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Propositions
accompanying the dissertation

Algebraic Multiscale Framework for
Fractured Reservoir Simulation

by

Matei Ţene

1. When computing heterogeneity-aware basis functions for Algebraic MultiScale
(AMS) methods, the simplest formulation is always the best choice. (Chapters
2 and 3)

2. The coarsening factor dictates the computational performance of AMS, when
used as a fully converged iterative solver. (Chapters 2, 3 and 4)

3. A Two-Point Flux Approximation (TPFA) stencil is not sufficient to represent
flow in the presence of impermeable sub-grid features, embedded in the ma-
trix rock. (Chapter 4)

4. A sequentially-coupled approach between equations governing distinct phys-
ical processes, is the best option for commercial reservoir simulation. (Ap-
pendix D)

5. Accounting for modelling errors is crucial when performing history matching
and optimization in a Closed Loop Reservoir Management (CLRM) system.

6. Any attempt to perform model validation, based on experimental core-flood
data, has to operate on a 3D heterogeneous domain.

7. Participation in an internship or academic exchange must be included in the
core of the doctoral education program for PhD candidates at the TU Delft.

8. The recipe for success in research is the same as in dancing: 45% persistent
hard work, 10% spontaneous creativity, 45% good communication with your
partner.

9. The main difference between a veteran programmer and a beginner is that
the latter still has the impulse to blame the compiler for errors in their code.

10. If the people of Eastern and Western Europe would swap places overnight,
the cultural shock would be less than if the North were to switch with the
South.

These propositions are regarded as opposable and defendable, and have been
approved as such by the promotors, prof. dr. ir. J.D. Jansen and dr. H. Hajibeygi.



Stellingen
behorende bij het proefschrift

Algebraic Multiscale Framework for
Fractured Reservoir Simulation

door

Matei Ţene
1. Bij het berekenen van heterogeniteitsbewuste basisfuncties voor Algebraïsche

MultiSchaal (AMS) methoden, is de eenvoudigste formulering altijd de beste
keuze. (Hoofdstukken 2 en 3)

2. De coarsening-factor bepaalt de computationele prestaties van AMS, waneer
het als volledig geconvergeerde iteratieve oplosser gebruikt is. (Hoofdstukken
2, 3 en 4)

3. Een tweepuntenfluxbenadering (TPFA) sjabloon is niet voldoende om de stro-
ming in de aanwezigheid van ondoordringbare sub-raster structuren, ingebed
in de matrixgesteente, weer te geven. (Hoofdstuk 4)

4. De sequentieel gekoppelde benadering tussen vergelijkingen die verschillende
fysieke processen besturen, is de beste optie voor commerciële reservoirsi-
mulatie. (Bijlage D)

5. Het overleg van modelleringsfouten is cruciaal bij het uitvoeren van geschie-
denisvergelijking en optimalisatie in een Closed Loop Reservoir Management
(CLRM) systeem.

6. Elke poging tot modelvalidatie, gebaseerd op experimentele kernstroomge-
gevens, moet gebruik maken van een heterogeen 3D-domein.

7. Deelname aan een stage of academische uitwisseling moet in de kern van de
doctoraatsopleiding voor alle promovendi aan de TU Delft ingesloten zijn.

8. Het recept voor succes in onderzoek is hetzelfde als dat in dansen: 45%
hardnekkig hard werken, 10% spontane creativiteit, 45% goede communica-
tie met je partner.

9. Het belangrijkste verschil tussen een ervaren programmeur en een beginner
is dat de laatste nog steeds de neiging heeft om de compiler de schuld te
geven van fouten in hun code.

10. Als de mensen in Oost- en West-Europa van plaats zouden ruilen, zou de
culturele schok minder zijn dan die tussen het Noorden en het Zuiden.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotors, prof. dr. ir. J.D. Jansen en dr. H. Hajibeygi.
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Preface

Dear Reader,

Regardless of how you stumbled upon it – be it on a desk, bookshelf, under a
monitor or in PDF from the TU Delft repository – thank you for your interest in my
thesis! What follows is an x-ray of the past 4 years, spent along the picturesque
canals of Delft or travelling to several conferences in Europe and North America.
However, while bluntly factual, no x-ray can paint a complete picture of reality. So
here is a glimpse behind-the-scenes, hoping to add a bit of colour to the narrative
to come.

It all started at the end of 2013, shortly after the conclusion of my Master’s
in Applied Math at TU Delft. Dreaming of a positive answer to my job application
at Google, while reading about post-graduate positions in Tasmania and the UK,
I found out about a PhD opening right across the street. The news came from
Prof. Jan-Dirk Jansen, who was part of my MSc. defense committee. The topic
– multiscale methods for flow in porous media – was another step outside my
comfort zone. Admittedly, not as much as the one I had made 2 years before,
when I landed at Amsterdam’s Schiphol airport, armed with a Computer Science
background to confront my fear of Math.

Soon thereafter, I met my future supervisor, Dr. Hadi Hajibeygi, who put my
worries to rest – we were going to get me up-to-speed on reservoir simulation. So,
enter the waterfall – for, after having changed 3 accommodations in 4 months, it
was time to pack my bags for a visit to Stanford University. There, with the help of
Hadi, Yixuan and Prof. Hamdi Tchelepi, I got a crash course on algebraic multiscale
methods.

Still, it turned out that multiscale was only one piece of the PhD puzzle. Three
conditions were laid out before me, on my road to graduation. First and foremost,
journal papers had to be published. Then, given 4 years, somehow, someway,
somewhere in the town of Delft or its surroundings, I would have to find myself a
girlfriend. Finally, but not to say the least, I would have to win a table tennis match
against Hadi. Up to the writing of the present chapter, that last point remains
unfulfilled …

Modelling flow through fractures brought additional challenges, in terms of data
structures, condition numbers, coarsening. While addressing these, I also had the
pleasure to present at ECMOR, the SPE RSS, CMWR, SIAM GS and InterPore. The
conference papers paved the way towards my first journal publications. I also
embraced the opportunity to teach, as student assistant during Hadi’s reservoir
simuation course.

vii



Preface

Delft is a vibrant community, offering many social activities for students of all
ages – from team sports (football, basketball, volleyball) to dance classes and salsa
parties. After several years of being a SoSalsa member, I got the ambition to
organize my own dance event – a ballroom / latin night at the university Culture
Center. I did not expect it, but the party ignited the spirits of two enthusiastic girls
– Marieke and Marit – which – together with myself and Lanleigh – were to form the
founding board of the Blue Suede Shoes society for dancing students. With a focus
on ballroom, latin and Argentinian tango, BSS remains a hub for couple-dancers at
TU Delft and flag-carrier for the university during student dancesport competitions
(NTDS, ETDS).

Speaking of activities, all fresh PhD candidates at the CiTG faculty in TU Delft
are warmly welcomed to join the MV student mining society. They organize a wide
range of events, from pub nights in Het Noorden or barbecues in front of PSOR,
to company and field visits. I also enjoyed being a member of the SPE and SIAM
student chapters housed by the university.

During my nearly 7 years on Dutch soil, I also had a go at learning the language.
Gathering what I could recall from my years in elementary school learning German,
I enrolled into the “Delftse methode” course taught at the university. And that’s
how I finally came to terms with words like “gezellig” and “hagelslag”. So when the
Dutch postal service shortlisted me for a summer job, I was over the moon – too
bad my limited post-PhD contract availability couldn’t allow it …

Looking back, I see a lot of happy memories, with a few hiccups and missed
deadlines, here and there. And both sides of the coin brought lots to learn – on
the scientific side and, equally important, in terms of personal and social skills. So,
as the rollercoaster continued, I got to supervise Master students and started to
slowly get to grips with effective time management, while doing my best to maintain
good communication with Hadi. The PhD program provided an excellent sandbox
for me to hone these skills, both through Graduate School courses and hands-on,
although, I have to admit, I am still on the learning curve.

Last, but definitely not least, I was fortunate to spend 3 months as an intern
at Chevron, in Houston, TX. There, as a member in Dr. Xian-Huan Wen’s RPP
team and under the guidance of Dr. Seong Lee, I explored the topic of modelling
compositional flow using a sequentailly-implicit approach.

Now, standing at the end of the 4 years, I look forward to continue my work
on multiscale methods, this time from the perspective of the industry. Wearing the
Schlumberger hat, I hope to understand the practical implications of my research
and further my knowledge of petroleum engineering. Cheers to that!

Yours faithfully,

Matei Ţene
Delft, June 2018
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Summary

Despite welcome increases in the adoption of renewable energy sources, oil and
natural gas are likely to remain the main ingredient in the global energy diet for the
decades to come. Therefore, the efficient exploitation of existing suburface reserves
is essential for the well-being of society. This has stimulated recent developments
in computer models able to provide critical insight into the evolution of the flow of
water, gas and hydrocarbons through rock pores. Any such endeavour, however,
has to tackle a number of challenges, including the considerable size of the domain,
the highly heterogeneous spatial distribution of geological properties, as well as
the intrinsic uncertainty and limitations associated with field data acquisition. In
addition, the naturally-formed or artificially induced networks of fractures, present
in the rock, require special treatment, due to their complex geometry and crucial
impact on fluid flow patterns.

From a numerical point of view, a reservoir simulator’s operation entails the
solution of a series linear systems, as dictated by the spatial and temporal dis-
cretization of the governing equations. The difficulty lies in the properties of these
systems, which are large, ill-conditioned and often have an irregular sparsity pat-
tern. Therefore, a brute-force approach, where the solutions are directly computed
at the original fine-scale resolution, is often an impractically expensive venture, de-
spite recent advances in parallel computing hardware. On the other hand, switching
to a coarser resolution to obtain faster results, runs the risk of omitting important
features of the flow, which is especially true in the case of fractured porous media.

This thesis describes an algebraic multiscale approach for fractured reservoir
simulation. Its purpose is to offer a middle-ground, by delivering results at the
original resolution, while solving the equations on the coarse-scale. This is made
possible by the so-called basis functions – a set of locally-supported cross-scale
interpolators, conforming to the heterogeneities in the domain. The novelty of the
work lies in the extension of these methods to capture the effect of fractures. Impor-
tantly, this is done in fully algebraic fashion, i.e. without making any assumptions
regarding geometry or conductivity properties.

In order to elicit the generality of the proposed approach, a series of sensitivity
studies are conducted on a proof-of-concept implementation. The results, which
include both CPU times and convergence behaviour, are discussed and compared to
those obtained using an industrial-grade AMG package. They serve as benchmarks,
recommending the inclusion of multiscale methods in next-generation commercial
reservoir simulators.
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Samenvatting

Ondanks de welkome toename van hernieuwbare energiebronnen, blijven olie
en aardgas de komende decennia waarschijnlijk het belangrijkste ingrediënt in het
wereldwijde energiedieet. Daarom is de efficiënte exploitatie van bestaande reser-
ves aan de oppervlakte essentieel voor het welzijn van de samenleving. Dit heeft
recente ontwikkelingen in computermodellen gestimuleerd die kritisch inzicht kun-
nen verschaffen in de evolutie van de stroom van water, gas en koolwaterstoffen
door de poriën van de rotsen. Een dergelijke inspanning moet echter een aantal
uitdagingen aanpakken, waaronder de aanzienlijke omvang van het domein, de
zeer heterogene ruimtelijke verdeling van geologische eigenschappen, evenals de
intrinsieke onzekerheid en beperkingen specifiek voor de verzameling van veldge-
gevens. Bovendien vereisen de natuurlijk gevormde of kunstmatig geïnduceerde
netwerken van fracturen, aanwezig in de rots, een speciale behandeling vanwege
hun complexe geometrie en cruciale impact op stromingspatronen van de vloeistof.

Vanuit een numeriek oogpunt omvat de werking van een reservoirsimulator de
oplossing van een serie-lineaire systemen, zoals gedicteerd door de ruimtelijke en
temporele discretisatie van de bestaande vergelijkingen. De moeilijkheid ligt in
de eigenschappen van deze systemen, die groot, slecht geconditioneerd zijn en
vaak een onregelmatig schaarsheidspatroon hebben. Daarom is een brute-force-
benadering, waarbij de oplossingen rechtstreeks worden berekend met de oor-
spronkelijke fijnafstemming, vaak een onpraktisch dure onderneming, ondanks re-
cente ontwikkelingen in parallelle computersystemen. Aan de andere kant loopt
het overschakelen naar een grovere resolutie om snellere resultaten te verkrijgen,
het risico van het weglaten van belangrijke kenmerken van de stroom, en dit is
bijzonder waar in het geval van gefractureerde poreuze media.

Dit proefschrift beschrijft een algebraïsche multischaal benadering voor reser-
voirsimulatie. Het doel is om een   middenweg aan te bieden, door resultaten te le-
veren met de oorspronkelijke resolutie, terwijl de vergelijkingen op de ruwe schaal
worden opgelost. Dit wordt mogelijk gemaakt door de zogenaamde basisfuncties -
een set lokaal ondersteunde cross-schaal interpolatoren, bewust van de heteroge-
niteiten in het domein. De nieuwigheid van het werk ligt in de uitbreiding van deze
methoden om het effect van fracturen vast te leggen. Belangrijk is dat dit op vol-
ledig algebraïsche wijze wordt gedaan, zonder aannames te doen met betrekking
tot geometrie of geleidbaarheidseigenschappen.

Om de algemeenheid van de voorgestelde aanpak te ontlokken, wordt een
reeks gevoeligheidsstudies uitgevoerd met betrekking tot een proof-of-concept-
implementatie. De resultaten, die zowel CPU-tijden als convergentiegedrag om-
vatten, worden besproken en vergeleken met die verkregen met een industrieel
AMG-pakket. Ze dienen als benchmarks en bevelen de opname van multischaal
methoden in commerciële reservoirsimulators van de volgende generatie aan.

x



1
Introduction

The demand for energy across the world is increasing every year (+1% over
the course of 2017) with an appetite that is shifting away from the use of coal,
towards sources with a lower carbon footprint [1]. The resulting gap in the global
energy diet is compensated, to a large extent, by an increase in hydrocarbon ex-
traction (i.e. oil and natural gas). Traditional water flooding methods applied to
conventional petroleum reservoirs (sandstone or carbonate rocks) typically achieve
recovery factors between 20 - 40% of the original oil in-place [2]. Therefore, En-
hanced Oil Recovery (EOR) methods that use, e.g. miscible gas, chemicals (surfac-
tants, solvents, polymers, nano-particles, etc.) or thermal effects (steam, in-situ
combustion) to target the remaining 60 - 80% of reserves constitute an active field
of research and form the subject of pilot studies [3]. At the same time, the oil and
gas industry reports successful developments in unconventional reservoirs, such as
shale formations, by means of hydraulic fracturing and stimulation [4].

The host rock remains of interest even after the hydrocarbon content is depleted.
Its pore space can serve as storage for greenhouse gases, such as CO , which
appear as disposable by-products in industrial operations [5–7]. Alternatively, it
can be used to hold the hydrogen resulting from the hydrolysis of water [8–10].
Then, due to the reversibility of the chemical reaction, the reservoir effectively acts
as a capacitor, dampening the peaks and troughs created by the fluctuations of
supply and demand across the power grid.

Recent years have also brought considerable advances in the exploitation of
renewable sources of energy [1]. Among them, geothermal energy projects have
seen increased development, targeting geological formations with steep thermal
gradients [11–13]. Their competitive advantage, when compared to hydro, wind,
solar and nuclear power, is the continuous heat flux, which can be stopped and
restarted without major delay, as demand dictates.

Zooming out and away from the energy sector, the subsurface is also home to
important ecological processes, such as groundwater flow [14]. Alongside its cru-
cial role in the natural water cycle, the understanding of contaminant propagation

1
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1. Introduction

through groundwater is necessary to facilitate remediation efforts [15].
The success of any of the subsurface projects described above, relies on a good

understanding of the physics of fluid flow through porous media. This has sparked
significant interest, both within the industry and the scientific community, for the
development of reservoir simulators. They operate by solving the governing equa-
tions, in order to model the movement of the target fluids and their interaction with
the host underground rock, over time. This is made possible by the consideration of
a discrete representation of reality, described by a field of flow-relevant properties
(e.g. storage volume, conductivity, etc.) defined at specific locations, according to a
spatial grid (see Fig. 1.1). Then, after prescribing appropriate boundary conditions,
the quantities of interest (e.g. pore pressure, fluid saturation, rock displacement,
etc.) can be computed in each grid cell, over a series of consecutive time-steps, up
to (finite) machine precision, 𝜖 .

(a) Reservoir (b) Simulation grid – the colour intensity is pro-
portional to the cell permeability

Figure 1.1: Reservoir simulators construct a discrete representation of reality, composed of a set of
properties defined on a spatial grid. The evolution of the flow can then be simulated over a series of
consecutive time-steps.

The forecasting power of reservoir simulation results is crucial for effective
decision-making, operational safety, as well as the assessment and minimization
of any environmental side-effects during the project. In order to ensure it, how-
ever, one must overcome a number of technical challenges.

1.1. Challenges in fractured reservoir simulation

The large physical size of the target subsurface formations (kilometers) and
the rapidly-varying flow conductivities between different locations (mili- or cen-

2



1.1. Challenges in fractured reservoir simulation

1timeter scale) pose serious difficulties for traditional and next-generation reservoir
simulators. These heterogeneous properties appear, on the one hand, due to the
composition and spatial distribution of the solid grains that form the matrix rock
(i.e. porosity, permeability, wettability, etc., see [16] and Fig. 1.4(a)) and, on the
other hand, the (natural or induced) networks of interconnected fractures contained
within (Fig. 1.2).

Figure 1.2: Two main sources of heterogeneity in a fractured reservoir.

Rock properties are represented as effective parameters, with values defined in
each grid cell of the reservoir model (Fig. 1.1(b)). Their resolution is bounded, on
the one end, by the Representative Elementary Volume (REV, see e.g. [17]) and,
on the other, by the granularity and tolerances of the field measurements, as well
as the limited computational resources available for the simulation task. Meaning-
ful results must account for the intrinsic spatial correlations of rock porosity and
permeability, dictated by the geological structure (channels, layers, etc.), alongside
the evolution of the consolidation processes involved in the formation of the reser-
voir. The resulting fine-scale heterogeneities translate into variations in the flow
properties of the rock (storage capacity and conductivity), spanning several orders
of magnitude. Consequently, the linear systems arising from the discretization of
the governing PDEs are ill-conditioned and raise challenges for numerical solution
methods.

Fractures introduce additional representation difficulties when designing a reser-
voir model. They span multiple length scales and exhibit complex intersections at
arbitrary angles. In addition, their flow properties are in sharp contrast to those
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of the matrix rock, ranging from highly permeable fluid conduits, to cemented bar-
riers, which inhibit the flow. In reservoir models, the small apertures of fractures
classifies them as sub-grid features (i.e. 2D surfaces embedded into the 3D do-
main) and, in order to speed up computations, a hierarchical approach is typically
employed [18]. More specifically, before the simulation, fractures shorter than the
size of a grid cell are homogenized by altering the effective permeability of the host
rock [19, 20], while the remainder are treated explicitly. The literature has seen
the emergence of several types of fracture models, including Dual-Porosity / Dual-
Permeability (DPDK) [21–23], where fractures are the flow actors and the matrix
acts as fluid storage, Discrete Fracture Models (DFM) [24–26], which confine frac-
tures at the interfaces between rock cells using complex unstructured grids, and,
more recently, Embedded Discrete Fracture Models (EDFM) [18, 19, 27]. The latter
avoid the geometrical complexities arising from the intersections within a fracture
network, by defining separate independent grids for the fracture and rock domains.
The coupling is instead achieved by appropriately-defined cross-media source / sink
terms.

Finally, despite advances in field data acquisition and interpretation techniques
[28], the considerable depths at which the target geological formations reside (1-10
km), makes the accurate measurement of their rock properties a difficult task. This
adds a layer of uncertainty, which must be taken into account when performing flow
simulations for robust forecasting. A common way of tackling this challenge is to
consider a set of possible geological scenarios [29], derived e.g. from geostatistics
and expert assessment.

In conclusion, having to perform an ensemble (typically, 100 - 1000) of large-
scale high resolution simulations over long time periods (decades), makes modeling
flow through real-field reservoirs under uncertainty a computationally expensive
task. And this goes without even mentioning the numerical aspects (i.e. stability
and convergence) of solving the complex (non-linear) system of coupled Partial
Differential Equations (PDEs) associated with the physical processes involved.

1.2. Simulation methods – literature review

Fig. 1.3 gives some examples of methods designed to tackle these challenges,
separated into three categories, based on the trade-off between accuracy and com-
putational efficiency they employ.

After identifying the equations that govern the relevant physical processes (e.g.
mass, momentum, energy balance), one can choose to perform the simulation at
full (fine-scale) resolution (Fig. 1.4(c)). This approach ensures maximum accuracy,
however, given the large number of degrees of freedom (DOF) in the representation
of the solution (up to billions in real-field cases), which need to be resolved at
each time-step, it can prove impractical on even the latest generation of computing
hardware.

On the opposite side of the spectrum lie methods that reduce the number of
computations by limiting the number of DOFs (see, e.g., [30–32]). Among them,
upscaling methods solve the equations on a coarse domain. To facilitate this, ef-
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1

Figure 1.3: Examples of real-field flow simulation techniques and the trade-off between accuracy and
computational efficiency they achieve.

fective coarse-scale conductivities are determined from the fine-scale geological
description (Fig. 1.4(b)), e.g. using a weighted averaging approach [33–36] or by
solving the flow equations locally [37–40]. Significant speed-ups can be achieved,
as a result, however, the loss in resolution can be detrimental to their forecast-
ing power, especially in cases when small-scale features, such as fractures, are
dictating the flow in the domain.

The middle-ground features methods that interpolate the solution from the
coarse domain (composed either of one coarse grid or a hierarchy of coarse levels)
back onto the original resolution, thus recovering the fine-scale details of the flow
patterns. This is the philosophy behind Algebraic MultiGrid (AMG) methods, which
constitute the subject of a mature body of literature [44]. The proven robustness
and wide applicability has lead to their availability as commercial black-box linear
system solvers [45].

MultiScale Finite Element (MSFE) [46–51] and Finite Volume (MSFV) [42, 52–
55] methods have recently emerged, as alternative to upscaling, for accurate and
efficient porous media flow simulation. They map the solution between coarse- and
fine-scale using a set of specially-crafted basis functions, which capture the local
heterogeneities (Fig. 1.4(d)) [52]. Also, in the case of MSFV, a mass-conservative
flux field can be reconstructed [42], which can be used to resolve the transport (i.e.
saturation) equations [54, 55].

The advent of the iterative approach [56] has opened the possibility for the
use of multiscale methods as fully-converged flow solvers. To this end, the multi-
scale stage (aimed at damping low-frequency errors) is paired with an inexpensive
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(a) Fine-scale permeability, taken from the top layer of the SPE10 case [41], × cells

(b) Example of upscaled effective permeability, × cells

(c) Fine-scale injected gas saturation, × cells

(d) Injected gas saturation obtained using the reconstructed MSFV flux [42] from the multiscale pressure
solution on a coarse grid with × blocks

Figure 1.4: Comparison between the solutions obtained using fine-scale (c) and multiscale (d) methods
on the top layer of the SPE10 permeability field [41] (a). Images adapted from [43].
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1fine-scale smoother (e.g. ILU(0) [57], to address high-frequency errors) and it-
erated until the solution reaches machine accuracy [58, 59]. Alternatively, only
a few iterations can be employed, e.g. according to a user-specified tolerance,
𝜖 ≫ 𝜖 , followed by the MSFV flux reconstruction procedure. This approach was
shown to deliver meaningful approximate results for decision-making, at a fraction
of the computational cost [60] and without sacrificing resolution or compromising
the stability of the simulator.

The past two decades have seen rapid advances in the evolution of multiscale
methods. Due to their increasing popularity, an Algebraic MultiScale formulation
(AMS), described in terms of operators (prolongation and restriction) has been de-
vised [52, 61]. This has accelerated ongoing efforts to integrate these methods
into both traditional and next-generation simulators, including those that make use
of parallel computing hardware [62].

The computation of the multiscale basis functions is the subject of ongoing de-
bate. Traditionally, their local support has been ensured by imposing localization as-
sumptions, according to the wirebasket topology of the dual-coarse grid [63]. Other
authors have devised formulations based on numerical Green’s functions [64, 65].
Recently, an iterative restricted-smoothing procedure has been proposed (MsRSB)
[66], where the dual grid is replaced by interaction regions and locality is ensured
via rescaling.

Initially focused exclusively on incompressible single-phase flow scenarios, AMS
methods are the subject of continuous extensions in terms of the physical processes
they target. Recent contributions to the literature have seen them used to capture
the effects of gravity [67], complex wells [68, 69], in black-oil simulation [70] and
compositional flow [71, 72]. From the total mass balance (i.e. pressure) equations,
their scope has been extended to tackle transport (phase saturation) [73, 74], en-
ergy balance [75, 76], as well as the elastic deformation (displacement) in solids
[77] and poromechanics (flow coupled with displacement) of fractured and faulted
reservoirs [78, 79].

AMS has been successfully applied in the context of various coupling strategies
between the unknowns involved in multiphase flow (pressure and phase saturation),
from IMPES (Implicit Pressure, Explicit Saturation) [54], to sequentially-implicit and
monolithic (i.e. fully-implicit) simulators [80], using structured, as well as unstruc-
tured grids [66, 81–84]. The transition from a single coarse grid to multiple coarse
levels has enabled the use of multiscale methods in simulations featuring Dynamic
Local Grid Refinement (DLGR) [85].

Enriched multiscale methods have been recently proposed to tackle media ex-
hibiting particularly high conductivity contrasts [86–88], while ensuring monotonic-
ity in the results [89, 90].

Finally, there is ongoing research regarding the use of multiscale-based simula-
tors as the backbone for history matching and production optimization cycles [91]
in the Closed-Loop Reservoir Management (CLRM) framework [92].

In 2014, which marked the beginning of the present PhD project, many of the
developments mentioned above were in their infancy or subjects of “future work”.
The possibility of decoupling the formulation of the multiscale basis functions from
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that of the pressure equations had only recently been considered, in the context of
compressible flow [43, 52, 70, 93]. The first benchmark studies on the performance
of AMS for flow in unfractured heterogeneous porous media, based on processor
(CPU) time, were fresh out of press [61]. More importantly, the application of AMS
to flow in the presence of fractures was at its first attempts [27, 94] and multiscale
for geomechanics was still a few years away. This was the context that lead to the
formulation of the project’s research objective and goals, as detailed in the next
Section.

1.3. Research goals

The main objective of the present project is to

Develop a flexible and extensible framework for fractured reservoir simu-
lation using algebraic multiscale methods.

Towards this end, the following goals have been achieved:

• Studying the application of AMS to compressible flow through porous media.

• Modelling multiphase flow in the presence of embedded fractures and the
application of multiscale methods to such cases.

• Investigating the impact of elastic rock deformation on fluid flow.

1.4. Thesis outline

This thesis is a compilation of material from published journal articles, as well
as results and papers prepared for conferences, generated during the 4-year PhD
program. The first two research goals constitute the subjects of individual chapters.
More specifically, Chapter 2 presents the extension of AMS methods to more realistic
physical cases by including the effects of pressure-driven compressibility. Then, in
Chapter 3, the solution of the flow equations in the presence of fracture networks,
embedded into the matrix rock, is investigated. The findings of this study have
led to the development of a novel Projection-based Embedded Discrete Fracture
Model (pEDFM), able to handle sub-grid features with a wide range of conductivity
contrasts, which is detailed in Chapter 4. Finally, the derivation of a multiphase
fully compressible poromechanics simulator, with sequentially-implicit coupling, is
discussed and validated in Appendix D.

Each chapter follows a predefined structure. The beginning consists of a short
topic-specific introduction, which expands on what was presented above. Then,
the discussion shifts towards the governing equations, along with their discretiza-
tion and linearization, the coupling between the unknowns and the approach used
to compute the fine-scale solution. The latter is further expanded upon by the pre-
sentation of a suitable algebraic multiscale strategy, tailored to the specifics of the
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1simulation scenario at hand. Finally, the results of the set of supporting numeri-
cal experiments are discussed and conclusions are drawn. Chapter 5 gathers and
reviews these conclusions, in the context of the research objective and goals, and
outlines directions for further research.
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Pressure-driven fluid and

rock compressibility

Up to 2014, the AMS community focused mostly on solving the linear elliptic
equations arising from incompressible single-phase flow (see e.g., [61]). They are,
however, not applicable in cases when gas is present in the subsurface formation
and / or injected as displacing fluid. At the same time, the properties of the host
rock are known to change during exploitation. Therefore, pressure-driven fluid
and rock compressibility need to be taken into account when simulating realistic
cases involving flow through porous media. More specifically, both the fluid density
and rock porosity are allowed to vary with pore pressure, thus, introducing time
dependency and non-linearities into the mass balance equations. The resulting
system of parabolic Partial Differential Equations (PDEs), needs to be linearized
and solved iteratively, which raises additional concerns in terms of computational
expense and convergence [97].

Answering the opportunity raised by the considerations above, the present study
introduces the first generic iterative AMS procedure for compressible flows in het-
erogeneous porous media (C-AMS), along with a thorough study of its computa-
tional efficiency (CPU time) and convergence behaviour (number of iterations). This
development is crucial in extending the applicability of multiscale methods to more
realistic physical scenarios.

Towards this end, a non-overlapping coarse partition of the (fine-scale) simula-
tion grid is performed, along with its overlapping dual-coarse counterpart. Then, the
restriction (i.e. a map from fine- to coarse-scale, or coarsening) and prolongation
(coarse- to fine, or interpolation) operators are constructed. The latter represents
a collection of locally-computed and infrequently updated basis functions, which
capture the effect of fine-scale heterogeneities.

The material presented in this chapter has been published in the proceedings of the ECMOR XIV - 14th
European Conference on the Mathematics of Oil Recovery (2014) [95] and in the Journal of Computa-
tional Physics 300, 679 (2015) [96].
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In contrast to the incompressible case, however, the construction of these basis
functions for compressible flow problems is not straightforward. In the past, formu-
lations based on the incompressible elliptic [93], compressible elliptic [52, 70] and
pressure-independent parabolic [43] mass balance equations have been consid-
ered. However, the literature lacks a systematic study to reveal the benefit of using
one option over the other, especially when combined with a fine-scale smoother
stage. Moreover, no study of the overall computational efficiency of the multiscale
methods has been done, so far, for compressible three-dimensional problems.

In order to develop an efficient prolongation operator, in this work, several for-
mulations for basis functions are considered. These differ from each other in the
amount of compressibility involved, ranging from incompressible elliptic to com-
pressible parabolic types. In terms of the restriction operator, both MultiScale Finite
Element (MSFE) [46] and MultScale Finite Volume (MSFV) [42] are employed. In
addition, the possibility of applying each of the two operators in succession is stud-
ied, allowing C-AMS to benefit from the Symmetric Positive Definite (SPD) algebraic
property of MSFE and the mass conservative solutions of MSFV [98].

Similar to [56], an iterative strategy is devised, during which, low-frequency er-
rors are resolved by the global (multiscale) stage, while high-frequency errors are
damped using a second-stage smoother at the fine-scale. Two options are consid-
ered for the smoother: the widely used local correction functions [43], extended,
here, to account for different degrees of compressibility, as well as ILU(0) [57].
Sensitivity studies, based on CPU times, are performed w.r.t each component in
the C-AMS procedure, in order to determine the most effective multiscale strategy
for compressible flow through 3D heterogeneous porous media. It is important to
note that the time spent during setup, linear system population and solution are
measured separately - a study which was not considered in previously published
compressible multiscale works.

The results in the present study show that only a few C-AMS iterations are
enough in order to obtain a high-quality estimation of the fine-scale solution. As
such, the method can be employed as an efficient approximate solver, in combina-
tion with a fine-scale conservative reconstruction procedure [42]. In the benchmark
studies of this work, however, it is iterated until the results reach machine accuracy.
Therefore, its performance as a fully converged solver is measured and compared
against the industrial-grade Systems Algebraic MultiGrid method, SAMG [45]. This
comparative study for compressible problems is the first of its kind, and is made
possible through the presented algebraic formulation, which allows for easy inte-
gration of C-AMS in existing advanced simulation platforms. The numerical results,
elicited from simulations on heterogeneous 3D domains, recommend C-AMS as an
efficient method for compressible flow.

The chapter is structured as follows. First, the governing equations are briefly
visited. Then, the formulation of the proposed C-AMS method is presented, while
considering several options for the prolongation, restriction operators and the second-
stage solver (i.e. smoother). The adaptive updating of these operators is studied
(i.e. only if required at a given time-step), along with the possibility of early exit in
the linear solution stage of the Newton-Raphson loop (i.e. before the residual norm
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reaches machine precision). The results of numerical experiments on a wide range
of 3D heterogeneous test cases are subsequently discussed. Their aim is to deter-
mine the optimum multiscale solution strategy, whose performance is, ultimately,
compared to SAMG, both in terms of the number of iterations and overall CPU time.
The discussion of these results, finally, leads to the conclusions.

2.1. Governing equations

This section presents the mass balance equations governing isothermal single-
phase flow through porous media, when gravity, capillarity and compositional ef-
fects are neglected. First, the reference case is visited, when both the fluid and
the matrix rock are incompressible. These assumptions are subsequently relaxed
by allowing both the rock porosity and fluid density to vary with pore pressure.

In order to illustrate the differences between the governing PDEs and their solu-
tions in both scenarios, the resulting pressure fields, on a homogeneous 1D domain,
are compared.

2.1.1. Incompressible flow

The mass balance corresponding to incompressible single-phase flow through
porous media on the spatial domain Ω is governed by the following elliptic PDE,

∇ . 𝑤 = 𝑞, (2.1)

where ∇ . is the divergence operator, 𝑞 denotes volumetric source / sink terms, e.g.
arising from injection / production wells, respectively, while 𝑤 is the volumetric flux,
defined, according to Darcy’s law, as

𝑤 = −𝐤𝜆 ⋅ ∇𝑝, (2.2)

with ∇, the gradient operator, 𝐤, the 2nd order positive-definite absolute perme-
ability tensor, here, considered diagonal and isotropic, 𝜆 = 1/𝜇, the fluid mobility,
𝜇, the fluid viscosity and, 𝑝, the pore pressure.

In order to solve Eq. (2.2) numerically, a discretization grid is defined on Ω,
composed of 𝑁 cells, Ω , ∀𝑖 = 1,… ,𝑁. Then, by integrating over each Ω ,

−∫ ∇ . (𝐤𝜆 ⋅ ∇𝑝) 𝑑𝑉 = ∫ 𝑞 𝑑𝑉, (2.3)

the Gauss theorem can be applied,

−∫ 𝐤𝜆 ⋅ ∇𝑝 . 𝑛 𝑑𝑆 = ∫ 𝑞 𝑑𝑉, (2.4)

where . stands for the dot product, 𝜕Ω denotes the cell’s superficial area (interface)
and 𝑛 its normal versor.
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𝐤 at the interface is computed by harmonically averaging the values correspond-
ing to the two neighbouring cells. Then, under the assumption that these mobility
coefficients (see Eq. (2.2)) do not vary with 𝑝, Eq. (2.4) is linear and can be written
in algebraic form as

𝐀 𝑝 = 𝑞, (2.5)

where the 𝑁×𝑁 sparse matrix 𝐀 contains transmissibilities in its off-diagonals, 𝑝 is
the vector of 𝑁 pressure unknowns, while 𝑞 contains the 𝑁 Right-Hand-Side (RHS)
terms.

The solution of this linear system for a 1D homogeneous reservoir (i.e. 𝐤 = 𝑘
constant over Ω) with Dirichlet boundary conditions set to non-dimensional pressure
values 1 on the left and 0 on the right, is given in Fig. 2.1.

Figure 2.1: Incompressible single-phase pressure solution corresponding to a 1D homogeneous reservoir
of length , with Dirichlet boundary conditions.

