tank G and not lowering the top of tank P, the same result is approached when R1 reaches
zero, while the maximum aerobic flow remains CP, see B.3.

R1 = lim
Φ→1

1−Φ
C P

(B.3)
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B.3. Method
In literature there is a lack of information and standardisation on how to fit a MM-model to an athlete. That
combined with the lack of resources to perform the required test to do so, makes for an easy decision to
provide parameters for fictional cyclists. A combination of tests that could also be used to fit the critical
power model are combined with a test that of intermittent exercise, to determine the recovery kinetics.

In this study, standardised cyclists are used, the parameters of the critical power model, for the standard-
ised cyclists, are used to generate those for the MM-models of the same fictional cyclists. The two constants
of the CP-model are, critical power and anaerobic work capacity. Those two are proportionally scaled along
the standardised cyclists, which are shown in equation B.2.

Table B.2: Standardised physiological coeficients in strength classes for the CP-model.

Power class CP W’
W kJ

Super strong 450 25.0
Strong 420 23.3
Medium 390 21.7
Weak 360 20.0

B.3.1. constraints
The MM-model can be configured in various configurations, the desired configuration is such that it shows
a different behaviour with respect the the CP-model. Having two models that have different characteristics,
different optima in strategies might be found according to the model which is used. To make the model
different from the CP-model the relative sizing coefficient Φ is chosen to be low (0.2). It is assumed that the
anaerobic threshold for this athlete is at half of the critical power leading to θ = 0.4. The coefficient λ is set
to 0.1. In order to model that the G reserve is actually used, the size of the P tank is set to exactly half of the
W’ reserve in the corresponding CP-model. This leaves four constants undefined, which could be fitted with
a minimum of four tests.

B.3.2. Tests
Because using the constraints, four constants of the MM-model are undefined, four tests are done to fit the
MM-model to the CP-model. The CP-model can be fitted to cyclists using a series of three self paced all
out tests. [6] The duration of these tests are set to one, three and twenty minute tests. The last test is an
intermittent test as performed in the study from Bartram’s recovery model. [5] Using these tests, the model
parameters are fitted such as they would in a test to determine the parameters for the critical power model.
The power profiles of the tests are shown along with the results in B.3

B.3.3. Optimisation
The parameters were adjusted manually, after which a gradient optimisation was performed to find the local
minimum to this problem. Optimisation was performed using the ’trust-region-reflection’ algorithm. The
optimisation was performed in MATLAB using default settings of the ’fmincon’ function.

The objective is that the at all tests the tank is first empty exactly at the end of the test. The scores of the
tests are combined by taking the root mean square of the individual test errors, as defined in equation B.4b.
The individual test are simulated with a fixed time step simulation. If the value for hP would reach below zero,
the simulation is terminated and the time of failure (t f ai l ) is computed, the error in time between failure and
objective is the objective score. If the simulation is valid the remaining level in the tank P (hP [end ]) is the
objective score, as shown in equation B.4a.

eri =
{

hP [end ] mi n(hP (t )) Ê 0
tob j ect i ve−t f ai l

tob j ect i ve
mi n(hP (t )) < 0

(B.4a)

J =
√√√√ 4∑

i=1
er 2

i (B.4b)
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The relative sizing parameters (Φ,λ and θ) are not scaled for the other strength classes, all other parameters
are scaled proportional to the critical power of the CP-model of the same strength class. This way only one
strength class is optimised. In case of the possibility of multiple optima, this makes sure that all strength
classes use the same optimum. The optimisation is performed on the strength class ’Strong’.

B.4. Results and discussion
Using the optimisation the results are produced ans shwon in table B.3, in this table the resistances are con-
verted to an admittance (D, D = R−1), which represents the energy flow per tank level difference. What sur-
prises is the value for D1, in strength class Super Strong it has a value of 577.1 W, multiplying this with the
level difference between top of tank P (1) and the bottom of tank O (Phi = 0.2), this results in the maximum
aerobic power and is equal to 461.7 W, see B.6. The maximum aerobic power of the MM-model is thereby 11.7
W (2.6 %) higher than the critical power of the same strength class. The higher maximal aerobic power can be
explained by the fact that when the athlete is at steady state power output at maximal aerobic power, using
the relative sizing parameters chosen, very little anaerobic capacity is left. The additional bit of aerobic power
compensates for the lack of anaerobic work beyond this point, in longer endurance tasks such as the twenty
minute test or the intermittent test. Also the total anaerobic work capacity is over four times as large as the
W’ of the CP-model (103 kJ for MM and 25 kJ for CP). The reason for this effect is that a large part of the G
reserve is consumed when aerobic power is low, meaning that the with the MM-model a lot of the anaerobic
energy is consumed while the aerobic power is below maximal aerobic power. With the CP model when the
power output is below maximum aerobic power, the whole power output is considered aerobic.

PO2,max = D1 · (1−Φ) (B.5)

Wan,M M =CP +CG · (1−λ−θ) (B.6)

Table B.3: Standardised physiological coeficients in strength classes for the CP-model.

parameter units Weak Medium Strong Super Strong
Φ - 0.2 0.2 0.2 0.2
λ - 0.1 0.1 0.1 0.1
θ - 0.4 0.4 0.4 0.4
D1 = R1−1 W 461.7 500.1 538.6 577.1
D2 = R2−1 W 1290 1398 1505 1613
D3 = R3−1 W 960.0 1040 1120 1200
CP kJ 10.00 10833 11.67 12.50
CG kJ 72.72 78.78 84.84 90.90

The errors of the four test and the resulting objective value are shown in table B.4, the values are low and
surprisingly similar between strength classes. The low values mean that the optimisation yielded a good
outcome that fits al four tests well. The similarity among strength classes means that fitting just one strength
class and scaling up and down to the other strength classes was a successful choice, now all strength classes
contain the same error as the fitted class.

