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Abstract

Efficient exploration is a major issue in reinforce-
ment learning, particularly in environments with
sparse rewards. In these environments, traditional
methods like e-greedy fail to efficiently reach
an optimal policy. A new method proposed by
Fortunato, et al. [1] showed promise by improving
efficiency on RL tasks such as Atari games, by
driving exploration with learned perturbations
of the network weights. Three different types
of settings were investigated in order to test the
robustness of a contextual bandit implemented
with this proposed method: 1. ContextualBandit-
v2; a bandit with multiple predefined functions
mapping the 1-dimensional continuous input to the
reward, 2. MNISTBandit-v0; a bandit rewarding
correct identification of MNIST dataset images,
and 3. NNBandit-v0; a bandit with the reward
being determined by a neural network. Further-
more, non-stationary variants of environment
1. and 3. were tested. A slight variation in
hyperparameter sensitivity between environments
was observed and a generally optimal set was
determined. Overall, NoisyNet-DQNs (Deep
Q-Networks) achieved performance comparable
to regular DQNSs, though often slightly lower. In
the high-dimensional stationary MNISTBandit-vO
environment, NoisyNet-DQN converged to an
optimal policy slightly faster, at the cost of a larger
variation in performance.

Keywords: Deep reinforcement learning, Ex-
ploration, Sparse reward problems, Contextual
bandit settings

1 Introduction

Deep reinforcement learning (DRL) has achieved superhu-
man performance in tasks ranging from ATARI video games
to complex robotic control. However, state-of-the-art meth-
ods often require billions of environment interactions before
approaching human-level performance. Improving the ef-
ficiency of exploration could reduce this cost significantly,
potentially enabling agents to match or even exceed human
capabilities. Efficient exploration remains a central chal-
lenge in reinforcement learning, especially in environments
with sparse rewards, where rewards are infrequent and agents
struggle to learn the association between actions and out-
comes [2]. Standard methods such as e-greedy [3] and en-
tropy regularization [4] introduce random perturbations to
the agent’s policy to encourage exploration. However, these
methods typically lack the structure necessary to guide con-
sistent, long-term behavioral patterns [1].

This study builds on the approach proposed by Fortunato,
et al. which was published in 2018 [1], known as "NoisyNet”,
which will be referred to by that name throughout this paper.
NoisyNet replaces traditional exploration heuristics, such as
e-greedy in DQN, with learned perturbations of the network

weights, sampled from parametric noise distributions. This
method results in the degree of exploration being state depen-
dent and has shown to significantly improve the performance
of agents playing a variety of Atari games. Atari games rep-
resent full RL settings involving sequential decision-making
and delayed rewards. In a similar way, contextual bandits are
simplified RL problems, consisting of a single-step environ-
ment with immediate rewards. NoisyNet did not investigate
the effect of their method implemented in contextual bandit
settings. These settings present an interesting opportunity, as
they are common in real-world applications, such as online
recommendation systems and personalized advertising [5].

To determine the effectiveness of NoisyNet’s methods
on contextual bandit settings, the following questions were
asked:

1. To which hyperparameters is a NoisyNet-DQN sensi-
tive, and are optimal values generally task-dependent?

2. On what classes of tasks does a NoisyNet-DQN signifi-
cantly outperform or underperform a regular DQN?

3. What qualitative insights can be gained from visual eval-
uation metrics of the agent’s learned behavior?

The structure of the following sections will be as outlined
below: Section 2 details the studies background, first briefly
formalizing and explaining a number of concepts used
throughout the paper, and secondly detailing a number of
related work. Section 3 explains the structure of the agent,
neural network and the environments. Section 4 presents the
experiment details and their results. Section 5 explains the
considerations taken to ensure the integrity of the research.
Section 6 discusses the presented results. And lastly, section
7 concludes the research and presents future research direc-
tions.

2 Background

2.1 Preliminaries

In this section, the basic concepts underlying this study are
formally defined, starting with Markov decision processes,
reinforcement learning and deep reinforcement learning, and
lastly multi-armed and contextual bandit settings.

