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Abstract Understanding how alluvial stratigraphy responds to sediment supply perturbations is critical for
interpreting past environmental changes from the sedimentary record, characterizing subsurface reservoirs, and
forecasting future landscape evolution. However, identifying and quantifying sediment supply signals preserved
in the rock record remain challenging, leaving their stratigraphic imprint insufficiently understood. To help
address this issue, we use a process-based numerical model to simulate alluvial stratigraphy under different
sediment supply scenarios, independently testing the effects of supply magnitude and variability. Our results
show that sediment supply variability has a stronger impact than magnitude: increased variability leads to much
thicker channel-belt deposits and elevated yet alternating high and low down-valley slopes. In contrast, greater
total sediment supply results in only slightly thicker channel-belt deposits and uniformly elevated down-valley
slopes. These results reconcile diverse fluvial stratigraphic responses to sediment-supply changes across basins
during climatic perturbations.

Plain Language Summary This study uses a computer model to explore how sediment supply
changes affect rock records. We tested two key changes: (a) the total amount of sediment increases by 40% and
(b) the sediment flux becomes more variable without total supply changes. Our findings show that variable
sediment flux leads to thicker channel-belt deposits and alternating higher and lower down-valley slopes, while
increased total sediment supply causes uniformly steeper down-valley slopes without changing channel size
much. These results help improve our understanding of past environmental changes and can guide predictions of
how river landscapes are preserved in the subsurface.

1. Introduction

Alluvial stratigraphy results from complex interactions between external forcings (e.g., climate and tectonics) and
autogenic processes (e.g., channel avulsion and lateral migration) (Hajek & Straub, 2017). Sequence stratigraphy
has long acknowledged both accommodation and sediment supply as co-equal controls (Bridge & Leeder, 1979;
Burgess et al., 2019; Catuneanu et al., 2011; Muto & Steel, 1997; Neal & Abreu, 2009; Shanley & McCabe, 1994;
Straub & Wang, 2013), yet quantitative assessments of upstream sediment supply (Q,) variations in fully fluvial
settings remain relatively scarce (Armitage et al., 2013; Blum & Tornqvist, 2000; Sharma et al., 2024; Simpson &
Castelltort, 2012; Wang et al., 2021, 2023, 2024). Over geological timescales, Q, varies with climatic fluctuations
driving precipitation and weathering/erosion changes, and with tectonic activity rejuvenating source areas (Allen
et al., 2013; Armitage et al., 2011, 2013; Castelltort & Van Den Driessche, 2003; Duller et al., 2019; Romans
et al., 2016; Syvitski et al., 2000). Yet, these signals are often obscured by “signal shredding” wherein autogenic
processes can mask sediment supply changes (Jerolmack & Paola, 2010). Only substantial or persistent pertur-
bations could leave their signatures in stratigraphy (Duller et al., 2019; Foreman & Straub, 2017; Romans
et al., 2016; Straub et al., 2020; Toby et al., 2019).

The Paleocene—Eocene Thermal Maximum (PETM, ~56 Ma) (Zachos et al., 2010) exemplifies these com-
plexities. During the PETM, channel sand-body widths increased markedly in the Bighorn and Tremp Basins—up
to tenfold and eightfold, respectively—while channel depths varied, with a fourfold increase in the Bighorn Basin
and minimal change in the Piceance and Hanna Basins (Barefoot et al., 2022; Chen et al., 2018; Dechesne
et al., 2020; Foreman, 2014; Foreman et al., 2012). Minimal changes in aggradation rates in the axial Bighorn
Basin indicate that tectonic forcing was not the primary driver (van der Meulen et al., 2020). Additional evidence
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for varying sediment supply regimes includes enhanced channel mobility through increased bar and floodplain
reworking (Barefoot et al., 2022; Prieur et al., 2024, 2025), downstream expansion of coarser facies with elevated
down-valley slopes (Pujalte et al., 2015), and preferential clay mineral enrichment on the continental margin
(Podrecca et al., 2021).