2.1.2. Compressible flow

If the rock porosity 𝜙 and fluid density 𝜌 are allowed to vary with pore pressure,
the PDE describing mass balance over domain Ω is

𝜕 (𝜙𝜌)
𝜕𝑡 − ∇ . (𝜌𝝀 ⋅ ∇𝑝) = 𝜌𝑞. (2.6)

Note that, in comparison with Eq. (2.1), Eq. (2.6) contains a time-dependent ac-
cumulation term, 𝜕 (𝜙𝜌) /𝜕𝑡, and the presence of 𝜌 in the advection term, −∇ .(𝜌𝐤𝜆⋅
∇𝑝), makes the transmissibilities non-linear.
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The semi-discrete form of this nonlinear flow equation after implicit (Euler-
backward) time integration from time-step 𝑛 to 𝑛 + 1 and division by 𝜌( ), reads

𝜙( )

Δ𝑡 − 𝜙
( )

Δ𝑡
𝜌( )
𝜌( ) −

1
𝜌( )∇ . (𝜌( )𝐤𝜆 ⋅ ∇𝑝( )) = 𝑞( ). (2.7)

Using first-order Taylor expansion in the accumulation term,

𝜙( ) ≈ 𝜙( ) + 𝜕𝜙𝜕𝑝 |
( )
(𝑝( ) − 𝑝( )) (2.8)

1
𝜌( ) ≈

1
𝜌( ) +

𝜕 /
𝜕𝑝 |

( )
(𝑝( ) − 𝑝( )) (2.9)

leads to a Newton-Raphson loop, which, at iteration 𝜈 + 1, reads,

𝑐( ) (𝑝( ) − 𝑝( )) − 1
𝜌( )∇ . (𝜌

( )𝐤𝜆 ⋅ ∇𝑝( )) = 𝑏( ), (2.10)

where 𝜌 was lagged in the advection term and

𝑐( ) = 1
Δ𝑡 [

𝜕𝜙
𝜕𝑝 |

( )
− 𝜙( ) 𝜕 /𝜕𝑝 |

( )
𝜌( )] , (2.11)

𝑏( ) = −𝜙
( )

Δ𝑡 + 𝜙
( )

Δ𝑡
𝜌( )
𝜌( ) + 𝑞

( ). (2.12)

Note that, as 𝜈 → ∞, 𝑝( ) → 𝑝( ), hence (𝑝( ) − 𝑝( )) → 0 and the lin-
earized Eq. (2.10) converges to the non-linear Eq. (2.7). Therefore, the coeffi-
cient 𝑐, which is a by-product of the linearization process, plays a role only during
Newton-Raphson iterations. This fact opens up the possibility to alter 𝑐 by comput-
ing it based on either 𝑝( ), resulting in 𝑐( ) from Eq. (2.11), or 𝑝( ), i.e. 𝑐( ), which
is obtained by setting 𝜈 = 𝑛 in the same equation. Each choice can potentially lead
to a different convergence behaviour.

Eq. (2.10) can be written algebraically as

𝐀( ) 𝑝( ) = 𝑓( ), (2.13)

where
𝐀( ) = 𝐂( ) + 𝐓( ). (2.14)

Here, 𝐂( ) is a diagonal matrix having 𝑐Δ𝑉, evaluated at cell Ω , as 𝑖-th entry,
where Δ𝑉 denotes the cell’s volume. Also, 𝐓( ) contains transmissibilities in its
off-diagonals. Finally, the total RHS terms are assembled in the vector 𝑓( ),

𝑓( ) = 𝑏( ) + 𝐂( ) 𝑝( ), (2.15)

where the vector 𝑏( ) gathers the terms given in (2.12).

15



2

2. Pressure-driven fluid and rock compressibility

Consider the the homogeneous 1D case studied earlier, with an initial pressure
𝑝 (𝑥) = 0, ∀𝑥 ∈ Ω and the following constitutive relationships,

𝜙(𝑝) = 𝜙 𝑐 (𝑝 − 𝑝 ), (2.16)

𝜌(𝑝) = 𝜌 exp (𝑐 (𝑝 − 𝑝 )) , (2.17)

where 𝑐 and 𝑐 are the rock and fluid compressibility coefficients, respectively. The
results of solving Eq. 2.13 over several time steps is depicted in Fig. 2.2. Note the
change in the curvature of the pressure field.

Figure 2.2: Compressible single-phase pressure solution, over several time-steps, corresponding to a 1D
homogeneous reservoir of length , with initial pressure and Dirichlet boundary conditions.

2.2. Algebraic multiscale formulation (C-AMS)

This section presents the formulation of the Compressible Algebraic MultiScale
method (C-AMS), as an efficient alternative to directly solving Eq. (2.13), for each
time-step.

2.2.1. Primal and dual-coarse grids

C-AMS computes the solution to Eq. (2.13) on a primal-coarse domain (Fig.
2.3(b)) – a non-overlapping partition of the fine-scale grid (Fig. 2.3(a)) into 𝑁
blocks,

̂
Ω , , ∀𝑙 = 1,… ,𝑁 .

This coarse partition, subsequently, leads to the construction of a dual-coarse
domain, following the wirebasket hierarchy [63]. More specifically, first, one fine
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cell within each coarse block is selected and labelled as a dual-coarse vertex (Fig.
2.3(c)). Then, 1D domains connecting the vertices to each other, or to domain
boundaries, are identified to form the dual-coarse edges (Fig. 2.3(d)). In similar
fashion, the 2D domains connecting the edges are dual-coarse faces (Fig. 2.3(e))
and, finally, the 3D domains between faces constitute dual-coarse interiors (Fig.
2.3(f)).

On a 3D domain, the dual-coarse elements around each (3D) interior – the
surrounding (2D) faces, their neighbouring (1D) edges and, subsequently, the ad-
jacent (0D) vertices – form the corresponding dual-coarse block, Ω̃ , , ℎ = 1,… ,𝑁 .
Fig. 2.4 shows the overlap between primal and dual-coarse blocks on a 2D domain
– since there are no interiors in this case, the dual blocks are formed around faces,
instead.

2.2.2. Multiscale operators

The transfer operators between fine-scale and coarse-scale are the multiscale
Restriction (ℛ) and Prolongation (𝒫). The former is defined based on either Finite
Element (MSFE), i.e., ℛ = 𝒫 , or Finite Volume (MSFV), for which ℛ corre-
sponds to the integral over primal-coarse blocks, i.e.,

ℛ (𝑖, 𝑗) = {1 , if fine-cell 𝑗 is contained in primal-coarse block 𝑖
0 , otherwise.

(2.18)

The columns of 𝒫 are the basis functions, one for each primal coarse block,
which are solutions of the mass balance equation (D.36), computed subject to
simplified boundary conditions, as follows. The value of the basis function 𝑖 at each
vertex 𝑗 is set as

𝛿 = {1, if 𝑖 = 𝑗
0, if 𝑖 ≠ 𝑗 . (2.19)

Then the dual elements in the neighbourhood of node 𝑖 are resolved, in sequence.
The edge values are computed in 1D fashion, i.e. neglecting any fluxes to / from
nearby face cells and using the values at the vertices as Dirichlet boundary con-
ditions. Next, the values at the faces are obtained using the edges as boundary
conditions and neglecting the connections to the interiors. Finally, the interiors can
be computed, based on the values of their surrounding faces.

The neglected transmissibilities towards dual elements of inferior rank in the
wirebasket hierarchy, along with the Dirichlet boundary conditions, constitute the
so-called localization assumption (see Appendix B.4 and [61] for more details). It
ensures that the support of each basis function is constrained to the neighbourhood
of the corresponding dual-coarse vertex. Note that an alternative approach has
recently been proposed in the literature, where the basis functions are iteratively
computed and rescaled to obtain a similar effect, without the need for a dual-coarse
grid [66].

The basis functions, Φ ,∀𝑙 = 1,… ,𝑁 , are assembled over dual-coarse cells
Ω̃ , , ∀ℎ ∈ {1, ..., 𝑁 }, i.e., Φ = ⋃ Φ , . In contrast to the incompressible AMS
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(a) Fine-scale grid (b) Primal coarse grid

(c) Dual-coarse vertices (orange) (d) Dual-coarse edges (green)

(e) Dual-coarse faces (blue) (f) Dual-coarse interiors (purple)

Figure 2.3: Multiscale primal (b) and dual-coarse partitions (c-e) of a 3D fine-scale grid (a).
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2
pl

Dual-Coarse Cell Coarse Cell

Ω̃h,d
Ω̌ l,c

ˇ

Figure 2.4: Overlap between a primal and dual-coarse block on a 2D domain. Adapted from [27].

[61], in C-AMS, the equations for these functions need not exactly coincide with
the fine-scale mass balance (D.36). Instead, C-AMS can accommodate different
formulations, depending on the level of compressibility involved. Two options are

𝑐( )Φ( )
, − 1

𝜌( )∇ . (𝜌
( )𝐤𝜆 ⋅ ∇Φ( )

, ) = 0, (2.20)

and
− 1
𝜌( )∇ . (𝜌

( )𝐤𝜆 ⋅ ∇Φ( )
, ) = 0, (2.21)

both being pressure dependent (through 𝑐 and / or 𝜌), but different in the sense of
the consideration of the accumulation term, 𝑐. Alternatively, one can also calculate
basis functions using

𝑐( )Φ , − ∇ . (𝐤𝜆 ⋅ ∇Φ , ) = 0, (2.22)

or
− ∇ . (𝐤𝜆 ⋅ ∇Φ , ) = 0 (2.23)

which are both pressure independent (since 𝑐 is now omitted or based on the pres-
sure from the previous time step). Fig. 2.5 illustrates that the basis functions do
not form a partition of unity when compressibility effects are included, which is the
intrinsic nature of the parabolic compressible equation.

The choices formulated above need to be treated differently during time-lapse
simulations. More precisely, the basis functions based on Eqs. (2.20) and (2.21)
depend on pressure and, hence, need to be updated adaptively when it changes
significantly. Eqs. (2.22) and (2.23) are pressure independent; thus, they only need
to be computed once, at the beginning of the simulation.

2.2.3. Correction function

Note that the basis function equations ignore the influence of RHS terms and are
subject to reduced-problem boundary conditions along dual-coarse block bound-
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(a) Compressible basis function

0

0.5

1

(b) Sum of compressible basis func-
tions in a dual block

0

0.5

1

(c) Incompressible bassis function

0

0.5

1

(d) Sum of incompressible basis
functions in a dual block

Figure 2.5: Two choices of multiscale basis functions in a reference dual-coarse block (left), Summation
of the basis functions over the dual-coarse block (right), i.e., partition of unity check.

aries 𝜕Ω̃ , . These are the two main sources of inaccuracies in the multiscale pres-
sure solution. In order to mitigate them, one can employ a smoother, such as that
formed from the ILU(0) decomposition [57] of 𝐀( ) from (2.13), and / or compute
the so-called correction function, Ψ (see e.g. [61]).

Ψ is computed in similar fashion to the basis functions, by plugging the RHS
term, 𝑓( ), into Eqs. (2.20)-(2.23). Thus, four different types of correction functions
can be defined for compressible flow problems. After the computation is done in
each dual-coarse block, the values are assembled as Ψ = ⋃ Ψ .

While the basis and correction functions based on Eq. (2.22) were previously
used [43], the other options have not been studied in the literature, previous to
this work.
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2

2.2.4. C-AMS algorithm

The C-AMS approximates the fine-scale solution 𝐩 by 𝐩 using the Prolongation
operator 𝒫, which is a matrix of size 𝑁 × 𝑁 , having basis function Φ in its 𝑙-th
column. The map between the coarse (

̂
𝑝) and fine-scale solution (𝑝 ) reads

𝑝 = 𝒫
̂
𝑝. (2.24)

The coarse-scale system is obtained using the restriction operator, ℛ, aŝ
𝐀
( )̂
𝑝( ) ≡ (ℛ𝐀( )𝒫)

̂
𝑝( ) = ℛ𝑓( ). (2.25)

Substituting Eq. (2.24) into (2.25) leads to

𝑝 ( ) = 𝒫 (ℛ𝐀( )𝒫) ℛ𝑓( ). (2.26)

or, in residual form,
𝛿𝑝 ( ) = 𝒫 (ℛ𝐀( )𝒫) ℛ𝑟( ). (2.27)

Here 𝑝 ( ) = 𝑝( ) + 𝛿𝑝 ( ), while 𝑟( ) = 𝑓( ) − 𝐀( )𝑝( ) is the fine-scale resid-
ual. Note that all the different options for basis functions can be considered in
construction of the prolongation operator.

The C-AMS employs Eq. (2.26) as the global solver, which targets low-frequency
errors. In addition to this, an efficient convergent multiscale solver needs to include
a second-stage smoother at fine scale, which accounts for the remaining high-
frequency errors. These can arise from the basis function localization conditions,
the non-linearity of the operator and the complex RHS term. Among the choices
for the smoother (block-, line-, or point-wise solvers), the correction functions (CF)
and ILU(0) are considered in this work. The C-AMS procedure is finally summarized
in Table 2.1.

Do until convergence (‖𝜖‖( ) < 𝑒) achieved (see Eq. (2.31)):
1. Initialize: update linear system components, 𝐀( ) and 𝑓( ), based on 𝑝( )
2. Update residual: 𝑟( ) = 𝑓( ) − 𝐀( )𝑝( )
3. Adaptively compute Basis Functions: use either of Eqs. (2.20)-(2.23)
4. Pre-smoothing Stage: only if CF is used, apply CF on 𝑟( ) and update residual
5. Multiscale Stage: Solve (2.27) for 𝛿𝑝 ( / )

6. Post-smoothing Stage: smooth 𝑝 ( / ) for 𝑛 times using a fine-scale iterative
solver (here, ILU(0) is used), obtaining 𝛿𝑝 ( )

7. Update solution: 𝑝 ( ) = 𝑝( ) + 𝛿𝑝 ( / ) + 𝑝 ( )

8. Update error: compute 𝜖( ), and assign 𝑝( ) ← 𝑝( )

Table 2.1: C-AMS iteration procedure, converging to ( ) with tolerance .

In the next section, numerical results for 3D heterogeneous test cases are pre-
sented, in order to provide a thorough assessment of the applicability of C-AMS to
large-scale problems.
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2.3. Numerical Results

The numerical experiments presented in this section are divided into: (1) finding
a proper iterative procedure and multi-stage multiscale components for efficiently
capturing the non-linearity within the flow equation, and (2) systematic perfor-
mance study by comparing against a commercial algebraic multigrid solver, i.e.,
SAMG [45]. Note that the second aspect is mainly to provide the computational
physics community with an accurate assessment of the convergence properties of
the state-of-the-art compressible multiscale solver (i.e., C-AMS). As an advantage
over many advanced linear solvers, C-AMS allows for the reconstruction of a locally
conservative velocity field after any MSFV iteration [99].

The numerical experiments are conducted on sets of log-normally distributed
permeability fields with spherical variograms, generated generated using sequen-
tial Gaussian simulations [100]. The variance and mean natural logarithm of the
permeability, i.e., 𝑙𝑛(𝑘), for all test cases are 4 and -1, respectively, unless other-
wise mentioned. Furthermore, the fine-scale grid size and dimensionless correlation
lengths, 𝜓 , 𝜓 and 𝜓 , are provided in Table 2.2. Each set has 20 statistically-
equivalent realizations. The sets with orientation angle of 15∘ are referred to as the
layered fields. Also, the grid aspect ratio 𝛼 is 1, i.e., Δ𝑥/𝛼 = Δ𝑦 = Δ𝑧 = 1 m, unless
otherwise specified.

Permeability Set 1 2 3 4 5 6
Fine-scale grid 64 128 256 64 128 256

𝜓 0.125 0.125 0.125 0.5 0.5 0.5
𝜓 0.125 0.125 0.125 0.03 0.03 0.03
𝜓 0.125 0.125 0.125 0.01 0.06 0.01

Angle between 𝜓 and 𝑦 axis patchy 15∘
Variance of ln(k) 4

Mean of ln(k) -1

Table 2.2: Permeability sets, each with 20 statistically-equivalent realizations, used during numerical
experiments. Sets 4-6 are referred to as ‘layered fields’, in which the orientation angle between the
direction and the axis is ∘.

All fluid properties and the simulation time are non-dimensional. The non-
dimensional pressure and density are introduced as

𝑝∗ = 𝑝 − 𝑝
𝑝 − 𝑝 , (2.28)

and
𝜌∗ = 𝜌

𝜌 = 1 + 𝜂 𝑝∗, (2.29)

respectively, where the coefficient 𝜂 is set to 1 for all subsequent test cases in this
work.
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The 𝑝west and 𝑝east values of 10 and 0 Pa, relative to the Standard (Atmo-
spheric) condition, are considered. These correspond to non-dimensional pressure
values of 1 and 0, which are set as Dirichlet conditions at the west and east bound-
aries, respectively, for all the cases, unless otherwise mentioned. Also, all the other
surfaces are subject to no-flow Neumann conditions.

The non-dimensional time is defined as 𝑡∗ = 𝑡/𝜏, where

𝜏 = 𝜇𝜙𝐿
⟨𝑘⟩ (𝑝west − 𝑝east)

. (2.30)

Here, ⟨𝑘⟩ is the domain-averaged permeability, and 𝐿 is a length scale of the domain.
Values of 10 Pa for the pressure difference, in-situ viscosity of 2×10 Pa.s, Δ𝑥 = 1
m, 𝜙 = 0.1, and 𝑘 = 10 m are used for homogeneous cases, while 𝜏 = 128 s
for problem sizes of 𝐿 = 64 m.

The results presented in this work were obtained using an implementation of
C-AMS in the in-house single-threaded object-oriented C++ simulator, DARSim 1.
CPU times were measured on an Intel Xeon E5-1620 v2 quad-core system with
64GB RAM.

2.3.1. C-AMS: sensitivity studies

The experiments in this section are meant to test the effect of using different
options for the restriction operator, basis functions and smoother, during the C-
AMS procedure. To this end, a set of 20 statistically-equivalent patchy fields, i.e.,
permeability Set 1 from Table 2.2, is considered. One of the realizations and its
corresponding solution at 𝑡∗ = 0.4 are shown in Fig. 2.6.

Figure 2.6: Natural-log of the permeability (left) and pressure solution after ∗ . (right) correspond-
ing to one of the realization of permeability Set 1 from Table 2.2.
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Nonlinear and linear level updates

In formulating a convergence criterion for the C-AMS, one can express the error
of the approximate solution at step 𝜈 on the basis of either the linear or nonlinear
expressions. According to Eq. (2.7), the nonlinear error in each grid cell reads

𝜖( ) = 𝑞 − 𝜙
( )

Δ𝑡 + 𝜙
( )

Δ𝑡
𝜌( )
𝜌( ) +

1
𝜌( )∇ . (𝜌( )𝐤𝜆 ⋅ ∇𝑝( )) , (2.31)

and is assembled in the vector 𝜖( ), which allows the computation of the error norm,
‖𝜖( )‖ . On the other hand, the linear-level error is based on the linearized equation
(2.10), which leads to the computation of the residual norm, ‖𝑟( )‖ .

In order to determine a suitable sequence between the linear and non-linear
solution stages, the same patchy domain of 64 × 64 × 64 grid cells is considered
(Fig. 2.6), for which the pressure equation is solved using the following strategy:

Do until (‖𝜖‖ < 10 ) is reached:
0. Update parameters, linear system matrix and RHS vector based on 𝑝( )
1. Solve linear system using the Richardson iterative scheme, preconditioned

with one multigrid V-cycle until ‖𝑟‖ < 10

Table 2.3: Solution strategy used to determine a suitable stopping criterion

The error and residual norms were recorded after each iteration of the Richard-
son loop and are presented in Fig. 2.7. Note that the reduction of the residual
norm beyond the first few iterations does not contribute to the reduction in the
(non-linear) error norm. Therefore, one could ideally speed up the solution scheme
by monitoring the error norm and updating the linear system after its decrease
starts to stagnate. However, the computational cost of evaluating the non-linear
equation is roughly the same as that of a linear system update and, thus, much
more expensive than the evaluation of the residual norm.

Fig. 2.7(left) also reveals that the stagnation of the error norm happens roughly
after the residual norm has been approximately reduced by / of its initial value.
Fig. 2.7(right) shows the convergence behaviour after implementing this heuristic
strategy, which is more efficient, since the two norms are in agreement. Hence,
in the following experiments the same strategy is employed, i.e., for linear level,
‖𝑟( )‖ < 10 ‖𝑟( )‖ after iteration 𝑖 of the inner loop and, for the non-linear level,
‖𝜖( )‖ < 10 after iteration 𝜈 of the outer loop are set (see Table 2.3).

Adaptive updating of multiscale operators

The previous study described the first adaptive aspect considered in this work,
namely, updating the linear system only after the residual norm drops by an order
of magnitude. With this strategy, the basis functions remain constant during the
operation of the linear solver and only get updated at the beginning of each Newton-
Raphson iteration (see Fig. 2.8, top-right). The C-AMS procedure can be further
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Figure 2.7: Error and residual norm histories for one of the realizations of permeability Set 1 from Table
2.2 over a single time step of ∗ . . Shown on the left is the strategy where, at each non-linear
stage, the fully converged linear solution is obtained. Shown on the right is the strategy where in each
outer (Newton-Raphson) loop, the residual is reduced only by one order of magnitude.

optimized by employing adaptive updates of its multiscale components, i.e., the
basis and (if considered) the correction functions. To this end, one has to monitor
the changes in the entries of the transmissibility matrix 𝐀 and RHS 𝐟 between the
iteration steps. Fig. 2.8(bottom-left) shows that the adaptive update of the C-AMS
basis functions leads to a significant speed-up in terms of CPU time.

Furthermore, the two adaptivity methods (for linear system and local function
updates) are combined and shown in Fig. 2.8(bottom-right). In this case, C-AMS
will perform its iterations such that it exploits all adaptivity within the multiscale
components, as well as the non-linearity in the flow equation. Note that, for this
case, the compressible variant from Eq. (2.20) was used for both basis and correc-
tion functions. However, if the incompressible Eqs (2.22) and (2.23) are used, then
the basis functions do not require any updates during iterations.

Finally, for this and all the following results (unless otherwise stated), the C-
AMS coarsening ratio was chosen as 8 × 8 × 8 , because it was found efficient (see
Subsection 2.3.1).

Choice of basis functions

The aim of this set of experiments is to study the effect of the different types
of basis functions formulations on the C-AMS algorithm. The correction function is
computed based on Eq. (2.20) in all cases (and, hence, updated adaptively with
pressure), 20 iterations of ILU(0) are used for smoothing and all four possibilities
for the basis functions, i.e., Eqs. (2.20)-(2.23), are considered. Finally, there is a
single time step in the simulation, which takes the initial solution at time 0 (𝑝∗ = 0
everywhere) to the solution at time 𝑡∗ = 0.4.

The total CPU time spent in each stage of the solver, as well as the number
of iterations (given on top of each bar in Fig. 4.3), are measured. Also, the suc-
cess rate of convergence is given inside parentheses beside the average number of
iterations.

The results show that including compressibility in the basis functions does not
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Figure 2.8: Effect of different types of adaptivity on the C-AMS performance for the permeability Set 1
from Table 2.2 after a time step of ∗ . . Top-left: No adaptivity, top-right: Linear system update
adaptivity only, bottom-left: Multiscale operator update adaptivity only, bottom-right: Fully adaptive, i.e
in terms of both linear system and multiscale operator updates.

translate into faster convergence and, thus the additional CPU time required to
adaptively update them is not justified. In fact, it is more efficient to use the
incompressible (pressure independent) basis functions from Eqs. (2.22) and (2.23).
Also, the inclusion of the accumulation term and the type of Restriction (MSFE or
MSFV) does not play an important role for this patchy test case. Note that none
of the choices results in 100% successful convergence, even though 20 ILU(0)
smoothing iterations have been employed at each iteration. This can be attributed
to the use of correction functions, as investigated in the next paragraph.

Choice of smoother

Note that none of the results from the previous test case (Fig. 4.3) has a 100%
success rate. As described in [61], the CF is an independent stage in the AMS
algorithm – its inclusion should be seen as an option and not a necessity for con-
vergence. Fig. 2.10 presents the results of rerunning the previous experiment, this
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Figure 2.9: Effect of the choice of basis function on the C-AMS performance for the grid-cell problem
after a time step of ∗ . . Results are averaged over 20 statistically-equivalent realizations. The
number of iterations is shown on top of each bar. The success percentage is also shown in parentheses.
Note that all simulations employ correction functions.

time varying the type of correction function. The plot confirms that eliminating the
CF altogether leads to an overall speed-up, and, in addition, a convergence success
rate of 100%. As described in [61], this can be explained by the sensitivity of CF to
the heterogeneity of the permeability field, which leads to solver instability. There-
fore, the CF should not be considered as candidate for the pre-smoothing stage in
an efficient C-AMS procedure. Instead, ILU(0) is performed as post-smoother in
order to resolve high-frequency errors.

0

10

20

30

40

C
om

p+Accum
:FVM

C
om

p+Accum
:FEM

C
om

p:FVM

C
om

p:FEM

Incom
p+Accum

:FVM

Incom
p+Accum

:FEM

Incom
p:FVM

Incom
p:FEM

N
o correction:FVM

N
o correction:FEM

Average CPU time of CF + MS + 20 ILU with different types of Correction and Restriction

C
P

U
 t

im
e

 (
s
e

c
)

 

 

34(85%) 21(95%) 36(80%) 31(95%)

32(85%)
21(95%)

35(80%) 31(95%)

20(100%)20(100%)

Multiscale solution
Smoother solution
Lin. sys. construction
Basis functions
Correction function

Figure 2.10: Effect of the choice of correction function on the CPU time of the multiscale solution on
the permeability Set 1 from Table 2.2 after a time step of ∗ . . The number of iterations is shown
on top of each bar. Only the last 2 bars on the right correspond to runs in which no correction function
was used (i.e., MS + 20 ILU).
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Number of smoother iterations

Another variable in the C-AMS framework is the number of smoothing steps
(here, ILU(0)) that should be applied in order to obtain the best trade-off between
convergence rate and CPU time. The results of several experiments with the thus-far
optimum C-AMS strategy (i.e., incompressible basis functions and no incorporation
of CF) and various numbers of ILU applications are illustrated in Fig. 2.11. It is
clear that with this C-AMS setup, an optimum scenario would be found with 5-10 ILU
iterations per second-stage call. Note that all C-AMS runs during this experiment
converged successfully.
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Figure 2.11: Effect of the number of ILU smoothing steps on the C-AMS[FV] performance for the per-
meability Set 1 from Table 2.2 (grid aspect ratio is ) after a time step of ∗ . . The number of
iterations is shown on top of each bar, with convergence success rate inside parentheses. Note that
excluding CF leads to 100% success rate for all scenarios.

Sensitivity to coarsening ratio

These experiments are meant to elicit the sensitivity of C-AMS towards the coars-
ening ratio used to construct the primal-coarse grid. The results are shown in Figs.
2.12-2.14 for the patchy fields of increasing domain size. Note that in both cases,
the optimum overall CPU times were obtained with coarse-grid cells with the size
of (approximately) the square-root of the domain length in each direction.
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Figure 2.12: Patchy fields: Averaged CPU time (over 20 realizations) of C-AMS[FV] for different coars-
ening ratios for the permeability Set 1 from Table 2.2. Results support the use of coarsening ratio of .
A similar behaviour was observed with the FE restriction operator.
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ratio of . A similar behaviour was observed with the FE restriction operator.

29



2

2. Pressure-driven fluid and rock compressibility

8 16 32 8 16 32 8 16 32

C
P

U
 t

im
e

 (
s
e

c
)

0

500

1000

1500

2000

2500

33

129

660

28

115

624

26

107

566

∗ ∗ ∗

C-AMS[FV] on 256x256x256 grid-cell reservoirs with different coarsening ratios

Initialization

Lin. sys. construction

Solution

𝑡∗ ∶ 0.0-0.4 0.4-1.0 1.0-2.0

Figure 2.14: Patchy fields: Averaged CPU time (over 20 realizations) comparison of C-AMS[FV] for
different coarsening ratios for the permeability Set 3 from Table 2.2. A coarsening ratio of offers
the best balance between initialization (basis function computation) and solution time, while results
in a more expensive initialization but faster convergence in subsequent time-steps. A similar behaviour
was observed with the FE restriction operator.

2.3.2. C-AMS benchmark versus SAMG

Based on the previous results, the optimal C-AMS strategy includes a global
multiscale stage using incompressible basis functions (Eq. (2.23)), accompanied by
5 iterations of ILU(0) for post-smoothing. In this subsection, C-AMS is compared
against SAMG for three different sets of test cases: (1) the heterogeneous do-
mains of different sizes from Table 2.2; (2): permeability Set 1 from Table 2.2 with
stretched grids and line-source terms; and, (3): permeability Set 1 from Table 2.2
with different 𝑙𝑛(𝑘) variances (i.e., permeability contrasts).

In all the presented experiments, SAMG is called to perform a single V-cycle,
repeatedly in a Richardson loop. Its adaptivity is controlled manually, i.e., at the
beginning of each Newton-Raphson outer iteration, SAMG is allowed to update its
Galerkin operators. On the other hand, during linear iterations, SAMG is instructed
to reuse its previous grids and operators. For the test cases considered here, this
approach was found more efficient (by a factor in excess of 2) than the automatic
solver control described in [45], In all other aspects, SAMG has been used as a
black-box commercial solver.

Test case 1: heterogeneous domains of increasing size

In this subsection, C-AMS is compared against the SAMG algebraic multigrid
solver for both patchy and layered permeability fields (Table 2.2) over 3 consecutive
time steps. The time-lapse pressure solution for one patchy and one layered sample
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are shown in Fig. 2.15, illustrating the propagation of the pressure signal from the
western face through the entire domain.

Figs. 2.16 and 2.17 show the number of iterations and CPU time at 3 consecutive
non-dimensional times for problem Sets 1, 2, 4, and 5 from Table 2.2. Note that C-
AMS with FV-based restriction operator did not converge in some of the test cases,
while the FE-based variant achieved 100% success rate due to its SPD property.
Therefore, an ideal solution strategy would use MSFE to converge to the desired
level of accuracy and then employ a single MSFV sweep, in order to ensure mass
conservation [99].

In addition, Figs. 2.18 illustrate CPU time (vertical axis) and the total number
of iterations (on top of each column), for permeability Sets 3 and 6 from Table 2.2,
with 8 and 16 coarsening ratios.

Note that, except for the first time-step, when all the basis functions are fully
computed, C-AMS has a slight edge over SAMG, mainly due to its adaptivity and
relatively inexpensive iterations. The initialization cost of C-AMS is particularly high
in the 256 case, due to the large number of linear systems (solved with a di-
rect solver) needed for the basis functions. It is clear from Fig. 2.18 that with
larger primal-coarse blocks C-AMS requires less setup time, but more iterations to
converge. Note that all performance studies presented in this work are for single-
process computations.
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Figure 2.15: Pressure solution on one of the realizations of permeability Sets 1 (left) and 4 (right) from
Table 2.2 at ∗ . , . , and . from top to bottom, respectively.
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Figure 2.18: Averaged CPU time (over 20 realizations) comparison between the C-AMS and SAMG solvers
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Since reservoir simulators are typically run for many time-steps, the high initial-
ization time of C-AMS is outweighed by the efficiency gained in subsequent steps.
Moreover, given the local support of the basis functions, this initialization can be
greatly improved through parallel processing. Furthermore, only a few multiscale
iterations may prove necessary to obtain an accurate approximation of the pressure
solution in each time step for multi-phase flow problems.

Test Case 2: stretched grids with line-source terms

To study the effect of anisotropic permeability fields along with radial injection
flow pattern, the permeability Set 1 from Table 2.2 is considered. The settings are
all the same as previous test cases, except the following items. Dirichlet boundary
conditions are set at the centers of two vertical sets of fine-scale grid cells: one
from (1,1,1) to (1,1,64) and the other from (64,64,1) to (64,64,64) with the non-
dimensional values of 1 and 0, respectively. In addition, grid aspect ratios of 𝛼 =
1, 5, and 10 are considered (Note that Δ𝑥/𝛼 = Δ𝑦 = Δ𝑧). The non-dimensional
time is calculated using 𝛼𝐿 as the characteristic length. Figure 2.19 illustrates the
pressure solutions for one of the permeability realizations after the first time step
𝑡∗ = 0.4.

Figure 2.19: Converged pressure solution for one of the realizations of permeability Sets 1 with grid
aspect ratio , , and , respectively from left to right, after one time step ∗ . . Dirichlet
boundary conditions are set at the centers of two vertical sets of fine-scale grid cells: one from (1,1,1)
to (1,1,64) and the other from (64,64,1) to (64,64,64) with the values of 1 and 0, respectively.

The performance of C-AMS[FE] and SAMG are presented in Fig. 2.20. In con-
trast to C-AMS[FE], the C-AMS[FV] (not shown) did not lead to 100% convergence
success. However, for those C-AMS[FV] successful runs, similar CPU times as in
C-AMS[FE] were observed.

The results from in Fig. 2.20 are obtained with the C-AMS coarsening ratios of
8×8×8, 2×8×8, and 2×8×8 for the cases of 𝛼 = 1, 5, and 10, respectively. Note
that, as shown in Fig. 2.19, the anisotropic transmissibility (caused by the stretched
grid effect) would further motivate the use of enhanced coarse-grid geometries for
C-AMS. Such a strategy is well developed in the algebraic multigrid community, and
is the subject of future studies.
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Figure 2.20: Performance of C-AMS (left column) and SAMG (right column) for permeability Set 1 from
Table 2.2 for different grid aspect rations in / for three successive time steps. Pressure
solutions for the first time step is shown for one of the realizations in Fig. 2.19.

Test Case 3: effect of permeability contrast

To study the effect of permeability contrast, permeability Set 1 from Table 2.2
is considered with different 𝑙𝑛(𝑘) variances, 𝜎 = 2, 4, and 8. Note that the so-far
studied cases used a variance of 4, as described in Table 2.2.Similar settings as
in the previous test cases are used, i.e., Dirichlet conditions are set at tthe east
and west faces with no-flow condition everywhere else. Figure 2.21 illustrates the
performance of C-AMS[FE] and SAMG. Note that the C-AMS requires more iterations
when the permeability contrast is increased. To improve its performance, one can
consider enriched multiscale strategies which are based on local spectral analysis
[86] or a modified permeability field (with less contrast) for the calculation of basis
functions [101]. Note that the success rates of C-AMS[FV] (not shown) were 90%
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2

(patchy, 𝜎 = 2), 95% (patchy, 𝜎 = 8) and 40% (layered, 𝜎 = 8). For the successful
runs, the CPU times of C-AMS[FV] were comparable with C-AMS[FE].
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Figure 2.21: Averaged CPU time comparison between C-AMS (left) and SAMG (right) for permeability
Set 1 from Table 2.2 for different ( ) variances of , and .

2.4. Conclusions

This work introduced an Algebraic MultiScale method for Compressible flows
(C-AMS) in heterogeneous porous media. Its algebraic formulation benefits from
adaptivity, both in terms of the infrequent updating of the linearized system and
from the selective updating of the basis functions used to construct the prolongation
operator.

The extensive numerical experiments on heterogeneous patchy and layered
reservoirs revealed that the most efficient strategy is to use basis functions with in-
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compressible advection terms, paired with 5 iterations of ILU(0) for post-smoothing.
Finally, several benchmark studies were presented, where the developed C-AMS

research simulator was compared with an industrial-grade multigrid solver, i.e.,
SAMG. The results show that C-AMS is a competitive solver, especially in experi-
ments that involve the simulation of a large number of time steps. The only draw-
back is the relatively high initialization time, which can be reduced by choosing an
appropriate coarsening strategy or by running the basis function updates in parallel
[62]. Moreover, due to its conservative property, C-AMS requires only a few itera-
tions per time step to obtain a good quality approximation of the pressure solution.
Systematic error estimate analyses for 3D multiphase simulations are a subject of
ongoing research and, in addition, the C-AMS performance can be further extended
by enrichment of the multiscale operators [86, 88, 102], and adaptive coarse grid
geometries on the basis of the underlying fine-scale transmissibility.
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In many geoscientific applications, including hydrocarbon production and geother-
mal energy exploitation, the target formations are naturally fractured. More specifi-
cally, the highly heterogeneous matrix rock is crossed by several networks of lower-
dimensional highly-conductive fractures at multiple length scales [105]. This raises
important challenges for flow simulation, motivating the development of advanced
modelling and numerical solution techniques.

