
CHARGE-SAMPLING DTC
BASED FRACTIONAL-N

PHASE-LOCKED LOOP WITH
BACKGROUND DTC GAIN

CALIBRATION





CHARGE-SAMPLING DTC
BASED FRACTIONAL-N

PHASE-LOCKED LOOP WITH
BACKGROUND DTC GAIN

CALIBRATION

by

Rishabh Gurbaxani

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday October 13, 2022 at 14:00.

Student number: 5201853
Project duration: 15th November 2021 - 13th October 2022
Thesis Committee: Dr. Fabio Sebastiano, TU Delft, Chair

Dr. Masoud Babaie, TU Delft, Academic Supervisor
Prof. Dr. Leo de Vreede, TU Delft





CONTENTS

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 The Classical PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Subsampling PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The Charge-Sampling PLL . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis motivation: Designing a Fractional-N Charge-Sampling PLL . 6
1.5 Targeted Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Thesis Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Digital to Time Converter 11
2.1 A DTC-equipped subsampling PLL . . . . . . . . . . . . . . . . . . . 11
2.2 Impact of DTC Linearity on PLL performance . . . . . . . . . . . . . 13
2.3 Choice of DTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 C-DAC-Based Constant Slope DTC . . . . . . . . . . . . . . . . . . . 17

3 Block level system description 21
3.1 Phase domain model . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Loop dynamics in s-domain . . . . . . . . . . . . . . . . . . . 22
3.1.2 Phase noise contributions . . . . . . . . . . . . . . . . . . . . 24

3.2 Introducing a DTC gain calibration loop . . . . . . . . . . . . . . . . 25

4 Analog and RF circuit design 31
4.1 Digital to time converter . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Deriving number of DTC bits . . . . . . . . . . . . . . . . . . 31
4.1.2 Sizing the circuit components . . . . . . . . . . . . . . . . . . 32
4.1.3 Segmentation considerations in the DAC . . . . . . . . . . . . 33
4.1.4 Post layout simulations . . . . . . . . . . . . . . . . . . . . . 35

4.2 Charge-Sampling Phase Detector . . . . . . . . . . . . . . . . . . . . 36
4.2.1 Phase Detector Gain . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Introduction of a re-sampling phase. . . . . . . . . . . . . . . 38
4.2.3 Post-layout simulation of the CSPD . . . . . . . . . . . . . . . 40

4.3 OTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Voltage controlled oscillator . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Selecting ring oscillator type . . . . . . . . . . . . . . . . . . . 43
4.4.2 Making the oscillator tunable . . . . . . . . . . . . . . . . . . 46
4.4.3 Post-layout simulations . . . . . . . . . . . . . . . . . . . . . 47

v



vi CONTENTS

4.5 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.1 Operating principle of the StrongARM Latch . . . . . . . . . . 48
4.5.2 Comparator noise . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.3 Comparator offset . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.4 Foreground offset calibration scheme . . . . . . . . . . . . . . 53
4.5.5 RDAC design . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.6 Foreground calibration simulation results . . . . . . . . . . . 57
4.5.7 Comparator and RDAC layout . . . . . . . . . . . . . . . . . 57

4.6 Clock generation block . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 RTL design 61
5.1 Foreground calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 DTC controller and background DTC gain calibration . . . . . . . . . 64

6 Full chip layout and simulation results 69
6.1 Chip Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Post-layout simulation results . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1 PLL under Integer-N operation . . . . . . . . . . . . . . . . . 71
6.2.2 PLL under Fractional-N operation. . . . . . . . . . . . . . . . 72
6.2.3 PLL Phase noise . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.4 PLL power consumption . . . . . . . . . . . . . . . . . . . . . 74

6.3 Comparison with the State-of-the-Art . . . . . . . . . . . . . . . . . . 74

7 Conclusions and future scope 77
7.1 Future scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1.1 Reduction of fractional spurs . . . . . . . . . . . . . . . . . . 77
7.1.2 Increasing Reference frequency to improve PLL Figure of

Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.1.3 On-chip tuning of the Oscillator Tuning Word (OTW) . . . . . 79

A RTL code for the DTC Controller 85

B RTL code for the Foreground Calibration Logic 91

C RTL code for Top module and SPI block 99

D VerilogA model for the DTC 117



ABSTRACT

Phase-locked loops (PLLs) are ubiquitous in many RF applications such as
frequency synthesizers in wireline and wireless transceivers. In this project, a
charge-sampling PLL has been designed, which employs a charge-domain
sub-sampling phase detector. The high gain of the phase detector helps suppress
the in-band phase noise, while the lowered duty cycle of the sampling reference
clock results in reduced reference spurs. A current-starved ring oscillator has been
designed to support an output frequency range of 1-2 GHz. In order to achieve
the synthesis of fractional frequencies, a capacitive DAC based constant slope
digital-to-time converter (DTC) has been designed. In order to calibrate the DTC
gain (KDT C ) over PVT variations, a digital background gain calibration loop has
been introduced. The performance of the Fractional-N PLL is comparable to that
of the state-of-the-art. In order to measure the PLL’s performance in silicon, the
design has been taped-out in TSMC 40-nm technology in July 2022.

vii





ACKNOWLEDGEMENTS

Firstly, I would like to thank my academic supervisor, Dr. Masoud Babaie for his
continuous guidance and support. He encouraged me to realize my full potential
and achieve new levels. I am grateful to him for his time and for sharing his
expertise in the field.

I would like to express my gratitude to Prof. Leo de Vreede and Dr. Fabio
Sebastiano for reading my thesis and serving as my thesis committee.

My special thanks go to Jiang, Praneetha and Lennart who acted as my
mentors during the course of my thesis. It was a truly enriching experience
learning from each of them.

This acknowledgements page would be incomplete without mentioning
Yu-Wen and David, who were on the same tumultuous tape-out boat as me. We
shared some intense, yet exciting times together. I thank them both for the lively
technical discussions at the office and equally lively badminton and tennis
sessions on the field.

I also thank Job, Bagas, Niels, Ali and Luc for their help during the tape-out
and all other Coolgroup members for the enjoyable lunch conversations and
social events.

Finally, I am extremely grateful to my parents. Their unconditional love,
understanding and support have helped me reach where I am today.

R. Gurbaxani
Delft, October 2022

ix





1
INTRODUCTION

For the past few decades, phase-locked loops (PLLs) have been widely used to
realize RF frequency synthesizers for a broad range of applications, such as
wireless and wireline transceivers, high-performance analog to digital converters
and optical serial data communication links. The ability of a PLL system to
produce stable RF frequencies with low phase noise and jitter has not only led to
its popularity but also made it an active field of research.

This chapter begins with a brief description of the basic building blocks of a
PLL and the circuit design challenges, trade-offs and limitations associated with
them. It then arrives at the motivation of this thesis and the targeted specifications
for the PLL chip designed as part of this work. Subsequently, the chapter proceeds
to delineate the thesis contributions and finally concludes with a description of the
complete structure of the thesis.

1.1. THE CLASSICAL PLL
The "Classical PLL" architecture [1], [2] has been shown in Fig. 1.1. It is essentially
a feedback network comprising of a fixed input reference frequency, fr e f , a
phase-detector (PD), a charge-pump (CP), a loop filter (LF), a voltage-controlled
oscillator (VCO) producing the RF output frequency, fV CO and a divide-by-N
divider. The PD/CP block detects the phase difference between the reference fr e f

and the divided-by-N VCO frequency, fV CO/N and converts it into a current
signal which is integrated over the loop filter to form a voltage that is fed to the
VCO as a control signal to tune the RF output frequency so that fV CO = N . fr e f .

1



1

2 1. INTRODUCTION

Fig. 1.1. Block diagram of the "Classical PLL" architecture.

A linear phase domain model of the PLL system in the s domain, including
noise sources, has been presented in Fig. 1.2.

Fig. 1.2. Linear phase domain model of the PLL system.

The closed loop transfer function of the loop is given by:

H(s) = Φout (s)

Φi n(s)
= IC P

KV CO
s Z (s)

1+ 1
N IC P

KV CO
s Z (s)

(1.1)

where IC P is the charge pump current, KV CO is the sensitivity of the VCO
expressed in in H z/V , Z (s) is the transfer function of the loop filter and has the
form Z (s) = 1+sC1R1

sC1
.

The above transfer function is represented in a normalized form as:

H(s) = 2ζωn s +ω2
n

s2 +2ζωn s +ω2
n

(1.2)

where ωn =
√

IP
2πC1

KV CO
N is the natural frequency and ζ = R1

2

√
IP C1

2π
KV CO

N is the
damping factor of the system.

The noise sources in Fig. 1.2 are the phase noise spectral densities φpd ,n , φvco,n

and φdi v,n corresponding to the phase detector, the VCO and the divider,



1.2. THE SUBSAMPLING PLL

1

3

respectively. Also included are the current and voltage noise spectral densities
icp,n and vl p f ,n of the charge pump and the loop filter, respectively.

The output-referred noise contributions from each of the above mentioned
sources can be expressed as:

φ2
out ,pd ,n = N 2|H(s)|2φ2

pd ,n (1.3)

φ2
out ,cp,n = N 2

(
2π

IC P

)2

|H(s)|2i 2
cp,n (1.4)

φ2
out ,l p f ,n = N 2

(
2π

IC P Z (s)

)2

|H(s)|2v2
l p f ,n (1.5)

φ2
out ,vco,n =

∣∣∣∣ s2

s2 +2ζωn s +ω2
n

∣∣∣∣2

φ2
vco,n (1.6)

φ2
out ,di v,n = N 2φ2

di v,n (1.7)

It can be observed from the above equations that the noise sources attributed to
within the loop get multiplied by a factor of N 2. A typical phase noise spectrum of
a Classical PLL plotted in [3] is shown in Fig. 1.3.

Fig. 1.3. Phase noise spectrum of the Classical PLL [3]. L ( fm ) is the phase noise seen at an offset
frequency fm from the RF carrier. The dominant pole of the PLL system is formed by fc .

It is clear from the above phase noise spectrum that the loop components,
namely the PD and CP are major noise contributors in the PLL system.

1.2. THE SUBSAMPLING PLL
With the aim of reducing the phase noise arising from PD and CP, a subsampling
PLL was first introduced in [3] and has since often been used in literature [4], [5],
[6], [7]. The subsampling PLL removes the divider and directly samples the VCO
output frequency using the reference signal. This technique not only eliminates the
noise and power consumption arising from the divider, but also prevents the PD
and CP noise from being multiplied by a factor of N 2. In the subsampling PLL of
[7], the PD and CP blocks have been replaced by a sampler (made up of a switch
and a sampling capacitor) and a GM cell (see Fig. 1.4). Due to the subsampling



1

4 1. INTRODUCTION

nature of the loop, the sampler can be realized with a high phase detection gain,
thus suppressing the noise from the GM cell, loop filter, and the PD itself.

Fig. 1.4. Block diagram of the subsampling PLL [7].

The subsampling PLL thus promises improved PLL performance by
significantly lowering phase noise and jitter. However, the direct sampling of the
VCO voltage signal by the reference signal results in the formation of spurious
tones at frequencies fV CO ±m. fr e f , where m is an integer. These tones, referred to
as reference spurs are formed due to effects such as periodic modulation of
oscillator tank capacitance at the reference clock rate, reference clock feedthrough
and charge injection from the sampling switch to the oscillator. An expression to
quantify the level of reference spur is given in [8]:

SREF = 20.log10

[
si n(π.DREF ).

N

2π
.

CMOD

CT AN K

]
(1.8)

where DREF is the duty cycle of the reference clock, CT AN K is the total
capacitance of the LC oscillator tank and CMOD is the modulated capacitance seen
by the tank which is equal to the sum of the sampling capacitance used by the
sampler and the parasitics in the sampling switch. Thus, it can be seen from
equation 1.8 that in order to reduce the reference spurs, both DREF and CMOD must
be lowered. Although equation 1.8 is intended for LC oscillators, the results
drawn from it can also be extrapolated for inverter-based ring oscillators.

Directly lowering the sampling capacitor can lower CMOD but at the cost of
increased kT

C sampling noise. This presents a trade-off during simultaneous
reduction of phase noise and reference spur. To overcome this trade-off, an
isolation buffer can be inserted between the oscillator and the sampler, and its
operation can be reference-gated to save power and reduce DREF [9] (see Fig. 1.5).
However, the common-mode settling time of the buffer typically restricts the
reference pulse width, TP to at least 5-10 VCO cycles [8], which in turn limits the
suppression of reference spurs.



1.3. THE CHARGE-SAMPLING PLL

1

5

Fig. 1.5. (a) Schematic (b) waveforms of the voltage-sampler using a power-gated buffer [8].

A charge-domain subsampling PLL proposed in [8], [10] reports an
appreciable reduction of reference spurs without compromising phase noise and
jitter performance. The following section discusses this PLL architecture in detail.

1.3. THE CHARGE-SAMPLING PLL
The main difference between the charge-sampling PLL (CSPLL) [8] and a typical
subsampling PLL is in the type of phase detector used by them. Unlike a typical
subsampling PLL that samples the instantaneous VCO signal voltage to
determine its phase, the CSPLL employs a charge-sampling phase detector
(CSPD) that integrates an input current over a capacitor over a fixed time window
and samples the resulting voltage. Fig. 1.6 shows the schematic of the CSPD and
also gives insight into its operating principle.

Fig. 1.6. Schematic of the CSPD when the REF pulse is (a) high (b) low; conceptual waveform for the
CSPD when the PLL is (c) locked (d) unlocked [8].

Fig. 1.6 (a) shows the CSPD schematic when the reference pulse (REF) is high.
During this time, the differential voltage applied to the MOS input pair M1,2 is
converted into a differential current that charges the CS capacitors, thus producing
a differential voltage at the output of the PD. Fig. 1.6 (c) shows the conceptual
waveform for the case when the VCO zero-crossing is aligned with the center of
the REF pulse, which is equivalent to the PLL locking condition. Since charge
integration occurs symmetrically, the differential output voltage, VS is zero. On
the other hand, if the PLL is unlocked (Fig. 1.6 (d)), the charge integration over the
CS capacitors happens asymmetrically which results in the formation of a



1

6 1. INTRODUCTION

non-zero differential voltage at the PD output. The schematic in Fig. 1.6 shows the
behavior of the CSPD when REF is low. The CSPD output common-mode level
returns close to VDD via the RD resistors, while the differential voltage VS

gradually discharges via RD and CS . This phase of operation can be thought of as
the reset phase of the circuit. It is important to note that the value of RD is kept
quite high, so that it does not play a role during the charge-sampling phase when
the REF is high.

The REF pulse width, TP can be made extremely narrow (TP < TV CO/2) and
thus the reference spur levels can be significantly reduced. It has also been shown
in [8] that, for a properly designed circuit, the CSPD phase noise (PN) is nearly
independent of CS . Such behaviour is in stark contrast with that of the VSPD,
where the value of CS dictates the trade-off between jitter and spurs.

1.4. THESIS MOTIVATION: DESIGNING A FRACTIONAL-N
CHARGE-SAMPLING PLL

The charge-sampling PLL proposed in [8], [10] simultaneously reduces the
reference spur levels and phase noise of the PLL system. However, it can only
operate in "Integer-N" mode which means that in the relationship fV CO = N . fr e f , N
assumes integer values and thus the VCO output can only lock on to integer
multiples of the reference frequency. Unfortunately, high congestion in the
spectrum of any modern communication standard has rendered the Integer-N
operation largely unacceptable [7] and there is a need to develop high
performance PLLs capable of operating in "Fractional-N" mode.

The primary motivation of this thesis is to design a high performance
Fractional-N PLL which exploits the useful properties of a charge-domain
subsampling PLL.

Unlike the classical PLL, where Fractional-N frequency synthesis is achieved
by applying ∆Σ modulation to the divider [11], the subsampling PLL requires a
completely new methodology. A technique has been proposed in [7], where phase
modulation has been applied to the reference to match with the phase of the
fractional VCO frequency. This has been achieved by inserting a digital-to-time
converter (DTC) in the reference path as shown in Fig. 1.7. The DTC serves as a
programmable delay generator to delay the reference pulse in accordance with the
phase of the desired fractional-N VCO frequency. Although the operating
principle of this technique has been presented in detail in chapter 2, it is worth
mentioning at the outset that the DTC linearity and resolution play a crucial role
in determining the performance of the Fractional-N PLL. These factors have been
accounted for while selecting the DTC architecture and designing the DTC.



1.5. TARGETED SPECIFICATIONS

1

7

Fig. 1.7. Implementation of Fraction-N frequency synthesis with a subsampling PLL by inserting a
DTC in the reference path [7].

It is also important to note that the DTC resolution, also referred to as the DTC
LSB, tLSB is susceptible to PVT variations. This calls for the implementation of a
background calibration mechanism, preferably implemented in the digital domain,
to track these PVT variations and apply appropriate corrections.

1.5. TARGETED SPECIFICATIONS
A ring oscillator (RO) has been chosen in the design of this PLL as it promises area
efficiency and ease of silicon integration when compared to LC-based oscillators.

In order to derive the targeted specifications for the PLL designed as part of this
thesis, as a first step, a comparison has been drawn with the recently published
state-of-the-art ring oscillator-based Fractional-N PLLs (see Table 1.1).

Table 1.1: State-of-the-art RO-based Fractional-N PLLs

ISSCC’22 ISSCC’21 ISSCC’21 ISSCC’20 JSSC’20 JSSC’19
C. Hwang [12] H. Park [13] Q. Zhang [14] T. Seong [15] Y. Zhang [16] A.Santiccioli [17]

Architecture DPLL DPLL MDLL DPLL CP PLL MDLL

Technology 65nm 65nm 65nm 65nm 40nm 65nm

fOU T (GHz) 4.4 to 5.4 5.2 to 6 0.8 to 2.0 4.5 to 6 1.67 to 3.12 1.6 to 3.0

Freq. resolution (kHz) 6.1 3.1 781.25 3.1 0.1 1960

FREF (MHz) 100 100 50 100 50 100

Worst frac. spur (dBc) -60 -63 -60 -58 -47 -52

Ref. spur (dBc) -64 -77 -44 NA -67 -56

rms jitter (fs) 188 365 1670 648 2260 397
(1k to 30M) (10k to 30M) (10k to 10M) (1k to 30 M) (1k to 100M) (30k to 30M)

PN@1MHz (dBc/Hz) -133.4 -128.8 -111.6 -124.9 -103.9 -122.4

Power (mW) 15.67 9.27 11.95 9.88 4.85 2.5

FoM j i t ter (dB) -242.6 -239.1 -224.8 -233.8 -226.1 -244

Area (mm2) 0.139 0.146 0.180 0.108 0.086 0.0275
1

1FoM j i t ter = 20log10( j i t terr ms /1s)+10l og10(powerDC /1mW )



1

8 1. INTRODUCTION

Aiming for a low power consumption design, a power budget of 1mW has been
kept. To achieve a PLL Figure of Merit (FoM j i t ter ) of -240 dB, while honoring the
aforementioned power budget, the rms jitter must be below 1ps.

In a typical PLL, the oscillator’s power consumption is dominant among all
PLL blocks and can be estimated for a ring oscillator as:

Powerosc =Cl oad V 2
DD . fOU T (1.9)

where fOU T is the oscillator output frequency and Cload is the combined load
driven by the oscillator.

Upon allocating the entire power budget to the oscillator and assuming that it
drives a combined load of Cl oad = 1pF , the value of fOU T is obtained around 1
GHz. For fOU T = 1G H z and rms jitter of 1ps, equation 3.13, yields an in-band
phase noise (PN) of −114dBc/H z.

The targeted specifications are thus summarized in Table 1.2 :

Table 1.2: System parameter values

Specification Value

Architecture CSPLL
Technology 40nm CMOS
Freq. resolution < 10 kHz
Worst frac. spur < -60dBc
Ref. spur < -75 dBc
rms jitter (fs) 1000
In-band phase noise (for 1 GHz fOU T ) -114dBc/Hz
Power(mW) 1
FoM j i t ter (dB) -240

1.6. THESIS CONTRIBUTIONS
The research contributions of this thesis are as follows:

1. A comprehensive understanding of state of the art PLL architectures has
been developed with a special focus on realizing a Fractional-N frequency
synthesizer utilizing a charge-domain subsampling PLL.

2. A literature review of the state of the art digital to time conversion
techniques has been performed and a highly linear, high-resolution DTC has
been designed.

3. A charge-domain subsampling PLL system has been designed and the DTC
has been incorporated within this system to enable Fractional-N frequency
synthesis.



1.7. THESIS STRUCTURE

1

9

4. A highly digital background DTC gain calibration mechanism has been
designed to ensure robust Fractional-N PLL operation over PVT variations.

5. The complete PLL system has been designed and implemented in a 40-nm,
1.1V CMOS process.

1.7. THESIS STRUCTURE
The thesis has been structured as follows:

• Chapter 2 explains how a DTC can be introduced in the subsampling PLL to
enable Fractional-N frequency synthesis. It also presents a literature review
of the state of the art digital to time conversion techniques and motivates the
selected DTC topology.

• Chapter 3 provides a block level description of the PLL system and discusses
loop stability and noise sources using the linear phase domain model. This
chapter also emphasizes the need for a DTC gain calibration mechanism and
defines an approach to implement it.

• Chapter 4 elaborates on the design details pertaining to the analog and RF
circuit blocks of the PLL system.

• Chapter 5 discusses the design of digital logic blocks required to implement
the DTC gain calibration.

• Chapter 6 presents the full PLL chip simulation results and summarizes the
PLL performance.

• Chapter 7 concludes the thesis and gives an overview of future work.





2
DIGITAL TO TIME CONVERTER

In the previous chapter, it was briefly illustrated how phase modulation can be
introduced in the reference path by utilizing a digital-to-time converter (DTC) and
enabling Fractional-N subsampling operation (Fig. 1.7).

This chapter presents a more detailed overview of a DTC-equipped
subsampling PLL undergoing Fractional-N operation. It also compares the state
of the art digital to time conversion techniques and motivates a suitable DTC
topology for this work.

2.1. A DTC-EQUIPPED SUBSAMPLING PLL
As previously mentioned in section 1.4, a DTC can be employed within a
subsampling PLL to modulate the phase of the reference frequency in order to
match the phase of the fractional-N VCO frequency. This section explains this
concept with the help of an example. Fig. 2.1 shows Integer-N operation for a
subsampling PLL with N = 2. For a locked PLL, the sampling events take place at
zero crossings of the VCO signal.

Fig. 2.1. Integer-N operation in a Subsampling PLL
[7].

