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A novel algorithmic approach to obtaining maneuverable
control-invariant sets*

Prashant Solanki1, Jasper J. van Beers2, Anahita Jamshidnejad3 and Coen C. de Visser4

Abstract— Ensuring safety in autonomous systems is essential
as they become more integrated with modern society. One way
to accomplish this is to identify and maintain a safe operating
space. To this end, much effort has been devoted in the field of
reachability analysis to obtaining control-invariant sets which
ensure that a system inside of these sets can remain in these
sets, and are thus essential for guaranteeing a system’s safety.
However, control invariance does not imply that a system can
move from any state in the control-invariant set to any other
state in the control-invariant set, within a given time horizon. In
this paper, we develop an algorithm to obtain a control-invariant
set that allows a given system to move from any state in the set
to any other state in the set within a given time horizon without
having to leave the set. We call this the ‘maneuver set’, M .
We substantiate the algorithm’s efficacy through mathematical
proof, affirming that the maneuver set obtained through the
algorithm is indeed control-invariant. Furthermore, we prove
that the system is indeed able to move from any state within
this set to any other state in the set. To illustrate the use of our
algorithm, we provide the numerical example of a Dubins car,
utilising Hamilton-Jacobi-Bellman reachability analysis along
with the proposed algorithm in order to obtain M .

I. INTRODUCTION

A. Motivation

The proliferation of automated systems in our daily lives
underscores the growing importance of ensuring their safety.
Indeed, as shown by [1], the predominant factor contribut-
ing to robot failures is loss-of-control. Furthermore, recent
research by [2] has flagged a noteworthy correlation be-
tween the escalation of automation and robotics, and an
increased incidence of accidents. These findings emphasize
the need for better safety measures and strategies within
these domains. Various engineering disciplines explore the
safety concerns associated with such systems. One effective
approach for providing safety guarantees is reachability
analysis, which revolves around the conceptual framework
of reachable sets. Reachability problems focus on identifying
the set of states for which an attainable control policy exists,
either to guide the system towards a specified state or to
avoid particular states. Much effort has been devoted in the
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field of reachability analysis to obtain control-invariant sets.
These sets ensure that, if the system is inside of these sets,
there exists an attainable control input such that the system
remains within the invariant set and are thus essential for
guaranteeing a system’s safety. However, control invariance
does not imply that the system can move from any state in
the control-invariant set to any other state in the control-
invariant set, within the given time horizon. Thus, this paper
is motivated by the aim of finding a set that is both control-
invariant and allows the system to move from any state in
the set to any other state in the set within the given time
horizon. We call this set ‘maneuver set’, M .

B. Related work

When addressing reachability problems, a variety of av-
enues have contributed useful approaches, often under dif-
ferent terminologies. Among these, the most prevalent term
is ‘capture basin’ [3]. An alternative approach to obtain the
capture basin is articulated within the framework of viability
theory, as expounded in [4]. Another method for tackling the
reachability problem involves formulating a value function
incorporating optimal control principles, subsequently yield-
ing a Hamilton-Jacobi-Bellman (HJB) equation. The solution
to this equation is obtained through level set methods,
wherein the zero level set of the HJB equation provides the
solution to the reachability problem [5], [6], [7]. To address
the challenges posed by the curse of dimensionality inherent
to such grid-based approaches, innovative strategies have
been explored, such as those based on Gaussian mixtures
[8], convex optimization [9], particle filters [10], Lagrangian
methods [11], and Monte Carlo simulations [12].

Apart from reachability analysis, another way for ensur-
ing system safety involves the implicit design of a safety
controller capable of modifying nominal control actions to
preserve system integrity, as discussed in [13].

