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Negative nonlinear damping of a multilayer graphene mechanical resonator
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Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology,
Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 10 August 2015; revised manuscript received 11 May 2016; published 9 June 2016)

We experimentally investigate the nonlinear response of a multilayer graphene resonator using a superconduct-
ing microwave cavity to detect its motion. The radiation pressure force is used to drive the mechanical resonator
in an optomechanically induced transparency configuration. By varying the amplitudes of drive and probe tones,
the mechanical resonator can be brought into a nonlinear limit. Using the calibration of the optomechanical
coupling, we quantify the mechanical Duffing nonlinearity. By increasing the drive force, we observe a decrease
in the mechanical dissipation rate at large amplitudes, suggesting a negative nonlinear damping mechanism in the
graphene resonator. Increasing the optomechanical backaction further, we observe instabilities in the mechanical
response.

DOI: 10.1103/PhysRevB.93.245407

The unique properties of graphene such as atomic thickness,
low mass density, and high modulus of rigidity make it very
attractive material for nanoscale electromechanical systems
(NEMS) for several technological applications. After the first
demonstration of a few layers thick graphene NEMS [1], there
have been extensive studies on graphene nanoelectromechan-
ical systems ranging from electromechanical resonators [2,3],
oscillators [4], and optomechanical systems aiming to probe
the quantum regime of graphene motion [5–8]. In this pursuit,
large mechanical quality factors in graphene-based NEMS
have been demonstrated as well [5,9]. Due to its atomic thick-
ness, graphene-based NEMS also exhibit rich nonlinearity
such as onset of Duffing nonlinearity and nonlinear damping
at relatively small mechanical amplitudes [9–11]. These prop-
erties further make graphene an attractive candidate for devel-
oping optomechanical systems to reach the quantum regime of
graphene motion [12], to store microwave photons [13], and
could possibly be useful to understand dissipation in graphene
NEMS for improved device performance [14].

The coupling between mechanical resonator and opti-
cal/superconducting microwave cavities has enabled the detec-
tion of mechanical motion with excellent sensitivities [15–17],
offering an attractive platform to characterize the nonlinear
response of mechanical resonators. In this paper, we study
nonlinear dynamics of a multilayer graphene resonator by
means of coupling it to a superconducting microwave cavity.
The graphene resonator is driven by injecting two microwave
tones in the cavity, which are detuned by the mechanical
resonant frequency leading to an oscillating radiation pressure
force which drives the mechanical resonator. By changing
the amplitude of these tones, we can independently control
the driving force and dissipation due to the optomechanical
backaction forces. We drive the mechanical resonator into
the Duffing regime and characterize the nonlinearity. With
increase in the driving force, we observe a reduction in linear
dissipation rate, large hysteresis with sweep direction, and an
instability in the mechanical amplitude.

*Present address: Department of Physics, Indian Institute of Sci-
ence, Bangalore, India.

†g.a.steele@tudelft.nl

Our device consists of a multilayer graphene resonator
coupled to a superconducting microwave cavity as studied
previously [5,18], fabricated using the mechanical exfoliation
technique. Figure 1(a) shows a scanning electron microscope
image of a multilayer graphene resonator coupled to a
superconducting microwave cavity. The multilayer graphene
mechanical resonator is 10 nm thick and is suspended above
a gate electrode of the microwave feedline by approximately
150 nm. Additional information about the device character-
ization is provided in the Supplemental Material [18]. The
superconducting cavity is in a quarter wavelength coplanar
waveguide geometry fabricated with an alloy of molybdenum
and rhenium (Tc ≈ 9 K) on an intrinsic silicon substrate [19].
The measurements are performed in a dilution refrigerator
under vacuum at 14 mK. The superconducting cavity has
a resonance frequency of ωc = 2π × 5.90054 GHz, with an
internal dissipation rate κi = 2π × 54 kHz and coupled to a
feedline with an external coupling rate κe = 2π × 188 kHz
(coupling fraction η = κe

κ (=κe+κi )
= 0.78). The graphene res-

onator forms a mechanically compliant capacitor to the
microwave feedline as shown schematically in Fig. 1(b). The
motion of the graphene resonator modulates the capacitance
and hence the cavity frequency. The graphene resonator has a
resonance frequency of ωm = 2π × 36.233 MHz. Using ther-
mal noise, we calibrate the optomechanical coupling, defined
as g0 = dωc

dx
xzpf , where xzpf are the quantum zero-point fluc-

tuations of the mechanical resonator, to be 2π × 0.83 Hz [5],
which also provides an absolute calibration of displacement
amplitudes.