Two contrasting hypotheses have been proposed to explain these PETM fluvial responses: (a) a sustained increase
in sediment flux from enhanced chemical weathering and erosion (Carmichael et al., 2017; Chen et al., 2018;
Foreman et al., 2012; Jin et al., 2022; Schmitz & Pujalte, 2007; Sharman et al., 2022; Tierney et al., 2022;
Vimpere et al., 2023); (b) increased sediment variability, where extreme flow events mobilize sediment in pulses
without altering the long-term flux (Barefoot et al., 2022; Prieur et al., 2024). To distinguish these two contrasting
scenarios, we use stratigraphic forward modeling to analyze the impacts of stepwise sediment flux increase and
amplified sediment flux variability on stratigraphic architecture, channel belt thickness, and down-valley slope
adjustments. With these, we can identify diagnostic criteria that link sediment-supply changes to observable
stratigraphic patterns.

2. Methodology
2.1. Process-Based Numerical Alluvial Stratigraphic Model

We employed the Karssenberg and Bridge (2008) model to simulate basin-scale landscape evolution and alluvial
stratigraphy. The model accounts for sediment transport, erosion, and deposition within a network of channel
belts and floodplains, with sediment and water transport following a diffusion equation, wherein the transport rate
depends on local water discharge.

Channel-belt bifurcation is represented by two processes: purely stochastic events and a dependent mechanism
driven by the relative advantage of cross-valley slope (S.,) over down-valley slope (Sy,) and by flood discharge
(Q,,) exceedance of a threshold discharge value (Q,). At each grid cell and time step, the probability of a
dependent bifurcation is

_ % eo & e
ro - () (-] 2

where k; is the slope proportionality constant, e is the threshold discharge component, and e; is the slope
exponent (Karssenberg & Bridge, 2008; Mackey & Bridge, 1995).

A bifurcation occurs if P(B) exceeds a draw from the uniform distribution U (0, 1). Upon bifurcation, the up-
stream discharge ¢, is apportioned into branch discharges g, and g, in proportion to their gradients s, and s,, each
perturbed by Gaussian noise n; ~ N (0, ¢°). If either branch fraction ¢;/q, falls below the critical threshold
Uy = 0.4, a bifurcation turns into an avulsion (Karssenberg & Bridge, 2008). Values of other unspecified pa-
rameters are listed in Supporting Information S1 Table S1.

Channel belt aggradation and degradation are computed via the sediment continuity equation. Channel belt width
increases with Q over time until the avulsion threshold is reached, which is a simplification, since channel belt
widening in natural systems reduces boundary shear stress toward the critical value for sediment motion
(Limaye, 2020). Floodplain aggradation initiates when local elevations fall below adjacent channel belts and is
modeled by sediment diffusion—advection. Model sensitivity to varied water discharge (Q,,) and sediment supply
(Q,) is detailed in Wang et al. (2021).

2.2. Model Set-Up and Scenarios

The modeled basin is a 60-km (down-valley) by 40-km (cross-valley) rectangular domain discretized into
200 m x 200 m cells (Figure 1). The initial topography features a gentle down-valley slope (Sy) of 1.1 X 1074,
calibrated to achieve a graded alluvial profile under steady-state conditions with a constant water discharge (Q,,)
of 7.9 x 10'° m*/year and a constant sediment supply (Q,,) of 1.0 x 10° m*/year (Wang et al., 2021). A steady
sea-level rise of 0.4 m/kyr simulates long-term accommodation, which aligns with field-measured aggradation
rates (Abels et al., 2012).
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Figure 1. Initial alluvial plain shown in plan view (top) and as a longitudinal
profile along the basin axis (bottom). The domain, discretized into

200 m X 200 m cells, spans 40 km cross-basin and 60 km along the basin.
Cross-sectional profiles are extracted along line BB’, and downstream
sections are taken along the basin axis at y = 20 km. Modified from Wang
et al. (2021).

(Syvitski et al., 2000). Significant variations in Q,, can lead to extreme
variability in Q,, with recent syn-PETM estimates 2—4 times greater than pre-
and post-PETM counterparts (Prieur et al., 2025; Sgmme et al., 2023).
However, the KB08 model cannot accommodate such extreme Q; variability.
Furthermore, Wang et al. (2021) demonstrated that the model is more sen-
sitive to the Q/Q,, ratio, rather than to the absolute values of either Q,, or O,
alone, consistent with previous findings (Bryant et al., 1995; Zhang
et al., 2019).