C. Contributions

The central contribution of this paper is the development
of an algorithm for the computation of the maneuver set,
M . This set is a control-invariant set that allows the system
to move from any state in the set to any other state in the
set within the given time horizon. This set is constructed
utilizing forward and backward reachable sets which are ob-
tained through standard HJB reachability analysis. We prove
that the maneuver set obtained through the application of the
developed algorithm is indeed control invariant. Additionally,
we further prove that the system is able to move from any
state within M to any other state in M , thereby affirming the
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utility of the algorithm. To illustrate our findings, we provide
the numerical example of a Dubins car. In this example,
HJB reachability analysis is used to obtain the forward and
backward reachable sets of the car from which the maneuver
set is derived using the developed algorithm.

D. Organisation

Section II establishes the foundational context required
and describes the problem statement. Section III introduces
the algorithm and presents the accompanying mathematical
proofs. Section IV delivers a concise introduction to HJB
reachability analysis, while section V offers an introductory
overview of the numerical example. Section VI presents the
results and Section VII concludes the paper.

II. SETTING AND PROBLEM STATEMENT

Let the system be described by equation 1.
dx
dt

= ẋ = f (x,u,d,τ),τ ∈ [t,T ]⊆ R, t ≥ 0,

x ∈ X⊆ Rn,u ∈ U⊆ Rm,d ∈ D⊆ Rn (1)
where x are the states of the system, u(·) is the input policy
into the system, d is the disturbance to the system (input
policy is also represented as u, due to space considerations).
X,U and D are continuous spaces (infinite sets), R is the
set of real numbers and F is the set of all measurable
functions. UT

t is the set of all possible input policies in
time horizon [t,T ] (whenever the time interval is obvious,
UT

t is replaced by U for the sake of readability). The system
desrcibed by equation 1 is assumed to be locally Lipschitz
continuous. U is compact and time invariant (for the given
time interval), i.e., Uτ

t = Uτ+t2
t+t2 . Furthermore, UT1

t ⊆ UT2
t for

T2≥T1. ζ
u,d
x,t (τ) is the state of the system under control policy

u(·), with initial state x and initial time t evaluated at time
τ . It is further assumed that ζ

u,d
x,t (τ) = ζ

u,d
x,t+t2(τ + t2) (this

follows directly from the time-invariance of the system). The
disturbance is assumed to be bounded, compact and time
invariant (maximum and minimum disturbance is fixed).

In this paper, the disturbance, d, is a map, d : U→D, i.e.,
player 2 (disturbance) is restricted to a strategy dependent
upon player 1 (input), such that it always opposes the goals
of player 1. Furthermore, it is assumed that player 2 can
only draw from non-anticipative strategies (eq. (2)). This is
a general assumption in robust control problems [14].

d ∈ Λ
T
t := {N : U(t)→ D(t) := u(τ) = û(τ)

a.e. τ ∈ [t,T ]} (2)

⇒N [u](τ) = N [û](τ) a.e. τ ∈ [t,T ]
This means that player 2 cannot produce a different strategy
in response to player 1’s strategy until player 1’s strategy
changes. Thus, player 2 cannot set their strategy based on
the anticipated future strategy of player 1. However, in
this setting player 2 has the advantage of deciding their
strategy based on player 1 at every time instance. Thus, the
disturbance has an instantaneous informational advantage.
The reason for this is that, in robust problems, the worst
case scenario is expected. The above assumptions guarantee

the existence and uniqueness of the solution of the system
equation (1).

The forward reachable set is the set of states for which
there exists at least one control policy, for all possible
disturbances, that will drive the system into the set from
its initial set, L , within the given time horizon. It is given
by equation 3. This set is also called the robust forward
reachable set.

VFRT([t,T ],L ) := {y : ∃u ∈ UT
t ,∀d ∈ DT

t ,∃τ ∈ [t,T ],

x ∈L ,ζ u,d
x,t (τ) = y} (3)

The forced forward reachable set is the set of states for
which there exists at least one possible disturbance, for all
control policies, that will drive the system into the set from
its initial set, L , within the time horizon. It is given by
equation 4.