Markov Decision Processes (MDPs)

As described in Fortunato, et al. ”MDPs are a classical for-
malization of sequential decision making, where actions in-
fluence not just immediate rewards, but also subsequent situ-
ations, or states, and through those future reward.” [1]. They
are defined by a tuple (S, A, P, R,v). S being the set of
states, A the set of actions the agent can take, P the transi-
tion probabilities, R the reward function, and v € (0,1] a
discount factor. An important characteristic to note is that
the set P holds the Markov property, which describes that any
state only depends on its direct predecessor, formalized as:

P(Si|3i—1ai—13i—2ai—2m) = P(5i|3i—1ai—1)

Reinforcement Learning (RL)
Reinforcement learning is the third of the three main ma-
chine learning paradigms, alongside supervised and unsu-



pervised learning. While supervised learning aims to repli-
cate behavior from examples, and unsupervised learning at-
tempts to find hidden structures in data, reinforcement learn-
ing aims to maximize a reward signal [3]. This brings forth
the exploration-exploitation dilemma; maximizing the reward
by choosing the best action chosen in the past, while ensuring
sufficient exploration to avoid missing better options.

To estimate the future rewards, reinforcement algorithms
make use of value functions, evaluating the expected reward
in a particular state. The state-value function V'™ (s) estimates
the expected reward when starting from state s and following
policy 7:

Vﬂ(St) :Eﬂ[Gt‘St :S] (1)
This can be expanded to include the action taken, creating the
action-value function (or g-value function). This estimates
the expected reward when taking action a in state s and fol-
lowing policy 7

QW(Staat> = E‘n’[thst =54 = (I] ()

In order to apply these functions in machine learning, they
can be rewritten in the form of loss functions:

n
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Deep Reinforcement Learning (DRL)

While reinforcement learning utilises (q-)value function to
update a table, deep reinforcement learning uses a deep neural
network to approximate the optimal action-value function [1;
6]. An example of such an algorithm, and the basis of this
study’s code, is the Deep Q-Network (DQN) [6].

Multi-armed and Contextual Bandit Settings

A multi-armed bandit setting can be considered as a one-state
MDP, with multiple transitions looping back to this one-state,
each with a set reward. Each iteration, without prior knowl-
edge of the rewards, the agent chooses one transition (or arm)
according to its policy, and observes the associated reward.
Since there is only a single state, the action-value function
Q(s,a) can be simplified to Q(a), without dependence on
state s. Consequently, without the existence of a previous

state, the temporal difference target is reduced to Q) < r.
1 n
L) =E - — 2 4
(0) =Es,aprml ;:1("" Q(s,a))”] O]

In practice, scenarios in which rewards are independent of
context are rare. Contextual bandits are therefore often more
appropriate for modeling such situations. One way to repre-
sent this is by reintroducing states, but calculating the q-value
function without the transition between them.

2.2 Related Works

The following section outlines several prior studies related to
this study.

Improvements in contextual bandit settings

Several other methods to improve exploration in contextual
bandit settings, have been suggested. These include tech-
niques like random network distillation [7], randomized prior
functions [8], Monte Carlo dropout [9], and sampling-based
methods such as Langevin Monte Carlo [10], though the ef-
fectiveness of these methods is under investigation.

NoisyNet in classic RL settings

NoisyNet suggests that the exploration efficiency of an RL
algorithm could be improved by driving exploration using
learned perturbations of the network weights. In traditional
sparse reward RL settings, the difficulty of finding these re-
wards depends on navigating a specific sequence of states. In
contrast, the contextual bandit setting lacks this dependency.
Each state is independent and actions do not influence future
states and rewards. Therefore, exploration in contextual ban-
dit settings focuses on finding the optimal action in different
contexts. As previously described, due to contextual bandit
problems in essence being simplified RL problems, the tech-
niques are relatively straightforward to carry over.

3 NoisyNet in contextual bandits settings

3.1 Implementation Details

This study is an application of exploration methods, origi-
nally developed for RL settings, to contextual bandit settings.
Although the general structure of a DQN is used, it is impor-
tant to clarify that the implementation is not a proper DQN, as
no regular g-value algorithm is being applied. There is no tar-
get network and no learning from transitions between states,
since each state is terminal and independent. This means that
the loss calculation has been reduced to a simple calculation
of the mean squared error between the observed reward and
the prediction of the network.