Among the proposed methods, the hierarchical fracture modelling approach al-
lows for avoiding complexities associated with the discretization and dynamic nature
of fracture geometries [18]. In this approach, small-scale fractures (below the ma-
trix grid resolution) are homogenized within the matrix rock, altering its effective
permeability [20]. The remaining fractures are then represented as explicit control
volumes [19, 27]. If the fracture and matrix grids are generated independently,
then the formation is said to be discretized according to the Embedded Discrete
Fracture Model (EDFM) [106]. Alternatively, the fracture cells can be constrained
to lie at the interfaces of matrix cells, i.e. by employing Discrete Fracture Mod-
elling methods (DFM), which often require unstructured grids [24]. Both DFM and
EDFM have been applied to reservoirs with complex fracture geometries [107] and
fluid physics [25, 108]. Recent developments include higher-order approximation
schemes within finite-volume [109] and finite-element [110] methods.

Note that the total number of degrees of freedom (DOF), even after homogeniz-
ing small-scale fractures, is beyond the scope of classical simulation methods. This
motivates the development of an efficient multiscale method for heterogeneous
fractured porous media.

The material presented in this chapter has been published in the proceedings of the SPE Reservoir
Simulation Symposium (2015) [103] and in the Journal of Computational Physics 321, 819 (2016)
[104].

39



3

3. Flow through fractured reservoirs

Multiscale finite element (MSFE) [46] and finite volume (MSFV) methods [42]
have been introduced and evolved mainly for heterogeneous, but non-fractured,
porous media (see [98] for a comparison between the two flavours) . The first
application of MSFV methods to fractured reservoirs was developed on the basis of
coupling the matrix pressure to the average pressure in each fracture network, at
coarse scale [27]. Based on the presented results for 2D problems, the method was
efficient for media with highly conductive fracture networks which span short spatial
length scales (relative to that of the domain). However, convergence was observed
to degrade for test cases with significant variations in the pressure distribution along
the fracture network.

In combination with streamline-based mixed formulations, multiscale methods
have also been employed to 2D fractured reservoirs [94]. More recently, a multi-
scale approach was developed for 2D reservoirs which assigned one coarse node
at each fracture intersection only, with no coarse nodes in the matrix [111]. Note
that none of these methods include 3D heterogeneous reservoirs nor has their per-
formance been benchmarked against a commercial linear solver. More importantly,
the literature is lacking a multiscale method which allows for flexible coarse grids
inside the matrix as well as its embedded fractures and, thus, able to accommodate
heterogeneous cases with fracture networks of different length scales.

This chapter presents the development of an Algebraic MultiScale method for
heterogeneous Fractured porous media (F-AMS) using EDFM. Given a partition of
the fine-scale cells into primal and dual-coarse blocks for both the matrix and frac-
ture networks, the algorithm algebraically constructs the multiscale prolongation
(mapping coarse- to fine-scale) and restriction (mapping fine- to coarse-scale) op-
erators. The columns of the prolongation operator are the local basis functions,
solved on dual-coarse cells, for both matrix and fractures.

F-AMS supports four different matrix-fracture coupling strategies, at the coarse-
scale. First, the Decoupled-AMS basis functions are defined by neglecting the con-
tribution of a medium’s coarse solution (e.g., fractures) in the interpolated solution
in the other (e.g., matrix), thus preserving sparsity in the resulting coarse-scale sys-
tem. Then, two semi-coupled (one-way) strategies, Rock-AMS and Frac-AMS, are
considered. The Rock-AMS approach constructs a prolongation operator in which
the matrix coarse solutions also contribute in computing the interpolated fine-scale
solution in neighbouring fractures. Similarly, Frac-AMS considers the influence of
the fracture coarse solution when interpolating the pressure inside the surrounding
porous rock. Finally, the fully coupled strategy, Coupled-AMS, is devised, where
coarse-scale solutions from both media play a role in finding the fine-scale solu-
tion of each other. This last approach, although allowing for full fracture-matrix
coupling, leads to a dense coarse-scale system with additional overhead during the
associated algebraic (matrix-vector, matrix-matrix) operations. As such, for practical
applications, the Coupled-AMS prolongation operator may require tuning via trun-
cation, where values below a specified threshold are algebraically deleted, followed
by a rescaling step, to maintain partition of unity. This option is also investigated.

To summarize, F-AMS allows for arbitrary coarse grid resolutions in both frac-
tures and matrix, as well as a variety of coupling strategies, at the coarse-scale.
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Furthermore, once the coarse grids are defined, the F-AMS procedure is formulated
and implemented in algebraic form, in line with the previously published formula-
tions of incompressible (AMS) [61] and compressible (C-AMS) [96] flows. In the
limit, if the Frac-AMS coupling strategy and only one coarse node per fracture net-
work is used, F-AMS automatically reduces to the method previously described in
[27]. However, this setup proves inefficient for many of the test cases in this work.
From a bottom-up perspective, F-AMS extends the AMS prolongation operator, as
previously described in [61], with additional columns. Some of these columns cor-
respond to the enriched fracture coarse domain. The remainder represent local well
basis functions that capture the effect of source terms, similar to [68].

In order to test the F-AMS method, a proof-of-concept implementation was de-
veloped, aimed at reservoirs defined on 3D structured grids with embedded vertical
fracture plates. For the presented experiments, a finite-element (FE) restriction
operator is employed to obtain a symmetric-positive-definite coarse system. If, for
efficiency reasons, F-AMS is stopped before the solution reaches machine precision,
then a finite-volume (FV) restriction operator is employed at the end, followed by a
mass-conservative reconstruction of the fine-scale flux field [42]. The performance
of F-AMS was tested using the in-house object oriented serial-processing simula-
tor, DARSim 1, and both CPU times and convergence rates were measured and
compared against the commercial Algebraic MultiGrid (AMG) solver, SAMG [45].

Numerical test cases are considered in order to study the effect of the different
components of the algorithm, namely, the coarsening ratios and basis function cou-
pling strategies. The results of these systematic studies show that only a few DOF
per fracture network are necessary to obtain a good trade-off between convergence
rate and computational expense. In conclusion, F-AMS is an efficient and scalable
method for solving flow in heterogeneous and naturally fractured porous media. Its
development marks an important step forward towards the integration of multiscale
methods as “black-box” pressure solvers within existing reservoir simulators, with
the possibility of extension to more complex physics.

The chapter is structured as follows. First, the EDFM fine-scale discrete system
is described in Section 3.1. Then, the components of the F-AMS algorithm are
detailed in Section 3.2. Section 3.3 consists of numerical results for both 2D and
3D test cases. Finally, conclusions and remarks are the subject of Section 3.4.

3.1. Governing equations

The mass-conservation equations for isothermal single-phase flow in fractured
media, using Darcy’s law and neglecting compositional effects, can be written as

[𝜕(𝜙𝜌)𝜕𝑡 − ∇ . (𝜌𝐤𝜆 ⋅ ∇𝑝)] = [𝜌𝑞] + [𝜌𝑄] + [𝜌𝑞] on Ω ⊂ ℝ (3.1)

for the matrix (superscript ) and

[𝜕(𝜙𝜌)𝜕𝑡 − ∇ . (𝜌𝐤𝜆 ⋅ ∇𝑝)] = [𝜌𝑞] + [𝜌𝑄] + [𝜌𝑞] on Ω ⊂ ℝ (3.2)
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for the fracture (superscript ) spatial domains. Here, 𝜆 = 1/𝜇 is the mobility, 𝜇 is
the fluid viscosity and 𝐤∗ denotes the fracture (𝐤∗ = 𝑘 ) or rock (𝐤∗ = 𝑘 ) absolute
2nd order positive definite permeability tensor, here, considered as diagonal and
isotropic. Note that the latter can also account for the homogenized small-scale
fractures, as described in the hierarchical fracture model [19, 20]. Also, 𝜌 and 𝜙
are the fluid density and rock porosity, respectively. Here, for simplicity, fracture
porosity is always considered to be 1. The 𝑞 and 𝑞 denote the matrix and
fracture external source terms, respectively, i.e. from injection/production wells.
For a perforated matrix control volume 𝑉, it reads

𝑞 = PI 𝐤 𝜆 (𝑝 − 𝑝 )/𝑉 ≡ 𝛽 (𝑝 − 𝑝 ), (3.3)

where 𝛽 = PI 𝐤 𝜆/𝑉, 𝑞 = ∫ 𝑞 𝑑𝑉 is the total injection rate, and PI is the
productivity index [112]. Similarly, the fracture-matrix coupling terms are modelled
such that for a matrix volume 𝑉 intersecting with a fracture surface 𝐴 one obtains

𝑞 = CI 𝐤 𝜆 (𝑝 − 𝑝 )/𝑉 ≡ 𝜂 (𝑝 − 𝑝 ) (3.4)

and
𝑞 = CI 𝐤 𝜆 (𝑝 − 𝑝 )/𝐴 ≡ 𝜂 (𝑝 − 𝑝 ), (3.5)

where 𝜂 = CI 𝐤 𝜆/𝑉 and 𝜂 = CI 𝐤 𝜆/𝐴. This ensures the total flux between
a fracture element of area 𝐴 and a matrix element of volume 𝑉 is equal [27], i.e.,

∫ 𝑞 𝑑𝑉 = −∫ 𝑞 𝑑𝐴. (3.6)

The 𝐤 is the effective permeability at the interface between the fractures and
their surrounding matrix (i.e. harmonically averaged). The CI is the connectivity
index, defined on a discrete system as

CI =
𝐴
⟨𝑑⟩ , (3.7)

where 𝐴 is the area fraction of fracture element 𝑖 overlapping with the matrix
element 𝑗, and ⟨𝑑⟩ is the average distance of the two elements (see Appendix A
and [27] for its detailed computation). Finally, the 𝑄 and 𝑄 terms describe other
external source terms for matrix and fractures (e.g., gravity or capillarity terms,
neglected in this work).

These equations are to be solved for matrix and fracture pressures, 𝑝 and 𝑝 ,
on the matrix Ω and fracture Ω domains, as depicted in Fig. 3.1. Note that a
fracture network can consist of several fractures, which are represented in a lower
dimensional space, i.e. Ω ⊂ ℝ , than the matrix (reservoir rock) Ω ⊂ ℝ .
The main advantage of this type of formulation is that the matrix and fracture grids
are independent and, thus, can be freely adapted to accommodate the appropriate
physics for each medium. This is especially important in highly fractured reservoirs
or when fractures are generated (and closed) during simulation, e.g., in geothermal
formations [113].
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The incompressible single-phase pressure solution obtained using the EDFM ap-
proach for a 2D fractured reservoir model, shown in Fig. 3.1(a), is provided in Fig.
3.1(b). Two pressure-constrained wells are placed on the East and West bound-
aries, and the reservoir rock is homogeneous.

(a) Fine-scale grid
0

0.2

0.4

0.6

0.8

1

(b) Pressure solution

Figure 3.1: Illustration of a 2D fine-scale computational grid (a) which contains × homogeneous
matrix, fracture cells and two pressure-constrained wells at the West and East boundaries with values
of and , respectively. The pressure solution is plotted in (b), where fractures are 100 times more
conductive than the matrix.

When non-linearities are present (e.g., compressible flows), the flow equations
need to first be linearized (see Section 2.1.2), leading to the following system

𝐀( )𝑝( ) ≡ [
𝐀 𝐀 𝐀
𝐀 𝐀 𝐀
𝐀 𝐀 𝐀

]
( )

[
𝑝
𝑝
𝑝

]
( )

= [
𝑞
𝑞
𝑞

]
( )

≡ 𝑞( ), (3.8)

which is solved iteratively, in a Newton-Raphson loop, until the converged solution
is achieved. Note that this system (3.8) shows an implicit treatment of the coupling
between fracture and matrix through the 𝐀 entries, and that 𝐀( ) can be non-
symmetric, due to the compressibility effects [43, 96].

Developing an efficient solution strategy for the linearized system (3.8) is quite
challenging for several reasons. On the one hand, the size of this system can exceed
several millions of unknowns for realistic test cases. On the other hand, the value of
the condition numbers for the system matrix is worsened by high contrasts between
reservoir properties (matrix permeability is highly heterogeneous over large scales,
fractures are typically much more conductive than the matrix, etc.).

Clearly a classical upscaling method cannot be employed here due to the highly
resolved fractures, which play an important role in mass transport. This creates
a niche for conservative multiscale methods, which have the important advantage
of solving coarse-scale problems while honouring fine-scale data [52, 56] in an
iterative error reduction strategy [59, 74, 101] which allows for mass-conservative
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flux reconstruction at any stage [55]. Next, the development of the F-AMS method
is presented.

3.2. Algebraic multiscale formulation (F-AMS)

This section describes the F-AMS procedure, an efficient multiscale solution
strategy for Eq. (3.8). Given a computational domain with 𝑁 fracture networks
and 𝑁 wells, F-AMS first superimposes two coarse grids on top of both the matrix
and fracture domains. The primal-coarse grid is a non-overlapping decomposition
of the domain, inside which a fine-scale cell is selected as coarse node (Fig. 3.2(a)
for 2D, and 3.2(c) and 3.2(e) for 3D cases). By connecting the coarse nodes, a
secondary overlapping coarse grid is obtained, which is called the dual coarse grid
(Figs. 4.3(a), 3.2(d) and 3.2(f)). There exist 𝑁 and 𝑁 matrix primal-coarse
and dual-coarse blocks and, similarly, each fracture network 𝑓 contains 𝑁 and
𝑁 fracture primal-coarse and dual-coarse blocks. Note that 𝑁 (injection or
production) wells exist in the domain, as driving forces for the flow.

F-AMS approximates the solution to Eq. (3.8), 𝑝, as a superposition of coarse-
scale solutions (

̂
𝑝) using locally computed basis functions (Φ), i.e.

𝑝 ≈ 𝑝 = ∑ Φ
̂
𝑝 +∑∑ Φ

̂
𝑝 +∑Φ

̂
𝑝 , (3.9)

for the matrix and

𝑝 ≈ 𝑝 = ∑ Φ
̂
𝑝 +∑∑ Φ

̂
𝑝 +∑Φ

̂
𝑝 (3.10)

for the fractures, respectively. The basis functions associated with matrix coarse
cells (i.e., Φ ∗) are Φ for matrix-matrix effects, Φ for the matrix-fracture
coupling, and Φ matrix-well interactions. These basis functions (interpolators)
are employed in order to capture the effects of all the important factors (matrix,
fractures, and wells) in the construction of a good approximation for the matrix
pressure field 𝑝 . Similarly for fractures, Φ ∗ consists of the contributions from the
matrix Φ , fractures Φ , and wells Φ , if present.

One of the novel aspects of this work is that the pressure field inside fractures,
𝑝 , is included explicitly in the multiscale formulation (Eq. (4.13)). This means that
the fracture grid cells are also decomposed into primal and dual coarse blocks (Fig.
3.2), similar to the matrix. Their solutions are also mapped to the coarse scale and
back to the original resolution, again, similar to the matrix. More specifically, each
fracture network 𝑓 is decomposed into 𝑁 primal-coarse grid blocks, for which
sets of basis functions are calculated. One could employ the same formulation for
wells, i.e., discretize them into several fine-scale cells which can then be coarsened
on the superimposed multiscale grids. However, for the sake of simplicity, in the
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experiments presented in this work, each well is assigned a single fine-scale DOF,
which is mapped to the coarse-scale using the identity restriction operator, i.e.

𝑝 = 𝑝 =
̂
𝑝 ∀𝑖 ∈ {1,… , 𝑁 }. (3.11)

In algebraic notation, the superpositions (4.12) and (4.13) can be expressed as

𝑝 ≈ 𝑝 = 𝒫
̂
𝑝 ≡ [𝒫 𝒫 𝒫 ] [

̂
𝑝

̂
𝑝

̂
𝑝 ] (3.12)

and
𝑝 ≈ 𝑝 = 𝒫

̂
𝑝 ≡ [𝒫 𝒫 𝒫 ] [

̂
𝑝

̂
𝑝

̂
𝑝 ] , (3.13)

respectively.
The basis functions are assembled in the columns of the multiscale prolongation

operator, 𝒫, with the dimension of 𝑁fine × 𝑁coarse, where 𝑁fine and 𝑁coarse are the
total number of fine- and coarse-scale control volumes, respectively. The part of 𝒫
corresponding to the matrix fine-cells is defined as

𝒫 = [ Φ ⋯Φ Φ ⋯Φ ⋯ Φ ⋯Φ Φ ⋯Φ ] .
(3.14)

Note the three sub-blocks which represent matrix-matrix, matrix-fracture, and matrix-
well coupling. Similarly, the prolongation operator for fractures can be stated as

𝒫 = [ Φ ⋯Φ Φ ⋯Φ ⋯ Φ ⋯Φ Φ ⋯Φ ] .
(3.15)

Algebraically, the complete F-AMS prolongation operator reads

𝒫 = [
𝒫
𝒫
𝒫

] = [
𝒫 𝒫 𝒫
𝒫 𝒫 𝒫
𝒫 𝒫 𝒫

] , (3.16)

where 𝒫 and 𝒫 are set to zero, while 𝒫 is the identity matrix.
Note that the prolongation operator, as described in Eq. (3.16), allows full flex-

ibility in consideration of the fracture-matrix coupling in the interpolated solution,
i.e. via the values in 𝒫 and 𝒫 . This leads to the definition of four operators,
differentiated by the coupling strategy they employ:

1. Decoupled-AMS: 𝒫 = 0 and 𝒫 = 0

2. Frac-AMS: only 𝒫 = 0.

3. Rock-AMS: only 𝒫 = 0.

4. Coupled-AMS: 𝒫 and 𝒫 both non-zero.
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(a) 2D coarse grid (b) 2D dual-coarse grid

(c) 3D matrix coarse grid (d) 3D matrix dual-coarse grid

(e) 3D fracture coarse grid (f) 3D fracture dual-coarse grid

Figure 3.2: F-AMS coarse grids defined on 2D (top) and 3D domains (middle and bottom). The primal
grid (left) consists of non-overlapping coarse blocks, each shown in a different colour. The dual grid
(right) is split into nodes, shown in orange, 1D blocks (edges) in green, 2D blocks (faces) in blue and
3D blocks (interiors) in purple. Note that the fracture aperture in (a) and (b) is magnified for clarity.
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The first option, i.e., Decoupled-AMS, constructs the most sparse 𝒫 and thus has
an efficient setup phase. The fourth option, i.e., Coupled-AMS, can lead to more
accurate multiscale simulations, however, it can severely increase the density of
the operators. In such cases, one may be able to obtain a trade-off between the
quality of the prolongation operator and its sparsity via truncation, followed by a
rescaling of the rows to ensure partition of unity. A CPU-based study considering
the overhead introduced by the density of 𝒫 is presented in Section 3.3.

In order to construct the coarse-scale system, F-AMS also needs the specifica-
tion of a restriction operator, which is a map from fine- to coarse-scale (dimension
𝑁coarse×𝑁fine). Due to its algebraic formulation, F-AMS can accommodate multiscale
finite volume (MSFV), multiscale finite element (MSFE) or even a hybrid multiscale
finite element and volume restriction (MSMIX). More specifically, the MSMIX em-
ploys a FV-based restriction for part of the domain (e.g., fractures or wells), and
FE for the rest (e.g., matrix rock). It is important to note that, after any MSFV
stage, it is possible to construct a mass-conservative flux field for both matrix and
fractures. As such, in multiphase simulations, if iterations for pressure Eq. (3.8)
are stopped before full convergence is achieved, MSFV needs to be employed be-
fore solving transport equations. On the other hand, MSFE leads to a symmetric-
positive-definite (SPD) coarse system if the fine-scale system matrix is also SPD
[61, 96], and is the option used during all numerical experiments presented in
this work. Note that MSMIX can be tweaked to achieve the desired compromise
between MSFV and MSFE.

In the following sub-sections, first, the formulation of the local basis functions is
explained. Then, the F-AMS system, and finally the simulation strategy is described
in detail.

3.2.1. Basis function formulations

As stated before, F-AMS constructs a non-overlapping partition on the given
fine-scale computational domain for both matrix rock and fracture cells, i.e. the
primal-coarse grid. Then, by connecting the coarse nodes, the overlapping de-
composition of the domain, i.e., dual-coarse grid, is obtained. Following the orig-
inal description of the MSFV basis functions [42, 55] and its algebraic description
[53, 61, 96], local basis functions are calculated for each coarse node 𝑖 by respect-
ing the wirebasket hierarchy [63]. First the value of basis function 𝑖 in each coarse
node 𝑗 (also called vertices, shown in orange in Fig. 4.3(a)) is set according to the
Kroenecker delta, 𝛿 , i.e. 1 when 𝑖 = 𝑗 and 0 otherwise. Then the dual blocks in
the neighbourhood of node 𝑖 are resolved, in sequence, as follows: first all the 1D
dual blocks (or edges, shown in green in Fig. 4.3(a)), followed by the 2D (or faces,
shown in blue in Fig. 4.3(a)) and, finally, the 3D dual blocks (or interiors, shown
in purple in Fig. 3.2(d)). The fact that each dual element (e.g. edge) neglects
the transmissibilities to neighbouring cells belonging to elements of inferior rank
in the wirebasket hierarchy (i.e. faces and interiors), constitutes the localization
assumption [61], which ensures that each basis function has a limited support.

The values obtained in the manner described above, for each coarse node 𝑖, are
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assembled in column 𝑖 of the prolongation operator to form basis function Φ .
It is important to note that by having independent fine-scale grids for each me-

dia, a matrix cell (say from a face block) can be directly connected to fracture cells
belonging to dual blocks of any type (vertex, edge or face). This is an important
difference from unfractured media, where the two-point flux approximation (TPFA)
stencil on structured grids ensured that any dual grid element would have connec-
tions only to blocks of directly superior or inferior rank in the wirebasket hierarchy
(e.g., the external neighbours of a face cell are either edge or interior cells). As
such, the multscale localization assumption needs to be extended to account for
the connection between the two media. In the F-AMS framework, this leads to
the formulation of basis functions which account for different degrees of coupling
between the matrix and its perforating fractures.

In order to provide a compact definition of the various basis functions (matrix,
fracture, well), paired with one of the four different coupling strategies considered
(Decoupled-AMS, Rock-AMS, Frac-AMS, Coupled-AMS), the following “skeleton” is
introduced

− ∇ . (𝐤∗𝜆 ⋅ ∇Φ∗•) + ∑
∈conn∗

𝜂∗ 𝜉(Φ∗•) + ∑
∈perf∗

𝛽∗ (Φ∗• −Φ •) = 0, (3.17)

which is solved for all basis functions Φ∗• ∈ {Φ ,Φ ,Φ ,Φ ,Φ ,Φ }, sub-
ject to the localization assumption within each domain. Recall that 𝒫 and 𝒫
are zero, while 𝒫 is the identity matrix. The skeleton expression (3.17) is based
on the incompressible pressure equation, since it was found computationally effi-
cient, even when compressibility is involved [96]. In its definition, perf∗ represents
the set of (matrix or fracture) cells perforated by wells. Moreover, conn∗ is the set
of all cells with cross-media connectivities from the corresponding (matrix or frac-
ture) domain. Finally, the 𝜉(Φ∗•) function gives the type of matrix-fracture coupling
captured by the basis function, and will be specified separately for each strategy,
as follows:

1. Decoupled-AMS: all basis functions have no-flow boundary conditions be-
tween the matrix and fracture domains, i.e.,

𝜉(Φ∗•) = 0 ∀Φ∗• ∈ {Φ ,Φ ,Φ ,Φ ,Φ ,Φ }, (3.18)

which means that the fracture-matrix coupling term is completely omitted
in Eq (3.17). The prolongation is solved algebraically, as described in Ap-
pendix B.1. Figure 3.3 illustrates the step-by-step procedure for a fracture
and matrix basis function belonging to the 2D reservoir from Fig. 3.1. Note
that the support of each of the interpolators is restricted to their contain-
ing medium. Finally, the Decoupled-AMS approach can be seen as applying
the original AMS to separate sub-domains (i.e., matrix and fractures), having
them coupled only at the coarse-scale system.

2. Frac-AMS: the fracture basis functions in the fracture domain, Φ , are first
computed subject to no-flow conditions towards the matrix, the same as in
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Decoupled-AMS

(a) vertices (b) edges
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(e) edges

Figure 3.3: Step-by-step construction of a Decoupled-AMS matrix basis function (top) and fracture
function (bottom). In this strategy, and are explicitly set to and the two media have
no-flow boundary conditions towards each other. Note that the fracture aperture is magnified for clarity.

the Decoupled-AMS (Fig. 3.3(d) and 3.3(e)), i.e. by substituting

𝜉(Φ ) = 0 (3.19)

in Eq. (3.17). Then, the obtained values are fixed and used as Dirichlet bound-
ary conditions while computing Φ , for which the matrix-fracture transmis-
sibility is taken into account, i.e.,

𝜉(Φ ) = Φ −Φ . (3.20)

On the other hand, the matrix basis functions, Φ , are solved by setting
Φ = 0 as Dirichlet boundary condition, i.e.,

𝜉(Φ ) = Φ . (3.21)

This procedure is performed algebraically, as described in Appendix B.2. Note
from Fig. 3.4 that, after this computation, the fracture functions have non-
zero values in the matrix, while the support of the matrix basis functions is
restricted to the rock domain.
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Frac-AMS
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Figure 3.4: Step-by-step construction of a Frac-AMS matrix basis function (top) and fracture function
(bottom). In this strategy, and used as Dirichlet boundary condition while solving .
Then, is obtained similar as in Decoupled-AMS (Figs. 3.3(d)-3.3(e)) and used as Dirichlet boundary
condition for .

3. Rock-AMS: First, Φ is computed with no-flow to the fractures, as with
Decoupled-AMS (Figs. 3.3(a)-3.3(c)), i.e.,

𝜉(Φ ) = 0. (3.22)

Then, the values are fixed and used as Dirichlet boundaries while solvingΦ ,
for which the fracture-matrix connections are taken into account in Eq. 3.17,
i.e.,

𝜉(Φ ) = Φ −Φ . (3.23)

For the fracture functions, Φ = 0 which is used as Dirichlet condition to
compute Φ , i.e.,

𝜉(Φ ) = Φ . (3.24)

Appendix B.3 presents the algebraic procedure corresponding to this coupling
strategy. Note from Fig. 3.5 that, in Rock-AMS, the matrix basis functions
have non-zero values in the fractures, while the opposite does not hold.
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Rock-AMS
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Figure 3.5: Step-by-step construction of a Rock-AMS matrix basis function (top) and fracture function
(bottom). In this strategy, the are obtained similar to Decoupled-AMS (Figs. 3.3(a)-3.3(c)) and
used as Dirichlet boundary conditions while solving . Then, and used as Dirichlet boundary
conditions for .

4. Coupled-AMS: In order to preserve the two-way coupling between fractures
and matrix, adjacent dual blocks of the same type are merged (e.g. fracture
edges with the matrix edges they perforate), as shown in Fig. 3.6. To clar-
ify, two blocks are considered adjacent if there is a non-zero transmissibility
between a cell from one of them and a cell from the other.

On the resulting dual-coarse grid, computation of the basis functions follow
the usual wirebasket hierarchy, with full consideration of the coupling, i.e.,
using

𝜉(Φ ) = Φ −Φ , 𝜉(Φ ) = Φ −Φ ,
𝜉(Φ ) = Φ −Φ and 𝜉(Φ ) = Φ −Φ , (3.25)

for matrix and fracture cells, respectively (see Appendix B.4 for the detailed
algebraic procedure). Figure 3.7 presents an illustration of the Coupled-AMS
basis functions. Note that fracture functions have non-zero values in the
matrix, and vice versa, the matrix basis functions also have non-zero values
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(a) Merged edges in 2D (b) Merged edges in 3D (c) Merged faces in 3D

Figure 3.6: The merging of adjacent dual blocks of the same type in 2D (a) and 3D (b and c), in order
to preserve the full coupling between fractures and matrix in the Coupled-AMS basis functions.

inside fractures.

It is worth mentioning that, by construction, all four coupling strategies result
in basis functions which form a partition of unity.

The consideration of wells is similar to what was described in the literature for
2D problems [68], but extended here to 3D problems and integrated within the
F-AMS framework. Each well is represented as a single coarse node and a well
function is computed locally. The resulting values are assembled in the designated
column of the prolongation operator. Note that, even for well perforations in the
matrix, the corresponding well functions can have non-zero values inside fractures
as well if either Coupled-AMS or Rock-AMS are employed.

As mentioned before, the basis functions have local support. However, in the
Coupled-AMS case, the merging of dual blocks (Fig. 3.6) can increase this support
substantially in cases with a high density of interconnected (or long) fractures.
This, in turn, can lead to a dense prolongation operator, with a severe impact on
computational performance. To overcome this, one can impose a limiting criterion
on the merging of the dual blocks, for example a maximum number of fine grid
cells. Alternatively, or in combination with the previous method, one can discard
the non-zeros from 𝒫 which lie below a specified threshold, and rescale the rows
accordingly to preserve the partition of unity. The latter choice is studied in detail
in Section 3.3.

It is important to note that F-AMS basis functions are computed at the beginning
of a time-dependent simulation, and adaptively updated only if the fine-scale prop-
erties change beyond a threshold value [59]. Next, the F-AMS solution algorithm is
described.
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Figure 3.7: Step-by-step construction of a Coupled-AMS matrix basis function (top) and fracture function
(bottom). In this strategy, both media preserve their connectivity towards each other.

3.2.2. The F-AMS solution algorithm

In addition to the prolongation, in order to obtain the coarse-scale pressure sys-
tem, the restriction operator ℛ (i.e., map from fine to coarse scale) is now defined.
As previously described, F-AMS identifies three distinct types of features in the do-
main, i.e., matrix, fractures, and wells, therefore, ℛ can be defined in a much more
general form than in the previous studies [53, 61, 96].

The first option is to apply a FV-based restriction to all domains, i.e. the MSFV
restriction operator, ℛ , where the entry at row 𝑖 and column 𝑗 is 1 only if the
fine-scale cell 𝑗 (either from the matrix, fractures, or wells) belongs to primal-coarse
block 𝑖. MSFV ensures mass conservation, at the coarse-scale, thus allowing the
reconstruction of a fine-scale conservative flux field. However, in previous works
[61, 90], it has been found sensitive to the heterogeneity contrast in the domain.
Alternatively, one can construct a Galerkin-FE-based restriction operator, as ℛ =
𝒫 , traditionally called MSFE, which leads to a symmetric-positive-definite (SPD)
coarse linear system, if the fine-scale system (3.8) is also SPD. Finally, one can
consider a third option, where some of the features (e.g., matrix) are restricted
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according to FE, while, for the rest, FV is used. This will be referred to as the
MSMIX restriction operator. Note that, for multiphase flow problems, if the pressure
system is not solved to machine accuracy, a final iteration with ℛ needs to be
employed, followed by a conservative flux reconstruction stage, in order to facilitate
the solution of the transport equations [43, 73].

Although F-AMS can be used as a single-sweep multiscale solver, where the
approximate solution, 𝑝 , is used with no iterations, previous studies have shown
that an iterative procedure is needed for highly-heterogeneous reservoirs [56]. To
this end, one needs to pair the F-AMS multiscale step with a fine-scale smoother,
which ensures error reduction to any desired level. The F-AMS algorithm can now
be compiled, as shown in Table 3.1.

Repeat the following steps until convergence to the desired accuracy is reached:
1. Initialize: 𝑝( ) ← 𝑝( )

2. Update linear system entries: 𝐀( ) and 𝑞( ) in (3.8)
3. Update residual: 𝑟( ) = 𝑞( ) − 𝐀( )𝑝( )
4. Compute (or adaptively update) 𝒫: follow either coupling strategy from

Subsection 3.2.1.
5. Multiscale Stage: 𝛿𝑝( / ) = 𝒫 (ℛ𝐀( )𝒫) ℛ𝑟( )
6. Update residual 𝑟( / ) = 𝑟( ) − 𝐀( )𝛿𝑝( / )

7. Smoothing Stage: 𝛿𝑝( / ) = 𝐌 𝑟( / )

8. Update solution: 𝑝( ) = 𝑝( ) + 𝛿𝑝( / ) + 𝛿𝑝( / )

Table 3.1: F-AMS solution algorithm

The smoothing operator, 𝐌 , approximates the inverse of the complete fine-
scale linear operator, 𝐀( ), via ILU(0) decomposition [57]. Note that the contrast
between the matrix and fracture transmissibility values is usually severe, leading to
a high condition number in Eq. (3.8). In such cases, F-AMS can easily be extended
to include another smoothing stage, which employs iterations on the sub-block
systems corresponding to each media, i.e. 𝐀 and 𝐀 from (3.8). A detailed
study of the impact of such a smoothing stage is beyond the scope of this work,
and makes the object of future research.

Next, numerical results are presented in order to study the effect of each com-
ponent on the performance of the F-AMS algorithm. Then, the scalability of F-AMS
is studied, as linear solver, in a CPU benchmark, where the SAMG commercial solver
[45] is used as reference.

3.3. Numerical Results

The aim of this section is to investigate the performance of F-AMS while simulat-
ing flow through fractured porous media. First, a 2D reservoir with heterogeneous
matrix rock and a relatively complex fracture network is considered. A distance-
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based graph algorithm is used, in order to automate the fracture coarsening pro-
cess (see Appendix C). The convergence behaviour of F-AMS is studied, considering
each of the four different coupling strategies introduced in the previous section.
Then, the same fracture network is extruded along the Z axis and embedded in
a 3D heterogeneous domain, for which simulations are performed considering dif-
ferent coarsening strategies, fracture-matrix conductivity ratios, fracture densities
and domain sizes. CPU times are measured in detail for both the setup and solution
stages in all test cases, and compared to those obtained using the industrial-grade
SAMG solver [45]. Finally, the same 3D reservoir is used to investigate the effect
of heterogeneous fracture conductivities, spanning several orders of magnitude.

During the upcoming simulations, special attention is given to the conductivity
contrast between the matrix and the fracture domains. The transmissibility ratio
𝑇ratio is introduced as

𝑇ratio =
⟨𝑇⟩frac

⟨𝑇⟩rock
, (3.26)

i.e. the ratio between the average fracture ⟨𝑇⟩frac and matrix ⟨𝑇⟩rock transmissibility
values, respectively.

It is important to note that, in all test cases, F-AMS employs a FE restriction
operator. Furthermore, the coarse-scale linear system and the basis functions in
each dual block are all solved using a direct solver, based on LU decomposition,
from the PETSc package [114].

For some experiments, a detailed breakdown of the CPU time spent in each
stage of the F-AMS algorithm is presented. In the legends of the corresponding
bar plots, the “Initialization” refers to the time spent on allocation of memory for
the various data structures, the “Operators” represents the computation of basis
functions and construction of the restriction and prolongation matrices (Step 4 in
Table 3.1). Also, “Fine linsys. constr.” denotes computation of the transmissibility
values and fine-scale linear system assembly. In addition, the matrix multiplications
resulting in the coarse-scale system are labelled as “Coarse linsys, constr.”, while
“Solution” stands for the solution of the coarse system followed by the interpolation
(Step 5 in Table 3.1). Finally, “Smoother” accounts for Step 7.

3.3.1. F-AMS convergence

The fracture network from Fig. 3.8 was embedded into a heterogeneous (patchy)
matrix rock with two pressure-constrained wells added on the West and East bound-
aries. This 2D test case, depicted in Fig. 3.9, was used to study the convergence
properties of F-AMS, with the four coupling strategies presented before.

In order to test the accuracy of the basis functions as pressure interpolators,
F-AMS was stopped after Step 5 of its first iteration (see Table 3.1). The pressure
solutions, obtained while changing the number of DOF in the fracture network, are
shown in Fig. 3.10, for each basis function coupling strategy. Using a single fracture
coarse DOF leads to a poor approximation of the pressure distribution, especially
for Decoupled- and Frac-AMS (left side of Figure 3.10). In this setup, F-AMS treats
fractures similar to [27]. Note that, due to the large length scale of the network,
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(a) min , 1 DOF (b) min , 15 DOF

Figure 3.8: Coarse nodes on a network with 575 fine-scale cells. Note that the aperture is magnified
for clarity.