VFFRT([t,T ],L ) := {y : ∀u ∈ UT
t ,∃d ∈ DT

t ,∃τ ∈ [t,T ],

x ∈L ,ζ u,d
x,t (τ) = y} (4)

The backward reachable set is the set of all initial states
from which there exists at least one control policy, for all
possible disturbances, that will lead the system into the
required set, L , within the time horizon. It is given by
equation 5. This set is also known as the robust backward
reachable set.

VBRT([t,T ],L ) := {x : ∃u ∈ UT
t ,∀d ∈ DT

t ,∃τ ∈ [t,T ],

ζ
u,d
x,t (τ) ∈L } (5)

The forced backward reachable set is the set of all the
initial states from which there exists at least one possible
disturbance, for all control policies, that will lead the system
into the required set, L , within the time horizon. It is given
by equation 6. This set is also known as the avoid backward
reachable set [7].

VFBRT([t,T ],L ) := {x : ∀u ∈ UT
t ,∃d ∈ DT

t ,∃τ ∈ [t,T ],

ζ
u,d
x,t (τ) ∈L } (6)

The control invariant set is defined as the set of states such
that, if the system is inside of the control invariant set, there
exists a control policy such that the system stays inside of the
control invariant set for the given time horizon. Equation 7
defines the control invariant set, Vcinv([t,T ]). The union of all
control invariant sets for the given time horizon is called the
control invariant kernel and is denoted by Kcinv([t,T ]), i.e.,
the control invariant kernel is the biggest control invariant
set. It is also referred to as robust control invariant set and
robust control invariant kernel, respectively.

Vcinv([t,T ]) := {x : ∃u ∈ UT
t ,∀d ∈ DT

t ,

∀τ ∈ [t,T ],x ∈Vcinv([t,T ]),ζ
u,d
x,t (τ) ∈Vcinv([t,T ])} (7)

The intersection of forward and backward reachable set
(often called the safe set in literature [15],[16],[17]) is shown
in equation 8. In this paper we will refer to this set as
intersection set.

Vint([t,T ],L ) =VBRT([t,T ],L )∩VFRT([t,T ],L ) (8)
In this paper we define a set called maneuver set. It is a
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control invariant set in which the system can travel form any
state in the maneuver set to any other state in the maneuver
set within the given time horizon. The set is denoted as
M ([t,T ]).

We also define a trajectory set. Given a control policy (u),
a time horizon ([t,T ]), and an initial state (x), this is the
set of all the states that the system transitions to from the
initial state in the time horizon under the control policy. We
represent this set as {ζ u,d

x,t (T )}. One must note that since
disturbance d is dependent on the control input (in a robust
sense) the trajectory set is deterministic in nature.

The definitions of the sets provided above are valid under
the assumption that the control policy set (UT

t ) and the
disturbance set (DT

t ) are compact in nature, i.e., they are
bounded and closed sets. The control set is usually assumed
to be compact, which is true for the systems of interest
(i.e., physical systems). However, the disturbance set can be
bounded or unbounded based on the environment.

III. MAIN CONTRIBUTION - THE MANEUVER SET

The algorithm developed in this paper (algorithm 1)
aims to find a control-invariant set in which the system
can travel from any state to any state within a given time
horizon without leaving the set. Algorithm 1, in essence,
utilises the forward and backward reachable sets of an initial
set, L and obtains their intersection. Then it computes
the complement of this intersection and finds the forced
backward reachable set of this complement. It then subtracts
this forced backward reachable set from the intersection,
resulting in the set with the desired properties, i.e., the
maneuver set (set M ).