The NoisyNet-DQN implementation from [11] was used as
a starting point. Although no official implementation of the
referenced work was available, multiple unofficial implemen-
tations were found online. However, these implementations
varied slightly from the original pseudocode presented in the
paper. The resampling of the noise is performed at different
points in the algorithm, such as; every set number of training
iterations [12], at the end of the loss calculation [13], or in
one case, not at all [11].

Furthermore, no separate target and policy networks were
used and the target network and its associated code were re-
moved from the implementation.

3.2 Environments

Bandit settings require significantly less environment interac-
tion to learn an effective policy compared to full RL prob-
lems like Atari games, enabling faster experimentation. As a
result, a broader and more precise investigation could be con-
ducted, including multiple experiments on different environ-
ments, and an investigation of the hyperparameter sensitivity
for each.

In this study, three different contextual bandit settings were
used; 1. a bandit with multiple predefined functions mapping
the 1-dimensional continuous input to the reward, 2. a ban-
dit rewarding correct identification of MNIST dataset images,



Best Action Heatmap and Scatter Overlay

Figure 1: Decision plot of NoisyNet-DQN agent; seed 8796. Back-
ground color indicates the networks prediction of the optimal arm at
the given training step, and overlaid the input values colored by arm
chosen.

Figure 2: Reward plot of NoisyNet-DQN agent; seed 8796. Dots
represent the reward observed in specific states, depending on the ac-
tion taken. Larger dots indicate actions taken at later training steps.
To clarify the possible rewards, the reward functions are plotted in
the background. Note that these plots do not span the entire input
range, as they are build up from randomly sampled data.

and 3. a bandit with the reward being determined by a neural
network.

Simple contextual bandit

The simplest bandit setting was based on the bandits of [14],
with changes to the input range. Instead of using discrete
states, the input state was made a continuous range, being
sampled from a normal distribution with y = 0 and o = 1.
Each arm was defined as a function of the input state, as seen
in figure 2. Upon initialization, every arm was assigned a
random intercept and slope value.

To further test non-stationary behavior, these parameters
were changed by a small random offset. Whereas this setting
provides a non-zero reward for almost all input states and ac-
tions, the following sections will describe sparse-reward set-
tings.

MNIST bandit
To provide a higher-dimensional sparse-reward bandit, the
MNIST bandit from Google DeepMind’s BSUITE [15] was
partially used. No convolutional layer was used and the im-
age data was directly passed through a fully connected layer.
Although the network followed the structure of a classifier, it
was only used to predict rewards rather than perform classifi-
cation. As the MNIST dataset consists of handwritten digits
[16], a reward of 1 was given only when the prediction cor-
rectly identified the digit in the input image. Any incorrect
predictions resulted in a reward of 0.

No non-stationary behavior was implemented for this ban-
dit, as there was no method of gradually shifting the optimal
reward.

Neural network bandit
Lastly, the neural network bandit used a neural network, with
random weights and biases, to determine the reward. This

network remained the same throughout training and was not
updated via backpropagation. The input to the reward net-
work was the current state, while the number of actions avail-
able corresponded to the number of output nodes of the re-
ward network. The reward received for a chosen action was
simply the output value of the corresponding node. There
was a consideration to be made regarding the input size of the
reward network. At an input dimension of 1, the reward struc-
ture closely matched the reward structure of the simple con-
textual bandit. At much higher (>100) input dimensions, the
training time grew too long, and convergence to an optimal
policy slowed down drastically. To strike a balance between
these factors, an input dimension of 10 was chosen.

Non-stationary behavior could be achieved relatively eas-
ily by resampling the weight and bias values of the network.
This would however not result in interesting results, essen-
tially switching to an entirely new reward function each time.
Instead, a more gradual change was implemented. Given the
current set of weights and biases N; of the reward network,
the resampled set of weights and biases N*, the values of the
new reward network can be calculated by adding a fraction of
the difference between N; and N*, to N;:

N*— N;
Niy1 = N; + ——

Here, p determines the size of the change, with smaller val-
ues resulting in a smoother transition. This method allowed
for non-stationary behaviour, without completely discarding
previously learned behavior.