(a) ( ) and fracture map (b) Pressure solution

Figure 3.9: 2D Test Case: heterogeneous matrix rock with × matrix and fracture grid cells (a).
Two pressure-constrained wells at the West and East boundaries are placed, resulting in the pressure
solution shown in (b) for ratio .

using a constant interpolator for the fracture pressure (as is the case in Decoupled-
AMS and Frac-AMS with 1 fracture DOF) results in an initial solution which lacks a
lot of the fine-scale features. In contrast, the Rock-AMS and Coupled-AMS place
a lot more emphasis on the matrix basis functions and, since, in this test case,
the rock heterogeneity is the main source of approximation error, their results are
more accurate. It may seem unexpected that the Coupled-AMS performs slightly
worse than Rock-AMS. This can be attributed to the fact that a single fracture DOF
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Figure 3.10: Pressure solutions after a single multiscale iteration with 1 (left) and 15 (right) fracture
coarse cells and 4 different prolongation coupling strategies. In all cases, the matrix coarse grid contains
× blocks and the 2-norm of the error is indicated.
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is not sufficient to accurately capture the pressure distribution in the large fracture
network, especially under the localization assumption. However, when only few
additional coarse DOF are added in the fracture domain (as shown on the right side
of Fig. 3.10), the situation improves dramatically for Decoupled-AMS, Frac-AMS and
Coupled-AMS. Note that Rock-AMS, on the other hand, is insensitive to this change.
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Figure 3.11: Convergence history of F-AMS for the 2D test case with four basis function coupling strate-
gies and different number of coarse DOF in the fracture network.

For the results in Fig. 4.18, as well as all subsequent experiments in this work,
F-AMS was iterated until converged to a residual 2-norm of 10 . It is clear that
Rock-AMS shows a good convergence rate on this particular 2D test case, regardless
of the fracture coarsening factor. Also, the other strategies reach a similar behaviour
when the fracture network is enriched with only few additional coarse-scale DOF.

3.3.2. Basis function truncation

In order to get an idea of the performance of F-AMS on realistic fractured reser-
voirs, Fig. 3.12 introduces a 3D scenario, where the fracture network from Fig. 3.9
was extruded and discretized along the Z axis. Two pressure-constrained horizontal
wells are placed on opposite edges of the domain boundary. Figure 4.20 shows the
fine-scale pressure solution obtained on the heterogeneous (patchy) matrix per-
meability field shown in Fig. 3.12(b). Note that, even though the matrix-fracture
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conductivity contrast is of only two orders of magnitude, this is enough to make the
pressure distribution in the fracture network insensitive to the matrix heterogeneity
(see the approximately constant pressure in Fig. 3.12(c)).

(a) Wells and fractures
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(b) ( )
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(c) Fracture pressure
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0.6

0.8
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(d) Matrix pressure

Figure 3.12: Illustration of the 3D test case with × fracture and × × matrix grid cells. The
logarithm of the heterogeneous permeability map is provided in (b). Two pressure-constrained wells are
placed on opposite edges, as shown in (a). The pressure solution is shown for ratio for fracture
(c) and matrix (d). F-AMS employs the coarsening ratios of × × for matrix and × for fractures.

The procedure described in Appendix C is followed to determine the fracture
coarse nodes along the projection of the network on the X-Y plane. Then, the
resulting coarse grids are extruded along the Z-axis uniformly, with the vertical
distribution of the coarse nodes honouring the user-specified coarsening ratio (see
Fig. 3.2).

The increased number of cells in both the matrix (64 × 64 × 64), as well as the
fracture network (575×64), compared to the 2D case, can lead to a larger number
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Figure 3.13: F-AMS performance for different values of the basis function truncation threshold, . Choos-
ing invalidates the truncation procedure. The number of performed iterations to reach
residual 2-norm is given on top of each bar.

of non-zeros for the basis functions which take into account the coupling between
the two media. This can be particularly severe for Coupled-AMS (Fig. 3.7), since
the high density of fractures can cause a large number of dual blocks to be merged.
The resulting basis functions have a wider support and can potentially lead to more
accurate interpolations, however, the added density to the prolongation operator
will also increase the computational effort necessary to construct and solve the
coarse-scale linear system (i.e., Step 5 in Table 3.1).

One can limit the density of 𝒫 by truncating basis function values below a spec-
ified threshold, 𝛾 ∈ [0, 1). However, in order to preserve partition of unity, the
affected rows in 𝒫 need to be rescaled by dividing the remaining values by the row
sum. Figure 3.13 shows the CPU time spent by F-AMS on the 3D test case, while
varying the value of 𝛾. Notice that the very restrictive value of 𝛾 = 10 leads
to an increase in the number of overall iterations, because the smoother needs
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Figure 3.14: Coupled-AMS basis function support before (left) and after truncation (right). The coarse
node (red) is located in a low permeable region of the 2D test case. The fracture network contains only
1 coarse-scale DOF. The colors on the right plot correspond to (orange), (green) and

(light blue).

to compensate for the induced inaccuracy of the basis functions. However, start-
ing with 𝛾 = 10 , the convergence is no longer much affected and the algorithm
gains efficiency from the reduced number of computations (FLOPS) necessary to
perform ℛ𝐀 𝒫 and invert the result. The truncation has the biggest impact on
the Coupled-AMS strategy, which experiences a speed-up factor of 2, compared to
the un-truncated case (last bar in Fig. 3.13(d), where 𝛾 = 0). Figure 3.14 shows
that, for this coupling strategy, when only a single DOF is considered for fracture
network, the support of basis functions can be as big as the span of the fracture
network. Also, this figure shows that after the truncation stage the locality of the
basis function support can be maintained. As conclusion to this study, the subse-
quent experiments will use a value of 𝛾 = 10 , regardless of the choice of basis
function coupling strategy.

3.3.3. Sensitivity to the coarsening factor

The sensitivity of F-AMS to the number of coarse DOF in the fracture network,
as well as the matrix coarsening ratio is studied for the 3D test case shown in Fig.
3.12. The coarsening factor is defined as the average number of fine cells contained
in one (matrix or fracture) primal-coarse block, along each axis. Recall that, along
the fracture length, this is given by the 𝑑min parameter in Table C.1. The experiment
designed for this purpose is focused on “isotropic” coarsening factors, mainly due
to the point-wise nature of ILU(0), which was chosen as global smoothing stage for
the implementation of F-AMS used here (Table 3.1).

Figure 4.17 shows the F-AMS CPU times obtained with three different coarsen-
ing factors for the matrix, as well as the fracture network. From this figure, the
Coupled-AMS is found to automatically adapt itself to the coarsening ratio. Its con-
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Figure 3.15: F-AMS performance for different matrix (decreasing from left to right) and fracture coarsen-
ing ratios (decreasing from top to bottom). The number of performed iterations to reach residual
2-norm is given on top of each bar.
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vergence rate is surpassed only in cases where there is a large discrepancy between
the rock and fracture coarsening ratios. However, this comes with the additional
computational cost of having basis functions with wider support. Still, due to the
truncation factor 𝛾 = 10 , the construction and solution of coarse system for
Coupled-AMS is not significantly higher than that of the alternative strategies. In
addition, in each row, the optimum simulation results are obtained when fracture
and matrix coarsening ratios are similar.

Based on this study and unless otherwise stated, the coarsening ratio of 8 in
each direction for both matrix and fracture media is employed in the experiments
presented in the following subsections. Note that this option leads to more efficient
coarse-scale systems than the alternative option of using coarsening ratios of 4. In
addition, the number of linear iterations can be significantly reduced when F-AMS
is employed as preconditioner for GMRES [57].

3.3.4. Sensitivity to the transmissibility ratio
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Figure 3.16: F-AMS performance for different matrix-fracture transmissibility ratios. The number of
performed iterations to reach residual 2-norm is given on top of each bar.
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Figure 3.17: Convergence history of F-AMS and SAMG on the 3D test case with a fracture/matrix trans-
missibility ratio of ratio . Notice that neither method can converge when iterated in a Richardson’s
loop. Instead, as preconditioners to GMRES, both methods converge after a few iterations.

The next set of experiments aims to investigate the sensitivity of F-AMS to the
conductivity contrast between the matrix and fractures. The transmissibility ratio
𝑇ratio, as defined in Eq. (3.26), is varied over several orders of magnitude (Fig.
3.16) while measuring CPU times and number of linear iterations performed by the
Richardson loop. A coarsening factor of 8 was chosen for both media, based on the
results from the previous subsection. As the network becomes more conductive,
the influence of the matrix heterogeneity on the fracture pressure decreases (see
Figs. 3.12(c) and 4.20). As such, Rock-AMS exhibits a degradation in performance
for higher 𝑇ratio (Fig. 3.16(c)), while the reverse is true for Frac-AMS (Fig. 3.16(b)).
On the other hand, by automatically adapting to the change, the Coupled-AMS
strategy remains relatively insensitive to 𝑇ratio, as shown in Fig. 3.16(d). Finally,
Decoupled-AMS requires the most number of iterations when the fracture and ma-
trix transmissibility values are close (Fig. 3.16(a)), since in this case the two-way
coupling between the media is the most pronounced.

Note that the solver could not converge to the chosen tolerance, of 10 residual
norm, when F-AMS was iterated in a Richardson’s loop for 𝑇ratio ≥ 10 and the same
holds for SAMG [45]. However, as shown in Fig. 3.17, both methods converge
successfully when employed as preconditioners for GMRES [57].

3.3.5. CPU benchmark study

This final subsection presents the results of a benchmark study between F-
AMS and SAMG [45] on 3D heterogeneous fractured reservoirs. Both methods are
employed as preconditioners to GMRES [57] and iterated until converged with a
residual 2-norm below 10 .

Unlike the Richardson loop, similar performance was observed for all experi-
ments when F-AMS is used as preconditioner to GMRES, regardless of which cou-
pling strategy was chosen. Therefore, the presentation of the results is restricted
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to Decoupled-AMS, for conciseness. Note that the Coupled-AMS strategy provides
a more general framework, however, with a more complex implementation.

At each GMRES iteration, SAMG employs a single V-cycle. It is important to note
that SAMG is a commercial black-box package. Thus, it is not possible to measure
its CPU breakdown as accurately as for F-AMS. Instead, the time spent on its first
iteration is considered as “Initialization”, while subsequent iterations were labelled
as “Solution”. Finally, for both SAMG and F-AMS, the setup and construction of the
operators are performed only once, at the beginning of the iteration procedure.

This study is aimed only to demonstrate the scalability of the F-AMS method.
Note that a unique advantage of F-AMS over SAMG is that a fine-scale mass conser-
vative flux field can be reconstructed after any iteration stage, once the coarse-scale
system with ℛ restriction operator is solved.

Transmissibility contrast

The test case from Fig. 3.12 is used, with different values of fracture-matrix
transmissibility contrasts, i.e., 𝑇ratio in Eq. (3.26). As can be seen in Fig. 3.18, the
number of iterations and the CPU time for both F-AMS and SAMG is insensitive to
the contrast. This is a significant achievement for F-AMS, compared to [27].
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Figure 3.18: F-AMS (Decoupled-AMS) performance compared with SAMG for different matrix-fracture
transmissibility ratios. The number of performed iterations to reach residual 2-norm is given on
top of each bar. For these experiments, both methods were used as preconditioners for GMRES. Similar
performance was observed for other F-AMS coupling strategies.

Fracture density

What follows is a study of the scalability of F-AMS when faced with a dynamic
fracture network, where the number of fracture plates is increased step by step.
The 3D fracture map shown in Fig. 3.12(a) is considered, where the network is
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now created through 4 phases, as presented in Fig. 3.19. Note that, as new
fractures are added, not only the number of DOF increases, but also the pressure
variation along the network can increase. The detailed description of the CPU times
obtained using F-AMS in these four cases are depicted in Fig. 4.21. It is clear that,
by maintaining the prescribed fracture coarsening factor of 8 × 8, F-AMS maintains
virtually the same convergence rate. The slight increase in CPU time is mainly due
to computation of extra fracture basis functions, as well as the construction and
solution of a slightly larger coarse-scale linear system.

In consequence, by having multiple coarse-scale DOF in each fracture network,
F-AMS can automatically scale with fracture length and density. This is in contrast
to [27], where the use of a single fracture basis function would lead to a drastic de-
terioration of the multiscale convergence for test cases containing fracture networks
with large length scales.
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Figure 3.19: Pressure solution obtained for different fracture densities. The left-most contains 27 fracture
plates ( × cells), followed by one with 76 fracture plates ( × cells), the next has 96 fracture
plates ( × cells), and, finally, the right-most is perforated by 127 fracture plates ( × cells).
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Figure 3.20: F-AMS (Decoupled-AMS) performance for reservoirs with different number of fractures.
The number of performed iterations to reach residual 2-norm is given on top of each bar. For
these experiments, both methods were employed as preconditioners for GMRES. Similar performance
was observed for other F-AMS coupling strategies.
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Domain scale

The scalability of F-AMS, benchmarked with SAMG, is investigated for hetero-
geneous (patchy) reservoir of increasing size. To this end, both the matrix and
fracture fine-scale grid resolution is varied from 32 matrix and 320 × 32 fractures
(smallest) up to 256 matrix and 2117 × 256 fracture cells (see Fig. 3.21). The
transmissibility ratio between the two media is 𝑇ratio = 10 . Figure 3.22 shows the
obtained CPU times. F-AMS and SAMG both maintain their convergence rates and
experience a similar level of scalability, in terms of CPU time, i.e., they grow linearly
with the problem size. Note that SAMG uses adaptive coarsening at each level in
its V-cycles.

During the simulations carried out for this experiment, as well as those from Sub-
section 3.3.3, it became clear that the performance of F-AMS is highly dependent
on the coarsening ratios used. Only the optimum configuration was featured in the
plots from Figure 3.22. Table 3.2 lists the performance and convergence of F-AMS,
when using primal grids with more refined and more coarse blocks, respectively,
for comparison purposes.

Scale Coarsening ratio
(matrix, fracs)

Total CPU time
(sec)

# iterations

32
2 × 2 × 2, 2 × 2 1.904 11
𝟔 × 𝟔 × 𝟔, 𝟔 × 𝟔 𝟎.𝟑𝟑𝟎 𝟐𝟑
8 × 8 × 8, 8 × 8 0.351 29

64
4 × 4 × 4, 4 × 4 3.270 13
𝟔 × 𝟔 × 𝟔, 𝟔 × 𝟔 𝟐.𝟏𝟖𝟔 𝟏𝟗
9 × 9 × 9, 9 × 9 2.371 27

128
6 × 6 × 6, 6 × 6 21.790 17
𝟖 × 𝟖 × 𝟖, 𝟖 × 𝟖 𝟏𝟕.𝟔𝟐𝟎 𝟐𝟐

11 × 11 × 11, 11 × 11 21.350 31

256
8 × 8 × 8, 8 × 8 164.600 18

𝟏𝟎 × 𝟏𝟎 × 𝟏𝟎, 𝟏𝟎 × 𝟏𝟎 𝟏𝟓𝟎.𝟒𝟎𝟎 𝟐𝟑
17 × 17 × 17, 17 × 17 252.100 40

Table 3.2: Performance of F-AMS during the scale sensitivity test cases, when using different coarsening
factors. The middle row for each test (shown in bold) is the optimum configuration, whose results were
presented in the body of the manuscript.

Heterogeneous fractures

Finally, the sensitivity of the F-AMS method (benchmarked with SAMG) to strongly
heterogeneous fracture properties is investigated. The permeability of the 127 frac-
ture plates from Fig. 3.12(a) is randomly perturbed to a span 6 orders of magnitude.
Figure 3.23 shows that, if an appropriate coarsening ratio is chosen (in this case
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Figure 3.21: Logarithm of the permeability ( ( )) and fracture distribution in four reservoirs of
increasing size. The left-most has matrix and × fracture cells, followed by matrix and

× fracture cells, then matrix and × fracture cells, and, finally, matrix and
× fracture cells.
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Figure 3.22: F-AMS (Decoupled-AMS) performance compared with SAMG for different domain sizes.
The coarsening factors are , , and respectively. Also, a transmissibility ratio of ratio was
considered. The number of iterations to reach residual 2-norm is given on top of each bar. For
these experiments, both methods were employed as preconditioners for GMRES. Similar performance
was observed for other F-AMS coupling strategies.

6×6×8 in the matrix and 4×8 in the fractures), then the F-AMS and SAMG perfor-
mances are comparable. In addition to the coarsening ratio, multiscale methods are
also sensitive to the heterogeneity contrasts (here, in both fractures and matrix).
Improvements can be achieved by adapting the coarse grid geometry to follow the
fracture and matrix conductivity distribution, or by enriching the prolongation oper-
ator with additional basis functions [86–88]. These are subjects of future studies.

The results of the experiments presented in this section show that the perfor-
mance and scalability of F-AMS is comparable to that of SAMG. As such, even in
its current proof of concept implementation, F-AMS is found a promising multiscale
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Figure 3.23: F-AMS (Decoupled-AMS) performance compared with SAMG on a test case with hetero-
geneous fracture permeability. The logarithm of the fracture permeability is shown on the left. The
number of iterations to reach residual 2-norm is given on top of each bar. For these experiments,
both methods were employed as preconditioners for GMRES.

method for naturally fractured porous media. Note that, for realistic multiphase
test cases, simulations can be further accelerated by employing only few iterations
of F-AMS, followed by a flux reconstruction stage, leading to efficient approximate
solutions [99].

3.4. Conclusions

This chapter introduced a novel general multiscale framework, F-AMS, devised
for efficient and accurate simulation of flow through heterogeneous porous media
with embedded fractures of various length scales. The possibility to prescribe an
arbitrary coarse grid in each fracture network was presented. Then, for each coarse
node (from both matrix and fractures), a locally-supported basis function was de-
fined, by considering one of the four cross-media coupling strategies (Decoupled-
AMS, Frac-AMS, Rock-AMS or Coupled-AMS). All of these flexibilities allow the user
to tweak the trade-off between the computational budget of the setup stage and
the convergence rate.

Aligned with the EDFM approach of having independent grids for fracture and
matrix [18], this work used a distance-based automatic coarsening algorithm for
the fracture domain. It allows the user to specify the desired (uniform) coarsening
factor for the fracture networks, in similar fashion to the matrix. In addition, the
effect of truncating small non-zeros from the prolongation operator was studied, in
order to maintain efficiency, especially for the Coupled-AMS strategy. For all test
cases considered, a truncation value of 𝛾 = 10 was found to be optimal.
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The numerical results illustrate that F-AMS (similar as SAMG) is insensitive to the
fracture-matrix conductivity contrast, and - importantly - shares the same scalability
with respect to the fracture density, domain scale and heterogeneous properties.
However, the performance of F-AMS was found to dramatically degrade if a sub-
optimal coarsening strategy is chosen for challenging test cases. The method can be
further extended to address this, e.g. by considering adaptive coarsening strate-
gies, different choices for the smoother or employment of enriched prolongation
operators [86, 87].

Another important finding of this work was that all basis function coupling strate-
gies perform similar when F-AMS is used as preconditioner to GMRES. This recom-
mends the Decoupled-AMS approach for commercial reservoir simulation, due to
its convenient implementation, an attractive feature for real-field applications.

In summary, it is concluded that F-AMS is an important multiscale development
for flow in heterogeneous media with embedded fractures. It was shown that
only few fracture coarse nodes are required to deliver good approximate pressure
solutions, at the original fine-scale resolution. Future developments of F-AMS will
include consideration of unstructured grids (see [83, 84, 115]) or the inclusion
complex physics such as geomechanics, capillarity and gravity effects for multiphase
flow simulations.
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Discrete Fracture Model

Accurate and efficient simulation of flow through subsurface formations is essen-
tial for effective engineering operations (including production, storage optimization
and safety assessments). Alongside their intrinsic heterogeneous properties, the
target geological formations often contain complex networks of naturally-formed
or artificially-induced fractures, with a wide range of conductivity properties. Given
their significant impact on flow patterns, the accurate representation of these lower-
dimensional structural features is paramount for the quality of the simulation results
[105].

Discrete Fracture Models (DFM) reduce the dimensionality of the problem by
constraining the fractures, as well as any inhibiting flow barriers, to lie at the inter-
faces between matrix rock cells [24–26]. Then, local grid refinements are applied,
where a higher level of detail is necessary, leading to a discrete representation of the
flow equations on, sometimes complex, unstructured grids [32, 39, 107, 118, 119].
Although the DFM approach has been extended to include complex fluids and rock
physics – e.g. compositional displacements [120, 121] and geomechanical effects
[122] – its reliance on complex computational grids may raise important challenges
in real-field applications.

This has led to the emergence of models which make use of non-conforming
grids w.r.t. fracture-matrix connections, such as eXtended Finite Element Methods
(XFEM) [123] and Embedded Discrete Fracture Models (EDFM) [18, 19]. This work
focuses on the latter, which are especially appealing due to their intrinsic ability
to deliver mass-conservative flux fields. To this end, the lower-dimensional struc-
tural features with relatively small lengths (i.e. fully contained in a single fine-scale
matrix cell) are first homogenized, by altering the effective permeability of their

The material presented in this chapter has been published in the proceedings of the ECMOR XV - 15th
European Conference on the Mathematics of Oil Recovery (2016) [116] and in Advances in Water Re-
sources 105, 205 (2017) [117].
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support rock [20]. Then, the remaining fracture networks are discretized on sep-
arate numerical grids, defined independently from that of the matrix [113, 124].
A comprehensive comparison between DFM and EDFM, along with other fracture
models, is performed in [125].

The EDFM has been applied to reservoirs containing highly-conductive frac-
tures with complex geometrical configurations, while considering compositional fluid
physics [108] and plastic and elastic deformation [126]. It has seen used as an up-
scaling technique [40, 127] and was successfully paired with multiscale methods
for efficient flow simulation [27, 104, 115, 116]. However, the experiments pre-
sented in this work show that, in its current formulation, the model is not suitable
in cases when the fracture permeability lies below that of the matrix. In addi-
tion, even when fractures coincide with the interfaces of matrix cells, the existing
EDFM formulation still allows for independent flow leakage (i.e. disregarding the
properties of the fracture placed between neighbouring matrix cells). To resolve
these important limitations, this work proposes a new formulation for embedded
fracture approaches, namely, the projection-based EDFM (pEDFM). The pEDFM is
shown to successfully accommodate to lower-dimensional structural features with
a wide range of permeability contrasts towards the matrix. This includes highly
conductive fractures and flow barriers with small apertures, relative to the reservoir
scale, which allows their representation as 2D plates. For the remainder of the
chapter, they will be referred to, simply, as fractures, regardless of their conductive
properties.

The devised pEDFM formulation retains the geometric flexibility of the classic
EDFM procedure. More specifically, once the fracture and matrix grids are indepen-
dently defined, and the cross-media communication points are identified, pEDFM
adjusts the matrix-matrix and fracture-matrix transmissibilities in the vicinity of frac-
ture networks. This ensures that the conductivity of the fracture networks, which
can be several orders of magnitude below or above that of the matrix, are auto-
matically taken into account when constructing the flow patterns. Finally, when
fractures are explicitly placed at the interfaces of matrix cells, pEDFM automatically
provides identical results to DFM.

The chapter is structured as follows. First, the governing equations are pre-
sented and discretized according to the pEDFM approach. Then, a series of numer-
ical experiments are presented, targeted at validating pEDFM by comparing it to
DFM (i.e. using unstructured grids with fractures being confined at the interfaces)
and EDFM. The sensitivity of pEDFM with respect to fracture position and orien-
tation, grid resolution and the conductivity contrast towards the matrix is studied
extensively. Finally, the results are summarized, conclusions are drawn and possi-
ble directions for future work are discussed.

4.1. pEDFM formulation

In order to accommodate fractures with a wide range of conductivity contrasts
towards the matrix, pEDFM extends the classic EDFM discretization of the governing
flow equations by automatically scaling the matrix-matrix connections in the vicinity
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of fracture networks. At the same time, additional fracture-matrix connections are
added in order to keep the system of equations well-posed in all possible scenarios.
This is explained in detail in the following subsections.

4.1.1. Governing equations

The mass-conservation equations for isothermal multi-phase Darcy flow in frac-
tured media, without compositional effects, can be written as

[𝜕(𝜙𝜌 𝑠 )𝜕𝑡 − ∇ . (𝜌 𝐤𝜆 ⋅ ∇𝑝)] = 𝑄 +[𝜌 𝑞] +[𝜌 𝑞] on Ω ⊂ ℝ (4.1)

for the matrix (superscript ) and

[𝜕(𝜙𝜌 𝑠 )𝜕𝑡 − ∇ . (𝜌 𝐤𝜆 ⋅ ∇𝑝)] = 𝑄 +[𝜌 𝑞] +[𝜌 𝑞] on Ω ⊂ ℝ (4.2)

for the fracture (superscript ) spatial domains. Here, 𝜙 is the rock porosity, 𝑝 the
pore pressure, 𝐤 the 2nd order positive-definite absolute permeability tensor, here,
considered diagonal and isotropic, while 𝑠 , 𝜆 = 𝑘 , /𝜇 , 𝑘 , , 𝜇 and 𝜌 are the
phase saturation, mobility, relative permeability, viscosity and density, respectively.
The 𝑞 and 𝑞 give the fluxes from / towards wells, 𝑞 and 𝑞 stand for
the cross-media connections, while 𝑄 and 𝑄 are other source terms, e.g. due
to capillary and gravity effects (neglected in this work), in the matrix and fracture
domain, respectively.

4.1.2. Discretization

In order to solve the coupled system of Eqs. (4.1)-(4.2), independent grids
are generated for the rock and fracture domains (See Fig. 4.1). This approach
alleviates complexities related to grid generation, since, unlike in DFM, fractures do
not need to be confined to the interfaces between matrix grid cells.

The advection term from Eqs. (4.1)-(4.2) is defined for each (matrix-matrix and
fracture-fracture) grid interface, following the two-point-flux approximation (TPFA)
finite volume discretization of the flux 𝐹 between each pair of neighbouring cells 𝑖
and 𝑗 as

𝐹 = 𝑇 (𝑝 − 𝑝 ). (4.3)

Here, 𝑇 = 𝑘 𝜆 is the transmissibility, 𝐴 is the interfacial area, 𝑑 is the
distance between the cell centers, 𝑘 and 𝜆 are the effective absolute permeability
and fluid mobility at the interface between 𝑖 and 𝑗, respectively (rock properties are
harmonically averaged, while fluid properties are upwinded [128]).

The Peaceman well model [112] gives the source / sink terms between con-
trol volume Ω in the (matrix or fracture) domain and any perforating injection /
production wells, respectively, as

𝐹 = ∫ 𝑞 𝑑𝑉 = 𝑇 (𝑝 − 𝑝 ), (4.4)

73



4

4. Projection-based Embedded Discrete Fracture Model

(a) Matrix grid (b) Fracture grid

Figure 4.1: In pEDFM, independent grids are defined separately for the matrix and fracture domains.

where 𝑇 = PI 𝑘 𝜆 , PI is the well productivity index, while 𝑘 and 𝜆 are
the effective absolute permeability (harmonically averaged) and fluid mobility (up-
winded) between the domain and the well, respectively.

The fracture-matrix coupling terms are modelled similar to [19, 27], i.e., for
matrix cell 𝑖 (with volume 𝑉) connected to a fracture cell 𝑓 (of area 𝐴 ),

𝐹 = ∫ 𝑞 𝑑𝑉 = 𝑇 (𝑝 − 𝑝 ) (4.5)

and

𝐹 = ∫ 𝑞 𝑑𝐴 = 𝑇 (𝑝 − 𝑝 ), (4.6)

where 𝑇 = CI 𝑘 𝜆 = 𝑇 is the cross-media transmissibility. Once again, 𝑘
and 𝜆 are the effective absolute permeability (harmonically averaged) and fluid
mobility (upwinded) at the interface between matrix and fractures, respectively,
while the CI is the conductivity index, defined as

CI =
𝑆
⟨𝑑⟩ , (4.7)

where 𝑆 is the surface area of the connection (to be further specified below)
and ⟨𝑑⟩ is the average distance between the points contained in the rock control
volume 𝑉 and the fracture surface 𝐴 [19, 27], i.e.,

⟨𝑑⟩ = 1
𝑉 ∫ 𝑑 𝑑𝑣 , (4.8)

where 𝑑 stands for the distance between finite volume 𝑑𝑣 and fracture plate.
Appendix A gives an analytical method for its computation on 2D structured grids.
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EDFM

Consider the fractured medium from Fig. 4.2, which is discretized on a structured
grid. Let 𝐴 be the area of intersection between fracture cell 𝑓 and matrix volume 𝑖
(highlighted in yellow in Fig. 4.2). The classical EDFM formulation [19, 27] defines
the transmissibility as

𝑇 =
2𝐴
⟨𝑑⟩ 𝑘 𝜆 (4.9)

where, in this case, 𝑆 = 2𝐴 for computing 𝐶𝐼 in Eq. (4.7), while 𝑘 and 𝜆
are the effective cross-media absolute permeability and mobility, respectively. The
transmissibility of the matrix-matrix connections in the neighbourhood of the frac-
ture (between control volumes 𝑖 and 𝑗, 𝑘, respectively) are left unmodified from
their TPFA finite volumes form, i.e

𝑇 =
𝐴
Δ𝑥 𝑘 𝜆 𝑇 = 𝐴

Δ𝑦 𝑘 𝜆 . (4.10)

where 𝐴 , 𝐴 are the areas and 𝑘 , 𝑘 , 𝜆 , 𝜆 the effective absolute permeabil-
ities and mobilities are the corresponding matrix interfaces.

pEDFM

This work proposes an extension to the EDFM formulation, by modifying the
matrix-matrix and fracture-matrix in the vicinity of fractures. This enables the de-
velopment of a general embedded discrete fracture modeling approach (pEDFM),
applicable in cases with any conductivity contrast between fractures and matrix. To
this end, first a set of matrix-matrix interfaces is selected, such that they define a
continuous projection path of each fracture network on the matrix domain (high-
lighted in red on the right side of Fig. 4.2). While, devising a generic algorithm
for the construction of these paths are out-of-scope, it is important to ensure their
continuity for each fracture network.

Consider fracture cell 𝑓 intersecting matrix volume 𝑖 on an 𝑛-dimensional struc-
tured grid over a surface area, 𝐴 . Let 𝐴 be its corresponding projections on
the path, along each dimension, 𝑒 = 1,… , 𝑛 (depicted in red on the left side of Fig.
4.2). Also, let 𝑖 be the matrix control volumes which reside on the opposite side
of the interfaces affected by the fracture cell projections (highlighted in orange in
Fig. 4.2). Then, the following transmissibilities are defined

𝑇 =
𝐴
⟨𝑑⟩ 𝑘 𝜆 , 𝑇 =

𝐴
⟨𝑑⟩ 𝑘 𝜆 and 𝑇 =

𝐴 − 𝐴
Δ𝑥 𝑘 𝜆 ,

(4.11)
where 𝐴 are the areas of the matrix interfaces hosting the fracture cell projec-
tions and 𝑘 , 𝑘 , 𝑘 , 𝜆 , 𝜆 , 𝜆 are effective absolute permeabilities and fluid
mobilities between the corresponding cells. Notice that the projected areas, 𝐴 ,
are eliminated from the matrix-matrix transmissibilities and, instead, make the ob-
ject of stand-alone connections between the fracture and the non-neighbouring
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A if ⊥ Y

Figure 4.2: Illustration of pEDFM on a 2D structured grid. The matrix cells highlighted in yellow are
connected directly to the fracture, as defined in the classic EDFM. The cells highlighted in orange take
part in the additional non-neighbouring connections between fracture and matrix grid cells, as required
by pEDFM.

(i.e. not directly intersected) matrix cells 𝑖 . Also, the matrix-matrix connectivity
𝑇 will be eventually zero if the fracture elements (belonging to one or multiple
fractures) cross through the entire matrix cell 𝑖.

Finally, note that, for fractures that are explicitly confined to lie along the inter-
faces between matrix cells, the pEDFM formulation, as given in Eq. (4.11), naturally
reduces to the DFM approach on unstructured grids, while the EDFM does not.

Given the above TPFA finite-volume discretization of the advection and source
terms from Eqs. (4.1)-(4.2), after applying backward Euler time integration, the
coupled system is linearized with the Newton-Raphson scheme and solved itera-
tively.

4.2. Algebraic multiscale formulation (F-AMS-pEDFM)

This section briefly describes the application of the F-AMS procedure [104] to
the pEDFM model. As previously discussed, given a computational domain with 𝑁
fracture networks and𝑁 wells, F-AMS first superimposes two coarse grids on top of
both the matrix and fracture fine-scale. The primal-coarse grid is a non-overlapping
decomposition of the domain, inside which a fine-scale cell is selected as coarse
node (Figs. 3.2(c) and 3.2(e)). By connecting the coarse nodes, a secondary
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overlapping coarse grid is obtained, which is called the dual-coarse grid (Figs. 3.2(d)
and 3.2(f)). There exist 𝑁 and 𝑁 matrix primal-coarse and dual-coarse blocks
and, similarly, each fracture network 𝑓 contains 𝑁 and 𝑁 fracture primal-
coarse and dual-coarse blocks. Note that 𝑁 (injection or production) wells exist
in the domain, as driving forces for the flow.

F-AMS approximates the solution to the coupled system Eqs. (4.1)-(4.2), 𝑝, as
a superposition of coarse-scale solutions (

̂
𝑝) using locally computed basis functions

(Φ), i.e.

𝑝 ≈ 𝑝 = ∑ Φ
̂
𝑝 +∑∑ Φ

̂
𝑝 +∑Φ

̂
𝑝 , (4.12)

for the matrix and

𝑝 ≈ 𝑝 = ∑ Φ
̂
𝑝 +∑∑ Φ

̂
𝑝 +∑Φ

̂
𝑝 (4.13)

for the fractures, respectively. Since each well is assigned a single pressure value,
their fine-scale and coarse-scale representations will be equivalent, i.e.

𝑝 = 𝑝 =
̂
𝑝 ∀𝑖 ∈ {1,⋯ ,𝑁 }. (4.14)

Here, the basis functions associated with matrix coarse cells (i.e., Φ ∗) are Φ
for matrix-matrix effects, Φ for the matrix-fracture coupling, and Φ matrix-
well interactions. These basis functions (interpolators) are employed in order to
capture the effects of all the important factors (matrix, fractures, and wells) in the
construction of a good approximation for the matrix pressure field 𝑝 . Similarly for
fractures, Φ ∗ consists of the contributions from the matrix Φ , fractures Φ ,
and wells Φ , if present.

In order to write the above in algebraic form, the values of the basis functions
are assembled into the columns of the multiscale prolongation operator, 𝒫 (of di-
mension 𝑁fine × 𝑁coarse, where 𝑁fine and 𝑁coarse are the total number of fine- and
coarse-scale control volumes, respectively), which reads

𝒫 = [
𝚽 𝚽 𝚽
𝚽 𝚽 𝚽
𝟎 𝟎 𝐈

] , (4.15)

where 𝐈 is the identity matrix.
The basis function of each (matrix, fracture or well) coarse node 𝑖 is computed

with local support by following the wirebasket hierarchy [61, 63, 129]. This ensures
that each basis function has a localized support around its corresponding coarse
node.

For the purposes of the present work, the off-diagonal blocks accounting for
the fracture-matrix coupling in the prolongation are neglected (i.e. 𝚽 and 𝚽
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set to zero in Eq. (4.15)). This results in the Decoupled-AMS strategy from [104],
where the basis functions corresponding to coarse nodes from one medium (e.g.
matrix) are solved with no-flow boundary conditions to the other (i.e. fractures).
More specifically, the incompressible pressure equation (see [96]) with no fracture-
matrix coupling is written

−∇ . (𝐤 𝜆 ⋅ ∇Φ ) + ∑
∈perf

PI 𝐤 𝜆 (Φ − Φ⏝⏟⏝) = 0, (4.16)

for the matrix basis functions (𝚽 ), where the divergence operator ∇ . was mod-
ified to neglect the connections removed by the localization assumption. Here, 𝑐
denotes the coarse node (i.e. the column in 𝒫) to which the basis function belongs
to, and perf is the set of wells perforating the matrix control volume under con-
sideration. A step-by-step illustration of this computation is shown at the bottom
of Fig. 4.3.

(a) Dual-coarse grid (b) 𝚽 vertices (c) 𝚽 edges

(d) 𝚽 vertices (e) 𝚽 edges (f) 𝚽

Figure 4.3: Illustration of a step-by-step basis function calculation using the Decoupled-AMS strategy
on the pEDFM model.

