
 
 

Delft University of Technology

An SHM Data-Driven Methodology for the Remaining Useful Life Prognosis of
Aeronautical Subcomponents

Galanopoulos, Georgios; Eleftheroglou, Nick; Milanoski, Dimitrios; Broer, Agnes; Zarouchas, Dimitrios;
Loutas, Theodoros
DOI
10.1007/978-3-031-07254-3_24
Publication date
2023
Document Version
Final published version
Published in
European Workshop on Structural Health Monitoring, EWSHM 2022, Volume 1

Citation (APA)
Galanopoulos, G., Eleftheroglou, N., Milanoski, D., Broer, A., Zarouchas, D., & Loutas, T. (2023). An SHM
Data-Driven Methodology for the Remaining Useful Life Prognosis of Aeronautical Subcomponents. In P.
Rizzo, & A. Milazzo (Eds.), European Workshop on Structural Health Monitoring, EWSHM 2022, Volume 1
(pp. 244-253). (Lecture Notes in Civil Engineering; Vol. 253 LNCE). Springer. https://doi.org/10.1007/978-3-
031-07254-3_24
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-07254-3_24
https://doi.org/10.1007/978-3-031-07254-3_24
https://doi.org/10.1007/978-3-031-07254-3_24


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



An SHM Data-Driven Methodology
for the Remaining Useful Life Prognosis

of Aeronautical Subcomponents

Georgios Galanopoulos1(B), Nick Eleftheroglou1, Dimitrios Milanoski1,
Agnes Broer2,3, Dimitrios Zarouchas2,3, and Theodoros Loutas1

1 Applied Mechanics Laboratory, Department of Mechanical Engineering
and Aeronautics, University of Patras, 26504 Rio, Greece

gkgalanopoulos@gmail.com
2 Structural Integrity and Composites Group, Faculty of Aerospace Engineering,

Delft University of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands
3 Center of Excellence in Artificial Intelligence for structures,

Aerospace Engineering Faculty, Delft University of Technology,

Delft, The Netherlands

Abstract. Prognosis of the Remaining Useful Life (RUL) of a struc-
ture from Structural Health Monitoring data is the ultimate level in the
SHM hierarchy. Reliable prognostics are key to a Condition Based Main-
tenance paradigm for aerospace systems and structures. In the present
work, we propose a methodology for RUL prognosis of generic aeronau-
tical elements i.e. single stringered composite panels subjected to com-
pression/compression fatigue. Strain measurements are utilized in this
direction via FBG sensors bonded to the stiffener feet. The strain data
collected during the fatigue life are processed and used for the RUL prog-
nosis. In order to accomplish this task, it is essential to produce Health
Indicators (HIs) out of raw strain that can properly capture the degra-
dation process. To create such HIs a new pre/post-processing technique
is employed and a variety of different HIs are developed. The quality
of the HIs can enhance the performance of the prognostic algorithms,
hence a fusion methodology is proposed using genetic algorithms. The
resulted fused HI is used for the RUL estimation of the SSCPs. Gaussian
processes and Hidden Semi Markov Models are employed for RUL prog-
nosis and their performance is compared. Despite the complexity the raw
data we demonstrate the feasibility of successful RUL prognostics in a
SHM-data driven approach.

Keywords: Structural Health Monitoring · RUL prognosis ·
Composite panels · Health Indicators · Fibber Bragg Gratings

1 Introduction

With the increasing use of composite materials in various safety critical indus-
tries, like automotive and aerospace, it is imperative to accurately monitor their
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structural behavior. Structural Health Monitoring (SHM) systems can be uti-
lized for the consummation of that task. Intelligent diagnostics and prognostics
using SHM is considered by some one of the most demanding task to achieve in
a condition based maintenance scheme [3,13]. Of critical importance is Remain-
ing useful life (RUL) prediction which is closely linked with SHM, since accu-
rate SHM measurements are crucial for knowledge of the structure’s degradation
[9,18]. Prognostic methodologies are roughly classified into two major categories,
model-based and data-driven [8,20]. Data-driven, which use stochastic model-
ing and machine learning (ML) methodologies, such as Neural Networks (NN),
Gaussian process etc., to predict the End of Life (EoL) given historical data are
more commonly used for complex structures, due to the difficulty of accurately
modeling the degradation using physical equations.