4 Experiments

So far this paper has mostly covered explanations of topics
and descriptions of the study. The following section will dis-
cuss the concrete experiments performed.

For each experiment, a number of metrics were being tracked,
to compare results, evaluate performance and eventually draw
conclusions. Some metrics were tracked at every training
step, some were aggregated from those metrics, and others
were sampled every N training steps. Metrics tracked during
training were a smoothed reward, loss and regret. Summary
metrics that were used were the final loss, mean regret, final
regret and final score.

For environments with a 1-dimensional input range, for the
purpose of visualization of the behavior of the agent, another
sample was taken. Every 10 training steps, the predicted op-
timal action was sampled of 100 uniformly distributed input
states, as plotted in figure 1. From this, conclusions about
the stability and the decision boundaries of the agent’s policy
could be drawn.

To determine which hyperparameters NoisyNet-DQN was
most sensitive to, the hyperparameter sweeps facilitated by
Weights and Biases, were used. For each sweep, a goal metric
had to be chosen; minimizing mean regret was chosen for the
purposes of this study. This choice was made due to this met-
ric, besides indicating performance, also shows learning effi-
ciency and whether the final policy is optimal. Their system
rates the hyperparameters explored during the sweep with two
metrics: correlation and importance. Correlation is the linear



correlation between the hyperparameter and the chosen goal
metric, but fails to capture second order interactions. lmpor-
tance improves on this, by training a random forest with the
hyperparameters as inputs and the chosen metric as the tar-
get output, and reporting the feature importance values [17].
This sweep were performed with the hyperparameters listed
in table 1, on each environment, with NoisyNet and without
NoisyNet.

Hyperparameter Values

random

[uniform, normal]
[true, false]
[true, false]
hidden_layer_size [4, 8, 16, 20, 24, 40, 80]
noisy_layer_init_std [le-4, 1e-3, ..., le6]

method
noisy_layer_distr_type
noisy_output_layer
noisy_reward

# of samples 100

Table 1: Stationary environment sweep hyperparameters

The parallel coordinate plots showing the results of the hy-
perparameter sweeps, and the most influential hyperparam-
eter per environment for the NoisyNet and Non-NoisyNet
agent are included in appendix A.

The noisy_layer_distr_type hyperparameter determined the
distribution type (either normal or uniform) from which the
noisy linear layer sampled the noise. It was omitted from
further sweeps, due to its low importance. In contrast,
noisy_reward hyperparameter, which offsets the final reward
by a random amount, showed very high influence on the
agents behavior. Given this effect and the non-deterministic
nature this gave the environment, it was decided to also omit
this hyperparameter.

Next, a number of hyperparameters were investigated in
greater depth to determine their influence on performance.

The most important hyperparameter across all experi-
ments, was hidden_layer_size. As the name implies, the
hyperparameter hidden_layer_size determines the size of the
hidden layer of the agents’ neural network. A small hid-
den layer struggles to properly learn the patterns in the
input, especially in the high dimensional input space of
MNISTBandit-v0. Although MNISTBandit-vO showed er-
ratic results, at a hidden_layer_size of 40 and higher, the
mean_regret observed remained relatively constant in all three
environments, as seen in figure 3.

The second most important hyperparameter, only applica-
ble to the NoisyNet agents, was the noisy_layer_init_std. It de-
termined the initial value of o used by the noisy linear layer,
driving the exploration rate. As shown in figure 4, variance
in mean_regret increases significantly in ContextualBandit-v2
and NNBandit-v0 when the parameter drops below 0.3. A
value of 0.4 was selected as a balance between low mean re-
gret and low variance.