Note that, in the pEDFM formulation, when a matrix cell is fully crossed by
fractures, the transmissibility between itself and one or more of its neighbours can
become 0. This can lead to rank deficient linear systems when computing basis
functions under the localization assumption (i.e. along the edges, faces or interiors),
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if the coupling approach presented here – which corresponds to the Decoupled-AMS
approach of [104] – is followed. In order to address this issue, an upper and lower
threshold can be imposed on the transmissibilities when computing basis functions
(for clarity, the fine-scale system remains unaffected), as previously suggested in
the literature [90]. Let 𝑇avg be the average of the transmissibilities of all interfaces
present in the reservoir. Then, the basis function transmissibilities are not allowed
to lie below 𝑇min = 𝑇avg/𝑇thresh or above 𝑇max = 𝑇avg ∗ 𝑇thresh. In the experiments
presented in this work, values of 𝑇thresh = 10 and 10 are used, which limit the
transmissibility contrast captured by the basis functions to roughly 10 and 10 ,
respectively. Note that, if the Coupled-AMS or Frac-AMS coupling strategies are
followed within F-AMS [104], this issue does not exist. Consideration of the effect
of these coupling approaches is the subject of ongoing research.

Similar to the matrix,

−∇ . (𝐤 𝜆 ⋅ ∇Φ ) + ∑
∈perf

PI 𝐤 𝜆 (Φ − Φ⏟) = 0, (4.17)

is solved for the fracture basis functions (𝚽 ), as shown in the top of Fig. 4.3,
where perf denotes the set of wells perforating the fracture cell for which Eq. (4.17)
is written.

F-AMS extends the consideration of wells in the multiscale solution [68] to 3D
fractured porous media. To this end, each well is represented as a single vertex on
the dual-coarse grid and a well function is computed locally by solving

−∇ . (𝐤 𝜆 ⋅ ∇Φ ) + ∑
∈perf

PI 𝐤 𝜆 (Φ − Φ⏟) = 0 (4.18)

or

−∇ . (𝐤 𝜆 ⋅ ∇Φ ) + ∑
∈perf

PI 𝐤 𝜆 (Φ −Φ⏟) = 0, (4.19)

depending on the domain to which its neighbouring dual blocks belong to. Finally,
the values of all well functions are assembled into the 𝚽 (for the fracture do-
main) and 𝚽 (for the matrix domain) sub-blocks of the prolongation operator,
respectively.

Alongside prolongation, in order to obtain the coarse-scale pressure system, the
restriction operator ℛ (i.e., map from fine to coarse scale, with dimension 𝑁coarse ×
𝑁fine) needs to be defined. Among the options supported by F-AMS [104], this
work focuses on the MSFV restriction operator, ℛ , where the entry at row 𝑖 and
column 𝑗 is 1 if the fine-scale cell 𝑗 (either from the matrix, fractures, or wells)
belongs to primal-coarse block 𝑖, or 0 otherwise. This choice allows a conservative
flux reconstruction stage, in order to facilitate the solution of the transport equations
[43, 73] when F-AMS is used as approximate solver.

Although this allows F-AMS to be used as a single-sweep multiscale solver, where
the approximate solution, 𝑝 , is used with no iterations, previous studies have shown

79



4

4. Projection-based Embedded Discrete Fracture Model

that an iterative procedure is needed for highly-heterogeneous reservoirs [56]. To
this end, one needs to pair the F-AMS multiscale step with a fine-scale smoother,
which ensures error reduction to any desired level. During the experiments that
follow, the smoothing operator is an approximation of the inverse of the fine-scale
linear operator, 𝐀( ), via ILU(0) decomposition [57].

4.3. Numerical results

This section presents the results of numerical experiments of single- and two-
phase incompressible flow through two- and three-dimensional fractured media.
Their aim is to validate pEDFM, whose formulation was presented in the previous
section, and study its sensitivity to fracture position, grid resolution and fracture-
matrix conductivity contrast, respectively. The reference solution for these studies
is obtained on a fully resolved grid, i.e. where the size of each cell is equal to the
fracture aperture. This allows the following model error measurement,

‖𝜖‖
𝑁coarse

=
∑ |𝑝fine − 𝑝coarse|

𝑁coarse
(4.20)

where 𝑁coarse is the number of grid cells used by pEDFM and 𝑝fine is the correspond-
ing fully-resolved pressure, interpolated to the coarse scale, if necessary. Some of
the experiments were repeated for the classic EDFM, as well as unstructured DFM,
for comparison purposes.

For simplicity, but without loss of generality, the flow in these experiments is
driven by Dirichlet boundary conditions, instead of injection and production wells,
while capillary and gravity effects are neglected.

Finally, the simulations were performed using the DARSim 1 in-house simulator,
using a sequentially implicit strategy for the multiphase flow cases.

4.3.1. pEDFM validation

In order to validate pEDFM as a fine-scale model suitable to accommodate frac-
tures with a wide range of permeabilities, a 2D homogeneous domain (𝑘 = 1) is
considered, having a +-shaped fracture network, located in the middle. In order
to drive the incompressible single-phase flow, Dirichlet boundary conditions with
non-dimensional pressure values of 𝑝 = 1 and 𝑝 = 0 are imposed on the left and
right boundaries of the domain, respectively, while the top and bottom sides are
subject to no-flow conditions.

As shown in Fig. 4.4, the study is first conducted in a scenario where the
fractures are 8 orders of magnitude more conductive than the matrix. The reference
solution, in this case, is computed on a 1001 × 1001 structured Cartesian grid.
From the bottom of Fig. 4.4, it is clear that both EDFM and pEDFM, on a coarser
11×11 domain, can reproduce the behaviour of the flow as dictated by the highly-
conductive embedded fracture network.
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Figure 4.4: Fully-resolved (c) EDFM (d) and pEDFM (e) pressure solutions in a homogeneous reservoir
containing a -shaped highly-conductive fracture network (top).

As shown in Fig. 4.5, the same experiment was rerun for the case where the
fracture permeability lies 8 orders of magnitude below that of the host matrix. The
results expose the limitations of EDFM, where the impermeable fractures are simply
by-passed by the flow through the (unaltered) matrix, resulting in a pressure field
corresponding to a reservoir with homogeneous (non-fractured) permeability. On
the other hand, through its new formulation, pEDFM is able to reproduce the effect
of the inhibiting flow barrier (see bottom of Fig. 4.5), confirming its applicability to
this case.

These experiments confirm that pEDFM is a suitable extension of EDFM to a
wider range of geological scenarios, being able to reproduce the correct flow be-
haviour in the presence of both high and low permeable fractures, embedded in
the porous matrix.
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Figure 4.5: Fully-resolved (c) EDFM (d) and pEDFM (e) pressure solutions in a homogeneous reservoir
containing a -shaped nearly impermeable flow barrier (top).

4.3.2. Sensitivity to the fracture position within the grid cell

Given that pEDFM typically operates on much coarser grids than the fully re-
solved case, it is of interest to elicit its sensitivity to the fracture position within
the host grid cell. To this end, the +-shaped fracture configuration is considered;
the reference solution is computed on a 3 × 3 (i.e., 2187 × 2187) cell grid, while
pEDFM grid operates at 10 × 10 resolution.

From Fig. 4.4, it appears that in the case when the fracture network is highly
conductive, the horizontal fracture is the one that dictates the flow. Consequently,
successive simulations are conducted for both EDFM and pEDFM, while moving the
horizontal fracture from top to bottom, as shown in Fig. 4.6. Their accuracy is
measured using Eq. (4.20).

The results show that EDFM is more accurate when fractures are placed at the
cell center, rather than when they are close to the interface. However, once the
fracture coincides with the interface, EDFM connects it to both matrix cells (each,
with a 𝐶𝐼 calculated using 𝑆 = 𝐴 in Eq. (4.7), instead of 2𝐴 as was the case
in Eq. (4.9)), thus explaining the abrupt dip in error. In contrast, the pEDFM error
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Figure 4.6: Sensitivity of pEDFM to the position of highly conductive fractures, embedded within the
matrix grid cells. To this end, the horizontal fracture of the -shaped network is successively moved
from top to bottom over a grid cell window (top), while monitoring the pressure mismatch towards
the corresponding fully resolved simulation (bottom).

attains its peak when fractures are placed at the cell centers and does not exhibit any
jumps over the interface. The error of both methods lies within similar bounds (still
pEDFM is more accurate) showing that they applicable to the case when fractures
are highly conductive. The consistent aspect of pEDFM is that, its results for the
case when fractures coincide with the matrix interfaces, its results are identical to
the DFM method, while –as explained before– this is not the case for EDFM.

When the network is nearly impermeable, the location of the vertical fracture is
critical to the flow (Fig. 4.5). As such, for the purposes of the current experiment,
it will be shifted from left to right, as shown in Fig. 4.7. The resulting error plot
shows a dramatic increase for EDFM, when compared to Fig. 4.7, due to its inability
to handle fractures with conductivities that lie below that of the matrix. pEDFM, on
the other hand shows a similar behaviour and error range as was observed in the
case with highly conductive fractures, i.e., it retains its high accuracy.

These results show a promising trend for pEDFM, which is able to maintain
reasonable representation accuracy of the effect of the embedded fractures. The
slight increase in error for fractures placed near the matrix cell centers may be
mitigated by employing moderate local grid refinements.
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Figure 4.7: Sensitivity of pEDFM to the position of nearly impermeable fractures, embedded within the
matrix grid cells. The vertical fracture of the -shaped network is successively moved from left to right
over a grid cell window (top), while monitoring the pressure mismatch towards the corresponding fully
resolved simulation (bottom).

4.3.3. Sensitivity to the grid resolution

Another important factor in assessing the quality of an embedded fracture model
is its order of accuracy with respect to the grid resolution. A series of nested matrix
grids for the +-shaped fracture test case of Figs. 4.4 and 4.5 was constructed. The
number of cells over each axis is gradually increased using 𝑁 = 𝑁 = 3 formula,
where 𝑖 = 2, 3, … , up to a reference grid resolution, where 𝑖 = 7. At the same time,
the fracture grid is also refined accordingly such that its step size approximately
matches the one in the matrix, ℎ = Δ𝑥 = Δ𝑦. The measure of accuracy for this case
is similar to Eq. 4.20, where, this time, no interpolation is necessary, since the cell
centroids are inherited from one level to another in the nested grid hierarchy.

For a better comparison, alongside pEDFM and EDFM, the same sequence of
geological scenarios was simulated using DFM on a 2D unstructured grid [24], where
the number of triangles was tweaked to match 𝑁 = 𝑁 × 𝑁 as closely as possible
and without imposing any preferential grid refinement around the fractures.

The results of this study, in the case when the fractures are highly conductive,
are depicted in Fig. 4.8. It follows that all three methods experience a linear de-
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Figure 4.8: Grid resolution sensitivity of pEDFM, EDFM and DFM on the case with highly conductive
fractures. The sequence of plots on the top shows pressure error maps for the three methods, when

(or . ) holds for pEDFM and EDFM, and DFM employs comparable total number
of elements.

cay in error with increasing grid resolution. The three error snapshots, which were
taken when 𝑁 = 𝑁 = 3 (or ℎ = 0.0015), show that the pressure mismatch is
mainly concentrated around the tips of the horizontal fracture, which represent the
network’s inflow and outflow points, respectively. For EDFM, the error decays radi-
ally for points further away from these fracture tips. For pEDFM, the contour curves
are slightly skewed, depending on the choice between upper and lower matrix in-
terfaces for the fracture projection (both are equally probable since the horizon-
tal fracture crosses the grid cell centroids). Finally, for DFM the error distribution
shows some heterogeneity, which is a consequence of using unstructured grids in
a medium which, except for the neighbourhood of the fractures, is homogeneous.

The scenario when the fracture network is considered almost impermeable can
not be properly handled by EDFM, regardless of which grid resolution is used (Fig.
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Figure 4.9: Grid resolution sensitivity of pEDFM, EDFM and DFM on the case with nearly impermeable
fractures. The sequence of plots on the top shows pressure error maps for the three methods, when

(or . ) holds for pEDFM and EDFM, and DFM employs comparable total number
of elements.

4.9). This serious limitation is, once again, successfully overcome by using pEDFM,
which, similar to DFM, maintains its linear scalability with grid refinement on this
challenging test case. The error snapshots depict that, this time, the pressure is
inaccurate around the tips, as well as the body, of the vertical barrier. This can be
explained by the fact that an embedded model on a coarse grid can have difficulty
in placing the sharp discontinuity in the pressure field at exactly the right location.
Still, the pressure mismatch decays with increasing grid resolution, suggesting that
local grid refinements around highly contrasting fractures can benefit pEDFM, in a
similar manner to DFM.

To conclude, pEDFM shows a similar convergence behaviour, in terms of grid
resolution, to the widely used DFM approach. This confirms that, in order to dimin-
ish the model representation error, moderate local grid refinements can be applied
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near fractures.

4.3.4. Sensitivity to the fracture-matrix conductivity contrast

This last sensitivity study is aimed at determining the response of pEDFM while
changing the conductivity contrast between the +-shaped fracture network (𝑘 =
10 ,… , 10 ) and the matrix (𝑘 = 1). To this end, a coarse grid resolution of
𝑁 = 𝑁 = 3 was used and the resulting pressure was compared to that from the
reference case, where 𝑁 = 𝑁 = 3 , using Eq. 4.20.
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Figure 4.10: Sensitivity of pEDFM to the fracture-matrix conductivity contrast on the -shaped fracture
network case with a grid resolution of × . The sequence of plots on the top show pressure error
maps for pEDFM, when , and , respectively.

The results are depicted in Fig. 4.10 and are in line with the conclusions from
previous sections. Namely, for fracture log-permeabilities on the positive side of the
spectrum, the results of EDFM and pEDFM are in agreement. As the permeability
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contrast passes 5 orders of magnitude, the pressure error plateaus, since, at beyond
this stage, the fractures are the main drivers of the flow. However, for fracture
permeabilities close to or below that of the matrix, the error of EDFM increases
dramatically. pEDFM, on the other hand is able to cope with these scenarios, due
to its formulation, its behaviour showing an approximately symmetric trend, when
compared to that of the positive side of the axis.

The snapshots on the top of Fig. 4.10 , taken for lower, similar and higher
fracture permeabilities w.r.t. the matrix, show the error in the pressure produced
by pEDFM. It is clear that the model inaccuracy is concentrated around the tips of
fractures which actively influence the flow. Also note that there is a small error
even in the case when 𝑘 = 𝑘 , since the pEDFM discretization (Section 4.1) is
slightly different than that of a homogeneous reservoir. Of course, this result is only
presented here for academic purposes – in realistic scenarios, when the contrast is
not high enough, such fractures can be homogenized into the matrix field.

This concludes the sensitivity studies conducted in this chapter. The test cases
presented in the following subsections are meant to test the applicability of pEDFM
to more complex 2D and 3D fractured media.

4.3.5. Time-lapse 2D multiphase results

This set of experiments is aimed at determining the performance of pEDFM in
multiphase flow scenarios on 2D porous media with increasingly complex fracture
geometries and heterogeneities.

Homogeneous matrix

pEDFM is first applied in an incompressible 2-phase flow scenario through a 2D
homogeneous domain which is crossed by a set of fractures with heterogeneous
properties, as shown in Fig. 4.11. The boundary conditions are similar to those
used for previous experiments, namely Dirichlet with non-dimensional values of
𝑝 = 1 and 𝑝 = 0 on the left and right edges, respectively, while the top and bottom
sides are subject to no-flow conditions.

The low permeable fractures inhibit the flow, leaving only two available paths:
through the middle of the domain and along the bottom boundary. As can be
seen in the time-lapse saturation maps presented in Fig. 4.11, the front, indeed,
respects these embedded obstacles. The injected fluid is mostly directed through
the permeable X-shaped network and surpasses the vertical barrier, in the lower
right part of the domain, on its way to the production boundary.

This result reinforces the conclusion that the conservative pressure field obtained
using pEDFM leads to transport solutions which honour a wide range of matrix-
fracture conductivity contrasts.

Heterogeneous matrix

The following experiment compares the behaviour of EDFM and pEDFM for
simulating 2-phase incompressible flow through a 2D porous medium with het-
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Figure 4.11: Fracture permeabilities (top-left), pressure field (top-right) and time-lapse saturation results
(bottom) on a 2D test case with homogeneous matrix conductivity, under incompressible 2-phase flow
conditions.

erogeneous (i.e. patchy) matrix permeability (Fig. 4.12). The interplay between
the large- (matrix-matrix) and small-scale (fracture-matrix) conductivity contrasts
raises additional numerical challenges [130] and is a stepping stone in assessing
the model’s applicability to realistic cases.

The embedded fracture map used for this test case (top of Fig. 4.12) is based
on the Brazil I outcrop from [131, 132]. The conductivities of the fractures forming
the North-West to South-East diagonal streak, were set to 10 , thus creating an
impermeable flow barrier across the domain (noticeable in dark blue on the top-right
of Fig. 4.12). For the rest of the fractures, permeabilities were randomly drawn
from a log-uniform distribution supported on the interval [10 , 10 ]. Finally, similar
to previous experiments, fixed pressure boundary conditions 𝑝 = 1 and 𝑝 = 0 are
set on the left and right edges, respectively, while the top and bottom sides are
subject to no-flow conditions.

The middle row of plots from Fig. 4.12 show the pressure field and time-lapse
saturation results obtained using EDFM. Note that the injected fluid is allowed to
bypass the diagonal flow barrier, towards the production boundary. This, once again
shows the limitation of EDFM, which is only able to capture the effect of fractures
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Figure 4.12: Heterogeneous matrix and fracture permeability maps (top), pressure and time-lapse sat-
uration results for EDFM (middle) and pEDFM (bottom) on a 2D densely fractured test case, under
incompressible 2-phase flow conditions.
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with permeabilities higher than the matrix. However, by disregarding flow barriers,
EDFM delivers an overly optimistic and non-realistic production forecast.

In contrast to EDFM, the pressure field obtained using pEDFM shows sharp dis-
continuities (bottom-left of Fig. 4.12). The accompanying saturation plots confirm
that the injected phase is confined by the diagonal barrier and forced to flow through
the bottom of the domain, thus significantly delaying its breakthrough towards the
production boundary.

These results confirm that pEDFM outperforms to EDFM, due to its applicability
in cases with complex and dense fracture geometries and in the presence of matrix
heterogeneities.

4.3.6. Comparison between pEDFM and unstructured DFM

Finally, a test case on a 3D domain containing 3 layers of fractures, stacked along
the Z axis (Fig. 4.19) is conducted. The top layer is a vertically extruded version of
the 2D fracture map from Fig. 4.11. The second layer consists of a single fracture
network whose intersecting plates have highly heterogeneous properties. Finally,
the third layer is represented by 3 large individual plates, with a cluster of small
parallel fractures packed in between.
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Figure 4.13: 3D porous medium containing 3 layers of fractures with heterogeneous properties.

In this scenario, the incompressible single-phase flow is driven from the left
boundary, where the pressure is set to the non-dimensional value of 𝑝 = 1, towards
the right, where 𝑝 = 0, while all the other boundaries of the domain are subject
to no-flow conditions. No other source terms are present and gravity and capillary
effects are neglected. The results of pEDFM, on a matrix grid with 𝑁 = 𝑁 = 𝑁 =
100 and a total of 23381 fracture cells, are compared to those obtained using DFM
on an unstructured grid (Fig. 4.14), where the number of tetrahedra (matrix) and
triangles (fractures) were chosen to approximately match the degrees of freedom
on the structured grid.

The two pressure fields are plotted in Fig. 4.15 using iso-surfaces for equidistant
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Figure 4.14: Fracture-conforming unstructured grid constructed by DFM for the 3D test case.

(a) DFM pressure (b) pEDFM pressure

Figure 4.15: Comparison between the pressures obtained using pEDFM and unstructured DFM (using
similar grid resolutions) for a 3D incompressible single-phase test case with 3 layers of heterogeneous
fractures.

values, and are in good agreement, for decision-making purposes. This numerical
experiment shows that pEDFM has good potential for field-scale application.
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4.3.7. F-AMS-pEDFM convergence study

For the experiments presented in this section, the pEDFM pressure system is
resolved using the iterative F-AMS algebraic multiscale method. As mentioned be-
fore, the basis functions were computed according to the Decoupled-AMS strategy
[104], where the linear systems (for edges, faces and interiors) were constructed
by imposing a 𝑇 = 10 threshold on the transmissibility, as explained earlier.
These systems, along with the resulting coarse-scale pressure system, are resolved
using a direct solver (based on LU decomposition). Finally, F-AMS-pEDFM is iter-
ated as preconditioner to GMRES, while using 5 iterations of ILU(0) as second-stage
smoother [see 96, for a thorough sensitivity study on smoother iterations], until a
residual 2-norm of 10 is reached.

Consider the 2D reservoir from Fig. 4.16 with heterogeneous (patchy) perme-
ability containing a highly contrasting embedded fracture network (with conductivi-
ties up to 8 orders of magnitude above or below the matrix average). The resulting
fine-scale pressure solution, by imposing a pressure value of 1 along the West and
0 along the East boundary, is shown in Fig. 4.16(b).

In order to employ F-AMS-pEDFM, a coarsening ratio of 8 × 8 was considered
in the matrix, while the number of coarse-scale DOF in the fracture network is
varied. The resulting pressure solution after 1 F-AMS-pEDFM iteration (without any
smoothing) is shown in Fig. 4.17 for three different fracture coarsening scenarios.
Note that, by increasing the number of coarse nodes (and thus, basis functions)
used to represent the pressure in the highly heterogeneous fracture network, a
better approximation is achieved (in comparison to the target pressure field from
Fig. 4.16(b)).
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Figure 4.16: Permeability (a) and pressure solution (b) in a 2D heterogeneous reservoir with an embed-
ded fracture network. Each fracture plate was randomly assigned a permeability between [ , ] on the

-scale. The pressure is fixed to values of and on the West and East boundaries, respectively.

This behaviour is further confirmed in Fig. 4.18, which shows that a smaller
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Figure 4.17: Pressure solution after a single F-AMS-pEDFM iteration, where different numbers of coarse-
scale DOF have been considered in the fracture network. A matrix coarsening ratio of × was used in
all cases.

number of linear solution iterations is necessary to achieve the convergence goal if
a more refined fracture coarse grid is employed.
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Figure 4.18: Convergence rate of F-AMS-pEDFM with different number of coarse-scale DOF in the frac-
ture network.

To conclude, these experiments show that F-AMS-pEDFM is a convergent it-
erative solution strategy for highly heterogeneous fractured porous media. The
coarsening strategy used in each media has a significant impact on the conver-
gence rate. As such, devising an algorithm for generation of optimal primal- and
dual-coarse grid for realistic reservoirs is an important subject for further research.

4.3.8. F-AMS-pEDFM scalability with increasing fracture den-
sity

This final section investigates the performance of F-AMS-pEDFM on a 3D het-
erogeneous reservoir containing 3 embedded fracture networks whose sizes are
increased over three stages. The (patchy) matrix and (8-fold contrasting) fracture

94



4.3. Numerical results

4

permeability distribution (in the final stage) are shown in Fig. 4.19. At the same
time, the pressure solution and fracture network during each stage is given in Fig.
4.20.
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Figure 4.19: Permeability of a 3D heterogeneous reservoir with 3 embedded fracture networks. Each
fracture plate was randomly assigned a permeability between [ , ] on the -scale. The pressure
is fixed to a value of on the West boundary and on the East boundary.

On this test case, F-AMS-pEDFM was run using a coarsening ratio of 4×8×6 in
the matrix and 6×8 in the fractures. The basis functions were computed using the
Decoupled-AMS strategy using a 𝑇 = 10 transmissibility truncation threshold.
A detailed breakdown of the CPU time spent in each stage was recorded at every
iteration. Note that the effect of other basis function coupling strategies on the
F-AMS-pEDFM convergence behaviour and CPU times [104] is a subject for further
research.

For comparison purposes, the pEDFM pressure system was also solved using
the industrial-grade multigrid solver, SAMG [45]. More specifically, at each GMRES
iteration, a single V-cycle of SAMG was performed, until the residual norm dropped
below 10 . It is important to note that SAMG is a commercial black-box pack-
age. Thus, it is not possible to measure its CPU breakdown as accurately as for
F-AMS-pEDFM. Instead, the time spent on the first SAMG iteration is considered as
“Initialization”, while subsequent iterations were counted as “Solution”.

Note that for both F-AMS and SAMG, the setup stage was performed only once,
before the first iteration. Finally, it is important to emphasize that this study is
aimed solely to demonstrate the scalability of the F-AMS-pEDFM method.

The results depicted in Fig. 4.21 show that, by prescribing coarsening ratios,
F-AMS-pEDFM is able to scale with an increased number of fractures in the domain.
The slightly higher CPU time can be attributed to the computation of extra basis
functions, as well as the inversion of a slightly larger coarse-scale pressure system,
due to the added number of coarse nodes. At the same time, the additional num-
ber of iterations necessary to converge is not severe and can be attributed to the
highly contrasting properties of the new fractures to the matrix (up to 8 orders of
conductivity contrast).
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In conclusion, F-AMS-pEDFM is a promising multiscale method for heteroge-
neous fractured reservoirs and an appealing candidate for implementation in next-
generation flow simulators. In addition, accurate approximations for the pressure
field can be obtained after only few iterations of the algorithm, followed by a flux-
reconstruction stage, which allows the solution of the transport equations in time-
dependent multiphase simulations.

0

0.2

0.4

0.6

0.8

1

Figure 4.20: Pressure solution obtained for reservoirs with different fracture densities. Each reservoir
contains 3 fracture networks which expand in size as follows: stage 1 (left) 36 plates ( × cells);
stage 2 (middle) 61 plates ( × cells); stage 3 (right) 82 plates ( × cells). The F-AMS
coarsening ratios used were × × in the matrix and × in the fractures.
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Figure 4.21: F-AMS-pEDFM performance for reservoirs with different fracture densities. The number of
performed iterations to reach residual 2-norm is given on top of each bar.

4.4. Conclusions

A novel Projection-based Embedded Discrete Fracture Model (pEDFM) was de-
vised for flow simulation through fractured porous media. It inherits the grid flex-
ibility of the classic EDFM approach. However, unlike its predecessor, the pEDFM
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formulation can capture the effect of fracture conductivities ranging from highly
permeable networks to inhibiting flow barriers.

The new model was validated on 2D and 3D test cases, while studying its
sensitivity towards fracture position within a matrix cell, grid resolution and the
cross-media conductivity contrast. The results show that pEDFM is scalable and
able to handle dense and complex fracture maps with heterogeneous properties in
single-, as well as multiphase flow scenarios. Further, its results on structured grids
were found comparable to those obtained using the DFM approach on unstructured,
fracture-conforming meshes.

Finally, the possibility of solving the pEDFM pressure system using the F-AMS
multiscale framework [104] was investigated. To this end, the computation of basis
functions using the Decoupled-AMS strategy was modified to consider transmissi-
bility thresholding. The numerical results show that the resulting F-AMS-pEDFM
algorithm attains good convergence rates when only few coarse-scale DOF are pre-
scribed in the fracture networks. The method was found to scale with fracture
density in the domain and its performance was compared to that of a commercial-
grade solver, SAMG [45].

In conclusion, pEDFM is a flexible model, its simple formulation recommending
it for implementation in next-generation simulators for fluid flow through fractured
porous media.

The author is happy to observe that the work presented in this chapter has
sparked interest in other research groups [133]. Other directions for further im-
provement include the extension of pEDFM to unstructured grids. Furthermore, sys-
tematic benchmarking studies (including CPU time comparisons) between pEDFM
and alternative mass-conservative DFM approaches on unstructured grids can pro-
vide valuable insights for its application and performance in real-field cases. In
terms of the algebraic multiscale formulation, F-AMS-pEDFM, it is important to in-
vestigate the effect of different basis function coupling strategies, as well as the
method’s sensitivity to the geometry of the coarse grid. Finally, the possibility of in-
cluding complex physics (gravity, capillarity, fracture geomechanics) is the subject
of ongoing work.
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Concluding remarks and

future perspectives

In a world with perfectly accurate field measurements and infinite computing
power, the work presented in this thesis would merely qualify as an eccentric pas-
time. But necessity drives innovation and, as long as reality can be modelled using
a large-scale system of PDEs with heterogeneous coefficients of uncertain values,
there will be a market for efficient approximate solution methods.

Algebraic MultiScale (AMS) methods were designed and have evolved specifically
to tackle this challenge. The purpose of the present project is to extend their ap-
plicability to a wide range of scenarios involving fluid flow through fractured porous
media. This is achieved in three stages:

5.1. C-AMS: rock and fluid compressibility

For a long time after their inception, AMS methods were applied exclusively to
test-cases with simplified physics – i.e. incompressible rock and single-phase fluids.
In order to relax these assumptions and extend the applicability of AMS to more
realistic scenarios, the inclusion of pressure-driven rock and fluid compressibility is
studied in this work. These effects introduce time-dependency and non-linearities
into the mass balance equations, which require special treatment during the solution
process.

A novel Algebraic MultiScale is devised to simulate Compressible flow in hetero-
geneous porous media (C-AMS, see Chapter 2). It operates by solving the system of
equations over a coarse-scale domain, subsequently interpolating the results back
to the original resolution. An important point of novelty in this approach are the
four different formulations for the basis functions, used in the construction of the
prolongation operator (map from coarse- to fine-scale). They capture the spatial
heterogeneities in the domain and are computed algebraically, based on localized
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solutions of the (modified) mass balance equations.
The various components of C-AMS, i.e. the linear and non-linear tolerances, the

formulation of the restriction and prolongation operators, the choice and number
of iterations of the smoother and the coarsening ratio, make the subject of thor-
ough sensitivity studies, based on CPU times. This leads to the identification of an
optimal multiscale strategy for compressible flow scenarios, whose performance is
ultimately benchmarked against the SAMG commercial Algebraic MultiGrid solver
[45].

The proposed method shows good performance on domains of increasing size
and aspect ratios. It excels especially in simulations with many time-steps. This is
because C-AMS can save CPU time by updating its operators adaptively, i.e. only
when the flow coefficients change dramatically at a given time-step. This feature
makes it possible to offset the relatively high initialization time, spent mainly on the
computation of the basis functions.

The geometry of the coarse grid is found to be crucial in the performance of C-
AMS. Big coarsening factors lead to slow convergence rates, while small coarsening
factors imply long setup times. This recommends the investigation of adaptive
coarsening, i.e. building the coarse grid using, e.g., graph partitioning algorithms
with the fine-scale transmissibility coefficients chosen as weights [134], to ensure
a good trade-off between convergence rate and initialization time.

5.2. F-AMS: flow through fractured media

Highly conductive fracture networks, present in the matrix rock, have a signifi-
cant impact on fluid flow patterns through the subsurface. Yet, their highly localized
effect and complicated geometries demand high resolution grids during numerical
simulation. This creates a niche for AMS methods, which can recover the fine-scale
details of the solution, while solving the system of equations at coarse-scale.

The development of an AMS method suitable for flow through Fractured porous
media (F-AMS) is the main focus of this thesis (see Chapter 3). To this end, the
prolongation operator, previously defined exclusively for the matrix rock, is now ex-
tended by the addition of basis functions for the fractures and any perforating wells
present in the domain. Four different strategies to compute the basis functions
are investigated (see Appendix B), which differ by the degree of cross-media (i.e.
fracture-matrix) coupling they capture. The fully-coupled approach has the poten-
tial to deliver the most accurate solutions, however, this comes at the expense of
the sparsity pattern in the multiscale operators (restriction and prolongation). The
fully decoupled or one-way coupled basis functions maintain this sparsity, while
delivering acceptable approximate results.

Just as was done with C-AMS, the various components of the F-AMS algorithm
are subjected to comprehensive sensitivity studies, eliciting their convergence and
efficiency on a wide range of 3D heterogeneous fractured test cases. The coarsen-
ing factor is found, once again, to play an important role in the performance of the
method. As expected, a greater number of coarse-scale DOF need to be allocated
in the medium (fractures or matrix rock) which dominates the flow. As a rule of
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thumb using a coarsening factor equal to √𝑁cells in both media is found to maintain
a good trade-off between convergence and setup time. Further studies compare
the performance of F-AMS to that of SAMG, while changing the cross-media con-
ductivity contrast, the fracture density and domain scale. The two methods register
similar CPU times in all cases.

5.3. pEDFM: fractures with arbitrary conductivities

The Embedded Discrete Fracture Model (EDFM, see [18, 19, 27]) and Discrete
Fracture Model (DFM, see [24–26]) are the two main options for flow simulation
when fractures need to be explicitly represented. The former can capture fractures
with a wide range of length scales and conductivities by confining them at the
interfaces between matrix grid cells. This often leads to the construction of complex
unstructured grids. EDFM is free of this constraint, since it discretizes each medium
(fractures and matrix rock) independently. Its formulation, however, was originally
designed for highly conductive fractures and the numerical experiments conducted
in this work show that it fails to capture the effects of embedded flow barriers.

This motivates a Projection-based extension of EDFM (pEDFM) to address this
drawback, while preserving its advantages. The new model is validated on test
cases with embedded fractures of both high and low conductivity, w.r.t to that of
the matrix rock. The numerical experiments show that it is equivalent to DFM (and,
thus, is most accurate) when fractures are explicitly placed at rock cell interfaces.
However, only a small increase in error is observed for fractures located near the grid
cell center. The model is scalable w.r.t to grid resolution, cross-media conductivity
contrast and fracture density. It is shown to appropriately account for the fracture
permeability on a wide range of 2D and 3D test cases, in both single- and multiphase
flow scenarios.

In addition, a multiscale formulation for pEDFM is devised. The main challenge
lies in the fact that the new model cancels some of the fine-scale matrix-matrix
transmissibilities around impermeable fractures. This can lead to rank-deficient
systems when solving for the local basis functions, if their formulation disregards
matrix-fracture coupling (Decoupled-AMS from [104]). In order to mitigate this, the
fine-scale transmissibilities are kept within predefined bounds when constructing
these localized systems. The resulting F-AMS-pEDFM method is found to attain
good convergence properties and reasonable CPU times, when compared to SAMG.
Further improvements are expected with an adaptive coarse grid or by using F-AMS
basis functions which consider cross-media coupling.

5.4. Future perspectives

The work presented in this thesis is a significant step forward in unlocking the
potential of multiscale methods for real-field fractured reservoir simulation. Their
algebraic formulation, first introduced in [61] and expanded here (see Appendix B),
has sparked the interest from both the scientific community and the industry, as
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5. Concluding remarks and future perspectives

can be seen from the increasing number of papers published around AMS and its
possible extensions.

Important physical effects such as gravity, capillarity and phase transitions (com-
positional flow) have been systematically neglected in the governing equations used
throughout this thesis. They are crucial in real-field cases and should be considered
as top priorities for future implementation. At the same time, the set of PDEs should
be increased by adding both energy (geothermal, see [75, 76]) and momentum
balance (geomechanics, see [77]), ultimately leading to a multiscale multi-physics
framework. The main challenge in achieving this lies in the treatment of the cou-
pling between the various types of unknowns (pressure, saturation, composition,
displacement, temperature), both at the fine- (temporal and spatial discretization,
non-linearities, etc.) and coarse-scale (basis function formulations). In this case, a
fully-implicit approach may be suitable, and, as such, suitable multiscale precondi-
tioners should be devised to accelerate convergence (e.g. CPR [80]).

The spatial grids used to represent the reservoirs considered here were struc-
tured and uniformly distributed, in order to facilitate the proof-of-concept imple-
mentation by avoiding geometric complexities. However, the geological features in
real fields may require the use of unstructured grids. At the same time, (p)EDFM
can be employed in parts of the domain, to simplify the meshing process. The for-
mulation and performance of AMS methods on such hybrid discretizations are an
interesting topic for future research, which can build on top of developments such
as [66, 81, 82, 84, 115]. On a similar note, perspectives for applying the multiscale
idea to the time-level discretization make for exciting food-for-thought.

In addition to using a suitable coarse-scale grid, further gains in convergence
rate can be obtained by applying enrichment strategies to the multiscale prolonga-
tion operator [86–88, 102] or tweaking it to maintain basis function monotonicity
[90]. These techniques can potentially provide significant efficiency gains in multi-
physics scenarios.