There have been a number of studies employing data-driven methods for RUL
prediction on composite structures. Eleftheroglou et al. [3] proposed a nonho-
mogeneous hidden semi Markov model (NHHSMM) for RUL prediction of open-
hole composite coupons subjected to constant amplitude tension-tension fatigue.
Acoustic emission (AE) data were used as the input to train the NHHSMM. The
predicted RUL displayed great results showing the potential of the framework
for integration in different SHM datasets. An adaptive NHHSMM was developed
in [4]. The ANHHSMM was able to adapt to unforeseen events such as mid-
test impacts, even though the training data did not contain such events. The
ANHHSMM greatly outperformed the regular NHHSMM in such cases, demon-
strating its capabilities. Wei et al. [22] also employed Markov chain models for
fatigue life prediction of open-hole coupons. Infrared thermoelastic analysis and
strain readings were used to train the model, which predicted the S-N curves
with variability at a constant fatigue load. Rabiei et al. [16] proposed a dynamic
Bayesian network (DBNN) for the RUL prediction of glass/epoxy specimens
subjected to bending fatigue. Indirect damage measurements were used to esti-
mate the damage state and train the DBNN, which predicted the damage state
k steps ahead. Liu et al. [10] used Gaussian processes for non-linear regression
to predict the RUL of composite specimens subjected to uni-axial and bi-axial
fatigue. Real time strain gauge data were collected and used for the prediction.
It was observed that the prediction results were more accurate the later the
startpoint of the prediction.

An important aspect of data-driven prognostics are the degradation features.
Such features are usually referred to as Health Indicators (HIs). Their quality
affects the performance and accuracy of the prognostics methodologies [12]. The
three main attributes that determine the quality of an HI are monotonicity,
trendability and prognosability as stated by [1]. The higher these attributes the
better the HI. HIs are divided into two categories [23], physical HI (pHIs),
that results from direct measurements [5,7,14] and virtual HIs (vHIs), that are
created using more sophisticated data processing on the direct measurements
[5,11,19].

In this paper the HIs developed in [5] are fused together using Genetic Algo-
rithms to create a HI with higher monotonicity and prognosability. The fused HI
will be used by two machine learning models, i.e. Gaussian Process Regression
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and Non Homogeneous Hidden Semi Markov Model, to predict the RUL of single
stringered composite panels.

2 Prognostic Models

2.1 Gaussian Process Regression

Gaussian Process Regression (GPR) is a probabilistic method for non-linear
regression that estimates the posterior distribution by constraining the prior
distribution to fit the training data. A GP is a collection of random variables with
a joint Gaussian distribution, and are a function of f(x) at x = [x1, x2, . . . , xn]T .
GP is completely specified [24] by its mean (Eq. 1) and covariance function
(Eq. 2):

m(x) = E[f(x)] (1)

k(x, x′) = E[(f(x) − m(x))(f(x′) − m(x′))] (2)

Then the GP can be written as:

f(x) ∼ GP (m(x), k(x, x′)) (3)

The mean function m(x) is usually set to be zero. As it is noted in [24]
different covariance functions yield different regression results, so this function
should be considered carefully depending on the data. Assume a degradation
history H = [xi, yi]Ni=1, where xi the input variables and yi = f(xi) + εi the
noisy target variables, with εi is an i.i.d with 0 mean and σ2

n ( εi i.i.dN(0, σ2
n)).

The joint distribution of observed target values y = [y]Ni=1 and unobserved target
values f∗ at new input locations X∗ can be denoted as:

[
y
f∗

]
∼ N(0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

]
) (4)

where I the identity matrix. The predictive (posterior) distribution for GPR,
given the new inputs X∗ and the historic input data X and targets y is defined
by:

p(f∗|X, y,X∗) ∼ N((f̄∗), cov(f∗)) (5)

f̄∗ = E[f∗|X, y,X∗] = K(X∗,X)[K(X,X) + σ2
nI]−1y, (6)

cov(f∗) = K(X∗,X∗) − K(X∗,X)[K(X,X) + σ2
nI]−1K(X,X∗) (7)

2.2 Non-Homogeneous Hidden Semi Markov Model (NHHSMM)

NHHSMM is a mathematical model that describes the association between a
hidden stochastic degradation process, i.e. damage accumulation in composite
materials, and an observed one which manifests via SHM data. The NHHSMM
is actually a double stochastic process, where the hidden process is a finite Semi
Markov chain and the observed process, conditioned on the hidden one.
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To properly describe the bi-dimensional stochastic process, the model’s
parameters θ = {Γ,B} need to be estimated. These parameters characterize
the degradation process (Γ ) of the studied system via transition rate distribu-
tions between the hidden states, and the observation process (B) via an emis-
sion matrix that correlates hidden states and SHM data. The studied system, is
assumed to start operation from a healthy state and during its life transits to
states of higher degradation until it reaches its failure state.