A separate grid sweep, with the hyperparameters listed in
table 2, was performed to determine optimal values for the re-
play buffer maximum memory size (memory_size) and sam-
pling batch size (batch_size). These hyperparameters are par-
ticularly important in non-stationary environments, as they
determine whether the agent learns from outdated observa-
tions.
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Figure 3: Mean regret =1 std. for varying hidden_layer_size val-
ues (step size 10) for NoisyNet and Non-NoisyNet agents, tested on
seeds O to 4 for all three stationary environments.
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Figure 4: Mean regret &1 std. for varying noisy_layer_init_std values
(step size 0.05) for NoisyNet agents, tested on seeds 0 to 9 for all
three stationary environments.

Hyperparameter Values
method grid
seed [®, ..., 6]
dynamic_rate [200, 1000]
batch_size [2, 5, 10, 20, 30, 50, 100, 200]

memory_size [500, 1000, 1500, 2000]

Table 2: Non-stationary environment sweep hyperparameters

The relation between batch_size and observed mean_regret
is shown in figures 5, 6 and 7. In stationary environments,
memory_size was kept at 1000, while batch_size was reduced
from 256 [11] to 50 for ContextualBandit-v2 and to 10 for
NNBandit-v0. As shown in figure 5, no discernible difference
could be observed between different memory_size values,
though it is suggested that drastically smaller values would
degrade performance. In non-stationary environments, which
will be elaborated upon later in this section, dynamic_rate was
the main deciding factor. Memory_size had slightly more in-
fluence, but not of any significance. At a dynamic_rate of 200,
the lowest mean_regret was observed in ContextualBandit-v2
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Figure 6: Hyperparameter sensitivity of batch_size in non-stationary
environments with a dynamic_rate of 200

with a batch_size of 50, and in NNBandit-v0 with a batch_size
of 20. At a dynamic_rate of 1000, values for both environ-
ments were comparable to their stationary counterparts.

Eventually the hyperparameters seen in table 3 were deter-
mined to be optimal across all three environments.

Parameter Value
Episodes 2000
Optimizer Adam
Hyperparameter Value
hidden_layer_size 40
noisy_layer_distr_type normal
noisy_layer_init_std 0.4
noisy_output_layer true
batch size 20
memory_size 1000

Table 3: General hyperparameters

To ensure a fair comparison between NoisyNet agents and
those using e-greedy exploration, it was necessary that the
exploration rate of both was similar. First, 30 runs of the
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Figure 7: Hyperparameter sensitivity of batch_size in non-stationary
environments with a dynamic_rate of 1000

NoisyNet agent were performed on every environment us-
ing different seeds. The resulting metrics showed that the
mean exploration rate did not decay linearly. From this, ap-
proximately matching decay curves were derived for each en-
vironment, which are detailed in table 4 and 5. Using the
same seeds as the NoisyNet-DQN runs, and these new ep-
silon decay functions, 30 runs were performed using regular
DQNs. The observed score, regret and exploration rate, for
both NoisyNet-DQNs and regular DQNs across all three en-
vironments, are shown in appendix B.1.

A second set of experiments was performed to compare
performance on non-stationary environments, in which the
reward structure changed during training. The dynamic_rate
hyperparameter defined after what number of training steps
this change occured. Two values were tested: 200 and 1000.
The value of 1000 was chosen because it marks the midpoint
of the 2000 total training steps, at which point most agents
had converged to a stable policy. On the other hand, at 200
steps the agent’s policy was only partially converged. At this
point, the exploration rate was approximately half of its initial
value.

Environment Decay function

0.38 fori < 100

ContextualBandit-v2 €it1

0.997¢; fori> 100
. 0.4 fori < 150
MNISTBandit-v@® Eit1 = i —0.002 fori> 150
NNBandit-ve it = 0.35 fori < 130

0.995¢; fori> 130

Table 4: € decay functions for stationary environments

Environment Decay function
0.6 fori=0
ContextualBandit-v2 it1 = .
ontextuatfandit=ve  S+1=190.9965¢; fori> 0
0.6 fori=0
NNBandit-v® it1 = .
andit-v St 71 0.9965¢; fori >0

Table 5: € decay functions for non-stationary environments



5 Discussion

A consistent observation between measurements was that the
MNISTBandit-v0 environment shows a higher mean regret
compared to ContextualBandit-v2 and NNBandit-v0. This
is most likely due to differences in how regret is calculated.
In both ContextualBandit-v2 and NNBandit-v0 regret lies in
the range [0, 1], making the maximum regret 1. On the other
hand, the MNISTBandit-v0 reward is binary, either 1 or -1,
resulting in a maximum regret of 2. Furthermore, the denser
rewards structure of ContextualBandit-v2 and NNBandit-v0
push regret values closer to zero. These factors could ex-
plain why the average regret in MNISTBandit-vO was ap-
proximately three times higher.