Table B.4: Standardised physiological coeficients in strength classes for the CP-model.

Error values er1 er2 er3 er4 J
Weak 2.10 ·10−5 9.89 ·10−4 1.80 ·10−2 7.93 ·10−5 9.84 ·10−3

Medium 1.90 ·10−5 9.75 ·10−4 1.79 ·10−2 3.18 ·10−3 9.10 ·10−3

Strong 1.70 ·10−5 9.63 ·10−4 1.78 ·10−2 6.82 ·10−4 3.88 ·10−3

Super Strong 3.88 ·10−5 9.53 ·10−4 1.78 ·10−2 4.23 ·10−5 8.90 ·10−3

The results of a simulation are the physiological states, for al test were the fit is optimised to the physiologi-
cal states are plotted against time. This is done considering a cyclist of strength class ’Strong’, where the mass
is not influential. In the figure, the plots on each row represent a test, where on the left (plots a, c, e and g) the
reference is plotted, this consists of the power profile and the WB al (physiological stat of the CP model). On
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the right side (plot b, d f and h) the results are plotted of the fitted MM-model, these are the reserve levels (hP

and hG ).

In the first three tests expenditure was tested only, by comparing the CP-model results and MM-model
results, it can already be seen that the behaviour is quite different. In figure B.3 the plots in a, c and e show
both power and the WB al state of the CP-model, these last are all straight lines. When looking at the MM-
states in figure B.3 plots b, d and f, the lines are curved. When both tanks are full, the aerobic supply of power
is zero, later when reserve P is slightly depleted, the oxidative power input will decrease the rate of depletion
for reserve P. Later the flow from G to P will have the same effect, until the level in reserve G will approach its
bottom, than the flow from G to P stops and the depletion of reserve P speeds up, as can be seen in the two
longer tests in figure B.3 d and f.

Looking at the intermittent test (B.3: g and h) the states of both models might appear different, but they
show quite similar behaviours. It is shown that using the MM-model hP and hG first decline during the first
section of relatively low power output. At these lower values the recovery takes place. The WB al state from the
CP-model also shows more recovery when depleted further. Because of the chosen configuration of the MM-
model, the recovery of hP , glycolitic processes (G reserve) as oxidative processes (O reserve), the recovery
only gets high when the hP level approaches the bottom.

In figure B.4 plots are made for three cases of intermittent exercise, for each case the left plot indicates the
power profile, the middle plot, the states of the MM-model and the right plot the state of the CP-model. The
test are with different ratios of high power and rest power. What can be noted from the plots is that for short
peaks of power output the CP-model predicts better performance. This can be seen, because in figure B.4
(a), the hP state from the MM-model is empty at the end, while the W ′

B al state from the CP-model is not.
In plot figure B.4 (b) there is a slight difference in advantage of the CP-model, but they are somewhat equal
in performance. Considering, long rests and short power peaks as shown in figure B.4 (c), the MM-model
predicts better performance than the CP-model. This is of course in the case of an MM-model configuration
as fitted as in this report.

While the previous paragraph reports a different behaviour of the MM-model with respect to the CP-model,
it must be noted that the CP-model is already a generalisation of the human performance. The CP-model has
only two degrees of freedom, while it uses at least three tests to be accurately fitted. [6] Additionally the
recovery model used in combination with the CP-model is generalised over multiple subjects. [5] If the MM-
model would have been fitted to an athlete performing real tests, this might give an MM-model that shows
an even more different behaviour than the MM-model fitted to fictional tests. It would therefore be a good
addition to this study to provide a MM-model specifically fitted to an athlete. More specifically it would be
good to fit an MM-model to multiple cyclists, to show the different characteristics among them and the effect
of it on their team time trial characteristics.

B.5. conclusion
A version of the MM-model is fitted to fictional tests, of which the outcomes are predicted by the CP-model.
A configuration of the MM-model is assumed where it is expected to show a different behaviour with respect
to the MM-model. It has been shown that to recovery of different duration it does indeed show a different
behaviour with respect to it’s CP-model counterpart. It could be that when fitted to a real athlete, the charac-
teristics will even differ more among the two models, since the CP-model is generalises the cyclists a lot.



B.5. conclusion 69

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure B.3: The fitted MM-model for the standardised strength of the strong cyclist. in the left plots the power output of the test is shown
(solid) along with the WB al state of the simulated CP-model. In the right plot the physiological states in form of the tank levels are shown
corresponding to the simulated test with the MM-model. Plots a and b are fromt the one-minute test, c and d are from the three minute
test, e and f are from the twenty minute test and g and h are from the intermittent test.
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(a) Intermittent exercise with short power and long recovery while Ppeak = 1020W .

(b) Intermittent exercise with medium power and medium recovery while Ppeak = 670W .

(c) Intermittent exercise with long power and short recovery while Ppeak = 520W .

Figure B.4: Plots of physiological states of both models in three different intermittent exercises, the ratio between power and recovery

time are varied. The power ratio RP = Pr est
Ppeak

is 0.2. In the plots shown in (a) rest is long (100 s) and power is short (20 s), in (b) power and

rest phase are of medium duration (60 s), in (c) the rest is short (20 s) and power is long (100 s). For each cases the left plot is the power
output (solid line is power output, the dashed is critical power), the center plot are the states of the MM-model and the right plot shows
the state of the CP-model.
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