Algorithm 1 An algorithm to obtain maneuver set (M )

Require: VBRT([t,T ],L ),VFRT([t,T ],L )
Vint([t,T ],L ) = S←VBRT([t,T ],L )∩VFRT([t,T ],L )
Obtain S = X\S
Q←VFBRT([t,T ],S)
M = S\Q

The first part of the algorithm to obtain the maneuver
set (M ) involves taking the intersection of the forward
and backward reachable sets of an initial set, L and thus
obtaining the intersection set, S (Vint([t,T ],L )). As proven
in lemma 1, within the set S, the system can transition from
any state to any state. That is because any state inside of the
intersection set is also part of set L ’s backward reachable
set. Per definition this means that within the time horizon 0 to
T the system can reach set L . Furthermore, as per definition
L is a subset of its own forward reachable set. Thus, the
system can start from any state within L and can reach any
state in the forward reachable set within the time horizon 0
to T.

Lemma 1: The system can transition from any state in
the Vint([0,T ],L ) to any other state in Vint([0,T ],L ) within
the time horizon of [0,2T].

Proof : Let x,x1 ∈Vint([0,T ],L )

Since x ∈Vint([0,T ],L )⇒ x ∈VBRT([0,T ],L )⇒
∃u ∈ UT

0 ,∀d ∈ DT
0 ,∃τ ∈ [0,T ], s.t. ζ

u,d
x,0 (τ) = xL ∈L

Since the system is time invariant
VFRT([0,T ],L ) =VFRT([τ,T + τ],L )

⇒ x′ ∈Vint([0,T ],L )⇒ x′ ∈VFRT([τ,T + τ],L )⇒
∃u′ ∈ UT+τ

τ ,∀d′ ∈ DT+τ
τ ,∃τ ′ ∈ [τ,T + τ],

xL ∈L ,ζ u′,d′
xL ,τ(τ

′) = x′

⇒∃u′′ ∈ U2T
0 ,∀d′′ ∈ D2T

0 ,∃τ ′′ ∈ [0,2T ] s.t.

x,x′ ∈Vint([0,T ],L ),ζ u′′,d′′
x,0 (τ ′′) = x′

However, this does not imply that the intersection set is
control-invariant, as depicted in figure 1. It can be observed
that the system at any state within the set S can transition to
any state in L (as ∀x∈ S⇒ x∈VBRT([t,T ],L )) but the only
way to do so might be by leaving set S, as illustrated by the
red trajectory in figure 1. In contrast, for the blue dot there
exists a control, and thus a trajectory, which leads the system
into set L while ensuring that the complete trajectory stays
inside the intersection set during the given time frame.

Fig. 1. Illustration to provide a visual understanding of Lemma 1: ( ),( )
and ( ) represent the trajectory set.

Lemma 2 proves that set M is control-invariant. After
finding the intersection of the forward and backward reach-
able set of set L , we now want to find all the states in this
intersection that force the system to leave the intersection
in order to reach set L , similar to the red trajectory in
figure 1. These states are found by using the comple-
ment of the intersection set (represented by S) and finding
the forced backward reachable set of this complement, Q
(VFBRT([t,T ],S)). Q consists of all the states that force the
system into the complement of the intersection set S (which
by definition is outside of the intersection set). Thus, we are
provided with the set of states that we want to eliminate from
the intersection set. These states are subsequently removed
from the intersection set.

If we now take any state in this transformed intersection
set (i.e. M ), we can be sure that the system will never
leave the original intersection set since all states that would
force it to leave have been eliminated from it. We also prove
that the system will stay inside set M at all times. This is

9918

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2024 at 09:03:24 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Illustration to provide a visual understanding of Lemma 2: ( ),( )
and ( ) represent the trajectory set .

because any state inside set M is also a state in the backward
reachable set of set L . It is not possible that there exists a
trajectory to L (e.g., the red trajectory in figure 2) that exits
set M and crosses any state we have removed from the
intersection set (illustrated by area Q in figure 2).

That is because if such a trajectory existed, it would imply
that there is a direct trajectory from a state in Q to L which
does not force the system outside of the intersection set. But
if that was the case, this state would not have been part of Q
in the first place. Therefore, the set M is control-invariant.