To isolate sediment supply effects and ensure computational stability, we
keep Q,, constant while varying Q,. Each 40-kyr simulation (1-year time
steps) spans three phases: pre-event (0—10 kyr), event (10-30 kyr), and post-
event (30—40 kyr). The baseline scenario reflects undisturbed conditions
(Figure 2a); the second scenario imposes an abrupt 40% increase in Q during
the event phase, a value consistent with the 20%—50% variability in Q, pre-
dicted under Milankovitch-scale climate forcing (Blum & Hattier-Womack,
2009Blum & Hattier-Womack, 2009) (Figure 3a); in the third scenario, Q,
alternates +40% around its baseline in 5 kyr square-wave cycles during the
event —2.5 kyr at 1.4 Q, then 2.5 kyr at 0.6 Q,, yielding unchanged total O,
(Figure 3e); and a fourth intermediate scenario combines increased supply
with moderate variability (Q, alternates between 1.2 Q¢ and 1.4 Qg
Figure 4a). All other parameters follow Wang et al. (2021) (Table S1 in
Supporting Information S1).
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Figure 2. Alluvial stratigraphy at cross section along line BB’ (Figure 1) of the baseline scenario. (a) Temporal evolution of sediment supply (Q,). (b) Variation in
surface topography: gray lines indicate the topographic range, and the solid line shows the average elevation. (c) Chronostratigraphic diagram showing spatial and
temporal variability in depositional rates, with white areas denoting degradation and colored dots marking episodes of aggradation. (d) Cross-section surface
topography, with a time interval of 50 years. Closely spaced timelines indicate periods of low to no deposition, while crosscutting signifies erosion. Colored squares
mark channel positions (not dimensions). Red lines delimit the event phase (10-30 kyr). Blue and magenta lines correspond to topography at the time shown in panels
(a) and (b). Upward and downward arrows beside circled numbers indicate aggradation and degradation, respectively.
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Figure 3. Alluvial stratigraphic patterns at cross sections along line BB’ of (a—d) the increased sediment supply scenario and (e—i) the variable sediment supply scenario.
For subplot element details, see Figure 2. Panel (i) offers an enlarged view of the region highlighted by the black rectangle in Panel (g). In Panels (h) and (i), downward-
pointing blue arrows, in conjunction with magenta lines below blue lines (i.e., later times plot below earlier times), demonstrate regional erosion during the

corresponding periods.
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Figure 4. Alluvial stratigraphic patterns at cross section along line BB’ of the intermediate scenario with increased total sediment supply and slight temporal variability.

For subplot element details, see Figure 2.

2.3. Model Output Analyses

We evaluate stratigraphic architecture by analyzing surface elevation timelines (e.g., Figure 2d)—where cross-
cutting indicates erosion, condensed timelines suggest minimal deposition, and wide spacing means rapid
aggradation—and by constructing chronostratigraphic diagrams (e.g., Figure 2c).

Channel belt thickness is derived from detrended relative topography using the progressive black top hat (PBTH)
algorithm (Luo et al., 2015). For each 2—-6 km sliding window, a pre-incision surface is first reconstructed and
subtracted from the elevation profile to yield incision depths, retaining only values above robust thresholds (Text
S1, Figure S1 in Supporting Information S1, Movies S1-S4). These PBTH values serve as a relative index of
depositional magnitude and are not directly equivalent to absolute field measurements. Additionally, we evaluate
distributional differences between channel-belt thickness distributions using two-sample Kolmogorov-Smirnov
tests (Conover, 1999), with p <« 0.01 denoting statistical significance.

Down-valley slopes are calculated as elevation differences over 10-km segments along the basin axis (y = 20 km
in Figure 1), normalized by the initial down-valley slope S, to yield a dimensionless metric (S*), which is
visualized as a heat map (e.g., Figure 5d). We further assess the spatial evolution of S* by averaging profiles over
2.5-kyr intervals (e.g., Figure 5Se) and tracking the temporal evolution of spatially averaged S* from 10 to 50 km
down-valley (e.g., Figure 5f).