The CPU benchmark studies conducted in this thesis are made possible by the
in-house C++ object-oriented simulator, DARSim 1, developed during the project.
Their findings offer important insight into the efficiency of AMS, when used as a
fully converged solver for flow through porous media. However, one of the main
advantages of this class of methods is the possibility to reconstruct a conservative
flux field, at any stage during the solution process. This enables fast approximate
solution results, useful for decision-making, by e.g. choosing a tolerance level in
accordance with the uncertainties in the geological parameters. As such, this aspect
is important to be considered in future benchmark studies.

Finally, any successful-commercial reservoir simulator must make full use of
parallel-computing hardware, such as clusters, the cloud or GPUs. The ongoing
work on this topic [62, 135] should be extended to tackle the challenges (i.e. scal-
ability, memory bandwidth, inter-process and inter-thread communication, etc) as-
sociated with flow through fractured media.
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A
Average distance between
fracture and matrix cells

The computation of the average distance between a matrix control volume and
a fracture surface, which appears in Eqs. (4.7) and (4.11), may involve numerical
integration for arbitrarily shaped cells. For 2D structured grids, however, analytical
formulas were given in [27] for a few specific fracture orientations. This subsection,
an adaptation of Chapter 2.3.2 from [20], provides a general procedure to handle
fracture lines with arbitrary orientation.

The interfaces of each cell intersected by a fracture are extended until they
intersect the fracture line, resulting in four right triangles with surfaces 𝐴 to 𝐴 ,
as shown in Fig. A.1. Then, given the average distance between each triangle and
its hypotenuse, ⟨𝑑⟩ to ⟨𝑑⟩ , as (see [27]),

⟨𝑑⟩ = 𝐿𝑥 ⋅ 𝐿𝑦
3√𝐿𝑥 + 𝐿𝑦

, (A.1)

where 𝐿𝑥 and 𝐿𝑦 are the lengths of the axis-aligned sides of triangle 𝑖, the average
distance between grid cell 𝑖 and fracture line 𝑓 is obtained,

⟨𝑑⟩ = 𝐴 ⟨𝑑⟩ + 𝐴 ⟨𝑑⟩ − 𝐴 ⟨𝑑⟩ − 𝐴 ⟨𝑑⟩
𝐴 + 𝐴 − 𝐴 − 𝐴 . (A.2)

Note that no modification is required to the formula in the case when fractures
lie outside the cell, i.e. for the non-neighbouring connections from Eq. 4.11. In
addition, this procedure can be directly applied to 3D structured grids where frac-
tures are extruded along the Z axis, while a generalization for fracture plates with
any orientation is the subject of future research.
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A. Average distance between fracture and matrix cells

4

2

1 3

(a)

1

2

3

4

(b)

2

1

(c)

4

1 3

2

(d)

1

2

(e)

Figure A.1: Analytical calculation of the average distance between a fracture and a matrix cell on 2D
structured grids. Four right triangles are constructed by intersecting the cell’s edges with the fracture
line. Note that triangles 3 and 4 may overlap with triangles 1 or 2 (a,b,d). When the fracture coincides
with the cell diagonal, triangles 3 and 4 have zero area (c). If the fracture is aligned with one of the
axes, two rectangles are formed instead (e). The same procedure is followed when the fracture lies
outside the cell (d).
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B
Algebraic computation of the

F-AMS prolongation
operators

Consider the fine-scale system for matrix and fractures, 𝐀𝑝 = 𝑞, i.e.,

[ 𝐀 𝐀
𝐀 𝐀 ]

⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
𝐀

[ 𝑝𝑝 ]
⏝⎵⏟⎵⏝

= [ 𝑞𝑞 ]
⏝⎵⏟⎵⏝

. (B.1)

The permutation operator ℘ containing matrix and fracture permutation block op-
erators ℘ and ℘ , respectively,

℘ ≡ [ ℘ 0
0 ℘ ], (B.2)

is defined such that it reorders the linear system (B.1) based on the wirebasket
ordering [61, 63, 129] of Internal (I), Face (F), Edge (E) and Vertex (V) for both
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matrix (superscript ) and fracture (superscript ) unknowns, i.e.,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐀 𝐀 0 0 𝐀 𝐀 𝐀
𝐀 𝐀 𝐀 0 𝐀 𝐀 𝐀
0 𝐀 𝐀 𝐀 𝐀 𝐀 𝐀
0 0 𝐀 𝐀 𝐀 𝐀 𝐀

𝐀 𝐀 𝐀 𝐀 𝐀 𝐀 0
𝐀 𝐀 𝐀 𝐀 𝐀 𝐀 𝐀
𝐀 𝐀 𝐀 𝐀 0 𝐀 𝐀

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

℘𝐀℘𝐓

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑝
𝑝
𝑝
𝑝
𝑝
𝑝
𝑝

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

℘

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑞
𝑞
𝑞
𝑞
𝑞
𝑞
𝑞

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

℘

.

(B.3)
Note that fractures have only Face, Edge, and Vertex cells, since they are repre-
sented in a lower-dimensional space than the matrix. Also, according to the two-
point flux approximation (TPFA) stencil for structured grids, 𝐀 , 𝐀 , 𝐀 ,
𝐀 , 𝐀 , 𝐀 , 𝐀 , 𝐀 are zero. More importantly, for media with
embedded fractures, the coupling off-diagonal blocks 𝐀 and 𝐀 are full, i.e.,
each matrix cell may overlap with fracture cells of any type (F, E, or V). This is the
main reason behind the consideration of the four types of basis functions, each with
a different level of matrix-fracture coupling, as previously discussed in this paper.

The algebraic construction of the prolongation operator for each strategy is de-
scribed next.

B.1. Decoupled-AMS

In the Decoupled-AMS prolongation operator, the matrix-fracture coupling terms
are completely neglected. To this end, all off-diagonal block matrix entries (belong-
ing to 𝐀 and 𝐀 ) are set to zero. In addition, similar to the AMS [61] and C-AMS
[96] methods, the linear system is further simplified to account for the localization
boundary condition within each medium (by neglecting connectivity between each
cell and its lower-ranked neighbours in the wirebasket hierarchy). This leads to the
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B

following approximate linear system:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐀 𝐀 0 0 0 0 0
0 𝐀 𝐀 0 0 0 0
0 0 𝐀 𝐀 0 0 0
0 0 0

̂
𝐀 0 0

̂
𝐀

0 0 0 0 𝐀 𝐀 0

0 0 0 0 0 𝐀 𝐀
0 0 0

̂
𝐀 0 0

̂
𝐀

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

℘𝐀 ℘𝐓

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑝
𝑝
𝑝
𝑝
𝑝
𝑝
𝑝

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⏟⎵⎵⏝

℘

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0̂
𝑞
0
0̂
𝑞

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

℘

.

(B.4)
Here, the diagonal blocks marked as 𝐀 indicate that the matrix-matrix and fracture-
fracture transmissibilities, neglected due to this localization assumption (𝐀 ,
𝐀 , 𝐀 and 𝐀 , 𝐀 , respectively) have also been removed from the
diagonal term. At the same time, the notation 𝐀 indicates diagonal blocks where the
neglected matrix-fracture transmissibilities have been removed from the diagonal
term. Finally,

̂
𝐀 ≡ [

̂
𝐀

̂
𝐀̂

𝐀
̂
𝐀

] = (ℛ𝐀𝒫),
̂
𝑝 ≡ [ 𝑝𝑝 ] ,

̂
𝑞 ≡ [

̂
𝑞
𝑞

] = ℛ𝑞, (B.5)

are the components of the coarse-scale system.
After solving for the coarse-scale pressures,

̂
𝑝 =

̂
𝐀

̂
𝑞, the approximate system

can be inverted algebraically, due to its upper-triangular structure. Consequently,
the prolongation operator, which satisfies 𝑝 = 𝒫

̂
𝑝, reads

𝒫 = ℘

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝐀 𝐀 𝒫 0

−𝐀 𝐀 𝒫 0

−𝐀 𝐀 0
𝐈 0

0 −𝐀 𝐀 𝒫

0 −𝐀 𝐀
0 𝐈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.6)

where 𝐈 is the identity matrix and the transpose operator ℘ back-transforms the
wirebasket ordering into the natural ordering. Also, 𝒫 , 𝒫 and 𝒫 are
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sub-blocks of the prolongation with the corresponding rows and columns given in
the superscripts. For example,

𝒫 = −𝐀 𝐀 ,

𝒫 = −𝐀 𝐀 𝒫 .
Note that, once computed, the higher-rank sub-blocks of 𝒫 become boundary con-
ditions for the values of basis functions in lower-rank cells, in accordance to the
localization assumption (e.g. the values obtained for matrix edges, 𝒫 , are
used to compute the prolongation in adjacent faces, 𝒫 ).

B.2. Frac-AMS

The Frac-AMS approach considers the effect of the 𝐀 transmissibilities when
computing basis functions. This leads to the following approximate system operator

℘𝐀 ℘𝐓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐀 𝐀 0 0 𝐀 𝐀 𝐀
0 𝐀 𝐀 0 𝐀 𝐀 𝐀
0 0 𝐀 𝐀 𝐀 𝐀 𝐀
0 0 0

̂
𝐀 0 0

̂
𝐀

0 0 0 0 𝐀 𝐀 0

0 0 0 0 0 𝐀 𝐀
0 0 0

̂
𝐀 0 0

̂
𝐀

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.7)

where 𝐀 , 𝐀 , 𝐀 , 𝐀 and 𝐀 are set to zero due to localization
boundary condition corresponding to Frac-AMS coupling for matrix, while, at the
same time, the 𝐀 , 𝐀 are zero in the fracture equations.

The Frac-AMS prolongation operator reads

𝒫 = ℘

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝐀 𝐀 𝒫 −𝐀 (𝐀 𝒫 + 𝐀 𝒫 )

−𝐀 𝐀 𝒫 −𝐀 (𝐀 𝒫 + 𝐀 𝒫 )

−𝐀 𝐀 −𝐀 𝐀 𝒫
𝐈 0

0 −𝐀 𝐀 𝒫

0 −𝐀 𝐀
0 𝐈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(B.8)
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where the superscript (e.g. from 𝒫 ) corresponds to all the fracture cells,
regardless of their containing dual block. Similar as in the previous case, the sub-
blocks of prolongation operator 𝒫 , 𝒫 , 𝒫 , 𝒫 , 𝒫 , 𝒫 and
𝒫 represent the corresponding rows and columns given in their superscripts.

For example, 𝒫 = −𝐀 𝐀 𝒫 and, specially,

𝒫 =
⎡
⎢
⎢
⎢
⎣

−𝐀 𝐀 𝒫

−𝐀 𝐀
𝐈

⎤
⎥
⎥
⎥
⎦

. (B.9)

B.3. Rock-AMS

For Rock-AMS, the 𝐀 transmissibilities are set to zero,

℘𝐀 ℘𝐓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐀 𝐀 0 0 0 0 0
0 𝐀 𝐀 0 0 0 0
0 0 𝐀 𝐀 0 0 0
0 0 0

̂
𝐀 0 0

̂
𝐀

𝐀 𝐀 𝐀 𝐀 𝐀 𝐀 0

𝐀 𝐀 𝐀 𝐀 0 𝐀 𝐀
0 0 0

̂
𝐀 0 0

̂
𝐀

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.10)

where, the localization boundary condition was also applied.
The Rock-AMS prolongation operator reads

𝒫 = ℘

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝐀 𝐀 𝒫 0

−𝐀 𝐀 𝒫 0

−𝐀 𝐀 0
𝐈 0

−𝐀 (𝐀 𝒫 + 𝐀 𝒫 ) −𝐀 𝐀 𝒫

−𝐀 𝐀 𝒫 −𝐀 𝐀
0 𝐈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.11)

where the superscript (e.g. from 𝒫 ) corresponds to all the matrix cells, re-
gardless of their containing dual block. The sub-blocks of the prolongation operator,
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i.e.,𝒫 , 𝒫 , 𝒫 , 𝒫 and 𝒫 , are defined similar to the previous
cases in the sense that they represent the corresponding rows and columns given

in their superscripts. For example, 𝒫 = −𝐀 𝐀 and, specially,

𝒫 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−𝐀 𝐀 𝒫

−𝐀 𝐀 𝒫

−𝐀 𝐀
𝐈

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (B.12)

B.4. Coupled-AMS

In the Coupled-AMS approach, all adjacent Face and Edge blocks are merged
between the media (Fig. 3.6), i.e. 𝐹 = 𝐹 ⋃𝐹 and 𝐸 = 𝐸 ⋃𝐸 . Also, let 𝑉
denote the set of coarse nodes, irrespective of their location. In this new setting,
the algorithm proceeds similar to the original (i.e. unfractured) AMS [61]. More
specifically, the ℘-reordered approximate linear system is defined as

℘𝐀 ℘𝐓 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐀 𝐀 𝐀 𝐀
0 𝐀 𝐀 𝐀
0 0 𝐀 𝐀
0 0 0

̂
𝐀

⎤
⎥
⎥
⎥
⎥
⎦

, (B.13)

where the localization boundary condition was appropriately employed.
Then, the Coupled-AMS prolongation operator reads

𝒫 = ℘

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−𝐀 (𝐴 𝒫 + 𝐀 𝒫 + 𝐀 )

−𝐀 (𝐀 𝒫 + 𝐀 )

−𝐀 𝐀
𝐈

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (B.14)
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C
Distance-based fracture

coarsening

A fracture network can be represented as a graph, in which the fracture lines
(plates) are the arcs, while the nodes are the locations at which fractures inter-
sect. This leads to a quasi-unstructured grid, where the complexity mostly revolves
around the representation of the intersections. In this work, each intersection is
assigned a pressure value, which is explicitly represented in the fine-scale linear
system (3.8) via an equation describing the conservation of flux coming from/going
into the fracture control volumes it connects.

As previously described, F-AMS requires primal- and dual-coarse grids in the
(quasi-unstructured) fracture domain. In order to hide this complexity from the
user, this paper introduces a distance-based algorithm for the automatic coarsening
of fracture networks, as described in Table C.1. The network’s graph is traversed
in a breadth-first order such that a distance of at least 𝑑min cells is guaranteed
between each pair of resulting coarse nodes. As such, 𝑑min can be seen as a
fracture coarsening factor. Note that choosing 𝑑min = ∞ results in a single coarse
node, as shown in Fig. 4.17(a). Moreover, Fig. 3.8(b) depicts the result of the
coarsening algorithm for 𝑑min = 20 cells on a fairly complex fracture network.
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Table C.1: Distance-based fracture coarsening algorithm.

Repeat the following for each fracture network, 𝑓 ; let 𝑁 be its fine cell count:
1. Choose 𝑑min, the minimum distance between two fracture coarse nodes.
2. Initialize three empty queues: 𝑄 ,𝑄 , 𝑄 .
3. Initialize two vectors of length 𝑁 : 𝑙𝑒𝑣𝑒𝑙 (set to ∞) and 𝑝𝑟𝑖𝑚𝑎𝑙 (set to 0).
4. 𝑁 ← 0
5. Choose a starting cell from 𝑓 and add it to 𝑄 .
Repeat until 𝑄 is empty:

6. 𝑣𝑒𝑟𝑡𝑒𝑥 ← extract top of 𝑄
7. 𝑁 ← 𝑁 + 1
8. Create primal block number 𝑁 with 𝑣𝑒𝑟𝑡𝑒𝑥 as its coarse node.
9. 𝑝𝑟𝑖𝑚𝑎𝑙[𝑣𝑒𝑟𝑡𝑒𝑥] ← 𝑁 and 𝑙𝑒𝑣𝑒𝑙[𝑣𝑒𝑟𝑡𝑒𝑥] ← 0.
10. Add 𝑣𝑒𝑟𝑡𝑒𝑥 to 𝑄 .
For 𝑑𝑖𝑠𝑡 from 1 up to and including 𝑑min:

Repeat until 𝑄 is empty:
11. 𝑐𝑒𝑙𝑙 ← extract top of 𝑄
For each neighbour of 𝑐𝑒𝑙𝑙, 𝑛𝑒𝑖𝑔ℎ , with 𝑙𝑒𝑣𝑒𝑙[𝑛𝑒𝑖𝑔ℎ ] > 𝑑𝑖𝑠𝑡:

12. remove 𝑛𝑒𝑖𝑔ℎ from 𝑄 , if it is present
(i.e. 𝑙𝑒𝑣𝑒𝑙[𝑛𝑒𝑖𝑔ℎ ] = 𝑑min)

13. 𝑙𝑒𝑣𝑒𝑙[𝑛𝑒𝑖𝑔ℎ ] ← 𝑑𝑖𝑠𝑡
14. 𝑝𝑟𝑖𝑚𝑎𝑙[𝑛𝑒𝑖𝑔ℎ ] ← 𝑁
15. add 𝑛𝑒𝑖𝑔ℎ to 𝑄 .

16. swap 𝑄 and 𝑄 .
17. empty 𝑄 into 𝑄 .

Upon completion, 𝑝𝑟𝑖𝑚𝑎𝑙[𝑖] gives the index of fine cell 𝑖’s primal block, while
𝑙𝑒𝑣𝑒𝑙[𝑖] is the distance from cell 𝑖 to the nearest vertex. The fine cells which
were not marked as vertices will form edges on the dual-coarse grid.
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Linear elasticity and

poromechanics

The developments from Chapter 2 have introduced fluid and rock compressibil-
ity effects into the reservoir simulation process. More specifically, the latter was
represented by changing the porosity, as a function of pressure given by the con-
stitutive relationship (2.16). However, in cases when the deformation induced into
the rock by fluid flow is mission critical (e.g. due to environmental or safety con-
cerns), this represents an over-simplification of reality. From the physical point of
view, the change in rock properties is, instead, dictated by momentum balance,
i.e. the equilibrium between the tensile effect of pore pressure and any external
(usually compressive) forces applied to the rock body.

The topics of geomechanics [136, 137] and poromechanics [138] have been
widely covered in the literature, especially in dealing with single-phase slightly com-
pressible flow through deformable rocks [139–146]. Since poromechanics lies at
the boundary between two separate research topics, i.e. solid mechanics coupled
with flow through porous media, there is significant variance in the derivations of
the governing equations, often stemming from different choices of parameters or
inconsistent notation. Moreover, extensions to multiphase flow [147, 148], frac-
tured media [78, 122] and multiscale methods [77] have only recently come into
focus.

For completeness and in order to mitigate further confusion, this chapter pro-
vides a detailed derivation and discretization of the PDEs governing multiphase fully
compressible poromechanics. The coupling between the pressure, saturation and
displacement unknowns is resolved in a sequentially-implicit manner, following the
fixed-stress split [140, 146]. Validation is performed on the Terzaghi problem, by
comparing to the analytical solution (see [144]).
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D.1. Governing equations

Let Ω ⊂ ℝ be a region in space occupied by a deformable porous medium,
which is fully saturated by a compressible fluid.

D.1.1. Momentum balance

The momentum balance equation on Ω reads,

∇ . 𝝈 = 𝑓 (D.1)

where 𝝈 is the 2nd order symmetric total stress tensor and 𝑓 is the vector of forcing
terms. This can be expanded as

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅
⎡
⎢
⎢
⎢
⎣

𝜎 𝜎 𝜎
𝜎 𝜎 𝜎
𝜎 𝜎 𝜎

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑓
𝑓
𝑓

⎤
⎥
⎥
⎥
⎦

(D.2)

which ultimately translates into the following linear system of equations,

𝜕𝜎
𝜕𝑥 +

𝜕𝜎
𝜕𝑦 + 𝜕𝜎𝜕𝑧 = 𝑓 (D.3)

𝜕𝜎
𝜕𝑥 +

𝜕𝜎
𝜕𝑦 +

𝜕𝜎
𝜕𝑧 = 𝑓 (D.4)

𝜕𝜎
𝜕𝑥 +

𝜕𝜎
𝜕𝑦 + 𝜕𝜎𝜕𝑧 = 𝑓 (D.5)

From the symmetricity of 𝝈, it follows that 𝜎 = 𝜎 , 𝜎 = 𝜎 and 𝜎 = 𝜎 .
In order to close the system of equations, the stress constitutive equation (based

on Hooke’s law) is introduced,

𝝈 = 𝔼 ∶ 𝝐 − 𝑏𝑝𝐈 (D.6)

where 𝔼 is the 4th order elasticity tensor, with dimension 3 × 3 × 3 × 3. Each
of its components, 𝔼 relates total stress 𝜎 to strain 𝜖 in the solid. Also,
𝑏 = 1− is Biot’s coefficient, 𝐾 and 𝐾 are the porous medium and solid bulk
moduli, respectively, 𝑝 is the pore pressure, 𝐈 is the 2nd order identity tensor,

𝝐 = ∇ 𝑢 (D.7)

is the 2nd order symmetric strain tensor, ∇ = (∇ + ∇ ) is the symmetric gradient
operator,

𝑢 = [
𝑢
𝑢
𝑢
] (D.8)
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is the dispacement vector, i.e.

𝝐 =
⎡
⎢
⎢
⎢
⎣

𝜖 𝜖 𝜖
𝜖 𝜖 𝜖
𝜖 𝜖 𝜖

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

( + ) ( + )
( + ) ( + )
( + ) ( + )

⎤
⎥
⎥
⎥
⎦

(D.9)

Voigt notation

To further expand Equation (D.6), the strain and total stress vectors, along with
the accompanying divergence operator, are introduced by exploiting the symmetric
structure of 𝝈 and 𝝐,

𝜎 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜎
𝜎
𝜎
𝜎
𝜎
𝜎

⎤
⎥
⎥
⎥
⎥
⎦

, 𝜖 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜖
𝜖
𝜖
2𝜖
2𝜖
2𝜖

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐝𝐢𝐯 = [
0 0 0

0 0 0
0 0 0

] . (D.10)

Consequently, Equations (D.1) and (D.7) translate directly into matrix (or Voigt)
notation as,

𝐝𝐢𝐯 𝜎 = 𝑓 (D.11)

𝜖 = 𝐝𝐢𝐯 𝑢 (D.12)

respectively. More importantly, the 4th order elasticity tensor 𝔼 can now be written
as a 6 × 6 elasticity matrix, 𝐄, and, assuming an isotropic medium, Equation (D.6)
translates into

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎
𝜎
𝜎
𝜎
𝜎
𝜎

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜆 + 2𝜇 𝜆 𝜆
𝜆 𝜆 + 2𝜇 𝜆
𝜆 𝜆 𝜆 + 2𝜇

𝜇
𝜇

𝜇

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝐄

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+
+
+

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑏𝑝
𝑏𝑝
𝑏𝑝
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(D.13)

where 𝜆 is the Lamè coefficient and 𝜇 is the shear modulus.
Finally, by replacing Equation (D.13), the system of PDEs governing momentum

balance for isotropic porous media reads,

𝐝𝐢𝐯 (𝐄 𝐝𝐢𝐯 𝑢 − 𝑏𝑝𝐼) = 𝑓 (D.14)
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where 𝐼 = [1 1 1 0 0 0] is the Voigt notation for the Kroenecker delta. This ex-
pands to

𝜕
𝜕𝑥 [(𝜆 + 2𝜇)

𝜕𝑢
𝜕𝑥 + 𝜆

𝜕𝑢
𝜕𝑦 + 𝜆𝜕𝑢𝜕𝑧 − 𝑏𝑝] +

𝜕
𝜕𝑦 (𝜇

𝜕𝑢
𝜕𝑦 + 𝜇

𝜕𝑢
𝜕𝑥 ) +

𝜕
𝜕𝑧 (𝜇

𝜕𝑢
𝜕𝑧 + 𝜇𝜕𝑢𝜕𝑥 ) = 𝑓

(D.15)

𝜕
𝜕𝑥 (𝜇

𝜕𝑢
𝜕𝑦 + 𝜇

𝜕𝑢
𝜕𝑥 ) +

𝜕
𝜕𝑦 [𝜆

𝜕𝑢
𝜕𝑥 + (𝜆 + 2𝜇)

𝜕𝑢
𝜕𝑦 + 𝜆𝜕𝑢𝜕𝑧 − 𝑏𝑝] +

𝜕
𝜕𝑧 (𝜇

𝜕𝑢
𝜕𝑧 + 𝜇𝜕𝑢𝜕𝑦 ) = 𝑓

(D.16)

𝜕
𝜕𝑥 (𝜇

𝜕𝑢
𝜕𝑧 + 𝜇𝜕𝑢𝜕𝑥 ) +

𝜕
𝜕𝑦 (𝜇

𝜕𝑢
𝜕𝑧 + 𝜇𝜕𝑢𝜕𝑦 ) +

𝜕
𝜕𝑧 [𝜆

𝜕𝑢
𝜕𝑥 + 𝜆

𝜕𝑢
𝜕𝑦 + (𝜆 + 2𝜇)𝜕𝑢𝜕𝑧 − 𝑏𝑝] = 𝑓

(D.17)

Finite element discretization

The domain Ω is discretized according to a mesh composed of 𝑁elems elements
and 𝑁nodes nodes. The displacement at any point within element 𝑒, 𝑢, is approx-
imated by interpolating its nodal displacement values, 𝑢 , = [𝑢 , , 𝑢 , , 𝑢 , , ] ,
using predefined local shape functions, 𝐍 ,

𝑢 ≈
nodes,

∑ 𝐍 , 𝑢 , (D.18)

where,

𝐍 , = [
𝑁 , ,

𝑁 , ,
𝑁 , ,

] (D.19)

are chosen s.t. 𝑁 , , = 𝑁 , , = 𝑁 , , = 𝑁 , , where 𝑁 , is a trilinear function, for
simplicity. Further, let

𝐍 = [𝐍 , ⋯𝐍 nodes, , ] (D.20)

be a 3 × 3𝑁nodes, matrix obtained by placing the shape function matrices side-by-
side. Note that the shape functions form a partition of unity, i.e. 𝐍 1 = 1, where 1
is a vector of 3𝑁nodes, components equal to 1. Finally, let

𝑢 = [
𝑢 ,
⋮

𝑢 , nodes,

] (D.21)

be a vector of length 3𝑁nodes, obtained by stacking the nodal displacement un-
knowns.

Then, (D.18) can be written more compactly as

𝑢 ≈ 𝐍 𝑢 , (D.22)
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and by substitution into (D.14), premultiplication by 𝐍 and integration over the
volume of the element, Ω , the following weak form is obtained

∫ 𝐍 𝐝𝐢𝐯 (𝐄 𝐝𝐢𝐯 𝐍 𝑢 − 𝑏𝑝 𝐼) 𝑑𝑉 = ∫ 𝐍 𝑓𝑑𝑉, (D.23)

where 𝑝 is the pore pressure inside the element. By using the notation 𝐃 =
𝐝𝐢𝐯 𝐍 , which is a 6 × 3𝑁nodes, matrix, the previous equation reads,

∫ 𝐃 𝐄𝐃 𝑢 𝑑𝑉 = ∫ 𝑏𝑝 𝐃 𝐼 𝑑𝑉 + ∫ 𝐍 𝑓𝑑𝑉. (D.24)

Integration

Consider an arbitrary function 𝑓(𝑥). Using the Gaussian quadrature rule,

∫ 𝑓(𝑥)𝑑𝑥 ≈
pts

∑𝑤 𝑓(𝒢 ), (D.25)

where 𝒢 are the Gauss integration points, with 𝑤 their associated weights, s.t.
∑ pts 𝑤 = 2 (i.e. the length of the integration interval). Note that an integral over
an arbitrary interval [𝑎, 𝑏], has to be first transformed to an equivalent integral over
[−1, 1] before the rule can be applied. An 𝑁pts rule is known to be exact when
integrating polynomial functions up to rank 2𝑁pts − 1.

Each of the integrals in (D.24) is evaluated numerically using Gaussian quadra-
ture rules with 𝑁pts = 2 over each spatial dimension, which, by definition, operate
using the following parameters,

𝒢 = √13, 𝒢 = −√13, 𝑤 = 𝑤 = 1. (D.26)

Let 𝑥 , denote the vector of Cartesian coordinates of node 𝑖 in hexahedral ele-
ment 𝑒 (i.e. 6 faces, 8 nodes). It can be easily verified that

𝑥 =
nodes,

∑ 𝐍 , 𝑥 , ∀𝑥 ∈ Ω , (D.27)

with
𝑁 , (𝜉 , 𝜉 , 𝜉 ) =

1
8(1 ± 𝜉 )(1 ± 𝜉 )(1 ± 𝜉 ), (D.28)

where 𝜉 = [𝜉 , 𝜉 , 𝜉 ] ∈ [−1, 1] is the reference coordinate system in element
𝑒 s.t. the reference coordinates of the nodes are 𝜉 , = [±1,±1,±1] . Note that
there is correspondence between the sign of component 𝑗 ∈ {1, 2, 3} of 𝜉 , and the
sign of 𝜉 , in the expression of shape function 𝑁 , for node 𝑖.
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Eqs. (D.27) and (D.28) relate the Cartesian coordinates 𝑥 = [𝑥, 𝑦, 𝑧] ∈ ℝ of
any point within finite element 𝑒 to the reference coordinates 𝜉 ∈ [−1, 1] through
𝑥 = 𝑔(𝜉), which implies the following change of variable when integrating,

∫ 𝑓(𝑥)𝑑𝑥 = ∫ ∫ ∫ 𝑓(𝑔(𝜉)) |det 𝐉| 𝑑𝜉 𝑑𝜉 𝑑𝜉

≈
pts

∑
pts

∑
pts

∑𝑤𝑤 𝑤 𝑓(𝑔(𝒢 , , )) |det 𝐉 , , | ,
(D.29)

where 𝒢 , , = [±√ ,±√ ,±√ ] and 𝑤 = 𝑤 = 𝑤 = 1, while 𝐉 is the 3 × 3
jacobian matrix of the transformation, defined as

𝐉 = 𝜕(𝑥, 𝑦, 𝑧)
𝜕(𝜉 , 𝜉 , 𝜉 ) . (D.30)

For a convenient computation of 𝐉, the chain rule is employed,

𝐉 = 𝜕(𝑥, 𝑦, 𝑧)
𝜕𝑁 ,

𝜕𝑁 ,
𝜕(𝜉 , 𝜉 , 𝜉 ) ≡ 𝐗 𝚽, (D.31)

where 𝐗𝐞 is a 3×𝑁nodes, matrix containing the Cartesian coordinates of the nodes
and 𝚽 is a 𝑁nodes, × 3 matrix of basis function derivatives w.r.t. the reference
coordinates.

Furthermore, the elements of matrix 𝐃 = 𝐝𝐢𝐯 𝐍 can be directly obtained from
those of

𝜕𝑁 ,
𝜕(𝑥, 𝑦, 𝑧) =

𝜕𝑁 ,
𝜕(𝜉 , 𝜉 , 𝜉 )

𝜕(𝜉 , 𝜉 , 𝜉 )
𝜕(𝑥, 𝑦, 𝑧) ≡ 𝚽 𝐉 . (D.32)

Algebraic form

After all substitutions are performed, the displacement equation can be written
in matrix form for each element,

𝐀 𝑢 − 𝑝 �̃� = 𝑓 , (D.33)

where 𝐀 = ∫ 𝐃 𝐄𝐃 𝑑𝑉 is the local stiffness matrix, �̃� = ∫ 𝑏𝐃 𝐼 𝑑𝑉 is the

local pore pressure contribution and 𝑓 = ∫ 𝐍 𝑓𝑑𝑉 is the local forcing term.
These local systems are assembled to form the global linear system,

𝐀mech 𝑢 + 𝐁mech 𝑝 = 𝑓 (D.34)

where 𝐀mech is the 3𝑁nodes ×3𝑁nodes global stiffness matrix, 𝑢 is the 3𝑁nodes global
vector of nodal displacements, 𝐁mech is the 3𝑁nodes ×𝑁elems global mechanics-flow
coupling matrix, 𝑝 the𝑁elems vector of element pore pressures, while 𝑓 is the 3𝑁nodes
vector of forcing terms.
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D.1.2. Mass balance

Considering a multiphase fluid flowing through the isotropic porous medium Ω,
the mass balance equations read

𝜕𝑚
𝜕𝑡 + ∇ . 𝑤 = 𝜌 𝑞 , 𝛼 = 1,… ,𝑁phases (D.35)

where 𝑚 denotes mass, 𝑤 is the mass flux, 𝜌 is density and 𝑞 is the volumetric
source term for phase 𝛼.

By definition,
𝑚 = 𝜙𝜌 𝑠 , (D.36)

where 𝜙 is the porosity and 𝑠 is the phase saturation, while, from Darcy’s law,

𝑤 = −𝜌 𝐤𝜆 ⋅ ∇𝑝, (D.37)

where 𝐤 is the 2nd order positive-definite permeability tensor, here, considered
diagonal and isotropic, 𝜆 = , , 𝑘 , and 𝜇 are the phase mobility, relative per-
meability (not to be confused with the Lame parameter 𝜆) and viscosity (not to be
confused with the shear modulus 𝜇), respectively.

By replacing (D.36) and (D.37) into (D.35) and expanding the time derivative
according to the chain rule,

𝜕𝜙
𝜕𝑡 𝜌 𝑠 + 𝜙𝜕𝜌𝜕𝑡 𝑠 + 𝜙𝜌 𝜕𝑠

𝜕𝑡 − ∇ . (𝐤𝜆 ⋅ ∇𝑝) = 𝜌 𝑞 , (D.38)

which can be further transformed by division with 𝜌 followed by summation over
all phases, giving

𝜕𝜙
𝜕𝑡 + 𝜙

phases

∑ (𝑠𝜌
𝜕𝜌
𝜕𝑡 ) −

phases

∑ 1
𝜌 ∇ . (𝐤𝜆 ⋅ ∇𝑝) = 𝑞 , (D.39)

where 𝑞 = ∑ phases 𝑞 denotes the total volumetric source term.
An exponential model is assumed for the phase density,

𝜌 = 𝜌 , exp (𝑐 (𝑝 − 𝑝 )) , (D.40)

where 𝜌 , and 𝑝 are the reference phase density and pore pressure, while 𝑐 =
is the phase compressibility, with 𝐾 , the phase bulk modulus. Furthermore, from
Biot’s linear elasticity theory,

𝜙 = 𝜙 + 𝑏 (𝜖 − 𝜖 , ) + (𝑏 − 𝜙 ) 𝑐 (𝑝 − 𝑝 ) , (D.41)

where 𝜙 is the reference porosity, 𝜖 = 𝑡𝑟(𝜖) ≡ 𝜖 + 𝜖 + 𝜖 ≡ ∇ . 𝑢 is the
volumetric strain and 𝑐 = is the compressibility of the solid grains, with 𝐾 , their
bulk modulus.
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Consequently, the time derivatives present in (D.39) become,

𝜕𝜌
𝜕𝑡 = 𝜕𝜌

𝜕𝑝
𝜕𝑝
𝜕𝑡 = 𝑐 𝜌

𝜕𝑝
𝜕𝑡 (D.42)

𝜕𝜙
𝜕𝑡 =

𝜕𝜙
𝜕𝜖

𝜕𝜖
𝜕𝑡 +

𝜕𝜙
𝜕𝑝
𝜕𝑝
𝜕𝑡 = 𝑏

𝜕𝜖
𝜕𝑡 + (𝑏 − 𝜙 )𝑐 𝜕𝑝𝜕𝑡 (D.43)

leading to the following PDE for pressure

𝑏𝜕𝜖𝜕𝑡 +
1
𝑀
𝜕𝑝
𝜕𝑡 −

phases

∑ 1
𝜌 ∇ . (𝜌 𝐤𝜆 ⋅ ∇𝑝) = 𝑞 , (D.44)

where = 𝜙𝑐 + (𝑏 − 𝜙 )𝑐 is the inverse Biot’s modulus and 𝑐 = ∑ phases 𝑠 𝑐 is
defined as the overall fluid compressibility. Note that (D.44) is an extension of the
pressure equation from [140] to fully compressible multiphase flow.

Finite volume discretization

Eq. (D.44) is solved for the pore pressure using the finite-volume method, to
ensure mass conservation. To this end, the volume integral over each element is
applied,

∫ [𝑏𝜕𝜖𝜕𝑡 +
1
𝑀
𝜕𝑝
𝜕𝑡 ] 𝑑𝑉 −

phases

∑ ∫ 1
𝜌 ∇ . (𝜌 𝐤𝜆 ⋅ ∇𝑝) 𝑑𝑉 = ∫ 𝑞 𝑑𝑉. (D.45)

Assuming changes in are negligible over the element, the Gauss theorem can
be applied,

∫ [𝑏𝜕𝜖𝜕𝑡 +
1
𝑀
𝜕𝑝
𝜕𝑡 ] 𝑑𝑉 −

phases

∑ 1
𝜌 ∫ (𝜌 𝐤𝜆 ⋅ ∇𝑝) ⋅ 𝑛 𝑑𝑆 = ∫ 𝑞 𝑑𝑉, (D.46)

where 𝜕Ω is the surface of element, with 𝑛 its normal.