Fig. 2.2. Fractional-N operation in a Subsampling
PLL [7].

11



2

12 2. DIGITAL TO TIME CONVERTER

The Fractional-N operation with N = 1.75 has been depicted in Fig. 2.2. The
first sampling event happens at the same time as that for the integer-N case. For
the next sampling event, there is a phase error of 0.25TV CO between the reference
and the VCO signal. To ensure PLL locking, this phase error can be compensated
for by advancing (delaying) the reference by 0.25TV CO in the time domain.
Subsequent sampling events are constructed by advancing the reference by
0.5TV CO and 0.75T V CO. For the final sampling event shown in Fig. 2.2, the
reference and VCO phases re-align which obviates the need to advance the
reference at all. It can thus be observed that a periodic pattern emerges due to the
"phase-wrapping" effect with a delay of 0.25TV CO that accumulates every
sampling event and the DTC must provide delay generation of up to one VCO
period.

In order to achieve the above described phase modulation, the DTC must be
appropriately programmed through a code generator. The DTC code generation
logic can be implemented in the digital domain and its block diagram and
computation flow are illustrated in Fig. 2.3.

Fig. 2.3. Block diagram of the DTC code generator and its computation flow.

The Fractional command word (FCW) is fed as input to the digital DTC code
generation logic. The computation flow in Fig. 2.3 has been shown for a 1st order
∆Σ modulator.



2.2. IMPACT OF DTC LINEARITY ON PLL PERFORMANCE

2

13

2.2. IMPACT OF DTC LINEARITY ON PLL PERFORMANCE
For a PLL undergoing Fractional-N operation, the DTC nonlinearity results in
increased spurious tones at the PLL output. This effect can be better understood
with the following example.

For a PLL having a reference frequency fr e f = 100M H z and synthesizing a
fractional output tone at fV CO = 1.001G H z, the value of N = 10.01 and FCW = 0.01.
Based on the functioning of the DTC code generation block (Fig. 2.3), the output
of the accumulator, Acc will have a profile illustrated in Fig. 2.4. Since the
FCW = 0.01, it will take 100 reference clock cycles before the accumulator is reset
and begins to repeat the code pattern. For the reference having a clock period of
10ns, this amounts to 1µs.

Fig. 2.4. DTC code generator output and the corresponding delay generated by a nonlinear DTC.

Even though the accumulator accumulates the DTC code in a linear fashion,
the inherent DTC nonlinearity will manifest itself in the output time delay, ∆tDT C

produced by the DTC, as shown in Fig. 2.4. During the sampling procedure of the
phase detector, this nonlinear DTC characteristic will produce phase errors that
exhibit a periodic pattern that repeats every 1µs. These phase errors will be
converted into voltage signals by the phase detector, which will be fed as the
control voltage to the VCO, thereby producing spurious tones at offsets of
multiples of 1/1µs = 1M H z from the fundamental carrier. These spurious tones are
also referred to as fractional spurs.

Fig. 2.5. Spectrum showing fractional spurs due to DTC nonlinearity produced at the PLL output.



2

14 2. DIGITAL TO TIME CONVERTER

The spectrum of Fig. 2.5 shows the fundamental VCO tone produced at
1.001G H z and the corresponding fractional spurs. The level of the highest
fractional spur can be estimated as [18]:

Li nl ,spur =
π2

4
.

(
∆ti nl

TV CO

)2

(2.1)

where ∆ti nl is the DTC integral nonlinearity (INL) and TV CO is the VCO time
period.

2.3. CHOICE OF DTC
A DTC can be described as a combination of a voltage ramp generator followed by
a threshold comparator as shown in Fig. 2.6.

Fig. 2.6. Operation of a variable-slope DTC (Image modified from [19]).

The ramp generator itself can be modelled as a current source I , charging a
capacitor C (Fig. 2.7), while the threshold comparator is designed as an inverter or
an inverter chain.

Fig. 2.7. Model of a ramp generator: (a) generating an ideal ramp voltage (b) generating a practically
achievable ramp [19].

An input signal triggers the ramp generation block. The ramp voltage is
compared against a threshold voltage Vd by the threshold comparator, which
produces the output signal when the ramp voltage level equals Vd . If the ramp
takes time td to go from zero voltage to Vd , td can be expressed as:

td = Vd

S
(2.2)



2.3. CHOICE OF DTC

2

15

where S = I /C is the slope of the ramp (see Fig. 2.7). To achieve
programmability of td , one option is to vary the slope S of the ramp by varying
either the current I or the capacitance C . This approach of DTC design is termed
as the "variable-slope" approach (see Fig. 2.6). This approach has been exploited
in [20] by using a switched capacitor load. Although it is possible to achieve a
good resolution in delay with a variable-slope DTC, it fares poorly in terms of
linearity due to the inherent nonlinear relationship between the ramp slope and
the threshold comparison. This non linearity is reflected in the varying slope of
the output signal as shown in Fig. 2.6.

The second option of varying the delay td is to vary the threshold voltage Vd

for a fixed ramp slope. However, due to limitations posed by practical ramp
generation, the ramp itself is not linear and hence the delay steps produced will
also suffer from non-linearity. Moreover, implementing a linear variation in Vd

may not prove straightforward.

An interesting approach has been presented in [19], where the ramp starting
voltage, Vst is varied while the ramp slope remains constant. This approach of
DTC design is termed as the "constant-slope" approach and is illustrated in Fig.
2.8.

Fig. 2.8. Operation of a constant-slope DTC (Image modified from [19]).

Considering the case of a practical ramp being fed as input to a practical
threshold comparator, it must be observed that neither the ramp slope is constant
from GN D to V DD, nor the threshold of the comparator is confined to single
voltage Vd . As explained in [19], the threshold voltage can be thought of as a
"threshold window", ranging from Vth0 to Vth1, as depicted in Fig. 2.9.



2

16 2. DIGITAL TO TIME CONVERTER

Fig. 2.9. Operation of a practical constant-slope DTC. The range over which the ramp starting voltage,
Vst is varied is shown in red. For the ramps a and b, the comparator produces output signals having

an overall identical profile with a delay of τ between them (Image modified from [19]).

Since the bulk of the nonlinear effects arise in the threshold window, the
success of the constant-slope DTC is contingent on varying the ramp start voltage
over a range that lies away from the threshold window. Additionally, it can be
seen from Fig. 2.9 that the section of the ramp close to GN D is linear and thus can
be utilized to generate linear voltage steps.

The constant-slope DTC proposed in [19] utilizes a current domain digital-to-
analog converter (I-DAC) to generate a varying ramp starting voltage. The top-
level block diagram of this DTC is shown in Fig. 2.10.

Fig. 2.10. Top-level block diagram of the I-DAC-based constant-slope DTC.

In addition to linearity, a factor that merits consideration during the design of
a DTC is its power consumption. While the I-DAC-based constant slope DTC [19]
promises good linearity and fine resolution it consumes a power of 1.8mW . The
major contribution of power consumption in this design is attributed to the I-DAC.
An alternative approach has been proposed in the form of a Capacitor-DAC (C-
DAC) based constant-slope DTC in [21] that offers similar linearity and resolution
while consuming a mere 31µW of power. The C-DAC-based constant slope DTC
architecture has been chosen in this thesis and its operating principle is described
in the following section.



2.4. C-DAC-BASED CONSTANT SLOPE DTC

2

17

2.4. C-DAC-BASED CONSTANT SLOPE DTC

The C-DAC-based constant-slope DTC comprises of three main circuit blocks: a
ramp generator, a threshold comparator and the C-DAC itself. These are
illustrated in the DTC schematic in Fig. 2.11. The ramp generator is made up of an
inverter and a capacitor, CR while the threshold comparator is also made up of an
inverter. The C-DAC consists of a digitally controlled capacitor array with unit
capacitance represented by Cu and a fixed capacitance CO , where typically
CO >> Cu . For the purpose of explaining the DTC operating principle The
capacitor array has been depicted as a binary array. In practice, some
segmentation can be applied to the array is as later shown in chapter 4.

It is important to note that this DTC works with a di schar g i ng ramp rather
than the char g i ng ramp that was discussed in the previous section. The voltage
Vcommon serves as the ramp start voltage Vst and is dynamically adjusted by the
C-DAC.

Fig. 2.11. Schematic of the C-DAC-based constant-slope DTC.

The threshold voltage of the threshold comparator can be adjusted by relative
sizing of the NMOS M2 and PMOS P2 in Fig. 2.11. Ideally, since a discharging
ramp is being used, the NMOS M2 must be sized much larger than the PMOS P2
to ensure that the threshold voltage remains below VDD /2 while the ramp start
voltage ranges from VDD to VDD −∆ where ∆ is usually kept small (around 200µV ).
Thus the basic function of the DTC can been seen as the generation of a variation
∆Vst in the ramp start voltage to produce a time delay ∆t at the DTC output signal
(Fig. 2.12).



2

18 2. DIGITAL TO TIME CONVERTER

Fig. 2.12. Basic DTC function.

In order to achieve a variation in the ramp start voltage, the C-DAC is subjected
to a two-phase operation, as shown in Fig. 2.13. In the first phase Φ1, the E N signal
is made high and the capacitance attached to the Vcommon node gets pre-charged
to VDD via the pass gate. The digital code is configured to selectively charge the
capacitors in the array by either driving a zero voltage (the capacitors in black
which do get charged) or by driving a VDD voltage (the grey-shaded part of the
array that does not get charged).

In the Φ2 phase, the digital interface drives a zero voltage to all the capacitors
in the array and this results in charge re-distribution at the Vcommon node, leading
to a drop in its voltage level, as shown in the waveform in Fig. 2.13.

Fig. 2.13. Two-phase operation of the C-DAC.

The switch S1 in Fig. 2.13 represents the ramp generator PMOS device P1
shown in Fig. 2.11. The switch is closed when the DT Ci n signal goes low. Due to
the overlap between the E N signal and the DT Ci n signal, the ramp capacitance CR

also gets charged to VDD and can be considered as a fixed capacitance during the



2.4. C-DAC-BASED CONSTANT SLOPE DTC

2

19

DTC operation.

The starting voltage of the ramp, referred to as Vr amp is made equal to Vcommon

as switch S1 is closed and can thus be computed based on the two-phase operation
of the C-DAC as:

Vr amp = C f i xed +C1

C f i xed +C2
.VDD (2.3)

where C f i xed = CO +CR , while C1 is the part of the capacitor array selected
during Φ1, given by C1 = ΣN−1

i=0 (1−D < i >)2i Cu and C2 is the total capacitance of
the array, given by C2 = ΣN−1

i=0 2i Cu . The notation D < i > represents the bit value at
the i th bit position in the digital code and can assume a value of either 0 or 1.
Thus for an increasing digital code in phase Φ1, the value of C1 decreases which
results in a lower Vr amp voltage.

The complete timing diagram for the DTC has been sketched in Fig. 2.14.

Fig. 2.14. Timing diagram of the DTC.





3
BLOCK LEVEL SYSTEM

DESCRIPTION

This chapter gives an overview of the complete PLL system. This includes a
description of the loop dynamics and phase noise contributions of the system
blocks using an s-domain model. Additionally, this chapter also explains the
motivation for the background DTC gain calibration technique used in the system.

3.1. PHASE DOMAIN MODEL
The block diagram of the PLL system is presented in Fig. 3.1.

Fig. 3.1. PLL system block diagram.

A 100 MHz sinusoidal reference is fed as input from an off-chip crystal. The
reference buffer converts it into a 100 MHz square wave with an amplitude of
1.1Vpp . The DTC is used for fractional-N frequency synthesis and can be made
dormant during integer-N operation using the digital control block. A pulse
generator is used in conjunction with the DTC to produce pulse widths
appropriate to maintain the gain and output CM levels of the phase detector (PD).

21



3

22 3. BLOCK LEVEL SYSTEM DESCRIPTION

The PD gain is given by KPD in V/rad. A differential input, single-ended output
OTA converts the PD output voltage to a current that is integrated over the
low-pass loop filter. KV I is the transconductance of the OTA. The
voltage-controlled oscillator (VCO) is made up of a ring oscillator that has a
frequency tuning range from 1 to 2 GHz and is controlled by the control voltage
Vctr l . The PD receives feedback in the form of differential phases V COn and V COp

from the VCO.

3.1.1. LOOP DYNAMICS IN S-DOMAIN
A linear phase domain model has been employed to describe the loop dynamics in
the s domain. This model is illustrated in Fig. 3.2.

Fig. 3.2. Phase domain model of the PLL.

The closed-loop transfer function of the PLL can be given by:

Hcl (s) = Hol (s)

1+Hol (s)
(3.1)

where Hol is the open-loop transfer function and is expressed as:

Hol (s) = KPD (s).KV I .FLPF (s).
2πKV CO

s
(3.2)

which can be expanded as:

Hol (s) = KPD

1+ sRDCS
.KV I .

(
sC R +1

(sC )(1+ sC1R)

)
.
2πKV CO

s
(3.3)

RD and CS form the load impedance of the PD.
The closed-loop transfer function can thus be obtained as:

Hcl (s) = Hol (s)

1+Hol (s)
= 2π(KPD .KV I .KV CO)(1+ sC R)

(1+ sC R)2π(KPD .KV I .KV CO)+ s(sC )(1+ sCS RD )(1+ sC1R)
(3.4)

The loop is typically designed such that CS << C and C1 << C leading to a
simplified closed-loop transfer function that resembles a second order system:

Hcl (s) = s.RKPD KV I KV CO +KPD KV I KV CO/C

s2 + s.RKPD KV I KV CO +KPD KV I KV CO/C
= 2ζωn s +ω2

n

s2 +2ζωn s +ω2
n

(3.5)



3.1. PHASE DOMAIN MODEL

3

23

where the natural frequency, ωn and the damping factor ζ are given by:

ωn =
√

KPD KV I KV CO

C
(3.6)

ζ= R

2

√
KPD KV I KV COC (3.7)

The loop bandwidth can be expressed in terms of ωn and ζ as:

f−3dB = ωn

2π

√
(2ζ2 +1)+

√
(2ζ2 +1)+1 (3.8)

An estimate of the system’s phase margin can be given by:

P M ≈ t an−1(ωuRC )− t an−1(ωuRC1)− t an−1(ωuRDCS ) (3.9)

where ωu ≈ωn

√
2ζ2 +

√
4ζ4 +1 is the frequency at which |Hol (s)| = 1.

The system has been designed taking into account loop stability by ensuring
a loop bandwidth of about 10% of the reference frequency. Having a high loop
bandwidth results in an improved lock-in range and reduced settling time [22].
Table 3.1 lists the values that have been chosen for the design parameters.

Table 3.1: System parameter values

Design parameter Value

KPD 0.31 V/rad
KV I 40µS
KV CO 20 MHz/V
RD 50kΩ
CS 200 fF
R 30kΩ
C 20 pF
C1 100 fF

In addition to ensuring a loop bandwidth of 10M H z, several individual
block-level design considerations determine the choice of these parameters and
have been explained in chapter 4.

A system Bode diagram has been plotted with the aid of MATLAB and is
presented in Fig. 3.3.



3

24 3. BLOCK LEVEL SYSTEM DESCRIPTION

Fig. 3.3. Bode diagram of the PLL open loop transfer function

3.1.2. PHASE NOISE CONTRIBUTIONS
Various noise sources have been shown in the phase domain model of Fig. 3.2. The
total phase noise seen at the output of the PLL can be expressed as:

φ2
out ,n = |Hcl (s)|2N 2φ2

r e f ,n +|Hcl (s)|2
(

1+ sCS RD

KPD

)
v2

pd ,n +|Hcl (s)|2
(

1+ sCS RD

KPD KV I

)
i 2

vi ,n+

|Hcl (s)|2
(

1+ sCS RD

KPD KV I FLPF (s)

)
v2

l p f ,n +
∣∣∣∣ 1

1+Hol (s)

∣∣∣∣2

φ2
vco,n

(3.10)

The power spectral densities (PSD) of the noise sources can all be obtained from
simulations. The PSD of the voltage and current noise from the loop filter and OTA
respectively can also be computed as:

v2
l p f ,n = 4kT R (3.11)

i 2
vi ,n = 4kTγKV I (3.12)

The relation between phase noise and rms jitter, σφ,r ms is defined as [23]:

σφ,r ms =

√
2
∫ fmax

fmi n
L (∆ f ).d(∆ f )

2π f0
(3.13)

where L (∆ f ) is the phase noise spectral density at an offset frequency of ∆ f
from the oscillator output frequency, f0. The frequencies fmi n and fmax are the
limits of the integration window. The phase noise contributions from the PLL
components are plotted in chapter 6.



3.2. INTRODUCING A DTC GAIN CALIBRATION LOOP

3

25

3.2. INTRODUCING A DTC GAIN CALIBRATION LOOP

The DTC gain, denoted by KDT C = TV CO/tLSB is the ratio of the time period of the
fractional frequency to be produced and the LSB of the DTC. Since the range of
the DTC (and also tLSB ) is susceptible to PVT variations, KDT C can not be
programmed accurately. This induces non-linearity in the DTC operation and
results in significant levels of fractional spurs [7]. A 9-bit DTC has been designed
in this work and the variation in its range over corners is shown in table 3.2.

Table 3.2: Variation in DTC range over corners

Corner DTC range (ps)

TT 780
FF 698
SS 935

In literature, this problem has been mitigated by designing a background DTC
gain calibration loop utilizing the Least-mean squares (LMS) algorithm [18], [24].
However, these implementations have been designed for digital PLLs and it has
been found in literature that for an analog PLL such as the one being
implemented as part of this thesis, applying the LMS-based calibration technique
is not straightforward [25], [7].

An integral part of the LMS-based calibration technique is the determination of
the sign or polarity of the phase error between the fractional-N VCO signal and
the reference. In [7], the sign of the current has been extracted at the output of the
OTA in order to gauge the sign of phase error. However, extracting the sign of a
voltage can prove less cumbersome when compared to that of a current. This is
evident in [25], where the phase error polarity has been extracted from the output
of the phase detector via a comparator. The sampling phase detector used in [25]
has a single-ended architecture as opposed to the differential nature of the charge-
sampling phase detector being used as part of this work, hence that technique can
not be applied here.

This thesis proposes a novel technique to faithfully retrieve the phase error
polarity in the voltage domain such that it can be utilized by the LMS-based DTC
gain calibration loop. Fig. 3.4 illustrates the complete PLL system incorporating
the DTC gain calibration loop.



3

26 3. BLOCK LEVEL SYSTEM DESCRIPTION

Fig. 3.4. Block diagram of the PLL system with DTC gain calibration loop

A comparator has been employed to detect the deviation in the DTC gain by
sampling the output of the CSPD during fractional-N frequency synthesis. At the
heart of the calibration loop lies a digital implementation of the least-mean
squares (LMS) algorithm. The comparator output and the accumulated fractional
shift Φe (n), are fed as inputs to the LMS block, which determines the gain
correction term to be applied to KDT C . Details of the LMS implementation and
calibration loop simulation results are presented in chapter 5.

A serious challenge to the success of the proposed calibration technique is
posed by the offsets in the comparator and the OTA. The ideal locking point of the
CSPD is when the zero crossings of VCO signal align with the center of the
reference pulse as shown in Fig. 3.5 (a), while Fig. 3.5 (b) shows deviation in the
locking point due to offset in the OTA.

Fig. 3.5. CSPD locking point: (a) Without offset (b) Offset in PD or OTA

Although an offset in the CSPD alone will also result in the situation shown
in Fig. 3.5 (b), it is not detrimental since the PD differential output sampled by
the comparator will still be zero if the PLL is locked. However, PLL locking in



3.2. INTRODUCING A DTC GAIN CALIBRATION LOOP

3

27

the presence of an offset in the OTA, VOS,OT A would result in the development of a
differential voltage VOS,PD at the output of the CSPD, which is equal to VOS,OT A and
opposite in polarity (Fig. 3.6). This voltage VOS,OT A erroneously adds to the actual
DTC gain error and can not be rectified by the LMS algorithm.

Fig. 3.6. Offset in OTA Fig. 3.7. Offset in comparator

Another source of offset is in the comparator itself, VOS,C MP (Fig. 3.7). The
situations in both Figs. 3.6 and 3.7 present an identical threat to the decision
making process of the comparator. It is interesting to note that for the operation of
the comparator, it is possible to sum the offset voltages VOS,OT A and VOS,C MP as
VOS,EF F , which forms the effective offset seen by the comparator (Fig. 3.8). This
effective offset must be removed or compensated to ensure proper functioning of
the DTC gain calibration loop. To achieve this, a digital foreground offset
compensation scheme in the comparator has been proposed. The merit of this
scheme is that it compensates the cumulative offset in the OTA and comparator
(VOS,EF F ) by applying additional circuitry in only the comparator. Details of the
foreground offset compensation are presented in chapters 4 and 5.

Fig. 3.8. Effective offset as seen by the comparator

Specification for the resolution upto which the effective offset must be
compensated has been derived by simulating Fractional-N PLL operation



3

28 3. BLOCK LEVEL SYSTEM DESCRIPTION

together with the background calibration loop and offset voltage VOS,C MP applied
to the input of the comparator. A very realistic 10% DTC gain error has also been
included as part of this simulation.

It can be seen from Fig. 3.9 that the un-calibrated PLL fares poorly with a
worst case fractional spur as high as -19dBc, while Fig. 3.10 shows the frequency
spectrum for the calibrated PLL. Figs. 3.11 - 3.13 show the efficacy of the
calibration loop upon application of an offset voltage to the input of the
comparator. As per expectation, the level of the fractional spur decreases with
decreasing offset and an acceptable value is achieved for an offset of 100µV .
Consequently, it can be concluded that there is a need to compensate the effective
offset seen by the comparator with a resolution better than 100µV .

Fig. 3.9. PLL output spectrum for fractional-N
frequency synthesis without DTC gain calibration

Fig. 3.10. PLL output spectrum with DTC gain
calibration enabled and zero offset voltage applied

to comparator

Fig. 3.11. PLL output spectrum with DTC gain
calibration enabled and 1mV offset voltage applied

to comparator

Fig. 3.12. PLL output spectrum with DTC gain
calibration enabled and 250µV offset voltage

applied to comparator



3.2. INTRODUCING A DTC GAIN CALIBRATION LOOP

3

29

Fig. 3.13. PLL output spectrum with DTC gain calibration enabled and 100µV offset voltage applied to
comparator

Applying the above mentioned offset voltage values to the input of the OTA
instead of the comparator yields similar results, confirming the hypothesis
regarding equivalence of VOS,OT A and VOS,C MP while considering comparator
operation in the calibration loop.