Lemma 2: The set M is a control invariant.
Proof: Part I

Since S∪S = X

⇒ Q =VFBRT([t,T ],S)⊆ S

Part II

Let x ∈M ⇒ x ∈ S∧ x /∈ Q

where ∧ is the ‘AND’ operation

if x ∈ Q =VFBRT([t,T ],S)⇒∀u ∈ UT
t ,∃d ∈ DT

t ,

∃τ ∈ [t,T ], s.t. ζ
u,d
x,t (τ) ∈ S

Since x /∈ Q⇒∃u ∈ UT
t ,∀d ∈ DT

t ,

∀τ ∈ [t,T ], s.t. ζ
u,d
x,t (τ) ∈ S

x ∈M = S\Q⇒∃u ∈ UT
t ,∀d ∈ DT

t ,

∀τ ∈ [t,T ], s.t. ζ
u,d
x,t (τ) ∈ S

Part III

Let x′ ∈M ⇒ x′ ∈ S⇒ x′ ∈VBRT([t,T ],L )∩
VFRT([t,T ],L )⇒ x′ ∈VBRT([t,T ],L )

⇒∃u′ ∈ UT
t ,∀d ∈ DT

t ,∃τ ′ ∈ [t,T ] s.t. ζ
u′,d
x′,t (τ

′) ∈L

It is evident from definition of the set S that L ⊆ S

⇒∃u′ ∈ UT
t ,∀d ∈ DT

t ,∃τ ′ ∈ [t,T ] s.t. ζ
u′,d
x′,t (τ

′) ∈ S

Let {ζ u′,d
x′,t (τ

′)} be the trajectory set then

using part II {ζ u′,d
x′,t (τ

′)} ⊆ S

Part IV

Claim: Q∩{ζ u′,d
x′,t (τ

′)}= φ ,Where φ is empty set

Let the claim be false ⇒ Q∩{ζ u′,d
x′,t (τ

′)} ̸= φ

⇒∃τ ′′ ∈ [t,τ ′] s.t. ζ
u′,d
x′,t (τ

′′) = x′′ ∈ Q∩{ζ u′,d
x′,t (τ

′)}

Since x′′ ∈ {ζ u′,d
x′,t (τ

′)}⇒ ∃u′ ∈ UT
t ,∀d ∈ DT

t ,

∀τ ′′′ ∈ [τ ′′,τ ′] s.t. ζ
u′,d
x′′,τ ′′(τ

′′′) ∈ S

Since x′′ ∈ Q⇒∀u ∈ UT
t ,∃d ∈ DT

t ,

∃τ ∈ [t,T ], s.t. ζ
u,d
x,t (τ) ∈ S

This is a contradiction; thus the claim is true
and by using part II, III and IV

x′ ∈M ⇒∃u′ ∈ UT
t ,∀d ∈ DT

t ,∀τ ′ ∈ [t,T ]

s.t. ζ
u′,d
x′,t (τ

′) ∈ S\Q

Lemma 3 proves that within set M the system can travel
from any state to any state. M is a subset of the intersection
set, for which lemma 1 has proven that the system can travel
from any state to any state. Using the same argument we can
show that the system can travel from any state to any state
in set M .

As illustrated by figure 3: From any state in set M the
system can take a trajectory to L (yellow trajectory), and
from L the system can go to any state within M (blue
trajectory).