3. Results
3.1. Alluvial Stratigraphic Architecture

Across all scenarios, stratigraphic patterns reflect sensitivity to interactions between sediment supply, accom-
modation creation, and autogenic processes. Hereafter, we analyze patterns using cross sections along a line from
the upstream side, the line BB’ (Figure 1) as an example. In the baseline scenario, the basin experiences relatively
uniform aggradation indicated by gradual elevation increase, spatially and temporally stochastic deposition, and
episodic autogenic erosion, presenting overall compensational stacking behaviors and stochastic distributions of
channel belts (Figures 2b—2d). The increased sediment supply scenario yields enhanced aggradation, particularly
noticeable at the event onset at 10 kyr, causing steeper topographic gradients and initially rapid deposition
(Figures 3b—3d). The subsequent reduction in available accommodation results in increased erosion in the later
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phase of the event as evidenced by the white dots during 25-30 kyr in Figure 3c. In contrast, variable sediment
supply generates alternating intervals of aggradation and erosion corresponding directly to high and low sediment
flux periods (Figure 3e—3h). This scenario is characterized by prolonged erosion and deposition phases and
persistent channel belt activity in specific areas (Figures 3h and 3i). Notably, the overall stratigraphic pattern in
this scenario is not dominantly aggradational; intense erosion can lower the topography at later times on a regional
scale (see blue arrows in Figures 3h and 3i). The intermediate scenario exhibits alternating aggradation and
degradation similar to the variable scenario, while its channel belt thickness remains visually comparable to that
of the increased scenario (Figures 4b—4d).

3.2. Channel Belt Thickness

Channel belt thickness, estimated by the maximum incision depth from the PBTH algorithm (Section 2.3),
shows pronounced differences across scenarios primarily at high percentiles. At the 95th percentile, thickness
increases by 23% (to 0.81 m), 26% (0.83 m) and 241% (2.25 m) in the increased, intermediate and variable
scenarios, respectively, relative to the baseline scenario (0.66 m) (Figure 5a). These increases diminish to 23%,
25%, and 58% at the 75th percentile, consistent with expectations of reduced differences among scenarios at
less extreme thresholds. Median (50th percentile) thicknesses show minimal variation, ranging only between
0.40 and 0.49 m. These results indicate that high-magnitude, low-frequency events primarily drive stratigraphic
contrasts, consistent with field observations of large PETM sandstone bodies mentioned in the Introduction.
Identifying and measuring such extremes in the field, however, necessitates sufficiently extensive outcrop
exposures. Two-sample Kolmogorov-Smirnov tests confirm statistically significant differences (p <« 0.01) in
thickness distributions for all scenario comparisons, except between the increased and intermediate scenarios
(Figure 5b).

3.3. Down-Valley Slopes

Down-valley slopes differ notably between the sediment supply scenarios. In the baseline scenario, down-valley
slopes remain stable over time, reflecting maintained equilibrium conditions, with temporally averaged dimen-
sionless down-valley slopes (S*) varying between 0.8 and 2.5 from upstream to downstream and spatial averages
maintaining at around 1.25 (Figures 5c—5f). In contrast, the abrupt increase in sediment supply triggers an im-
mediate, significant rise in down-valley slopes, particularly in the upstream region, maintaining persistently
steeper down-valley slopes with mean spatially-averaged S* of 1.80 throughout the event (Figures 5g-5j). The
variable supply scenario shows the most dynamic response, with down-valley slopes fluctuating sharply between
high and low sediment supply intervals, mirroring depositional and erosional phases. Temporally-averaged down-
valley slopes locally peak at S* = 3.8, while spatial averages alternate markedly around a mean $* of 1.6, with an
approximate oscillating periodicity of 5 kyr in line with the forcing (Figures 5k—5n). The intermediate scenario
exhibits temporal and spatial variability that lies between the increased and variable scenarios (Figure 5q), with
spatial averages fluctuating around a mean S* of 1.8 and visually insignificant oscillating periodicity (Figure 5r).
Two-sample Kolmogorov-Smirnov tests confirm statistically significant differences (p <« 0.01) among distri-
butions of all scenario pairs (Figure S2 in Supporting Information S1).

4. Discussion
4.1. Influence of Sediment Supply on Alluvial Architecture

Our modeling results demonstrate that the nature of sediment supply perturbations fundamentally influences
alluvial stratigraphy. Specifically, when sediment supply varies temporally, the simulated fluvial system exhibits
prolonged phases of alternating deposition and erosion (Figures 3f-3i). This regime significantly increases
channel-belt thickness. By contrast, an abrupt, uniform increase in sediment supply leads to higher aggradation
rates that trigger earlier channel avulsions, thereby constraining channel belt dimensions (Figures 3b—3d). These
quantitative results refine our understanding of how distinct sediment supply regimes control channel-belt ge-
ometry and stratigraphic architecture, complementing and advancing previous studies (Bryant et al., 1995;
Esposito et al., 2018; Fielding et al., 2018; Lyster et al., 2023; McLeod et al., 2023; Sharma et al., 2024; Straub &
Wang, 2013; Wang et al., 2021).