Thus the calibration of DTC gain has been performed following a two-step
procedure: First, the effective offset seen by the comparator is calibrated using a
foreground calibration scheme. The PLL operates in Integer-N mode during this
step to completely exclude the DTC gain error. Once the comparator offset is
calibrated, the second step is initiated to make the PLL operate in Fractional-N
mode by turning on the DTC and the background gain calibration loop.





4
ANALOG AND RF CIRCUIT

DESIGN

This chapter aims to provide detailed descriptions of the circuit design of analog
and RF blocks in the PLL.

4.1. DIGITAL TO TIME CONVERTER
As explained in Chapter 2, a constant-slope capacitive DAC-based digital-to-time
converter has been used to aid the Fractional-N frequency synthesis. Its principle
of operation has also been described in Chapter 2. This section provides the design
details of the DTC.

4.1.1. DERIVING NUMBER OF DTC BITS
DTC RESOLUTION
If the resolution of the DTC is ∆t , the phase error due to quantization noise is given
by:

∆ΦDT C = 2π fvco∆t (4.1)

For worst case phase error, fvco can be taken as 2 GHz, which is the maximum
frequency generated by the oscillator.

The rms value of the phase noise due to DTC quantization noise can be
expressed as:

Pn,r ms,d tc =
∆Φ2

DT C

12
(4.2)

and the noise power spectral density is then given by:

Sn,d tc =
Pn,r ms,d tc

fr e f
= ∆Φ2

12 fr e f
= (2π fvco∆t )2

12 fr e f
(4.3)

31



4

32 4. ANALOG AND RF CIRCUIT DESIGN

The specification for the PLL in-band phase noise is Sn,d tc = −110dBc/H z.
Keeping the quantization noise contribution 10dB below the in-band phase noise
and fr e f = 100M H z, the DTC resolution can be obtained as ∆t = 2.75ps.

DTC RANGE
The range of the DTC is the time period of the smallest frequency produced by the
oscillator which is 1 GHz. Hence the DTC range is 1 ns.

The number of DTC bits required to meet the above specifications are:

NDT C bi t s = l og2

( r ang e

r esoluti on

)
= 8.5 (4.4)

A 9 bit DTC has been designed in this work.

4.1.2. SIZING THE CIRCUIT COMPONENTS
The schematic of the DTC has been shown in Fig. 4.1.

Fig. 4.1. DTC schematic

Based on charge redistribution during the two phase operation of the DAC, an
expression defining the relationship between the unit capacitance of the DAC array
Cu , the fixed large capacitance Co and the voltage step Vstep generated by the DAC
at node Vcommon can be defined as:

Vstep = Cu

Co +mCu
.VDD (4.5)

where m = 29.
During the EN high phase, the capacitor bank of the DAC charged to VDD and

the worst case sampling noise is given by V n,sample = kT /Co .
By selecting Vstep = 500µV , the ramp start voltage at node Vcommon ranges

between 1.1 V to 844 mV. By keeping V n,sample = 1
15 Vstep , Co can be computed to

be 3.5 pF. Co and Vstep can be substituted in equation 4.5 to get Cu = 2 f F .



4.1. DIGITAL TO TIME CONVERTER

4

33

The MOS device M1 in the ramp generator of Fig. 4.1 has a long length to
ensure that the ramp is slow enough to accommodate the DTC range. The NMOS
device M2 is sized to be much stronger than the PMOS device P2 in order to bring
the threshold of the threshold comparator to 400mV. This is useful in keeping the
non-linear section of the ramp near the threshold away from the linear range of
operation which is 1.1 V to 844 mV.

4.1.3. SEGMENTATION CONSIDERATIONS IN THE DAC
The capacitive DAC can be designed as a binary weighted DAC or a
thermometer-encoded DAC or in a segmented fashion, which is a combination of
the two. A comparative analysis between binary weighted and
thermometer-encoded DACs is presented in [26]. Briefly, a thermometer-encoded
or unary implementation has a relaxed matching requirement, is not susceptible
to glitches during code transitions and guarantees monotonicity. On the other
hand, in a binary-weighted implementation the switching circuitry, digital control
circuitry and routing complexity are all substantially reduced. Consequently, a
segmented approach promises the best of both worlds.

Following the approach of [26], a MATLAB model has been developed to
simulate various segmentation schemes in a 10-bit DAC. The mismatch in the 2fF
unit capacitors of the DAC has been modelled based on the model provided in
[27]:

σ∆C

C
= 0.7%√

C i n f F
= 0.5% (4.6)

100 Simulations were run taking a more pessimistic case of 1% random
mismatch in the DAC unit capacitors and their consolidated results are presented
in Figs. 4.2 - 4.5.

Fig. 4.2. RMS of 100 simulations for 10-bit unary
DAC

Fig. 4.3. RMS of 100 simulations for 10-bit binary
DAC



4

34 4. ANALOG AND RF CIRCUIT DESIGN

Fig. 4.4. RMS of 100 simulations for 6-bit unary +
4-bit unary DAC

Fig. 4.5. RMS of 100 simulations for 6-bit unary +
4-bit binary DAC

The INL plots for the 10-bit unary and the 10-bit binary DAC exhibit similar
characteristics with their peak INL agreeing with the theoretical value of
0.5σ

p
1024 = 16σ = 0.16LSB . The peak DNLs for the 10-bit unary and the 10-bit

binary also match the theoretical values of σ and 32σ. For the segmentation cases,
the INL behaviour remains similar to the previous two, however, the average
DNL is lower for the 6 bit unary + 4 bit unary DAC.

Taking into account the above results, a 6-bit unary + 3-bit unary architecture
has been chosen for the 9-bit capacitive DAC employed in the DTC. The schematic
of the DTC with the segmented DAC is shown in Fig. 4.6.

Fig. 4.6. DTC schematic with segmented DAC

The basic unit cell of the DAC is made up of the Cu capacitor a buffer. This
makes the LSB. It is interesting to note that the MSB has been made by placing eight
identical unit cells in parallel. Such a configuration is expected to yield favorable



4.1. DIGITAL TO TIME CONVERTER

4

35

device matching.

4.1.4. POST LAYOUT SIMULATIONS
The layout of the DAC unit cell is shown in Fig. 4.7 while Fig. 4.8 shows the
placement of dummy cells added in the layout of the complete DAC array.

Fig. 4.7. Capacitive DAC unit cell comprising of a
MOM cap and a buffer

Fig. 4.8. Placement of dummy cells

The complete layout of the DTC is shown in Fig. 4.9.

Fig. 4.9. Layout of the DTC in a 40nm process

Fig. 4.10 shows the thermal phase noise profile for the DTC while Fig. 4.11



4

36 4. ANALOG AND RF CIRCUIT DESIGN

illustrates the linearity characteristics of the DTC.

Fig. 4.10. Phase noise profile of the DTC

The thermal phase noise of the DTC is 10dB below the targeted in-band phase
noise of the PLL.

Fig. 4.11. Simulated DNL and INL of the DTC

The segmentation scheme used in the DTC is evident in the INL plot of Fig.
4.11, where a ’zigzag’ pattern repeats after every 8 DTC codes.

Power consumed by the DTC is 140µW .

4.2. CHARGE-SAMPLING PHASE DETECTOR
The basic principle of operation of the Charge-sampling phase detector (CSPD)
was covered in chapter 1. Fig. 4.12 shows the circuit diagram of the CSPD.



4.2. CHARGE-SAMPLING PHASE DETECTOR

4

37

Fig. 4.12. Charge-sampling phase detector

4.2.1. PHASE DETECTOR GAIN
An expression for the phase detector gain has been derived for sinusoidal VCO
output in [8] and is given by:

KPD = 2GM AV CORD

Nπ
.si n(0.5ωV COTP ).

si n(φ)

φ
(4.7)

In equation 4.7, GM is the transconductance of the MOS devices M1,2, AV CO is
the amplitude of the VCO output signals OSCP,N , N is the ratio between the VCO
output frequency and the reference frequency, ωV CO is the angular frequency of
oscillations produced by the VCO, TP is the pulse width of the reference pulse and
φ is the phase error between the reference and VCO output.

When the reference pulse is high, the windowed current integration phase is
engaged and phase comparison occurs. During this phase, a drop is observed in
the common mode voltage at the output of the CSPD. This drop is given by:

∆VC M = GM VDC TP

CS
(4.8)

While designing the CSPD, the circuit component values were selected by
accounting for the following considerations:

1. KPD should be sufficiently large in order to suppress the phase noise of loop
components.

2. Loop stability should be maintained and the RDCS pole acts as the dominant
pole and significantly influences the phase margin.

3. The common mode voltage at the output of the CSPD should not fall below
800mV to ensure that the MOS devices M1,2 remain in saturation and the CM
level of the next stage is sufficient.



4

38 4. ANALOG AND RF CIRCUIT DESIGN

4. The differential input pair must not be sized too small in order to prevent
susceptibility to random device mismatch. Additionally, both the flicker and
thermal noise can be reduced by increasing the size of input pair MOS
devices. However, increasing device size also presents a trade-off in the
form of increasing feedthrough of the reference pulse into the oscillator,
causing reference spurs.

Accounting for the above mentioned factors, the circuit component values were
chosen: RD = 50kΩ, CS = 200 f F , GM = 600µS. For AV CO = 550mV , TP = 100ps, VCO
output frequency = 1GHz, reference frequency = 100MHz (N = 10) and small values
of φ, such that si n(φ)/φ= 1, KPD = 0.5V /r ad has been achieved.

The output characteristics of the designed CSPD have been simulated with the
above stated circuit components and are presented in the plot of Fig. 4.13. The
dotted line represents a slope of 0.5 rad/V which matches well with the plot for
small values of φ.

Fig. 4.13. Phase error Vs Output voltage plot for the CSPD

4.2.2. INTRODUCTION OF A RE-SAMPLING PHASE

It can be observed that during phase comparison, the CSPD generates a ripple at
its output even when the PLL is locked. The red curve in Fig. 4.14 shows this ripple
which was produced with the same frequency as the reference. This ripple, despite
being attenuated by the loop filter, would eventually be fed to the VCO control
voltage, thereby creating reference spurs.



4.2. CHARGE-SAMPLING PHASE DETECTOR

4

39

Fig. 4.14. Transient outputs generated by the CSPD with and without the re-sampling circuit for a
locked PLL. The small square-shaped bumps are due to the feedthrough of the VCO having a square

wave output.

The loop filter can be designed to suppress this ripple to a great extent, however
a better solution incorporating re-sampling of the CSPD output has been presented
in [28]. In this thesis, a simpler implementation has been conceived by using a re-
sampling circuit comprising of capacitors CO and switches M3,4 as shown in Fig.
4.15.

Fig. 4.15. Schematic of the CSPD with the re-sampling circuit

The position of the re-sampling phase has been shown in the timing diagram
of Fig. 4.15. Sufficient time gap has been kept between the reference pulse and the
re-sample pulse to account for the DTC shifting of the reference pulse during
fractional-N operation. The value of the re-sampling capacitors CO has been kept
much smaller than CS (around CS /6) to prevent significant voltage drop at the
CSPD output during charge redistribution in the re-sampling phase. The drop in
voltage also reduces the KPD .

The efficacy of the re-sampling circuit can be seen in the transient waveform of
Fig. 4.14 and also in the spectra of Fig. 4.16 and Fig. 4.17.



4

40 4. ANALOG AND RF CIRCUIT DESIGN

Fig. 4.16. Spectrum of the VCO output without
re-sampling

Fig. 4.17. Spectrum of the VCO output with
re-sampling introduced in the CSPD

As seen in Fig. 4.16 and Fig. 4.17, the reference spur has been reduced by
nearly 10dB after incorporating the re-sampling circuit. In the CSPD, RD has been
kept programmable as it acts as a tuning knob to control KPD , which in turn acts as
a tuning knob to control the loop bandwidth.

4.2.3. POST-LAYOUT SIMULATION OF THE CSPD
The layout of the CSPD has been presented in Fig. 4.18

Fig. 4.18. Layout of the CSPD in a 40nm CMOS process



4.3. OTA

4

41

Fig. 4.19. Output noise characteristics of the CSPD

The output noise characteristics of the CSPD have been plotted in Fig. 4.19. The
CSPD consumes a power of 12µW .

4.3. OTA
The OTA in the PLL converts the differential voltage output from the CSPD into a
single-ended current integrated by the loop filter. A folded cascode structure with
differential input and single-ended output has been employed for this purpose.
Fig. 4.20 shows the schematic of the OTA along with its biasing network.

Fig. 4.20. Schematic of the core OTA along with its biasing network

The transconductance of the OTA is given by:



4

42 4. ANALOG AND RF CIRCUIT DESIGN

Gm = gm

1+ gmRS
(4.9)

where gm is the transconductance of the input pair NMOS devices M1,2 and RS

is the value of the degeneration resistance. To enable tuning of the loop bandwidth,
RS has been made programmable by dividing it into 10 sections comprising of both
coarse and fine steps. Fig. 4.21 shows the tunability that can be achieved in the Gm

of the OTA. The fine tuning steps can be seen in the center (tuning range setting
4-8) while the remaing sections in the plot show the coarse steps.

Fig. 4.21. Transconductance of the OTA for different values of the degeneration resistance

The layout of the OTA has been presented in Fig. 4.22

Fig. 4.22. Layout of the OTA in a 40nm process



4.4. VOLTAGE CONTROLLED OSCILLATOR

4

43

The OTA consumes a power of 115µW .

4.4. VOLTAGE CONTROLLED OSCILLATOR
Owing to its compactness and wide frequency tuning range, a ring oscillator (RO)
has been chosen to serve as the oscillator for the PLL.

4.4.1. SELECTING RING OSCILLATOR TYPE
The most simple RO topology is the single-ended (SE) RO comprising of a N-stage
inverter ring as shown in Fig. 4.23. The number of stgaes, N must be odd.

Fig. 4.23. Single-ended RO topology

An approximate expression for the free-running frequency of the SE RO is give
by:

fosc ≈
µe f f We f f

Cox (VDD /2−VT )2

8ηN LVDDCnode
(4.10)

where µe f f is the effective mobility of electron and hole, We f f is the sum of the
widths of the PMOS and NMOS devices in an inverter stage, L is the device length,
Cox is the gate-oxide capacitance per unit area, η is a constant close to unity, Cnode

is the capacitance seen at each node of the ring and VT is the threshold voltage of
the MOS devices. The main drawbacks of the SE RO are its susceptibility to supply
pushing as well as capacitive coupling of interference from other PLL blocks.

A fully differential (FD) RO topology, shown in Fig. 4.24, is much less
susceptible to supply pushing (see KV DD values in table 4.1) and the
common-mode interference from different blocks is also cancelled owing to the
inherent differential nature of the ring. Its free-running frequency is given by:

fosc = 1

2N TD
(4.11)

where TD is delay of each stage and is determined by the load resistor and
capacitor. It can be observed from equation 4.11 that the oscillation frequency of
the FD RO is independent of the supply voltage.



4

44 4. ANALOG AND RF CIRCUIT DESIGN

Fig. 4.24. Fully-differential RO topology

A third RO topology is the pseudo-differential RO, as shown in Fig. 4.25.

Fig. 4.25. Pseudo-differential RO topology

The inverters i nv1 − i nv4 form the main inverters of the ring, however since
the number of inverters is even, the ring suffers from latch-up. Auxiliary inverters
i nv5 − i nv8 are included to prevent latch-up. The strength of the auxiliary
inverters with respect to the main inverters must be carefully chosen. If the
auxiliary inverters are weak, the latch-up issue will not be resolved and if they are
too strong, latch-up problem might persist in the case of device mismatch.
Additionally, the auxiliary inverters also account for power consumption and
must not be made excessively large. In the following simulations in this section,
the strength of the auxiliary inverters has been chosen to be 0.7 times that of the
main ones.



4.4. VOLTAGE CONTROLLED OSCILLATOR

4

45

It must be noted that the pseudo-differential RO remains susceptible to supply
pushing while the common-mode interference is cancelled.

A comparative study for different RO types has been compiled in [29]. Results
presented in this study have been corroborated by designing and simulating the
different RO types having a free-running frequency of 800 MHz.

Phase noise simulation results have been presented in Fig. 4.26 and 4.27.

Fig. 4.26. Phase noise profile of different RO
topologies

Fig. 4.27. Phase noise profile of different RO
topologies at the PLL output after being shaped by

the loop transfer function

For a PLL designed to have a loop bandwidth of 4 MHz, it can be observed that
SE and pseudo-differential types fair better that the FD RO for the out of band noise
performance but not for the in-band noise performance. This is because flicker
noise up-conversion does not take place in the FD RO if its input pair transistors
remain in triode region whereas in the inverter based rings, the flicker noise is also
directly up-converted. On the other hand, the thermal noise regime of the FD RO
experiences a degradation due to its limited output voltage swing.

Since the out of band phase noise of the oscillator is more important in a PLL
circuit, a pseudo-differential RO has been chosen. It promises cancellation of
common-mode interference and shows less supply sensitivity (see table 4.1 for
KV DD values) when compared to the SE RO.

Table 4.1 quantitatively summarizes the performance figures for each RO type.

Table 4.1: Summary of performance metrics for different RO types

RO type jitter(rms,ps) @800 MHz Power(µW ) FoM KV DD (GHz/V)
(offset 1KHz to 40MHz)

Single-ended 1.56 481 163.2 1.47
Fully-differential 5.65 2035 148 0.14
Pseudo-differential 2.2 810 159 1.2

1



4

46 4. ANALOG AND RF CIRCUIT DESIGN

4.4.2. MAKING THE OSCILLATOR TUNABLE
In order to achieve tunability of the RO, the current starvation approach is followed
where the frequency of oscillations is controlled by controlling the supply current
of the inverters. In this case, a current-starved RO is implemented by inserting
several PMOS devices acting as current sources between the actual voltage supply
node and the VDD node of the inverters. This circuit is presented in Fig. 4.28 and it
serves as the tuning bank for the oscillator.

Fig. 4.28. Schematic of the current-starved VCO

The PMOS current sources have been grouped into different banks. There is a
Bias PMOS devices responsible for turning on the VCO. The PVT and acquisition
(ACQ) banks collectively provide a frequency tuning range of 1-2 GHz with a 12
bit resolution. There is also a tracking bank where the control voltage from the
loop filter output is fed. Tracking A PMOS device provides a KV CO of 20 MHz/V
at 1 GHz while it dips to 4 MHz/V at 2 GHz. This dip in KV CO is seen due to a
decrease in the relative strength of the tracking A PMOS as other current sources in
the bank are switched ON. To maintain the loop bandwidth and the loop stability,
a second tracking B PMOS has been employed. The tracking B PMOS is sized
larger and provides a KV CO of more than 15 MHz/V at 2 GHz. It is also possible to
enable both the tracking PMOS devices together, in which case their KV CO values
will add up and increase the loop bandwidth. However, both tracking devices
must not be enabled at lower VCO frequencies (around 1 GHz) since the increase
in loop bandwidth is substantial at these frequencies and could compromise the
loop stability.

1FoM = -(PN@∆ f ) + 20log10( fo /∆ f ) - 10l og10(PowerDC /1mW )



4.4. VOLTAGE CONTROLLED OSCILLATOR

4

47

4.4.3. POST-LAYOUT SIMULATIONS
Fig. 4.29 shows the complete layout of the VCO.

Fig. 4.29. Layout of the VCO in a 40 nm process

The post-layout phase noise profile for the RO oscillating at 2 GHz has been
plotted in Fig. 4.30.

Fig. 4.30. Phase noise profile of the RO oscillating at 2 GHz

The oscillator consumes a power of 600µW .



4

48 4. ANALOG AND RF CIRCUIT DESIGN

4.5. COMPARATOR
The comparator plays an essential role in the DTC gain calibration procedure by
detecting the polarity of phase error at the output of the CSPD and feeding it to the
digital calibration circuitry. For this purpose, a StrongARM latch has been used to
serve as the comparator (Fig. 4.31). High operating speed and zero static power
consumption are the main merits of this comparator architecture. Additionally,
its input-referred offset can be primarily attributed to the input pair, making it a
suitable choice for incorporating foreground calibration schemes. The operating
principle of the StrongARM latch has been covered extensively in [30] and a brief
overview has been presented in the following section.

4.5.1. OPERATING PRINCIPLE OF THE STRONGARM LATCH

Fig. 4.31. Schematic of the StrongARM latch based comparator

The comparator in Fig 4.31 comprises of a differential input pair N1,2, cross
coupled inverters N3 −P1 and N4 −P2 and switches N5,P3 ∼ P7. The operation of
the StrongARM latch can be explained in the following three phases:

1. Reset phase: In the reset phase, the clock signal Vclk is low and the nodes
Vd1,d2, Vout_p,out_n and Vt ai l are precharged to VDD through switches P3 ∼ P7.

2. Amplification phase: When the clock signal goes high, the input pair NMOS
devices turn on and draw a differential current proportional to Vi n_p −Vi n_n .
This results in the development of an amplified differential voltage Vd1 −Vd2

at the drain nodes of the input pair which increases with time. The
amplification process can be described using the equation:



4.5. COMPARATOR

4

49

|Vd1 −Vd2| =
gm1,2|Vi n_p −Vi n_n |t

Cd1,d2
(4.12)

where gm1,2 is the transconductance of the input pair NMOS devices and
Cd1,d2 is the capacitance at the drain nodes of the input pair. A common
mode current IC M is also drawn by the input pair which leads to a drop in
the voltages Vd1 and Vd2. The amplification phase lasts till Vd1 and Vd2

remain above VDD −Vth_N , Vth_N being the threshold voltage of the NMOS
devices N3,4. The amplification time can thus be approximately estimated by
tamp = (Cd1,d2/IC M )Vth_N . This can be substituted in equation 4.12 to get the
amplification gain:

Av ≈ gm1,2VT H_N

IC M
(4.13)

3. Regeneration phase: The regeneration phase commences as Vd1 and Vd2 fall
below VDD −Vth_N , turning on the NMOS cross-coupled devices N3,4 and
thus leading to a drop in voltage level at the nodes Vout_p,out_n . Eventually,
Vout_p,out_n drop to a value VDD − |VT H_P | thereby turning on the PMOS
cros-coupled pair P3,4. The positive feedback of the inverters then pulls one
output to zero while the other remains at VDD .

The comparator consumes dynamic power due to the charging and
discharging of capacitances at nodes Vd1,d2 and Vout_p,out_n and is given by
fC K (2Cd1,d2 +Cout_p,out_n)V 2

DD , assuming that Cd1,d2 discharge nearly to ground
while Cout_p,out_n discharge to VDD /2. The clock frequency for the comparator is
same as the reference clock frequency of 100 MHz.