Lemma 3: The system can transition from any state in
M to any other state in M , in time horizon [0,2T ].
Proof: Let x ∈M

Let x ∈M ⇒ x ∈ S⇒ x ∈
VBRT([0,T ],L )∩VFRT([0,T ],L )

⇒ x ∈VBRT([0,T ],L )⇒∃u ∈ U,∀d ∈ D,∃τ ∈ [0,T ]

s.t. ζ
u,d
x,0 (τ) = x′ ∈L

Since L ⊆ S⇒ x′ ∈ S⇒ x′ ∈VFRT([0,T ],L )

⇒∃u′ ∈ U,∀d ∈ D,∃τ ′ ∈ [0,T ] s.t. ζ
u′,d
x′,0 (τ

′) = x′′

Fig. 3. Illustration to provide a visual understanding of Lemma 3: ( )
and ( ) represents the trajectory set and S\Q = M .
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Since system is assumed to be time invariant

⇒∃u′ ∈ U,∀d ∈ D,∃τ ′ ∈ [T,2T ] s.t. ζ
u′,d
x′,T (τ

′) = x′′

⇒∃u′′ ∈ U,∀d ∈ D,∃τ ′′ ∈ [0,2T ],x,x′′ ∈M

s.t. ζ
u′,d
x,0 (τ ′) = x′′

IV. HAMILTON JACOBI BELLMAN REACHABILITY
ANALYSIS

In this subsection a short overview of Hamilton-Jacobi-
Bellman (HJB) reachability analysis is provided. This tech-
nique is used to obtain the forward/backward reachable set
pertaining to both reach and avoid scenarios [18], [19], [20],
[21]. A cost function is designed as shown in equation 9.

J(x, t,u) =
∫ T

t
c(x(τ),u(τ))dτ + l(x(T )) (9)

Then an optimal control problem is formulated such that the
cost function is minimised with the system dynamics as one
of the constraints as shown in equation (10).

V (x(t), t) = in f
u
[J(x, t,u)] (10)

subject to ẋ = f (x(τ),u(τ)),∀τ ∈ [t,T ]

u(τ) ∈ UT
t

This optimal control problem is solved using dynamic pro-
gramming, giving rise to a partial differential equation (PDE)
called HJB PDE for the continuous case, or a recursive
update equation called Bellman backup/equation in the case
of discrete systems. The zero level set of the solution of
this PDE provides us with the set of interest. This method
further produces a control law or a controller that can keep
the system in the set of interest. We obtain different value
functions for different sets of interest, which correspond to
different HJB PDE [22]. For backward reachable sets the
value function is given by equation 11 and the corresponding
PDE is given by equation 12

VBRT([t,T ],L ) = inf
u

sup
d

min
τ∈t,T

l(ζ u,d
x,t (τ)) (11)

min{l(x, t)−V (x, t),DtV +inf
u

sup
d

DxV · f (x,u)}= 0 (12)

The optimal control at any given time and state is given by
equation 13

u∗(x, t) = arginf
u

sup
d

[DxV · f (x(t),u(t))] (13)

For forced backward reachable sets the value function is
given by equation 14 and the corresponding PDE is given
by equation 15

VFBRT([t,T ],L ) = sup
u

inf
d

min
τ∈t,T

l(ζ u,d
x,t (τ)) (14)

min{l(x, t)−V (x, t),DtV +sup
u

inf
d

DxV · f (x,u)}= 0 (15)

The optimal control at any given time and state is given by
equation 16

u∗(x, t) = argsup
u

inf
d

[DxV · f (x(t),u(t))] (16)

For forward reachable sets the value function is given by
equation 17 and the corresponding PDE by equation 18.

VFRT([t,T ],L ) = inf
u

sup
d

max
τ∈t,T

l(ζ u,d
x,t (τ)) (17)

max{l(x, t)−V (x, t),DtV−inf
u

sup
d

DxV · f (x,u)}= 0 (18)

The optimal control at any given time and state is given by
equation 19

u∗(x, t) = argsinf
u

sup
d

[−DxV · f (x(t),u(t))] (19)

The obtained HJB PDE is solved using numerical methods.
One of the most common methods is the level set method
[23], [24]. There are also toolboxes available that are specif-
ically created to solve HJB PDE for reachability analysis.