Integration

In order to perform the integration, the properties are assumed constant over
the volume of the element, Δ𝑉 , which has 𝑁interf, interfaces. Then,

Δ𝑉 (𝑏𝜕𝜖𝜕𝑡 +
1
𝑀
𝜕𝑝
𝜕𝑡 ) −

phases

∑ 1
𝜌

interfs,

∑ Δ𝐴 (𝜌 , 𝐤 𝜆 , ⋅ ∇𝑝) ⋅ 𝑛 = 𝑄 , (D.47)

where Δ𝐴 is the interfacial area, while 𝑄 denotes the total fluid volume exchanged
with source terms. Note that the two sums in the advection terms can be inter-
changed, as convenient.
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The permeability at the interface, 𝐤 , is computed as the harmonic average
between the values of the neighbouring cells, while the phase density, 𝜌 , , and
mobility, 𝜆 , , are evaluated based on upwinded pressure and saturation values.

Algebraic form

The porosity and density dependence on pressure makes (D.44) a nonlinear
PDE. Thus, after backward Euler time integration, the Newton-Raphson approach
is employed, while lagging in the accumulation and and 𝜌 , in the advection
terms by one iteration 𝜈. This finally leads to the following pressure system,

𝐀( )flow 𝑝( ) + 𝐁flow 𝑢 = 𝑐( )flow + 𝑞 , (D.48)

where 𝐀flow is the 𝑁elems×𝑁elems transmissibility matrix, 𝐁flow is the 𝑁elems×3𝑁nodes
flow-mechanics coupling matrix, 𝑐flow is the 𝑁elems right-hand-side vector, while 𝑞
is the 𝑁elems vector of total volumetric source terms.

D.1.3. Phase transport

The transport equation is obtained from (D.35) as,

𝜕𝜙𝜌 𝑠
𝜕𝑡 + ∇ . (𝑓 𝑤 ) = 𝑓 𝑜 , (D.49)

where𝑤 = ∑ phases 𝜌 𝐤𝜆 ⋅∇𝑝 denotes the total advection mass flux, 𝑜 = ∑ phases 𝜌 𝑞
is the total source mass flux , while the mass fractional flow function, 𝑓 , is defined
as

𝑓 = 𝜌 𝜆
∑ phases 𝜌 𝜆

, (D.50)

for each phase, such that 𝑤 = 𝑓 𝑤 .

Finite volume discretization

By applying the integral over the volume of each element on either side of (D.49)
and using the Gauss theorem,

𝜕
𝜕𝑡 ∫ 𝜙𝜌 𝑠 𝑑𝑉 + ∫ (𝑓 𝑤 ) ⋅ 𝑛 𝑑𝑆 = ∫ 𝑓 𝑜 𝑑𝑉 (D.51)

Integration

Assuming that the quantities remain constant over the volume of the element,
the following saturation equation is obtained,

Δ𝑉 𝜕𝜙𝜌 𝑠𝜕𝑡 +
interfs,

∑ Δ𝐴 (𝑓 , 𝑤 ) ⋅ 𝑛 = 𝑓 𝑂 , (D.52)
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where 𝑂 denotes the total fluid mass exchanged with source terms.
The interfacial mass fractional flow is evaluated based on upwinded values for

pressure and saturation.

Algebraic form

The nonlinear transport PDE (D.49) is solved by backward Euler time integration
in a Newton-Raphson loop, after linearization using a first-order Taylor expansion
of 𝑓 ,

𝑓( ) ≈ 𝑓( ) + 𝜕𝑓
𝜕𝑠

( )
(𝑠( ) − 𝑠( )) . (D.53)

leading to the following saturation system,

𝐀( )trans, 𝑠
( ) = 𝑐( )trans, + 𝑜 , (D.54)

where 𝐀trans, is the 𝑁elems×𝑁elems transmissibility matrix, 𝑐trans, is the 𝑁elems right-
hand-side vector, while 𝑜 is the 𝑁elems vector of total mass source terms.

Transport is solved for the first 𝑁phases − 1 phases, while the saturation of the
last phase is obtained as

𝑠
phases

= 1 −
phases

∑ 𝑠 . (D.55)

D.1.4. Coupling strategy

The multiphase poromechanics problem described above is solved using a three-
stage sequentially implicit strategy (Fig. D.1). The first stage is the flow solver,
where the pore pressure, 𝑝 is obtained, followed by mechanics, which gives the
displacement, 𝑢, and, finally, transport which solves for the phase saturations,
𝑠 , ∀𝛼 = 1,… ,𝑁phases.

The following paragraphs detail the operator splitting which enables this se-
quential procedure, while ensuring its convergence.

Flow and mechanics stages

The coupling between the (linear) mechanics and (non-linear) flow equations
consists of the appearance of pore pressure, 𝑝, in Eq. (D.14) and the volumetric
strain, 𝜖 = ∇ . 𝑢, in Eq. (D.44). In order to resolve these strong two-way depen-
dencies, the joint pressure-displacement system is written as,

[
𝐀mech 𝐁mech

𝐁flow 𝐀( )flow

] [
𝑢

𝑝( )
] = [

𝑓
𝑔( )

] , (D.56)
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Figure D.1: Three-stage sequentially implicit solution strategy for the multiphase poromechanics prob-
lem.

where 𝜈 denotes the index in the Newton-Raphson (linearization) iterative loop. By
comparing Eqs. (D.24) and (D.46), it follows that

𝐁flow = 𝐁mech. (D.57)

𝐀( )flow can be further split into its accumulation and advection (i.e. transmissibility)
parts,

𝐀( )flow = 𝐂( ) + 𝐓( ) (D.58)

and the detailed expression for the right-hand-side corresponding to the flow prob-
lem (in accordance with Eq. (D.48)) is

𝑔( ) = 𝐁flow𝑢( ) + 𝐂( )𝑝( )⏝⎵⏟⎵⏝
𝑐( )flow

+𝑞 , (D.59)

where 𝑛 denotes the previous timestep (Fig D.1).
The system (D.58) is traditionally solved in monolithic (i.e. fully-implicit) fashion

[139, 143, 149]. More recently, however, sequentially-implicit methods for porome-
chanics have emerged [140–142], among which, the fixed-stress split [140] has
seen widespread attention [142–144, 146, 148]. These methods are attractive be-
cause they allow the use of distinct solution strategies for each type of unknown, as
appropriate, given the nature of their respective PDEs (elliptic momentum versus
parabolic mass balance).
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According to [146], the decoupling required for the formulation of these meth-
ods can be achieved in a compact way by preconditioning the jacobian operator
from (D.58). The fixed-stress split, in particular, relies on the LDU-decomposition,

[
𝐀mech 𝐁mech

𝐁flow 𝐀( )flow

] = [
𝐈

𝐁flow 𝐀mech 𝐈
]

⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
𝐋

[
𝐀mech

𝐒( )
]

⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝐃

[
𝐈 𝐀mech 𝐁mech

𝐈
]

⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
𝐔

, (D.60)

where 𝐒( ) is the Schur-complement of 𝐀( )flow,

𝐒( ) = 𝐀( )flow − 𝐁flow 𝐀mech 𝐁mech. (D.61)

By choosing the upper-triangular matrix (𝐃𝐔) as left-preconditioner, the fol-
lowing Richardson’s iterative scheme [143] is obtained,

[
𝐀mech 𝐁mech

𝐒 ( )
] [
𝑢( )
( )

𝑝( )
( )

] = [
−𝐁flow 𝐌

] [
𝑢( )
( )

𝑝( )
( )

] + [
𝑓
𝑔( )

] , (D.62)

where 𝑘 gives the (sequential) iteration step. Note that a sparse approximation of
𝐒( ) was used [146],

𝐒 ( ) = 𝐀( )flow +𝐌 (D.63)

𝐌 = 𝑏
𝐾 𝐑, (D.64)

where 𝐑 denotes the element-wise volume integrals of the pressure shape func-
tions, which are constant 1, in accordance with the finite-volume discretization of
the mass balance equations. This makes 𝐑 a diagonal matrix, having Δ𝑉 , ∀𝑒 =
1,… ,𝑁elems as its entries.

The dependence on the solution from the previous sequential iteration 𝑘 in
(D.62) acts as a regularization term, which ensures unconditional stability [140].

Transport stage

Given the pressure- and strain-dependent porosity update (D.41), the (non-
linear) transport equations are decoupled from pressure using the fractional flow
formulation (see the dedicated paragraph from Section D.1.2), in a similar fashion
to a black-oil-type simulator.

D.2. Validation

The validation of the sequentially-implicit poromechanics scheme presented above,
is performed on the widely-used Terzaghi problem, depicted in Fig. D.2(a). In this
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(a) Terzaghi’s problem (b) Simulation grid

Figure D.2: Setup and simulation grid for Terzaghi’s problem. The saturated porous rock column is
subjected to one-dimensional compaction, while fluid is allowed to flow through the top. In the dis-
cretization, the displacement unknowns are defined at cell corners, while pore pressure is solved at the
cell centers.

setup, a saturated column of porous rock is subjected to one-dimensional com-
paction (𝜎 = 1 Pa on the top, rollers on the sides and fixed to the bottom boundary),
while fluid is allowed to flow through the top (𝑝 = 0 Pa on the top, no flow across
the rest of the boundaries). The simulation parameters are given in Table D.1.

Parameter Value
Young’s modulus 10 Pa
Poisson’s ratio 0.2

Biot’s coefficient 1.0
Inverse Biot’s modulus 0.0

Fluid mobility 10 m /cP
Initial pressure 1.0 Pa

Initial displacement 0.0 m

Table D.1: Simulation parameters for the Terzaghi problem.

The first two lines give the pair of elasticity moduli that determine the elas-
ticity of the rock. The conversion to any other pair among the 6 possible moduli
(bulk Modulus 𝐾 , Young’s modulus 𝐸, Lame’s first parameter 𝜆, shear modulus 𝜇,
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Poisson’s ratio 𝜈 or P-wave modulus 𝑀) is easily done [137], e.g.,

𝜆 = 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈) , (D.65)

𝜇 = 𝐸
2(1 + 𝜈) . (D.66)

The numerical solution is computed on the 1D discretized domain shown in
Fig. D.2(b), where, as explained before, the pressure unknowns are located at cell
centers, while the displacement is computed at the cell corners.

Simulation results, over several time-steps, are shown in Fig. D.3 alongside the
analytical solution [144]. The two are in good agreement, which confirms that the
sequentially-implicit scheme is able to capture the effect of poromechanics.
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Figure D.3: Time-lapse pore pressure (top) and displacement solutions (bottom), computed numerically
and analytically, for the Terzaghi problem.

127





References

[1] BP Global, Statistical review of world energy, (2017).

[2] A. H. Muggeridge, A. Cockin, K. Webb, H. Frampton, I. Collins, T. Moulds
and P. Salino, Recovery rates, enhanced oil recovery and technological limits,
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 372, 20120320 (2013).

[3] L. W. Lake, R. T. Johns, W. R. Rossen and G. A. Pope, Fundamentals of
Enhanced Oil Recovery (Society of Petroleum Engineers, 2014).

[4] Q. Wang, X. Chen, A. N. Jha and H. Rogers, Natural gas from shale formation
– the evolution, evidences and challenges of shale gas revolution in United
States, Renewable and Sustainable Energy Reviews 30, 1 (2014).

[5] D. Y. Leung, G. Caramanna and M. M. Maroto-Valer, An overview of current
status of carbon dioxide capture and storage technologies, Renewable and
Sustainable Energy Reviews 39, 426 (2014).

[6] R. M. Cuéllar-Franca and A. Azapagic, Carbon capture, storage and utilisation
technologies: A critical analysis and comparison of their life cycle environ-
mental impacts, Journal of CO2 Utilization 9, 82 (2015).

[7] S. A. Rackley, Carbon Capture and Storage, Second Edition (Butterworth-
Heinemann, 2017).

[8] W. T. Pfeiffer and S. Bauer, Subsurface porous media hydrogen storage –
scenario development and simulation, Energy Procedia 76, 565 (2015).

[9] M. Panfilov, Underground and pipeline hydrogen storage, in Compendium of
Hydrogen Energy (Elsevier, 2016) pp. 91–115.

[10] W. T. Pfeiffer, C. Beyer and S. Bauer, Hydrogen storage in a heterogeneous
sandstone formation: dimensioning and induced hydraulic effects, Petroleum
Geoscience 23, 315 (2017).

[11] R. Bertani, Geothermal power generation in the world 2005–2010 update
report, Geothermics 41, 1 (2012).

[12] J. W. Lund and T. L. Boyd, Direct utilization of geothermal energy 2015 world-
wide review, Geothermics 60, 66 (2016).

[13] R. Bertani, Geothermal power generation in the world 2010–2014 update
report, Geothermics 60, 31 (2016).

129

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
http://dx.doi.org/10.1098/rsta.2012.0320
http://dx.doi.org/10.1098/rsta.2012.0320
https://www.amazon.com/Fundamentals-Enhanced-Recovery-Russell-Johns/dp/1613993285?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1613993285
https://www.amazon.com/Fundamentals-Enhanced-Recovery-Russell-Johns/dp/1613993285?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1613993285
http://dx.doi.org/10.1016/j.rser.2013.08.065
http://dx.doi.org/ 10.1016/j.rser.2014.07.093
http://dx.doi.org/ 10.1016/j.rser.2014.07.093
http://dx.doi.org/10.1016/j.jcou.2014.12.001
https://www.amazon.com/Carbon-Capture-Storage-Stephen-Rackley/dp/012812041X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=012812041X
http://dx.doi.org/10.1016/j.egypro.2015.07.872
http://dx.doi.org/ 10.1016/b978-1-78242-362-1.00004-3
http://dx.doi.org/ 10.1016/b978-1-78242-362-1.00004-3
http://dx.doi.org/10.1144/petgeo2016-050
http://dx.doi.org/10.1144/petgeo2016-050
http://dx.doi.org/10.1016/j.geothermics.2011.10.001
http://dx.doi.org/ 10.1016/j.geothermics.2015.11.004
http://dx.doi.org/10.1016/j.geothermics.2015.11.003


References

[14] M. P. Anderson, W. W. Woessner and R. J. Hunt, Applied Groundwater Mod-
eling, Second Edition: Simulation of Flow and Advective Transport (Academic
Press, 2015).

[15] C. Zheng and G. D. Bennett, Applied Contaminant Transport Modeling (Wiley-
Interscience, 2002).

[16] G. Dagan, Flow and Transport in Porous Formations (Springer, 1989).

[17] R. Al-Raoush and A. Papadopoulos, Representative elementary volume anal-
ysis of porous media using x-ray computed tomography, Powder Technology
200, 69 (2010).

[18] S. H. Lee, C. L. Jensen and M. F. Lough, Efficient finite-difference model for
flow in a reservoir with multiple length-scale fractures, SPE Journal 5, 268
(2000).

[19] L. Li and S. H. Lee, Efficient field-scale simulation of black oil in a naturally
fractured reservoir through discrete fracture networks and homogenized me-
dia, SPE Reservoir Evaluation & Engineering 11, 750 (2008).

[20] S. B. Pluimers, Hierarchical fracture modeling, Master’s thesis, Delft University
of Technology, the Netherlands (2015).

[21] G. Barenblatt, I. Zheltov and I. Kochina, Basic concepts in the theory of
seepage of homogeneous liquids in fissured rocks [strata], Journal of Applied
Mathematics and Mechanics 24, 1286 (1960).

[22] J. Warren and P. Root, The behavior of naturally fractured reservoirs, SPE
Journal 3, 245 (1963).

[23] T. D. van Golf-Racht, Fundamentals of Fractured Reservoir Engineering, Vol-
ume 12 (Developments in Petroleum Science) (Elsevier Science, 1982).

[24] M. Karimi-Fard, L. Durlofsky and K. Aziz, An efficient discrete-fracture model
applicable for general-purpose reservoir simulators, SPE Journal 9, 227
(2004).

[25] V. Reichenberger, H. Jakobs, P. Bastian and R. Helmig, A mixed-dimensional
finite volumemethod for two-phase flow in fractured porous media, Advances
in Water Resources 29, 1020 (2006).

[26] R. Ahmed, M. G. Edwards, S. Lamine, B. A. Huisman and M. Pal, Three-
dimensional control-volume distributed multi-point flux approximation cou-
pled with a lower-dimensional surface fracture model, Journal of Computa-
tional Physics 303, 470 (2015).

[27] H. Hajibeygi, D. Karvounis and P. Jenny, A hierarchical fracture model for the
iterative multiscale finite volume method, Journal of Computational Physics
230, 8729 (2011).

130

https://www.amazon.com/Applied-Groundwater-Modeling-Second-Simulation/dp/0120581035?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0120581035
https://www.amazon.com/Applied-Groundwater-Modeling-Second-Simulation/dp/0120581035?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0120581035
https://www.amazon.com/Applied-Contaminant-Transport-Modeling-Chunmiao/dp/0471384771?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0471384771
https://www.amazon.com/Transport-Porous-Formations-Gedeon-Dagan/dp/3540510982?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540510982
http://dx.doi.org/10.1016/j.powtec.2010.02.011
http://dx.doi.org/10.1016/j.powtec.2010.02.011
http://dx.doi.org/10.2118/65095-pa
http://dx.doi.org/10.2118/65095-pa
http://dx.doi.org/ 10.2118/103901-pa
https://repository.tudelft.nl/islandora/object/uuid:68c79016-3e23-4e03-9755-809889d7375f
http://dx.doi.org/10.1016/0021-8928(60)90107-6
http://dx.doi.org/10.1016/0021-8928(60)90107-6
http://dx.doi.org/10.2118/426-pa
http://dx.doi.org/10.2118/426-pa
https://www.amazon.com/Fundamentals-Fractured-Reservoir-Engineering-Developments/dp/0444420460?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0444420460
https://www.amazon.com/Fundamentals-Fractured-Reservoir-Engineering-Developments/dp/0444420460?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0444420460
http://dx.doi.org/10.2118/88812-PA
http://dx.doi.org/10.2118/88812-PA
http://dx.doi.org/10.1016/j.advwatres.2005.09.001
http://dx.doi.org/10.1016/j.advwatres.2005.09.001
http://dx.doi.org/10.1016/j.jcp.2015.10.001
http://dx.doi.org/10.1016/j.jcp.2015.10.001
http://dx.doi.org/10.1016/j.jcp.2011.08.021
http://dx.doi.org/10.1016/j.jcp.2011.08.021


References

[28] D. H. Johnston, Practical Applications of Time-Lapse Seismic Data (Society
of Exploration Geophysicists, 2013).

[29] D. S. Oliver, A. C. Reynolds and N. Liu, Inverse Theory for Petroleum Reservoir
Characterization and History Matching (Cambridge University Press, 2008).

[30] M. Christie, Upscaling for reservoir simulation, Journal of Petroleum Technol-
ogy 48, 1004 (1996).

[31] Y. Chen and L. J. Durlofsky, Adaptive local–global upscaling for general flow
scenarios in heterogeneous formations, Transport in Porous Media 62, 157
(2006).

[32] N. Schwenck, B. Flemisch, R. Helmig and B. I. Wohlmuth, Dimensionally
reduced flow models in fractured porous media: crossings and boundaries,
Computational Geosciences 19, 1219 (2015).

[33] J. Warren and H. Price, Flow in heterogeneous porous media, Society of
Petroleum Engineers Journal 1, 153 (1961).

[34] S. Begg and P. King, Modelling the effects of shales on reservoir perfor-
mance: Calculation of effective vertical permeability, in SPE Reservoir Simu-
lation Symposium (Society of Petroleum Engineers, 1985).

[35] A. J. Desbarats, Numerical estimation of effective permeability in sand-shale
formations, Water Resources Research 23, 273 (1987).

[36] E. Kasap and L. W. Lake, Calculating the effective permeability tensor of a
gridblock, SPE Formation Evaluation 5, 192 (1990).

[37] L. J. Durlofsky, Numerical calculation of equivalent grid block permeability
tensors for heterogeneous porous media, Water Resources Research 27, 699
(1991).

[38] Y. Chen, L. Durlofsky, M. Gerritsen and X. Wen, A coupled local–global up-
scaling approach for simulating flow in highly heterogeneous formations, Ad-
vances in Water Resources 26, 1041 (2003).

[39] M. Sahimi, R. Darvishi, M. Haghighi and M. R. Rasaei, Upscaled unstructured
computational grids for efficient simulation of flow in fractured porous media,
Transport in Porous Media 83, 195 (2009).

[40] A. Fumagalli, S. Zonca and L. Formaggia, Advances in computation of local
problems for a flow-based upscaling in fractured reservoirs, Mathematics and
Computers in Simulation 137, 299 (2017).

[41] M. A. Christie and M. J. Blunt, Tenth SPE comparative solution project: A
comparison of upscaling techniques, in SPE Reservoir Simulation Symposium
(Society of Petroleum Engineers, 2001).

131

http://dx.doi.org/10.1190/1.9781560803126
https://www.amazon.com/Inverse-Petroleum-Reservoir-Characterization-Matching/dp/052188151X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=052188151X
https://www.amazon.com/Inverse-Petroleum-Reservoir-Characterization-Matching/dp/052188151X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=052188151X
http://dx.doi.org/10.2118/37324-JPT
http://dx.doi.org/10.2118/37324-JPT
http://dx.doi.org/10.1007/s11242-005-0619-7
http://dx.doi.org/10.1007/s11242-005-0619-7
http://dx.doi.org/ 10.1007/s10596-015-9536-1
http://dx.doi.org/10.2118/1579-g
http://dx.doi.org/10.2118/1579-g
http://dx.doi.org/10.2118/13529-ms
http://dx.doi.org/10.2118/13529-ms
http://dx.doi.org/10.1029/wr023i002p00273
http://dx.doi.org/ 10.2118/18434-pa
http://dx.doi.org/10.1029/91wr00107
http://dx.doi.org/10.1029/91wr00107
http://dx.doi.org/10.1016/s0309-1708(03)00101-5
http://dx.doi.org/10.1016/s0309-1708(03)00101-5
http://dx.doi.org/ 10.1007/s11242-009-9500-4
http://dx.doi.org/10.1016/j.matcom.2017.01.007
http://dx.doi.org/10.1016/j.matcom.2017.01.007
http://dx.doi.org/10.2118/66599-ms


References

[42] P. Jenny, S. H. Lee and H. A. Tchelepi, Multi-scale finite-volume method
for elliptic problems in subsurface flow simulation, Journal of Computational
Physics 187, 47 (2003).

[43] H. Hajibeygi and P. Jenny, Multiscale finite-volume method for parabolic
problems arising from compressible multiphase flow in porous media, Journal
of Computational Physics 228, 5129 (2009).

[44] U. Trottenberg, C. W. Oosterlee and A. Schuller, Multigrid (Academic Press,
2000).

[45] K. Stüben, SAMG User Manual (Fraunhofer Institute SCAI, 2010).

[46] T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic prob-
lems in composite materials and porous media, Journal of Computational
Physics 134, 169 (1997).

[47] T. Y. Hou, X.-H. Wu and Z. Cai, Convergence of a multiscale finite element
method for elliptic problems with rapidly oscillating coefficients, Mathematics
of Computation 68, 913 (1999).

[48] Y. Efendiev and T. Y. Hou, Multiscale Finite Element Methods: Theory and
Applications (Springer, 2009).

[49] Y. R. Efendiev, T. Y. Hou and X.-H. Wu, Convergence of a nonconforming
multiscale finite element method, SIAM Journal on Numerical Analysis 37,
888 (2000).

[50] J. E. Aarnes and T. Y. Hou, Multiscale domain decomposition methods for el-
liptic problems with high aspect ratios, Acta Mathematicae Applicatae Sinica,
English Series 18, 63 (2002).

[51] J. E. Aarnes, V. Kippe and K.-A. Lie, Mixed multiscale finite elements and
streamline methods for reservoir simulation of large geomodels, Advances in
Water Resources 28, 257 (2005).

[52] H. Zhou and H. A. Tchelepi, Operator-based multiscale method for compress-
ible flow, SPE Journal 13, 267 (2008).

[53] H. Zhou and H. A. Tchelepi, Two-stage algebraic multiscale linear solver for
highly heterogeneous reservoir models, SPE Journal 17, 523 (2012).

[54] P. Jenny, S. H. Lee and H. A. Tchelepi, Adaptive multiscale finite-volume
method for multiphase flow and transport in porous media, Multiscale Mod-
eling & Simulation 3, 50 (2005).

[55] P. Jenny, S. H. Lee and H. A. Tchelepi, Adaptive fully implicit multi-scale finite-
volume method for multi-phase flow and transport in heterogeneous porous
media, Journal of Computational Physics 217, 627 (2006).

132

http://dx.doi.org/10.1016/s0021-9991(03)00075-5
http://dx.doi.org/10.1016/s0021-9991(03)00075-5
http://dx.doi.org/ 10.1016/j.jcp.2009.04.017
http://dx.doi.org/ 10.1016/j.jcp.2009.04.017
https://www.amazon.com/Multigrid-Ulrich-Trottenberg/dp/012701070X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=012701070X
https://www.scai.fraunhofer.de/en/business-research-areas/fast-solvers/products/samg.html
http://dx.doi.org/10.1006/jcph.1997.5682
http://dx.doi.org/10.1006/jcph.1997.5682
http://dx.doi.org/10.1090/s0025-5718-99-01077-7
http://dx.doi.org/10.1090/s0025-5718-99-01077-7
https://www.amazon.com/Multiscale-Finite-Element-Methods-Applications/dp/0387094954
https://www.amazon.com/Multiscale-Finite-Element-Methods-Applications/dp/0387094954
http://dx.doi.org/ 10.1137/s0036142997330329
http://dx.doi.org/ 10.1137/s0036142997330329
http://dx.doi.org/10.1007/s102550200004
http://dx.doi.org/10.1007/s102550200004
http://dx.doi.org/10.1016/j.advwatres.2004.10.007
http://dx.doi.org/10.1016/j.advwatres.2004.10.007
http://dx.doi.org/ 10.2118/106254-PA
http://dx.doi.org/10.2118/141473-PA
http://dx.doi.org/10.1137/030600795
http://dx.doi.org/10.1137/030600795
http://dx.doi.org/10.1016/j.jcp.2006.01.028


References

[56] H. Hajibeygi, G. Bonfigli, M. A. Hesse and P. Jenny, Iterative multiscale finite-
volume method, Journal of Computational Physics 227, 8604 (2008).

[57] Y. Saad, Iterative Methods for Sparse Linear Systems (Society for Industrial
and Applied Mathematics, 2003).

[58] I. Lunati, M. Tyagi and S. H. Lee, An iterative multiscale finite volume al-
gorithm converging to the exact solution, Journal of Computational Physics
230, 1849 (2011).

[59] H. Hajibeygi and P. Jenny, Adaptive iterative multiscale finite volume method,
Journal of Computational Physics 230, 628 (2011).

[60] A. Kozlova, Z. Li, J. R. Natvig, S. Watanabe, Y. Zhou, K. Bratvedt and S. H.
Lee, A real-field multiscale black-oil reservoir simulator, SPE Journal 21, 2049
(2016).

[61] Y. Wang, H. Hajibeygi and H. A. Tchelepi, Algebraic multiscale solver for flow
in heterogeneous porous media, Journal of Computational Physics 259, 284
(2014).

[62] A. M. Manea, J. Sewall and H. A. Tchelepi, Parallel multiscale linear solver for
highly detailed reservoir models, SPE Journal 21, 2062 (2016).

[63] J. R. Wallis and H. A. Tchelepi, Apparatus, method and system for improved
reservoir simulation using an algebraic cascading class linear solver, Patent
US7684967 (2010).

[64] T. Arbogast, Numerical subgrid upscaling of two-phase flow in porous media,
in Lecture Notes in Physics (Springer Berlin Heidelberg, 2000) pp. 35–49.

[65] T. Arbogast, Implementation of a locally conservative numerical subgrid up-
scaling scheme for two-phase darcy flow, Computational Geosciences 6, 453
(2002).

[66] O. Møyner and K.-A. Lie, A multiscale restriction-smoothed basis method for
high contrast porous media represented on unstructured grids, Journal of
Computational Physics 304, 46 (2016).

[67] I. Lunati and P. Jenny, Multiscale finite-volume method for density-driven flow
in porous media, Computational Geosciences 12, 337 (2008).

[68] P. Jenny and I. Lunati, Modeling complex wells with the multi-scale finite-
volume method, Journal of Computational Physics 228, 687 (2009).

[69] C. Wolfsteiner, S. H. Lee and H. A. Tchelepi, Well modeling in the multiscale
finite volume method for subsurface flow simulation, Multiscale Modeling &
Simulation 5, 900 (2006).

133

http://dx.doi.org/10.1016/j.jcp.2008.06.013
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/ 10.1016/j.jcp.2010.11.036
http://dx.doi.org/ 10.1016/j.jcp.2010.11.036
http://dx.doi.org/ 10.1016/j.jcp.2010.10.009
http://dx.doi.org/ 10.2118/173226-pa
http://dx.doi.org/ 10.2118/173226-pa
http://dx.doi.org/ 10.1016/j.jcp.2013.11.024
http://dx.doi.org/ 10.1016/j.jcp.2013.11.024
http://dx.doi.org/ 10.2118/173259-pa
https://www.google.com/patents/US7684967
https://www.google.com/patents/US7684967
http://dx.doi.org/ 10.1007/3-540-45467-5_3
http://dx.doi.org/10.1023/A:1021295215383
http://dx.doi.org/10.1023/A:1021295215383
http://dx.doi.org/10.1016/j.jcp.2015.10.010
http://dx.doi.org/10.1016/j.jcp.2015.10.010
http://dx.doi.org/ 10.1007/s10596-007-9071-9
http://dx.doi.org/ 10.1016/j.jcp.2008.09.026
http://dx.doi.org/10.1137/050640771
http://dx.doi.org/10.1137/050640771


References

[70] S. H. Lee, C. Wolfsteiner and H. A. Tchelepi, Multiscale finite-volume for-
mulation for multiphase flow in porous media: black oil formulation of com-
pressible, three-phase flow with gravity, Computational Geosciences 12, 351
(2008).

[71] H. Hajibeygi and H. A. Tchelepi, Compositional multiscale finite-volume for-
mulation, SPE Journal 19, 316 (2014).

[72] M. Cusini, B. Fryer, C. van Kruijsdijk and H. Hajibeygi, Algebraic dynamic
multilevel method for compositional flow in heterogeneous porous media,
Journal of Computational Physics 354, 593 (2018).

[73] H. Zhou, S. H. Lee and H. A. Tchelepi, Multiscale finite-volume formulation
for saturation equations, SPE Journal 17, 198 (2012).

[74] S. Lee, H. Zhou and H. A. Tchelepi, Adaptive multiscale finite-volume method
for nonlinear multiphase transport in heterogeneous formations, Journal of
Computational Physics 228, 9036 (2009).

[75] T. H. Sandve, Multiscale simulation of flow and heat transport in fractured
geothermal reservoirs, Ph.D. thesis, University of Bergen, Norway (2012).

[76] T. Praditia, Multiscale Finite Volume Method for Coupled Single-Phase Flow
and Heat Equations in Fractured Porous Media: Application to Geothermal
Systems, Master’s thesis, Delft University of Technology, the Netherlands
(2017).

[77] N. Castelletto, H. Hajibeygi and H. A. Tchelepi, Multiscale finite-element
method for linear elastic geomechanics, Journal of Computational Physics
331, 337 (2017).

[78] R. Deb and P. Jenny, Modeling of shear failure in fractured reservoirs with a
porous matrix, Computational Geosciences 21, 1119 (2017).

[79] R. Deb and P. Jenny, Finite volume-based modeling of flow-induced shear
failure along fracture manifolds, International Journal for Numerical and An-
alytical Methods in Geomechanics 41, 1922 (2017).

[80] M. Cusini, A. A. Lukyanov, J. Natvig and H. Hajibeygi, Constrained pres-
sure residual multiscale (CPR-MS) method for fully implicit simulation of mul-
tiphase flow in porous media, Journal of Computational Physics 299, 472
(2015).

[81] O. Møyner and K.-A. Lie, A multiscale two-point flux-approximation method,
Journal of Computational Physics 275, 273 (2014).

[82] O. Møyner and K.-A. Lie, The multiscale finite-volume method on stratigraphic
grids, SPE Journal 19, 816 (2014).

134

http://dx.doi.org/ 10.1007/s10596-007-9069-3
http://dx.doi.org/ 10.1007/s10596-007-9069-3
http://dx.doi.org/10.2118/163664-PA
http://dx.doi.org/ 10.1016/j.jcp.2017.10.052
http://dx.doi.org/10.2118/119183-PA
http://dx.doi.org/10.1016/j.jcp.2009.09.009
http://dx.doi.org/10.1016/j.jcp.2009.09.009
http://bora.uib.no/bitstream/handle/1956/6593/47603%20Sandve%20main_thesis%20NY.pdf?sequence=1
https://repository.tudelft.nl/islandora/object/uuid%3A3362f121-281a-435a-ba1f-b5d5d6ed197f
http://dx.doi.org/ 10.1016/j.jcp.2016.11.044
http://dx.doi.org/ 10.1016/j.jcp.2016.11.044
http://dx.doi.org/ 10.1007/s10596-017-9680-x
http://dx.doi.org/ 10.1002/nag.2707
http://dx.doi.org/ 10.1002/nag.2707
http://dx.doi.org/10.1016/j.jcp.2015.07.019
http://dx.doi.org/10.1016/j.jcp.2015.07.019
http://dx.doi.org/ 10.1016/j.jcp.2014.07.003
http://dx.doi.org/ 10.2118/163649-PA


References

[83] S. B. M. Bosma, H. Hajibeygi, M. Ţene and H. A. Tchelepi, Multiscale finite
volume method for discrete fracture modeling with unstructured grids, in SPE
Reservoir Simulation Conference (Society of Petroleum Engineers, 2017).

[84] S. Bosma, H. Hajibeygi, M. Ţene and H. A. Tchelepi, Multiscale finite vol-
ume method for discrete fracture modeling on unstructured grids (MS-DFM),
Journal of Computational Physics 351, 145 (2017).

[85] M. Cusini, C. van Kruijsdijk and H. Hajibeygi, Algebraic dynamic multilevel
(ADM) method for fully implicit simulations of multiphase flow in porous me-
dia, Journal of Computational Physics 314, 60 (2016).

[86] Y. Efendiev, J. Galvis and X.-H. Wu, Multiscale finite element methods for
high-contrast problems using local spectral basis functions, Journal of Com-
putational Physics 230, 937 (2011).

[87] E. T. Chung, Y. Efendiev, G. Li and M. Vasilyeva, Generalized multiscale fi-
nite element methods for problems in perforated heterogeneous domains,
Applicable Analysis 95, 2254 (2015).

[88] D. Cortinovis and P. Jenny, Iterative galerkin-enriched multiscale finite-
volume method, Journal of Computational Physics 277, 248 (2014).

[89] M. A. Hesse, B. T. Mallison and H. A. Tchelepi, Compact multiscale finite
volume method for heterogeneous anisotropic elliptic equations, Multiscale
Modeling & Simulation 7, 934 (2008).

[90] Y. Wang, H. Hajibeygi and H. A. Tchelepi, Monotone multiscale finite volume
method, Computational Geosciences 20, 509 (2015).

[91] R. J. de Moraes, J. R. P. Rodrigues, H. Hajibeygi and J. D. Jansen, Multiscale
gradient computation for flow in heterogeneous porous media, Journal of
Computational Physics 336, 644 (2017).

[92] J.-D. Jansen, D. Brouwer, G. Naevdal and C. P. J. W. van Kruijsdijk, Closed-
loop reservoir management, First Break 23, 43 (2005).

[93] I. Lunati and P. Jenny, Multiscale finite-volume method for compressible mul-
tiphase flow in porous media, Journal of Computational Physics 216, 616
(2006).

[94] J. R. Natvig, B. Skaflestad, F. Bratvedt, K. Bratvedt, K.-A. Lie, V. Laptev and
S. Khataniar, Multiscale mimetic solvers for efficient streamline simulation of
fractured reservoirs, SPE Journal 16, 880 (2011).