Transient simulation results showing the comparator settling behavior for
differential input voltage of 10µV are presented in Fig 4.32. It can bee seen that the
comparator speed is better than 1ns.

Fig. 4.32. Transient simulation of the designed comparator



4

50 4. ANALOG AND RF CIRCUIT DESIGN

Table 4.2: Comparator device sizing

Device Sizing

N1/N2 8u/800n
N3/N4 1u/120n
P1/P2 2u/120n
N5 1u/120n
P3 ∼ P7 1u/120n

Table 4.2 shows the device sizing for the designed comparator. The input pair
has been designed large enough so as to minimize input-referred offset due to
random device mismatch. The switches have been sized to support the speed
requirements dictated by the 100 MHz comparator clock. Subsequent sections
discuss the noise and offset seen in the designed comparator.

4.5.2. COMPARATOR NOISE

The primary contributors of input-referred noise in the StrongARM latch are the
input pair NMOS devices. Some share of the noise can also be attributed to the kT

C
noise injected due to the switching action of P5 and P6. The noise from other circuit
components is small since they come into play much later in the decision making
process of the comparator.

It is not straightforward to determine the noise of a comparator. This section
describes a technique used to estimate the input-referred comparator noise. With
a fixed differential voltage applied at the input of the comparator, several transient
simulations are run with transient noise enabled. Due to noise, the comparator will
not make the same decision every time, despite the input voltage being fixed. This
effect can be quantified as the bit error rate (BER). The differential input is swept
from 100µV to 1.5mV , and a BER profile is plotted. As can be predicted, the BER
must drop as the differential input is increased. This BER plot can be approximated
as a Gaussian probability distribution [30]. The differential voltage corresponding
to the 16% BER point forms the σ of the noise.

Fig. 4.33 shows the BER profile for the designed comparator. 100 transient
simulations were run for each differential input voltage applied to the RC extracted
version of the comparator.



4.5. COMPARATOR

4

51

Fig. 4.33. Comparator BER vs applied differential input voltage

From the plot of Fig. 4.33, it can be seen that the input-referred comparator
noise is about 800µVr ms . Assuming that this noise gets integrated over a bandwidth
of 100 MHz, which is the reference frequency of the sub-sampling PLL, the noise
PSD can be obtained as 6.4 f V 2/H z. This voltage noise PSD when referred to the
PLL output shall be shaped by the transfer function |Hcl (s)|2

(
1+sCS RD

KPD

)
, which is

same as that for the CSPD output noise (equation 3.10). It can be observed from the
full chip phase noise simulation plot of chapter 6 that this noise level is acceptable
as it does not limit the in-band phase noise of the PLL.

4.5.3. COMPARATOR OFFSET

Random device mismatch in the input pair NMOS devices acts as the primary
contributors to the comparator input-referred offset. The MOS devices forming
the cross-coupled inverters turn on much later in the comparator decision making
process and hence their contribution is small.

In order to determine the input-referred offset in the designed comparator,
Monte Carlo Sampling has been performed with the simulation setup shown in
Fig. 4.34.



4

52 4. ANALOG AND RF CIRCUIT DESIGN

Fig. 4.34. Simulation setup to determine comparator input-referred offset

One of the comparator inputs is tied to the input common mode voltage VC M ,
while a slowly increasing ramp voltage Vr amp is applied to the other input terminal.
As Vr amp approaches VC M , the comparator output toggles. In an ideal comparator,
the output would toggle when Vr amp is exactly equal to VC M . However, during
Monte Carlo Sampling, device mismatch would induce deviations in the value of
Vr amp for which the comparator output toggles. These deviations reflect the offset
of the comparator. During the Monte Carlo Sampling, VC M value is set to 800mV ,
which is same as the common-mode level fed to the comparator input when it is
plugged-in at the output of the CSPD (Fig. 3.4).

Fig. 4.35. Comparator input-referred offset (200 Monte Carlo samples)

From the histogram plot of Fig. 4.35, it can be observed that the comparator is
expected to show a worst case offset of 10mV .



4.5. COMPARATOR

4

53

4.5.4. FOREGROUND OFFSET CALIBRATION SCHEME

The concept of effective offset VOS,EF F , which is the cumulative offset of the
comparator and OTA experienced by the DTC gain calibration loop, was
explained in section 3.2. Since the OTA input pair is sized larger than the
comparator input pair, the input-referred OTA offset is not expected to be more
than the input-referred comparator offset, which is 10mV . In the worst case both
OTA and comparator offsets can add up and hence VOS,EF F shall become as large
as 20mV .

As has been shown in section 3.2, the DTC gain calibration loop can not tolerate
an effective offset of more than 100µV . Therefore, there is a need to implement a
foreground offset calibration mechanism having a range of ±20mV and a resolution
of 100µV .

An offset cancellation method is presented in [30] which involves creating
asymmetry in the capacitances Cd1 and Cd2 at the drain nodes of the input pair
NMOS devices to cancel out the random device mismatch in the input pair.
Considering asymmetry in Cd1 and Cd2, the built-in offset in the comparator can
be estimated as [30]:

∆V =
(

Cd1

Cd2
− Cd2

Cd1

)
.
VT H_N

2
(4.14)

The schematic of Fig. 4.36 illustrates a technique used to create asymmetry in
the capacitances seen at nodes Vd1 and Vd2. PMOS devices P8 and P9 have been
incorporated to behave as voltage controlled capacitors (or varactors) as their gate
voltages are varied by resistive digital to analog converters (RDACs). A similar
approach can be found in literature [31], where the asymmetry in capacitance is
created at the output nodes of the comparator Vout_p and Vout_n . However, in this
work the asymmetry has been created at the drain nodes of the input pair to make
its effect more profound in the decision making process of the comparator. A wider
offset cancellation range can thus be provided for a given size of P8 and P9.

The foreground calibration procedure begins with clocking the comparator for
a zero differential input voltage and feeding the comparator decision to the digital
control block. Based on the polarity of the comparator output, the digital control
block selects one of the RDACs and tunes the varactor until the comparator
decision toggles. It is important to note that the targeted offset resolution to be
calibrated is about 100µV , while the input-referred noise level of the comparator is
800µVr ms . It is thus necessary to employ an approach where the comparator
decisions sampled by the digital block are fed to an accumulator in order to
gradually retrieve the offset information buried beneath the comparator noise.
Details of the digital control block used in the foreground procedure are presented
in chapter 5.



4

54 4. ANALOG AND RF CIRCUIT DESIGN

Fig. 4.36. Schematic of the comparator with offset calibration mechanism

For a PMOS device sized as 1u/1u, the variation in the gate to source
capacitance for gate volatge swept between VDD = 1.1V and zero has been plotted
in Fig. 4.37. Both drain and source of the PMOS device have been tied to VDD .

Fig. 4.37. PMOS capacitance vs gate voltage for device W/L = 1u/1u

For a 10 bit resolution in the RDAC, a step size of 1aF can be produced in
the varactor for either high or low values of gate voltage. For the moderate gate
voltages, the capacitance variation is quite steep and a step size of about 20aF
is produced. These step sizes can be substituted in equation 4.14 along with the
node capacitance values Cd1,d2 = 40 f F (including the RC extracted parasitics). For
VT H_N = 400mV , equation 4.14 yields best case and worst case offset resolution of
10µV and 200µV respectively. The RDACs can be appropriately programmed by



4.5. COMPARATOR

4

55

the digital block such that the varactors are swept in regions of finer step sizes
during foreground calibration.

4.5.5. RDAC DESIGN
Monotonicity in the DAC is essential to ensure success of the foreground
calibration procedure. In addition to being monotonic, the DAC must also have a
high resolution. The implementation of a high resolution DAC (10 bit DAC in this
case) can be facilitated by choosing a segmented architecture so as to reduce the
number of switches and control circuitry. A review of segemented DACs is
presented in [32]. A segmented RDAC architecture possessing intrinsic
monotonicity [33] has been implemented. Since the implementation comprises of
unary resistive ladders, it also promises good linearity [27]. The main concept of
this architecture is illustrated with the help of a 6 bit RDAC shown in Fig. 4.38.

Fig. 4.38. An intrinsically monotonic segmented RDAC [33]

The RDAC is constructed using a 3 bit coarse unary ladder (MSB ladder)
followed by a 3 bit fine unary ladder (LSB ladder). The coarse ladder contains 2K

MSB resistors while the fine ladder contains 2K − 1 LSB resistors. All resistors in
Fig. 4.38 are of equal value except the topmost resistor in the coarse ladder, which
has a value of R/2K , with K being equal to 3 in this implementation. Since there
are no buffers in this implementation, the LSB ladder when connected parallel to
one of the MSB resistors tends to load it and causes a drop in voltage equal to one
LSB, accross the chosen MSB resistor. The R/2K resistor has been added in the
coarse ladder to compensate for the one LSB voltage drop. The desired output
voltage can be obtained by appropriately selecting the voltage taps in the two
ladders.

Schematic of the 10 bit RDAC designed as part of this work is presented in Fig.
4.39.



4

56 4. ANALOG AND RF CIRCUIT DESIGN

Fig. 4.39. 10 bit segmented RDAC

The coarse and fine ladders are made up of (32 + 1) and 31 resistors
respectively. Control and switching circuitry has been designed using analog
MUXes. The analog MUX itself has been designed using transmission gates, as
shown in the schematic of Fig. 4.40. In order to control the MUXes, ’one-hot’
encoding has been used, hence 32 select lines have been provided to each of the
MUXes.

Fig. 4.40. Schematic of the analog MUX used

The value of R is chosen as 2kΩ, while the resistance of the transmission gates
in their ON state is about 100Ω.



4.5. COMPARATOR

4

57

4.5.6. FOREGROUND CALIBRATION SIMULATION RESULTS

To simulate the foreground calibration procedure, an external positive offset
voltage resembling VOS,EF F was applied to the positive terminal Vi n_p of the
comparator shown in the schematic of Fig. 4.36. As per expectation, the RDAC
attached to the circuit node Vcal_p shall be selected by the digital control block and
the corresponding varactor connected to this node shall be tuned to achieve offset
cancellation. In order to co-simulate the digital control RTL with the analog
comparator and RDACs, a mixed-signal simulation was performed with transient
noise enabled.

Fig. 4.41. Foreground offset calibration in comparator

The plot of Fig. 4.41 shows how Vcal_p is modulated by the digital logic in
order to cancel the externally applied offset voltage. The voltage Vcal_n remains
unchanged since the offset polarity was positive with respect to the positive input
terminal of the comparator.

4.5.7. COMPARATOR AND RDAC LAYOUT

The layout of the comparator and RDAC are shown in Fig. 4.42 and Fig. 4.43
respectively.



4

58 4. ANALOG AND RF CIRCUIT DESIGN

Fig. 4.42. Layout of the StrongARM latch comparator in a 40nm CMOS process

Fig. 4.43. Layout of the RDAC in a 40nm CMOS process

4.6. CLOCK GENERATION BLOCK
A complex network of clocks is required to support proper functioning of the entire
PLL chip. Fig. 4.44 shows the various clocks required by different system blocks,
while Fig. 4.45 illustrates the waveforms showing phase relationships among the
different clocks.



4.6. CLOCK GENERATION BLOCK

4

59

Fig. 4.44. Block diagram showing various clocks required by the system

Fig. 4.45. Waveforms of the system clocks

The DT C i n clock is also fed as the digital clock. The digital logic utilizes a
positive edge triggered flip-flop to sample the comparator decision. In Fig. 4.45, the
re-sampling clock phase is the CSPD resampling phase and is shown as an active
high signal for simplicity. It is inverted to drive the PMOS switches involved in the
re-sampling of the CSPD output. The DTC operation has been simulated over PVT
corners for all DTC codes to ensure that the DTC output pulse is always available in
the positive half-cycle of the DTC i n signal. This guarantees that the CSPD output
is correctly re-sampled. The comparator is clocked right after the re-sampled CSPD
output is available.

The hardware implementation of the clock generation block is presented in Fig.



4

60 4. ANALOG AND RF CIRCUIT DESIGN

4.46.

Fig. 4.46. Hardware implementation of the system clocks



5
RTL DESIGN

This chapter discusses the design of digital RTL blocks which are required to
support key functionalities of the PLL chip. Fig. 5.1 shows the top level block
diagram of the digital logic blocks and their interfaces.

Fig. 5.1. Top level block diagram of the digital logic

The RTL implementation comprises of three primary blocks:

1. Foreground calibration block: This block contains the logic required to
calibrate the offset seen by the comparator before it can be used for
background calibration.

61



5

62 5. RTL DESIGN

2. DTC controller: This block generates DTC codes required to produce
fractional frequency tones based on the programmed FCW and KDT C . The
background calibration logic is also embedded within this block. Since the
DTC is designed using unary segmentation, a binary to thermometer
encoder has been employed to interface the DTC controller with the DTC.

3. Serial Peripheral Interface (SPI): The SPI slave block has been designed to
interface with an off-chip master that programs the chip. This interface can
also be used to read out information from the status and debug registers
within the chip. Communication is achieved using a protocol involving only
three signals: a) a clock (SPI clk), b) MOSI (Master-out Slave-in) and c) MISO
(Master-in Slave-in)

The entire digital block (except the SPI slave) works on a 100 MHz clock signal,
C LK . The RST signal is an active low asynchronous reset. The SPI clock frequency
used is typically of the order of 1 MHz.

Subsequent sections provide details pertaining to the implementation of the
foreground calibration logic and the DTC controller block.

5.1. FOREGROUND CALIBRATION
The circuit blocks and the interfaces involved in foreground calibration are
illustrated in Fig. 5.2. The implementation details of the comparator, varactor and
the RDAC have been covered in section 4.5. This section focuses on digital control
logic used during foreground calibration.

Fig. 5.2. Top level block diagram of the digital logic



5.1. FOREGROUND CALIBRATION

5

63

The core logic used during foreground calibration (see Fig. 5.3) comprises of a
digital accumulator which has been implemented in the form of a signed counter.
Since the targeted comparator offset compensation resolution is smaller than its
input-referred noise, it is important to accumulate the comparator decisions in
order to faithfully retrieve the offset information. The polarity of the comparator
decision dictates whether the counter should be incremented or decremented. The
counter value is compared with a pre-programmed threshold value, N using a
digital threshold comparator. The threshold comparator has been designed to
detect threshold values of +N (for positive comparator offset) and −N (for
negative comparator offset). Based on the counter full condition detected by the
threshold comparator, the RDAC control logic is triggered to first select the
appropriate RDAC and then alter its code one LSB at a time for every subsequent
counter full detection. The counter is also cleared after every counter full
condition is detected.

Fig. 5.3. Foreground calibration core logic

It is critical to program a suitable value for the threshold N . A very small value
could lead to premature decision making leading to erroneous calibration. In the
simulation results shown in Fig. 4.41, a threshold value of N = 40 has been chosen.
The foreground calibration procedure must be commenced after integer-N locking
has been achieved by the PLL. An externally triggered "Start" signal (Fig. 5.2) is
used for this. Once the comparator offset has been calibrated, the foreground
calibration logic must turned off, with the updated RDAC codes preserved for the
remaining PLL operation. This ensures that a properly calibrated comparator is
used during the background calibration procesure. A programmable timer (see
Fig. 5.2) has been included to stop the foreground calibration logic. The plots in
Fig. 4.41 reveal that 100µs is sufficient time to complete the foreground calibration
procedure.

The algorithm used during the foreground calibration procedure is presented
in Fig. 5.4.



5

64 5. RTL DESIGN

Fig. 5.4. Foreground calibration algorithm

5.2. DTC CONTROLLER AND BACKGROUND DTC GAIN

CALIBRATION

This section provides a description of the DTC controller and the implementation
of DTC gain calibration. The block diagram of the complete DTC controller and
the background calibration logic is presented in Fig. 5.5. The operating principle
of the basic DTC modulator has been presented in chapter 2.



5.2. DTC CONTROLLER AND BACKGROUND DTC GAIN CALIBRATION

5

65

Fig. 5.5. Block diagram of the DTC controller and the background calibration logic

The need for calibrating the DTC gain has been explained in section 3.2. Digital
calibration techniques involving the Least Mean Squares (LMS) algorithm have
often been used in literature [25], [34], [18]. As a first step towards implementing
the LMS algorithm, a given accumulated fractional shift, Φe (n), must be correlated
to the CSPD output polarity (also referred to as the error polarity) detected by the
comparator for that value of Φe (n). It must be noted that there is delay of a few
reference clock cycles between the generation of Φe (n) and the detection of error
polarity arising from Φe (n). This correlation can be achieved by inserting a delay
element afterΦe (n), represented by the Z−n block in Fig. 5.5. Although it is possible
to estimate the value n corresponding to the delay, owing to the complexity of
the background calibration loop, this delay has been kept programmable. This
programmable delay has been realized in hardware by using a chain of flip-flops
with their outputs connected to a MUX, as shown in Fig. 5.6. The MUX select lines
can be controlled to achieve programmability in the delay.

Fig. 5.6. Programmable delay stage used for correlation



5

66 5. RTL DESIGN

The correlated Φe (n) is passed to a 1st order IIR filter (Fig. 5.7) which rejects
non-dc components post correlation. The z domain transfer function of the 1st
order IIR filter is given by:

Y (z)

X (z)
= H(z) = λ

1− (1−λ)z−1 (5.1)

A first order approximation of the s domain transfer function can be obtained
from the z domain transfer function by replacing z = 1+ s

fr e f
to get:

H(s) =
1+ s

fr e f

1+ s
λ fr e f

(5.2)

Thus the -3dB bandwidth of the IIR filter is given by:

f−3dB = λ

2π
fr e f (5.3)

For λ= 2−8 and fr e f = 100M H z, a bandwidth of 62kH z is obtained. λ has been
implemented as a programmable parameter.

Fig. 5.7. 1st order IIR filter

In order to further control the bandwidth and hence the settling time of the
calibration loop, the IIR filter output is passed through an accumulator whose
integration step is controlled using the programmable parameter µ (see Fig. 5.5).
The DTC code generated by the digital logic (including multiplication of gain
correction term) has m bits with m > 9. The 9 most significant bits are directed
towards the DTC while the remaining bits form the quantization error. To
improve the phase wrapping accuracy, this error is accumulated and appended to
subsequent DTC codes.

The digital DTC gain calibration loop has been simulated for the PLL with the
designed 9 bit DTC having tLSB = 1.525ps and producing a fractional frequency
tone at 1.601M H z. Hence the ideal value of the DTC gain should be
KDT C = Tvco/tLSB = 410. However, in order to test the robustness of the calibration



5.2. DTC CONTROLLER AND BACKGROUND DTC GAIN CALIBRATION

5

67

loop, DTC gain errors of 10% and 20% have been applied. Based on the variation
of DTC range over corners (see Table 3.2), a 20% error is a pessimistic case. The
calibration loop settles well within 100µs even for the case of 20% error. The KDT C

settling curves have been plotted for λ= 2−8 and µ= 2−13 in Fig. 5.8.

Fig. 5.8. Transient simulation results showing KDTC settling

Larger values for λ and µ reduce the KDT C settling time but tend to render the
background calibration loop unstable, thereby preventing KDTC from settling to a
constant value. Although not implemented in this design, the settling time could
be improved by exploiting a gear-shifting mechanism where the loop bandwidth is
initially kept high with large λ and µ which are eventually reduced to lower values
to ensure stability.

Fig. 5.9. Transient simulation results showing frequency settling

Fig. 5.9 shows the transient plot corresponding to the frequency settling profile
for the background calibration loop simulated with a 10% KDTC error.





6
FULL CHIP LAYOUT AND

SIMULATION RESULTS

This chapter first presents the layout of the complete PLL chip which was carried
out in a 40nm, 1.1V CMOS process. It then provides simulation results showing the
PLL performance in both Integer-N and Fractional-N modes. Finally, a comparison
has been made with the state-of-the-art.

6.1. CHIP LAYOUT

The complete chip layout containing all the PLL blocks is shown in Fig. 6.1. The
core chip area excluding the I/O drivers and decoupling capacitors is 0.15mm2.
Fig. 6.2 shows the I/O drivers and the different power domains used.

There is coupling of noise as well as signals among the different PLL blocks via
the substrate. This can prove detrimental to the operation of the PLL. To prevent
this coupling, the different PLL blocks have been placed within separate deep N-
wells. The ’NTN’ layer has also been placed between the deep N-wells to enhance
the resistivity of the Silicon substrate. Since the VCO is most vulnerable to this
coupling, an AC ground ring is placed all around it an connected to an AC ground
pad on the padring.

69



6

70 6. FULL CHIP LAYOUT AND SIMULATION RESULTS

Fig. 6.1. Layout of the complete PLL system.

Fig. 6.2. Chip I/Os and power domains.



6.2. POST-LAYOUT SIMULATION RESULTS

6

71

6.2. POST-LAYOUT SIMULATION RESULTS
This section presents the post-layout simulation results for the PLL chip.

6.2.1. PLL UNDER INTEGER-N OPERATION
Simulations have been performed for an Integer-N channel of 2 GHz. First, the
frequency settling behaviour of the loop has been presented in Fig. 6.3. This is
followed by plotting the spectrum of the VCO output signal after the PLL locked
condition has been achieved (Fig. 6.4).

Fig. 6.3. Transient plot showing frequency settling when the PLL is operated in the Integer-N mode.
During the first 3µs, SPI registers were programmed to tune the VCO close to 2 GHz.

Fig. 6.4. Spectrum of the VCO output signal at 2 GHz.

Reference spur level of -76 dBc can be seen in Fig. 6.4.



6

72 6. FULL CHIP LAYOUT AND SIMULATION RESULTS

6.2.2. PLL UNDER FRACTIONAL-N OPERATION
Simulations have been performed for a Fractional-N channel of 2.001 GHz. The
fractional-N channel has been chosen close to an Integer-N channel to observe the
worst-case fractional spurs produced. Fig. 6.5 shows the frequency settling plot as
the PLL locks-on to a Fractional-N channel.

Fig. 6.5. Transient plot showing frequency settling when the PLL is operated in the Fractional-N mode.
During the first 3µs, SPI registers were programmed to tune the VCO close to 2 GHz. In the shown

plot, the PLL first locks on to the integer-N channel, and then the DTC is switched on for Fractional-N
synthesis. However, it is also possible to directly synthesize fractional frequencies.

Fig. 6.6. Spectrum of the VCO output signal at 2.001 GHz.