V. NUMERICAL EXAMPLE: DUBINS CAR

To demonstrate the theoretical results of the preceding
sections, we employ the Dubins car with a constant speed v
as the system model, shown in equation 20. ẋ

ẏ
θ̇

=

vcos(θ)
vsin(θ)

ω

+

dx
dy
dθ

 ,ω ∈ [−1,1] (20)

where x is the position along the x-axis, y is the position
along the y-axis, θ is the turn angle, ω is the input to the
system and v is the constant velocity of the car which is
assumed to be 1 m/s. It is assumed that ω is bounded between
[−1,1]. Furthermore, the disturbance is also assumed to be
bounded with dx ∈ [−0.1,0.1], dy ∈ [−0.1,0.1] and dθ ∈
[−0.1,0.1] We follow the steps of the algorithm as explained
in section III.

VI. RESULTS AND DISCUSSION

To obtain the forward and backward reachable sets, a
cylinder with a radius of 1 centred at origin was chosen
as the initial set L . Physically this initialisation means that
the Dubins car could be situated at any state within a circle
of radius 1 with an initial orientation of any angle between 0
and 360. Using the level set method and a customised version
of the toolbox [25], equation 18 is solved to compute the
forward reachable set of the initial set L . Figure 4 shows the
outer contour of the forward reachable set (VBRT([t,T ],L ))
of the system represented by equation 20 for a time horizon
of 5 seconds in green, while the outer contour of initial set
(L ) is depicted in blue. The x-axis and y-axis of the figure
represent distances in metres. The z-axis represents the turn
angle or yaw angle of the system in radians.

Using the same toolbox, the backward reachable set of
the initial set L is found through equation 12. Figure
5 shows the outer contour of the backward reachable set
(VBRT([t,T ],L )) of the system represented by equation 20
for a time horizon of 5 seconds in green colour, while the
outer contour of initial set (L ) is depicted using blue colour.
The x-axis and y-axis of the figure represent the distances
travelled in metres. The z-axis represents the turn angle or
yaw angle of the system in radians.

Using the forward and backward reachable sets as inputs
into the algorithm developed in this paper and once again

9920

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2024 at 09:03:24 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Outer contour of the forward reachable set denoted by colour ( )
and initial set denoted by colour ( )

Fig. 5. Outer contour of the backward reachable set denoted by colour
( ) and initial set denoted by colour ( )

using the modified toolbox, we arrive at the maneuver set
M . Figure 6 shows the outer contour of the maneuver set
(M ) of the system represented by equation 20 for a time
horizon of 5 seconds in green colour. The x-axis and y-axis
of the figure represent the distances travelled in metres. The
z-axis represents the turn angle or yaw angle of the system
in radians.

To illustrate that the system is able to stay within the
maneuver set, we chose a random state within the maneuver
set and show that the system is able to stay inside it for 5
seconds. This serves as an illustration for the set’s control
invariance. Figure 7 shows the outer contour of the maneuver
set (M ) of the system represented by equation 20 for a time
horizon of 5 seconds in green colour, an initial condition
of the system in blue colour and the trajectory followed
by the system in red colour. The x-axis and y-axis of the
figure represent the distances travelled in metres. The z-
axis represents the turn angle or yaw angle of the system

Fig. 6. Outer contour of the maneuver set denoted by colour ( )

Fig. 7. Outer contour of the maneuver set denoted by colour ( ), initial
state denoted by colour ( ) and the trajectory taken by the system denoted
by colour ( )

in radians.

VII. CONCLUSION

To ensure the safety of automated systems it is essential
that they are aware of the region in the state space where they
have the control authority to move safely, and the capability
to stay within that region. We have derived a definition of
such a set, called the maneuver set, which can be computed
from forward and backward reachable sets. We illustrated
the computation of the set through an example. In future
we would like to expand the concept of the maneuver set
into the probabilistic domain to obtain probabilistic control-
invariant sets that guarantee the system to move from one
state to another state with a certain probability.
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