In order to probe the mechanical response, we take
advantage of the optomechanical coupling and sideband-
resolved limit (ωm � κ) in an optomechanically induced
transparency (OMIT) setup. In an OMIT setup, two microwave
fields are injected inside the cavity. A strong drive field
pdrive at lower mechanical sideband frequency ωd = ωc − ωm

and a weak probe field pprobe measure the cavity response
by sweeping the probe tone in the vicinity of ωc. When
the detuning between drive and probe fields � = ωp − ωd

matches ωm, the mechanical resonator experiences coherent
oscillating radiation pressure force with an amplitude given
by (

4ηg0
√

npnd

ωm
)mω2

mxzpf , where nd (np) is the number of drive
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FIG. 1. (a) A scanning electron micrograph of a multilayer
graphene (10 nm thick) drum-shaped resonator coupled to a super-
conducting microwave cavity (not shown here). Graphene resonator
is suspended 150 nm above the bottom gate electrode (adapted from
Ref. [5]). (b) Schematic diagram of the device: graphene resonator
couples external microwave radiation to the cavity by forming a
coupling capacitor.

(probe) photons and m is the mass of the resonator. The
resulting oscillating response of the mechanical resonator to
the radiation pressure force up-scatters the drive field exactly
at ωp leading to an interference with the original probe field
measuring the cavity response. This phenomenon is called
optomechanically induced transparency (OMIT) [20,21] as
described schematically in Fig. 2(a). It is worth pointing out
that unlike heterodyne mixing schemes with low-frequency RF
drive, the radiation pressure force drive eliminates the need
to apply a dc gate voltage. Furthermore, while the strength
of the probe tone allows us to control the driving force on
the mechanical resonator, independently the drive tone can be
used to tune the dissipation in the mechanical resonator using
the optomechanically backaction.
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FIG. 2. (a) Schematic showing the idea of radiation pressure
driving. Due to the optomechanical coupling, driving the cavity with
a strong tone near ωd = ωc − ωm and a weak probe tone ωp near ωc

exerts a radiation pressure force on the mechanical resonator at ωm.
The strength of radiation pressure force is controlled by the product
of probe tone and the drive tone amplitudes. (b) Illustration of the
cavity reflection coefficient in the presence of a strong sideband drive.
The optomechanical interaction produces an absorption feature in the
cavity response. (c) A zoomed-in view of the theoretically expected
OMIA feature of a mechanical resonator that includes a Duffing
nonlinearity in the linear and nonlinear regimes.

For an overcoupled single-port cavity, the interference
between the probe field and upconverted field (drive being
at lower motional sideband) leads to an absorption feature at
low driving powers as shown schematically in Fig. 2(b). In
the linear response limit, the resulting reflection coefficient of
the cavity can be written as S11(ω) = 1 − ηκ

χc

1+g2χmχc
, where

χm(ω) = 1
−i(�−ωm)+γm/2 is the susceptibility of the mechanical

resonator, χc = 1
−i(�−ωm)+κ/2 is the susceptibility of the cavity,

γm is the mechanical dissipation rate, g = g0
√

nd is the
many-photon optomechanical coupling strength, and nd is
the number of the drive photons. In the limit κ � 2g � γm,
the measurement of the optomechanically induced absorption
(OMIA) allows to directly probe the responsivity of the
mechanical resonator giving its amplitude and dissipation rate,
thus making it a sensitive technique.

For a red-sideband drive ωd = ωc − ωm, the minimum
value of the reflection coefficient is given by much simplified
expression | 2η

1+C
− 1|, where optomechanical cooperativity C

is defined as C = 4g2
0nd

γmκ
. In the limit of no optomechanical

coupling (C = 0), we recover the |2η − 1| expression for
the minimum for a single-port reflection cavity, which sets
the base line of OMIA feature. The linewidth of absorption
feature is given by (1 + C)γm, where the additional term Cγm

originates from the backaction effects of drive photons and can
be tuned by nd . Amplitude of the mechanical resonator can
also be cast into a convenient form, x = xzpf ( C

1+C
)( κe

g
)
√

np.
It is instructive to see that for low cooperativity (C < 1), the
mechanical amplitude can be tuned by both the probe and drive
tone as x ∝ √

ndnp. On the other hand, in the limit C > 1, the

mechanical amplitude is proportional to
√

np

nd
, suggesting that

an increase in drive field leads to optomechanical damping
and hence a reduction in the mechanical amplitude. Although
the depth of the OMIT dip in the reflection coefficient does
not depend on the probe power, the mechanical force of the
resonator does: increasing the probe power for a fixed drive
power will exert a larger oscillating force on the resonator, and
can be used to drive it into the nonlinear regime, as illustrated
in Fig. 2(c).