Fig. 6.6 shows the spectrum of the VCO output signal at 2.001 GHz. The worst
fractional spurs of -53 dBc are produced at 2 GHz and 2.002 GHz.



6.2. POST-LAYOUT SIMULATION RESULTS

6

73

6.2.3. PLL PHASE NOISE
The phase noise of the PLL was computed by performing periodic steady-state
(PSS) and periodic-noise (pnoise) simulations in Cadence Virtuoso. With the aid of
equation 3.10, the phase noise contributions from individual PLL blocks referred
to the PLL output are computed and plotted in Fig. 6.7.

Fig. 6.7. Phase noise contributions of the PLL blocks for the PLL producing a 2 GHz VCO output
signal.

The jitter contribution from each PLL block has been computed by using
equation 3.13 and tabulated in Table 6.1.

Table 6.1: PLL Jitter contributions

Block Ji t t err ms (fs)

VCO 890
DTC (quantization noise) 510
DTC (thermal noise) 550
CSPD 30
Ref Buffer 160
OTA 60
Loop filter 40

Total 1186

The rms sum of jitter from the in-band components is 780 fs while that from the



6

74 6. FULL CHIP LAYOUT AND SIMULATION RESULTS

VCO is 890 fs. Thus, it can be seen that the loop bandwidth of 10 MHz is optimized
to ensure equal jitter contribution from both the in-band and out-of-band (VCO)
components.

6.2.4. PLL POWER CONSUMPTION
Table 6.2 illustrates the contribution of each PLL block towards the power
consumption. As expected, a major chunk of the power consumption is attributed
to the VCO.

Table 6.2: Power consumption of the PLL

Block Power (µ W)

VCO 600
DTC 140
CSPD 12
Ref Buffer 100
OTA 115
Loop filter 10
Digital 205

Total 1182

Fig. 6.8 shows the % distribution of power across the chip.

Fig. 6.8. Distribution of power consumed by the chip components.

6.3. COMPARISON WITH THE STATE-OF-THE-ART
Table 6.3 summarizes the comparison drawn between the PLL designed as part of
this thesis and other recently published state-of-the-art Fractional-N PLLs
employing a ring oscillator.



6.3. COMPARISON WITH THE STATE-OF-THE-ART

6

75

Table 6.3: Comparison with State-of-the-art RO-based Fractional-N PLLs

This work ISSCC’22 ISSCC’21 ISSCC’20 JSSC’20 JSSC’19
C. Hwang [12] H. Park [13] T. Seong [15] Y. Zhang [16] A.Santiccioli [17]

Architecture CSPLL DPLL DPLL DPLL CP PLL MDLL

Technology 40nm 65nm 65nm 65nm 40nm 65nm

fOU T (GHz) 1 to 2 4.4 to 5.4 5.2 to 6 4.5 to 6 1.67 to 3.12 1.6 to 3.0

Freq. resolution (kHz) 6.1 6.1 3.1 3.1 0.1 1960

FREF (MHz) 100 100 100 100 50 100

Worst frac. spur (dBc) -53 -60 -63 -58 -47 -52

Ref. spur (dBc) -76 -64 -77 NA -67 -56

rms jitter (fs) 1186 188 365 648 2260 397
(1k to 100M) (1k to 30M) (10k to 30M) (1k to 30M) (1k to 100M) (30k to 30M)

PN@1MHz (dBc/Hz) -116 -133.4 -128.8 -124.9 -103.9 -122.4

Power (mW) 1.18 15.67 9.27 9.88 4.85 2.5

FoM j i t ter (dB) -237.8 -242.6 -239.1 -233.8 -226.1 -244

Area (mm2) 0.15 0.139 0.146 0.108 0.086 0.0275
1 2

The above comparison shows that the PLL designed as part of this thesis
consumes the lowest power while achieving a decent Figure of Merit. The
reference spur level is comparable to the lowest reference spur level reported
while the fractional spur remains 10dB higher than the lowest reported fractional
spur level.

The next chapter discusses a few improvements that can be made in the system
to achieve a better performance.

1FoM j i t ter = 20log10( j i t terr ms /1s)+10l og10(powerDC /1mW )
2PN has been normalized to 1 GHz





7
CONCLUSIONS AND FUTURE

SCOPE

A DTC-based subsampling Fractional-N PLL has been designed as part of this
thesis. The PLL employs a high-gain charge-sampling phase detector which
greatly suppresses the loop noise arising from the OTA, loop filter and the phase
detector itself. The charge-sampling nature of the PLL also aids in reducing the
reference spur levels without compromising the jitter performance of the PLL. To
enable fractional-N frequency synthesis, a DTC has been inserted in the reference
path to facilitate phase modulation of the reference to align with the fractional
VCO tone. A highly linear DTC architecture has been chosen to ensure low levels
of fractional spurs. To ensure robust PLL operation in the presence of PVT
variations, a background DTC gain calibration technique has been introduced.

The Fractional-N PLL utilizes a 100 MHz reference and produces an output
frequency range of 1 to 2 GHz while consuming a power of 1.18 mW. From
simulations, it can be seen that the PLL has a reference spur level of -76 dBc and
the worst fractional spur level of -53dBc. The PLL achieves a Figure of Merit
(FoM j i t ter ) of -237.8 dB.

7.1. FUTURE SCOPE
This section provides a brief overview of the improvement points that can be
applied to future versions of the PLL chip.

7.1.1. REDUCTION OF FRACTIONAL SPURS
The PLL produces fractional spurs having a relatively high level when compared
to the lowest reported fractional spur level in literature. The fractional spur level
can be reduced in this PLL system by using a 2nd or higher order ∆Σ modulator
(DSM) in the DTC controller (see Fig. 2.3) to produce more randomness in the DTC

77



7

78 7. CONCLUSIONS AND FUTURE SCOPE

code, thereby reducing the spur level. However, increasing the order of the DSM
also requires an increase in the dynamic range (DR) of the DTC, as given by [35]:

DRDT C = 2n−1TV CO (7.1)

where n is the DSM order. Thus, a 2nd-order DSM requires a DR of 2TV CO . A
twofold increase in the dynamic range can be achieved by either reducing the
slope of the DTC ramp signal to half or by increasing the range of the DTC ramp
start voltage by two times. However both of these approaches pose limitations.
While it would not be possible to slow down the DTC ramp due to the tight
timing requirements of the DTC, increasing the range of ramp start voltage would
introduce more nonlinearity in the DTC operation.

To meet the DR requirements of a 2nd-order DSM, the VCO can be designed
to operate at twice the frequency (without any change in the PLL FoM), thereby
reducing TV CO to half its present value. This approach also ensures that no design
changes are required in the DTC.

7.1.2. INCREASING REFERENCE FREQUENCY TO IMPROVE PLL
FIGURE OF MERIT

In this subsection, the impact of increasing the reference frequency on the PLL
Figure of Merit is considered. A frequency doubler (multiplier) can be designed
without substantially increasing the system noise or power [25]. Based on the
individual phase noise (Fig. 6.7) and jitter contributions (Table 6.1) of the PLL
blocks, the DTC and the VCO can be identified as the dominant in-band and
out-of-band noise sources respectively.

First considering the in-band noise, it can be seen from equation 4.3 that the

DTC quantization noise Sn,DT C ∝ ( fV CO .∆tDT C )2

fr e f
where ∆tDT C is the DTC resolution.

Doubling the reference frequency fr e f would result in reducing the quantization
noise by half. Since fr e f acts as the clock for the DTC, doubling fr e f would mean
reducing the DTC dynamic range by a factor of two. Thus the VCO frequency
fV CO is doubled and the DTC resolution, ∆tDTC is halved, leading to an overall
reduction of DTC quantization noise by a factor of two.

The phase noise of a free-running ring oscillator at an offset frequency ∆ f is
given by:

Sn,osc = 16γ

3η
.
kT

P
.

(
fosc

∆ f

)2

(7.2)

where η is a constant close to unity and γ= 2/3 for long channel devices. For a
fixed power consumed by the oscillator, it is true that the the phase noise becomes
four times worse as the oscillator frequency is doubled. However, the oscillator
jitter will remain the same. Increasing the reference frequency gives an
opportunity to increase the loop bandwidth without compromising on the loop



7.1. FUTURE SCOPE

7

79

stability. Thus an increased loop bandwidth will suppress the oscillator noise and
jitter contribution, therefore reducing the out-of-band PLL noise.

7.1.3. ON-CHIP TUNING OF THE OSCILLATOR TUNING WORD
(OTW)

The foreground offset compensation circuit used to compensate the effective
comparator offset has a range of about 40 mV. If the Oscillator Tuning Word
(OTW) is programmed such that the free-running VCO frequency is not close
enough to that of the desired channel, the CSPD maintains a non-zero output even
when the PLL is locked. This non-zero CSPD output might exceed 40mV, thus
rendering the foreground calibration ineffective.

In the present chip architecture, the Oscillator Tuning Word (OTW) is manually
tuned to bring the VCO frequency close to the desired Integer-N or Fractional-N
channel. This condition is detected by bringing the comparator output to an I/O
pad (see Fig. 6.2) and probing it off-chip to check for equal probability of ’1s’ and
’0s’. This function can be performed on-chip by implementing suitable digital logic.





BIBLIOGRAPHY

[1] R.C.H. van de Beek et al. “A 2.5-10-GHz clock multiplier unit with 0.22-ps
RMS jitter in standard 0.18-/spl mu/m CMOS”. In: IEEE Journal of Solid-State
Circuits 39.11 (2004), pp. 1862–1872. DOI: 10.1109/JSSC.2004.835833.

[2] Chun-Ming Hsu, Matthew Z. Straayer, and Michael H. Perrott. “A
Low-Noise Wide-BW 3.6-GHz Digital ∆Σ Fractional-N Frequency
Synthesizer With a Noise-Shaping Time-to-Digital Converter and
Quantization Noise Cancellation”. In: IEEE Journal of Solid-State Circuits
43.12 (2008), pp. 2776–2786. DOI: 10.1109/JSSC.2008.2005704.

[3] Xiang Gao et al. “A Low Noise Sub-Sampling PLL in Which Divider Noise
is Eliminated and PD/CP Noise is Not Multiplied by N 2”. In: IEEE Journal of
Solid-State Circuits 44.12 (2009), pp. 3253–3263. DOI: 10.1109/JSSC.2009.
2032723.

[4] Xiang Gao et al. “A 2.2GHz sub-sampling PLL with 0.16psrms jitter and
-125dBc/Hz in-band phase noise at 700µW loop-components power”. In:
2010 Symposium on VLSI Circuits. 2010, pp. 139–140. DOI:
10.1109/VLSIC.2010.5560323.

[5] Juyeop Kim et al. “16.2 A 76fsrms Jitter and –40dBc Integrated-Phase-Noise
28-to-31GHz Frequency Synthesizer Based on Digital Sub-Sampling PLL
Using Optimally Spaced Voltage Comparators and Background Loop-Gain
Optimization”. In: 2019 IEEE International Solid- State Circuits Conference -
(ISSCC). 2019, pp. 258–260. DOI: 10.1109/ISSCC.2019.8662532.

[6] Luca Bertulessi et al. “A 30-GHz Digital Sub-Sampling Fractional- N PLL
With -238.6-dB Jitter-Power Figure of Merit in 65-nm LP CMOS”. In: IEEE
Journal of Solid-State Circuits 54.12 (2019), pp. 3493–3502. DOI:
10.1109/JSSC.2019.2940332.

[7] Kuba Raczkowski et al. “A 9.2–12.7 GHz Wideband Fractional-N
Subsampling PLL in 28 nm CMOS With 280 fs RMS Jitter”. In: IEEE Journal
of Solid-State Circuits 50.5 (2015), pp. 1203–1213. DOI:
10.1109/JSSC.2015.2403373.

[8] Jiang Gong et al. “A Low-Jitter and Low-Spur Charge-Sampling PLL”. In:
IEEE Journal of Solid-State Circuits 57.2 (2022), pp. 492–504. DOI: 10.1109/
JSSC.2021.3105335.

[9] Dhon-Gue Lee and Patrick P. Mercier. “A Sub-mW 2.4-GHz Active-Mixer-
Adopted Sub-Sampling PLL Achieving an FoM of -256 dB”. In: IEEE Journal
of Solid-State Circuits 55.6 (2020), pp. 1542–1552. DOI: 10.1109/JSSC.2019.
2951377.

81

https://doi.org/10.1109/JSSC.2004.835833
https://doi.org/10.1109/JSSC.2008.2005704
https://doi.org/10.1109/JSSC.2009.2032723
https://doi.org/10.1109/JSSC.2009.2032723
https://doi.org/10.1109/VLSIC.2010.5560323
https://doi.org/10.1109/ISSCC.2019.8662532
https://doi.org/10.1109/JSSC.2019.2940332
https://doi.org/10.1109/JSSC.2015.2403373
https://doi.org/10.1109/JSSC.2021.3105335
https://doi.org/10.1109/JSSC.2021.3105335
https://doi.org/10.1109/JSSC.2019.2951377
https://doi.org/10.1109/JSSC.2019.2951377


7

82 BIBLIOGRAPHY

[10] Jiang Gong et al. “A 10-to-12 GHz 5 mW Charge-Sampling PLL Achieving
50 fsec RMS Jitter, -258.9 dB FOM and -65 dBc Reference Spur”. In: 2020 IEEE
Radio Frequency Integrated Circuits Symposium (RFIC). 2020, pp. 15–18. DOI:
10.1109/RFIC49505.2020.9218380.

[11] T.A.D. Riley, M.A. Copeland, and T.A. Kwasniewski. “Delta-sigma
modulation in fractional-N frequency synthesis”. In: IEEE Journal of
Solid-State Circuits 28.5 (1993), pp. 553–559. DOI: 10.1109/4.229400.

[12] Chanwoong Hwang et al. “A 188fsrms-Jitter and -243d8-FoMjitter
5.2GHz-Ring-DCO-Based Fractional-N Digital PLL with a 1/8
DTC-Range-Reduction Technique Using a Quadruple-Timing-Margin Phase
Selector”. In: 2022 IEEE International Solid- State Circuits Conference (ISSCC).
Vol. 65. 2022, pp. 378–380. DOI: 10.1109/ISSCC42614.2022.9731646.

[13] Hangi Park et al. “32.1 A 365fsrms-Jitter and -63dBc-Fractional Spur
5.3GHz-Ring-DCO-Based Fractional-N DPLL Using a DTC Second/Third-
Order Nonlinearity Cancelation and a Probability-Density-Shaping –M”. In:
2021 IEEE International Solid- State Circuits Conference (ISSCC). Vol. 64. 2021,
pp. 442–444. DOI: 10.1109/ISSCC42613.2021.9365798.

[14] Qiaochu Zhang et al. “29.4 A Fractional-N Digital MDLL with Background
Two-Point DTC Calibration Achieving -60dBc Fractional Spur”. In: 2021 IEEE
International Solid- State Circuits Conference (ISSCC). Vol. 64. 2021, pp. 410–412.
DOI: 10.1109/ISSCC42613.2021.9365819.

[15] Taeho Seong et al. “17.3 A -58dBc-Worst-Fractional-Spur and
-234dB-FoMjitter, 5.5GHz Ring-DCO-Based Fractional-N DPLL Using a
Time-Invariant-Probability Modulator, Generating a Nonlinearity-Robust
DTC-Control Word”. In: 2020 IEEE International Solid- State Circuits
Conference - (ISSCC). 2020, pp. 270–272. DOI:
10.1109/ISSCC19947.2020.9062948.

[16] Yanlong Zhang et al. “A Fractional- N PLL With Space–Time Averaging for
Quantization Noise Reduction”. In: IEEE Journal of Solid-State Circuits 55.3
(2020), pp. 602–614. DOI: 10.1109/JSSC.2019.2950154.

[17] Alessio Santiccioli et al. “A 1.6-to-3.0-GHz Fractional- N MDLL With a
Digital-to-Time Converter Range-Reduction Technique Achieving 397-fs
Jitter at 2.5-mW Power”. In: IEEE Journal of Solid-State Circuits 54.11 (2019),
pp. 3149–3160. DOI: 10.1109/JSSC.2019.2941259.

[18] Salvatore Levantino, Giovanni Marzin, and Carlo Samori. “An Adaptive Pre-
Distortion Technique to Mitigate the DTC Nonlinearity in Digital PLLs”. In:
IEEE Journal of Solid-State Circuits 49.8 (2014), pp. 1762–1772. DOI: 10.1109/
JSSC.2014.2314436.

[19] Jiayoon Zhiyu Ru et al. “A High-Linearity Digital-to-Time Converter
Technique: Constant-Slope Charging”. In: IEEE Journal of Solid-State Circuits
50.6 (2015), pp. 1412–1423. DOI: 10.1109/JSSC.2015.2414421.

https://doi.org/10.1109/RFIC49505.2020.9218380
https://doi.org/10.1109/4.229400
https://doi.org/10.1109/ISSCC42614.2022.9731646
https://doi.org/10.1109/ISSCC42613.2021.9365798
https://doi.org/10.1109/ISSCC42613.2021.9365819
https://doi.org/10.1109/ISSCC19947.2020.9062948
https://doi.org/10.1109/JSSC.2019.2950154
https://doi.org/10.1109/JSSC.2019.2941259
https://doi.org/10.1109/JSSC.2014.2314436
https://doi.org/10.1109/JSSC.2014.2314436
https://doi.org/10.1109/JSSC.2015.2414421


BIBLIOGRAPHY

7

83

[20] Nereo Markulic et al. “A 10-bit, 550-fs step Digital-to-Time Converter in
28nm CMOS”. In: ESSCIRC 2014 - 40th European Solid State Circuits
Conference (ESSCIRC). 2014, pp. 79–82. DOI:
10.1109/ESSCIRC.2014.6942026.

[21] Peng Chen et al. “A 31- µ W, 148-fs Step, 9-bit Capacitor-DAC-Based
Constant-Slope Digital-to-Time Converter in 28-nm CMOS”. In: IEEE
Journal of Solid-State Circuits 54.11 (2019), pp. 3075–3085. DOI:
10.1109/JSSC.2019.2939663.

[22] R. Best. Phase-Locked Loops. McGraw-Hill professional engineering. McGraw-
Hill Education, 2003. ISBN: 9780071501231. URL: https://books.google.
co.in/books?id=lasCAI23NBYC.

[23] B. Razavi. Design of Integrated Circuits for Optical Communications.
McGraw-Hill Series in Electrical and Computer Engineering. McGraw-Hill,
2003. ISBN: 9780072822588. URL:
https://books.google.co.in/books?id=Pl9TAAAAMAAJ.

[24] Davide Tasca et al. “A 2.9–4.0-GHz Fractional-N Digital PLL With
Bang-Bang Phase Detector and 560-fsrms Integrated Jitter at 4.5-mW Power”.
In: IEEE Journal of Solid-State Circuits 46.12 (2011), pp. 2745–2758. DOI:
10.1109/JSSC.2011.2162917.

[25] Wanghua Wu et al. “A 28-nm 75-fsrms Analog Fractional- N Sampling PLL
With a Highly Linear DTC Incorporating Background DTC Gain Calibration
and Reference Clock Duty Cycle Correction”. In: IEEE Journal of Solid-State
Circuits 54.5 (2019), pp. 1254–1265. DOI: 10.1109/JSSC.2019.2899726.

[26] Chi-Hung Lin and K. Bult. “A 10-b, 500-MSample/s CMOS DAC in 0.6
mm/sup 2/”. In: IEEE Journal of Solid-State Circuits 33.12 (1998),
pp. 1948–1958. DOI: 10.1109/4.735535.

[27] Marcel Pelgrom. “Analog-to-Digital Conversion”. In: Jan. 2010, pp. 249–319.
ISBN: 978-90-481-8887-1. DOI: 10.1007/978-90-481-8888-8_8.

[28] Jiang Gong et al. “A 2.7mW 45fsrms-Jitter Cryogenic
Dynamic-Amplifier-Based PLL for Quantum Computing Applications”. In:
2021 IEEE Custom Integrated Circuits Conference (CICC). 2021, pp. 1–2. DOI:
10.1109/CICC51472.2021.9431541.

[29] Behzad Razavi. “The Ring Oscillator [A Circuit for All Seasons]”. In: IEEE
Solid-State Circuits Magazine 11.4 (2019), pp. 10–81. DOI: 10.1109/MSSC.
2019.2939771.

[30] Behzad Razavi. “The StrongARM Latch [A Circuit for All Seasons]”. In: IEEE
Solid-State Circuits Magazine 7.2 (2015), pp. 12–17. DOI: 10.1109/MSSC.
2015.2418155.

[31] Chi-Hang Chan et al. “A voltage-controlled capacitance offset calibration
technique for high resolution dynamic comparator”. In: 2009 International
SoC Design Conference (ISOCC). 2009, pp. 392–395. DOI:
10.1109/SOCDC.2009.5423836.

https://doi.org/10.1109/ESSCIRC.2014.6942026
https://doi.org/10.1109/JSSC.2019.2939663
https://books.google.co.in/books?id=lasCAI23NBYC
https://books.google.co.in/books?id=lasCAI23NBYC
https://books.google.co.in/books?id=Pl9TAAAAMAAJ
https://doi.org/10.1109/JSSC.2011.2162917
https://doi.org/10.1109/JSSC.2019.2899726
https://doi.org/10.1109/4.735535
https://doi.org/10.1007/978-90-481-8888-8_8
https://doi.org/10.1109/CICC51472.2021.9431541
https://doi.org/10.1109/MSSC.2019.2939771
https://doi.org/10.1109/MSSC.2019.2939771
https://doi.org/10.1109/MSSC.2015.2418155
https://doi.org/10.1109/MSSC.2015.2418155
https://doi.org/10.1109/SOCDC.2009.5423836


84 BIBLIOGRAPHY

[32] Walt Kester. Basic DAC Architectures III: Segmented DACs. 2009. URL: https:
//www.analog.com/media/en/training-seminars/tutorials/
mt-016.pdf.

[33] Dennis Dempsey and Christopher Gorman. Digital-to-Analog Converter. U.S.
Patent 5,969,657. 1999.

[34] Yue Chen et al. “A Fractional-N Digitally Intensive PLL Achieving 428-fs
Jitter and <-54-dBc Spurs Under 50-mVpp Supply Ripple”. In: IEEE Journal
of Solid-State Circuits 57.6 (2022), pp. 1749–1764. DOI: 10.1109/JSSC.2021.
3123386.