The model’s parameters θ are obtained via a Maximum Likelihood Estimator
(MLE) θ∗ of the model parameters θ through a procedure described in detail in
[15]. The MLE algorithm leads to the maximization likelihood function L(θ, y(1 :
K)), where y(k) is the k-th degradation history, K is the number of available
degradation histories and

L(θ, y(1:K)) =
K∏

k=1

Pr(y(k))|θ ⇒ θ∗ = arg max
θ

(
K∑

k=1

log(Pr(y(k)|θ)) (8)

Setting initial values for Γ , B and solving the aforementioned optimization
problem the parameter estimation process is obtained and prognostic-related
measures can be defined and calculated. Regarding prognostics, the conditional
reliability function, R(t|y1:tp , L > tp,M) = Pr(L > t|y1:tp , L > tp,M), rep-
resents the probability that the composite material continues to operate after
a time t, less than its lifetime L, further that the current time tp given the
SHM data y1:tp . In this study the mean and 95% confidence intervals of RUL
are proposed as a prognostics measure. These measures were calculated via the
cumulative distribution function (CDF) of RUL. The CDF of RUL is defined at
any time point via the conditional reliability according to:

Pr(RULtp ≤ t|y1:tp ,M) = 1 − R(t + tp|y1:tp ,M) (9)

3 Case Study

3.1 Specimen Definition

Single stringered composite panels (SSCPs) were manufactured from
IM7-8552 UD prepreg with [45/−45/0/45/90/−45/0]s for the skin and
[45/−45/0/45/−45]s for the single T-shaped stringer. The total length of the
panels is 300 mm, though only 240 mm are free, since 30 mm resin tabs were
placed on the free edges to ensure uniform and proper load introduction [2,5].
FBG strain sensors were encased in two SMARTapeTM (provided by Smartec)
[6] which were bonded at the stiffener’s feet. A total of 10 FBGs were available
(5 on each fiber), with a spacing of 20 mm, and were focused on measuring the
strains at the middle section of the stiffeners’ feet for an approximate area of
140 mm.
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3.2 Test Definition

After determining the collapse load of the panels, which was on average 100 kN,
two test campaigns were performed, with different loading scenarios. For the first,
the SSCPs were subjected to constant amplitude compression-compression (C-
C) fatigue. The second loading scenario involved variable amplitude C-C fatigue
test, i.e. the load was applied in constant blocks and was arbitrarily increased
after inspecting the extent of the damage using a phased array camera. An initial
damage, either barely visible impact, or an artificial disbond, was introduced to
the SSCPs before subjecting them to fatigue. A loading ratio R = 10 and a
frequency f = 2 Hz were used during both test campaigns. Every 500 cycles the
fatigue test was paused and quasistatic (QS) loadings were performed, during
which the acquisition of the strains was made. In Tables 1 and 2 the detailed
load sequences and cycles to failure are summarized.

Table 1. Constant amplitude fatigue coupon information

Spec label Damage type Max load Cycles

CA-01 Impact 10 J −65 kN 280,098

CA-02 Impact 10 J −65 kN 144,969

CA-03 Impact 10 J −65 kN 133,281

CA-04 Disbond 30 mm −50 kN 100,000

−65 kN 338,000

438,000

3.3 Health Indicator Fusion

To improve the degradation features presented in [5] genetic algorithms were
employed to combine these HIs and create an enhanced HI with improved mono-
tonicity and prognosability [1]. The goal was to maximize the objective function:

F = Monotonicity + Prognosability (10)

where Monotonicity and Prognosability are defined by Eq. (11) and Eq. (13)
respectively:

Monotonicity =
1
N

N∑
i=1

Mi (11)

where,

Mi =
(n+

i )
(ni − 1)

+
(n−

i )
(ni − 1)

, i = 1, ..., N (12)
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Table 2. Variable amplitude fatigue coupon information

Spec label Damage type Max load Cycles

VA-01 Impact 10 J −40 kN 10,000

−45 kN 80,000

−50 kN 30,000

−55 kN 70,000

−60 kN 12,300

202,300

VA-02 Impact 10 J −40 kN 10,000

−45 kN 80,000

−50 kN 90,000

−55 kN 63,000

243,000

VA-03 Impact 10 J −40 kN 10,000

−45 kN 177,000

−50 kN 30,000

217,000

VA-05 Disbond 20 mm −35 kN 10,000

−39 kN 10,000

−45 kN 10,000

−50 kN 170,000

−55 kN 85,000

−60 kN 60,000

354,000

VA-05 Impact 10 J −40 kN 20,000

−45 kN 75,000

−50 kN 25,000

−55 kN 62,000

−60 kN 60,000

242,000

and

Prognosability = exp(
−std(HIfail)

mean(|HIstart − HIfail|) ) (13)