In Fig. 3, we probe the OMIA response in detail by varying
the number of intracavity probe photons np, hence the driving
force, while keeping the number of drive photons fixed at
nd = 2.5 × 107 (C ∼ 0.40) and 1.0 × 108 (C ∼ 1.24). At low
number of probe photons, the OMIA feature is determined
by the linear response of the mechanical resonator. As np

is increased further, the nonlinearity in the OMIA response
becomes evident with a stiffening of the mechanical resonator
(positive shift in the resonance frequency) and the shark-fin-
like Duffing response accompanied by hysteresis with respect
to frequency sweep direction.

In addition to the clear Duffing response, with the exception
of the bottom two curves, it can also be seen that the OMIA
dip on the nonlinear regime becomes deeper. Qualitatively, the
observation of a deeper OMIA dip when np is increased can
be understood from a reduction of the mechanical damping
rate as the resonator is driven to larger amplitudes. Such
a decreased mechanical damping rate would give a larger
cooperativity and thus a deeper OMIA dip. In the last two
curves, the cooperativity is continuing to increase, but the
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FIG. 3. Forward (red) and reverse (cyan) frequency sweep mea-
surement of OMIA feature of the multilayer graphene drum showing
mechanical response at various probe and drive powers. The probe
photons are swept from np = 2.5 × 105 to 3.14 × 106 in 1 dB steps
(top to bottom). Number of drive photons nd is fixed at 2.5 × 107

(C ∼ 0.40) for panel (a) and 1.0 × 108 (C ∼ 1.24) photons for
panel (b). The evolution of nonlinear response accompanied by the
hysteresis can be clearly seen as probe power is increased (top to
bottom). Panel (b) shows instability points as sharp dips appearing at
large probe power. For clarity, measurements in (a) and (b) are plotted
with offsets of −30 dB and −9 dB, respectively.

OMIA dip becomes less deep as the cavity has now crossed
over to an effective undercoupled regime (see supplementary
information of Ref. [5] for more details). In addition to
the deeper OMIA dip that is suggestive of a decreased
mechanical damping at higher drive forces, Fig. 3 also shows
additional features. Comparing panels (a) and (b), smaller
and larger nd , respectively, the mechanical linewidth in panel
(b) is significantly larger. This is a consequence of increased
optomechanical damping, which also explains the absence of
hysteresis and shows only a transition to a Duffing response at
higher powers [22]. Finally, in panel (b), at the highest drive
forces, we also observe an instability in the response in the
form of a spike in reverse frequency sweep.

To gain quantitative insight into these observations, we
perform numerical fits on the data shown in Fig. 3. The
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FIG. 4. (a) Measurement of S11 showing strong nonlinear re-
sponse (red curve) together with numerically fitted curve (gray) for
nd = 2.5 × 107. (b), (c) Extracted linear dissipation rate γm plotted
against mechanical amplitude for nd = 2.5 × 107 and for 1.0 × 108,
respectively.

nonlinear response can be primarily captured by including
a Duffing term αx3 in the restoring force of the mechanical
resonator [23]. Following Ref. [23], we perform numerical
fits to extract the linear mechanical dissipation rate (γm),
mechanical amplitude (x0), and the Duffing parameter (α) for
any given probe and drive power. The gray curve in Fig. 4(a) is
the numerical fitted curve overlaid on top of the experimentally
measured data allowing us to extract the Duffing parameter to
be α = 2.3 × 1015 kg m−2 s−2. Using the analytical expression
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for the onset of the Duffing bifurcation point ωup = ωm +
3
8