[35] Tuan Minh Vo, Salvatore Levantino, and Carlo Samori. “Analysis of
fractional-n bang-bang digital PLLs using phase switching technique”. In:
2016 12th Conference on Ph.D. Research in Microelectronics and Electronics
(PRIME). 2016, pp. 1–4. DOI: 10.1109/PRIME.2016.7519545.

https://www.analog.com/media/en/training-seminars/tutorials/mt-016.pdf
https://www.analog.com/media/en/training-seminars/tutorials/mt-016.pdf
https://www.analog.com/media/en/training-seminars/tutorials/mt-016.pdf
https://doi.org/10.1109/JSSC.2021.3123386
https://doi.org/10.1109/JSSC.2021.3123386
https://doi.org/10.1109/PRIME.2016.7519545


A
RTL CODE FOR THE DTC

CONTROLLER

module dtc_code_gen (
i _ c l k ,
i _ r s t ,
i_enable , / / EN s i g n a l f o r t h e e n t i r e module
i_background_cal ibrat ion_en ,
i _ f r a c _ s h i f t ,
i_kdtc ,
i_cmprtr_sign ,
i _ f l i p _ s i g n ,
i _ f i f o _ d e l a y ,
lambda ,
mu,
o_dtc_code ) ;

/ / p a r a m e t e r s

parameter FRAC_WIDTH = 1 4 ;
parameter KDTC_WIDTH = 1 0 ;
parameter GAIN_CORR_WIDTH = 1 4 ;
parameter CODE_WIDTH = 9 ;
parameter MULT_WIDTH = FRAC_WIDTH + KDTC_WIDTH +

GAIN_CORR_WIDTH;
parameter MULT_1_WIDTH = FRAC_WIDTH + KDTC_WIDTH;
parameter ERR_WIDTH = MULT_WIDTH − CODE_WIDTH − 1 ;
parameter FIFO_DEPTH = 8 ;

85



A

86 A. RTL CODE FOR THE DTC CONTROLLER

parameter FIFO_PTR_WIDTH = $clog2 (FIFO_DEPTH) ;

/ / I / Os

input i _ c l k ;
input i _ r s t ; / / a sync r s t
input i _enab le ;
input i_background_cal ibrat ion_en ;
input [FRAC_WIDTH−1 : 0 ] i _ f r a c _ s h i f t ;
input [KDTC_WIDTH−1 : 0 ] i_kdtc ;
input i_cmprtr_s ign ;
input i _ f l i p _ s i g n ;
input [FIFO_PTR_WIDTH−1 : 0 ] i _ f i f o _ d e l a y ;
input [7 : 0 ] lambda ;
input [7 : 0 ] mu;
output reg [CODE_WIDTH−1 : 0 ] o_dtc_code ;

/ / R e g i s t e r s and w i r e s

reg [FRAC_WIDTH−1 : 0 ] a c c _ s h i f t ;
wire [FRAC_WIDTH−1 : 0 ] c o r r _ a c c _ s h i f t ; / / used f o r

c o r r e l a t i o n
reg [ERR_WIDTH−1 : 0 ] a c c _ e r r ;
reg a c c _ e r r _ c a r r y ;
wire [CODE_WIDTH−1 : 0 ] w_dtc_code ;
wire [MULT_WIDTH−1 : 0 ] gain_mult ;
wire [MULT_1_WIDTH−1 : 0 ] gain_mult_1 ;
reg [MULT_1_WIDTH−1 : 0 ] gain_mult_1_reg ;
wire [GAIN_CORR_WIDTH : 0] a c c _ s h i f t _ n e g ;

/ / FIFO r e l a t e d
reg [FRAC_WIDTH−1 : 0 ] c o n t e x t _ f i f o [ 0 : 7 ] ;
reg [FIFO_PTR_WIDTH−1 : 0 ] wr_ptr ;
reg [FIFO_PTR_WIDTH−1 : 0 ] rd_ptr ;
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

wire signed [GAIN_CORR_WIDTH : 0] i i r _ i n ;
reg signed [GAIN_CORR_WIDTH : 0] i i r _ o u t ;
reg signed [GAIN_CORR_WIDTH : 0] g a i n _ c o r r e c t ;

in teger i ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ / Accumulat ion o f main s h i f t



A

87

always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

a c c _ s h i f t <= {FRAC_WIDTH{ 1 ' b0 } } ;
end
else i f (~ i_enab le )
begin

a c c _ s h i f t <= {FRAC_WIDTH{ 1 ' b0 } } ;
end
else
begin / / o v e r f l o w i s not a prob l em h e r e : i t i s e x p e c t e d !

a c c _ s h i f t <= a c c _ s h i f t + i _ f r a c _ s h i f t ;
end

end

/ / Free −running FIFO t o implement Z^(−n )

always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

for ( i = 0 ; i < FIFO_DEPTH ; i = i + 1)
begin

c o n t e x t _ f i f o [ i ] <= {FRAC_WIDTH{ 1 ' b0 } } ;
end

end
else i f (~ i_enab le )
begin

for ( i = 0 ; i < FIFO_DEPTH ; i = i + 1)
begin

c o n t e x t _ f i f o [ i ] <= {FRAC_WIDTH{ 1 ' b0 } } ;
end

end
else
begin

c o n t e x t _ f i f o [ wr_ptr ] <= a c c _ s h i f t ;
end

end

always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

wr_ptr <= {FIFO_PTR_WIDTH { 1 ' b0 } } ;



A

88 A. RTL CODE FOR THE DTC CONTROLLER

rd_ptr <= {FIFO_PTR_WIDTH { 1 ' b0 } } ;
end
else i f (~ i_enab le )
begin

wr_ptr <= {FIFO_PTR_WIDTH { 1 ' b0 } } ;
rd_ptr <= {FIFO_PTR_WIDTH { 1 ' b0 } } ;

end
else
begin

wr_ptr <= rd_ptr + i _ f i f o _ d e l a y + 1 ' b1 ;
rd_ptr <= rd_ptr + 1 ' b1 ;

end
end

assign c o r r _ a c c _ s h i f t = c o n t e x t _ f i f o [ rd_ptr ] ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / Gain c o r r e c t i o n term us ing LMS a l g o r i t h m

assign a c c _ s h i f t _ n e g = ~ {1 ' b0 , ( c o r r _ a c c _ s h i f t ) } + 1 ' b1 ; / /
t a k i n g 2 ' s complement

assign i i r _ i n = ( ( ( i_cmprtr_s ign == 1 ' b1 ) && ( i _ f l i p _ s i g n
== 1 ' b0 ) ) || ( ( i_cmprtr_s ign == 1 ' b0 ) && ( i _ f l i p _ s i g n ==
1 ' b1 ) ) ) ? { 1 ' b0 , c o r r _ a c c _ s h i f t } : a c c _ s h i f t _ n e g ;

always @( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

i i r _ o u t <= { (GAIN_CORR_WIDTH+1) { 1 ' b0 } } ;
end
else i f (~ i_enab le )
begin

i i r _ o u t <= { (GAIN_CORR_WIDTH+1) { 1 ' b0 } } ;
end
else
begin

i i r _ o u t <= i i r _ o u t + ( i i r _ i n >>> lambda ) − ( i i r _ o u t
>>> lambda ) ;

end
end

always @( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )



A

89

begin
g a i n _ c o r r e c t <= 15 ' h2000 ;
/ / MSB f o r g a i n _ c o r r e c t must a lways remain '0 ' s i n c e

i t i s
/ / p o s i t i v e
/ / I t has been d e f i n e d as ' s igned ' t o e n s u r e p r o p e r

s i g n e d a d d i t i o n
end
else i f (~ i_enab le || ~i_background_cal ibrat ion_en )
begin

g a i n _ c o r r e c t <= 15 ' h2000 ;
end
else
begin

g a i n _ c o r r e c t <= g a i n _ c o r r e c t + ( i i r _ o u t >>> mu) ;
end

end
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ / Gain s c a l i n g m u l t i p l i e r
assign gain_mult = gain_mult_1_reg * g a i n _ c o r r e c t [

GAIN_CORR_WIDTH−1 : 0 ] ;
assign gain_mult_1 = a c c _ s h i f t * i _kdtc ;
/ / s i g n b i t o f g a i n _ c o r r e c t has been d i s c a r d e d

/ / I n t e r m e d i a t e m u l t i p l i c a t i o n r e s u l t
always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

gain_mult_1_reg <= {MULT_1_WIDTH{ 1 ' b0 } } ;
end
else i f (~ i_enab le )
begin

gain_mult_1_reg <= {MULT_1_WIDTH{ 1 ' b0 } } ;
end
else
begin

gain_mult_1_reg <= gain_mult_1 ;
end

end

/ / Accumulat ion o f e r r o r
always @ ( posedge i _ c l k or negedge i _ r s t )



A

90 A. RTL CODE FOR THE DTC CONTROLLER

begin
i f (~ i _ r s t )
begin

a c c _ e r r <= {ERR_WIDTH{ 1 ' b0 } } ;
a c c _ e r r _ c a r r y <= 1 ' b0 ;

end
else i f (~ i_enab le )
begin

a c c _ e r r <= {ERR_WIDTH{ 1 ' b0 } } ;
a c c _ e r r _ c a r r y <= 1 ' b0 ;

end
else
begin

{ acc_err_carry , a c c _ e r r } <= a c c _ e r r + gain_mult [
MULT_WIDTH−CODE_WIDTH− 2 : 0 ] ;

end
end

assign w_dtc_code = gain_mult [MULT_WIDTH−2 : MULT_WIDTH−
CODE_WIDTH− 1 ] ;

/ / R e g i s t e r DTC c o d e
always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

o_dtc_code <= {CODE_WIDTH{ 1 ' b0 } } ;
end
else i f (~ i_enab le )
begin

o_dtc_code <= {CODE_WIDTH{ 1 ' b0 } } ;
end
else
begin

o_dtc_code <= w_dtc_code + a c c _ e r r _ c a r r y ;
/ / o _ d t c _ c o d e <= ( ga in_mul t [MULT_WIDTH−1 −:

CODE_WIDTH] + a c c _ e r r _ c a r r y ) ;
end

end

endmodule



B
RTL CODE FOR THE

FOREGROUND CALIBRATION
LOGIC

module f o r e g r o u n d _ c a l i b r a t i o n (
i _ c l k ,
i _ r s t ,
i_enable ,
i_cmprtr_sign ,
o_rdac_p_msb ,
o_rdac_p_lsb ,
o_rdac_n_msb ,
o_rdac_n_lsb ,
i _ s e t t l e _ t i m e ,
i_stop_t ime ,
i _ a c c _ f u l l ,
/ / Debug
o _ s e t t l e _ t i m e ,
o_stop_time ,
o_dac_select_done ,
o _ d a c _ s e l e c t ) ;

/ / p a r a m e t e r s

parameter NR_MSB = 3 2 ;
parameter MSB_WIDTH = $clog2 (NR_MSB) ;
parameter NR_LSB = 3 2 ;

91



B

92 B. RTL CODE FOR THE FOREGROUND CALIBRATION LOGIC

parameter LSB_WIDTH = $clog2 (NR_LSB) ;
parameter TIMER_WIDTH = 1 6 ;
parameter COUNTER_WIDTH = 1 6 ;

/ / IOs

input i _ c l k ;
input i _ r s t ;
input i _enab le ; / / e n a b l e f o r e g r o u n d c a l i b r a t i o n b l o c k
input i_cmprtr_s ign ;

output [NR_MSB−1 : 0 ] o_rdac_p_msb ;
output [NR_LSB−1 : 0 ] o_rdac_p_lsb ;
output [NR_MSB−1 : 0 ] o_rdac_n_msb ;
output [NR_LSB−1 : 0 ] o_rdac_n_lsb ;

input [TIMER_WIDTH−1 : 0 ] i _ s e t t l e _ t i m e ; / / Beg in
c a l i b r a t i o n a f t e r PLL s e t t l e s in i n t e g e r N mode

input [TIMER_WIDTH−1 : 0 ] i_s top_t ime ; / / Stop c a l i b r a t i o n
when t h i s count i s r e a c h e d

input [COUNTER_WIDTH−1 : 0 ] i _ a c c _ f u l l ; / / T h r e s h o l d f o r
accummulator (BW c o n t r o l )

/ / Debug
output [TIMER_WIDTH−1 : 0 ] o _ s e t t l e _ t i m e ;
output [TIMER_WIDTH−1 : 0 ] o_stop_time ;
output o_dac_select_done ;
output o _ d a c _ s e l e c t ;

/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ / R e g i s t e r s and w i r e s

/ / One− h o t e n c o d i n g
reg [NR_MSB−1 : 0 ] r_rdac_p_msb ;
reg [NR_LSB−1 : 0 ] r_rdac_p_lsb ;
reg [NR_MSB−1 : 0 ] r_rdac_n_msb ;
reg [NR_LSB−1 : 0 ] r_rdac_n_lsb ;
/ / b i n a r y e n c o d i n g
reg [MSB_WIDTH−1 : 0 ] r_count_p_msb ;
reg [LSB_WIDTH−1 : 0 ] r_count_p_lsb ;
reg [MSB_WIDTH−1 : 0 ] r_count_n_msb ;
reg [LSB_WIDTH−1 : 0 ] r_count_n_lsb ;



B

93

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

reg [TIMER_WIDTH−1 : 0 ] s e t t l e _ t i m e r ;
reg [TIMER_WIDTH−1 : 0 ] s top_t imer ;
reg signed [COUNTER_WIDTH : 0] acc ;
wire s t a r t ; / / i n d i c a t e s when t o b e g i n t h e c a l i b r a t i o n
wire stop ; / / i n d i c a t e s when t o end t h e c a l i b r a t i o n
wire a c c _ f u l l ;
wire acc_s ign ;
wire [COUNTER_WIDTH : 0] a c c _ f u l l _ p o s ;
wire [COUNTER_WIDTH : 0] a c c _ f u l l _ n e g ;
reg d a c _ s e l e c t ;
reg dac_select_done ;
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ / S y n c h r o n i z a t i o n FFs t o p r e v e n t CDC
reg r_enable ;
reg r_enable_2 ;
reg r_enable_3 ;

always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

r_enable <= 1 ' b0 ;
r_enable_2 <= 1 ' b0 ;
r_enable_3 <= 1 ' b0 ;

end
else
begin

r_enable <= i_enab le ;
r_enable_2 <= r_enable ;
r_enable_3 <= r_enable_2 ;

end
end

/ / Timer t o e n s u r e PLL s e t t l e s in i n t e g e r N mode
/ / Example s e t t l i n g t ime : 10 us
always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

s e t t l e _ t i m e r <= {TIMER_WIDTH{ 1 ' b0 } } ;



B

94 B. RTL CODE FOR THE FOREGROUND CALIBRATION LOGIC

end
else i f (~ r_enable_3 )
begin

s e t t l e _ t i m e r <= {TIMER_WIDTH{ 1 ' b0 } } ;
end
else i f ( ! s t a r t )
begin

s e t t l e _ t i m e r <= s e t t l e _ t i m e r + 1 ' b1 ;
end

end

assign s t a r t = ( s e t t l e _ t i m e r == i _ s e t t l e _ t i m e ) ? 1 ' b1 : 1 ' b0
;

/ / Comparator ou tp ut f l i p c o u n t i n g l o g i c
always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

stop_t imer <= {TIMER_WIDTH{ 1 ' b0 } } ;
end
else i f (~ r_enable_3 )
begin

stop_t imer <= {TIMER_WIDTH{ 1 ' b0 } } ;
end
else i f ( s t a r t && ! stop )
begin

stop_t imer <= stop_t imer + 1 ' b1 ;
end

end

assign stop = ( stop_t imer == i_s top_t ime ) ? 1 ' b1 : 1 ' b0 ;

/ / Accumulator
always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

acc <= { (COUNTER_WIDTH+1) { 1 ' b0 } } ;
end
else i f (~ r_enable_3 || a c c _ f u l l )
begin

acc <= { (COUNTER_WIDTH+1) { 1 ' b0 } } ;
end



B

95

e lse i f ( s t a r t && ! stop && i_cmprtr_s ign )
begin

acc <= acc + 1 ' b1 ;
end
else i f ( s t a r t && ! stop && ! i_cmprtr_s ign )
begin

acc <= acc − 1 ' b1 ;
end

end
assign a c c _ f u l l _ p o s = { 1 ' b0 , i _ a c c _ f u l l } ;
assign a c c _ f u l l _ n e g = { 1 ' b1 , ( ~ ( i _ a c c _ f u l l ) +1 ' b1 ) } ;
assign a c c _ f u l l = ( ( acc == a c c _ f u l l _ p o s ) || ( acc ==

a c c _ f u l l _ n e g ) ) ;
assign acc_s ign = acc [COUNTER_WIDTH] ; / / ' 0 ' : +ve , ' 1 ' : −ve

/ / S e l e c t i n g DAC f o r tuning
/ / S e l e c t i o n i s made b a s e d on f i r s t a c c u m u l a t o r d e c i s i o n
always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

dac_select_done <= 1 ' b0 ;
end
else i f (~ r_enable_3 )
begin

dac_select_done <= 1 ' b0 ;
end
else i f ( ! dac_select_done && s t a r t && a c c _ f u l l )
begin

dac_select_done <= 1 ' b1 ;
end

end

always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

d a c _ s e l e c t <= 1 ' b0 ;
end
else i f (~ r_enable_3 )
begin

d a c _ s e l e c t <= 1 ' b0 ;
end
else i f ( ! dac_select_done && s t a r t && ! acc_s ign &&

a c c _ f u l l )



B

96 B. RTL CODE FOR THE FOREGROUND CALIBRATION LOGIC

begin
d a c _ s e l e c t <= 1 ' b1 ;

end
end

/ / DAC_p tuning l o g i c
always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

r_count_p_msb <= 'h1A ;
r_count_p_lsb <= { ( LSB_WIDTH) { 1 ' b0 } } ;

end
else i f (~ r_enable_3 )
begin

r_count_p_msb <= 'h1A ;
r_count_p_lsb <= { ( LSB_WIDTH) { 1 ' b0 } } ;

end
else i f ( dac_select_done && d a c _ s e l e c t && ! stop &&

a c c _ f u l l )
begin

i f ( ! acc_s ign ) / / a c c _ s i g n = '0 ' means p o s i t i v e
begin

i f ( r_count_p_lsb =={(LSB_WIDTH) { 1 ' b0 } } )
begin

r_count_p_msb <= r_count_p_msb − 1 ' b1 ;
end
r_count_p_lsb <= r_count_p_lsb − 1 ' b1 ;

end
else
begin

i f ( r_count_p_lsb == ' h1F )
begin

r_count_p_msb <= r_count_p_msb + 1 ' b1 ;
end
r_count_p_lsb <= r_count_p_lsb + 1 ' b1 ;

end
end

end

/ / DAC_n tuning l o g i c
always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin



B

97

r_count_n_msb <= 'h1A ;
r_count_n_lsb <= { ( LSB_WIDTH) { 1 ' b0 } } ;

end
else i f (~ r_enable_3 )
begin

r_count_n_msb <= 'h1A ;
r_count_n_lsb <= { ( LSB_WIDTH) { 1 ' b0 } } ;

end
else i f ( dac_select_done && ! d a c _ s e l e c t && ! stop &&

a c c _ f u l l )
begin

i f ( acc_s ign )
begin

i f ( r_count_n_lsb == { ( LSB_WIDTH) { 1 ' b0 } } )
begin

r_count_n_msb <= r_count_n_msb − 1 ' b1 ;
end
r_count_n_lsb <= r_count_n_lsb − 1 ' b1 ;

end
else
begin

i f ( r_count_n_lsb == ' h1F )
begin

r_count_n_msb <= r_count_n_msb + 1 ' b1 ;
end
r_count_n_lsb <= r_count_n_lsb + 1 ' b1 ;

end
end

end

/ / Applying One− h o t e n c o d i n g f o r DAC c o n t r o l
always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

r_rdac_p_msb <= { 1 ' b0 , 1 ' b0 , 1 ' b0 , 1 ' b0 , 1 ' b0 , 1 ' b1 , { (
NR_MSB−6) { 1 ' b0 } } } ;

r_rdac_p_lsb <= { { ( NR_LSB−1) { 1 ' b0 } } , 1 ' b1 } ;
end
else i f (~ r_enable_3 )
begin

r_rdac_p_msb <= { 1 ' b0 , 1 ' b0 , 1 ' b0 , 1 ' b0 , 1 ' b0 , 1 ' b1 , { (
NR_MSB−6) { 1 ' b0 } } } ;

r_rdac_p_lsb <= { { ( NR_LSB−1) { 1 ' b0 } } , 1 ' b1 } ;



B

98 B. RTL CODE FOR THE FOREGROUND CALIBRATION LOGIC

end
else
begin

r_rdac_p_msb <= ( 1 ' b1 << r_count_p_msb ) ;
r_rdac_p_lsb <= ( 1 ' b1 << r_count_p_lsb ) ;

end
end

always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

r_rdac_n_msb <= { 1 ' b0 , 1 ' b0 , 1 ' b0 , 1 ' b0 , 1 ' b0 , 1 ' b1 , { (
NR_MSB−6) { 1 ' b0 } } } ;

r_rdac_n_lsb <= { { ( NR_LSB−1) { 1 ' b0 } } , 1 ' b1 } ;
end
else i f (~ r_enable_3 )
begin

r_rdac_n_msb <= { 1 ' b0 , 1 ' b0 , 1 ' b0 , 1 ' b0 , 1 ' b0 , 1 ' b1 , { (
NR_MSB−6) { 1 ' b0 } } } ;

r_rdac_n_lsb <= { { ( NR_LSB−1) { 1 ' b0 } } , 1 ' b1 } ;
end
else
begin

r_rdac_n_msb <= ( 1 ' b1 << r_count_n_msb ) ;
r_rdac_n_lsb <= ( 1 ' b1 << r_count_n_lsb ) ;

end
end

assign o_rdac_p_msb = r_rdac_p_msb ;
assign o_rdac_p_lsb = r_rdac_p_lsb ;
assign o_rdac_n_msb = r_rdac_n_msb ;
assign o_rdac_n_lsb = r_rdac_n_lsb ;

/ / Debug p o r t a s s i g n m e n t s
assign o _ s e t t l e _ t i m e = s e t t l e _ t i m e r ;
assign o_stop_time = stop_t imer ;
assign o_dac_select_done = dac_select_done ;
assign o _ d a c _ s e l e c t = d a c _ s e l e c t ;

endmodule



C
RTL CODE FOR TOP MODULE

AND SPI BLOCK

module t o p _ d t c _ c o n t r o l (
i _ c l k ,
i _ r s t ,

/ / i n p u t s i g n a l s from a n a l o g b l o c k s
i_cmprtr_sign , / / c o m p a r a t o r d e c i s i o n
i _ s e l e c t , / / EN s i g n a l