[95] M. Ţene, H. Hajibeygi, Y. Wang and H. Tchelepi, Adaptive algebraic multi-
scale solver for compressible flow in heterogeneous porous media, in ECMOR
XIV - 14th European Conference on the Mathematics of Oil Recovery (EAGE
Publications BV, 2014).

135

http://dx.doi.org/10.2118/182654-ms
http://dx.doi.org/10.2118/182654-ms
http://dx.doi.org/10.1016/j.jcp.2017.09.032
http://dx.doi.org/ 10.1016/j.jcp.2016.03.007
http://dx.doi.org/10.1016/j.jcp.2010.09.026
http://dx.doi.org/10.1016/j.jcp.2010.09.026
http://dx.doi.org/ 10.1080/00036811.2015.1040988
http://dx.doi.org/ 10.1016/j.jcp.2014.08.019
http://dx.doi.org/10.1137/070705015
http://dx.doi.org/10.1137/070705015
http://dx.doi.org/10.1007/s10596-015-9506-7
http://dx.doi.org/10.1016/j.jcp.2017.02.024
http://dx.doi.org/10.1016/j.jcp.2017.02.024
http://dx.doi.org/10.3997/1365-2397.2005002
http://dx.doi.org/ 10.1016/j.jcp.2006.01.001
http://dx.doi.org/ 10.1016/j.jcp.2006.01.001
http://dx.doi.org/10.2118/119132-pa
http://dx.doi.org/10.3997/2214-4609.20141776
http://dx.doi.org/10.3997/2214-4609.20141776


References

[96] M. Ţene, Y. Wang and H. Hajibeygi, Adaptive algebraic multiscale solver for
compressible flow in heterogeneous porous media, Journal of Computational
Physics 300, 679 (2015).

[97] K. Aziz and A. Settari, Petroleum Reservoir Simulation (Chapman & Hall,
1979).

[98] V. Kippe, J. E. Aarnes and K.-A. Lie, A comparison of multiscale methods for
elliptic problems in porous media flow, Computational Geosciences 12, 377
(2008).

[99] H. Hajibeygi, S. H. Lee and I. Lunati, Accurate and efficient simulation of
multiphase flow in a heterogeneous reservoir with error estimate and control
in the multiscale finite-volume framework, SPE Journal 17, 1071 (2012).

[100] N. Remy, A. Boucher and J. Wu, Applied Geostatistics with SGeMS (Cam-
bridge University Press, 2009).

[101] G. Bonfigli and P. Jenny, An efficient multi-scale poisson solver for the in-
compressible navier–stokes equations with immersed boundaries, Journal of
Computational Physics 228, 4568 (2009).

[102] V. Dolean, P. Jolivet, F. Nataf, N. Spillane and H. Xiang, Two-level domain
decomposition methods for highly heterogeneous darcy equations. connec-
tions with multiscale methods, Oil & Gas Science and Technology – Revue
d’IFP Energies nouvelles 69, 731 (2014).

[103] M. Ţene, M. S. A. Kobaisi and H. Hajibeygi, Algebraic multiscale solver for
flow in heterogeneous fractured porous media, in SPE Reservoir Simulation
Symposium (Society of Petroleum Engineers, 2015).

[104] M. Ţene, M. S. A. Kobaisi and H. Hajibeygi, Algebraic multiscale method for
flow in heterogeneous porous media with embedded discrete fractures (F-
AMS), Journal of Computational Physics 321, 819 (2016).

[105] B. Berkowitz, Characterizing flow and transport in fractured geological media:
A review, Advances in Water Resources 25, 861 (2002).

[106] A. Moinfar, W. Narr, M.-H. Hui, B. T. Mallison and S. H. Lee, Comparison of
discrete-fracture and dual-permeability models for multiphase flow in natu-
rally fractured reservoirs, in SPE Reservoir Simulation Symposium (Society of
Petroleum Engineers, 2011).

[107] S. K. Matthäi, A. A. Mezentsev and M. Belayneh, Finite element node-
centered finite-volume two-phase-flow experiments with fractured rock rep-
resented by unstructured hybrid-element meshes, SPE Reservoir Evaluation
& Engineering 10, 740 (2007).

136

http://dx.doi.org/10.1016/j.jcp.2015.08.009
http://dx.doi.org/10.1016/j.jcp.2015.08.009
https://www.amazon.com/Petroleum-Reservoir-Simulation/dp/B0083K23YA
http://dx.doi.org/ 10.1007/s10596-007-9074-6
http://dx.doi.org/ 10.1007/s10596-007-9074-6
http://dx.doi.org/10.2118/141954-PA
http://dx.doi.org/ 10.1017/cbo9781139150019
http://dx.doi.org/ 10.1016/j.jcp.2009.03.032
http://dx.doi.org/ 10.1016/j.jcp.2009.03.032
http://dx.doi.org/10.2516/ogst/2013206
http://dx.doi.org/10.2516/ogst/2013206
http://dx.doi.org/10.2118/173200-ms
http://dx.doi.org/10.2118/173200-ms
http://dx.doi.org/10.1016/j.jcp.2016.06.012
http://dx.doi.org/10.1016/s0309-1708(02)00042-8
http://dx.doi.org/10.2118/142295-ms
http://dx.doi.org/ 10.2118/93341-PA
http://dx.doi.org/ 10.2118/93341-PA


References

[108] A. Moinfar, A. Varavei, K. Sepehrnoori and R. T. Johns, Development of an
efficient embedded discrete fracture model for 3d compositional reservoir
simulation in fractured reservoirs, SPE Journal 19, 289 (2014).

[109] R. Ahmed, M. G. Edwards, S. Lamine, B. A. H. Huisman and M. Pal, Control-
volume distributed multi-point flux approximation coupled with a lower-
dimensional fracture model, Journal of Computational Physics 284, 462
(2015).

[110] S. Geiger-Boschung, S. K. Matthäi, J. Niessner and R. Helmig, Black-oil sim-
ulations for three-component, three-phase flow in fractured porous media,
SPE Journal 14, 338 (2009).

[111] T. H. Sandve, E. Keilegavlen and J. M. Nordbotten, Physics-based precondi-
tioners for flow in fractured porous media, Water Resources Research 50,
1357 (2014).

[112] D. W. Peaceman, Interpretation of well-block pressures in numerical reservoir
simulation(includes associated paper 6988 ), SPE Journal 18, 183 (1978).

[113] D. C. Karvounis and P. Jenny, Adaptive hierarchical fracture model for
enhanced geothermal systems, Multiscale Modeling & Simulation 14, 207
(2016).

[114] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,
K. Rupp, B. F. Smith, S. Zampini and H. Zhang, PETSc Users Manual, Tech.
Rep. ANL-95/11 - Revision 3.6 (Argonne National Laboratory, 2015).

[115] S. Y. Shah, O. Møyner, M. Ţene, K.-A. Lie and H. Hajibeygi, The multiscale
restriction smoothed basis method for fractured porous media (f-MsRSB),
Journal of Computational Physics 318, 36 (2016).

[116] M. Ţene, M. S. al Kobaisi and H. Hajibeygi, Multiscale projection-based em-
bedded discrete fracture modeling approach (F-AMS-pEDFM), in ECMOR XV
- 15th European Conference on the Mathematics of Oil Recovery (EAGE Pub-
lications BV, 2016).

[117] M. Ţene, S. B. Bosma, M. S. A. Kobaisi and H. Hajibeygi, Projection-based
embedded discrete fracture model (pEDFM), Advances in Water Resources
105, 205 (2017).

[118] A. B. Tatomir, A. Szymkiewicz, H. Class and R. Helmig, Modeling two phase
flow in large scale fractured porous media with an extended multiple inter-
acting continua method, Computer Modeling in Engineering & Sciences 77,
81 (2011).

[119] M. Karimi-Fard and L. J. Durlofsky, A general gridding, discretization, and
coarsening methodology for modeling flow in porous formations with discrete
geological features, Advances in Water Resources 96, 354 (2016).

137

http://dx.doi.org/10.2118/154246-pa
http://dx.doi.org/10.1016/j.jcp.2014.12.047
http://dx.doi.org/10.1016/j.jcp.2014.12.047
http://dx.doi.org/10.2118/107485-pa
http://dx.doi.org/10.1002/2012wr013034
http://dx.doi.org/10.1002/2012wr013034
http://dx.doi.org/10.2118/6893-PA
http://dx.doi.org/10.1137/140983987
http://dx.doi.org/10.1137/140983987
http://www.mcs.anl.gov/petsc
http://dx.doi.org/ 10.1016/j.jcp.2016.05.001
http://dx.doi.org/10.3997/2214-4609.201601890
http://dx.doi.org/10.3997/2214-4609.201601890
http://dx.doi.org/10.1016/j.advwatres.2017.05.009
http://dx.doi.org/10.1016/j.advwatres.2017.05.009
http://dx.doi.org/10.3970/cmes.2011.077.081
http://dx.doi.org/10.3970/cmes.2011.077.081
http://dx.doi.org/ 10.1016/j.advwatres.2016.07.019


References

[120] J. B. Moortgat and A. Firoozabadi, Three-phase compositional modeling with
capillarity in heterogeneous and fractured media, SPE Journal 18, 1150
(2013).

[121] J. Moortgat, M. A. Amooie and M. R. Soltanian, Implicit finite volume and
discontinuous galerkin methods for multicomponent flow in unstructured 3d
fractured porous media, Advances in Water Resources 96, 389 (2016).

[122] T. T. Garipov, M. Karimi-Fard and H. A. Tchelepi, Discrete fracture model for
coupled flow and geomechanics, Computational Geosciences 20, 149 (2016).

[123] B. Flemisch, A. Fumagalli and A. Scotti, A review of the XFEM-based approx-
imation of flow in fractured porous media, in SEMA SIMAI Springer Series
(Springer International Publishing, 2016) pp. 47–76.

[124] R. Deb and P. Jenny, Numerical modeling of flow-mechanics coupling in a
fractured reservoir with porous matrix, in Proceedings of the 41st Workshop
on Geothermal Reservoir Engineering (2016) pp. 1–9.

[125] B. Flemisch, I. Berre, W. Boon, A. Fumagalli, N. Schwenck, A. Scotti, I. Ste-
fansson and A. Tatomir, Benchmarks for single-phase flow in fractured porous
media, Advances in Water Resources 111, 239 (2018).

[126] J. H. Norbeck, M. W. McClure, J. W. Lo and R. N. Horne, An embedded
fracture modeling framework for simulation of hydraulic fracturing and shear
stimulation, Computational Geosciences 20, 1 (2015).

[127] A. Fumagalli, L. Pasquale, S. Zonca and S. Micheletti, An upscaling procedure
for fractured reservoirs with embedded grids, Water Resources Research 52,
6506 (2016).

[128] Z. Chen, Reservoir simulation: mathematical techniques in oil recovery (So-
ciety for Industrial and Applied Mathematics, 2007).

[129] J. M. Nordbotten and P. E. Bjørstad, On the relationship between the mul-
tiscale finite-volume method and domain decomposition preconditioners,
Computational Geosciences 12, 367 (2008).

[130] H. Hamzehpour, M. Asgari and M. Sahimi, Acoustic wave propagation in het-
erogeneous two-dimensional fractured porous media, Physical Review E 93,
063305 (2016).

[131] G. Bertotti and K. Bisdom, Fracture patterns in the Jandeira Fm. (NE Brazil),
(2017).

[132] K. Bisdom, G. Bertotti and H. M. Nick, The impact of different aperture dis-
tribution models and critical stress criteria on equivalent permeability in frac-
tured rocks, Journal of Geophysical Research: Solid Earth 121, 4045 (2016).

138

http://dx.doi.org/10.2118/159777-PA
http://dx.doi.org/10.2118/159777-PA
http://dx.doi.org/ 10.1016/j.advwatres.2016.08.007
http://dx.doi.org/ 10.1007/s10596-015-9554-z
http://dx.doi.org/ 10.1007/978-3-319-41246-7_3
https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2016/Deb.pdf
https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2016/Deb.pdf
http://dx.doi.org/10.1016/j.advwatres.2017.10.036
http://dx.doi.org/10.1007/s10596-015-9543-2
http://dx.doi.org/10.1002/2015wr017729
http://dx.doi.org/10.1002/2015wr017729
http://dx.doi.org/10.1137/1.9780898717075
http://dx.doi.org/10.1007/s10596-007-9066-6
http://dx.doi.org/ 10.1103/physreve.93.063305
http://dx.doi.org/ 10.1103/physreve.93.063305
http://data.4tu.nl/repository/uuid:be07fe95-417c-44e9-8c6a-d13f186abfbb
http://dx.doi.org/10.1002/2015jb012657


References

[133] J. Jiang and R. M. Younis, An improved projection-based embedded discrete
fracture model (pEDFM) for multiphase flow in fractured reservoirs, Advances
in Water Resources 109, 267 (2017).

[134] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for par-
titioning irregular graphs, SIAM Journal on Scientific Computing 20, 359
(1998).

[135] M. Khait and D. V. Voskov, GPU-offloaded general purpose simulator for mul-
tiphase flow in porous media, in SPE Reservoir Simulation Conference (Soci-
ety of Petroleum Engineers, 2017).

[136] A. Verruijt, Computational Geomechanics (Theory and Applications of Trans-
port in Porous Media) (Springer, 1999).

[137] H. F. Wang, Theory of Linear Poroelasticity with Applications to Geomechanics
and Hydrogeology (Princeton University Press, 2000).

[138] O. Coussy, Poromechanics (Wiley, 2004).

[139] B. Jha and R. Juanes, A locally conservative finite element framework for the
simulation of coupled flow and reservoir geomechanics, Acta Geotechnica 2,
139 (2007).

[140] J. Kim, H. Tchelepi and R. Juanes, Stability and convergence of sequential
methods for coupled flow and geomechanics: Fixed-stress and fixed-strain
splits, Computer Methods in Applied Mechanics and Engineering 200, 1591
(2011).

[141] J. Kim, H. Tchelepi and R. Juanes, Stability and convergence of sequential
methods for coupled flow and geomechanics: Drained and undrained splits,
Computer Methods in Applied Mechanics and Engineering 200, 2094 (2011).

[142] J. Kim, H. A. Tchelepi and R. Juanes, Stability, accuracy, and efficiency of
sequential methods for coupled flow and geomechanics, SPE Journal 16,
249 (2011).

[143] J. A. White and R. I. Borja, Block-preconditioned newton–krylov solvers for
fully coupled flow and geomechanics, Computational Geosciences 15, 647
(2011).

[144] N. Castelletto, J. A. White and H. A. Tchelepi, Accuracy and convergence
properties of the fixed-stress iterative solution of two-way coupled porome-
chanics, International Journal for Numerical and Analytical Methods in Ge-
omechanics 39, 1593 (2015).

[145] N. Castelletto, J. A. White and M. Ferronato, Scalable algorithms for three-
field mixed finite element coupled poromechanics, Journal of Computational
Physics 327, 894 (2016).

139

http://dx.doi.org/ 10.1016/j.advwatres.2017.09.017
http://dx.doi.org/ 10.1016/j.advwatres.2017.09.017
http://dx.doi.org/10.1137/s1064827595287997
http://dx.doi.org/10.1137/s1064827595287997
http://dx.doi.org/10.2118/182663-ms
https://www.amazon.com/Computational-Geomechanics-Theory-Applications-Transport/dp/0792334078?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0792334078
https://www.amazon.com/Computational-Geomechanics-Theory-Applications-Transport/dp/0792334078?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0792334078
https://www.amazon.com/Theory-Poroelasticity-Applications-Geomechanics-Hydrogeology/dp/0691037469?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0691037469
https://www.amazon.com/Theory-Poroelasticity-Applications-Geomechanics-Hydrogeology/dp/0691037469?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0691037469
https://www.amazon.com/Poromechanics-Olivier-Coussy/dp/0470849207?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0470849207
http://dx.doi.org/10.1007/s11440-007-0033-0
http://dx.doi.org/10.1007/s11440-007-0033-0
http://dx.doi.org/10.1016/j.cma.2010.12.022
http://dx.doi.org/10.1016/j.cma.2010.12.022
http://dx.doi.org/10.1016/j.cma.2011.02.011
http://dx.doi.org/10.2118/119084-pa
http://dx.doi.org/10.2118/119084-pa
http://dx.doi.org/10.1007/s10596-011-9233-7
http://dx.doi.org/10.1007/s10596-011-9233-7
http://dx.doi.org/10.1002/nag.2400
http://dx.doi.org/10.1002/nag.2400
http://dx.doi.org/10.1016/j.jcp.2016.09.063
http://dx.doi.org/10.1016/j.jcp.2016.09.063


References

[146] J. A. White, N. Castelletto and H. A. Tchelepi, Block-partitioned solvers for
coupled poromechanics: A unified framework, Computer Methods in Applied
Mechanics and Engineering 303, 55 (2016).

[147] B. Jha and R. Juanes, Coupled multiphase flow and poromechanics: A com-
putational model of pore pressure effects on fault slip and earthquake trig-
gering, Water Resources Research 50, 3776 (2014).

[148] T. Almani, K. Kumar, A. Dogru, G. Singh and M. Wheeler, Convergence anal-
ysis of multirate fixed-stress split iterative schemes for coupling flow with ge-
omechanics, Computer Methods in Applied Mechanics and Engineering 311,
180 (2016).

[149] J. H. Prevost, Two-way coupling in reservoir-geomechanical models: vertex-
centered galerkin geomechanical model cell-centered and vertex-centered
finite volume reservoir models, International Journal for Numerical Methods
in Engineering 98, 612 (2014).

140

http://dx.doi.org/ 10.1016/j.cma.2016.01.008
http://dx.doi.org/ 10.1016/j.cma.2016.01.008
http://dx.doi.org/10.1002/2013wr015175
http://dx.doi.org/ 10.1016/j.cma.2016.07.036
http://dx.doi.org/ 10.1016/j.cma.2016.07.036
http://dx.doi.org/10.1002/nme.4657
http://dx.doi.org/10.1002/nme.4657


Curriculum Vitæ

Matei Ţene

16 July 1988 Born in Bucharest, Romania.

Education

2003 – 2007 “Tudor Vianu” National High School of Computer Sciences,
Bucharest, Romania

2007 – 2011 BSc. Computer Science and Engineering
Artificial Intelligence track
“Politehnica” University of Bucharest, Romania

Thesis:
Autonomous robot for the Eurobot competition

Promotor: Prof. dr. ing. R. Vârbănescu

2011 – 2013 MSc. Applied Mathematics
Risk and Environmental Modelling track
Delft University of Technology, the Netherlands

Thesis:
Ensemble-based History Matching for Channelized
Petroleum Reservoirs

Promotor: Prof. dr. A.H. Heemink

2014 – 2018 PhD Petroleum Engineering
Delft University of Technology, the Netherlands

141

https://www.scribd.com/document/95088494/Proiect-Diploma-Tene-Matei
https://repository.tudelft.nl/islandora/object/uuid%3Ad49cf041-74dd-498c-b1cf-9535104c5677
https://repository.tudelft.nl/islandora/object/uuid%3Ad49cf041-74dd-498c-b1cf-9535104c5677


Curriculum Vitæ

Professional experience

March – May 2013 Intern, TNO, Utrecht, the Netherlands
Ensemble-based history matching methods

June – August 2017 Intern, Chevron ETC, Houston, TX, USA
Sequentially-implicit compositional flow simulation

From August 2018 Software Engineer, Schlumberger, Abingdon, UK
INTERSECT Program

Volunteering

2016 – 2017 Founding board member
Delft Student Dance Association “Blue Suede Shoes”

142



List of Publications

No pressure, no diamonds.

Thomas Carlyle

The following is a listing of the journal publications and conference papers authored,
along with the talks given during the PhD program, in reverse chronological order.

Journal papers

S.B.M. Bosma, H. Hajibeygi, M. Ţene, H.A. Tchelepi, Multiscale finite volume
method for discrete fracture modeling on unstructured grids (MS-DFM), Journal
of Computational Physics 351, 145 (2017).

M. Ţene, S.B.M. Bosma, M.S. Al Kobaisi, H. Hajibeygi, Projection-based embedded
discrete fracture model (pEDFM), Advances in Water Resources 105, 205 (2017).

M. Ţene, M.S. Al Kobaisi, H. Hajibeygi, Algebraic multiscale method for flow in
heterogeneous porous media with embedded discrete fractures (F-AMS), Journal
of Computational Physics 321, 819 (2016).

S.Y. Shah, O. Møyner, M. Ţene, K.-A. Lie, H. Hajibeygi, The multiscale restric-
tion smoothed basis method for fractured porous media (F-MsRSB), Journal of
Computational Physics 318, 36 (2016).

M. Ţene, Y. Wang, H. Hajibeygi, Adaptive algebraic multiscale solver for com-
pressible flow in heterogeneous porous media, Journal of Computational Physics
300, 679 (2015).

143

http://dx.doi.org/10.1016/j.jcp.2017.09.032
http://dx.doi.org/10.1016/j.jcp.2017.09.032
http://dx.doi.org/10.1016/j.advwatres.2017.05.009
http://dx.doi.org/10.1016/j.jcp.2016.06.012
http://dx.doi.org/10.1016/j.jcp.2016.06.012
http://dx.doi.org/10.1016/j.jcp.2016.05.001
http://dx.doi.org/10.1016/j.jcp.2016.05.001
http://dx.doi.org/10.1016/j.jcp.2015.08.009
http://dx.doi.org/10.1016/j.jcp.2015.08.009


List of Publications

Conference proceedings and talks

S.B.M. Bosma, H. Hajibeygi, M. Ţene, H.A. Tchelepi, Multiscale finite volume
method for discrete fracture modeling with unstructured grids, in SPE Reservoir
Simulation Conference, (Society of Petroleum Engineers, 2017).

M. Ţene, M.S. Al Kobaisi, H. Hajibeygi, Projection-based Embedded Discrete Frac-
ture Model, 9th International Conference on Porous Media and Annual Meeting,
(2017).

M. Ţene, M.S. Al Kobaisi, H. Hajibeygi, Multiscale projection-based embedded dis-
crete fracture modeling approach (F-AMS-pEDFM), in ECMOR XV - 15th European
Conference on the Mathematics of Oil Recovery, (EAGE Publications BV, 2016).

M. Ţene, M.S. Al Kobaisi, H. Hajibeygi, F-AMS: a flexible multiscale framework
for multiphase flow through naturally fractured porous media, 11th International
Conference on Computational Methods in Water Resources, (2016).

M. Ţene, H. Hajibeygi, Imposing Convergence Constraints on Multiscale Mehods
for the Efficient Solution of Multiphase Flow Through Naturally Fractured Porous
Media, SIAM Conference on Mathematical and Computational Issues in the Geo-
sciences, (2015).

M. Ţene, M.S. Al Kobaisi, H. Hajibeygi, Algebraic multiscale solver for flow in
heterogeneous fractured porous media, in SPE Reservoir Simulation Symposium,
(Society of Petroleum Engineers, 2015).

M. Ţene, M.S. Al Kobaisi, H. Hajibeygi, Adaptive Algebraic Multiscale Solver for
Compressible Flow in Heterogeneous Porous Media, in ECMOR XIV - 14th European
Conference on the Mathematics of Oil Recovery, (EAGE Publications BV, 2014).

144

http://dx.doi.org/10.2118/182654-MS
http://dx.doi.org/10.2118/182654-MS
http://dx.doi.org/10.3997/2214-4609.201601890 
http://dx.doi.org/10.3997/2214-4609.201601890 
http://dx.doi.org/10.2118/173200-MS
http://dx.doi.org/10.3997/2214-4609.20141776
http://dx.doi.org/10.3997/2214-4609.20141776


Acknowledgements

Truly great friends are hard to find, difficult to leave
and impossible to forget

Here is my attempt to say thank you to all who have made the past four years
truly rich and memorable.

First and foremost, I would like to thank my daily supervisor, Dr. Hadi Ha-
jibeygi. Dear, Hadi, what a journey has this been! You were always the engine
that pushed the project forward, bringing out the best in me – even if, sometimes,
caught inbetween deadlines, I failed to see it. Yes, we have faced our differences at
times, but, through it all, there was not a single moment when I felt I could not rely
on your unconditional support. I will never forget how we both stayed up all night
to finish my first SPE RSS paper! Looking from afar, one may say that stretching
deadlines has been the norm of this PhD; then again, we have always put quality
above deadlines. I am proud to have been your first PhD student and I hope that
this is not the end of our working relationship – of course, this time, “depending
on my budget” … :) I am truly happy to hear the news that you are soon going to
become a father and wish you happiness and success in your new role!

A big thank you to my promotor, Prof. Jan-Dirk Jansen, for recommending me
for the PhD position. I truly valued your impartial advice and guidance throughout,
especially in the more difficult moments. The EnKF workshop in Bergen remains
one of my fondest memories – an opportunity I would have missed, were it not for
your encouragement and support. Congratulations and the best of luck in your new
position as dean of the CiTG faculty!

Denis, even though you are one of the profs, to me it always felt like you are
part of our PhD office! I must admit that, when we first met, I was a bit taken
aback by the tough question you asked me during my SIAM GS talk. Yes, it was
about treating relperm endpoints with multscale :). But all that went away quickly
and I am very happy to have you as a friend. Starting August, I will be just across
the channel, so that shouldn’t stop us from catching up in ‘t Klooster from time to
time.

Of course, I am very grateful for the help received from our department support
staff. Marlijn, Lydia, Margot, Marja, Marijke, thank you for always greeting
me with a smile. I have never walked out of your office without answers to my
questions. And thanks to Ralf for helping me move between the different desks
around the building over the 4 years.

My first desk in CiTG was in one of the flex offices, where I met Nico. I still

145



Acknowledgements

remember watching the Winter Olympics with you and our discussions about Ro-
mania. Good luck in your career!

Then, it was time to mingle with the geophysicists – thank you, Max, Koen,
Kevin, Remi, Siddarth, Iris, Helena, Carlos, Anna, Andreas, Boris, Pawan,
Amarjeet, Tomo, Niels, Ranjani for welcoming me into your 3rd floor office. I
remember the Tuesday football matches, our evening drinks and the many times
I had to duck under my desk whenever you would shoot those foam bullet guns.
You were my first big family in the faculty!

Eventually, the opportunity presented itself to work among the petroleum en-
gineers, on the ground floor– at first, sitting next to the lab technicians. Thanks,
Henk, Jolanda, Ellen, Arno, Michiel, for the good company, in the back of the
room. Marc, you always lightened the mood when you spontaneously started to
sing pop songs – veel succes met airport dancing, jonge! Karel, once again thanks
for helping me tilt my monitor to portrait mode and opening the cassette on my old
bike’s wheel. Karl-Heinz, we always had a good laugh when I would meet you
around the coffee machine or by the art piece in the exhibition room. I wish you
all good health and patience with the students!

I will never forget Chris “The Outlaw” Boeije – you were always so laid back,
down-to-earth and easy to get along with. I remember you would actively engage
even with the quietest person in the room and make sure that they are included in
the group. It’s impossible to forget your sarcasm and witty way of looking at life.
And, of course, our electric guitar lessons, swimming at de Hofbad and the “gorilla
training” gym sessions with Amin. Best wishes to both of you and I hope to see
you soon!

Jiakun, I cherish the memories of the dance classes we attended together.
That was one presentation night show to remember! All the hard training paid off
and I hope you and your wife will go back to ballroom someday. People call you Mr.
President, rightfully so, for not many can say they have led the society of Chinese
students in the Netherlands. Everyone looks up to you, myself included, and I hope
being parents will make both you and Yan very happy!

Jinyu, my brother-from-another-mother, I hope the day you get to establish
your start-up, OMT Industries, is not far away. I cherish the memories of our nights
out and hope we get to visit China together, someday, for learning Mandarin is still
on my “bucket list”. Good luck with your graduation and all the happiness and good
wishes for your upcoming wedding!

Xiaocong, you are one of the last to join the office, yet your energy and free-
spirit have already made you stand out! Thank you for being my friend and best of
luck with your work!

I can not forget you, Mojti, for your incredible courage in asking the prettiest
girls for a dance during our nights out, as well as our gym, jogging and swim-
ming sessions. I miss our light-spirited conversations and hope you will always find
success!

Matteo, you were always a source of inspiration for me on how to be efficient
and enjoy life during the PhD. Keep at it, my friend, and good luck in Livermore, or
wherever you decide to venture next!

146



Acknowledgements

Dear, Rafa, which hat should I put on you?! A true friend, an encyclopedia for
coding, my mentor, my confidant, my upcoming paranymph. I am simply grateful
to have met you and have always found comfort and good advice in your words!
Good luck to you and your girls and don’t forget to drop me a line from time to
time, whatever continent we happen to be on!

Nik, you were always the norm in the office, either for being a perfect gentleman
or your amazing salsa moves! Indeed, you would instantly lighten everybody’s
mood and bring smiles on people’s faces, as I’m sure you still do, over there in
Edinburgh. Looking forward to join you on the island soon!

Jako, thank you for being a close friend throughout my PhD. I will never forget
our conversations, as well as the great trip we had in California, from Las Vegas,
all the way to San Francisco. Those were the days! I’m really glad to see you so
happy as a young mother and wish you and your husband good health and success
in what’s yet to come around the corner!

Mark, you are most definitely the only person in the world I have shared a good
steak with, in the aftermath of a natural disaster! How can I forget those tense
days when we were both interns in Houston during hurricane Harvey?! All is well
that ends well. I cherish our friendship and already miss our conversations! Take
care and good wishes for the rest of your PhD!

Many thanks to Ahmed for being my desk neighbour, a great chef and a patient
listener whenever I wanted to practice my Dutch. I still laugh when I remember
the infamous “cat story” or that time you and Nik asked me to pick the lock on his
cabinet. Very happy to hear about your engagement – may it bring you happiness
and fortune!

Still, I’m sure that no one in the office will deny that Sian is the greatest cook
there is. I really miss those Monday afternoon treats and hope you keep practicing
your ballroom dancing!

Swej, we share quite the history, together, be it in Hadi’s group, in the PhD
office or on the basketball pitch. Martijn, our karting sessions will always remain
in my mind. Thank you both for your company and I look forward to seeing you
around in Delft!

Dear Bander, you were always the most knowledgeable, experienced, yet very
modest, petroleum engineer in the office. I hope we get to see each other soon
and I hereby add my wishes of good luck on your bright career ahead!

Yang, Kai and Longlong, I have learned so much about Chinese culture from
you. Xiexie! Brandon, I feel very fortunate to have met you and hope you will
soon find the happiness and peace of mind you deserve! God speed, my friends!

Rodrigo and Siamak, it was my pleasure to share the office with both of you
these past years. Good luck in your work!

To Dudu, I say thank you for pushing the group to go outside the office and
take part in more sports and social activities. Together, we conquered the summits
of Mt. Etna, while eating pizzettas – that incredible view is still vivid in my memory.

Rahul, our father-figure, Siavash, Durgesh, and, of course, our superstar,
Elisa, thank you for giving the office so much personality. Your legacy still lingers
within those glass walls.

147



Acknowledgements

My amazing Master students, Sander, Timothy, Mitra, Sebastian, Gusti,
Irina, it was a pleasure to work with you, through the good times and hiccups. I
am very proud of you and will be closely watching the news for your names!

Dr.’s Seong Lee and Xian-Huan Wen – gentlemen, thank you for your warm
welcome to Chevron’s RPP team during my internship last summer. It was a truly
memorable experience. I miss the work and the atmosphere in the HOU150 of-
fice. It is my hope that we will stay connected, now that I will start working on
INTERSECT, as part of Schlumberger, in Abingdon.

I would like to express my gratitude towards the PhD committee members for
their time and patience in reading the present manuscript. I look forward to our
heated discussions during the defense!

Thanks are also due to Khalifa Universiy and ADNOC for supporting my
project. Also, to the DARSim group for the friendly, yet competitive work at-
mosphere – I wish everyone good fortune moving forward!

Dana, Dorota and Ghada, thank you for picking up the work on our joint
paper, where I left off! It took quite a bit of our free time over the past 4 years,
but I am proud that our little pet publication finally made it to print. Good luck in
your future endeavours!

Thank you Victor, Roxana, Răzvan, Cristina and Dragoş, my Romanian
gang, for making me feel at home away from home. And, of course, Alin, Tudor,
Remus, Anca and Dan – I miss our nights out at Locus – when will I get to see
you in England?!

To SoSalsa!, thank you for spicing up my weekends and evenings in Delft with
your great events! Also, a special thanks to the members of Blue Suede Shoes,
and Boards I, II and III! Keep on dancing and representing TU Delft in competitions!
I will do my best to stop by whenever I am in town. To my dance teachers, Kaspar
and Polina, for their dedication, patience and many fun moments during our Friday
classes! Marieke, thank you for being my amazing dance partner these past years!
I still keep our NTDS medal on my wall. Success in your study and I’m certain there
are many more prizes to come your way soon!

My group of friends from all over the world, Mousa, Yasmin, Fardin, Mohsen,
Leonoor, Cantika and Tim, thanks for always being there to cheer me up during
our outings and boardgame nights – I miss you all!

My dear Alina, I am very lucky to have met you. Thank you for your uncondi-
tional love and support! Our plan for world exploration has only just begun! Good
luck in your own PhD and I am very excited to see where life takes us next!

Last but not least, I would like to thank my friends and family back in Romania,
along with my brother, who has embarked on his own Dutch journey at Twente
University. Mom, dad, Mihai, thank you for giving me the strength to overcome
everything in my path. Even though we are in different parts of Europe, it always
feels like you are close by! I love you dearly!

148






	Cover
	Propositions / Stellingen
	Contents
	Preface
	Summary / Samenvatting
	1 Introduction
	1.1 Challenges in fractured reservoir simulation
	1.2 Simulation methods – literature review
	1.3 Research goals
	1.4 Thesis outline

	2 Pressure-driven fluid and rock compressibility
	2.1 Governing equations
	2.1.1 Incompressible flow
	2.1.2 Compressible flow

	2.2 Algebraic multiscale formulation (C-AMS)
	2.2.1 Primal and dual-coarse grids
	2.2.2 Multiscale operators
	2.2.3 Correction function
	2.2.4 C-AMS algorithm

	2.3 Numerical Results
	2.3.1 C-AMS: sensitivity studies
	2.3.2 C-AMS benchmark versus SAMG

	2.4 Conclusions

	3 Flow through fractured reservoirs
	3.1 Governing equations
	3.2 Algebraic multiscale formulation (F-AMS)
	3.2.1 Basis function formulations
	3.2.2 The F-AMS solution algorithm

	3.3 Numerical Results
	3.3.1 F-AMS convergence
	3.3.2 Basis function truncation
	3.3.3 Sensitivity to the coarsening factor
	3.3.4 Sensitivity to the transmissibility ratio
	3.3.5 CPU benchmark study

	3.4 Conclusions

	4 Projection-based Embedded Discrete Fracture Model
	4.1 pEDFM formulation
	4.1.1 Governing equations
	4.1.2 Discretization

	4.2 Algebraic multiscale formulation (F-AMS-pEDFM)
	4.3 Numerical results
	4.3.1 pEDFM validation
	4.3.2 Sensitivity to the fracture position within the grid cell
	4.3.3 Sensitivity to the grid resolution
	4.3.4 Sensitivity to the fracture-matrix conductivity contrast
	4.3.5 Time-lapse 2D multiphase results
	4.3.6 Comparison between pEDFM and unstructured DFM
	4.3.7 F-AMS-pEDFM convergence study
	4.3.8 F-AMS-pEDFM scalability with increasing fracture density

	4.4 Conclusions

	5 Concluding remarks and future perspectives
	5.1 C-AMS: rock and fluid compressibility
	5.2 F-AMS: flow through fractured media
	5.3 pEDFM: fractures with arbitrary conductivities
	5.4 Future perspectives

	A Average distance between fracture and matrix cells
	B Algebraic computation of the F-AMS prolongation operators
	B.1 Decoupled-AMS
	B.2 Frac-AMS
	B.3 Rock-AMS
	B.4 Coupled-AMS

	C Distance-based fracture coarsening
	D Linear elasticity and poromechanics
	D.1 Governing equations
	D.1.1 Momentum balance
	D.1.2 Mass balance
	D.1.3 Phase transport
	D.1.4 Coupling strategy

	D.2 Validation

	References
	Curriculum Vitæ
	List of Publications
	Acknowledgements