Establishing these model-based relationships is crucial before tentatively comparing our findings to field ob-
servations. For instance, the significantly-enhanced channel sand-body thickness documented in the Bighorn
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Basin (Foreman, 2014) may primarily reflect the impact of high sediment supply variability. In contrast, the
minimal channel sand-body depth changes in the Tremp (Chen et al., 2018; Colombera et al., 2017), Piceance
(Barefoot et al., 2022), and Hanna Basins (Dechesne et al., 2020) could result from increased sediment supply
with limited variability.

For down-valley slopes, immediate accelerated aggradation is observed in upstream areas when sediment supply
is initially increased. Consistently high sediment supply maintains steep down-valley slopes throughout the event,
although intermittent decreases may occur due to the interplay between aggradation and accommodation creation
(Figures 5c—5r). Conversely, variable supply produces alternating high and low down-valley slopes that directly
mirror the phases of dominant deposition and erosion (Figures 3f-31). The most pronounced down-valley slope
adjustments occur in the upstream area at the onset of sediment supply perturbations, when the sudden sediment
load temporarily exceeds the transport capacity of the system. Such spatially and temporally localized responses
underscore the need to consider both basin locations and stratigraphic intervals when reconstructing down-valley
slopes (Trampush & Hajek, 2017), which are often derived indirectly from grain size proxies and may vary over
an order of magnitude (Barefoot et al., 2022).

4.2. Implications and Outlook

Our findings indicate that significantly thick channel belts may predominantly record variable sediment supply
driven by climatic fluctuations rather than simply reflecting increases in total sediment supply. This distinction
refines paleoenvironmental reconstructions of alluvial sediment records and enhances predictions of reservoir
distribution within subsurface alluvial successions. For example, with increased total sediment supply, the
development of smaller channels intercalated with overbank deposits suggests reduced reservoir connectivity and
increased heterogeneity, conditions that can adversely affect fluid flow and resource extraction (Miall, 1988). In
contrast, variable sediment supply produces thick channel sand-body with fewer fine-grained overbank deposits,
thereby improving connectivity and homogenizing reservoir properties (Colombera et al., 2012; Gibling, 2006).

A deeper understanding of alluvial systems will require integration of additional dynamic processes into depo-
sitional models. Incorporating factors such as vegetation influences (Finotello et al., 2024; Ganti et al., 2019; lelpi
& Lapotre, 2020; Vandenberghe, 2003), variable bank strengths (Parker et al., 2008; Simon & Collison, 2002),
and floodplain-controlled avulsion thresholds (Edmonds et al., 2016; Gearon et al., 2024; Hajek & Wolin-
sky, 2012; Martin & Edmonds, 2022) will improve the realism of simulations. Coupling depositional models with
erosional landscape evolution frameworks (e.g., Fastscape and Landlab; Braun & Willett, 2013; Hobley
et al., 2017) and further with global climate models such as Community Earth System Model (CESM; Hurrell
et al., 2013) offers a holistic approach that links atmospheric, hydrological, and sedimentary processes (Coulthard
& Van de Wiel, 2013; Tucker & Hancock, 2010). Such integrations should be further combined with basin
subsidence and sea-level change scenarios to simulate the response of specific alluvial systems to environmental
perturbations.

5. Conclusions

Our stratigraphic forward modeling results show that temporal variability in sediment supply exerts a more
pronounced influence on alluvial stratigraphic architecture than an abrupt increase in total sediment supply.
Specifically, enhanced sediment supply variability produces thicker channel-belt deposits and alternating high
and low down-valley slopes. In contrast, an abrupt increase in total sediment supply results in uniformly steep
down-valley slopes with slightly changing channel belt thickness. Meanwhile, the down-valley slope alteration as
a response to sediment supply change is highly dependent on the basin location and stratigraphic interval, with
higher values in the upstream and near the onset of the supply increase. These findings underscore the differential
impacts of sediment supply variability and magnitude on alluvial stratigraphy, which improves our ability to
reconstruct past environments and predict future landscape evolution.

Data Availability Statement
MATLAB and Python codes and data used to generate the results of this study are available at Wang (2024).
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