/ / Dynamic c o n t r o l s i g n a l s t o a n a l o g b l o c k s
o_upper_dtc_ctr l ,
o_ lower_dtc_c t r l ,
o_rdac_p_msb ,
o_rdac_p_lsb ,
o_rdac_n_msb ,
o_rdac_n_lsb ,

/ / SPI I n t e r f a c e
i _ s p i _ c l k ,
i_mosi ,
i_ss_n ,
o_miso ,

/ / S t a t i c c o n f i g u r a t i o n s i g n a l s t o a n a l o g b l o c k s
o_en_delay_se lec t ,
o_pulse_width ,

99



C

100 C. RTL CODE FOR TOP MODULE AND SPI BLOCK

o_cspd_res i s tor ,
o_ota_gm ,
o_lpf_r ,
o_vco_en ,
o_vco_pvt ,
o_vco_acq ,
o_vco_tracking
) ;

parameter FRAC_WIDTH = 1 4 ;
parameter KDTC_WIDTH = 1 0 ;
parameter GAIN_CORR_WIDTH = 1 4 ;
parameter CODE_WIDTH = 9 ;
parameter FIFO_DEPTH = 8 ;
parameter FIFO_PTR_WIDTH = $clog2 (FIFO_DEPTH) ;

parameter NR_MSB = 3 2 ;
parameter NR_LSB = 3 2 ;
parameter TIMER_WIDTH = 1 6 ;
parameter COUNTER_WIDTH = 1 6 ;

parameter NR_THERM_BITS_UPPER = 6 4 ;
parameter NR_BIN_BITS_UPPER = $clog2 (NR_THERM_BITS_UPPER) ;

parameter NR_THERM_BITS_LOWER = 8 ;
parameter NR_BIN_BITS_LOWER = $clog2 (NR_THERM_BITS_LOWER) ;

input i _ c l k ;
input i _ r s t ;

input i_cmprtr_s ign ;
input i _ s e l e c t ; / / MUX s e l e c t p in f o r DTC p h a s e c o n t r o l

output [NR_THERM_BITS_UPPER − 1 : 0 ] o_upper_dtc_c t r l ;
output [NR_THERM_BITS_LOWER − 1 : 0 ] o _ l o w e r _ d t c _ c t r l ;

output [NR_MSB−1 : 0 ] o_rdac_p_msb ;
output [NR_LSB−1 : 0 ] o_rdac_p_lsb ;
output [NR_MSB−1 : 0 ] o_rdac_n_msb ;
output [NR_LSB−1 : 0 ] o_rdac_n_lsb ;

input i _ s p i _ c l k ;



C

101

input i_mosi ;
input i _ s s_ n ;
output o_miso ;

/ / C o n f i g u r a t i o n r e g i s t e r s
output [ 4 : 0 ] o_en_de lay_se lec t ;
output [ 2 : 0 ] o_pulse_width ;
output [ 3 : 0 ] o _ c s p d _ r e s i s t o r ;
output [ 9 : 0 ] o_ota_gm ;
output [ 7 : 0 ] o _ l p f _ r ;
output o_vco_en ;
output [ 6 : 0 ] o_vco_pvt ;
output [ 4 : 0 ] o_vco_acq ;
output [ 1 : 0 ] o_vco_tracking ;

/ / R e g i s t e r s and w i r e s
wire [CODE_WIDTH − 1 : 0 ] w_dtc_code ;

/ / w i r e [ NR_BIN_BITS_UPPER −1 : 0 ] w_upper_d tc_code ;
/ / w i r e [ NR_BIN_BITS_LOWER −1 : 0 ] w _ l o w e r _ d t c _ c o d e ;

wire [NR_THERM_BITS_UPPER − 1 : 0 ] w_upper_dtc_ctr l ;
wire [NR_THERM_BITS_LOWER − 1 : 0 ] w_lower_dtc_ctr l ;

wire [FRAC_WIDTH−1 : 0 ] w _ f r a c _ s h i f t ;
wire [KDTC_WIDTH−1 : 0 ] w_kdtc ;
wire w_fl ip_s ign ;
wire [FIFO_PTR_WIDTH−1 : 0 ] w_fi fo_delay ;
wire [7 : 0 ] lambda ;
wire [7 : 0 ] mu;

wire w_foreground_calib_en ;
wire [TIMER_WIDTH−1 : 0 ] w_set t le_ t ime ;
wire [TIMER_WIDTH−1 : 0 ] w_stop_time ;
wire [COUNTER_WIDTH−1 : 0 ] w_acc_ful l ;
wire [TIMER_WIDTH−1 : 0 ] w_settle_time_debug ;
wire [TIMER_WIDTH−1 : 0 ] w_stop_time_debug ;
wire w_dac_select_done ;
wire w_dac_select ;

/ / S e l e c t i o n be tween i n t e g e r −N or f r a c t i o n a l −N mode (
S y n c h r o n i z a t i o n FFs a l s o added )

reg r _ i n t _ o r _ f r a c ;
reg r _ i n t _ o r _ f r a c _ 2 ;



C

102 C. RTL CODE FOR TOP MODULE AND SPI BLOCK

reg r _ i n t _ o r _ f r a c _ 3 ;
wire w_int_or_frac ; / / From SPI : '0 ' i s I n t e g e r −N, '1 ' i s

F r a c t i o n a l −N

always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

r _ i n t _ o r _ f r a c <= 1 ' b0 ;
r _ i n t _ o r _ f r a c _ 2 <= 1 ' b0 ;
r _ i n t _ o r _ f r a c _ 3 <= 1 ' b0 ;

end
else
begin

r _ i n t _ o r _ f r a c <= w_int_or_frac ;
r _ i n t _ o r _ f r a c _ 2 <= r _ i n t _ o r _ f r a c ;
r _ i n t _ o r _ f r a c _ 3 <= r _ i n t _ o r _ f r a c _ 2 ;

end
end

/ / S y n c h r o n i z a t i o n FFs f o r background c a l i b r a t i o n e n a b l e
s i g n a l

wire w_background_calibration_en ;
reg r_background_cal ibrat ion_en ;
reg r_background_cal ibrat ion_en_2 ;
reg r_background_cal ibrat ion_en_3 ;

always @ ( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

r_background_cal ibrat ion_en <= 1 ' b0 ;
r_background_cal ibrat ion_en_2 <= 1 ' b0 ;
r_background_cal ibrat ion_en_3 <= 1 ' b0 ;

end
else
begin

r_background_cal ibrat ion_en <=
w_background_calibration_en ;

r_background_cal ibrat ion_en_2 <=
r_background_cal ibrat ion_en ;

r_background_cal ibrat ion_en_3 <=
r_background_cal ibrat ion_en_2 ;

end
end



C

103

dtc_code_gen #(
.FRAC_WIDTH (FRAC_WIDTH) ,
.KDTC_WIDTH (KDTC_WIDTH) ,
.GAIN_CORR_WIDTH (GAIN_CORR_WIDTH) ,
.CODE_WIDTH (CODE_WIDTH) ,
. FIFO_DEPTH (FIFO_DEPTH)
)
u_dtc_code_gen (
. i _ c l k ( i _ c l k ) ,
. i _ r s t ( i _ r s t ) ,
. i _enab le ( r _ i n t _ o r _ f r a c _ 3 ) ,
. i_background_cal ibrat ion_en ( r_background_cal ibrat ion_en_3 )

,
. i _ f r a c _ s h i f t ( w _ f r a c _ s h i f t ) ,
. i _kdtc ( w_kdtc ) ,
. i_cmprtr_s ign ( i_cmprtr_s ign ) ,
. i _ f l i p _ s i g n ( w_f l ip_s ign ) ,
. i _ f i f o _ d e l a y ( w_fi fo_delay ) ,
. lambda ( lambda ) ,
.mu (mu) ,
. o_dtc_code ( w_dtc_code )
) ;

f o r e g r o u n d _ c a l i b r a t i o n #(
.NR_MSB (NR_MSB) ,
. NR_LSB (NR_LSB) ,
.TIMER_WIDTH (TIMER_WIDTH) ,
.COUNTER_WIDTH (COUNTER_WIDTH)
)
u_foreground_ca l ibra t ion (
. i _ c l k ( i _ c l k ) ,
. i _ r s t ( i _ r s t ) ,
. i _enab le ( w_foreground_calib_en ) ,
. i_cmprtr_s ign ( i_cmprtr_s ign ) ,
. o_rdac_p_msb ( o_rdac_p_msb ) ,
. o_rdac_p_lsb ( o_rdac_p_lsb ) ,
. o_rdac_n_msb ( o_rdac_n_msb ) ,
. o_rdac_n_lsb ( o_rdac_n_lsb ) ,
. i _ s e t t l e _ t i m e ( w_set t le_ t ime ) ,
. i _s top_t ime ( w_stop_time ) ,
. i _ a c c _ f u l l ( w_acc_ful l ) ,
/ / debug
. o _ s e t t l e _ t i m e ( w_settle_time_debug ) ,



C

104 C. RTL CODE FOR TOP MODULE AND SPI BLOCK

. o_stop_time ( w_stop_time_debug ) ,

. o_dac_select_done ( w_dac_select_done ) ,

. o _ d a c _ s e l e c t ( w_dac_select )
) ;

/ / a s s i g n w_upper_d tc_code = w_dtc_code [CODE_WIDTH − 1 −:
NR_BIN_BITS_UPPER ] ;

/ / a s s i g n w _ l o w e r _ d t c _ c o d e = w_dtc_code [ NR_BIN_BITS_LOWER −
1 : 0 ] ;

spi_reg #(
.FRAC_WIDTH (FRAC_WIDTH) ,
.KDTC_WIDTH (KDTC_WIDTH) ,
.GAIN_CORR_WIDTH (GAIN_CORR_WIDTH) ,
. FIFO_DEPTH (FIFO_DEPTH) ,
.TIMER_WIDTH (TIMER_WIDTH) ,
.COUNTER_WIDTH (COUNTER_WIDTH)
)
u_spi_reg (
/ / SPI I n t e r f a c e
. i _ s p i _ c l k ( i _ s p i _ c l k ) ,
. i _ r s t _ a s y n ( i _ r s t ) ,
. i _ s s _n ( i_ ss _ n ) ,
. i_mosi ( i_mosi ) ,
. o_miso ( o_miso ) ,
/ / I / F with DTC c o n t r o l l e r
. o _ i n t _ o r _ f r a c ( w_int_or_frac ) ,
. o_background_cal ibrat ion_en ( w_background_calibration_en ) ,
. o _ f r a c _ s h i f t ( w _ f r a c _ s h i f t ) ,
. o_kdtc ( w_kdtc ) ,
. o _ f l i p _ s i g n ( w_f l ip_s ign ) ,
. o _ f i f o _ d e l a y ( w_fi fo_delay ) ,
. lambda ( lambda ) ,
.mu (mu) ,
/ / I / F with f o r e g r o u n d c a l i b r a t i o n
. o_foreground_cal ib_en ( w_foreground_calib_en ) ,
. o _ s e t t l e _ t i m e ( w_set t le_ t ime ) ,
. o_stop_time ( w_stop_time ) ,
. o _ a c c _ f u l l ( w_acc_ful l ) ,
. i _ s e t t l e_ t ime_d ebug ( w_settle_time_debug ) ,
. i_stop_time_debug ( w_stop_time_debug ) ,
. i _dac_se lec t_done ( w_dac_select_done ) ,
. i _ d a c _ s e l e c t ( w_dac_select ) ,



C

105

/ / C o n f i g u r a t i o n r e g i s t r e r s
. o_en_de lay_se lec t ( o_en_de lay_se lec t ) ,
. o_pulse_width ( o_pulse_width ) ,
. o _ c s p d _ r e s i s t o r ( o _ c s p d _ r e s i s t o r ) ,
. o_ota_gm ( o_ota_gm ) ,
. o _ l p f _ r ( o _ l p f _ r ) ,
. o_vco_en ( o_vco_en ) ,
. o_vco_pvt ( o_vco_pvt ) ,
. o_vco_acq ( o_vco_acq ) ,
. o_vco_tracking ( o_vco_tracking )
) ;

bin2therm #(
. NR_THERM_BITS (NR_THERM_BITS_UPPER)
)
u_bin2therm_upper (
. i _ c l k ( i _ c l k ) ,
. i _ r s t ( i _ r s t ) ,
. i _b i n a ry ( w_dtc_code [ 8 : 3 ] ) ,
. o_therm ( w_upper_dtc_ctr l )
) ;

bin2therm #(
. NR_THERM_BITS (NR_THERM_BITS_LOWER)
)
u_bin2therm_lower (
. i _ c l k ( i _ c l k ) ,
. i _ r s t ( i _ r s t ) ,
. i _b i n a ry ( w_dtc_code [ 2 : 0 ] ) ,
. o_therm ( w_lower_dtc_ctr l )
) ;

assign o_upper_dtc_c t r l = ( r _ i n t _ o r _ f r a c _ 3 && i _ s e l e c t ) ?
w_upper_dtc_ctr l : {NR_THERM_BITS_UPPER{ 1 ' b0 } } ;

assign o _ l o w e r _ d t c _ c t r l = ( r _ i n t _ o r _ f r a c _ 3 && i _ s e l e c t ) ?
w_lower_dtc_ctr l : {NR_THERM_BITS_LOWER{ 1 ' b0 } } ;

endmodule



C

106 C. RTL CODE FOR TOP MODULE AND SPI BLOCK

module bin2therm (
i _ c l k ,
i _ r s t ,
i_binary ,
o_therm ) ;

/ / p a r a m e t e r s

parameter NR_THERM_BITS = 6 4 ;
parameter NR_BIN_BITS = $clog2 (NR_THERM_BITS) ;

/ / I / Os

input i _ c l k ;
input i _ r s t ;
input [ NR_BIN_BITS − 1 : 0 ] i_ b i na r y ;
output reg [NR_THERM_BITS − 1 : 0 ] o_therm ;

/ / R e g i s t e r s and w i r e s
reg [NR_THERM_BITS − 1 : 0 ] r_therm ;
in teger i ;

always @( * )
begin

r_therm = ' h0 ;
for ( i = 0 ; i < NR_THERM_BITS ; i = i + 1)
begin

i f ( i _ b in a r y == i )
r_therm = {NR_THERM_BITS{ 1 ' b1 } } << i ;

end
end

always @( posedge i _ c l k or negedge i _ r s t )
begin

i f (~ i _ r s t )
begin

o_therm <= {NR_THERM_BITS{ 1 ' b0 } } ;
end
else
begin

o_therm <= r_therm ;
end

end



C

107

endmodule

module spi_reg (
i _ s p i _ c l k , / / SPI c l o c k
i _ r s t_asy n , / / a synchronous n e g a t i v e r e s e t ( same as t h e

d i g i t a l p a r t )
i_ss_n , / / s l a v e s e l e c t c o n n e c t t o d i g v s s
i_mosi , / / ma s t e r ou tp ut s l a v e i n p u t
o_miso , / / ma s t e r i n p u t s l a v e ou tp ut

/ / c o n f i g u r a t i o n r e g i s t e r s f o r DTC c o n t r o l l e r
o _ i n t _ o r _ f r a c ,
o_background_cal ibrat ion_en ,
o _ f r a c _ s h i f t ,
o_kdtc ,
o _ f l i p _ s i g n ,
o_ f i fo_de lay ,
lambda ,
mu,

/ / c o n f i g u r a t i o n r e g i s t e r s f o r f o r e g r o u n d c a l i b r a t i o n b l o c k
o_foreground_cal ib_en ,
o _ s e t t l e _ t i m e ,
o_stop_time ,
o _ a c c _ f u l l ,
i_se t t le_ t ime_debug ,
i_stop_time_debug ,
i_dac_se lec t_done ,
i _ d a c _ s e l e c t ,

/ / S t a t i c c o n f i g u r a t i o n s i g n a l s t o a n a l o g b l o c k s
o_en_delay_se lec t ,
o_pulse_width ,
o_cspd_res i s tor ,
o_ota_gm ,
o_lpf_r ,
o_vco_en ,
o_vco_pvt ,
o_vco_acq ,
o_vco_tracking
) ;

parameter FRAC_WIDTH = 1 4 ;



C

108 C. RTL CODE FOR TOP MODULE AND SPI BLOCK

parameter KDTC_WIDTH = 1 0 ;
parameter GAIN_CORR_WIDTH = 1 4 ;
parameter FIFO_DEPTH = 8 ;
parameter FIFO_PTR_WIDTH = $clog2 (FIFO_DEPTH) ;
parameter TIMER_WIDTH = 1 6 ;
parameter COUNTER_WIDTH = 1 6 ;

parameter SPI_CMD_WRITE = 1 ' b0 ;
parameter SPI_CMD_READ = 1 ' b1 ;

/ / I / Os

input wire i _ s p i _ c l k ;
input wire i _ r s t _ a s y n ;
input wire i _ s s_ n ;
input wire i_mosi ;
output wire o_miso ;

/ / c o n f i g u r a t i o n r e g i s t e r s f o r DTC c o n t r o l l e r
output o _ i n t _ o r _ f r a c ;
output o_background_cal ibrat ion_en ;
output [FRAC_WIDTH−1 : 0 ] o _ f r a c _ s h i f t ;
output [KDTC_WIDTH−1 : 0 ] o_kdtc ;
output o _ f l i p _ s i g n ;
output [FIFO_PTR_WIDTH−1 : 0 ] o _ f i f o _ d e l a y ;
output [7 : 0 ] lambda ;
output [7 : 0 ] mu;

/ / c o n f i g u r a t i o n r e g i s t e r s f o r f o r e g r o u n d c a l i b r a t i o n b l o c k
output o_foreground_cal ib_en ;
output [TIMER_WIDTH−1 : 0 ] o _ s e t t l e _ t i m e ;
output [TIMER_WIDTH−1 : 0 ] o_stop_time ;
output [COUNTER_WIDTH−1 : 0 ] o _ a c c _ f u l l ;
input [TIMER_WIDTH−1 : 0 ] i_se t t l e_ t i me_deb ug ;
input [TIMER_WIDTH−1 : 0 ] i_stop_time_debug ;
input i _dac_se lec t_done ;
input i _ d a c _ s e l e c t ;

/ / C o n f i g u r a t i o n r e g i s t e r s
output [ 4 : 0 ] o_en_de lay_se lec t ;
output [ 2 : 0 ] o_pulse_width ;
output [ 3 : 0 ] o _ c s p d _ r e s i s t o r ;
output [ 9 : 0 ] o_ota_gm ;



C

109

output [ 7 : 0 ] o _ l p f _ r ;
output o_vco_en ;
output [ 6 : 0 ] o_vco_pvt ;
output [ 4 : 0 ] o_vco_acq ;
output [ 1 : 0 ] o_vco_tracking ;

/ / O p e r a t i o n s t a t e d e f i n i t i o n s
localparam [ 1 : 0 ] STATE_IDLE = 2 ' b10 ; / / i d l e
localparam [ 1 : 0 ] STATE_CMD = 2 ' b00 ; / / command i n p u t
localparam [ 1 : 0 ] STATE_DATA = 2 ' b01 ; / / d a t a a c c e s s

/ /
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ / I n t e r n a l s i g n a l d e c l a r a t i o n s
/ /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

reg [ 7 : 0 ] spcr ; / / SPI command r e g i s t e r ,
i n c l u d i n g r /w and a d d r e s s

reg [ 7 : 0 ] spdw ; / / d a t a w r i t e s h i f t
r e g i s t e r

reg [ 7 : 0 ] spdr ; / / d a t a r e a d s h i f t
r e g i s t e r

reg [ 3 : 0 ] counter ; / / c l o c k p o s i t i v e edge
c o u n t e r

wire [ 1 : 0 ] s t a t e ; / / SPI o p e r a t i n g s t a t e
wire wr_en ; / / w r i t e e n a b l e
wire rd_en ; / / r e a d e n a b l e

/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ / R e g i s t e r s used f o r DTC c o n t r o l l e r
reg [ 7 : 0 ] r _ f r a c _ s h i f t _ 0 ;
reg [ 7 : 0 ] r _ f r a c _ s h i f t _ 1 ;
reg [ 7 : 0 ] r_kdtc_0 ;
reg [ 7 : 0 ] r_kdtc_1 ;
reg [ 7 : 0 ] r _ f l i p _ s i g n ;
reg [ 7 : 0 ] r _ f i f o _ d e l a y ;
reg [ 7 : 0 ] r_lambda ;
reg [ 7 : 0 ] r_mu ;
reg [ 7 : 0 ] r _ i n t _ o r _ f r a c ;



C

110 C. RTL CODE FOR TOP MODULE AND SPI BLOCK

reg [ 7 : 0 ] r_background_cal ibrat ion_en ;

/ / R e g i s t e r s used f o r Foreground c a l i b r a t i o n
reg [ 7 : 0 ] r_foreground_cal ib_en ;
reg [ 7 : 0 ] r _ s e t t l e _ t i m e _ 0 ;
reg [ 7 : 0 ] r _ s e t t l e _ t i m e _ 1 ;
reg [ 7 : 0 ] r_stop_t ime_0 ;
reg [ 7 : 0 ] r_stop_t ime_1 ;
reg [ 7 : 0 ] r _ a c c _ f u l l _ 0 ;
reg [ 7 : 0 ] r _ a c c _ f u l l _ 1 ;

/ / R e g i s t e r s used f o r c o n f i g u r i n g a n a l o g b l o c k s
reg [ 7 : 0 ] r _ e n _ d e l a y _ s e l e c t ;
reg [ 7 : 0 ] r_pulse_width ;
reg [ 7 : 0 ] r _ c s p d _ r e s i s t o r ;
reg [ 7 : 0 ] r_ota_gm_0 ;
reg [ 7 : 0 ] r_ota_gm_1 ;
reg [ 7 : 0 ] r _ l p f _ r ;
reg [ 7 : 0 ] r_vco_en ;
reg [ 7 : 0 ] r_vco_pvt ;
reg [ 7 : 0 ] r_vco_acq ;
reg [ 7 : 0 ] r_vco_track ing ;

/ /
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ / Main c o d e s
/ /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ /
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ / C o n t r o l s i g n a l s g e n e r a t i o n
/ /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ / C l o c k p o s i t i v e edge c o u n t e r

always @ ( posedge i _ s p i _ c l k , negedge i _ r s t _ a s y n )
begin

i f ( ! i _ r s t _ a s y n )
counter <= 4 ' h0 ;

e lse i f ( ! i _ s s _n )