α
meff ωm

(x2
up), we get α = 2.5 × 1015 kg m−2 s−2, which is

close to the result we get by performing numerical fits. It
should be noted that in the expression of the Duffing parameter
for a given driving force, the mechanical quality factor enters
through the amplitude of the resonator at the bifurcation point.
Figures 4(b) and 4(c) plot the linear damping rate with the
amplitude of the resonator extracted by performing numerical
fits on the data sets shown in Fig. 3. At low amplitude, we
observe mechanical damping rates γm of 2π × 700 Hz (Qm =
51 760) for nd = 2.5 × 107, while for higher amplitude, the
damping rate drops to 2π × 410 Hz (Qm = 88 373). Similar
observations are made for a second thinner device. The
data from the second device are shown in the Supplemental
Material [18]. At large number of probe photons, the nonlinear
dynamics of the OMIA becomes far more complex. Apart
from the nonlinear Duffing response accompanied by the
hysteresis, we observe instabilities (single-pixel jumps in
absorption) in the reverse frequency sweep shown in Fig. 3(b).
While instabilities such as self-oscillation can arise with
blue-sideband driving, they are normally not expected for the
red-sideband driving performed here, and are also not found in
the model we use for fitting [23]. Qualitatively, the instabilities
seem to coincide with the switching out of the low-amplitude
state. Aside from these instabilities, however, the model does
capture well the response for these trances.

The decrease in observed damping rate at higher amplitudes
suggests the presence of nonlinear damping terms with
negative coefficients (such as ρ|x|ẋ, μx2ẋ, λ ẋ

1+|x| ) in the
equation of motion of the mechanical resonator [23]. It should
be noted that the total damping however remains positive.
The fact that the extracted effective driving linear damping
shown in Fig. 3 does not follow a quadratic dependence on the
driving amplitude as expected for a term proportional to μx2ẋ

implies that a nonlinear damping of the form more similar
to ρ|x|ẋ applies in this range of driving amplitudes. As this
negative nonlinear damping occurs also at low cooperativities,
and as it is not seen in the theoretical calculations treating
the optomechanical nonlinear response, we do not believe
that it is an optomechanical effect, but instead intrinsic to
the mechanical resonator. The amplitude-dependent negative
damping could further give rise to the observed instabilities
seen in Fig. 3(b). There have been also observations of
nonlinear damping in nanomechanical resonators [24] and
carbon-based resonators [9]. One possible source of negative

nonlinear damping is the saturation of two-level systems
coupled to the mechanical resonator [25,26]. At low drive
powers, these two-level systems can absorb energy from
the mechanical resonator, increasing the mechanical damping
rate. At higher powers, the two-level systems (TLSs) become
saturated, and the damping rate goes down. Such a process was
suggested as an explanation of power-dependent attenuation
losses in glasses [27–29], and also was used to describe
power-dependent dielectric losses in superconducting electri-
cal resonators [30]. For such a saturation result in nonlinear
damping effects, the level spacing of the TLSs should be
larger than the bath temperature. In order for TLSs to describe
the negative nonlinear damping observed here, the coupling
between the TLSs and the mechanical resonator would have
to be nonresonant, mediated by strong higher order processes.

We also note that resonators driven in the bifurcated regime
can be very sensitive to environment noise that can induce
premature switching from the high- to the low-amplitude
branch [31], something not captured by our theoretical model.
We note, however, that in our measurements, such switching
would make the OMIA dips appear less shallow, and lead to
an underestimation of the coefficient of the negative nonlinear
damping rate, and therefore our measurements represent a
lower bound on the magnitude of the negative nonlinear
damping.

In conclusion, we examined the nonlinear dynamics of a
graphene resonator coupled to a superconducting microwave
cavity. In the linear response limit, optomechanically induced
transparency measurements easily allow us to extract the linear
damping rate and peak amplitude. At moderate driving force
when the response becomes nonlinear, we perform numerical
fits by including a Duffing term in the mechanical restoring
force and find α ≈ 2.3 × 1015 kg m−2 s−2. Increasing the
driving force further, the OMIA response becomes complex
and it is no longer captured by the Duffing term. At these
large amplitudes, the nonlinearities start becoming relevant
and make the mechanical damping rate appear low at larger
amplitudes, where we observe the phenomenon of negative
nonlinear damping in a mechanical resonator.

The authors would like to thank Andres Castellanos-
Gomez, Sal Bosman, and Ben Schneider for their help
during device fabrication and low-temperature measurements.
The work was supported by the Dutch Science Foundation
(NWO/FOM) and EC-FET Graphene Flag-ship.
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