Several hyperparameters were tested for their effect
on the agent’s performance. As concluded in the
most general sweep, the noise sampling distribution
(noisy_layer_distr_type) and whether the last layer of the
agent was a NoisyLinear layer (noisy_output_layer), had no
influence on the agent’s performance across environments.
The reward being offset by a random amount (noisy_reward),
had too much influence. As such, this was treated as a sepa-
rate problem type and excluded from further sweeps.

Hidden layer size (hidden_layer_size) showed minimal
variation in performance across types of agents and environ-
ments.

Small values for noisy_layer_init_std led to high variation
in mean regret, indicating unreliable behavior. The small
perturbation it creates results in negligible exploration. This
results in agents relying on luck to find an optimal pol-
icy during early training. This most drastically affected
the ContextualBandit-v2 environment and minimally affected
the MNISTBandit-v0 environment. All three environments
found optimal performance between values 0.3 and 0.4.

Memory size had negligible effect in stationary environ-
ments and slight effects in non-stationary ones. Much smaller
memory size than those tested is expected to degrade perfor-
mance.

All environments had a drop in performance at batch
sizes less than 5 due to insufficient training samples.
ContextualBandit-v2 was largely unaffected by different
batch sizes, with a slight preference to values between 30
and 50 in stationary and high dynamic-rate non-stationary en-
vironments. In low dynamic-rate settings, performance was
consistent at batch size values of 50 and higher.

NNBandit-vO performed best with batch size values be-
tween 10 and 20, with performance degrading at higher val-
ues.

In non-stationary environments with a dynamic rate of
1000, batch size and memory size hyperparameter sensitiv-
ity mirrored those of stationary settings.

It must be noted that the smoother curves seen in figures 5,
6 and 7 at higher values is the result of the lower resolution
of tested values in those values.

As described in the introduction, NoisyNet was first
demonstrated to, on average, improve performance on RL
tasks [1]. As bandits can be considered simplified RL set-
tings, being essentially one-state MDPs, similar improvement
was hoped to be observed in this study.

The stationary ContextualBandit-v2 and NNBandit-
v0 showed worse performance on average. Only in
MNISTBandit-v0 did the NoisyNet agent outperform
the baseline by finding an optimal policy more quickly.
This suggests that NoisyNet works better in settings with
high-dimensional inputs.

It should be noted that in non-stationary environments,
a slight misalignment between the NoisyNet and non-
NoisyNet exploration rates is present. In particular for
ContextualBandit-v2, the small preference towards exploita-
tion might explain the higher reward and lower regret.

In both stationary MNISTBandit-vO and NNBandit-vO, re-
gret plots show a faster convergence to optimal policies.
However, in NNBandit-v0 (figure 11) the regular DQN over-
takes the NoisyNet-DQN in score around 500 steps, indicat-
ing that the regular DQN finds better policies on average.
This is also indicated by the slope of the regret curve.

6 Responsible Research

To ensure the robust results, all runs comparing results be-
tween NoisyNet-DQNs and regular DQNs, were performed
using different random seeds. The number of runs for both
hyperparameter sweeps and for comparison, were attempted
to keep as high as possible, with the greatest limiting factor
being computation time. To ensure transparency across all
steps of the study, all experiments were logged using Weights
& Biases. Sweeps were only deleted and re-executed in their
entirety, either due to faulty parameters or incorrect sweep
configuration. No individual runs were selectively removed
from sweeps. All source code used in this project is publicly
available at https://github.com/sonnyruff/testdqn, with refer-
ences to outside software provided in the bibliography.