C

111

counter <= counter + 4 ' h1 ;
end

/ / SPI command s h i f t in
always @ ( posedge i _ s p i _ c l k , negedge i _ r s t _ a s y n )
begin

i f ( ! i _ r s t _ a s y n )
spcr <= 8 ' h00 ;

e lse i f ( s t a t e == STATE_CMD)
spcr <= { spcr [ 6 : 0 ] , i_mosi } ;

end

/ / SPI o p e r a t i n g s t a t e and w r i t e / r e a d e n a b l e s i g n a l s
assign s t a t e = { i_ss_n , counter [ 3 ] } ;
assign wr_en = ( s t a t e == STATE_DATA) && ( spcr [ 7 ] ==

SPI_CMD_WRITE) ;
assign rd_en = ( s t a t e == STATE_DATA) && ( spcr [ 7 ] ==

SPI_CMD_READ ) ;

/ /
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ / SPI d a t a w r i t e p r o c e s s
/ /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ / SPI w r i t e d a t a s h i f t in
always @ ( posedge i _ s p i _ c l k , negedge i _ r s t _ a s y n )
begin

i f ( ! i _ r s t _ a s y n )
spdw <= 8 ' h00 ;

e lse i f ( wr_en )
spdw <= {spdw [ 6 : 0 ] , i_mosi } ;

end

always @ ( posedge i _ s p i _ c l k , negedge i _ r s t _ a s y n )
begin

i f ( ! i _ r s t _ a s y n ) begin

r _ f r a c _ s h i f t _ 0 <= ' h5C ;
r _ f r a c _ s h i f t _ 1 <= ' h3F ;
r_kdtc_0 <= ' h8F ;



C

112 C. RTL CODE FOR TOP MODULE AND SPI BLOCK

r_kdtc_1 <= ' h02 ;
r _ f l i p _ s i g n <= ' h00 ;
r _ f i f o _ d e l a y <= ' h04 ;
r_lambda <= ' h08 ;
r_mu <= 'h0D ;
r _ i n t _ o r _ f r a c <= ' h00 ;
r_background_cal ibrat ion_en <= ' h00 ;

r _ s e t t l e _ t i m e _ 0 <= ' hFF ;
r _ s e t t l e _ t i m e _ 1 <= ' h03 ;
r_stop_t ime_0 <= ' hFF ;
r_stop_t ime_1 <= ' hFF ;
r _ a c c _ f u l l _ 0 <= ' h3F ;
r _ a c c _ f u l l _ 1 <= ' h00 ;
r_foreground_cal ib_en <= ' h00 ;

r _ e n _ d e l a y _ s e l e c t <= ' h17 ;
r_pulse_width <= ' h05 ;
r _ c s p d _ r e s i s t o r <= ' h00 ;
r_ota_gm_0 <= ' hF7 ;
r_ota_gm_1 <= ' h01 ;
r _ l p f _ r <= ' hF0 ;
r_vco_en <= ' h01 ;
r_vco_pvt <= ' h60 ;
r_vco_acq <= ' h10 ;
r_vco_track ing <= ' h01 ;

end
else i f ( wr_en && counter == 4 ' hF ) begin

case ( spcr [ 6 : 0 ] )

' h0 : r _ f r a c _ s h i f t _ 0 [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h1 : r _ f r a c _ s h i f t _ 1 [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h2 : r_kdtc_0 [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h3 : r_kdtc_1 [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h4 : r _ f l i p _ s i g n [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h5 : r _ f i f o _ d e l a y [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h6 : r_lambda [ 7 : 0 ]



C

113

<= {spdw [ 6 : 0 ] , i_mosi } ;
' h7 : r_mu [ 7 : 0 ]

<= {spdw [ 6 : 0 ] ,
i_mosi } ;

' h8 : r _ i n t _ o r _ f r a c [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h9 :
r_background_cal ibrat ion_en [ 7 : 0 ] <=
{spdw [ 6 : 0 ] , i_mosi } ;

'hA : r _ s e t t l e _ t i m e _ 0 [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' hB : r _ s e t t l e _ t i m e _ 1 [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

'hC : r_stop_t ime_0 [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

'hD : r_stop_t ime_1 [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' hE : r _ a c c _ f u l l _ 0 [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' hF : r _ a c c _ f u l l _ 1 [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h10 : r_foreground_cal ib_en
[ 7 : 0 ] <= {spdw [ 6 : 0 ] , i_mosi } ;

' h11 : r _ e n _ d e l a y _ s e l e c t [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h12 : r_pulse_width [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h13 : r _ c s p d _ r e s i s t o r [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h14 : r_ota_gm_0 [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h15 : r_ota_gm_1 [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi } ;

' h16 : r _ l p f _ r [ 7 : 0 ]
<= {spdw [ 6 : 0 ] , i_mosi

} ;
' h17 : r_vco_en [ 7 : 0 ]

<= {spdw [ 6 : 0 ] , i_mosi } ;
' h18 : r_vco_pvt [ 7 : 0 ]

<= {spdw [ 6 : 0 ] , i_mosi } ;
' h19 : r_vco_acq [ 7 : 0 ]

<= {spdw [ 6 : 0 ] , i_mosi } ;
'h1A : r_vco_track ing [ 7 : 0 ]



C

114 C. RTL CODE FOR TOP MODULE AND SPI BLOCK

<= {spdw [ 6 : 0 ] , i_mosi } ;

endcase
end

end

always @ ( negedge i _ s p i _ c l k , negedge i _ r s t _ a s y n )
begin

i f ( ! i _ r s t _ a s y n )
spdr <= 8 ' h00 ;

e lse i f ( rd_en && ( counter == 4 ' h8 ) ) begin
case ( spcr [ 6 : 0 ] )
' h0 : spdr <= r _ f r a c _ s h i f t _ 0

[ 7 : 0 ] ;
' h1 : spdr <= r _ f r a c _ s h i f t _ 1

[ 7 : 0 ] ;
' h2 : spdr <= r_kdtc_0 [ 7 : 0 ] ;
' h3 : spdr <= r_kdtc_1 [ 7 : 0 ] ;
' h4 : spdr <= r _ f l i p _ s i g n

[ 7 : 0 ] ;
' h5 : spdr <= r _ f i f o _ d e l a y

[ 7 : 0 ] ;
' h6 : spdr <= r_lambda [ 7 : 0 ] ;
' h7 : spdr <= r_mu [ 7 : 0 ] ;
' h8 : spdr <= r _ i n t _ o r _ f r a c

[ 7 : 0 ] ;
' h9 : spdr <=

r_background_cal ibrat ion_en [ 7 : 0 ] ;

'hA : spdr <= r _ s e t t l e _ t i m e _ 0
[ 7 : 0 ] ;

' hB : spdr <= r _ s e t t l e _ t i m e _ 1
[ 7 : 0 ] ;

'hC : spdr <= r_stop_t ime_0
[ 7 : 0 ] ;

'hD : spdr <= r_stop_t ime_1
[ 7 : 0 ] ;

' hE : spdr <= r _ a c c _ f u l l _ 0
[ 7 : 0 ] ;

' hF : spdr <= r _ a c c _ f u l l _ 1
[ 7 : 0 ] ;

' h10 : spdr <=
r_foreground_cal ib_en [ 7 : 0 ] ;



C

115

' h11 : spdr <=
r _ e n _ d e l a y _ s e l e c t [ 7 : 0 ] ;

' h12 : spdr <= r_pulse_width
[ 7 : 0 ] ;

' h13 : spdr <= r _ c s p d _ r e s i s t o r
[ 7 : 0 ] ;

' h14 : spdr <= r_ota_gm_0 [ 7 : 0 ] ;
' h15 : spdr <= r_ota_gm_1 [ 7 : 0 ] ;
' h16 : spdr <= r _ l p f _ r [ 7 : 0 ] ;
' h17 : spdr <= r_vco_en [ 7 : 0 ] ;
' h18 : spdr <= r_vco_pvt [ 7 : 0 ] ;
' h19 : spdr <= r_vco_acq [ 7 : 0 ] ;
'h1A : spdr <= r_vco_track ing

[ 7 : 0 ] ;

' h30 : spdr <=
i_se t t l e_ t ime_deb ug [ 7 : 0 ] ;

' h31 : spdr <=
i_se t t l e_ t ime_deb ug [ 1 5 : 8 ] ;

' h32 : spdr <=
i_stop_time_debug [ 7 : 0 ] ;

' h33 : spdr <=
i_stop_time_debug [ 1 5 : 8 ] ;

' h34 : spdr <= { 7 ' h0 ,
i_dac_se lec t_done } ;

' h35 : spdr <= { 7 ' h0 ,
i _ d a c _ s e l e c t } ;

default : spdr <= 8 ' h00 ;
endcase

end
else

spdr <= spdr << 1 ;
end

assign o_miso =spdr [ 7 ] ;

assign o _ f r a c _ s h i f t = { r _ f r a c _ s h i f t _ 1 [ 5 : 0 ] , r _ f r a c _ s h i f t _ 0 } ;
assign o_kdtc = { r_kdtc_1 [ 1 : 0 ] , r_kdtc_0 } ;
assign o _ f l i p _ s i g n = r _ f l i p _ s i g n [ 0 ] ;
assign o _ f i f o _ d e l a y = { r _ f i f o _ d e l a y [ 2 : 0 ] } ;
assign lambda = r_lambda [ 7 : 0 ] ;
assign mu = r_mu [ 7 : 0 ] ;
assign o _ i n t _ o r _ f r a c = r _ i n t _ o r _ f r a c [ 0 ] ;
assign o_background_cal ibrat ion_en =



C

116 C. RTL CODE FOR TOP MODULE AND SPI BLOCK

r_background_cal ibrat ion_en [ 0 ] ;

assign o_foreground_cal ib_en = r_foreground_cal ib_en [ 0 ] ;
assign o _ s e t t l e _ t i m e = { r _ s e t t l e _ t i m e _ 1 , r _ s e t t l e _ t i m e _ 0 } ;
assign o_stop_time = { r_stop_time_1 , r_stop_t ime_0 } ;
assign o _ a c c _ f u l l = { r _ a c c _ f u l l _ 1 , r _ a c c _ f u l l _ 0 } ;

assign o_en_de lay_se lec t = r _ e n _ d e l a y _ s e l e c t [ 4 : 0 ] ;
assign o_pulse_width = r_pulse_width [ 2 : 0 ] ;
assign o _ c s p d _ r e s i s t o r = r _ c s p d _ r e s i s t o r [ 3 : 0 ] ;
assign o_ota_gm = { r_ota_gm_1 [ 1 : 0 ] , r_ota_gm_0 } ;
assign o _ l p f _ r = r _ l p f _ r ;
assign o_vco_en = r_vco_en [ 0 ] ;
assign o_vco_pvt = r_vco_pvt [ 6 : 0 ] ;
assign o_vco_acq = r_vco_acq [ 4 : 0 ] ;
assign o_vco_tracking = r_vco_track ing [ 1 : 0 ] ;

endmodule



D
VERILOGA MODEL FOR THE

DTC

/ / Ver i l ogA f o r a DTC embedded w i t h i n a subsampl ing PLL

`include " cons tants . vams"
`include " d i s c i p l i n e s . vams"

( * ignore_hidden_sta te * ) module d t c _ c o n t r o l _ c a l i b r a t e (
r e f _ c l k , vsp , vsn , dly_clk , d ly_ca l_c lk , dly_clk_quant , debug
, acc_err_debug , sample_clk , d ly_c lk_err , kdtc ) ;

input r e f _ c l k ;
input vsp ;
input vsn ;
output dly_c lk ;
output d l y _ c a l _ c l k ;
output dly_clk_quant ;
output debug ;
output acc_err_debug ;
output sample_clk ;
output d l y _ c l k _ e r r ;
output kdtc ;

e l e c t r i c a l r e f _ c l k ;
e l e c t r i c a l vsp ;
e l e c t r i c a l vsn ;
e l e c t r i c a l d ly_c lk ;

117



D

118 D. VERILOGA MODEL FOR THE DTC

e l e c t r i c a l d l y _ c a l _ c l k ;
e l e c t r i c a l dly_clk_quant ;
e l e c t r i c a l debug ; / / debug pin f o r a c c _ f r a c
e l e c t r i c a l acc_err_debug ; / / debug pin f o r a c c _ e r r o r
e l e c t r i c a l sample_clk ;
e l e c t r i c a l d l y _ c l k _ e r r ;
e l e c t r i c a l kdtc ;

parameter r e a l t t o l = 0 . 0 1 f ;
parameter r e a l t r = 20p ;
parameter r e a l t f = 20p ;

/ / Fr eq r e l a t e d params
parameter r e a l f _ r e f = 10 e6 ;
parameter r e a l t _ r e f = 100n ;
parameter r e a l f_vco = 32 e6 ;
parameter r e a l t_vco = 31 .25 n ;
parameter r e a l t_vco_max = 50n ;
parameter r e a l pulse_width = 5n ;
parameter r e a l f rac_n = 0 . 2 ;
parameter r e a l s h i f t = 0 . 8 ; / / 1 − f r a c _ n
parameter r e a l n _ l e v e l s = 1024 ; / / number o f l e v e l s in

q u a n t i z e r

r e a l a c c _ f r a c ; / / a c c u mu l a t e d f r a c t i o n
r e a l delay_time ;
r e a l delay_t ime_cal ;
r e a l delay_t ime_err ;
r e a l delay_quant ; / / d e l a y a f t e r q u a n t i z a t i o n + INL
r e a l pure_delay_quant ; / / d e l a y a f t e r q u a n t i z a t i o n
r e a l sample_delay ;
in teger pulse ;
in teger pulse_err ;
in teger p u l s e _ c a l ; / / P u l s e wi th INL
in teger pulse_quant ; / / P u l s e wi th q u a n t i z e d d e l a y
r e a l l s b ; / / LSB o f q u a n t i z e r
in teger i = 0 , j = 0 ;
r e a l quant_thresh [ 1 0 2 4 − 2 : 0 ] ;
r e a l e r r o r ;
r e a l a c c _ e r r o r ; / / a c c u m u l a t e t h e q u a n t i z a t i o n e r r o r

r e a l dtc_ga in_err ;
in teger k_dtc ;
in teger sample ;
r e a l lms_acc ;



D

119

/ / r e a l l m s _ a c c _ u p d a t e ;
r e a l i i r _ o u t ;
r e a l i i r _ i n ;
r e a l lambda ;
r e a l mu;
/ / r e a l a l p h a ;
in teger s ign ;

/ / c a l i b r a t i o n l o o p BW c o n t r o l
in teger counter_max ;
in teger counter ;

analog
begin

@( i n i t i a l _ s t e p )
begin

a c c _ f r a c = 0 . 0 ;
delay_time = 0 . 0 ;
delay_t ime_err = 0 . 0 ;
de lay_t ime_cal = 0 . 0 ;
delay_quant = 0 . 0 ;
pure_delay_quant = 0 . 0 ;
a c c _ e r r o r = 0 . 0 ;

l s b = t_vco_max/ n _ l e v e l s ;
d tc_ga in_err = 0 . 1 ;
k_dtc = ( t_vco/ l s b ) * (1+ dtc_ga in_err ) ;
lms_acc = 1 ;
i i r _ o u t = 0 ;
i i r _ i n = 0 ;
lambda = 5e −3;
mu = 1e −4;
s ign = 0 ;
counter_max = 6000 ; / / 10 n s _ c l k *6000 = 60 us
counter = 0 ;

/ / c r e a t e q u a n t i z e r t h r e s h o l d s ( n _ l e v e l s − 1
t h r e s h o l d s )

for ( i =0 ; i <( n_ leve ls −1) ; i = i +1)
begin

quant_thresh [ i ] = ( i +1) * l s b − l s b /2;
end

end

@( c r o s s (V( r e f _ c l k ) −0.5 ,+1 , t t o l ) ) begin



D

120 D. VERILOGA MODEL FOR THE DTC

/ / BW c o n t r o l
counter = counter + 1 ;
i f ( counter > counter_max )

mu = 2 . 5 e −5;
/ / BW c o n t r o l

delay_time = a c c _ f r a c * t_vco ;
k_dtc = ( t_vco/ l s b ) * (1+ dtc_ga in_err ) * lms_acc

;
delay_t ime_err = a c c _ f r a c * t_vco * ( 1 +

dtc_ga in_err ) ;
lms_acc = lms_acc + mu* i i r _ o u t ;

de lay_t ime_cal = a c c _ f r a c * t_vco * ( 1 +
dtc_ga in_err ) * lms_acc ;

/ / Quant iz ing t r u e d e l a y
delay_quant = 0 . 0 ;
pure_delay_quant = 0 . 0 ;
for ( j =0 ; j < ( n_ leve ls −1) ; j = j +1)
begin

i f ( delay_time >= quant_thresh [ j ] )
begin

pure_delay_quant = ( j +1) * l s b
;

delay_quant = ( j +1) * l s b * (1+
dtc_ga in_err ) ;

end
end

e r r o r = ( pure_delay_quant − delay_time ) / l s b ;
/ / quant e r r o r n o r m a l i z e d t o l s b

a c c _ e r r o r = a c c _ e r r o r + e r r o r ; / /
a c c u m u l a t i n g quant e r r o r in t e rms o f l s b

i f ( a c c _ e r r o r >= 1)
begin

a c c _ e r r o r = a c c _ e r r o r − 1 ;
delay_quant = delay_quant − l s b *(1+

dtc_ga in_err ) ;
end
i f ( a c c _ e r r o r <= −1)
begin

a c c _ e r r o r = a c c _ e r r o r + 1 ;



D

121

delay_quant = delay_quant + l s b *(1+
dtc_ga in_err ) ;

end

a c c _ f r a c = a c c _ f r a c + s h i f t ;
i f ( a c c _ f r a c >= 1)

a c c _ f r a c = a c c _ f r a c − 1 ; / /
e f f e c t i v e l y modulo 1 a d d i t i o n

pulse = 1 ;
pulse_err = 1 ;

p u l s e _ c a l = 1 ;
pulse_quant = 1 ;

end

@( c r o s s (V( dly_c lk ) −0.5 ,+1 , t t o l ) ) begin
pulse = 0 ;
delay_time = pulse_width ; / / g e n e r a t i n g a

p u l s e
sample = 1 ;
sample_delay = t _ r e f /4;

end

@( c r o s s (V( d l y _ c l k _ e r r ) −0 .5 ,+1 , t t o l ) ) begin
pulse_err = 0 ;
delay_t ime_err = pulse_width ; / / g e n e r a t i n g

a p u l s e
end

@( c r o s s (V( d l y _ c a l _ c l k ) −0.5 ,+1 , t t o l ) ) begin
p u l s e _ c a l = 0 ;
delay_t ime_cal = pulse_width ; / / g e n e r a t i n g

a p u l s e
end

@( c r o s s (V( dly_clk_quant ) −0.5 ,+1 , t t o l ) ) begin
pulse_quant = 0 ;
delay_quant = pulse_width ;

end

/ / Sampling c l k s f o r Re−sampl ing PLL

@( c r o s s (V( sample_clk ) −0.5 ,+1 , t t o l ) ) begin
sample = 0 ;
sample_delay = t _ r e f /4;



D

122 D. VERILOGA MODEL FOR THE DTC

end
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ / l o g i c f o r c a l i b r a t i o n
@( c r o s s (V( sample_clk ) −0.5 , −1 , t t o l ) ) begin / /

compare PD o ut pu t on f a l l i n g edge o f re −sampl ing
c l k

i f (V( vsn ) > V( vsp ) )
s ign = +1;

e lse
s ign = −1;

i i r _ i n = sign * a c c _ f r a c ;
i i r _ o u t = (1 −lambda ) * i i r _ o u t + lambda * i i r _ i n

;
end

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

V( dly_c lk ) <+ t r a n s i t i o n ( pulse , delay_time , t r , t f ) ;
V( d l y _ c l k _ e r r ) <+ t r a n s i t i o n ( pulse_err ,

delay_t ime_err , t r , t f ) ;
V( d l y _ c a l _ c l k ) <+ t r a n s i t i o n ( pulse_cal , delay_t ime_cal , t r

, t f ) ;
V( dly_clk_quant ) <+ t r a n s i t i o n ( pulse_quant ,

delay_quant , t r , t f ) ;

V( sample_clk ) <+ t r a n s i t i o n ( sample , sample_delay , t r ,
t f ) ;

V( debug ) <+ t r a n s i t i o n ( sign , 0 , t r , t f ) ;
V( acc_err_debug ) <+ t r a n s i t i o n ( lms_acc , 0 , t r , t f ) ;

V( kdtc ) <+ t r a n s i t i o n ( k_dtc , 0 , t r , t f ) ;

end

endmodule


	Abstract
	Acknowledgements
	Introduction
	The Classical PLL
	The Subsampling PLL
	The Charge-Sampling PLL
	Thesis motivation: Designing a Fractional-N Charge-Sampling PLL
	Targeted Specifications
	Thesis Contributions
	Thesis Structure

	Digital to Time Converter
	A DTC-equipped subsampling PLL
	Impact of DTC Linearity on PLL performance
	Choice of DTC
	C-DAC-Based Constant Slope DTC

	Block level system description
	Phase domain model
	Loop dynamics in s-domain
	Phase noise contributions

	Introducing a DTC gain calibration loop

	Analog and RF circuit design
	Digital to time converter
	Deriving number of DTC bits
	Sizing the circuit components
	Segmentation considerations in the DAC
	Post layout simulations

	Charge-Sampling Phase Detector
	Phase Detector Gain
	Introduction of a re-sampling phase
	Post-layout simulation of the CSPD

	OTA
	Voltage controlled oscillator
	Selecting ring oscillator type
	Making the oscillator tunable
	Post-layout simulations

	Comparator
	Operating principle of the StrongARM Latch
	Comparator noise
	Comparator offset
	Foreground offset calibration scheme
	RDAC design
	Foreground calibration simulation results
	Comparator and RDAC layout

	Clock generation block

	RTL design
	Foreground calibration
	DTC controller and background DTC gain calibration

	Full chip layout and simulation results
	Chip Layout
	Post-layout simulation results
	PLL under Integer-N operation
	PLL under Fractional-N operation
	PLL Phase noise
	PLL power consumption

	Comparison with the State-of-the-Art

	Conclusions and future scope
	Future scope
	Reduction of fractional spurs
	Increasing Reference frequency to improve PLL Figure of Merit
	On-chip tuning of the Oscillator Tuning Word (OTW)


	RTL code for the DTC Controller
	RTL code for the Foreground Calibration Logic
	RTL code for Top module and SPI block
	VerilogA model for the DTC