Genetic algorithms (GAs) were selected for the optimization of the objective
function, using the GPLAB toolbox [21] in Matlab. Three main GA parameters
were investigated, concerning the selection of the population to create the next
generation, the selection of individuals to produce children for the next genera-
tion and the survival of the current individuals to fill the population of the next
generation. In total 27 parameters combinations were tested. A population of
150 and a generation (iteration) limit of 300 were arbitrarily selected after trial
and error.
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What ultimately guided our selection for the final fusion, was the fitness
value, the simplicity and inputs of the fusion function. After selecting a model,
the same GA optimization was run 50 more times to evaluate the repeatability.
Though it was never managed to reproduce the same exact fusion function, simi-
lar functions with high monotonicity and prognosability were achieved. This was
an anticipated result due to nature of the optimization problem and algorithm
since there is no global maximum to be reached and it depends on the functions
happening between the subsequent generations. For the training of the GA 3
specimens from each test campaign were used, leaving 3 specimens out to use
for testing the applicability of the methodology. The resulted fusion function is
shown in Eq. (14).

HIGA = vHI1(HI4 − vHI2 + 0.5HI3
vHI2

) + 1 (14)

where vHI1, vHI2, HI3 and HI4 are HIs developed in [5]. The resulted HIGA

is shown in Fig. 1. The average monotonicity and prognosability are 0.81 and
0.94 respectively.
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Fig. 1. HIGA for all the composite panels. Solid lines represent specimens used for
training, while dashed those used for testing

3.4 Remaining Useful Life Prognosis

For the GPR predictions a similarity based scheme was applied and only the 4
most similar specimens were used for the training of the GPR. The similarity was
measured at the first 10000 cycles. The predicted RUL and the corresponding
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90% prediction intervals are displayed in Fig. 2. Predictions for CA-03 using
GPR is at first overestimating the RUL, though it remains always within the
prediction intervals. As time progresses, the prediction is closing in to the true
RUL. The NHHSMM predictions at first overestimates the RUL and near the
EOL the prediction intervals start to include the true RUL. GPR for VA-01
is constantly close to the true RUL giving very good mean predictions, while
the NHHSMM is constantly overestimating the true RUL. VA-05’s predictions
using GPR is at first close to the true RUL, however near the EoL the predicted
RUL abruptly increases before it slowly decreases again. This is not an ideal
behavior for a prediction since it increases the uncertainty near the end which
is the opposite of what’s desired. NHHSMM predictions follow a similar trend
to those of the GPR’s, following the overall trend of the true RUL. However
compared to the GPR, the confidence intervals of the NHHSMM’s are slightly
narrower and hence provide less uncertainty in the predictions.

(a) CA-03 (b) VA-01 (c) VA-05

Fig. 2. RUL predictions for the three test specimens

RMSE and MAPE, two popular performance prognostic metrics are used to
evaluate the predictions [17]. Table 3 summarizes these metrics for the three
test set specimens. The overall best performance for both algorithms is achieved
for VA-05 where NHHSMM provides slightly better predictions, while for CA-
03 predictions are better using GPR. For VA-01 GPR shows the best overall
prediction displaying the lowest metric values.

Table 3. Prediction RMSE and MAPE

Spec label RMSE GPR
(kcycles)

MAPE GPR RMSE
NHHSMM
(kcycles)

MAPE
NHHSMM

CA-03 43.0 33.9% 113.1 58.4%

VA-01 28.7 23.1% 107.3 54.2%

VA-05 50.5 29.5% 45.0 26.9%
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4 Concluding Remarks

In this paper Remaining Useful Life prediction of single stringered composite
panels is presented. The panels have been subjected in two different fatigue load-
ing conditions and their fatigue life was monitored using FBG strain sensors. A
novel Health Indicator was created using Genetic algorithms, fusing together
Health Indicators extracted from strain measurements presented in previous
work. The fused Health Indicator possessed highly desirable attributes such as
high monotonicity and prognosability. Two machine learning models, i.e. Gaus-
sian Process Regression and Non Homogeneous Hidden Semi Markov Model,
were used to predict the RUL of three panels. Both methods showed good RUL
predictions with comparable performance to each other demonstrating their abil-
ity of predicting RUL of more complex structures.

Funding. The research work was supported by the Hellenic Foundation for Research
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