7 Conclusion and Future Work

This study evaluated the effectiveness of NoisyNet in con-
textual bandit settings, focusing on its sensitivity to hyperpa-
rameters, its performance across different task types, and the
insights offered by visual evaluation metrics.

First, the hyperparameter sweeps showed that while most
hyperparameters had minimal impact across environments,
the NoisyNet specific initial standard deviation of the noisy
layers (noisy_layer_init_std) had a significant effect. Small
values reduced exploration and led to unreliable performance,
especially in ContextualBandit-v2. Optimal performance was
generally observed at values between 0.3 and 0.4 across all
environments. The memory and batch size showed impor-
tance in slow-changing non-stationary, and stationary low-
dimensional environment ContextualBandit-v2. Neverthe-
less, a set of task-independent hyperparameters that are gen-
erally applicable are seen in table 3.

Second, the performance analysis showed that NoisyNet-
DQN does not universally outperform a standard DQN.
While the stationary high-dimensional MNISTBandit-
v0 environment showed improvement, the simpler
ContextualBandit-v2 and NNBandit-vO showed inferior
results, in both stationary and non-stationary settings. This
suggests that NoisyNet’s strength lies in environments with a
large state space.



Lastly, visual evaluation metrics such as regret and re-
ward curves provided additional insights. The stationary
MNISTBandit-v0 environment showed faster convergence to
an optimal policy. While this improvement is also seen in the
stationary NNBandit-v0 environment, the plot shows that the
NoisyNet-DQN fails to find an optimal policy.

The original work of Fortunato [1] hoped to have their
method be a step toward a universal exploration strategy.
However, the high variance in policy performance observed
in this study suggests that the method is potentially not robust
enough to perform reliably in all environments. Its effective-
ness shows in tasks with high-dimensional input spaces.

With the scope of this study having been limited by time
constraints, we now look toward potential directions for fu-
ture research. Several ideas were considered during the
project but ultimately not explored.

* Initially, delayed reward settings were considered. How-
ever, incorporating this would require such a fundamen-
tal change to the MDP that it would result in a setting
that could no longer be considered a contextual bandit
setting, and would more closely resemble a traditional
RL setting.

* Non-stationary environments were evaluated using hy-
perparameters tuned for stationary settings. Priority was
given to implementing different environments. Since
the specific non-stationary hyperparameter dynamic_rate
was defined later in the study, the early hyperparameter
sweeps did not account for it. Future work should define
and include dynamic_rate from the start.

* Investigate visualization methods for high-dimensional
input spaces. With dimension reduction and clustering
techniques, plots similar to figures 1 and 2 could be cre-
ated, offering insight into agent behavior.

* Smaller values for memory_size could be explored.

* Non-stationary environments with reward functions
changing a very small amount each step, approaching
a continuously changing reward.

* Comparing NoisyNet agents with non-NoisyNet agents
that use different exploration decay functions, such as
linear decay.
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A Hyperparameter sensitivity
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Figure 8: Parallel coordinate plots of Weights and Biases hyperparameter sweeps

Environment NoisyNet

Non-NoisyNet

ContextualBandit-v2 noisy_layer_init_std
MNISTBandit-v0 noisy_layer_init_std
NNBandit-vO noisy_layer_init_std

hidden_layer_size
hidden_layer_size

15t noisy_reward, 24 hidden_layer_size

Table 6: Most sensitive hyperparameters for NoisyNet vs Non-NoisyNet across environments



B Results
B.1 Stationary Environments
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Figure 9: Stationary ContextualBandit-v2 metrics
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Figure 11: Stationary NNBandit-v0 metrics



B.2 Non-Stationary Environments
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Figure 12: Non-Stationary ContextualBandit-v2 metrics; Dynamic rate set to 200 steps
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Figure 13: Stationary NNBandit-v0 metrics; Dynamic rate set to 200 steps
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Figure 14: Stationary ContextualBandit-v2 metrics; Dynamic rate set to 1000 steps
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Figure 15: Stationary NNBandit-vO metrics; Dynamic rate set to 1000 steps
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